1 /*
   2  * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Sun designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Sun in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  22  * CA 95054 USA or visit www.sun.com if you need additional information or
  23  * have any questions.
  24  */
  25 
  26 package java.util.regex;
  27 
  28 import java.security.AccessController;
  29 import java.security.PrivilegedAction;
  30 import java.text.CharacterIterator;
  31 import java.text.Normalizer;
  32 import java.util.ArrayList;
  33 import java.util.HashMap;
  34 import java.util.Arrays;
  35 
  36 
  37 /**
  38  * A compiled representation of a regular expression.
  39  *
  40  * <p> A regular expression, specified as a string, must first be compiled into
  41  * an instance of this class.  The resulting pattern can then be used to create
  42  * a {@link Matcher} object that can match arbitrary {@link
  43  * java.lang.CharSequence </code>character sequences<code>} against the regular
  44  * expression.  All of the state involved in performing a match resides in the
  45  * matcher, so many matchers can share the same pattern.
  46  *
  47  * <p> A typical invocation sequence is thus
  48  *
  49  * <blockquote><pre>
  50  * Pattern p = Pattern.{@link #compile compile}("a*b");
  51  * Matcher m = p.{@link #matcher matcher}("aaaaab");
  52  * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
  53  *
  54  * <p> A {@link #matches matches} method is defined by this class as a
  55  * convenience for when a regular expression is used just once.  This method
  56  * compiles an expression and matches an input sequence against it in a single
  57  * invocation.  The statement
  58  *
  59  * <blockquote><pre>
  60  * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
  61  *
  62  * is equivalent to the three statements above, though for repeated matches it
  63  * is less efficient since it does not allow the compiled pattern to be reused.
  64  *
  65  * <p> Instances of this class are immutable and are safe for use by multiple
  66  * concurrent threads.  Instances of the {@link Matcher} class are not safe for
  67  * such use.
  68  *
  69  *
  70  * <a name="sum">
  71  * <h4> Summary of regular-expression constructs </h4>
  72  *
  73  * <table border="0" cellpadding="1" cellspacing="0"
  74  *  summary="Regular expression constructs, and what they match">
  75  *
  76  * <tr align="left">
  77  * <th bgcolor="#CCCCFF" align="left" id="construct">Construct</th>
  78  * <th bgcolor="#CCCCFF" align="left" id="matches">Matches</th>
  79  * </tr>
  80  *
  81  * <tr><th>&nbsp;</th></tr>
  82  * <tr align="left"><th colspan="2" id="characters">Characters</th></tr>
  83  *
  84  * <tr><td valign="top" headers="construct characters"><i>x</i></td>
  85  *     <td headers="matches">The character <i>x</i></td></tr>
  86  * <tr><td valign="top" headers="construct characters"><tt>\\</tt></td>
  87  *     <td headers="matches">The backslash character</td></tr>
  88  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>n</i></td>
  89  *     <td headers="matches">The character with octal value <tt>0</tt><i>n</i>
  90  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  91  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>nn</i></td>
  92  *     <td headers="matches">The character with octal value <tt>0</tt><i>nn</i>
  93  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  94  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>mnn</i></td>
  95  *     <td headers="matches">The character with octal value <tt>0</tt><i>mnn</i>
  96  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>m</i>&nbsp;<tt>&lt;=</tt>&nbsp;3,
  97  *         0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  98  * <tr><td valign="top" headers="construct characters"><tt>\x</tt><i>hh</i></td>
  99  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hh</i></td></tr>
 100  * <tr><td valign="top" headers="construct characters"><tt>&#92;u</tt><i>hhhh</i></td>
 101  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hhhh</i></td></tr>
 102  * <tr><td valign="top" headers="matches"><tt>\t</tt></td>
 103  *     <td headers="matches">The tab character (<tt>'&#92;u0009'</tt>)</td></tr>
 104  * <tr><td valign="top" headers="construct characters"><tt>\n</tt></td>
 105  *     <td headers="matches">The newline (line feed) character (<tt>'&#92;u000A'</tt>)</td></tr>
 106  * <tr><td valign="top" headers="construct characters"><tt>\r</tt></td>
 107  *     <td headers="matches">The carriage-return character (<tt>'&#92;u000D'</tt>)</td></tr>
 108  * <tr><td valign="top" headers="construct characters"><tt>\f</tt></td>
 109  *     <td headers="matches">The form-feed character (<tt>'&#92;u000C'</tt>)</td></tr>
 110  * <tr><td valign="top" headers="construct characters"><tt>\a</tt></td>
 111  *     <td headers="matches">The alert (bell) character (<tt>'&#92;u0007'</tt>)</td></tr>
 112  * <tr><td valign="top" headers="construct characters"><tt>\e</tt></td>
 113  *     <td headers="matches">The escape character (<tt>'&#92;u001B'</tt>)</td></tr>
 114  * <tr><td valign="top" headers="construct characters"><tt>\c</tt><i>x</i></td>
 115  *     <td headers="matches">The control character corresponding to <i>x</i></td></tr>
 116  *
 117  * <tr><th>&nbsp;</th></tr>
 118  * <tr align="left"><th colspan="2" id="classes">Character classes</th></tr>
 119  *
 120  * <tr><td valign="top" headers="construct classes"><tt>[abc]</tt></td>
 121  *     <td headers="matches"><tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (simple class)</td></tr>
 122  * <tr><td valign="top" headers="construct classes"><tt>[^abc]</tt></td>
 123  *     <td headers="matches">Any character except <tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (negation)</td></tr>
 124  * <tr><td valign="top" headers="construct classes"><tt>[a-zA-Z]</tt></td>
 125  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>
 126  *         or <tt>A</tt> through <tt>Z</tt>, inclusive (range)</td></tr>
 127  * <tr><td valign="top" headers="construct classes"><tt>[a-d[m-p]]</tt></td>
 128  *     <td headers="matches"><tt>a</tt> through <tt>d</tt>,
 129  *      or <tt>m</tt> through <tt>p</tt>: <tt>[a-dm-p]</tt> (union)</td></tr>
 130  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[def]]</tt></td>
 131  *     <td headers="matches"><tt>d</tt>, <tt>e</tt>, or <tt>f</tt> (intersection)</tr>
 132  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^bc]]</tt></td>
 133  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
 134  *         except for <tt>b</tt> and <tt>c</tt>: <tt>[ad-z]</tt> (subtraction)</td></tr>
 135  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^m-p]]</tt></td>
 136  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
 137  *          and not <tt>m</tt> through <tt>p</tt>: <tt>[a-lq-z]</tt>(subtraction)</td></tr>
 138  * <tr><th>&nbsp;</th></tr>
 139  *
 140  * <tr align="left"><th colspan="2" id="predef">Predefined character classes</th></tr>
 141  *
 142  * <tr><td valign="top" headers="construct predef"><tt>.</tt></td>
 143  *     <td headers="matches">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
 144  * <tr><td valign="top" headers="construct predef"><tt>\d</tt></td>
 145  *     <td headers="matches">A digit: <tt>[0-9]</tt></td></tr>
 146  * <tr><td valign="top" headers="construct predef"><tt>\D</tt></td>
 147  *     <td headers="matches">A non-digit: <tt>[^0-9]</tt></td></tr>
 148  * <tr><td valign="top" headers="construct predef"><tt>\s</tt></td>
 149  *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
 150  * <tr><td valign="top" headers="construct predef"><tt>\S</tt></td>
 151  *     <td headers="matches">A non-whitespace character: <tt>[^\s]</tt></td></tr>
 152  * <tr><td valign="top" headers="construct predef"><tt>\w</tt></td>
 153  *     <td headers="matches">A word character: <tt>[a-zA-Z_0-9]</tt></td></tr>
 154  * <tr><td valign="top" headers="construct predef"><tt>\W</tt></td>
 155  *     <td headers="matches">A non-word character: <tt>[^\w]</tt></td></tr>
 156  *
 157  * <tr><th>&nbsp;</th></tr>
 158  * <tr align="left"><th colspan="2" id="posix">POSIX character classes</b> (US-ASCII only)<b></th></tr>
 159  *
 160  * <tr><td valign="top" headers="construct posix"><tt>\p{Lower}</tt></td>
 161  *     <td headers="matches">A lower-case alphabetic character: <tt>[a-z]</tt></td></tr>
 162  * <tr><td valign="top" headers="construct posix"><tt>\p{Upper}</tt></td>
 163  *     <td headers="matches">An upper-case alphabetic character:<tt>[A-Z]</tt></td></tr>
 164  * <tr><td valign="top" headers="construct posix"><tt>\p{ASCII}</tt></td>
 165  *     <td headers="matches">All ASCII:<tt>[\x00-\x7F]</tt></td></tr>
 166  * <tr><td valign="top" headers="construct posix"><tt>\p{Alpha}</tt></td>
 167  *     <td headers="matches">An alphabetic character:<tt>[\p{Lower}\p{Upper}]</tt></td></tr>
 168  * <tr><td valign="top" headers="construct posix"><tt>\p{Digit}</tt></td>
 169  *     <td headers="matches">A decimal digit: <tt>[0-9]</tt></td></tr>
 170  * <tr><td valign="top" headers="construct posix"><tt>\p{Alnum}</tt></td>
 171  *     <td headers="matches">An alphanumeric character:<tt>[\p{Alpha}\p{Digit}]</tt></td></tr>
 172  * <tr><td valign="top" headers="construct posix"><tt>\p{Punct}</tt></td>
 173  *     <td headers="matches">Punctuation: One of <tt>!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~</tt></td></tr>
 174  *     <!-- <tt>[\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]</tt>
 175  *          <tt>[\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]</tt> -->
 176  * <tr><td valign="top" headers="construct posix"><tt>\p{Graph}</tt></td>
 177  *     <td headers="matches">A visible character: <tt>[\p{Alnum}\p{Punct}]</tt></td></tr>
 178  * <tr><td valign="top" headers="construct posix"><tt>\p{Print}</tt></td>
 179  *     <td headers="matches">A printable character: <tt>[\p{Graph}\x20]</tt></td></tr>
 180  * <tr><td valign="top" headers="construct posix"><tt>\p{Blank}</tt></td>
 181  *     <td headers="matches">A space or a tab: <tt>[ \t]</tt></td></tr>
 182  * <tr><td valign="top" headers="construct posix"><tt>\p{Cntrl}</tt></td>
 183  *     <td headers="matches">A control character: <tt>[\x00-\x1F\x7F]</tt></td></tr>
 184  * <tr><td valign="top" headers="construct posix"><tt>\p{XDigit}</tt></td>
 185  *     <td headers="matches">A hexadecimal digit: <tt>[0-9a-fA-F]</tt></td></tr>
 186  * <tr><td valign="top" headers="construct posix"><tt>\p{Space}</tt></td>
 187  *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
 188  *
 189  * <tr><th>&nbsp;</th></tr>
 190  * <tr align="left"><th colspan="2">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
 191  *
 192  * <tr><td valign="top"><tt>\p{javaLowerCase}</tt></td>
 193  *     <td>Equivalent to java.lang.Character.isLowerCase()</td></tr>
 194  * <tr><td valign="top"><tt>\p{javaUpperCase}</tt></td>
 195  *     <td>Equivalent to java.lang.Character.isUpperCase()</td></tr>
 196  * <tr><td valign="top"><tt>\p{javaWhitespace}</tt></td>
 197  *     <td>Equivalent to java.lang.Character.isWhitespace()</td></tr>
 198  * <tr><td valign="top"><tt>\p{javaMirrored}</tt></td>
 199  *     <td>Equivalent to java.lang.Character.isMirrored()</td></tr>
 200  *
 201  * <tr><th>&nbsp;</th></tr>
 202  * <tr align="left"><th colspan="2" id="unicode">Classes for Unicode blocks and categories</th></tr>
 203  *
 204  * <tr><td valign="top" headers="construct unicode"><tt>\p{InGreek}</tt></td>
 205  *     <td headers="matches">A character in the Greek&nbsp;block (simple <a href="#ubc">block</a>)</td></tr>
 206  * <tr><td valign="top" headers="construct unicode"><tt>\p{Lu}</tt></td>
 207  *     <td headers="matches">An uppercase letter (simple <a href="#ubc">category</a>)</td></tr>
 208  * <tr><td valign="top" headers="construct unicode"><tt>\p{Sc}</tt></td>
 209  *     <td headers="matches">A currency symbol</td></tr>
 210  * <tr><td valign="top" headers="construct unicode"><tt>\P{InGreek}</tt></td>
 211  *     <td headers="matches">Any character except one in the Greek block (negation)</td></tr>
 212  * <tr><td valign="top" headers="construct unicode"><tt>[\p{L}&&[^\p{Lu}]]&nbsp;</tt></td>
 213  *     <td headers="matches">Any letter except an uppercase letter (subtraction)</td></tr>
 214  *
 215  * <tr><th>&nbsp;</th></tr>
 216  * <tr align="left"><th colspan="2" id="bounds">Boundary matchers</th></tr>
 217  *
 218  * <tr><td valign="top" headers="construct bounds"><tt>^</tt></td>
 219  *     <td headers="matches">The beginning of a line</td></tr>
 220  * <tr><td valign="top" headers="construct bounds"><tt>$</tt></td>
 221  *     <td headers="matches">The end of a line</td></tr>
 222  * <tr><td valign="top" headers="construct bounds"><tt>\b</tt></td>
 223  *     <td headers="matches">A word boundary</td></tr>
 224  * <tr><td valign="top" headers="construct bounds"><tt>\B</tt></td>
 225  *     <td headers="matches">A non-word boundary</td></tr>
 226  * <tr><td valign="top" headers="construct bounds"><tt>\A</tt></td>
 227  *     <td headers="matches">The beginning of the input</td></tr>
 228  * <tr><td valign="top" headers="construct bounds"><tt>\G</tt></td>
 229  *     <td headers="matches">The end of the previous match</td></tr>
 230  * <tr><td valign="top" headers="construct bounds"><tt>\Z</tt></td>
 231  *     <td headers="matches">The end of the input but for the final
 232  *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
 233  * <tr><td valign="top" headers="construct bounds"><tt>\z</tt></td>
 234  *     <td headers="matches">The end of the input</td></tr>
 235  *
 236  * <tr><th>&nbsp;</th></tr>
 237  * <tr align="left"><th colspan="2" id="greedy">Greedy quantifiers</th></tr>
 238  *
 239  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>?</tt></td>
 240  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 241  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>*</tt></td>
 242  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 243  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>+</tt></td>
 244  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 245  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>}</tt></td>
 246  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 247  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,}</tt></td>
 248  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 249  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}</tt></td>
 250  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 251  *
 252  * <tr><th>&nbsp;</th></tr>
 253  * <tr align="left"><th colspan="2" id="reluc">Reluctant quantifiers</th></tr>
 254  *
 255  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>??</tt></td>
 256  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 257  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>*?</tt></td>
 258  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 259  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>+?</tt></td>
 260  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 261  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>}?</tt></td>
 262  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 263  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,}?</tt></td>
 264  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 265  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}?</tt></td>
 266  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 267  *
 268  * <tr><th>&nbsp;</th></tr>
 269  * <tr align="left"><th colspan="2" id="poss">Possessive quantifiers</th></tr>
 270  *
 271  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>?+</tt></td>
 272  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 273  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>*+</tt></td>
 274  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 275  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>++</tt></td>
 276  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 277  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>}+</tt></td>
 278  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 279  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,}+</tt></td>
 280  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 281  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}+</tt></td>
 282  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 283  *
 284  * <tr><th>&nbsp;</th></tr>
 285  * <tr align="left"><th colspan="2" id="logical">Logical operators</th></tr>
 286  *
 287  * <tr><td valign="top" headers="construct logical"><i>XY</i></td>
 288  *     <td headers="matches"><i>X</i> followed by <i>Y</i></td></tr>
 289  * <tr><td valign="top" headers="construct logical"><i>X</i><tt>|</tt><i>Y</i></td>
 290  *     <td headers="matches">Either <i>X</i> or <i>Y</i></td></tr>
 291  * <tr><td valign="top" headers="construct logical"><tt>(</tt><i>X</i><tt>)</tt></td>
 292  *     <td headers="matches">X, as a <a href="#cg">capturing group</a></td></tr>
 293  *
 294  * <tr><th>&nbsp;</th></tr>
 295  * <tr align="left"><th colspan="2" id="backref">Back references</th></tr>
 296  *
 297  * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>n</i></td>
 298  *     <td valign="bottom" headers="matches">Whatever the <i>n</i><sup>th</sup>
 299  *     <a href="#cg">capturing group</a> matched</td></tr>
 300  *
 301  * <tr><th>&nbsp;</th></tr>
 302  * <tr align="left"><th colspan="2" id="quot">Quotation</th></tr>
 303  *
 304  * <tr><td valign="top" headers="construct quot"><tt>\</tt></td>
 305  *     <td headers="matches">Nothing, but quotes the following character</td></tr>
 306  * <tr><td valign="top" headers="construct quot"><tt>\Q</tt></td>
 307  *     <td headers="matches">Nothing, but quotes all characters until <tt>\E</tt></td></tr>
 308  * <tr><td valign="top" headers="construct quot"><tt>\E</tt></td>
 309  *     <td headers="matches">Nothing, but ends quoting started by <tt>\Q</tt></td></tr>
 310  *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
 311  *
 312  * <tr><th>&nbsp;</th></tr>
 313  * <tr align="left"><th colspan="2" id="special">Special constructs (non-capturing)</th></tr>
 314  *
 315  * <tr><td valign="top" headers="construct special"><tt>(?:</tt><i>X</i><tt>)</tt></td>
 316  *     <td headers="matches"><i>X</i>, as a non-capturing group</td></tr>
 317  * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux)&nbsp;</tt></td>
 318  *     <td headers="matches">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
 319  * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
 320  * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> on - off</td></tr>
 321  * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux:</tt><i>X</i><tt>)</tt>&nbsp;&nbsp;</td>
 322  *     <td headers="matches"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
 323  *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
 324  * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
 325  * <a href="#COMMENTS">x</a> on - off</td></tr>
 326  * <tr><td valign="top" headers="construct special"><tt>(?=</tt><i>X</i><tt>)</tt></td>
 327  *     <td headers="matches"><i>X</i>, via zero-width positive lookahead</td></tr>
 328  * <tr><td valign="top" headers="construct special"><tt>(?!</tt><i>X</i><tt>)</tt></td>
 329  *     <td headers="matches"><i>X</i>, via zero-width negative lookahead</td></tr>
 330  * <tr><td valign="top" headers="construct special"><tt>(?&lt;=</tt><i>X</i><tt>)</tt></td>
 331  *     <td headers="matches"><i>X</i>, via zero-width positive lookbehind</td></tr>
 332  * <tr><td valign="top" headers="construct special"><tt>(?&lt;!</tt><i>X</i><tt>)</tt></td>
 333  *     <td headers="matches"><i>X</i>, via zero-width negative lookbehind</td></tr>
 334  * <tr><td valign="top" headers="construct special"><tt>(?&gt;</tt><i>X</i><tt>)</tt></td>
 335  *     <td headers="matches"><i>X</i>, as an independent, non-capturing group</td></tr>
 336  *
 337  * </table>
 338  *
 339  * <hr>
 340  *
 341  *
 342  * <a name="bs">
 343  * <h4> Backslashes, escapes, and quoting </h4>
 344  *
 345  * <p> The backslash character (<tt>'\'</tt>) serves to introduce escaped
 346  * constructs, as defined in the table above, as well as to quote characters
 347  * that otherwise would be interpreted as unescaped constructs.  Thus the
 348  * expression <tt>\\</tt> matches a single backslash and <tt>\{</tt> matches a
 349  * left brace.
 350  *
 351  * <p> It is an error to use a backslash prior to any alphabetic character that
 352  * does not denote an escaped construct; these are reserved for future
 353  * extensions to the regular-expression language.  A backslash may be used
 354  * prior to a non-alphabetic character regardless of whether that character is
 355  * part of an unescaped construct.
 356  *
 357  * <p> Backslashes within string literals in Java source code are interpreted
 358  * as required by the <a
 359  * href="http://java.sun.com/docs/books/jls">Java Language
 360  * Specification</a> as either <a
 361  * href="http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#100850">Unicode
 362  * escapes</a> or other <a
 363  * href="http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#101089">character
 364  * escapes</a>.  It is therefore necessary to double backslashes in string
 365  * literals that represent regular expressions to protect them from
 366  * interpretation by the Java bytecode compiler.  The string literal
 367  * <tt>"&#92;b"</tt>, for example, matches a single backspace character when
 368  * interpreted as a regular expression, while <tt>"&#92;&#92;b"</tt> matches a
 369  * word boundary.  The string literal <tt>"&#92;(hello&#92;)"</tt> is illegal
 370  * and leads to a compile-time error; in order to match the string
 371  * <tt>(hello)</tt> the string literal <tt>"&#92;&#92;(hello&#92;&#92;)"</tt>
 372  * must be used.
 373  *
 374  * <a name="cc">
 375  * <h4> Character Classes </h4>
 376  *
 377  *    <p> Character classes may appear within other character classes, and
 378  *    may be composed by the union operator (implicit) and the intersection
 379  *    operator (<tt>&amp;&amp;</tt>).
 380  *    The union operator denotes a class that contains every character that is
 381  *    in at least one of its operand classes.  The intersection operator
 382  *    denotes a class that contains every character that is in both of its
 383  *    operand classes.
 384  *
 385  *    <p> The precedence of character-class operators is as follows, from
 386  *    highest to lowest:
 387  *
 388  *    <blockquote><table border="0" cellpadding="1" cellspacing="0"
 389  *                 summary="Precedence of character class operators.">
 390  *      <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 391  *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
 392  *        <td><tt>\x</tt></td></tr>
 393  *     <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 394  *        <td>Grouping</td>
 395  *        <td><tt>[...]</tt></td></tr>
 396  *     <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 397  *        <td>Range</td>
 398  *        <td><tt>a-z</tt></td></tr>
 399  *      <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 400  *        <td>Union</td>
 401  *        <td><tt>[a-e][i-u]</tt></td></tr>
 402  *      <tr><th>5&nbsp;&nbsp;&nbsp;&nbsp;</th>
 403  *        <td>Intersection</td>
 404  *        <td><tt>[a-z&&[aeiou]]</tt></td></tr>
 405  *    </table></blockquote>
 406  *
 407  *    <p> Note that a different set of metacharacters are in effect inside
 408  *    a character class than outside a character class. For instance, the
 409  *    regular expression <tt>.</tt> loses its special meaning inside a
 410  *    character class, while the expression <tt>-</tt> becomes a range
 411  *    forming metacharacter.
 412  *
 413  * <a name="lt">
 414  * <h4> Line terminators </h4>
 415  *
 416  * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
 417  * the end of a line of the input character sequence.  The following are
 418  * recognized as line terminators:
 419  *
 420  * <ul>
 421  *
 422  *   <li> A newline (line feed) character&nbsp;(<tt>'\n'</tt>),
 423  *
 424  *   <li> A carriage-return character followed immediately by a newline
 425  *   character&nbsp;(<tt>"\r\n"</tt>),
 426  *
 427  *   <li> A standalone carriage-return character&nbsp;(<tt>'\r'</tt>),
 428  *
 429  *   <li> A next-line character&nbsp;(<tt>'&#92;u0085'</tt>),
 430  *
 431  *   <li> A line-separator character&nbsp;(<tt>'&#92;u2028'</tt>), or
 432  *
 433  *   <li> A paragraph-separator character&nbsp;(<tt>'&#92;u2029</tt>).
