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ABSTRACT
OpenJDK Java Virtual Machine (HotSpot) is the reference
implementation of JVM. The goals of the JVM are to pro-
vide a reliable, high-performance execution environment for
Java programs.

One of the many duties of the JVMs is to allocate Java
objects and manage object metadata. Users are normally
oblivious to this, since there is little specified about the ob-
ject layout and precise semantics with regards to memory
layout in the Java Language Specification. This enabled the
JVM to rearrange object fields to fit the platform require-
ments, including aligning the fields to evade misaligned ac-
cesses, packing the fields to reduce footprint, etc.

In this report, we quantify the JVM behavior with regards
to field layout on a large corpus of class files. We show that
while lots of classes benefit from the current layout scheme,
the layout can still be significantly improved.

1. IMPORTANT INVARIANTS
Current HotSpot tries to rearrange fields to improve mem-

ory footprint, while still maintaining a few important invari-
ants.

Field alignment.
In order to avoid misaligned accesses, we need to lay out

the fields aligned by their size. For example, with 12-byte
headers, we are not allowed to place an 8-byte long field at
offset 12, because doing so will break the long alignment,
which can result in losing read/write atomicity, spurious
SIGBUSes, or invoking kernel fallback, thus code sacrific-
ing performance. In this case, we can only put long at offset
16. The gaps resulting from maintaining this invariant con-
tribute to internal alignment losses.

Object alignment.
In order for field alignment to work properly, and also to

provide the atomicity while accessing the object headers, we
should also align the objects themselves. In current imple-
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mentation, this results in rounding the instance size up to
8 bytes. The gap resulting from maintaining this invariant
contributes to external alignment losses.

Fields layouts are consistent throughout the hierarchy.

Laying out the same fields in the hierarchy at the same
offsets enables the VM to skip the field lookups when the su-
perclass field is accessed through different subclasses. This
pushes the implementation to lay out the superclass fields
first. Even though there could be gaps in superclass field lay-
out that subclasses can subsequently use, current HotSpot
implementation does not take this into consideration. The
resulting gaps contribute to internal alignment losses again.

2. PENDING IMPROVEMENTS
In this study, we try to quantify the scale of alignment

losses in realistic classes. We do so to provide the rationale
for three pending VM changes:

Close the hierarchy gaps.
There is a pending Request for Improvement (RFE) CR

8024912 [1] which suggests we close the gap between the
superclass and subclass instance field blocks. Doing so will
eliminate the part of internal alignment losses, and will en-
able the subclass fields to be put in the alignment shadow
of the superclass instance block.

Consider this synthetic example:

public class A {
boolean a;

}

public class B extends A {
boolean b;

}

public class C extends B {
boolean c;

}

The layout for class C will be:

OFFSET SIZE TYPE DESCRIPTION
0 12 (object header)

12 1 boolean A.a
13 3 (internal align)
16 1 boolean B.b
17 3 (internal align)
20 1 boolean C.c
21 3 (external align)



The only reason we have the internal alignment gaps is
because we round up the instance field block in superclass
by 4 bytes. We can lay out the fields in this fashion instead:

OFFSET SIZE TYPE DESCRIPTION
0 12 (object header)

12 1 boolean A.a
13 1 boolean B.b
14 1 boolean C.c
15 1 (external align)

This will save us 8 bytes per instance. Actually, if we
put these three boolean fields in the same class, they will be
densely laid out exactly like this.

Re-use the superclass field gaps.
There is also a broader RFE CR 8024913 [2] which sug-

gests we put the subclass fields in every available gap in
the superclass, not only on the instance boundary. This re-
quires significant rework of current layout mechanics. Note
this RFE is the superset of the RFE above.

Take this example:

public class A {
long a;

}

public class B extends A {
long b;

}

public class C extends B {
long c;
int d;

}

The class C will be laid out like this:

OFFSET SIZE TYPE DESCRIPTION
0 12 (object header)

12 4 (internal align)
16 8 long A.a
24 8 long B.b
32 8 long C.c
40 4 int C.d
44 4 (external align)

Note that we have the gap at offset 12, and we have the
C.a integer field which can take the place there. We can
improve the layout scheme to use that opportunity:

OFFSET SIZE TYPE DESCRIPTION
0 12 (object header)

12 4 int C.d
16 8 long A.a
24 8 long B.b
32 8 long C.c

This will save us 8 bytes per instance.

