/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * Neither the name of JSR-310 nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package java.time.temporal; import static java.time.temporal.ChronoField.EPOCH_DAY; import static java.time.temporal.ChronoField.NANO_OF_DAY; import static java.time.temporal.ChronoUnit.NANOS; import java.time.DateTimeException; import java.time.Instant; import java.time.LocalDateTime; import java.time.LocalTime; import java.time.ZoneId; import java.time.ZoneOffset; import java.time.format.DateTimeFormatter; import java.time.zone.ZoneRules; import java.util.Comparator; import java.util.Objects; /** * A date-time without a time-zone in an arbitrary chronology, intended * for advanced globalization use cases. *

* Most applications should declare method signatures, fields and variables * as {@link LocalDateTime}, not this interface. *

* A {@code ChronoLocalDateTime} is the abstract representation of a local date-time * where the {@code Chrono chronology}, or calendar system, is pluggable. * The date-time is defined in terms of fields expressed by {@link TemporalField}, * where most common implementations are defined in {@link ChronoField}. * The chronology defines how the calendar system operates and the meaning of * the standard fields. * *

When to use this interface

* The design of the API encourages the use of {@code LocalDateTime} rather than this * interface, even in the case where the application needs to deal with multiple * calendar systems. The rationale for this is explored in detail in {@link ChronoLocalDate}. *

* Ensure that the discussion in {@code ChronoLocalDate} has been read and understood * before using this interface. * *

Specification for implementors

* This interface must be implemented with care to ensure other classes operate correctly. * All implementations that can be instantiated must be final, immutable and thread-safe. * Subclasses should be Serializable wherever possible. * * @param the chronology of this date-time * @since 1.8 */ public interface ChronoLocalDateTime> extends Temporal, TemporalAdjuster, Comparable> { /** * Comparator for two {@code ChronoLocalDateTime} instances ignoring the chronology. *

* This method differs from the comparison in {@link #compareTo} in that it * only compares the underlying date and not the chronology. * This allows dates in different calendar systems to be compared based * on the time-line position. * * @see #isAfter * @see #isBefore * @see #isEqual */ Comparator> DATE_TIME_COMPARATOR = new Comparator>() { @Override public int compare(ChronoLocalDateTime datetime1, ChronoLocalDateTime datetime2) { int cmp = Long.compare(datetime1.getDate().toEpochDay(), datetime2.getDate().toEpochDay()); if (cmp == 0) { cmp = Long.compare(datetime1.getTime().toNanoOfDay(), datetime2.getTime().toNanoOfDay()); } return cmp; } }; /** * Gets the local date part of this date-time. *

* This returns a local date with the same year, month and day * as this date-time. * * @return the date part of this date-time, not null */ ChronoLocalDate getDate() ; /** * Gets the local time part of this date-time. *

* This returns a local time with the same hour, minute, second and * nanosecond as this date-time. * * @return the time part of this date-time, not null */ LocalTime getTime(); //----------------------------------------------------------------------- // override for covariant return type /** * {@inheritDoc} * @throws DateTimeException {@inheritDoc} * @throws ArithmeticException {@inheritDoc} */ @Override public default ChronoLocalDateTime with(TemporalAdjuster adjuster) { return getDate().getChrono().ensureChronoLocalDateTime(Temporal.super.with(adjuster)); } /** * {@inheritDoc} * @throws DateTimeException {@inheritDoc} * @throws ArithmeticException {@inheritDoc} */ @Override ChronoLocalDateTime with(TemporalField field, long newValue); /** * {@inheritDoc} * @throws DateTimeException {@inheritDoc} * @throws ArithmeticException {@inheritDoc} */ @Override public default ChronoLocalDateTime plus(TemporalAdder adder) { return getDate().getChrono().ensureChronoLocalDateTime(Temporal.super.plus(adder)); } /** * {@inheritDoc} * @throws DateTimeException {@inheritDoc} * @throws ArithmeticException {@inheritDoc} */ @Override ChronoLocalDateTime plus(long amountToAdd, TemporalUnit unit); /** * {@inheritDoc} * @throws DateTimeException {@inheritDoc} * @throws ArithmeticException {@inheritDoc} */ @Override public default ChronoLocalDateTime minus(TemporalSubtractor subtractor) { return getDate().getChrono().ensureChronoLocalDateTime(Temporal.super.minus(subtractor)); } /** * {@inheritDoc} * @throws DateTimeException {@inheritDoc} * @throws ArithmeticException {@inheritDoc} */ @Override public default ChronoLocalDateTime minus(long amountToSubtract, TemporalUnit unit) { return getDate().getChrono().ensureChronoLocalDateTime(Temporal.super.minus(amountToSubtract, unit)); } //----------------------------------------------------------------------- /** * Queries this date-time using the specified query. *

* This queries this date-time using the specified query strategy object. * The {@code TemporalQuery} object defines the logic to be used to * obtain the result. Read the documentation of the query to understand * what the result of this method will be. *