 434  *
 435  * </ul>
 436  * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
 437  * recognized are newline characters.
 438  *
 439  * <p> The regular expression <tt>.</tt> matches any character except a line
 440  * terminator unless the {@link #DOTALL} flag is specified.
 441  *
 442  * <p> By default, the regular expressions <tt>^</tt> and <tt>$</tt> ignore
 443  * line terminators and only match at the beginning and the end, respectively,
 444  * of the entire input sequence. If {@link #MULTILINE} mode is activated then
 445  * <tt>^</tt> matches at the beginning of input and after any line terminator
 446  * except at the end of input. When in {@link #MULTILINE} mode <tt>$</tt>
 447  * matches just before a line terminator or the end of the input sequence.
 448  *
 449  * <a name="cg">
 450  * <h4> Groups and capturing </h4>
 451  *
 452  * <p> Capturing groups are numbered by counting their opening parentheses from
 453  * left to right.  In the expression <tt>((A)(B(C)))</tt>, for example, there
 454  * are four such groups: </p>
 455  *
 456  * <blockquote><table cellpadding=1 cellspacing=0 summary="Capturing group numberings">
 457  * <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 458  *     <td><tt>((A)(B(C)))</tt></td></tr>
 459  * <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 460  *     <td><tt>(A)</tt></td></tr>
 461  * <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 462  *     <td><tt>(B(C))</tt></td></tr>
 463  * <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 464  *     <td><tt>(C)</tt></td></tr>
 465  * </table></blockquote>
 466  *
 467  * <p> Group zero always stands for the entire expression.
 468  *
 469  * <p> Capturing groups are so named because, during a match, each subsequence
 470  * of the input sequence that matches such a group is saved.  The captured
 471  * subsequence may be used later in the expression, via a back reference, and
 472  * may also be retrieved from the matcher once the match operation is complete.
 473  *
 474  * <p> The captured input associated with a group is always the subsequence
 475  * that the group most recently matched.  If a group is evaluated a second time
 476  * because of quantification then its previously-captured value, if any, will
 477  * be retained if the second evaluation fails.  Matching the string
 478  * <tt>"aba"</tt> against the expression <tt>(a(b)?)+</tt>, for example, leaves
 479  * group two set to <tt>"b"</tt>.  All captured input is discarded at the
 480  * beginning of each match.
 481  *
 482  * <p> Groups beginning with <tt>(?</tt> are pure, <i>non-capturing</i> groups
 483  * that do not capture text and do not count towards the group total.
 484  *
 485  *
 486  * <h4> Unicode support </h4>
 487  *
 488  * <p> This class is in conformance with Level 1 of <a
 489  * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 490  * Standard #18: Unicode Regular Expression Guidelines</i></a>, plus RL2.1
 491  * Canonical Equivalents.
 492  *
 493  * <p> Unicode escape sequences such as <tt>&#92;u2014</tt> in Java source code
 494  * are processed as described in <a
 495  * href="http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#100850">\u00A73.3</a>
 496  * of the Java Language Specification.  Such escape sequences are also
 497  * implemented directly by the regular-expression parser so that Unicode
 498  * escapes can be used in expressions that are read from files or from the
 499  * keyboard.  Thus the strings <tt>"&#92;u2014"</tt> and <tt>"\\u2014"</tt>,
 500  * while not equal, compile into the same pattern, which matches the character
 501  * with hexadecimal value <tt>0x2014</tt>.
 502  *
 503  * <a name="ubc"> <p>Unicode blocks and categories are written with the
 504  * <tt>\p</tt> and <tt>\P</tt> constructs as in
 505  * Perl. <tt>\p{</tt><i>prop</i><tt>}</tt> matches if the input has the
 506  * property <i>prop</i>, while <tt>\P{</tt><i>prop</i><tt>}</tt> does not match if
 507  * the input has that property.  Blocks are specified with the prefix
 508  * <tt>In</tt>, as in <tt>InMongolian</tt>.  Categories may be specified with
 509  * the optional prefix <tt>Is</tt>: Both <tt>\p{L}</tt> and <tt>\p{IsL}</tt>
 510  * denote the category of Unicode letters.  Blocks and categories can be used
 511  * both inside and outside of a character class.
 512  *
 513  * <p> The supported categories are those of
 514  * <a href="http://www.unicode.org/unicode/standard/standard.html">
 515  * <i>The Unicode Standard</i></a> in the version specified by the
 516  * {@link java.lang.Character Character} class. The category names are those
 517  * defined in the Standard, both normative and informative.
 518  * The block names supported by <code>Pattern</code> are the valid block names
 519  * accepted and defined by
 520  * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
 521  *
 522  * <a name="jcc"> <p>Categories that behave like the java.lang.Character
 523  * boolean is<i>methodname</i> methods (except for the deprecated ones) are
 524  * available through the same <tt>\p{</tt><i>prop</i><tt>}</tt> syntax where
 525  * the specified property has the name <tt>java<i>methodname</i></tt>.
 526  *
 527  * <h4> Comparison to Perl 5 </h4>
 528  *
 529  * <p>The <code>Pattern</code> engine performs traditional NFA-based matching
 530  * with ordered alternation as occurs in Perl 5.
 531  *
 532  * <p> Perl constructs not supported by this class: </p>
 533  *
 534  * <ul>
 535  *
 536  *    <li><p> The conditional constructs <tt>(?{</tt><i>X</i><tt>})</tt> and
 537  *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>|</tt><i>Y</i><tt>)</tt>,
 538  *    </p></li>
 539  *
 540  *    <li><p> The embedded code constructs <tt>(?{</tt><i>code</i><tt>})</tt>
 541  *    and <tt>(??{</tt><i>code</i><tt>})</tt>,</p></li>
 542  *
 543  *    <li><p> The embedded comment syntax <tt>(?#comment)</tt>, and </p></li>
 544  *
 545  *    <li><p> The preprocessing operations <tt>\l</tt> <tt>&#92;u</tt>,
 546  *    <tt>\L</tt>, and <tt>\U</tt>.  </p></li>
 547  *
 548  * </ul>
 549  *
 550  * <p> Constructs supported by this class but not by Perl: </p>
 551  *
 552  * <ul>
 553  *
 554  *    <li><p> Possessive quantifiers, which greedily match as much as they can
 555  *    and do not back off, even when doing so would allow the overall match to
 556  *    succeed.  </p></li>
 557  *
 558  *    <li><p> Character-class union and intersection as described
 559  *    <a href="#cc">above</a>.</p></li>
 560  *
 561  * </ul>
 562  *
 563  * <p> Notable differences from Perl: </p>
 564  *
 565  * <ul>
 566  *
 567  *    <li><p> In Perl, <tt>\1</tt> through <tt>\9</tt> are always interpreted
 568  *    as back references; a backslash-escaped number greater than <tt>9</tt> is
 569  *    treated as a back reference if at least that many subexpressions exist,
 570  *    otherwise it is interpreted, if possible, as an octal escape.  In this
 571  *    class octal escapes must always begin with a zero. In this class,
 572  *    <tt>\1</tt> through <tt>\9</tt> are always interpreted as back
 573  *    references, and a larger number is accepted as a back reference if at
 574  *    least that many subexpressions exist at that point in the regular
 575  *    expression, otherwise the parser will drop digits until the number is
 576  *    smaller or equal to the existing number of groups or it is one digit.
 577  *    </p></li>
 578  *
 579  *    <li><p> Perl uses the <tt>g</tt> flag to request a match that resumes
 580  *    where the last match left off.  This functionality is provided implicitly
 581  *    by the {@link Matcher} class: Repeated invocations of the {@link
 582  *    Matcher#find find} method will resume where the last match left off,
 583  *    unless the matcher is reset.  </p></li>
 584  *
 585  *    <li><p> In Perl, embedded flags at the top level of an expression affect
 586  *    the whole expression.  In this class, embedded flags always take effect
 587  *    at the point at which they appear, whether they are at the top level or
 588  *    within a group; in the latter case, flags are restored at the end of the
 589  *    group just as in Perl.  </p></li>
 590  *
 591  *    <li><p> Perl is forgiving about malformed matching constructs, as in the
 592  *    expression <tt>*a</tt>, as well as dangling brackets, as in the
 593  *    expression <tt>abc]</tt>, and treats them as literals.  This
 594  *    class also accepts dangling brackets but is strict about dangling
 595  *    metacharacters like +, ? and *, and will throw a
 596  *    {@link PatternSyntaxException} if it encounters them. </p></li>
 597  *
 598  * </ul>
 599  *
 600  *
 601  * <p> For a more precise description of the behavior of regular expression
 602  * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
 603  * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
 604  * O'Reilly and Associates, 2006.</a>
 605  * </p>
 606  *
 607  * @see java.lang.String#split(String, int)
 608  * @see java.lang.String#split(String)
 609  *
 610  * @author      Mike McCloskey
 611  * @author      Mark Reinhold
 612  * @author      JSR-51 Expert Group
 613  * @since       1.4
 614  * @spec        JSR-51
 615  */
 616 
 617 public final class Pattern
 618     implements java.io.Serializable
 619 {
 620 
 621     /**
 622      * Regular expression modifier values.  Instead of being passed as
 623      * arguments, they can also be passed as inline modifiers.
 624      * For example, the following statements have the same effect.
 625      * <pre>
 626      * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
 627      * RegExp r2 = RegExp.compile("(?im)abc", 0);
 628      * </pre>
 629      *
 630      * The flags are duplicated so that the familiar Perl match flag
 631      * names are available.
 632      */
 633 
 634     /**
 635      * Enables Unix lines mode.
 636      *
 637      * <p> In this mode, only the <tt>'\n'</tt> line terminator is recognized
 638      * in the behavior of <tt>.</tt>, <tt>^</tt>, and <tt>$</tt>.
 639      *
 640      * <p> Unix lines mode can also be enabled via the embedded flag
 641      * expression&nbsp;<tt>(?d)</tt>.
 642      */
 643     public static final int UNIX_LINES = 0x01;
 644 
 645     /**
 646      * Enables case-insensitive matching.
 647      *
 648      * <p> By default, case-insensitive matching assumes that only characters
 649      * in the US-ASCII charset are being matched.  Unicode-aware
 650      * case-insensitive matching can be enabled by specifying the {@link
 651      * #UNICODE_CASE} flag in conjunction with this flag.
 652      *
 653      * <p> Case-insensitive matching can also be enabled via the embedded flag
 654      * expression&nbsp;<tt>(?i)</tt>.
 655      *
 656      * <p> Specifying this flag may impose a slight performance penalty.  </p>
 657      */
 658     public static final int CASE_INSENSITIVE = 0x02;
 659 
 660     /**
 661      * Permits whitespace and comments in pattern.
 662      *
 663      * <p> In this mode, whitespace is ignored, and embedded comments starting
 664      * with <tt>#</tt> are ignored until the end of a line.
 665      *
 666      * <p> Comments mode can also be enabled via the embedded flag
 667      * expression&nbsp;<tt>(?x)</tt>.
 668      */
 669     public static final int COMMENTS = 0x04;
 670 
 671     /**
 672      * Enables multiline mode.
 673      *
 674      * <p> In multiline mode the expressions <tt>^</tt> and <tt>$</tt> match
 675      * just after or just before, respectively, a line terminator or the end of
 676      * the input sequence.  By default these expressions only match at the
 677      * beginning and the end of the entire input sequence.
 678      *
 679      * <p> Multiline mode can also be enabled via the embedded flag
 680      * expression&nbsp;<tt>(?m)</tt>.  </p>
 681      */
 682     public static final int MULTILINE = 0x08;
 683 
 684     /**
 685      * Enables literal parsing of the pattern.
 686      *
 687      * <p> When this flag is specified then the input string that specifies
 688      * the pattern is treated as a sequence of literal characters.
 689      * Metacharacters or escape sequences in the input sequence will be
 690      * given no special meaning.
 691      *
 692      * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
 693      * matching when used in conjunction with this flag. The other flags
 694      * become superfluous.
 695      *
 696      * <p> There is no embedded flag character for enabling literal parsing.
 697      * @since 1.5
 698      */
 699     public static final int LITERAL = 0x10;
 700 
 701     /**
 702      * Enables dotall mode.
 703      *
 704      * <p> In dotall mode, the expression <tt>.</tt> matches any character,
 705      * including a line terminator.  By default this expression does not match
 706      * line terminators.
 707      *
 708      * <p> Dotall mode can also be enabled via the embedded flag
 709      * expression&nbsp;<tt>(?s)</tt>.  (The <tt>s</tt> is a mnemonic for
 710      * "single-line" mode, which is what this is called in Perl.)  </p>
 711      */
 712     public static final int DOTALL = 0x20;
 713 
 714     /**
 715      * Enables Unicode-aware case folding.
 716      *
 717      * <p> When this flag is specified then case-insensitive matching, when
 718      * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
 719      * consistent with the Unicode Standard.  By default, case-insensitive
 720      * matching assumes that only characters in the US-ASCII charset are being
 721      * matched.
 722      *
 723      * <p> Unicode-aware case folding can also be enabled via the embedded flag
 724      * expression&nbsp;<tt>(?u)</tt>.
 725      *
 726      * <p> Specifying this flag may impose a performance penalty.  </p>
 727      */
 728     public static final int UNICODE_CASE = 0x40;
 729 
 730     /**
 731      * Enables canonical equivalence.
 732      *
 733      * <p> When this flag is specified then two characters will be considered
 734      * to match if, and only if, their full canonical decompositions match.
 735      * The expression <tt>"a&#92;u030A"</tt>, for example, will match the
 736      * string <tt>"&#92;u00E5"</tt> when this flag is specified.  By default,
 737      * matching does not take canonical equivalence into account.
 738      *
 739      * <p> There is no embedded flag character for enabling canonical
 740      * equivalence.
 741      *
 742      * <p> Specifying this flag may impose a performance penalty.  </p>
 743      */
 744     public static final int CANON_EQ = 0x80;
 745 
 746     /* Pattern has only two serialized components: The pattern string
 747      * and the flags, which are all that is needed to recompile the pattern
 748      * when it is deserialized.
 749      */
 750 
 751     /** use serialVersionUID from Merlin b59 for interoperability */
 752     private static final long serialVersionUID = 5073258162644648461L;
 753 
 754     /**
 755      * The original regular-expression pattern string.
 756      *
 757      * @serial
 758      */
 759     private String pattern;
 760 
 761     /**
 762      * The original pattern flags.
 763      *
 764      * @serial
 765      */
 766     private int flags;
 767 
 768     /**
 769      * Boolean indicating this Pattern is compiled; this is necessary in order
 770      * to lazily compile deserialized Patterns.
 771      */
 772     private transient volatile boolean compiled = false;
 773 
 774     /**
 775      * The normalized pattern string.
 776      */
 777     private transient String normalizedPattern;
 778 
 779     /**
 780      * The starting point of state machine for the find operation.  This allows
 781      * a match to start anywhere in the input.
 782      */
 783     transient Node root;
 784 
 785     /**
 786      * The root of object tree for a match operation.  The pattern is matched
 787      * at the beginning.  This may include a find that uses BnM or a First
 788      * node.
 789      */
 790     transient Node matchRoot;
 791 
 792     /**
 793      * Temporary storage used by parsing pattern slice.
 794      */
 795     transient int[] buffer;
 796 
 797     /**
 798      * Temporary storage used while parsing group references.
 799      */
 800     transient GroupHead[] groupNodes;
 801 
 802     /**
 803      * Temporary null terminated code point array used by pattern compiling.
 804      */
 805     private transient int[] temp;
 806 
 807     /**
 808      * The number of capturing groups in this Pattern. Used by matchers to
 809      * allocate storage needed to perform a match.
 810      */
 811     transient int capturingGroupCount;
 812 
 813     /**
 814      * The local variable count used by parsing tree. Used by matchers to
 815      * allocate storage needed to perform a match.
 816      */
 817     transient int localCount;
 818 
 819     /**
 820      * Index into the pattern string that keeps track of how much has been
 821      * parsed.
 822      */
 823     private transient int cursor;
 824 
 825     /**
 826      * Holds the length of the pattern string.
 827      */
 828     private transient int patternLength;
 829 
 830     /**
 831      * Compiles the given regular expression into a pattern.  </p>
 832      *
 833      * @param  regex
 834      *         The expression to be compiled
 835      *
 836      * @throws  PatternSyntaxException
 837      *          If the expression's syntax is invalid
 838      */
 839     public static Pattern compile(String regex) {
 840         return new Pattern(regex, 0);
 841     }
 842 
 843     /**
 844      * Compiles the given regular expression into a pattern with the given
 845      * flags.  </p>
 846      *
 847      * @param  regex
 848      *         The expression to be compiled
 849      *
 850      * @param  flags
 851      *         Match flags, a bit mask that may include
 852      *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
 853      *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
 854      *         {@link #LITERAL} and {@link #COMMENTS}
 855      *
 856      * @throws  IllegalArgumentException
 857      *          If bit values other than those corresponding to the defined
 858      *          match flags are set in <tt>flags</tt>
 859      *
 860      * @throws  PatternSyntaxException
 861      *          If the expression's syntax is invalid
 862      */
 863     public static Pattern compile(String regex, int flags) {
 864         return new Pattern(regex, flags);
 865     }
 866 
 867     /**
 868      * Returns the regular expression from which this pattern was compiled.
 869      * </p>
 870      *
 871      * @return  The source of this pattern
 872      */
 873     public String pattern() {
 874         return pattern;
 875     }
 876 
 877     /**
 878      * <p>Returns the string representation of this pattern. This
 879      * is the regular expression from which this pattern was
 880      * compiled.</p>
 881      *
 882      * @return  The string representation of this pattern
 883      * @since 1.5
 884      */
 885     public String toString() {
 886         return pattern;
 887     }
 888 
 889     /**
 890      * Creates a matcher that will match the given input against this pattern.
 891      * </p>
 892      *
 893      * @param  input
 894      *         The character sequence to be matched
 895      *
 896      * @return  A new matcher for this pattern
 897      */
 898     public Matcher matcher(CharSequence input) {
 899         if (!compiled) {
 900             synchronized(this) {
 901                 if (!compiled)
 902                     compile();
 903             }
 904         }
 905         Matcher m = new Matcher(this, input);
 906         return m;
 907     }
 908 
 909     /**
 910      * Returns this pattern's match flags.  </p>
 911      *
 912      * @return  The match flags specified when this pattern was compiled
 913      */
 914     public int flags() {
 915         return flags;
 916     }
 917 
 918     /**
 919      * Compiles the given regular expression and attempts to match the given
 920      * input against it.
 921      *
 922      * <p> An invocation of this convenience method of the form
 923      *
 924      * <blockquote><pre>
 925      * Pattern.matches(regex, input);</pre></blockquote>
 926      *
 927      * behaves in exactly the same way as the expression
 928      *
 929      * <blockquote><pre>
 930      * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
 931      *
 932      * <p> If a pattern is to be used multiple times, compiling it once and reusing
 933      * it will be more efficient than invoking this method each time.  </p>
 934      *
 935      * @param  regex
 936      *         The expression to be compiled
 937      *
 938      * @param  input
 939      *         The character sequence to be matched
 940      *
 941      * @throws  PatternSyntaxException
 942      *          If the expression's syntax is invalid
 943      */
 944     public static boolean matches(String regex, CharSequence input) {
 945         Pattern p = Pattern.compile(regex);
 946         Matcher m = p.matcher(input);
 947         return m.matches();
 948     }
 949 
 950     /**
 951      * Splits the given input sequence around matches of this pattern.
 952      *
 953      * <p> The array returned by this method contains each substring of the
 954      * input sequence that is terminated by another subsequence that matches
 955      * this pattern or is terminated by the end of the input sequence.  The
 956      * substrings in the array are in the order in which they occur in the
 957      * input.  If this pattern does not match any subsequence of the input then
 958      * the resulting array has just one element, namely the input sequence in
 959      * string form.
 960      *
 961      * <p> The <tt>limit</tt> parameter controls the number of times the
 962      * pattern is applied and therefore affects the length of the resulting
 963      * array.  If the limit <i>n</i> is greater than zero then the pattern
 964      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
 965      * length will be no greater than <i>n</i>, and the array's last entry
 966      * will contain all input beyond the last matched delimiter.  If <i>n</i>
 967      * is non-positive then the pattern will be applied as many times as
 968      * possible and the array can have any length.  If <i>n</i> is zero then
 969      * the pattern will be applied as many times as possible, the array can
 970      * have any length, and trailing empty strings will be discarded.
 971      *
 972      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
 973      * results with these parameters:
 974      *
 975      * <blockquote><table cellpadding=1 cellspacing=0
 976      *              summary="Split examples showing regex, limit, and result">
 977      * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
 978      *     <th><P align="left"><i>Limit&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
 979      *     <th><P align="left"><i>Result&nbsp;&nbsp;&nbsp;&nbsp;</i></th></tr>
 980      * <tr><td align=center>:</td>
 981      *     <td align=center>2</td>
 982      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
 983      * <tr><td align=center>:</td>
 984      *     <td align=center>5</td>
 985      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
 986      * <tr><td align=center>:</td>
 987      *     <td align=center>-2</td>
 988      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
 989      * <tr><td align=center>o</td>
 990      *     <td align=center>5</td>
 991      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
 992      * <tr><td align=center>o</td>
 993      *     <td align=center>-2</td>
 994      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
 995      * <tr><td align=center>o</td>
 996      *     <td align=center>0</td>
 997      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
 998      * </table></blockquote>
 999      *
1000      *
1001      * @param  input
1002      *         The character sequence to be split
1003      *
1004      * @param  limit
1005      *         The result threshold, as described above
1006      *
1007      * @return  The array of strings computed by splitting the input
1008      *          around matches of this pattern
1009      */
1010     public String[] split(CharSequence input, int limit) {
1011         int index = 0;
1012         boolean matchLimited = limit > 0;
1013         ArrayList<String> matchList = new ArrayList<String>();
1014         Matcher m = matcher(input);
1015 
1016         // Add segments before each match found
1017         while(m.find()) {
1018             if (!matchLimited || matchList.size() < limit - 1) {
1019                 String match = input.subSequence(index, m.start()).toString();
1020                 matchList.add(match);
1021                 index = m.end();
1022             } else if (matchList.size() == limit - 1) { // last one
1023                 String match = input.subSequence(index,
1024                                                  input.length()).toString();
1025                 matchList.add(match);
1026                 index = m.end();
1027             }
1028         }
1029 
1030         // If no match was found, return this
1031         if (index == 0)
1032             return new String[] {input.toString()};
1033 
1034         // Add remaining segment
1035         if (!matchLimited || matchList.size() < limit)
1036             matchList.add(input.subSequence(index, input.length()).toString());
1037 
1038         // Construct result
1039         int resultSize = matchList.size();
1040         if (limit == 0)
1041             while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
1042                 resultSize--;
1043         String[] result = new String[resultSize];
1044         return matchList.subList(0, resultSize).toArray(result);
1045     }
1046 
1047     /**
1048      * Splits the given input sequence around matches of this pattern.