Adjust the alignment.
Another RFE [3] argues that in some cases, we don’t need

to align the object at 8 bytes, since we don’t always have
8-byte fields within the object. This requires the significant
rework of the VM-GC interface to communicate the need for
different alignment for different objects. Since the prevalent
data types are int and reference, it seems natural keep to 4
bytes as the minimal alignment. Then, if we should differ-
entiate between just two alignments (i.e. 4-byte and 8-byte
alignment), we still need to either keep at least a single bit in
the object header, or segregate the allocation arenas for the

objects with different alignments. Also, in the presence of
compressed references, we will have to use the lowest align-
ment as the compressed reference shift, thus limiting the
addressable Java heap.

For example:

public class A {
int a;

}

This class does not require the alignment by 8 bytes, the
alignment by 4 bytes is enough to guarantee the int field
alignment:

OFFSET SIZE TYPE DESCRIPTION
0 8 (object header)
8 4 int A.a

Rounding up the instance size to 4 bytes, not to 8 bytes
gives us 4 spare bytes per instance.

3. EXPERIMENTAL SETUP

• Java Object Layout (JOL) tools [6]. In order to
quantify the improvements properly, we conduct the
study on large corpus of class files, and simulate the
layout strategies for the improvements above. The de-
fault layout strategies were ported from HotSpot C++
classloader code to Java within the OpenJDK java-
object-layout tool, and subsequent changes to the lay-
out policy are also simulated with the help of that tool.

• Maven Central [7] snapshot. Taken in early 2012,
only JAR artifacts are recorded. 7.9M+ class files,
packed in 97K+ JAR files, occupying 66.2 GBs. Since
there are multiple versions of the same artifact in the
repository, we de-duplicate the extracted layout data,
naturally contrasting out only the changed class files.

• Solaris 10, x86 64, running on Sun Ultra 27 (1xIntel
Xeon W 3540). Since the field layouts are oblivious
to OS flavor, we limit our study only to one OS/HW
platform.

• JDK 8b106 Early Access [8]. We also used the
JDK Class Library as one of the auxiliary datasets.
The following JVM modes were used:

– -d32: requests 32-bit data model, effectively in-
voking the 32-bit VM

– -d64: requests 64-bit data model, effectively in-
voking the the 64-bit VM, compressed references
are enabled by default, objects are aligned by 8
bytes.

– -d64 -XX:-UseCompressedOops: same as -
d64, but with the compressed references explicitly
disabled

– -d64 -XX:ObjectAlignmentInBytes=16: same
as -d64, but increasing the object alignment to 16.
This is the usual practice to make compressed ref-
erences work on larger heaps.

We run in different JVM modes to vary object align-
ments, object header sizes, and also to gather the ac-
tual object layout for additional verification.



The largest caveat for this study is the inherent lack of
realistic heap dumps. We conduct the study on realistic
classes, not the realistic objects, which brings in the sam-
pling bias, since the major part of memory footprint in usual
Java application is attributed to just a few classes. However,
this study is still important to understand the worst-case
scenario, when one of those ubiquitous classes is laid out
with the losses.

4. BASIC DATA
First, we need to gain the intuition about the usual class

sizes. We separate the data for different VMs since they are
not usually comparable.

Different JVM modes yield different object header sizes,
because we need to get proportionally more metadata in
there. The object header in current HotSpot implementa-
tion consists of two parts: mark word, which aggregates most
of the meta-information about the object, and class word,
which references the class this object is an instance of. Mark
word should have the ability to save the large native pointer,
i.e. the pointer on stack for the displaced header, or native
lock pointer; this blows up the mark word on larger bit-
nesses. Class word stores the reference to the class, and
thus also being affected by bitness.

Header size mandates the minimal instance size for the
given JVM mode. The usual sizes are:

• 8 bytes (4 byte mark + 4 byte class) for 32-bit VMs

• 12 bytes (8 byte mark + 4 byte compressed class) for
64-bit VMs with compressed references enabled

• 16 bytes (8 byte mark + 8 byte class) for 64-bit VM
without the compressed references

This is coherent with the empirical data on the corpus we
have, see Figures 1, 2, 3 and 4. Note that because of the
alignment, we have just a few frequent instance sizes, and
most of the classes are less than 64 bytes long.