1049      *
1050      * <p> This method works as if by invoking the two-argument {@link
1051      * #split(java.lang.CharSequence, int) split} method with the given input
1052      * sequence and a limit argument of zero.  Trailing empty strings are
1053      * therefore not included in the resulting array. </p>
1054      *
1055      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
1056      * results with these expressions:
1057      *
1058      * <blockquote><table cellpadding=1 cellspacing=0
1059      *              summary="Split examples showing regex and result">
1060      * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1061      *     <th><P align="left"><i>Result</i></th></tr>
1062      * <tr><td align=center>:</td>
1063      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1064      * <tr><td align=center>o</td>
1065      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
1066      * </table></blockquote>
1067      *
1068      *
1069      * @param  input
1070      *         The character sequence to be split
1071      *
1072      * @return  The array of strings computed by splitting the input
1073      *          around matches of this pattern
1074      */
1075     public String[] split(CharSequence input) {
1076         return split(input, 0);
1077     }
1078 
1079     /**
1080      * Returns a literal pattern <code>String</code> for the specified
1081      * <code>String</code>.
1082      *
1083      * <p>This method produces a <code>String</code> that can be used to
1084      * create a <code>Pattern</code> that would match the string
1085      * <code>s</code> as if it were a literal pattern.</p> Metacharacters
1086      * or escape sequences in the input sequence will be given no special
1087      * meaning.
1088      *
1089      * @param  s The string to be literalized
1090      * @return  A literal string replacement
1091      * @since 1.5
1092      */
1093     public static String quote(String s) {
1094         int slashEIndex = s.indexOf("\\E");
1095         if (slashEIndex == -1)
1096             return "\\Q" + s + "\\E";
1097 
1098         StringBuilder sb = new StringBuilder(s.length() * 2);
1099         sb.append("\\Q");
1100         slashEIndex = 0;
1101         int current = 0;
1102         while ((slashEIndex = s.indexOf("\\E", current)) != -1) {
1103             sb.append(s.substring(current, slashEIndex));
1104             current = slashEIndex + 2;
1105             sb.append("\\E\\\\E\\Q");
1106         }
1107         sb.append(s.substring(current, s.length()));
1108         sb.append("\\E");
1109         return sb.toString();
1110     }
1111 
1112     /**
1113      * Recompile the Pattern instance from a stream.  The original pattern
1114      * string is read in and the object tree is recompiled from it.
1115      */
1116     private void readObject(java.io.ObjectInputStream s)
1117         throws java.io.IOException, ClassNotFoundException {
1118 
1119         // Read in all fields
1120         s.defaultReadObject();
1121 
1122         // Initialize counts
1123         capturingGroupCount = 1;
1124         localCount = 0;
1125 
1126         // if length > 0, the Pattern is lazily compiled
1127         compiled = false;
1128         if (pattern.length() == 0) {
1129             root = new Start(lastAccept);
1130             matchRoot = lastAccept;
1131             compiled = true;
1132         }
1133     }
1134 
1135     /**
1136      * This private constructor is used to create all Patterns. The pattern
1137      * string and match flags are all that is needed to completely describe
1138      * a Pattern. An empty pattern string results in an object tree with
1139      * only a Start node and a LastNode node.
1140      */
1141     private Pattern(String p, int f) {
1142         pattern = p;
1143         flags = f;
1144 
1145         // Reset group index count
1146         capturingGroupCount = 1;
1147         localCount = 0;
1148 
1149         if (pattern.length() > 0) {
1150             compile();
1151         } else {
1152             root = new Start(lastAccept);
1153             matchRoot = lastAccept;
1154         }
1155     }
1156 
1157     /**
1158      * The pattern is converted to normalizedD form and then a pure group
1159      * is constructed to match canonical equivalences of the characters.
1160      */
1161     private void normalize() {
1162         boolean inCharClass = false;
1163         int lastCodePoint = -1;
1164 
1165         // Convert pattern into normalizedD form
1166         normalizedPattern = Normalizer.normalize(pattern, Normalizer.Form.NFD);
1167         patternLength = normalizedPattern.length();
1168 
1169         // Modify pattern to match canonical equivalences
1170         StringBuilder newPattern = new StringBuilder(patternLength);
1171         for(int i=0; i<patternLength; ) {
1172             int c = normalizedPattern.codePointAt(i);
1173             StringBuilder sequenceBuffer;
1174             if ((Character.getType(c) == Character.NON_SPACING_MARK)
1175                 && (lastCodePoint != -1)) {
1176                 sequenceBuffer = new StringBuilder();
1177                 sequenceBuffer.appendCodePoint(lastCodePoint);
1178                 sequenceBuffer.appendCodePoint(c);
1179                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1180                     i += Character.charCount(c);
1181                     if (i >= patternLength)
1182                         break;
1183                     c = normalizedPattern.codePointAt(i);
1184                     sequenceBuffer.appendCodePoint(c);
1185                 }
1186                 String ea = produceEquivalentAlternation(
1187                                                sequenceBuffer.toString());
1188                 newPattern.setLength(newPattern.length()-Character.charCount(lastCodePoint));
1189                 newPattern.append("(?:").append(ea).append(")");
1190             } else if (c == '[' && lastCodePoint != '\\') {
1191                 i = normalizeCharClass(newPattern, i);
1192             } else {
1193                 newPattern.appendCodePoint(c);
1194             }
1195             lastCodePoint = c;
1196             i += Character.charCount(c);
1197         }
1198         normalizedPattern = newPattern.toString();
1199     }
1200 
1201     /**
1202      * Complete the character class being parsed and add a set
1203      * of alternations to it that will match the canonical equivalences
1204      * of the characters within the class.
1205      */
1206     private int normalizeCharClass(StringBuilder newPattern, int i) {
1207         StringBuilder charClass = new StringBuilder();
1208         StringBuilder eq = null;
1209         int lastCodePoint = -1;
1210         String result;
1211 
1212         i++;
1213         charClass.append("[");
1214         while(true) {
1215             int c = normalizedPattern.codePointAt(i);
1216             StringBuilder sequenceBuffer;
1217 
1218             if (c == ']' && lastCodePoint != '\\') {
1219                 charClass.append((char)c);
1220                 break;
1221             } else if (Character.getType(c) == Character.NON_SPACING_MARK) {
1222                 sequenceBuffer = new StringBuilder();
1223                 sequenceBuffer.appendCodePoint(lastCodePoint);
1224                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1225                     sequenceBuffer.appendCodePoint(c);
1226                     i += Character.charCount(c);
1227                     if (i >= normalizedPattern.length())
1228                         break;
1229                     c = normalizedPattern.codePointAt(i);
1230                 }
1231                 String ea = produceEquivalentAlternation(
1232                                                   sequenceBuffer.toString());
1233 
1234                 charClass.setLength(charClass.length()-Character.charCount(lastCodePoint));
1235                 if (eq == null)
1236                     eq = new StringBuilder();
1237                 eq.append('|');
1238                 eq.append(ea);
1239             } else {
1240                 charClass.appendCodePoint(c);
1241                 i++;
1242             }
1243             if (i == normalizedPattern.length())
1244                 throw error("Unclosed character class");
1245             lastCodePoint = c;
1246         }
1247 
1248         if (eq != null) {
1249             result = "(?:"+charClass.toString()+eq.toString()+")";
1250         } else {
1251             result = charClass.toString();
1252         }
1253 
1254         newPattern.append(result);
1255         return i;
1256     }
1257 
1258     /**
1259      * Given a specific sequence composed of a regular character and
1260      * combining marks that follow it, produce the alternation that will
1261      * match all canonical equivalences of that sequence.
1262      */
1263     private String produceEquivalentAlternation(String source) {
1264         int len = countChars(source, 0, 1);
1265         if (source.length() == len)
1266             // source has one character.
1267             return source;
1268 
1269         String base = source.substring(0,len);
1270         String combiningMarks = source.substring(len);
1271 
1272         String[] perms = producePermutations(combiningMarks);
1273         StringBuilder result = new StringBuilder(source);
1274 
1275         // Add combined permutations
1276         for(int x=0; x<perms.length; x++) {
1277             String next = base + perms[x];
1278             if (x>0)
1279                 result.append("|"+next);
1280             next = composeOneStep(next);
1281             if (next != null)
1282                 result.append("|"+produceEquivalentAlternation(next));
1283         }
1284         return result.toString();
1285     }
1286 
1287     /**
1288      * Returns an array of strings that have all the possible
1289      * permutations of the characters in the input string.
1290      * This is used to get a list of all possible orderings
1291      * of a set of combining marks. Note that some of the permutations
1292      * are invalid because of combining class collisions, and these
1293      * possibilities must be removed because they are not canonically
1294      * equivalent.
1295      */
1296     private String[] producePermutations(String input) {
1297         if (input.length() == countChars(input, 0, 1))
1298             return new String[] {input};
1299 
1300         if (input.length() == countChars(input, 0, 2)) {
1301             int c0 = Character.codePointAt(input, 0);
1302             int c1 = Character.codePointAt(input, Character.charCount(c0));
1303             if (getClass(c1) == getClass(c0)) {
1304                 return new String[] {input};
1305             }
1306             String[] result = new String[2];
1307             result[0] = input;
1308             StringBuilder sb = new StringBuilder(2);
1309             sb.appendCodePoint(c1);
1310             sb.appendCodePoint(c0);
1311             result[1] = sb.toString();
1312             return result;
1313         }
1314 
1315         int length = 1;
1316         int nCodePoints = countCodePoints(input);
1317         for(int x=1; x<nCodePoints; x++)
1318             length = length * (x+1);
1319 
1320         String[] temp = new String[length];
1321 
1322         int combClass[] = new int[nCodePoints];
1323         for(int x=0, i=0; x<nCodePoints; x++) {
1324             int c = Character.codePointAt(input, i);
1325             combClass[x] = getClass(c);
1326             i +=  Character.charCount(c);
1327         }
1328 
1329         // For each char, take it out and add the permutations
1330         // of the remaining chars
1331         int index = 0;
1332         int len;
1333         // offset maintains the index in code units.
1334 loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1335             len = countChars(input, offset, 1);
1336             boolean skip = false;
1337             for(int y=x-1; y>=0; y--) {
1338                 if (combClass[y] == combClass[x]) {
1339                     continue loop;
1340                 }
1341             }
1342             StringBuilder sb = new StringBuilder(input);
1343             String otherChars = sb.delete(offset, offset+len).toString();
1344             String[] subResult = producePermutations(otherChars);
1345 
1346             String prefix = input.substring(offset, offset+len);
1347             for(int y=0; y<subResult.length; y++)
1348                 temp[index++] =  prefix + subResult[y];
1349         }
1350         String[] result = new String[index];
1351         for (int x=0; x<index; x++)
1352             result[x] = temp[x];
1353         return result;
1354     }
1355 
1356     private int getClass(int c) {
1357         return sun.text.Normalizer.getCombiningClass(c);
1358     }
1359 
1360     /**
1361      * Attempts to compose input by combining the first character
1362      * with the first combining mark following it. Returns a String
1363      * that is the composition of the leading character with its first
1364      * combining mark followed by the remaining combining marks. Returns
1365      * null if the first two characters cannot be further composed.
1366      */
1367     private String composeOneStep(String input) {
1368         int len = countChars(input, 0, 2);
1369         String firstTwoCharacters = input.substring(0, len);
1370         String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1371 
1372         if (result.equals(firstTwoCharacters))
1373             return null;
1374         else {
1375             String remainder = input.substring(len);
1376             return result + remainder;
1377         }
1378     }
1379 
1380     /**
1381      * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
1382      * See the description of `quotemeta' in perlfunc(1).
1383      */
1384     private void RemoveQEQuoting() {
1385         final int pLen = patternLength;
1386         int i = 0;
1387         while (i < pLen-1) {
1388             if (temp[i] != '\\')
1389                 i += 1;
1390             else if (temp[i + 1] != 'Q')
1391                 i += 2;
1392             else
1393                 break;
1394         }
1395         if (i >= pLen - 1)    // No \Q sequence found
1396             return;
1397         int j = i;
1398         i += 2;
1399         int[] newtemp = new int[j + 2*(pLen-i) + 2];
1400         System.arraycopy(temp, 0, newtemp, 0, j);
1401 
1402         boolean inQuote = true;
1403         while (i < pLen) {
1404             int c = temp[i++];
1405             if (! ASCII.isAscii(c) || ASCII.isAlnum(c)) {
1406                 newtemp[j++] = c;
1407             } else if (c != '\\') {
1408                 if (inQuote) newtemp[j++] = '\\';
1409                 newtemp[j++] = c;
1410             } else if (inQuote) {
1411                 if (temp[i] == 'E') {
1412                     i++;
1413                     inQuote = false;
1414                 } else {
1415                     newtemp[j++] = '\\';
1416                     newtemp[j++] = '\\';
1417                 }
1418             } else {
1419                 if (temp[i] == 'Q') {
1420                     i++;
1421                     inQuote = true;
1422                 } else {
1423                     newtemp[j++] = c;
1424                     if (i != pLen)
1425                         newtemp[j++] = temp[i++];
1426                 }
1427             }
1428         }
1429 
1430         patternLength = j;
1431         temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
1432     }
1433 
1434     /**
1435      * Copies regular expression to an int array and invokes the parsing
1436      * of the expression which will create the object tree.
1437      */
1438     private void compile() {
1439         // Handle canonical equivalences
1440         if (has(CANON_EQ) && !has(LITERAL)) {
1441             normalize();
1442         } else {
1443             normalizedPattern = pattern;
1444         }
1445         patternLength = normalizedPattern.length();
1446 
1447         // Copy pattern to int array for convenience
1448         // Use double zero to terminate pattern
1449         temp = new int[patternLength + 2];
1450 
1451         boolean hasSupplementary = false;
1452         int c, count = 0;
1453         // Convert all chars into code points
1454         for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1455             c = normalizedPattern.codePointAt(x);
1456             if (isSupplementary(c)) {
1457                 hasSupplementary = true;
1458             }
1459             temp[count++] = c;
1460         }
1461 
1462         patternLength = count;   // patternLength now in code points
1463 
1464         if (! has(LITERAL))
1465             RemoveQEQuoting();
1466 
1467         // Allocate all temporary objects here.
1468         buffer = new int[32];
1469         groupNodes = new GroupHead[10];
1470 
1471         if (has(LITERAL)) {
1472             // Literal pattern handling
1473             matchRoot = newSlice(temp, patternLength, hasSupplementary);
1474             matchRoot.next = lastAccept;
1475         } else {
1476             // Start recursive descent parsing
1477             matchRoot = expr(lastAccept);
1478             // Check extra pattern characters
1479             if (patternLength != cursor) {
1480                 if (peek() == ')') {
1481                     throw error("Unmatched closing ')'");
1482                 } else {
1483                     throw error("Unexpected internal error");
1484                 }
1485             }
1486         }
1487 
1488         // Peephole optimization
1489         if (matchRoot instanceof Slice) {
1490             root = BnM.optimize(matchRoot);
1491             if (root == matchRoot) {
1492                 root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1493             }
1494         } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1495             root = matchRoot;
1496         } else {
1497             root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1498         }
1499 
1500         // Release temporary storage
1501         temp = null;
1502         buffer = null;
1503         groupNodes = null;
1504         patternLength = 0;
1505         compiled = true;
1506     }
1507 
1508     /**
1509      * Used to print out a subtree of the Pattern to help with debugging.
1510      */
1511     private static void printObjectTree(Node node) {
1512         while(node != null) {
1513             if (node instanceof Prolog) {
1514                 System.out.println(node);
1515                 printObjectTree(((Prolog)node).loop);
1516                 System.out.println("**** end contents prolog loop");
1517             } else if (node instanceof Loop) {
1518                 System.out.println(node);
1519                 printObjectTree(((Loop)node).body);
1520                 System.out.println("**** end contents Loop body");
1521             } else if (node instanceof Curly) {
1522                 System.out.println(node);
1523                 printObjectTree(((Curly)node).atom);
1524                 System.out.println("**** end contents Curly body");
1525             } else if (node instanceof GroupCurly) {
1526                 System.out.println(node);
1527                 printObjectTree(((GroupCurly)node).atom);
1528                 System.out.println("**** end contents GroupCurly body");
1529             } else if (node instanceof GroupTail) {
1530                 System.out.println(node);
1531                 System.out.println("Tail next is "+node.next);
1532                 return;
1533             } else {
1534                 System.out.println(node);
1535             }
1536             node = node.next;
1537             if (node != null)
1538                 System.out.println("->next:");
1539             if (node == Pattern.accept) {
1540                 System.out.println("Accept Node");
1541                 node = null;
1542             }
1543        }
1544     }
1545 
1546     /**
1547      * Used to accumulate information about a subtree of the object graph
1548      * so that optimizations can be applied to the subtree.
1549      */
1550     static final class TreeInfo {
1551         int minLength;
1552         int maxLength;
1553         boolean maxValid;
1554         boolean deterministic;
1555 
1556         TreeInfo() {
1557             reset();
1558         }
1559         void reset() {
1560             minLength = 0;
1561             maxLength = 0;
1562             maxValid = true;
1563             deterministic = true;
1564         }
1565     }
1566 
1567     /*
1568      * The following private methods are mainly used to improve the
1569      * readability of the code. In order to let the Java compiler easily
1570      * inline them, we should not put many assertions or error checks in them.
1571      */
1572 
1573     /**
1574      * Indicates whether a particular flag is set or not.
1575      */
1576     private boolean has(int f) {
1577         return (flags & f) != 0;
1578     }
1579 
1580     /**
1581      * Match next character, signal error if failed.
1582      */
1583     private void accept(int ch, String s) {
1584         int testChar = temp[cursor++];
1585         if (has(COMMENTS))
1586             testChar = parsePastWhitespace(testChar);
1587         if (ch != testChar) {
1588             throw error(s);
1589         }
1590     }
1591 
1592     /**
1593      * Mark the end of pattern with a specific character.
1594      */
1595     private void mark(int c) {
1596         temp[patternLength] = c;
1597     }
1598 
1599     /**
1600      * Peek the next character, and do not advance the cursor.
1601      */
1602     private int peek() {
1603         int ch = temp[cursor];
1604         if (has(COMMENTS))
1605             ch = peekPastWhitespace(ch);
1606         return ch;
1607     }
1608 
1609     /**
1610      * Read the next character, and advance the cursor by one.
1611      */
1612     private int read() {
1613         int ch = temp[cursor++];
1614         if (has(COMMENTS))
1615             ch = parsePastWhitespace(ch);
1616         return ch;
1617     }
1618 
1619     /**
1620      * Read the next character, and advance the cursor by one,
1621      * ignoring the COMMENTS setting
1622      */
1623     private int readEscaped() {
1624         int ch = temp[cursor++];
1625         return ch;
1626     }
1627 
1628     /**
1629      * Advance the cursor by one, and peek the next character.
1630      */
1631     private int next() {
1632         int ch = temp[++cursor];
1633         if (has(COMMENTS))
1634             ch = peekPastWhitespace(ch);
1635         return ch;
1636     }
1637 
1638     /**
1639      * Advance the cursor by one, and peek the next character,
1640      * ignoring the COMMENTS setting
1641      */
1642     private int nextEscaped() {
1643         int ch = temp[++cursor];
1644         return ch;
1645     }
1646 
1647     /**
1648      * If in xmode peek past whitespace and comments.
1649      */
1650     private int peekPastWhitespace(int ch) {
1651         while (ASCII.isSpace(ch) || ch == '#') {
1652             while (ASCII.isSpace(ch))
1653                 ch = temp[++cursor];
1654             if (ch == '#') {
1655                 ch = peekPastLine();
1656             }
1657         }
1658         return ch;
1659     }
1660 
1661     /**
1662      * If in xmode parse past whitespace and comments.
1663      */
1664     private int parsePastWhitespace(int ch) {
1665         while (ASCII.isSpace(ch) || ch == '#') {
1666             while (ASCII.isSpace(ch))
1667                 ch = temp[cursor++];
1668             if (ch == '#')
1669                 ch = parsePastLine();
1670         }
1671         return ch;
1672     }
1673 
1674     /**
1675      * xmode parse past comment to end of line.
1676      */
1677     private int parsePastLine() {
1678         int ch = temp[cursor++];
1679         while (ch != 0 && !isLineSeparator(ch))
1680             ch = temp[cursor++];
1681         return ch;
1682     }
1683 
1684     /**
1685      * xmode peek past comment to end of line.
1686      */
1687     private int peekPastLine() {
1688         int ch = temp[++cursor];
1689         while (ch != 0 && !isLineSeparator(ch))
1690             ch = temp[++cursor];
1691         return ch;
1692     }
1693 
1694     /**
1695      * Determines if character is a line separator in the current mode
1696      */
1697     private boolean isLineSeparator(int ch) {
1698         if (has(UNIX_LINES)) {
1699             return ch == '\n';
1700         } else {
1701             return (ch == '\n' ||
1702                     ch == '\r' ||
1703                     (ch|1) == '\u2029' ||
1704                     ch == '\u0085');
1705         }
1706     }
1707 
1708     /**
1709      * Read the character after the next one, and advance the cursor by two.
1710      */
1711     private int skip() {
1712         int i = cursor;
1713         int ch = temp[i+1];
1714         cursor = i + 2;
1715         return ch;
1716     }
1717 
1718     /**
1719      * Unread one next character, and retreat cursor by one.
1720      */
1721     private void unread() {
1722         cursor--;
1723     }
1724 
1725     /**
1726      * Internal method used for handling all syntax errors. The pattern is
1727      * displayed with a pointer to aid in locating the syntax error.
1728      */
1729     private PatternSyntaxException error(String s) {
1730         return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
1731     }
1732 
1733     /**
1734      * Determines if there is any supplementary character or unpaired
1735      * surrogate in the specified range.
1736      */
1737     private boolean findSupplementary(int start, int end) {
1738         for (int i = start; i < end; i++) {
1739             if (isSupplementary(temp[i]))
1740                 return true;
1741         }
1742         return false;
1743     }
1744 
1745     /**
1746      * Determines if the specified code point is a supplementary
1747      * character or unpaired surrogate.
1748      */
1749     private static final boolean isSupplementary(int ch) {
1750         return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT || isSurrogate(ch);
1751     }
1752 
1753     /**
1754      *  The following methods handle the main parsing. They are sorted
1755      *  according to their precedence order, the lowest one first.
1756      */
1757 
1758     /**
1759      * The expression is parsed with branch nodes added for alternations.
1760      * This may be called recursively to parse sub expressions that may
1761      * contain alternations.
1762      */
1763     private Node expr(Node end) {
1764         Node prev = null;
1765         Node firstTail = null;
1766         Node branchConn = null;
1767 
1768         for (;;) {
1769             Node node = sequence(end);
1770             Node nodeTail = root;      //double return
1771             if (prev == null) {
1772                 prev = node;
1773                 firstTail = nodeTail;
1774             } else {
1775                 // Branch
1776                 if (branchConn == null) {
1777                     branchConn = new BranchConn();
1778                     branchConn.next = end;
1779                 }
1780                 if (node == end) {
1781                     // if the node returned from sequence() is "end"
1782                     // we have an empty expr, set a null atom into
1783                     // the branch to indicate to go "next" directly.
1784                     node = null;
1785                 } else {
1786                     // the "tail.next" of each atom goes to branchConn
1787                     nodeTail.next = branchConn;
1788                 }
1789                 if (prev instanceof Branch) {
1790                     ((Branch)prev).add(node);
1791                 } else {
1792                     if (prev == end) {
1793                         prev = null;
1794                     } else {
1795                         // replace the "end" with "branchConn" at its tail.next
1796                         // when put the "prev" into the branch as the first atom.
1797                         firstTail.next = branchConn;
1798                     }
1799                     prev = new Branch(prev, node, branchConn);
1800                 }
1801             }
1802             if (peek() != '|') {
1803                 return prev;
1804             }
1805             next();
1806         }
1807     }
1808 
1809     /**
1810      * Parsing of sequences between alternations.
1811      */
1812     private Node sequence(Node end) {
1813         Node head = null;
1814         Node tail = null;
1815         Node node = null;
1816     LOOP:
1817         for (;;) {
1818             int ch = peek();
1819             switch (ch) {
1820             case '(':
1821                 // Because group handles its own closure,
1822                 // we need to treat it differently
1823                 node = group0();
1824                 // Check for comment or flag group
1825                 if (node == null)
1826                     continue;
1827                 if (head == null)
1828                     head = node;
1829                 else
1830                     tail.next = node;
1831                 // Double return: Tail was returned in root
1832                 tail = root;
1833                 continue;
1834             case '[':
1835                 node = clazz(true);
1836                 break;
1837             case '\\':
1838                 ch = nextEscaped();
1839                 if (ch == 'p' || ch == 'P') {
1840                     boolean oneLetter = true;
1841                     boolean comp = (ch == 'P');
1842                     ch = next(); // Consume { if present
1843                     if (ch != '{') {
1844                         unread();
1845                     } else {
1846                         oneLetter = false;
1847                     }
1848                     node = family(oneLetter).maybeComplement(comp);
1849                 } else {
1850                     unread();
1851                     node = atom();
1852                 }
1853                 break;
1854             case '^':
1855                 next();
1856                 if (has(MULTILINE)) {
1857                     if (has(UNIX_LINES))
1858                         node = new UnixCaret();
1859                     else
1860                         node = new Caret();
1861                 } else {
1862                     node = new Begin();
1863                 }
1864                 break;
1865             case '$':
1866                 next();
1867                 if (has(UNIX_LINES))
1868                     node = new UnixDollar(has(MULTILINE));
1869                 else
1870                     node = new Dollar(has(MULTILINE));
1871                 break;
1872             case '.':
1873                 next();
1874                 if (has(DOTALL)) {
1875                     node = new All();
1876                 } else {
1877                     if (has(UNIX_LINES))
1878                         node = new UnixDot();
1879                     else {
1880                         node = new Dot();
1881                     }
1882                 }
1883                 break;
1884             case '|':
1885             case ')':
1886                 break LOOP;
1887             case ']': // Now interpreting dangling ] and } as literals
1888             case '}':
1889                 node = atom();
1890                 break;
1891             case '?':
1892             case '*':
1893             case '+':
1894                 next();
1895                 throw error("Dangling meta character '" + ((char)ch) + "'");
1896             case 0:
1897                 if (cursor >= patternLength) {
1898                     break LOOP;
1899                 }
1900                 // Fall through
1901             default:
1902                 node = atom();
1903                 break;
1904             }
1905 
1906             node = closure(node);
1907 
1908             if (head == null) {
1909                 head = tail = node;
1910             } else {
1911                 tail.next = node;
1912                 tail = node;
1913             }
1914         }
1915         if (head == null) {
1916             return end;
1917         }
1918         tail.next = end;
1919         root = tail;      //double return
1920         return head;
1921     }
1922 
1923     /**
1924      * Parse and add a new Single or Slice.
1925      */
1926     private Node atom() {
1927         int first = 0;
1928         int prev = -1;
1929         boolean hasSupplementary = false;
1930         int ch = peek();
1931         for (;;) {
1932             switch (ch) {
1933             case '*':
1934             case '+':
1935             case '?':
1936             case '{':
1937                 if (first > 1) {
1938                     cursor = prev;    // Unwind one character
1939                     first--;
1940                 }
1941                 break;
1942             case '$':
1943             case '.':
1944             case '^':
1945             case '(':
1946             case '[':
1947             case '|':
1948             case ')':
1949                 break;
1950             case '\\':
1951                 ch = nextEscaped();
1952                 if (ch == 'p' || ch == 'P') { // Property
1953                     if (first > 0) { // Slice is waiting; handle it first
1954                         unread();
1955                         break;
1956                     } else { // No slice; just return the family node
1957                         boolean comp = (ch == 'P');
1958                         boolean oneLetter = true;
1959                         ch = next(); // Consume { if present
1960                         if (ch != '{')
1961                             unread();
1962                         else
1963                             oneLetter = false;
1964                         return family(oneLetter).maybeComplement(comp);
1965                     }
1966                 }
1967                 unread();
1968                 prev = cursor;
1969                 ch = escape(false, first == 0);
1970                 if (ch >= 0) {
1971                     append(ch, first);
1972                     first++;
1973                     if (isSupplementary(ch)) {
1974                         hasSupplementary = true;
1975                     }
1976                     ch = peek();
1977                     continue;
1978                 } else if (first == 0) {
1979                     return root;
1980                 }
1981                 // Unwind meta escape sequence
1982                 cursor = prev;
1983                 break;
1984             case 0:
1985                 if (cursor >= patternLength) {
1986                     break;
1987                 }
1988                 // Fall through
1989             default:
1990                 prev = cursor;
1991                 append(ch, first);
1992                 first++;
1993                 if (isSupplementary(ch)) {
1994                     hasSupplementary = true;
1995                 }
1996                 ch = next();
1997                 continue;
1998             }
1999             break;
2000         }
2001         if (first == 1) {
2002             return newSingle(buffer[0]);
2003         } else {
2004             return newSlice(buffer, first, hasSupplementary);
2005         }
2006     }
2007 
2008     private void append(int ch, int len) {
2009         if (len >= buffer.length) {
2010             int[] tmp = new int[len+len];
2011             System.arraycopy(buffer, 0, tmp, 0, len);
2012             buffer = tmp;
2013         }
2014         buffer[len] = ch;
2015     }
2016 
2017     /**
2018      * Parses a backref greedily, taking as many numbers as it
2019      * can. The first digit is always treated as a backref, but
2020      * multi digit numbers are only treated as a backref if at
2021      * least that many backrefs exist at this point in the regex.
2022      */
2023     private Node ref(int refNum) {
2024         boolean done = false;
2025         while(!done) {
2026             int ch = peek();
2027             switch(ch) {
2028             case '0':
2029             case '1':
2030             case '2':
2031             case '3':
2032             case '4':
2033             case '5':
2034             case '6':
2035             case '7':
2036             case '8':
2037             case '9':
2038                 int newRefNum = (refNum * 10) + (ch - '0');
2039                 // Add another number if it doesn't make a group
2040                 // that doesn't exist
2041                 if (capturingGroupCount - 1 < newRefNum) {
2042                     done = true;
2043                     break;
2044                 }
2045                 refNum = newRefNum;
2046                 read();
2047                 break;
2048             default:
2049                 done = true;
2050                 break;
2051             }
2052         }
2053         if (has(CASE_INSENSITIVE))
2054             return new CIBackRef(refNum, has(UNICODE_CASE));
2055         else
2056             return new BackRef(refNum);
2057     }
2058 
2059     /**
2060      * Parses an escape sequence to determine the actual value that needs
2061      * to be matched.
2062      * If -1 is returned and create was true a new object was added to the tree
2063      * to handle the escape sequence.
2064      * If the returned value is greater than zero, it is the value that
2065      * matches the escape sequence.
2066      */
2067     private int escape(boolean inclass, boolean create) {
2068         int ch = skip();
2069         switch (ch) {
2070         case '0':
2071             return o();
2072         case '1':
2073         case '2':
2074         case '3':
2075         case '4':
2076         case '5':
2077         case '6':
2078         case '7':
2079         case '8':
2080         case '9':
2081             if (inclass) break;
2082             if (create) {
2083                 root = ref((ch - '0'));
2084             }
2085             return -1;
2086         case 'A':
2087             if (inclass) break;
2088             if (create) root = new Begin();
2089             return -1;
2090         case 'B':
2091             if (inclass) break;
2092             if (create) root = new Bound(Bound.NONE);
2093             return -1;
2094         case 'C':
2095             break;
2096         case 'D':
2097             if (create) root = new Ctype(ASCII.DIGIT).complement();
2098             return -1;
2099         case 'E':
2100         case 'F':
2101             break;
2102         case 'G':
2103             if (inclass) break;
2104             if (create) root = new LastMatch();
2105             return -1;
2106         case 'H':
2107         case 'I':
2108         case 'J':
2109         case 'K':
2110         case 'L':
2111         case 'M':
2112         case 'N':
2113         case 'O':
2114         case 'P':
2115         case 'Q':
2116         case 'R':
2117             break;
2118         case 'S':
2119             if (create) root = new Ctype(ASCII.SPACE).complement();
2120             return -1;
2121         case 'T':
2122         case 'U':
2123         case 'V':
2124             break;
2125         case 'W':
2126             if (create) root = new Ctype(ASCII.WORD).complement();
2127             return -1;
2128         case 'X':
2129         case 'Y':
2130             break;
2131         case 'Z':
2132             if (inclass) break;
2133             if (create) {
2134                 if (has(UNIX_LINES))
2135                     root = new UnixDollar(false);
2136                 else
2137                     root = new Dollar(false);
2138             }
2139             return -1;
2140         case 'a':
2141             return '\007';
2142         case 'b':
2143             if (inclass) break;
2144             if (create) root = new Bound(Bound.BOTH);
2145             return -1;
2146         case 'c':
2147             return c();
2148         case 'd':
2149             if (create) root = new Ctype(ASCII.DIGIT);
2150             return -1;
2151         case 'e':
2152             return '\033';
2153         case 'f':
2154             return '\f';
2155         case 'g':
2156         case 'h':
2157         case 'i':
2158         case 'j':
2159         case 'k':
2160         case 'l':
2161         case 'm':
2162             break;
2163         case 'n':
2164             return '\n';
2165         case 'o':
2166         case 'p':
2167         case 'q':
2168             break;
2169         case 'r':
2170             return '\r';
2171         case 's':
2172             if (create) root = new Ctype(ASCII.SPACE);
2173             return -1;
2174         case 't':
2175             return '\t';
2176         case 'u':
2177             return u();
2178         case 'v':
2179             return '\013';
2180         case 'w':
2181             if (create) root = new Ctype(ASCII.WORD);
2182             return -1;
2183         case 'x':
2184             return x();
2185         case 'y':
2186             break;
2187         case 'z':
2188             if (inclass) break;
2189             if (create) root = new End();
2190             return -1;
2191         default:
2192             return ch;
2193         }
2194         throw error("Illegal/unsupported escape sequence");
2195     }
2196 
2197     /**
2198      * Parse a character class, and return the node that matches it.
2199      *
2200      * Consumes a ] on the way out if consume is true. Usually consume
2201      * is true except for the case of [abc&&def] where def is a separate
2202      * right hand node with "understood" brackets.
2203      */
2204     private CharProperty clazz(boolean consume) {
2205         CharProperty prev = null;
2206         CharProperty node = null;
2207         BitClass bits = new BitClass();
2208         boolean include = true;
2209         boolean firstInClass = true;
2210         int ch = next();
2211         for (;;) {
2212             switch (ch) {
2213                 case '^':
2214                     // Negates if first char in a class, otherwise literal
2215                     if (firstInClass) {
2216                         if (temp[cursor-1] != '[')
2217                             break;
2218                         ch = next();
2219                         include = !include;
2220                         continue;
2221                     } else {
2222                         // ^ not first in class, treat as literal
2223                         break;
2224                     }
2225                 case '[':
2226                     firstInClass = false;
2227                     node = clazz(true);
2228                     if (prev == null)
2229                         prev = node;
2230                     else
2231                         prev = union(prev, node);
2232                     ch = peek();
2233                     continue;
2234                 case '&':
2235                     firstInClass = false;
2236                     ch = next();
2237                     if (ch == '&') {
2238                         ch = next();
2239                         CharProperty rightNode = null;
2240                         while (ch != ']' && ch != '&') {
2241                             if (ch == '[') {
2242                                 if (rightNode == null)
2243                                     rightNode = clazz(true);
2244                                 else
2245                                     rightNode = union(rightNode, clazz(true));
2246                             } else { // abc&&def
2247                                 unread();
2248                                 rightNode = clazz(false);
2249                             }
2250                             ch = peek();
2251                         }
2252                         if (rightNode != null)
2253                             node = rightNode;
2254                         if (prev == null) {
2255                             if (rightNode == null)
2256                                 throw error("Bad class syntax");
2257                             else
2258                                 prev = rightNode;
2259                         } else {
2260                             prev = intersection(prev, node);
2261                         }
2262                     } else {
2263                         // treat as a literal &
2264                         unread();
2265                         break;
2266                     }
2267                     continue;
2268                 case 0:
2269                     firstInClass = false;
2270                     if (cursor >= patternLength)
2271                         throw error("Unclosed character class");
2272                     break;
2273                 case ']':
2274                     firstInClass = false;
2275                     if (prev != null) {
2276                         if (consume)
2277                             next();
2278                         return prev;
2279                     }
2280                     break;
2281                 default:
2282                     firstInClass = false;
2283                     break;
2284             }
2285             node = range(bits);
2286             if (include) {
2287                 if (prev == null) {
2288                     prev = node;
2289                 } else {
2290                     if (prev != node)
2291                         prev = union(prev, node);
2292                 }
2293             } else {
2294                 if (prev == null) {
2295                     prev = node.complement();
2296                 } else {
2297                     if (prev != node)
2298                         prev = setDifference(prev, node);
2299                 }
2300             }
2301             ch = peek();
2302         }
2303     }
2304 
2305     private CharProperty bitsOrSingle(BitClass bits, int ch) {
2306         /* Bits can only handle codepoints in [u+0000-u+00ff] range.
2307            Use "single" node instead of bits when dealing with unicode
2308            case folding for codepoints listed below.
2309            (1)Uppercase out of range: u+00ff, u+00b5
2310               toUpperCase(u+00ff) -> u+0178
2311               toUpperCase(u+00b5) -> u+039c
2312            (2)LatinSmallLetterLongS u+17f
2313               toUpperCase(u+017f) -> u+0053
2314            (3)LatinSmallLetterDotlessI u+131
2315               toUpperCase(u+0131) -> u+0049
2316            (4)LatinCapitalLetterIWithDotAbove u+0130
2317               toLowerCase(u+0130) -> u+0069
2318            (5)KelvinSign u+212a
2319               toLowerCase(u+212a) ==> u+006B
2320            (6)AngstromSign u+212b
2321               toLowerCase(u+212b) ==> u+00e5
2322         */
2323         int d;
2324         if (ch < 256 &&
2325             !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
2326               (ch == 0xff || ch == 0xb5 ||
2327                ch == 0x49 || ch == 0x69 ||  //I and i
2328                ch == 0x53 || ch == 0x73 ||  //S and s
2329                ch == 0x4b || ch == 0x6b ||  //K and k
2330                ch == 0xc5 || ch == 0xe5)))  //A+ring
2331             return bits.add(ch, flags());
2332         return newSingle(ch);
2333     }
2334 
2335     /**
2336      * Parse a single character or a character range in a character class
2337      * and return its representative node.
2338      */
2339     private CharProperty range(BitClass bits) {
2340         int ch = peek();
2341         if (ch == '\\') {
2342             ch = nextEscaped();
2343             if (ch == 'p' || ch == 'P') { // A property
2344                 boolean comp = (ch == 'P');
2345                 boolean oneLetter = true;
2346                 // Consume { if present
2347                 ch = next();
2348                 if (ch != '{')
2349                     unread();
2350                 else
2351                     oneLetter = false;
2352                 return family(oneLetter).maybeComplement(comp);
2353             } else { // ordinary escape
2354                 unread();
2355                 ch = escape(true, true);
2356                 if (ch == -1)
2357                     return (CharProperty) root;
2358             }
2359         } else {
2360             ch = single();
2361         }
2362         if (ch >= 0) {
2363             if (peek() == '-') {
2364                 int endRange = temp[cursor+1];
2365                 if (endRange == '[') {
2366                     return bitsOrSingle(bits, ch);
2367                 }
2368                 if (endRange != ']') {
2369                     next();
2370                     int m = single();
2371                     if (m < ch)
2372                         throw error("Illegal character range");
2373                     if (has(CASE_INSENSITIVE))
2374                         return caseInsensitiveRangeFor(ch, m);
2375                     else
2376                         return rangeFor(ch, m);
2377                 }
2378             }
2379             return bitsOrSingle(bits, ch);
2380         }
2381         throw error("Unexpected character '"+((char)ch)+"'");
2382     }
2383 
2384     private int single() {
2385         int ch = peek();
2386         switch (ch) {
2387         case '\\':
2388             return escape(true, false);
2389         default:
2390             next();
2391             return ch;
2392         }
2393     }
2394 
2395     /**
2396      * Parses a Unicode character family and returns its representative node.
2397      */
2398     private CharProperty family(boolean singleLetter) {
2399         next();
2400         String name;
2401 
2402         if (singleLetter) {
2403             int c = temp[cursor];
2404             if (!Character.isSupplementaryCodePoint(c)) {
2405                 name = String.valueOf((char)c);
2406             } else {
2407                 name = new String(temp, cursor, 1);
2408             }
2409             read();
2410         } else {
2411             int i = cursor;
2412             mark('}');
2413             while(read() != '}') {
2414             }
2415             mark('\000');
2416             int j = cursor;
2417             if (j > patternLength)
2418                 throw error("Unclosed character family");
2419             if (i + 1 >= j)
2420                 throw error("Empty character family");
2421             name = new String(temp, i, j-i-1);
2422         }
2423 
2424         if (name.startsWith("In")) {
2425             return unicodeBlockPropertyFor(name.substring(2));
2426         } else {
2427             if (name.startsWith("Is"))
2428                 name = name.substring(2);
2429             return charPropertyNodeFor(name);
2430         }
2431     }
2432 
2433     /**
2434      * Returns a CharProperty matching all characters in a UnicodeBlock.
2435      */
2436     private CharProperty unicodeBlockPropertyFor(String name) {
2437         final Character.UnicodeBlock block;
2438         try {
2439             block = Character.UnicodeBlock.forName(name);
2440         } catch (IllegalArgumentException iae) {
2441             throw error("Unknown character block name {" + name + "}");
2442         }
2443         return new CharProperty() {
2444                 boolean isSatisfiedBy(int ch) {
2445                     return block == Character.UnicodeBlock.of(ch);}};
2446     }
2447 
2448     /**
2449      * Returns a CharProperty matching all characters in a named property.
2450      */
2451     private CharProperty charPropertyNodeFor(String name) {
2452         CharProperty p = CharPropertyNames.charPropertyFor(name);
2453         if (p == null)
2454             throw error("Unknown character property name {" + name + "}");
2455         return p;
2456     }
2457 
2458     /**
2459      * Parses a group and returns the head node of a set of nodes that process
2460      * the group. Sometimes a double return system is used where the tail is
2461      * returned in root.
2462      */
2463     private Node group0() {
2464         boolean capturingGroup = false;
2465         Node head = null;
2466         Node tail = null;
2467         int save = flags;
2468         root = null;
2469         int ch = next();
2470         if (ch == '?') {
2471             ch = skip();
2472             switch (ch) {
2473             case ':':   //  (?:xxx) pure group
2474                 head = createGroup(true);
2475                 tail = root;
2476                 head.next = expr(tail);
2477                 break;
2478             case '=':   // (?=xxx) and (?!xxx) lookahead
2479             case '!':
2480                 head = createGroup(true);
2481                 tail = root;
2482                 head.next = expr(tail);
2483                 if (ch == '=') {
2484                     head = tail = new Pos(head);
2485                 } else {
2486                     head = tail = new Neg(head);
2487                 }
2488                 break;
2489             case '>':   // (?>xxx)  independent group
2490                 head = createGroup(true);
2491                 tail = root;
2492                 head.next = expr(tail);
2493                 head = tail = new Ques(head, INDEPENDENT);
2494                 break;
2495             case '<':   // (?<xxx)  look behind
2496                 ch = read();
2497                 int start = cursor;
2498                 head = createGroup(true);
2499                 tail = root;
2500                 head.next = expr(tail);
2501                 tail.next = lookbehindEnd;
2502                 TreeInfo info = new TreeInfo();
2503                 head.study(info);
2504                 if (info.maxValid == false) {
2505                     throw error("Look-behind group does not have "
2506                                 + "an obvious maximum length");
2507                 }
2508                 boolean hasSupplementary = findSupplementary(start, patternLength);
2509                 if (ch == '=') {
2510                     head = tail = (hasSupplementary ?
2511                                    new BehindS(head, info.maxLength,
2512                                                info.minLength) :
2513                                    new Behind(head, info.maxLength,
2514                                               info.minLength));
2515                 } else if (ch == '!') {
2516                     head = tail = (hasSupplementary ?
2517                                    new NotBehindS(head, info.maxLength,
2518                                                   info.minLength) :
2519                                    new NotBehind(head, info.maxLength,
2520                                                  info.minLength));
2521                 } else {
2522                     throw error("Unknown look-behind group");
2523                 }
2524                 break;
2525             case '$':
2526             case '@':
2527                 throw error("Unknown group type");
2528             default:    // (?xxx:) inlined match flags
2529                 unread();
2530                 addFlag();
2531                 ch = read();
2532                 if (ch == ')') {
2533                     return null;    // Inline modifier only
2534                 }
2535                 if (ch != ':') {
2536                     throw error("Unknown inline modifier");
2537                 }
2538                 head = createGroup(true);
2539                 tail = root;
2540                 head.next = expr(tail);
2541                 break;
2542             }
2543         } else { // (xxx) a regular group
2544             capturingGroup = true;
2545             head = createGroup(false);
2546             tail = root;
2547             head.next = expr(tail);
2548         }
2549 
2550         accept(')', "Unclosed group");
2551         flags = save;
2552 
2553         // Check for quantifiers
2554         Node node = closure(head);
2555         if (node == head) { // No closure
2556             root = tail;
2557             return node;    // Dual return
2558         }
2559         if (head == tail) { // Zero length assertion
2560             root = node;
2561             return node;    // Dual return
2562         }
2563 
2564         if (node instanceof Ques) {
2565             Ques ques = (Ques) node;
2566             if (ques.type == POSSESSIVE) {
2567                 root = node;
2568                 return node;
2569             }
2570             tail.next = new BranchConn();
2571             tail = tail.next;
2572             if (ques.type == GREEDY) {
2573                 head = new Branch(head, null, tail);
2574             } else { // Reluctant quantifier
2575                 head = new Branch(null, head, tail);
2576             }
2577             root = tail;
2578             return head;
2579         } else if (node instanceof Curly) {
2580             Curly curly = (Curly) node;
2581             if (curly.type == POSSESSIVE) {
2582                 root = node;
2583                 return node;
2584             }
2585             // Discover if the group is deterministic
2586             TreeInfo info = new TreeInfo();
2587             if (head.study(info)) { // Deterministic
2588                 GroupTail temp = (GroupTail) tail;
2589                 head = root = new GroupCurly(head.next, curly.cmin,
2590                                    curly.cmax, curly.type,
2591                                    ((GroupTail)tail).localIndex,
2592                                    ((GroupTail)tail).groupIndex,
2593                                              capturingGroup);
2594                 return head;
2595             } else { // Non-deterministic
2596                 int temp = ((GroupHead) head).localIndex;
2597                 Loop loop;
2598                 if (curly.type == GREEDY)
2599                     loop = new Loop(this.localCount, temp);
2600                 else  // Reluctant Curly
2601                     loop = new LazyLoop(this.localCount, temp);
2602                 Prolog prolog = new Prolog(loop);
2603                 this.localCount += 1;
2604                 loop.cmin = curly.cmin;
2605                 loop.cmax = curly.cmax;
2606                 loop.body = head;
2607                 tail.next = loop;
2608                 root = loop;
2609                 return prolog; // Dual return
2610             }
2611         }
2612         throw error("Internal logic error");
2613     }
2614 
2615     /**
2616      * Create group head and tail nodes using double return. If the group is
2617      * created with anonymous true then it is a pure group and should not
2618      * affect group counting.