The distribution of live user data, that is, space occupied
by user fields in the class, is also modalized. This is because
the two most prevalent data types used, int, and reference.
Notably, the only JVM mode which has different user data
footprint is the one with compressed references disabled. In
all other cases, the sizes of all built-in types are exactly
the same, and so the user data takes the same space. See
Appendix A for more details on user data.

By comparing instance sizes vs. live user data we can infer
the alignment losses. In many cases the alignment losses
are exactly zero. However, because user data is not fitting
exactly in the aligned object, we need to waste some of the
space.

The alignment losses generally depend on object align-
ment and header size. For example, in 32-bit VM (Figure
5), we can see most of the objects enjoy no alignment losses
at all, while we still have the loss peak at 4 bytes. This is
usual when using single reference field with 8 byte header,
requiring the object to be aligned up by 8 bytes. In 64-bit
VM case we have the 16-byte header, and 8-byte references.
While the objects are generally larger, having the full-width
references saves us from a large quantity of alignment losses
(see Figure 7). This effect is back with compressed refer-
ences enabled (see Figure 6). Naturally, this effect is ampli-
fied even more with 16-byte alignments (see Figure 8).

BitSet claimed = new BitSet ();
claimed.set(0, OBJ_HEADER_SIZE );

for (Class <?> k : hierarchy) {
for (int size : new int[] {8, 4, 2, 1}) {

for (FieldInfo f : enumerateFields(k)) {
if (f.getSize () != size) continue;

// Find the next free slot , and
// make sure it is $size -aligned.
for (int t = 0; t < Integer.MAX_VALUE; t++) {

int start = t*size;
int end = (t+1)* size;
if (claimed.get(start , end). isEmpty ()) {

claimed.set(start , end);
f.setOffset(start);
break;

}
}

}
}

if (doSuperGaps) {
// Do nothing , allowing to use any gaps
// in the superclass layout.

} else if (doHierarchyGaps) {
// Claim the entire class , no rounding.
// This will allow using the hierarchy
// alignment shadow.
claimed.set(0, claimed.lastBitSet ());

} else {
// Claim the entire class ,
// also round up the instance field block.
// This is default for HotSpot today.
claimed.set(0, align(claimed.lastBitSet (), 4));

}
}

instanceSize = claimed.lastBitSet () + 1;
if (autoAlign) {

int a = 4;
for (FieldInfo f : enumerateFields(k)) {

a = Math.max(a, f.getSize ());
}
instanceSize = align(instanceSize , a);

} else {
instanceSize = align(instanceSize , 8);

}

Figure 9: Simulated field layout code

We can also note the non-power-of-two alignment losses
due to the non-uniform user data. These losses can occur on
the hierarchy boundary, or because the first field alignment.
In this study, we will estimate the benefits of avoiding these
alignment losses.

5. LAYOUT SCHEMES
Current HotSpot classloader code [9] is responsible for lay-

ing out the fields in the class. HotSpot clearly demarcates
instance and static fields: while instance fields are the part
of the object instance, the static fields are the part of class
data. The current code is complicated due to different al-
location styles, the presence of hard-coded field offsets for
some classes, @Contended, etc.

In this experiment, we reformulated the layout code into
the Java code in Figure 9. Note this code is laying out the
entire hierarchy at once while still maintaining the impor-
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Figure 1: Instance size distribution on 32-bit VM: 8-byte headers, objects aligned by 8 bytes.
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Figure 2: Instance size distribution on 64-bit VM: 12-byte headers, objects aligned by 8 bytes.
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Figure 3: Instance size distribution on 64-bit VM, compressed refs disabled: 16-byte headers, objects aligned
by 8 bytes.

1e+05

2e+05

3e+05

4e+05

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Object instance size, bytes

c
la

s
s
e
s
 #

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Object instance size, bytes

c
la

s
s
e
s
 #

Figure 4: Instance size distribution on 64-bit VM, object alignment 16: 16-byte headers, objects aligned by
16-bytes.

tant invariants (see Section 1), and this approach is different
from HotSpot’s one class at the time, starting from super-
class. Our code maintains the bit set of claimed offsets in
the instance field block, traverses the hierarchy from super-
classes down to subclasses, and lays out the instance fields
from widest to narrowest by finding the appropriate slot.