2619      */
2620     private Node createGroup(boolean anonymous) {
2621         int localIndex = localCount++;
2622         int groupIndex = 0;
2623         if (!anonymous)
2624             groupIndex = capturingGroupCount++;
2625         GroupHead head = new GroupHead(localIndex);
2626         root = new GroupTail(localIndex, groupIndex);
2627         if (!anonymous && groupIndex < 10)
2628             groupNodes[groupIndex] = head;
2629         return head;
2630     }
2631 
2632     /**
2633      * Parses inlined match flags and set them appropriately.
2634      */
2635     private void addFlag() {
2636         int ch = peek();
2637         for (;;) {
2638             switch (ch) {
2639             case 'i':
2640                 flags |= CASE_INSENSITIVE;
2641                 break;
2642             case 'm':
2643                 flags |= MULTILINE;
2644                 break;
2645             case 's':
2646                 flags |= DOTALL;
2647                 break;
2648             case 'd':
2649                 flags |= UNIX_LINES;
2650                 break;
2651             case 'u':
2652                 flags |= UNICODE_CASE;
2653                 break;
2654             case 'c':
2655                 flags |= CANON_EQ;
2656                 break;
2657             case 'x':
2658                 flags |= COMMENTS;
2659                 break;
2660             case '-': // subFlag then fall through
2661                 ch = next();
2662                 subFlag();
2663             default:
2664                 return;
2665             }
2666             ch = next();
2667         }
2668     }
2669 
2670     /**
2671      * Parses the second part of inlined match flags and turns off
2672      * flags appropriately.
2673      */
2674     private void subFlag() {
2675         int ch = peek();
2676         for (;;) {
2677             switch (ch) {
2678             case 'i':
2679                 flags &= ~CASE_INSENSITIVE;
2680                 break;
2681             case 'm':
2682                 flags &= ~MULTILINE;
2683                 break;
2684             case 's':
2685                 flags &= ~DOTALL;
2686                 break;
2687             case 'd':
2688                 flags &= ~UNIX_LINES;
2689                 break;
2690             case 'u':
2691                 flags &= ~UNICODE_CASE;
2692                 break;
2693             case 'c':
2694                 flags &= ~CANON_EQ;
2695                 break;
2696             case 'x':
2697                 flags &= ~COMMENTS;
2698                 break;
2699             default:
2700                 return;
2701             }
2702             ch = next();
2703         }
2704     }
2705 
2706     static final int MAX_REPS   = 0x7FFFFFFF;
2707 
2708     static final int GREEDY     = 0;
2709 
2710     static final int LAZY       = 1;
2711 
2712     static final int POSSESSIVE = 2;
2713 
2714     static final int INDEPENDENT = 3;
2715 
2716     /**
2717      * Processes repetition. If the next character peeked is a quantifier
2718      * then new nodes must be appended to handle the repetition.
2719      * Prev could be a single or a group, so it could be a chain of nodes.
2720      */
2721     private Node closure(Node prev) {
2722         Node atom;
2723         int ch = peek();
2724         switch (ch) {
2725         case '?':
2726             ch = next();
2727             if (ch == '?') {
2728                 next();
2729                 return new Ques(prev, LAZY);
2730             } else if (ch == '+') {
2731                 next();
2732                 return new Ques(prev, POSSESSIVE);
2733             }
2734             return new Ques(prev, GREEDY);
2735         case '*':
2736             ch = next();
2737             if (ch == '?') {
2738                 next();
2739                 return new Curly(prev, 0, MAX_REPS, LAZY);
2740             } else if (ch == '+') {
2741                 next();
2742                 return new Curly(prev, 0, MAX_REPS, POSSESSIVE);
2743             }
2744             return new Curly(prev, 0, MAX_REPS, GREEDY);
2745         case '+':
2746             ch = next();
2747             if (ch == '?') {
2748                 next();
2749                 return new Curly(prev, 1, MAX_REPS, LAZY);
2750             } else if (ch == '+') {
2751                 next();
2752                 return new Curly(prev, 1, MAX_REPS, POSSESSIVE);
2753             }
2754             return new Curly(prev, 1, MAX_REPS, GREEDY);
2755         case '{':
2756             ch = temp[cursor+1];
2757             if (ASCII.isDigit(ch)) {
2758                 skip();
2759                 int cmin = 0;
2760                 do {
2761                     cmin = cmin * 10 + (ch - '0');
2762                 } while (ASCII.isDigit(ch = read()));
2763                 int cmax = cmin;
2764                 if (ch == ',') {
2765                     ch = read();
2766                     cmax = MAX_REPS;
2767                     if (ch != '}') {
2768                         cmax = 0;
2769                         while (ASCII.isDigit(ch)) {
2770                             cmax = cmax * 10 + (ch - '0');
2771                             ch = read();
2772                         }
2773                     }
2774                 }
2775                 if (ch != '}')
2776                     throw error("Unclosed counted closure");
2777                 if (((cmin) | (cmax) | (cmax - cmin)) < 0)
2778                     throw error("Illegal repetition range");
2779                 Curly curly;
2780                 ch = peek();
2781                 if (ch == '?') {
2782                     next();
2783                     curly = new Curly(prev, cmin, cmax, LAZY);
2784                 } else if (ch == '+') {
2785                     next();
2786                     curly = new Curly(prev, cmin, cmax, POSSESSIVE);
2787                 } else {
2788                     curly = new Curly(prev, cmin, cmax, GREEDY);
2789                 }
2790                 return curly;
2791             } else {
2792                 throw error("Illegal repetition");
2793             }
2794         default:
2795             return prev;
2796         }
2797     }
2798 
2799     /**
2800      *  Utility method for parsing control escape sequences.
2801      */
2802     private int c() {
2803         if (cursor < patternLength) {
2804             return read() ^ 64;
2805         }
2806         throw error("Illegal control escape sequence");
2807     }
2808 
2809     /**
2810      *  Utility method for parsing octal escape sequences.
2811      */
2812     private int o() {
2813         int n = read();
2814         if (((n-'0')|('7'-n)) >= 0) {
2815             int m = read();
2816             if (((m-'0')|('7'-m)) >= 0) {
2817                 int o = read();
2818                 if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
2819                     return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
2820                 }
2821                 unread();
2822                 return (n - '0') * 8 + (m - '0');
2823             }
2824             unread();
2825             return (n - '0');
2826         }
2827         throw error("Illegal octal escape sequence");
2828     }
2829 
2830     /**
2831      *  Utility method for parsing hexadecimal escape sequences.
2832      */
2833     private int x() {
2834         int n = read();
2835         if (ASCII.isHexDigit(n)) {
2836             int m = read();
2837             if (ASCII.isHexDigit(m)) {
2838                 return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
2839             }
2840         }
2841         throw error("Illegal hexadecimal escape sequence");
2842     }
2843 
2844     /**
2845      *  Utility method for parsing unicode escape sequences.
2846      */
2847     private int cursor() {
2848         return cursor;
2849     }
2850 
2851     private void setcursor(int pos) {
2852         cursor = pos;
2853     }
2854 
2855     private int uxxxx() {
2856         int n = 0;
2857         for (int i = 0; i < 4; i++) {
2858             int ch = read();
2859             if (!ASCII.isHexDigit(ch)) {
2860                 throw error("Illegal Unicode escape sequence");
2861             }
2862             n = n * 16 + ASCII.toDigit(ch);
2863         }
2864         return n;
2865     }
2866 
2867     private int u() {
2868         int n = uxxxx();
2869         if (Character.isHighSurrogate((char)n)) {
2870             int cur = cursor();
2871             if (read() == '\\' && read() == 'u') {
2872                 int n2 = uxxxx();
2873                 if (Character.isLowSurrogate((char)n2))
2874                     return Character.toCodePoint((char)n, (char)n2);
2875             }
2876             setcursor(cur);
2877         }
2878         return n;
2879     }
2880 
2881     //
2882     // Utility methods for code point support
2883     //
2884 
2885     /**
2886      * Tests a surrogate value.
2887      */
2888     private static final boolean isSurrogate(int c) {
2889         return c >= Character.MIN_HIGH_SURROGATE && c <= Character.MAX_LOW_SURROGATE;
2890     }
2891 
2892     private static final int countChars(CharSequence seq, int index,
2893                                         int lengthInCodePoints) {
2894         // optimization
2895         if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
2896             assert (index >= 0 && index < seq.length());
2897             return 1;
2898         }
2899         int length = seq.length();
2900         int x = index;
2901         if (lengthInCodePoints >= 0) {
2902             assert (index >= 0 && index < length);
2903             for (int i = 0; x < length && i < lengthInCodePoints; i++) {
2904                 if (Character.isHighSurrogate(seq.charAt(x++))) {
2905                     if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
2906                         x++;
2907                     }
2908                 }
2909             }
2910             return x - index;
2911         }
2912 
2913         assert (index >= 0 && index <= length);
2914         if (index == 0) {
2915             return 0;
2916         }
2917         int len = -lengthInCodePoints;
2918         for (int i = 0; x > 0 && i < len; i++) {
2919             if (Character.isLowSurrogate(seq.charAt(--x))) {
2920                 if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
2921                     x--;
2922                 }
2923             }
2924         }
2925         return index - x;
2926     }
2927 
2928     private static final int countCodePoints(CharSequence seq) {
2929         int length = seq.length();
2930         int n = 0;
2931         for (int i = 0; i < length; ) {
2932             n++;
2933             if (Character.isHighSurrogate(seq.charAt(i++))) {
2934                 if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
2935                     i++;
2936                 }
2937             }
2938         }
2939         return n;
2940     }
2941 
2942     /**
2943      *  Creates a bit vector for matching Latin-1 values. A normal BitClass
2944      *  never matches values above Latin-1, and a complemented BitClass always
2945      *  matches values above Latin-1.
2946      */
2947     private static final class BitClass extends BmpCharProperty {
2948         final boolean[] bits;
2949         BitClass() { bits = new boolean[256]; }
2950         private BitClass(boolean[] bits) { this.bits = bits; }
2951         BitClass add(int c, int flags) {
2952             assert c >= 0 && c <= 255;
2953             if ((flags & CASE_INSENSITIVE) != 0) {
2954                 if (ASCII.isAscii(c)) {
2955                     bits[ASCII.toUpper(c)] = true;
2956                     bits[ASCII.toLower(c)] = true;
2957                 } else if ((flags & UNICODE_CASE) != 0) {
2958                     bits[Character.toLowerCase(c)] = true;
2959                     bits[Character.toUpperCase(c)] = true;
2960                 }
2961             }
2962             bits[c] = true;
2963             return this;
2964         }
2965         boolean isSatisfiedBy(int ch) {
2966             return ch < 256 && bits[ch];
2967         }
2968     }
2969 
2970     /**
2971      *  Returns a suitably optimized, single character matcher.
2972      */
2973     private CharProperty newSingle(final int ch) {
2974         if (has(CASE_INSENSITIVE)) {
2975             int lower, upper;
2976             if (has(UNICODE_CASE)) {
2977                 upper = Character.toUpperCase(ch);
2978                 lower = Character.toLowerCase(upper);
2979                 if (upper != lower)
2980                     return new SingleU(lower);
2981             } else if (ASCII.isAscii(ch)) {
2982                 lower = ASCII.toLower(ch);
2983                 upper = ASCII.toUpper(ch);
2984                 if (lower != upper)
2985                     return new SingleI(lower, upper);
2986             }
2987         }
2988         if (isSupplementary(ch))
2989             return new SingleS(ch);    // Match a given Unicode character
2990         return new Single(ch);         // Match a given BMP character
2991     }
2992 
2993     /**
2994      *  Utility method for creating a string slice matcher.
2995      */
2996     private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
2997         int[] tmp = new int[count];
2998         if (has(CASE_INSENSITIVE)) {
2999             if (has(UNICODE_CASE)) {
3000                 for (int i = 0; i < count; i++) {
3001                     tmp[i] = Character.toLowerCase(
3002                                  Character.toUpperCase(buf[i]));
3003                 }
3004                 return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
3005             }
3006             for (int i = 0; i < count; i++) {
3007                 tmp[i] = ASCII.toLower(buf[i]);
3008             }
3009             return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
3010         }
3011         for (int i = 0; i < count; i++) {
3012             tmp[i] = buf[i];
3013         }
3014         return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
3015     }
3016 
3017     /**
3018      * The following classes are the building components of the object
3019      * tree that represents a compiled regular expression. The object tree
3020      * is made of individual elements that handle constructs in the Pattern.
3021      * Each type of object knows how to match its equivalent construct with
3022      * the match() method.
3023      */
3024 
3025     /**
3026      * Base class for all node classes. Subclasses should override the match()
3027      * method as appropriate. This class is an accepting node, so its match()
3028      * always returns true.
3029      */
3030     static class Node extends Object {
3031         Node next;
3032         Node() {
3033             next = Pattern.accept;
3034         }
3035         /**
3036          * This method implements the classic accept node.
3037          */
3038         boolean match(Matcher matcher, int i, CharSequence seq) {
3039             matcher.last = i;
3040             matcher.groups[0] = matcher.first;
3041             matcher.groups[1] = matcher.last;
3042             return true;
3043         }
3044         /**
3045          * This method is good for all zero length assertions.
3046          */
3047         boolean study(TreeInfo info) {
3048             if (next != null) {
3049                 return next.study(info);
3050             } else {
3051                 return info.deterministic;
3052             }
3053         }
3054     }
3055 
3056     static class LastNode extends Node {
3057         /**
3058          * This method implements the classic accept node with
3059          * the addition of a check to see if the match occurred
3060          * using all of the input.
3061          */
3062         boolean match(Matcher matcher, int i, CharSequence seq) {
3063             if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
3064                 return false;
3065             matcher.last = i;
3066             matcher.groups[0] = matcher.first;
3067             matcher.groups[1] = matcher.last;
3068             return true;
3069         }
3070     }
3071 
3072     /**
3073      * Used for REs that can start anywhere within the input string.
3074      * This basically tries to match repeatedly at each spot in the
3075      * input string, moving forward after each try. An anchored search
3076      * or a BnM will bypass this node completely.
3077      */
3078     static class Start extends Node {
3079         int minLength;
3080         Start(Node node) {
3081             this.next = node;
3082             TreeInfo info = new TreeInfo();
3083             next.study(info);
3084             minLength = info.minLength;
3085         }
3086         boolean match(Matcher matcher, int i, CharSequence seq) {
3087             if (i > matcher.to - minLength) {
3088                 matcher.hitEnd = true;
3089                 return false;
3090             }
3091             boolean ret = false;
3092             int guard = matcher.to - minLength;
3093             for (; i <= guard; i++) {
3094                 if (ret = next.match(matcher, i, seq))
3095                     break;
3096                 if (i == guard)
3097                     matcher.hitEnd = true;
3098             }
3099             if (ret) {
3100                 matcher.first = i;
3101                 matcher.groups[0] = matcher.first;
3102                 matcher.groups[1] = matcher.last;
3103             }
3104             return ret;
3105         }
3106         boolean study(TreeInfo info) {
3107             next.study(info);
3108             info.maxValid = false;
3109             info.deterministic = false;
3110             return false;
3111         }
3112     }
3113 
3114     /*
3115      * StartS supports supplementary characters, including unpaired surrogates.
3116      */
3117     static final class StartS extends Start {
3118         StartS(Node node) {
3119             super(node);
3120         }
3121         boolean match(Matcher matcher, int i, CharSequence seq) {
3122             if (i > matcher.to - minLength) {
3123                 matcher.hitEnd = true;
3124                 return false;
3125             }
3126             boolean ret = false;
3127             int guard = matcher.to - minLength;
3128             while (i <= guard) {
3129                 if ((ret = next.match(matcher, i, seq)) || i == guard)
3130                     break;
3131                 // Optimization to move to the next character. This is
3132                 // faster than countChars(seq, i, 1).
3133                 if (Character.isHighSurrogate(seq.charAt(i++))) {
3134                     if (i < seq.length() && Character.isLowSurrogate(seq.charAt(i))) {
3135                         i++;
3136                     }
3137                 }
3138                 if (i == guard)
3139                     matcher.hitEnd = true;
3140             }
3141             if (ret) {
3142                 matcher.first = i;
3143                 matcher.groups[0] = matcher.first;
3144                 matcher.groups[1] = matcher.last;
3145             }
3146             return ret;
3147         }
3148     }
3149 
3150     /**
3151      * Node to anchor at the beginning of input. This object implements the
3152      * match for a \A sequence, and the caret anchor will use this if not in
3153      * multiline mode.
3154      */
3155     static final class Begin extends Node {
3156         boolean match(Matcher matcher, int i, CharSequence seq) {
3157             int fromIndex = (matcher.anchoringBounds) ?
3158                 matcher.from : 0;
3159             if (i == fromIndex && next.match(matcher, i, seq)) {
3160                 matcher.first = i;
3161                 matcher.groups[0] = i;
3162                 matcher.groups[1] = matcher.last;
3163                 return true;
3164             } else {
3165                 return false;
3166             }
3167         }
3168     }
3169 
3170     /**
3171      * Node to anchor at the end of input. This is the absolute end, so this
3172      * should not match at the last newline before the end as $ will.
3173      */
3174     static final class End extends Node {
3175         boolean match(Matcher matcher, int i, CharSequence seq) {
3176             int endIndex = (matcher.anchoringBounds) ?
3177                 matcher.to : matcher.getTextLength();
3178             if (i == endIndex) {
3179                 matcher.hitEnd = true;
3180                 return next.match(matcher, i, seq);
3181             }
3182             return false;
3183         }
3184     }
3185 
3186     /**
3187      * Node to anchor at the beginning of a line. This is essentially the
3188      * object to match for the multiline ^.
3189      */
3190     static final class Caret extends Node {
3191         boolean match(Matcher matcher, int i, CharSequence seq) {
3192             int startIndex = matcher.from;
3193             int endIndex = matcher.to;
3194             if (!matcher.anchoringBounds) {
3195                 startIndex = 0;
3196                 endIndex = matcher.getTextLength();
3197             }
3198             // Perl does not match ^ at end of input even after newline
3199             if (i == endIndex) {
3200                 matcher.hitEnd = true;
3201                 return false;
3202             }
3203             if (i > startIndex) {
3204                 char ch = seq.charAt(i-1);
3205                 if (ch != '\n' && ch != '\r'
3206                     && (ch|1) != '\u2029'
3207                     && ch != '\u0085' ) {
3208                     return false;
3209                 }
3210                 // Should treat /r/n as one newline
3211                 if (ch == '\r' && seq.charAt(i) == '\n')
3212                     return false;
3213             }
3214             return next.match(matcher, i, seq);
3215         }
3216     }
3217 
3218     /**
3219      * Node to anchor at the beginning of a line when in unixdot mode.
3220      */
3221     static final class UnixCaret extends Node {
3222         boolean match(Matcher matcher, int i, CharSequence seq) {
3223             int startIndex = matcher.from;
3224             int endIndex = matcher.to;
3225             if (!matcher.anchoringBounds) {
3226                 startIndex = 0;
3227                 endIndex = matcher.getTextLength();
3228             }
3229             // Perl does not match ^ at end of input even after newline
3230             if (i == endIndex) {
3231                 matcher.hitEnd = true;
3232                 return false;
3233             }
3234             if (i > startIndex) {
3235                 char ch = seq.charAt(i-1);
3236                 if (ch != '\n') {
3237                     return false;
3238                 }
3239             }
3240             return next.match(matcher, i, seq);
3241         }
3242     }
3243 
3244     /**
3245      * Node to match the location where the last match ended.
3246      * This is used for the \G construct.
3247      */
3248     static final class LastMatch extends Node {
3249         boolean match(Matcher matcher, int i, CharSequence seq) {
3250             if (i != matcher.oldLast)
3251                 return false;
3252             return next.match(matcher, i, seq);
3253         }
3254     }
3255 
3256     /**
3257      * Node to anchor at the end of a line or the end of input based on the
3258      * multiline mode.
3259      *
3260      * When not in multiline mode, the $ can only match at the very end
3261      * of the input, unless the input ends in a line terminator in which
3262      * it matches right before the last line terminator.
3263      *
3264      * Note that \r\n is considered an atomic line terminator.
3265      *
3266      * Like ^ the $ operator matches at a position, it does not match the
3267      * line terminators themselves.
3268      */
3269     static final class Dollar extends Node {
3270         boolean multiline;
3271         Dollar(boolean mul) {
3272             multiline = mul;
3273         }
3274         boolean match(Matcher matcher, int i, CharSequence seq) {
3275             int endIndex = (matcher.anchoringBounds) ?
3276                 matcher.to : matcher.getTextLength();
3277             if (!multiline) {
3278                 if (i < endIndex - 2)
3279                     return false;
3280                 if (i == endIndex - 2) {
3281                     char ch = seq.charAt(i);
3282                     if (ch != '\r')
3283                         return false;
3284                     ch = seq.charAt(i + 1);
3285                     if (ch != '\n')
3286                         return false;
3287                 }
3288             }
3289             // Matches before any line terminator; also matches at the
3290             // end of input
3291             // Before line terminator:
3292             // If multiline, we match here no matter what
3293             // If not multiline, fall through so that the end
3294             // is marked as hit; this must be a /r/n or a /n
3295             // at the very end so the end was hit; more input
3296             // could make this not match here
3297             if (i < endIndex) {
3298                 char ch = seq.charAt(i);
3299                  if (ch == '\n') {
3300                      // No match between \r\n
3301                      if (i > 0 && seq.charAt(i-1) == '\r')
3302                          return false;
3303                      if (multiline)
3304                          return next.match(matcher, i, seq);
3305                  } else if (ch == '\r' || ch == '\u0085' ||
3306                             (ch|1) == '\u2029') {
3307                      if (multiline)
3308                          return next.match(matcher, i, seq);
3309                  } else { // No line terminator, no match
3310                      return false;
3311                  }
3312             }
3313             // Matched at current end so hit end
3314             matcher.hitEnd = true;
3315             // If a $ matches because of end of input, then more input
3316             // could cause it to fail!
3317             matcher.requireEnd = true;
3318             return next.match(matcher, i, seq);
3319         }
3320         boolean study(TreeInfo info) {
3321             next.study(info);
3322             return info.deterministic;
3323         }
3324     }
3325 
3326     /**
3327      * Node to anchor at the end of a line or the end of input based on the
3328      * multiline mode when in unix lines mode.
3329      */
3330     static final class UnixDollar extends Node {
3331         boolean multiline;
3332         UnixDollar(boolean mul) {
3333             multiline = mul;
3334         }
3335         boolean match(Matcher matcher, int i, CharSequence seq) {
3336             int endIndex = (matcher.anchoringBounds) ?
3337                 matcher.to : matcher.getTextLength();
3338             if (i < endIndex) {
3339                 char ch = seq.charAt(i);
3340                 if (ch == '\n') {
3341                     // If not multiline, then only possible to
3342                     // match at very end or one before end
3343                     if (multiline == false && i != endIndex - 1)
3344                         return false;
3345                     // If multiline return next.match without setting
3346                     // matcher.hitEnd
3347                     if (multiline)
3348                         return next.match(matcher, i, seq);
3349                 } else {
3350                     return false;
3351                 }
3352             }
3353             // Matching because at the end or 1 before the end;
3354             // more input could change this so set hitEnd
3355             matcher.hitEnd = true;
3356             // If a $ matches because of end of input, then more input
3357             // could cause it to fail!
3358             matcher.requireEnd = true;
3359             return next.match(matcher, i, seq);
3360         }
3361         boolean study(TreeInfo info) {
3362             next.study(info);
3363             return info.deterministic;
3364         }
3365     }
3366 
3367     /**
3368      * Abstract node class to match one character satisfying some
3369      * boolean property.
3370      */
3371     private static abstract class CharProperty extends Node {
3372         abstract boolean isSatisfiedBy(int ch);
3373         CharProperty complement() {
3374             return new CharProperty() {
3375                     boolean isSatisfiedBy(int ch) {
3376                         return ! CharProperty.this.isSatisfiedBy(ch);}};
3377         }
3378         CharProperty maybeComplement(boolean complement) {
3379             return complement ? complement() : this;
3380         }
3381         boolean match(Matcher matcher, int i, CharSequence seq) {
3382             if (i < matcher.to) {
3383                 int ch = Character.codePointAt(seq, i);
3384                 return isSatisfiedBy(ch)
3385                     && next.match(matcher, i+Character.charCount(ch), seq);
3386             } else {
3387                 matcher.hitEnd = true;
3388                 return false;
3389             }
3390         }
3391         boolean study(TreeInfo info) {
3392             info.minLength++;
3393             info.maxLength++;
3394             return next.study(info);
3395         }
3396     }
3397 
3398     /**
3399      * Optimized version of CharProperty that works only for
3400      * properties never satisfied by Supplementary characters.
3401      */
3402     private static abstract class BmpCharProperty extends CharProperty {
3403         boolean match(Matcher matcher, int i, CharSequence seq) {
3404             if (i < matcher.to) {
3405                 return isSatisfiedBy(seq.charAt(i))
3406                     && next.match(matcher, i+1, seq);
3407             } else {
3408                 matcher.hitEnd = true;
3409                 return false;
3410             }
3411         }
3412     }
3413 
3414     /**
3415      * Node class that matches a Supplementary Unicode character
3416      */
3417     static final class SingleS extends CharProperty {
3418         final int c;
3419         SingleS(int c) { this.c = c; }
3420         boolean isSatisfiedBy(int ch) {
3421             return ch == c;
3422         }
3423     }
3424 
3425     /**
3426      * Optimization -- matches a given BMP character
3427      */
3428     static final class Single extends BmpCharProperty {
3429         final int c;
3430         Single(int c) { this.c = c; }
3431         boolean isSatisfiedBy(int ch) {
3432             return ch == c;
3433         }
3434     }
3435 
3436     /**
3437      * Case insensitive matches a given BMP character
3438      */
3439     static final class SingleI extends BmpCharProperty {
3440         final int lower;
3441         final int upper;
3442         SingleI(int lower, int upper) {
3443             this.lower = lower;
3444             this.upper = upper;
3445         }
3446         boolean isSatisfiedBy(int ch) {
3447             return ch == lower || ch == upper;
3448         }
3449     }
3450 
3451     /**
3452      * Unicode case insensitive matches a given Unicode character
3453      */
3454     static final class SingleU extends CharProperty {
3455         final int lower;
3456         SingleU(int lower) {
3457             this.lower = lower;
3458         }
3459         boolean isSatisfiedBy(int ch) {
3460             return lower == ch ||
3461                 lower == Character.toLowerCase(Character.toUpperCase(ch));
3462         }
3463     }
3464 
3465     /**
3466      * Node class that matches a Unicode category.
3467      */
3468     static final class Category extends CharProperty {
3469         final int typeMask;
3470         Category(int typeMask) { this.typeMask = typeMask; }
3471         boolean isSatisfiedBy(int ch) {
3472             return (typeMask & (1 << Character.getType(ch))) != 0;
3473         }
3474     }
3475 
3476     /**
3477      * Node class that matches a POSIX type.
3478      */
3479     static final class Ctype extends BmpCharProperty {
3480         final int ctype;
3481         Ctype(int ctype) { this.ctype = ctype; }
3482         boolean isSatisfiedBy(int ch) {
3483             return ch < 128 && ASCII.isType(ch, ctype);
3484         }
3485     }
3486 
3487     /**
3488      * Base class for all Slice nodes
3489      */
3490     static class SliceNode extends Node {
3491         int[] buffer;
3492         SliceNode(int[] buf) {
3493             buffer = buf;
3494         }
3495         boolean study(TreeInfo info) {
3496             info.minLength += buffer.length;
3497             info.maxLength += buffer.length;
3498             return next.study(info);
3499         }
3500     }
3501 
3502     /**
3503      * Node class for a case sensitive/BMP-only sequence of literal
3504      * characters.
3505      */
3506     static final class Slice extends SliceNode {
3507         Slice(int[] buf) {
3508             super(buf);
3509         }
3510         boolean match(Matcher matcher, int i, CharSequence seq) {
3511             int[] buf = buffer;
3512             int len = buf.length;
3513             for (int j=0; j<len; j++) {
3514                 if ((i+j) >= matcher.to) {
3515                     matcher.hitEnd = true;
3516                     return false;
3517                 }
3518                 if (buf[j] != seq.charAt(i+j))
3519                     return false;
3520             }
3521             return next.match(matcher, i+len, seq);
3522         }
3523     }
3524 
3525     /**
3526      * Node class for a case_insensitive/BMP-only sequence of literal
3527      * characters.
3528      */
3529     static class SliceI extends SliceNode {
3530         SliceI(int[] buf) {
3531             super(buf);
3532         }
3533         boolean match(Matcher matcher, int i, CharSequence seq) {
3534             int[] buf = buffer;
3535             int len = buf.length;
3536             for (int j=0; j<len; j++) {
3537                 if ((i+j) >= matcher.to) {
3538                     matcher.hitEnd = true;
3539                     return false;
3540                 }
3541                 int c = seq.charAt(i+j);
3542                 if (buf[j] != c &&
3543                     buf[j] != ASCII.toLower(c))
3544                     return false;
3545             }
3546             return next.match(matcher, i+len, seq);
3547         }
3548     }
3549 
3550     /**
3551      * Node class for a unicode_case_insensitive/BMP-only sequence of
3552      * literal characters. Uses unicode case folding.
3553      */
3554     static final class SliceU extends SliceNode {
3555         SliceU(int[] buf) {
3556             super(buf);
3557         }
3558         boolean match(Matcher matcher, int i, CharSequence seq) {
3559             int[] buf = buffer;
3560             int len = buf.length;
3561             for (int j=0; j<len; j++) {
3562                 if ((i+j) >= matcher.to) {
3563                     matcher.hitEnd = true;
3564                     return false;
3565                 }
3566                 int c = seq.charAt(i+j);
3567                 if (buf[j] != c &&
3568                     buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
3569                     return false;
3570             }
3571             return next.match(matcher, i+len, seq);
3572         }
3573     }
3574 
3575     /**
3576      * Node class for a case sensitive sequence of literal characters
3577      * including supplementary characters.
3578      */
3579     static final class SliceS extends SliceNode {
3580         SliceS(int[] buf) {
3581             super(buf);
3582         }
3583         boolean match(Matcher matcher, int i, CharSequence seq) {
3584             int[] buf = buffer;
3585             int x = i;
3586             for (int j = 0; j < buf.length; j++) {
3587                 if (x >= matcher.to) {
3588                     matcher.hitEnd = true;
3589                     return false;
3590                 }
3591                 int c = Character.codePointAt(seq, x);
3592                 if (buf[j] != c)
3593                     return false;
3594                 x += Character.charCount(c);
3595                 if (x > matcher.to) {
3596                     matcher.hitEnd = true;
3597                     return false;
3598                 }
3599             }
3600             return next.match(matcher, x, seq);
3601         }
3602     }
3603 
3604     /**
3605      * Node class for a case insensitive sequence of literal characters
3606      * including supplementary characters.
3607      */
3608     static class SliceIS extends SliceNode {
3609         SliceIS(int[] buf) {
3610             super(buf);
3611         }
3612         int toLower(int c) {
3613             return ASCII.toLower(c);
3614         }
3615         boolean match(Matcher matcher, int i, CharSequence seq) {
3616             int[] buf = buffer;
3617             int x = i;
3618             for (int j = 0; j < buf.length; j++) {
3619                 if (x >= matcher.to) {
3620                     matcher.hitEnd = true;
3621                     return false;
3622                 }
3623                 int c = Character.codePointAt(seq, x);
3624                 if (buf[j] != c && buf[j] != toLower(c))
3625                     return false;
3626                 x += Character.charCount(c);
3627                 if (x > matcher.to) {
3628                     matcher.hitEnd = true;
3629                     return false;
3630                 }
3631             }
3632             return next.match(matcher, x, seq);
3633         }
3634     }
3635 
3636     /**
3637      * Node class for a case insensitive sequence of literal characters.
3638      * Uses unicode case folding.
3639      */
3640     static final class SliceUS extends SliceIS {
3641         SliceUS(int[] buf) {
3642             super(buf);
3643         }
3644         int toLower(int c) {
3645             return Character.toLowerCase(Character.toUpperCase(c));
3646         }
3647     }
3648 
3649     private static boolean inRange(int lower, int ch, int upper) {
3650         return lower <= ch && ch <= upper;
3651     }
3652 
3653     /**
3654      * Returns node for matching characters within an explicit value range.
3655      */
3656     private static CharProperty rangeFor(final int lower,
3657                                          final int upper) {
3658         return new CharProperty() {
3659                 boolean isSatisfiedBy(int ch) {
3660                     return inRange(lower, ch, upper);}};
3661     }
3662 
3663     /**
3664      * Returns node for matching characters within an explicit value
3665      * range in a case insensitive manner.
3666      */
3667     private CharProperty caseInsensitiveRangeFor(final int lower,
3668                                                  final int upper) {
3669         if (has(UNICODE_CASE))
3670             return new CharProperty() {
3671                 boolean isSatisfiedBy(int ch) {
3672                     if (inRange(lower, ch, upper))
3673                         return true;
3674                     int up = Character.toUpperCase(ch);
3675                     return inRange(lower, up, upper) ||
3676                            inRange(lower, Character.toLowerCase(up), upper);}};
3677         return new CharProperty() {
3678             boolean isSatisfiedBy(int ch) {
3679                 return inRange(lower, ch, upper) ||
3680                     ASCII.isAscii(ch) &&
3681                         (inRange(lower, ASCII.toUpper(ch), upper) ||
3682                          inRange(lower, ASCII.toLower(ch), upper));
3683             }};
3684     }
3685 
3686     /**
3687      * Implements the Unicode category ALL and the dot metacharacter when
3688      * in dotall mode.
3689      */
3690     static final class All extends CharProperty {
3691         boolean isSatisfiedBy(int ch) {
3692             return true;
3693         }
3694     }
3695 
3696     /**
3697      * Node class for the dot metacharacter when dotall is not enabled.
3698      */
3699     static final class Dot extends CharProperty {
3700         boolean isSatisfiedBy(int ch) {
3701             return (ch != '\n' && ch != '\r'
3702                     && (ch|1) != '\u2029'
3703                     && ch != '\u0085');
3704         }
3705     }
3706 
3707     /**
3708      * Node class for the dot metacharacter when dotall is not enabled
3709      * but UNIX_LINES is enabled.
3710      */
3711     static final class UnixDot extends CharProperty {
3712         boolean isSatisfiedBy(int ch) {
3713             return ch != '\n';
3714         }
3715     }
3716 
3717     /**
3718      * The 0 or 1 quantifier. This one class implements all three types.
3719      */
3720     static final class Ques extends Node {
3721         Node atom;
3722         int type;
3723         Ques(Node node, int type) {
3724             this.atom = node;
3725             this.type = type;
3726         }
3727         boolean match(Matcher matcher, int i, CharSequence seq) {
3728             switch (type) {
3729             case GREEDY:
3730                 return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
3731                     || next.match(matcher, i, seq);
3732             case LAZY:
3733                 return next.match(matcher, i, seq)
3734                     || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
3735             case POSSESSIVE:
3736                 if (atom.match(matcher, i, seq)) i = matcher.last;
3737                 return next.match(matcher, i, seq);
3738             default:
3739                 return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
3740             }
3741         }
3742         boolean study(TreeInfo info) {
3743             if (type != INDEPENDENT) {
3744                 int minL = info.minLength;
3745                 atom.study(info);
3746                 info.minLength = minL;
3747                 info.deterministic = false;
3748                 return next.study(info);
3749             } else {
3750                 atom.study(info);
3751                 return next.study(info);
3752             }
3753         }
3754     }
3755 
3756     /**
3757      * Handles the curly-brace style repetition with a specified minimum and
3758      * maximum occurrences. The * quantifier is handled as a special case.
3759      * This class handles the three types.
3760      */
3761     static final class Curly extends Node {
3762         Node atom;
3763         int type;
3764         int cmin;
3765         int cmax;
3766 
3767         Curly(Node node, int cmin, int cmax, int type) {
3768             this.atom = node;
3769             this.type = type;
3770             this.cmin = cmin;
3771             this.cmax = cmax;
3772         }
3773         boolean match(Matcher matcher, int i, CharSequence seq) {
3774             int j;
3775             for (j = 0; j < cmin; j++) {
3776                 if (atom.match(matcher, i, seq)) {
3777                     i = matcher.last;
3778                     continue;
3779                 }
3780                 return false;
3781             }
3782             if (type == GREEDY)
3783                 return match0(matcher, i, j, seq);
3784             else if (type == LAZY)
3785                 return match1(matcher, i, j, seq);
3786             else
3787                 return match2(matcher, i, j, seq);
3788         }
3789         // Greedy match.
3790         // i is the index to start matching at
3791         // j is the number of atoms that have matched
3792         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
3793             if (j >= cmax) {
3794                 // We have matched the maximum... continue with the rest of
3795                 // the regular expression
3796                 return next.match(matcher, i, seq);
3797             }
3798             int backLimit = j;
3799             while (atom.match(matcher, i, seq)) {
3800                 // k is the length of this match
3801                 int k = matcher.last - i;
3802                 if (k == 0) // Zero length match
3803                     break;
3804                 // Move up index and number matched
3805                 i = matcher.last;
3806                 j++;
3807                 // We are greedy so match as many as we can
3808                 while (j < cmax) {
3809                     if (!atom.match(matcher, i, seq))
3810                         break;
3811                     if (i + k != matcher.last) {
3812                         if (match0(matcher, matcher.last, j+1, seq))
3813                             return true;
3814                         break;
3815                     }
3816                     i += k;
3817                     j++;
3818                 }
3819                 // Handle backing off if match fails
3820                 while (j >= backLimit) {
3821                    if (next.match(matcher, i, seq))
3822                         return true;
3823                     i -= k;
3824                     j--;
3825                 }
3826                 return false;
3827             }
3828             return next.match(matcher, i, seq);
3829         }
3830         // Reluctant match. At this point, the minimum has been satisfied.
3831         // i is the index to start matching at
3832         // j is the number of atoms that have matched
3833         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
3834             for (;;) {
3835                 // Try finishing match without consuming any more
3836                 if (next.match(matcher, i, seq))
3837                     return true;
3838                 // At the maximum, no match found
3839                 if (j >= cmax)
3840                     return false;
3841                 // Okay, must try one more atom
3842                 if (!atom.match(matcher, i, seq))
3843                     return false;
3844                 // If we haven't moved forward then must break out
3845                 if (i == matcher.last)
3846                     return false;
3847                 // Move up index and number matched
3848                 i = matcher.last;
3849                 j++;
3850             }
3851         }
3852         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
3853             for (; j < cmax; j++) {
3854                 if (!atom.match(matcher, i, seq))
3855                     break;
3856                 if (i == matcher.last)
3857                     break;
3858                 i = matcher.last;
3859             }
3860             return next.match(matcher, i, seq);
3861         }
3862         boolean study(TreeInfo info) {
3863             // Save original info
3864             int minL = info.minLength;
3865             int maxL = info.maxLength;
3866             boolean maxV = info.maxValid;
3867             boolean detm = info.deterministic;
3868             info.reset();
3869 
3870             atom.study(info);
3871 
3872             int temp = info.minLength * cmin + minL;
3873             if (temp < minL) {
3874                 temp = 0xFFFFFFF; // arbitrary large number
3875             }
3876             info.minLength = temp;
3877 
3878             if (maxV & info.maxValid) {
3879                 temp = info.maxLength * cmax + maxL;
3880                 info.maxLength = temp;
3881                 if (temp < maxL) {
3882                     info.maxValid = false;
3883                 }
3884             } else {
3885                 info.maxValid = false;
3886             }
3887 
3888             if (info.deterministic && cmin == cmax)
3889                 info.deterministic = detm;
3890             else
3891                 info.deterministic = false;
3892 
3893             return next.study(info);
3894         }
3895     }
3896 
3897     /**
3898      * Handles the curly-brace style repetition with a specified minimum and
3899      * maximum occurrences in deterministic cases. This is an iterative
3900      * optimization over the Prolog and Loop system which would handle this
3901      * in a recursive way. The * quantifier is handled as a special case.
3902      * If capture is true then this class saves group settings and ensures
3903      * that groups are unset when backing off of a group match.
3904      */
3905     static final class GroupCurly extends Node {
3906         Node atom;
3907         int type;
3908         int cmin;
3909         int cmax;
3910         int localIndex;
3911         int groupIndex;
3912         boolean capture;
3913 
3914         GroupCurly(Node node, int cmin, int cmax, int type, int local,
3915                    int group, boolean capture) {
3916             this.atom = node;
3917             this.type = type;
3918             this.cmin = cmin;
3919             this.cmax = cmax;
3920             this.localIndex = local;
3921             this.groupIndex = group;
3922             this.capture = capture;
3923         }
3924         boolean match(Matcher matcher, int i, CharSequence seq) {
3925             int[] groups = matcher.groups;
3926             int[] locals = matcher.locals;
3927             int save0 = locals[localIndex];
3928             int save1 = 0;
3929             int save2 = 0;
3930 
3931             if (capture) {
3932                 save1 = groups[groupIndex];
3933                 save2 = groups[groupIndex+1];
3934             }
3935 
3936             // Notify GroupTail there is no need to setup group info
3937             // because it will be set here
3938             locals[localIndex] = -1;
3939 
3940             boolean ret = true;
3941             for (int j = 0; j < cmin; j++) {
3942                 if (atom.match(matcher, i, seq)) {
3943                     if (capture) {
3944                         groups[groupIndex] = i;
3945                         groups[groupIndex+1] = matcher.last;
3946                     }
3947                     i = matcher.last;
3948                 } else {
3949                     ret = false;
3950                     break;
3951                 }
3952             }
3953             if (ret) {
3954                 if (type == GREEDY) {
3955                     ret = match0(matcher, i, cmin, seq);
3956                 } else if (type == LAZY) {
3957                     ret = match1(matcher, i, cmin, seq);
3958                 } else {
3959                     ret = match2(matcher, i, cmin, seq);
3960                 }
3961             }
3962             if (!ret) {
3963                 locals[localIndex] = save0;
3964                 if (capture) {
3965                     groups[groupIndex] = save1;
3966                     groups[groupIndex+1] = save2;
3967                 }
3968             }
3969             return ret;
3970         }
3971         // Aggressive group match
3972         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
3973             int[] groups = matcher.groups;
3974             int save0 = 0;
3975             int save1 = 0;
3976             if (capture) {
3977                 save0 = groups[groupIndex];
3978                 save1 = groups[groupIndex+1];
3979             }
3980             for (;;) {
3981                 if (j >= cmax)
3982                     break;
3983                 if (!atom.match(matcher, i, seq))
3984                     break;
3985                 int k = matcher.last - i;
3986                 if (k <= 0) {
3987                     if (capture) {
3988                         groups[groupIndex] = i;
3989                         groups[groupIndex+1] = i + k;
3990                     }
3991                     i = i + k;
3992                     break;
3993                 }
3994                 for (;;) {
3995                     if (capture) {
3996                         groups[groupIndex] = i;
3997                         groups[groupIndex+1] = i + k;
3998                     }
3999                     i = i + k;
4000                     if (++j >= cmax)
4001                         break;
4002                     if (!atom.match(matcher, i, seq))
4003                         break;
4004                     if (i + k != matcher.last) {
4005                         if (match0(matcher, i, j, seq))
4006                             return true;
4007                         break;
4008                     }
4009                 }
4010                 while (j > cmin) {
4011                     if (next.match(matcher, i, seq)) {
4012                         if (capture) {
4013                             groups[groupIndex+1] = i;
4014                             groups[groupIndex] = i - k;
4015                         }
4016                         i = i - k;
4017                         return true;
4018                     }
4019                     // backing off
4020                     if (capture) {
4021                         groups[groupIndex+1] = i;
4022                         groups[groupIndex] = i - k;
4023                     }
4024                     i = i - k;
4025                     j--;
4026                 }
4027                 break;
4028             }
4029             if (capture) {
4030                 groups[groupIndex] = save0;
4031                 groups[groupIndex+1] = save1;
4032             }
4033             return next.match(matcher, i, seq);
4034         }
4035         // Reluctant matching
4036         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4037             for (;;) {
4038                 if (next.match(matcher, i, seq))
4039                     return true;
4040                 if (j >= cmax)
4041                     return false;
4042                 if (!atom.match(matcher, i, seq))
4043                     return false;
4044                 if (i == matcher.last)
4045                     return false;
4046                 if (capture) {
4047                     matcher.groups[groupIndex] = i;
4048                     matcher.groups[groupIndex+1] = matcher.last;
4049                 }
4050                 i = matcher.last;
4051                 j++;
4052             }
4053         }
4054         // Possessive matching
4055         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4056             for (; j < cmax; j++) {
4057                 if (!atom.match(matcher, i, seq)) {
4058                     break;
4059                 }
4060                 if (capture) {
4061                     matcher.groups[groupIndex] = i;
4062                     matcher.groups[groupIndex+1] = matcher.last;
4063                 }
4064                 if (i == matcher.last) {
4065                     break;
4066                 }
4067                 i = matcher.last;
4068             }
4069             return next.match(matcher, i, seq);
4070         }
4071         boolean study(TreeInfo info) {
4072             // Save original info
4073             int minL = info.minLength;
4074             int maxL = info.maxLength;
4075             boolean maxV = info.maxValid;
4076             boolean detm = info.deterministic;
4077             info.reset();
4078 
4079             atom.study(info);
4080 
4081             int temp = info.minLength * cmin + minL;
4082             if (temp < minL) {
4083                 temp = 0xFFFFFFF; // Arbitrary large number
4084             }
4085             info.minLength = temp;
4086 
4087             if (maxV & info.maxValid) {
4088                 temp = info.maxLength * cmax + maxL;
4089                 info.maxLength = temp;
4090                 if (temp < maxL) {
4091                     info.maxValid = false;
4092                 }
4093             } else {
4094                 info.maxValid = false;
4095             }
4096 
4097             if (info.deterministic && cmin == cmax) {
4098                 info.deterministic = detm;
4099             } else {
4100                 info.deterministic = false;
4101             }
4102 
4103             return next.study(info);
4104         }
4105     }
4106 
4107     /**
4108      * A Guard node at the end of each atom node in a Branch. It
4109      * serves the purpose of chaining the "match" operation to
4110      * "next" but not the "study", so we can collect the TreeInfo
4111      * of each atom node without including the TreeInfo of the
4112      * "next".