Note that our code is rather ineffective since it takes O(n2)
time, and O(n) space, where n is the number of instance
fields. Current HotSpot layout code has O(n) time, and
O(1) space complexity. A few optimizations can provide
O(n) time and space complexity for our naive algorithm.

We have checked that the instance sizes generated by our
simplistic layout are coherent with the real VM layout: less
than 0.5% classes produce different layout on the entire cor-
pus. These discrepancies are caused by Throwable.backtrace
field not visible via Java Reflection [4], and also because of
@Contended [5]. See Appendix B for more data.

We suggest three major improvements to this layout scheme.
First, we can stop rounding up the current class instance

block to 4, thus making the hierarchy gap accessible for the
layout. We refer to this strategy as ”hierarchy gap”. This
strategy it is enabled by flipping the ”doHierarchyGap” flag
in Figure 9.
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Figure 5: Alignment losses on 32-bit VM
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Figure 6: Alignment losses on 64-bit VM, compressed
references enabled
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Figure 7: Alignment losses on 64-bit VM, compressed
references disabled

0e+00

1e+05

2e+05

3e+05

0 4 8 12 16 20 24 28 32
Waste, bytes

c
la

s
s
e
s
 #

Figure 8: Alignment losses on 64-bit VM, compressed
references enabled, object alignment is 16

Second, we can stop claiming the entire class after the
layout, making its gaps available for subclasses. We refer
to this strategy as ”super gap”. This strategy is enabled
by flipping the ”doSuperGap” flag in Figure 9. ”Super gap”
strategy supersedes the ”hierarchy gap”strategy, because the
former naturally claims the hierarchy gaps as well.

Third, we can figure out the maximum field width in the
current class, and infer the required alignment for this ob-
ject. This feature is enabled by flipping the ”autoAlign” flag
in Figure 9. This is a generic optimization applicable to
both ”hierarchy”- and ”super gap” layout strategies.

6. RESULTS
By applying different layout strategies to the existing classes,

we can showcase the benefits of introducing these changes
into the JVM. Since the alignment losses are different in dis-
tinct JVM modes, we can foresee the expected improvements
are also different.

The experimental data are summarized in Figure 10. Up
to 1.8% of real classes benefit from even the simple ”hier-
archy gap” strategy. Up to 2.4% of all encountered classes
benefit from the more aggressive ”super gap” strategy. Both
these optimizations shift the instance size to the lower align-
ment. Because of that, the improvements are multiples
of 8 bytes, with the most frequent improvement (>99% of
classes) being 8 bytes, see Figure 11. Due to the fact the
most prevalent classes are small, the relative improvements
are moderate, around 10% in default configurations, see Fig-
ure 12.

The most interesting result, however, comes from the au-
tomatic alignment. We can see that even the auto alignment
alone can be applied for more than 30% of realistic classes,
resulting in dramatic footprint improvements. The major
improvements in most VM modes are because of the fact
that user data is not normally occupying the entire align-
ment shadow. 64-bit mode with compressed references dis-
abled experiences much less improvements, because the ref-
erences are now aligned by 8 bytes, and have better chances
to fit the alignment. The average improvements for this op-

32-bit VM 64-bit VM
+comp –comp 16-byte

hierarchy 1.6% 1.5% 1.8% 0.6%
super 1.8% 1.8% 2.4% 0.7%
align 32.7% 60.4% 1.3% 76.1%

align + hierarchy 32.3% 62.0% 3.1% 77.0%
align + super 34.4% 62.2% 3.7% 77.1%

Figure 10: Maven Central: Optimizable classes ratio

32-bit VM 64-bit VM
+comp –comp 16-byte

hierarchy 8.0 8.0 8.0 16.0
super 8.1 8.0 8.0 16.0
align 4.0 4.0 4.0 6.7

align + hierarchy 4.2 4.1 6.3 6.8
align + super 4.2 4.1 6.6 6.8

Figure 11: Maven Central: Average instance size
improvement, bytes

32-bit VM 64-bit VM
+comp –comp 16-byte

hierarchy 9.7% 9.4% 6.0% 15.0%
super 9.8% 9.8% 6.4% 15.9%
align 17.6% 19.1% 15.8% 23.4%