4113      */
4114     static final class BranchConn extends Node {
4115         BranchConn() {};
4116         boolean match(Matcher matcher, int i, CharSequence seq) {
4117             return next.match(matcher, i, seq);
4118         }
4119         boolean study(TreeInfo info) {
4120             return info.deterministic;
4121         }
4122     }
4123 
4124     /**
4125      * Handles the branching of alternations. Note this is also used for
4126      * the ? quantifier to branch between the case where it matches once
4127      * and where it does not occur.
4128      */
4129     static final class Branch extends Node {
4130         Node[] atoms = new Node[2];
4131         int size = 2;
4132         Node conn;
4133         Branch(Node first, Node second, Node branchConn) {
4134             conn = branchConn;
4135             atoms[0] = first;
4136             atoms[1] = second;
4137         }
4138 
4139         void add(Node node) {
4140             if (size >= atoms.length) {
4141                 Node[] tmp = new Node[atoms.length*2];
4142                 System.arraycopy(atoms, 0, tmp, 0, atoms.length);
4143                 atoms = tmp;
4144             }
4145             atoms[size++] = node;
4146         }
4147 
4148         boolean match(Matcher matcher, int i, CharSequence seq) {
4149             for (int n = 0; n < size; n++) {
4150                 if (atoms[n] == null) {
4151                     if (conn.next.match(matcher, i, seq))
4152                         return true;
4153                 } else if (atoms[n].match(matcher, i, seq)) {
4154                     return true;
4155                 }
4156             }
4157             return false;
4158         }
4159 
4160         boolean study(TreeInfo info) {
4161             int minL = info.minLength;
4162             int maxL = info.maxLength;
4163             boolean maxV = info.maxValid;
4164 
4165             int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4166             int maxL2 = -1;
4167             for (int n = 0; n < size; n++) {
4168                 info.reset();
4169                 if (atoms[n] != null)
4170                     atoms[n].study(info);
4171                 minL2 = Math.min(minL2, info.minLength);
4172                 maxL2 = Math.max(maxL2, info.maxLength);
4173                 maxV = (maxV & info.maxValid);
4174             }
4175 
4176             minL += minL2;
4177             maxL += maxL2;
4178 
4179             info.reset();
4180             conn.next.study(info);
4181 
4182             info.minLength += minL;
4183             info.maxLength += maxL;
4184             info.maxValid &= maxV;
4185             info.deterministic = false;
4186             return false;
4187         }
4188     }
4189 
4190     /**
4191      * The GroupHead saves the location where the group begins in the locals
4192      * and restores them when the match is done.
4193      *
4194      * The matchRef is used when a reference to this group is accessed later
4195      * in the expression. The locals will have a negative value in them to
4196      * indicate that we do not want to unset the group if the reference
4197      * doesn't match.
4198      */
4199     static final class GroupHead extends Node {
4200         int localIndex;
4201         GroupHead(int localCount) {
4202             localIndex = localCount;
4203         }
4204         boolean match(Matcher matcher, int i, CharSequence seq) {
4205             int save = matcher.locals[localIndex];
4206             matcher.locals[localIndex] = i;
4207             boolean ret = next.match(matcher, i, seq);
4208             matcher.locals[localIndex] = save;
4209             return ret;
4210         }
4211         boolean matchRef(Matcher matcher, int i, CharSequence seq) {
4212             int save = matcher.locals[localIndex];
4213             matcher.locals[localIndex] = ~i; // HACK
4214             boolean ret = next.match(matcher, i, seq);
4215             matcher.locals[localIndex] = save;
4216             return ret;
4217         }
4218     }
4219 
4220     /**
4221      * Recursive reference to a group in the regular expression. It calls
4222      * matchRef because if the reference fails to match we would not unset
4223      * the group.
4224      */
4225     static final class GroupRef extends Node {
4226         GroupHead head;
4227         GroupRef(GroupHead head) {
4228             this.head = head;
4229         }
4230         boolean match(Matcher matcher, int i, CharSequence seq) {
4231             return head.matchRef(matcher, i, seq)
4232                 && next.match(matcher, matcher.last, seq);
4233         }
4234         boolean study(TreeInfo info) {
4235             info.maxValid = false;
4236             info.deterministic = false;
4237             return next.study(info);
4238         }
4239     }
4240 
4241     /**
4242      * The GroupTail handles the setting of group beginning and ending
4243      * locations when groups are successfully matched. It must also be able to
4244      * unset groups that have to be backed off of.
4245      *
4246      * The GroupTail node is also used when a previous group is referenced,
4247      * and in that case no group information needs to be set.
4248      */
4249     static final class GroupTail extends Node {
4250         int localIndex;
4251         int groupIndex;
4252         GroupTail(int localCount, int groupCount) {
4253             localIndex = localCount;
4254             groupIndex = groupCount + groupCount;
4255         }
4256         boolean match(Matcher matcher, int i, CharSequence seq) {
4257             int tmp = matcher.locals[localIndex];
4258             if (tmp >= 0) { // This is the normal group case.
4259                 // Save the group so we can unset it if it
4260                 // backs off of a match.
4261                 int groupStart = matcher.groups[groupIndex];
4262                 int groupEnd = matcher.groups[groupIndex+1];
4263 
4264                 matcher.groups[groupIndex] = tmp;
4265                 matcher.groups[groupIndex+1] = i;
4266                 if (next.match(matcher, i, seq)) {
4267                     return true;
4268                 }
4269                 matcher.groups[groupIndex] = groupStart;
4270                 matcher.groups[groupIndex+1] = groupEnd;
4271                 return false;
4272             } else {
4273                 // This is a group reference case. We don't need to save any
4274                 // group info because it isn't really a group.
4275                 matcher.last = i;
4276                 return true;
4277             }
4278         }
4279     }
4280 
4281     /**
4282      * This sets up a loop to handle a recursive quantifier structure.
4283      */
4284     static final class Prolog extends Node {
4285         Loop loop;
4286         Prolog(Loop loop) {
4287             this.loop = loop;
4288         }
4289         boolean match(Matcher matcher, int i, CharSequence seq) {
4290             return loop.matchInit(matcher, i, seq);
4291         }
4292         boolean study(TreeInfo info) {
4293             return loop.study(info);
4294         }
4295     }
4296 
4297     /**
4298      * Handles the repetition count for a greedy Curly. The matchInit
4299      * is called from the Prolog to save the index of where the group
4300      * beginning is stored. A zero length group check occurs in the
4301      * normal match but is skipped in the matchInit.
4302      */
4303     static class Loop extends Node {
4304         Node body;
4305         int countIndex; // local count index in matcher locals
4306         int beginIndex; // group beginning index
4307         int cmin, cmax;
4308         Loop(int countIndex, int beginIndex) {
4309             this.countIndex = countIndex;
4310             this.beginIndex = beginIndex;
4311         }
4312         boolean match(Matcher matcher, int i, CharSequence seq) {
4313             // Avoid infinite loop in zero-length case.
4314             if (i > matcher.locals[beginIndex]) {
4315                 int count = matcher.locals[countIndex];
4316 
4317                 // This block is for before we reach the minimum
4318                 // iterations required for the loop to match
4319                 if (count < cmin) {
4320                     matcher.locals[countIndex] = count + 1;
4321                     boolean b = body.match(matcher, i, seq);
4322                     // If match failed we must backtrack, so
4323                     // the loop count should NOT be incremented
4324                     if (!b)
4325                         matcher.locals[countIndex] = count;
4326                     // Return success or failure since we are under
4327                     // minimum
4328                     return b;
4329                 }
4330                 // This block is for after we have the minimum
4331                 // iterations required for the loop to match
4332                 if (count < cmax) {
4333                     matcher.locals[countIndex] = count + 1;
4334                     boolean b = body.match(matcher, i, seq);
4335                     // If match failed we must backtrack, so
4336                     // the loop count should NOT be incremented
4337                     if (!b)
4338                         matcher.locals[countIndex] = count;
4339                     else
4340                         return true;
4341                 }
4342             }
4343             return next.match(matcher, i, seq);
4344         }
4345         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4346             int save = matcher.locals[countIndex];
4347             boolean ret = false;
4348             if (0 < cmin) {
4349                 matcher.locals[countIndex] = 1;
4350                 ret = body.match(matcher, i, seq);
4351             } else if (0 < cmax) {
4352                 matcher.locals[countIndex] = 1;
4353                 ret = body.match(matcher, i, seq);
4354                 if (ret == false)
4355                     ret = next.match(matcher, i, seq);
4356             } else {
4357                 ret = next.match(matcher, i, seq);
4358             }
4359             matcher.locals[countIndex] = save;
4360             return ret;
4361         }
4362         boolean study(TreeInfo info) {
4363             info.maxValid = false;
4364             info.deterministic = false;
4365             return false;
4366         }
4367     }
4368 
4369     /**
4370      * Handles the repetition count for a reluctant Curly. The matchInit
4371      * is called from the Prolog to save the index of where the group
4372      * beginning is stored. A zero length group check occurs in the
4373      * normal match but is skipped in the matchInit.
4374      */
4375     static final class LazyLoop extends Loop {
4376         LazyLoop(int countIndex, int beginIndex) {
4377             super(countIndex, beginIndex);
4378         }
4379         boolean match(Matcher matcher, int i, CharSequence seq) {
4380             // Check for zero length group
4381             if (i > matcher.locals[beginIndex]) {
4382                 int count = matcher.locals[countIndex];
4383                 if (count < cmin) {
4384                     matcher.locals[countIndex] = count + 1;
4385                     boolean result = body.match(matcher, i, seq);
4386                     // If match failed we must backtrack, so
4387                     // the loop count should NOT be incremented
4388                     if (!result)
4389                         matcher.locals[countIndex] = count;
4390                     return result;
4391                 }
4392                 if (next.match(matcher, i, seq))
4393                     return true;
4394                 if (count < cmax) {
4395                     matcher.locals[countIndex] = count + 1;
4396                     boolean result = body.match(matcher, i, seq);
4397                     // If match failed we must backtrack, so
4398                     // the loop count should NOT be incremented
4399                     if (!result)
4400                         matcher.locals[countIndex] = count;
4401                     return result;
4402                 }
4403                 return false;
4404             }
4405             return next.match(matcher, i, seq);
4406         }
4407         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4408             int save = matcher.locals[countIndex];
4409             boolean ret = false;
4410             if (0 < cmin) {
4411                 matcher.locals[countIndex] = 1;
4412                 ret = body.match(matcher, i, seq);
4413             } else if (next.match(matcher, i, seq)) {
4414                 ret = true;
4415             } else if (0 < cmax) {
4416                 matcher.locals[countIndex] = 1;
4417                 ret = body.match(matcher, i, seq);
4418             }
4419             matcher.locals[countIndex] = save;
4420             return ret;
4421         }
4422         boolean study(TreeInfo info) {
4423             info.maxValid = false;
4424             info.deterministic = false;
4425             return false;
4426         }
4427     }
4428 
4429     /**
4430      * Refers to a group in the regular expression. Attempts to match
4431      * whatever the group referred to last matched.
4432      */
4433     static class BackRef extends Node {
4434         int groupIndex;
4435         BackRef(int groupCount) {
4436             super();
4437             groupIndex = groupCount + groupCount;
4438         }
4439         boolean match(Matcher matcher, int i, CharSequence seq) {
4440             int j = matcher.groups[groupIndex];
4441             int k = matcher.groups[groupIndex+1];
4442 
4443             int groupSize = k - j;
4444 
4445             // If the referenced group didn't match, neither can this
4446             if (j < 0)
4447                 return false;
4448 
4449             // If there isn't enough input left no match
4450             if (i + groupSize > matcher.to) {
4451                 matcher.hitEnd = true;
4452                 return false;
4453             }
4454 
4455             // Check each new char to make sure it matches what the group
4456             // referenced matched last time around
4457             for (int index=0; index<groupSize; index++)
4458                 if (seq.charAt(i+index) != seq.charAt(j+index))
4459                     return false;
4460 
4461             return next.match(matcher, i+groupSize, seq);
4462         }
4463         boolean study(TreeInfo info) {
4464             info.maxValid = false;
4465             return next.study(info);
4466         }
4467     }
4468 
4469     static class CIBackRef extends Node {
4470         int groupIndex;
4471         boolean doUnicodeCase;
4472         CIBackRef(int groupCount, boolean doUnicodeCase) {
4473             super();
4474             groupIndex = groupCount + groupCount;
4475             this.doUnicodeCase = doUnicodeCase;
4476         }
4477         boolean match(Matcher matcher, int i, CharSequence seq) {
4478             int j = matcher.groups[groupIndex];
4479             int k = matcher.groups[groupIndex+1];
4480 
4481             int groupSize = k - j;
4482 
4483             // If the referenced group didn't match, neither can this
4484             if (j < 0)
4485                 return false;
4486 
4487             // If there isn't enough input left no match
4488             if (i + groupSize > matcher.to) {
4489                 matcher.hitEnd = true;
4490                 return false;
4491             }
4492 
4493             // Check each new char to make sure it matches what the group
4494             // referenced matched last time around
4495             int x = i;
4496             for (int index=0; index<groupSize; index++) {
4497                 int c1 = Character.codePointAt(seq, x);
4498                 int c2 = Character.codePointAt(seq, j);
4499                 if (c1 != c2) {
4500                     if (doUnicodeCase) {
4501                         int cc1 = Character.toUpperCase(c1);
4502                         int cc2 = Character.toUpperCase(c2);
4503                         if (cc1 != cc2 &&
4504                             Character.toLowerCase(cc1) !=
4505                             Character.toLowerCase(cc2))
4506                             return false;
4507                     } else {
4508                         if (ASCII.toLower(c1) != ASCII.toLower(c2))
4509                             return false;
4510                     }
4511                 }
4512                 x += Character.charCount(c1);
4513                 j += Character.charCount(c2);
4514             }
4515 
4516             return next.match(matcher, i+groupSize, seq);
4517         }
4518         boolean study(TreeInfo info) {
4519             info.maxValid = false;
4520             return next.study(info);
4521         }
4522     }
4523 
4524     /**
4525      * Searches until the next instance of its atom. This is useful for
4526      * finding the atom efficiently without passing an instance of it
4527      * (greedy problem) and without a lot of wasted search time (reluctant
4528      * problem).
4529      */
4530     static final class First extends Node {
4531         Node atom;
4532         First(Node node) {
4533             this.atom = BnM.optimize(node);
4534         }
4535         boolean match(Matcher matcher, int i, CharSequence seq) {
4536             if (atom instanceof BnM) {
4537                 return atom.match(matcher, i, seq)
4538                     && next.match(matcher, matcher.last, seq);
4539             }
4540             for (;;) {
4541                 if (i > matcher.to) {
4542                     matcher.hitEnd = true;
4543                     return false;
4544                 }
4545                 if (atom.match(matcher, i, seq)) {
4546                     return next.match(matcher, matcher.last, seq);
4547                 }
4548                 i += countChars(seq, i, 1);
4549                 matcher.first++;
4550             }
4551         }
4552         boolean study(TreeInfo info) {
4553             atom.study(info);
4554             info.maxValid = false;
4555             info.deterministic = false;
4556             return next.study(info);
4557         }
4558     }
4559 
4560     static final class Conditional extends Node {
4561         Node cond, yes, not;
4562         Conditional(Node cond, Node yes, Node not) {
4563             this.cond = cond;
4564             this.yes = yes;
4565             this.not = not;
4566         }
4567         boolean match(Matcher matcher, int i, CharSequence seq) {
4568             if (cond.match(matcher, i, seq)) {
4569                 return yes.match(matcher, i, seq);
4570             } else {
4571                 return not.match(matcher, i, seq);
4572             }
4573         }
4574         boolean study(TreeInfo info) {
4575             int minL = info.minLength;
4576             int maxL = info.maxLength;
4577             boolean maxV = info.maxValid;
4578             info.reset();
4579             yes.study(info);
4580 
4581             int minL2 = info.minLength;
4582             int maxL2 = info.maxLength;
4583             boolean maxV2 = info.maxValid;
4584             info.reset();
4585             not.study(info);
4586 
4587             info.minLength = minL + Math.min(minL2, info.minLength);
4588             info.maxLength = maxL + Math.max(maxL2, info.maxLength);
4589             info.maxValid = (maxV & maxV2 & info.maxValid);
4590             info.deterministic = false;
4591             return next.study(info);
4592         }
4593     }
4594 
4595     /**
4596      * Zero width positive lookahead.
4597      */
4598     static final class Pos extends Node {
4599         Node cond;
4600         Pos(Node cond) {
4601             this.cond = cond;
4602         }
4603         boolean match(Matcher matcher, int i, CharSequence seq) {
4604             int savedTo = matcher.to;
4605             boolean conditionMatched = false;
4606 
4607             // Relax transparent region boundaries for lookahead
4608             if (matcher.transparentBounds)
4609                 matcher.to = matcher.getTextLength();
4610             try {
4611                 conditionMatched = cond.match(matcher, i, seq);
4612             } finally {
4613                 // Reinstate region boundaries
4614                 matcher.to = savedTo;
4615             }
4616             return conditionMatched && next.match(matcher, i, seq);
4617         }
4618     }
4619 
4620     /**
4621      * Zero width negative lookahead.
4622      */
4623     static final class Neg extends Node {
4624         Node cond;
4625         Neg(Node cond) {
4626             this.cond = cond;
4627         }
4628         boolean match(Matcher matcher, int i, CharSequence seq) {
4629             int savedTo = matcher.to;
4630             boolean conditionMatched = false;
4631 
4632             // Relax transparent region boundaries for lookahead
4633             if (matcher.transparentBounds)
4634                 matcher.to = matcher.getTextLength();
4635             try {
4636                 if (i < matcher.to) {
4637                     conditionMatched = !cond.match(matcher, i, seq);
4638                 } else {
4639                     // If a negative lookahead succeeds then more input
4640                     // could cause it to fail!
4641                     matcher.requireEnd = true;
4642                     conditionMatched = !cond.match(matcher, i, seq);
4643                 }
4644             } finally {
4645                 // Reinstate region boundaries
4646                 matcher.to = savedTo;
4647             }
4648             return conditionMatched && next.match(matcher, i, seq);
4649         }
4650     }
4651 
4652     /**
4653      * For use with lookbehinds; matches the position where the lookbehind
4654      * was encountered.
4655      */
4656     static Node lookbehindEnd = new Node() {
4657         boolean match(Matcher matcher, int i, CharSequence seq) {
4658             return i == matcher.lookbehindTo;
4659         }
4660     };
4661 
4662     /**
4663      * Zero width positive lookbehind.
4664      */
4665     static class Behind extends Node {
4666         Node cond;
4667         int rmax, rmin;
4668         Behind(Node cond, int rmax, int rmin) {
4669             this.cond = cond;
4670             this.rmax = rmax;
4671             this.rmin = rmin;
4672         }
4673 
4674         boolean match(Matcher matcher, int i, CharSequence seq) {
4675             int savedFrom = matcher.from;
4676             boolean conditionMatched = false;
4677             int startIndex = (!matcher.transparentBounds) ?
4678                              matcher.from : 0;
4679             int from = Math.max(i - rmax, startIndex);
4680             // Set end boundary
4681             int savedLBT = matcher.lookbehindTo;
4682             matcher.lookbehindTo = i;
4683             // Relax transparent region boundaries for lookbehind
4684             if (matcher.transparentBounds)
4685                 matcher.from = 0;
4686             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
4687                 conditionMatched = cond.match(matcher, j, seq);
4688             }
4689             matcher.from = savedFrom;
4690             matcher.lookbehindTo = savedLBT;
4691             return conditionMatched && next.match(matcher, i, seq);
4692         }
4693     }
4694 
4695     /**
4696      * Zero width positive lookbehind, including supplementary
4697      * characters or unpaired surrogates.
4698      */
4699     static final class BehindS extends Behind {
4700         BehindS(Node cond, int rmax, int rmin) {
4701             super(cond, rmax, rmin);
4702         }
4703         boolean match(Matcher matcher, int i, CharSequence seq) {
4704             int rmaxChars = countChars(seq, i, -rmax);
4705             int rminChars = countChars(seq, i, -rmin);
4706             int savedFrom = matcher.from;
4707             int startIndex = (!matcher.transparentBounds) ?
4708                              matcher.from : 0;
4709             boolean conditionMatched = false;
4710             int from = Math.max(i - rmaxChars, startIndex);
4711             // Set end boundary
4712             int savedLBT = matcher.lookbehindTo;
4713             matcher.lookbehindTo = i;
4714             // Relax transparent region boundaries for lookbehind
4715             if (matcher.transparentBounds)
4716                 matcher.from = 0;
4717 
4718             for (int j = i - rminChars;
4719                  !conditionMatched && j >= from;
4720                  j -= j>from ? countChars(seq, j, -1) : 1) {
4721                 conditionMatched = cond.match(matcher, j, seq);
4722             }
4723             matcher.from = savedFrom;
4724             matcher.lookbehindTo = savedLBT;
4725             return conditionMatched && next.match(matcher, i, seq);
4726         }
4727     }
4728 
4729     /**
4730      * Zero width negative lookbehind.
4731      */
4732     static class NotBehind extends Node {
4733         Node cond;
4734         int rmax, rmin;
4735         NotBehind(Node cond, int rmax, int rmin) {
4736             this.cond = cond;
4737             this.rmax = rmax;
4738             this.rmin = rmin;
4739         }
4740 
4741         boolean match(Matcher matcher, int i, CharSequence seq) {
4742             int savedLBT = matcher.lookbehindTo;
4743             int savedFrom = matcher.from;
4744             boolean conditionMatched = false;
4745             int startIndex = (!matcher.transparentBounds) ?
4746                              matcher.from : 0;
4747             int from = Math.max(i - rmax, startIndex);
4748             matcher.lookbehindTo = i;
4749             // Relax transparent region boundaries for lookbehind
4750             if (matcher.transparentBounds)
4751                 matcher.from = 0;
4752             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
4753                 conditionMatched = cond.match(matcher, j, seq);
4754             }
4755             // Reinstate region boundaries
4756             matcher.from = savedFrom;
4757             matcher.lookbehindTo = savedLBT;
4758             return !conditionMatched && next.match(matcher, i, seq);
4759         }
4760     }
4761 
4762     /**
4763      * Zero width negative lookbehind, including supplementary
4764      * characters or unpaired surrogates.