align + hierarchy 17.2% 18.8% 10.2% 23.3%
align + super 17.2% 18.8% 9.7% 23.3%

Figure 12: Maven Central: Average instance size
improvement, percent



32-bit VM 64-bit VM
+comp –comp 16-byte

hierarchy 1.5% 1.3% 1.0% 0.6%
super 1.7% 1.6% 1.7% 0.7%
align 34.4% 58.1% 2.4% 75.1%

align + hierarchy 35.9% 59.4% 3.4% 75.8%
align + super 36.0% 59.6% 4.1% 75.9%

Figure 13: JDK 8: Optimizable classes ratio

32-bit VM 64-bit VM
+comp –comp 16-byte

hierarchy 8.0 8.0 8.0 16.0
super 8.0 8.0 8.1 16.0
align 4.0 4.0 4.0 6.8

align + hierarchy 4.2 4.1 5.2 6.8
align + super 4.2 4.1 5.1 6.9

Figure 14: JDK 8: Average instance size improve-
ment, bytes

32-bit VM 64-bit VM
+comp –comp 16-byte

hierarchy 10.6% 9.8% 5.3% 15.5%
super 10.5% 10.0% 5.8% 15.2%
align 16.9% 19.1% 16.0% 23.0%

align + hierarchy 16.7% 18.9% 12.8% 23.0%
align + super 16.7% 18.7% 11.7% 23.0%

Figure 15: JDK: Average instance size improve-
ment, percent

timization are ranging in 10% – 20% reduction in instance
size.

Figures 13, 14, and 15 show the related improvements
for the JDK class library (conveniently packed into rt.jar)
shipped with the JDK. We can see that the improvements
are slightly lower than those measured with Maven Central,
but otherwise coherent with them.

7. CONCLUSION AND DISCUSSION
This report quantified the world-wide impact for three

possible VM improvements.
We have shown that taking the hierarchy gaps can help

more than 1.8% of real-world classes to occupy 8 bytes less
per instance. We had also shown that more generic opti-
mization, i.e. taking the superclass gaps can help more than
2.4% of real-world classes to occupy 8 byte less per instance.
These two features only touch the specific part in JVM run-
time, and do not require heavy runtime support.

Additionally, we demonstrated that current object align-
ment of 8 bytes is very pessimistic, and more than 30%
classes in 32-bit mode, or 60% classes in 64-bit mode can
benefit from the lower alignment, saving 4 bytes and more
per instance. This optimization requires major changes in
runtime to support multiple alignments, including, but not
limited to, storing the alignment flags in object headers, ad-
justing GC to take care of multiple alignments, as well as
solving the potential problems with misaligned object header
accesses.

The improvements are measured on the large corpus of
realistic class files, not the large corpus of realistic objects.
The actual footprint improvements will depend on the object
distribution in particular applications, and requires further
research. There is the observation that just a few classes
occupy most of the heap in realistic applications. The data
in this study gives the rough estimate for the probability we
hit the unlucky layout with some of those frequent classes,
and the penalties in the memory footprint we will encounter.
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APPENDIX
A. LIVE USER DATA SIZES

Figures 16 and 17 show the usual live user data sizes for
the classes in our corpus.
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Figure 16: User data with 4-byte references.
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Figure 17: User data with 8-byte references.

B. VM LAYOUT DISCREPANCIES
Figures 18, 19, 20, and 21 show the discrepancies between

the the real VM layout, and our simulation code. The peaks
at 128 and 256 bytes are @Contended [5] peaks. The peak
at 8 bytes is the Throwable.backtrace [4] peak. There are
also a few other peaks at Figure 19 attributed to hard-coded
field offsets in java.lang.Class and java.lang.ClassLoader.
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Figure 18: VM layout discrepancies for 32-bit VM
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Figure 19: VM layout discrepancies for 64-bit VM
without the compressed references
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Figure 20: VM layout discrepancies for 64-bit VM
with the compressed references
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Figure 21: VM layout discrepancies for 64-bit VM
with 16-byte alignment