4765      */
4766     static final class NotBehindS extends NotBehind {
4767         NotBehindS(Node cond, int rmax, int rmin) {
4768             super(cond, rmax, rmin);
4769         }
4770         boolean match(Matcher matcher, int i, CharSequence seq) {
4771             int rmaxChars = countChars(seq, i, -rmax);
4772             int rminChars = countChars(seq, i, -rmin);
4773             int savedFrom = matcher.from;
4774             int savedLBT = matcher.lookbehindTo;
4775             boolean conditionMatched = false;
4776             int startIndex = (!matcher.transparentBounds) ?
4777                              matcher.from : 0;
4778             int from = Math.max(i - rmaxChars, startIndex);
4779             matcher.lookbehindTo = i;
4780             // Relax transparent region boundaries for lookbehind
4781             if (matcher.transparentBounds)
4782                 matcher.from = 0;
4783             for (int j = i - rminChars;
4784                  !conditionMatched && j >= from;
4785                  j -= j>from ? countChars(seq, j, -1) : 1) {
4786                 conditionMatched = cond.match(matcher, j, seq);
4787             }
4788             //Reinstate region boundaries
4789             matcher.from = savedFrom;
4790             matcher.lookbehindTo = savedLBT;
4791             return !conditionMatched && next.match(matcher, i, seq);
4792         }
4793     }
4794 
4795     /**
4796      * Returns the set union of two CharProperty nodes.
4797      */
4798     private static CharProperty union(final CharProperty lhs,
4799                                       final CharProperty rhs) {
4800         return new CharProperty() {
4801                 boolean isSatisfiedBy(int ch) {
4802                     return lhs.isSatisfiedBy(ch) || rhs.isSatisfiedBy(ch);}};
4803     }
4804 
4805     /**
4806      * Returns the set intersection of two CharProperty nodes.
4807      */
4808     private static CharProperty intersection(final CharProperty lhs,
4809                                              final CharProperty rhs) {
4810         return new CharProperty() {
4811                 boolean isSatisfiedBy(int ch) {
4812                     return lhs.isSatisfiedBy(ch) && rhs.isSatisfiedBy(ch);}};
4813     }
4814 
4815     /**
4816      * Returns the set difference of two CharProperty nodes.
4817      */
4818     private static CharProperty setDifference(final CharProperty lhs,
4819                                               final CharProperty rhs) {
4820         return new CharProperty() {
4821                 boolean isSatisfiedBy(int ch) {
4822                     return ! rhs.isSatisfiedBy(ch) && lhs.isSatisfiedBy(ch);}};
4823     }
4824 
4825     /**
4826      * Handles word boundaries. Includes a field to allow this one class to
4827      * deal with the different types of word boundaries we can match. The word
4828      * characters include underscores, letters, and digits. Non spacing marks
4829      * can are also part of a word if they have a base character, otherwise
4830      * they are ignored for purposes of finding word boundaries.
4831      */
4832     static final class Bound extends Node {
4833         static int LEFT = 0x1;
4834         static int RIGHT= 0x2;
4835         static int BOTH = 0x3;
4836         static int NONE = 0x4;
4837         int type;
4838         Bound(int n) {
4839             type = n;
4840         }
4841         int check(Matcher matcher, int i, CharSequence seq) {
4842             int ch;
4843             boolean left = false;
4844             int startIndex = matcher.from;
4845             int endIndex = matcher.to;
4846             if (matcher.transparentBounds) {
4847                 startIndex = 0;
4848                 endIndex = matcher.getTextLength();
4849             }
4850             if (i > startIndex) {
4851                 ch = Character.codePointBefore(seq, i);
4852                 left = (ch == '_' || Character.isLetterOrDigit(ch) ||
4853                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
4854                      && hasBaseCharacter(matcher, i-1, seq)));
4855             }
4856             boolean right = false;
4857             if (i < endIndex) {
4858                 ch = Character.codePointAt(seq, i);
4859                 right = (ch == '_' || Character.isLetterOrDigit(ch) ||
4860                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
4861                      && hasBaseCharacter(matcher, i, seq)));
4862             } else {
4863                 // Tried to access char past the end
4864                 matcher.hitEnd = true;
4865                 // The addition of another char could wreck a boundary
4866                 matcher.requireEnd = true;
4867             }
4868             return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
4869         }
4870         boolean match(Matcher matcher, int i, CharSequence seq) {
4871             return (check(matcher, i, seq) & type) > 0
4872                 && next.match(matcher, i, seq);
4873         }
4874     }
4875 
4876     /**
4877      * Non spacing marks only count as word characters in bounds calculations
4878      * if they have a base character.
4879      */
4880     private static boolean hasBaseCharacter(Matcher matcher, int i,
4881                                             CharSequence seq)
4882     {
4883         int start = (!matcher.transparentBounds) ?
4884             matcher.from : 0;
4885         for (int x=i; x >= start; x--) {
4886             int ch = Character.codePointAt(seq, x);
4887             if (Character.isLetterOrDigit(ch))
4888                 return true;
4889             if (Character.getType(ch) == Character.NON_SPACING_MARK)
4890                 continue;
4891             return false;
4892         }
4893         return false;
4894     }
4895 
4896     /**
4897      * Attempts to match a slice in the input using the Boyer-Moore string
4898      * matching algorithm. The algorithm is based on the idea that the
4899      * pattern can be shifted farther ahead in the search text if it is
4900      * matched right to left.
4901      * <p>
4902      * The pattern is compared to the input one character at a time, from
4903      * the rightmost character in the pattern to the left. If the characters
4904      * all match the pattern has been found. If a character does not match,
4905      * the pattern is shifted right a distance that is the maximum of two
4906      * functions, the bad character shift and the good suffix shift. This
4907      * shift moves the attempted match position through the input more
4908      * quickly than a naive one position at a time check.
4909      * <p>
4910      * The bad character shift is based on the character from the text that
4911      * did not match. If the character does not appear in the pattern, the
4912      * pattern can be shifted completely beyond the bad character. If the
4913      * character does occur in the pattern, the pattern can be shifted to
4914      * line the pattern up with the next occurrence of that character.
4915      * <p>
4916      * The good suffix shift is based on the idea that some subset on the right
4917      * side of the pattern has matched. When a bad character is found, the
4918      * pattern can be shifted right by the pattern length if the subset does
4919      * not occur again in pattern, or by the amount of distance to the
4920      * next occurrence of the subset in the pattern.
4921      *
4922      * Boyer-Moore search methods adapted from code by Amy Yu.
4923      */
4924     static class BnM extends Node {
4925         int[] buffer;
4926         int[] lastOcc;
4927         int[] optoSft;
4928 
4929         /**
4930          * Pre calculates arrays needed to generate the bad character
4931          * shift and the good suffix shift. Only the last seven bits
4932          * are used to see if chars match; This keeps the tables small
4933          * and covers the heavily used ASCII range, but occasionally
4934          * results in an aliased match for the bad character shift.
4935          */
4936         static Node optimize(Node node) {
4937             if (!(node instanceof Slice)) {
4938                 return node;
4939             }
4940 
4941             int[] src = ((Slice) node).buffer;
4942             int patternLength = src.length;
4943             // The BM algorithm requires a bit of overhead;
4944             // If the pattern is short don't use it, since
4945             // a shift larger than the pattern length cannot
4946             // be used anyway.
4947             if (patternLength < 4) {
4948                 return node;
4949             }
4950             int i, j, k;
4951             int[] lastOcc = new int[128];
4952             int[] optoSft = new int[patternLength];
4953             // Precalculate part of the bad character shift
4954             // It is a table for where in the pattern each
4955             // lower 7-bit value occurs
4956             for (i = 0; i < patternLength; i++) {
4957                 lastOcc[src[i]&0x7F] = i + 1;
4958             }
4959             // Precalculate the good suffix shift
4960             // i is the shift amount being considered
4961 NEXT:       for (i = patternLength; i > 0; i--) {
4962                 // j is the beginning index of suffix being considered
4963                 for (j = patternLength - 1; j >= i; j--) {
4964                     // Testing for good suffix
4965                     if (src[j] == src[j-i]) {
4966                         // src[j..len] is a good suffix
4967                         optoSft[j-1] = i;
4968                     } else {
4969                         // No match. The array has already been
4970                         // filled up with correct values before.
4971                         continue NEXT;
4972                     }
4973                 }
4974                 // This fills up the remaining of optoSft
4975                 // any suffix can not have larger shift amount
4976                 // then its sub-suffix. Why???
4977                 while (j > 0) {
4978                     optoSft[--j] = i;
4979                 }
4980             }
4981             // Set the guard value because of unicode compression
4982             optoSft[patternLength-1] = 1;
4983             if (node instanceof SliceS)
4984                 return new BnMS(src, lastOcc, optoSft, node.next);
4985             return new BnM(src, lastOcc, optoSft, node.next);
4986         }
4987         BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
4988             this.buffer = src;
4989             this.lastOcc = lastOcc;
4990             this.optoSft = optoSft;
4991             this.next = next;
4992         }
4993         boolean match(Matcher matcher, int i, CharSequence seq) {
4994             int[] src = buffer;
4995             int patternLength = src.length;
4996             int last = matcher.to - patternLength;
4997 
4998             // Loop over all possible match positions in text
4999 NEXT:       while (i <= last) {
5000                 // Loop over pattern from right to left
5001                 for (int j = patternLength - 1; j >= 0; j--) {
5002                     int ch = seq.charAt(i+j);
5003                     if (ch != src[j]) {
5004                         // Shift search to the right by the maximum of the
5005                         // bad character shift and the good suffix shift
5006                         i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
5007                         continue NEXT;
5008                     }
5009                 }
5010                 // Entire pattern matched starting at i
5011                 matcher.first = i;
5012                 boolean ret = next.match(matcher, i + patternLength, seq);
5013                 if (ret) {
5014                     matcher.first = i;
5015                     matcher.groups[0] = matcher.first;
5016                     matcher.groups[1] = matcher.last;
5017                     return true;
5018                 }
5019                 i++;
5020             }
5021             // BnM is only used as the leading node in the unanchored case,
5022             // and it replaced its Start() which always searches to the end
5023             // if it doesn't find what it's looking for, so hitEnd is true.
5024             matcher.hitEnd = true;
5025             return false;
5026         }
5027         boolean study(TreeInfo info) {
5028             info.minLength += buffer.length;
5029             info.maxValid = false;
5030             return next.study(info);
5031         }
5032     }
5033 
5034     /**
5035      * Supplementary support version of BnM(). Unpaired surrogates are
5036      * also handled by this class.
5037      */
5038     static final class BnMS extends BnM {
5039         int lengthInChars;
5040 
5041         BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5042             super(src, lastOcc, optoSft, next);
5043             for (int x = 0; x < buffer.length; x++) {
5044                 lengthInChars += Character.charCount(buffer[x]);
5045             }
5046         }
5047         boolean match(Matcher matcher, int i, CharSequence seq) {
5048             int[] src = buffer;
5049             int patternLength = src.length;
5050             int last = matcher.to - lengthInChars;
5051 
5052             // Loop over all possible match positions in text
5053 NEXT:       while (i <= last) {
5054                 // Loop over pattern from right to left
5055                 int ch;
5056                 for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
5057                      j > 0; j -= Character.charCount(ch), x--) {
5058                     ch = Character.codePointBefore(seq, i+j);
5059                     if (ch != src[x]) {
5060                         // Shift search to the right by the maximum of the
5061                         // bad character shift and the good suffix shift
5062                         int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
5063                         i += countChars(seq, i, n);
5064                         continue NEXT;
5065                     }
5066                 }
5067                 // Entire pattern matched starting at i
5068                 matcher.first = i;
5069                 boolean ret = next.match(matcher, i + lengthInChars, seq);
5070                 if (ret) {
5071                     matcher.first = i;
5072                     matcher.groups[0] = matcher.first;
5073                     matcher.groups[1] = matcher.last;
5074                     return true;
5075                 }
5076                 i += countChars(seq, i, 1);
5077             }
5078             matcher.hitEnd = true;
5079             return false;
5080         }
5081     }
5082 
5083 ///////////////////////////////////////////////////////////////////////////////
5084 ///////////////////////////////////////////////////////////////////////////////
5085 
5086     /**
5087      *  This must be the very first initializer.
5088      */
5089     static Node accept = new Node();
5090 
5091     static Node lastAccept = new LastNode();
5092 
5093     private static class CharPropertyNames {
5094 
5095         static CharProperty charPropertyFor(String name) {
5096             CharPropertyFactory m = map.get(name);
5097             return m == null ? null : m.make();
5098         }
5099 
5100         private static abstract class CharPropertyFactory {
5101             abstract CharProperty make();
5102         }
5103 
5104         private static void defCategory(String name,
5105                                         final int typeMask) {
5106             map.put(name, new CharPropertyFactory() {
5107                     CharProperty make() { return new Category(typeMask);}});
5108         }
5109 
5110         private static void defRange(String name,
5111                                      final int lower, final int upper) {
5112             map.put(name, new CharPropertyFactory() {
5113                     CharProperty make() { return rangeFor(lower, upper);}});
5114         }
5115 
5116         private static void defCtype(String name,
5117                                      final int ctype) {
5118             map.put(name, new CharPropertyFactory() {
5119                     CharProperty make() { return new Ctype(ctype);}});
5120         }
5121 
5122         private static abstract class CloneableProperty
5123             extends CharProperty implements Cloneable
5124         {
5125             public CloneableProperty clone() {
5126                 try {
5127                     return (CloneableProperty) super.clone();
5128                 } catch (CloneNotSupportedException e) {
5129                     throw new AssertionError(e);
5130                 }
5131             }
5132         }
5133 
5134         private static void defClone(String name,
5135                                      final CloneableProperty p) {
5136             map.put(name, new CharPropertyFactory() {
5137                     CharProperty make() { return p.clone();}});
5138         }
5139 
5140         private static final HashMap<String, CharPropertyFactory> map
5141             = new HashMap<String, CharPropertyFactory>();
5142 
5143         static {
5144             // Unicode character property aliases, defined in
5145             // http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt
5146             defCategory("Cn", 1<<Character.UNASSIGNED);
5147             defCategory("Lu", 1<<Character.UPPERCASE_LETTER);
5148             defCategory("Ll", 1<<Character.LOWERCASE_LETTER);
5149             defCategory("Lt", 1<<Character.TITLECASE_LETTER);
5150             defCategory("Lm", 1<<Character.MODIFIER_LETTER);
5151             defCategory("Lo", 1<<Character.OTHER_LETTER);
5152             defCategory("Mn", 1<<Character.NON_SPACING_MARK);
5153             defCategory("Me", 1<<Character.ENCLOSING_MARK);
5154             defCategory("Mc", 1<<Character.COMBINING_SPACING_MARK);
5155             defCategory("Nd", 1<<Character.DECIMAL_DIGIT_NUMBER);
5156             defCategory("Nl", 1<<Character.LETTER_NUMBER);
5157             defCategory("No", 1<<Character.OTHER_NUMBER);
5158             defCategory("Zs", 1<<Character.SPACE_SEPARATOR);
5159             defCategory("Zl", 1<<Character.LINE_SEPARATOR);
5160             defCategory("Zp", 1<<Character.PARAGRAPH_SEPARATOR);
5161             defCategory("Cc", 1<<Character.CONTROL);
5162             defCategory("Cf", 1<<Character.FORMAT);
5163             defCategory("Co", 1<<Character.PRIVATE_USE);
5164             defCategory("Cs", 1<<Character.SURROGATE);
5165             defCategory("Pd", 1<<Character.DASH_PUNCTUATION);
5166             defCategory("Ps", 1<<Character.START_PUNCTUATION);
5167             defCategory("Pe", 1<<Character.END_PUNCTUATION);
5168             defCategory("Pc", 1<<Character.CONNECTOR_PUNCTUATION);
5169             defCategory("Po", 1<<Character.OTHER_PUNCTUATION);
5170             defCategory("Sm", 1<<Character.MATH_SYMBOL);
5171             defCategory("Sc", 1<<Character.CURRENCY_SYMBOL);
5172             defCategory("Sk", 1<<Character.MODIFIER_SYMBOL);
5173             defCategory("So", 1<<Character.OTHER_SYMBOL);
5174             defCategory("Pi", 1<<Character.INITIAL_QUOTE_PUNCTUATION);
5175             defCategory("Pf", 1<<Character.FINAL_QUOTE_PUNCTUATION);
5176             defCategory("L", ((1<<Character.UPPERCASE_LETTER) |
5177                               (1<<Character.LOWERCASE_LETTER) |
5178                               (1<<Character.TITLECASE_LETTER) |
5179                               (1<<Character.MODIFIER_LETTER)  |
5180                               (1<<Character.OTHER_LETTER)));
5181             defCategory("M", ((1<<Character.NON_SPACING_MARK) |
5182                               (1<<Character.ENCLOSING_MARK)   |
5183                               (1<<Character.COMBINING_SPACING_MARK)));
5184             defCategory("N", ((1<<Character.DECIMAL_DIGIT_NUMBER) |
5185                               (1<<Character.LETTER_NUMBER)        |
5186                               (1<<Character.OTHER_NUMBER)));
5187             defCategory("Z", ((1<<Character.SPACE_SEPARATOR) |
5188                               (1<<Character.LINE_SEPARATOR)  |
5189                               (1<<Character.PARAGRAPH_SEPARATOR)));
5190             defCategory("C", ((1<<Character.CONTROL)     |
5191                               (1<<Character.FORMAT)      |
5192                               (1<<Character.PRIVATE_USE) |
5193                               (1<<Character.SURROGATE))); // Other
5194             defCategory("P", ((1<<Character.DASH_PUNCTUATION)      |
5195                               (1<<Character.START_PUNCTUATION)     |
5196                               (1<<Character.END_PUNCTUATION)       |
5197                               (1<<Character.CONNECTOR_PUNCTUATION) |
5198                               (1<<Character.OTHER_PUNCTUATION)     |
5199                               (1<<Character.INITIAL_QUOTE_PUNCTUATION) |
5200                               (1<<Character.FINAL_QUOTE_PUNCTUATION)));
5201             defCategory("S", ((1<<Character.MATH_SYMBOL)     |
5202                               (1<<Character.CURRENCY_SYMBOL) |
5203                               (1<<Character.MODIFIER_SYMBOL) |
5204                               (1<<Character.OTHER_SYMBOL)));
5205             defCategory("LC", ((1<<Character.UPPERCASE_LETTER) |
5206                                (1<<Character.LOWERCASE_LETTER) |
5207                                (1<<Character.TITLECASE_LETTER)));
5208             defCategory("LD", ((1<<Character.UPPERCASE_LETTER) |
5209                                (1<<Character.LOWERCASE_LETTER) |
5210                                (1<<Character.TITLECASE_LETTER) |
5211                                (1<<Character.MODIFIER_LETTER)  |
5212                                (1<<Character.OTHER_LETTER)     |
5213                                (1<<Character.DECIMAL_DIGIT_NUMBER)));
5214             defRange("L1", 0x00, 0xFF); // Latin-1
5215             map.put("all", new CharPropertyFactory() {
5216                     CharProperty make() { return new All(); }});
5217 
5218             // Posix regular expression character classes, defined in
5219             // http://www.unix.org/onlinepubs/009695399/basedefs/xbd_chap09.html
5220             defRange("ASCII", 0x00, 0x7F);   // ASCII
5221             defCtype("Alnum", ASCII.ALNUM);  // Alphanumeric characters
5222             defCtype("Alpha", ASCII.ALPHA);  // Alphabetic characters
5223             defCtype("Blank", ASCII.BLANK);  // Space and tab characters
5224             defCtype("Cntrl", ASCII.CNTRL);  // Control characters
5225             defRange("Digit", '0', '9');     // Numeric characters
5226             defCtype("Graph", ASCII.GRAPH);  // printable and visible
5227             defRange("Lower", 'a', 'z');     // Lower-case alphabetic
5228             defRange("Print", 0x20, 0x7E);   // Printable characters
5229             defCtype("Punct", ASCII.PUNCT);  // Punctuation characters
5230             defCtype("Space", ASCII.SPACE);  // Space characters
5231             defRange("Upper", 'A', 'Z');     // Upper-case alphabetic
5232             defCtype("XDigit",ASCII.XDIGIT); // hexadecimal digits
5233 
5234             // Java character properties, defined by methods in Character.java
5235             defClone("javaLowerCase", new CloneableProperty() {
5236                 boolean isSatisfiedBy(int ch) {
5237                     return Character.isLowerCase(ch);}});
5238             defClone("javaUpperCase", new CloneableProperty() {
5239                 boolean isSatisfiedBy(int ch) {
5240                     return Character.isUpperCase(ch);}});
5241             defClone("javaTitleCase", new CloneableProperty() {
5242                 boolean isSatisfiedBy(int ch) {
5243                     return Character.isTitleCase(ch);}});
5244             defClone("javaDigit", new CloneableProperty() {
5245                 boolean isSatisfiedBy(int ch) {
5246                     return Character.isDigit(ch);}});
5247             defClone("javaDefined", new CloneableProperty() {
5248                 boolean isSatisfiedBy(int ch) {
5249                     return Character.isDefined(ch);}});
5250             defClone("javaLetter", new CloneableProperty() {
5251                 boolean isSatisfiedBy(int ch) {
5252                     return Character.isLetter(ch);}});
5253             defClone("javaLetterOrDigit", new CloneableProperty() {
5254                 boolean isSatisfiedBy(int ch) {
5255                     return Character.isLetterOrDigit(ch);}});
5256             defClone("javaJavaIdentifierStart", new CloneableProperty() {
5257                 boolean isSatisfiedBy(int ch) {
5258                     return Character.isJavaIdentifierStart(ch);}});
5259             defClone("javaJavaIdentifierPart", new CloneableProperty() {
5260                 boolean isSatisfiedBy(int ch) {
5261                     return Character.isJavaIdentifierPart(ch);}});
5262             defClone("javaUnicodeIdentifierStart", new CloneableProperty() {
5263                 boolean isSatisfiedBy(int ch) {
5264                     return Character.isUnicodeIdentifierStart(ch);}});
5265             defClone("javaUnicodeIdentifierPart", new CloneableProperty() {
5266                 boolean isSatisfiedBy(int ch) {
5267                     return Character.isUnicodeIdentifierPart(ch);}});
5268             defClone("javaIdentifierIgnorable", new CloneableProperty() {
5269                 boolean isSatisfiedBy(int ch) {
5270                     return Character.isIdentifierIgnorable(ch);}});
5271             defClone("javaSpaceChar", new CloneableProperty() {
5272                 boolean isSatisfiedBy(int ch) {
5273                     return Character.isSpaceChar(ch);}});
5274             defClone("javaWhitespace", new CloneableProperty() {
5275                 boolean isSatisfiedBy(int ch) {
5276                     return Character.isWhitespace(ch);}});
5277             defClone("javaISOControl", new CloneableProperty() {
5278                 boolean isSatisfiedBy(int ch) {
5279                     return Character.isISOControl(ch);}});
5280             defClone("javaMirrored", new CloneableProperty() {
5281                 boolean isSatisfiedBy(int ch) {
5282                     return Character.isMirrored(ch);}});
5283         }
5284     }
5285 }