* The result of this method is obtained by invoking the * {@link java.time.temporal.TemporalQuery#queryFrom(TemporalAccessor)} method on the * specified query passing {@code this} as the argument. * * @param the type of the result * @param query the query to invoke, not null * @return the query result, null may be returned (defined by the query) * @throws DateTimeException if unable to query (defined by the query) * @throws ArithmeticException if numeric overflow occurs (defined by the query) */ @SuppressWarnings("unchecked") @Override public default R query(TemporalQuery query) { if (query == Queries.chrono()) { return (R) getDate().getChrono(); } if (query == Queries.precision()) { return (R) NANOS; } // inline TemporalAccessor.super.query(query) as an optimization if (query == Queries.zoneId() || query == Queries.zone() || query == Queries.offset()) { return null; } return query.queryFrom(this); } /** * Adjusts the specified temporal object to have the same date and time as this object. *

* This returns a temporal object of the same observable type as the input * with the date and time changed to be the same as this. *

* The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)} * twice, passing {@link ChronoField#EPOCH_DAY} and * {@link ChronoField#NANO_OF_DAY} as the fields. *

* In most cases, it is clearer to reverse the calling pattern by using * {@link Temporal#with(TemporalAdjuster)}: *

     *   // these two lines are equivalent, but the second approach is recommended
     *   temporal = thisLocalDateTime.adjustInto(temporal);
     *   temporal = temporal.with(thisLocalDateTime);
     * 
*

* This instance is immutable and unaffected by this method call. * * @param temporal the target object to be adjusted, not null * @return the adjusted object, not null * @throws DateTimeException if unable to make the adjustment * @throws ArithmeticException if numeric overflow occurs */ @Override public default Temporal adjustInto(Temporal temporal) { return temporal .with(EPOCH_DAY, getDate().toEpochDay()) .with(NANO_OF_DAY, getTime().toNanoOfDay()); } //----------------------------------------------------------------------- /** * Returns a zoned date-time formed from this date-time and the specified time-zone. *

* This creates a zoned date-time matching the input date-time as closely as possible. * Time-zone rules, such as daylight savings, mean that not every local date-time * is valid for the specified zone, thus the local date-time may be adjusted. *

* The local date-time is resolved to a single instant on the time-line. * This is achieved by finding a valid offset from UTC/Greenwich for the local * date-time as defined by the {@link ZoneRules rules} of the zone ID. *

* In most cases, there is only one valid offset for a local date-time. * In the case of an overlap, where clocks are set back, there are two valid offsets. * This method uses the earlier offset typically corresponding to "summer". *

* In the case of a gap, where clocks jump forward, there is no valid offset. * Instead, the local date-time is adjusted to be later by the length of the gap. * For a typical one hour daylight savings change, the local date-time will be * moved one hour later into the offset typically corresponding to "summer". *

* To obtain the later offset during an overlap, call * {@link ChronoZonedDateTime#withLaterOffsetAtOverlap()} on the result of this method. *

* This instance is immutable and unaffected by this method call. * * @param zone the time-zone to use, not null * @return the zoned date-time formed from this date-time, not null */ ChronoZonedDateTime atZone(ZoneId zone); //----------------------------------------------------------------------- /** * Converts this date-time to an {@code Instant}. *

* This combines this local date-time and the specified offset to form * an {@code Instant}. *

* This default implementation calculates from the epoch-day of the date and the * second-of-day of the time. * * @param offset the offset to use for the conversion, not null * @return an {@code Instant} representing the same instant, not null */ public default Instant toInstant(ZoneOffset offset) { return Instant.ofEpochSecond(toEpochSecond(offset), getTime().getNano()); } /** * Converts this date-time to the number of seconds from the epoch * of 1970-01-01T00:00:00Z. *

* This combines this local date-time and the specified offset to calculate the * epoch-second value, which is the number of elapsed seconds from 1970-01-01T00:00:00Z. * Instants on the time-line after the epoch are positive, earlier are negative. *

* This default implementation calculates from the epoch-day of the date and the * second-of-day of the time. * * @param offset the offset to use for the conversion, not null * @return the number of seconds from the epoch of 1970-01-01T00:00:00Z */ public default long toEpochSecond(ZoneOffset offset) { Objects.requireNonNull(offset, "offset"); long epochDay = getDate().toEpochDay(); long secs = epochDay * 86400 + getTime().toSecondOfDay(); secs -= offset.getTotalSeconds(); return secs; } //----------------------------------------------------------------------- /** * Compares this date-time to another date-time, including the chronology. *

* The comparison is based first on the underlying time-line date-time, then * on the chronology. * It is "consistent with equals", as defined by {@link Comparable}. *

* For example, the following is the comparator order: *

    *
  1. {@code 2012-12-03T12:00 (ISO)}
  2. *
  3. {@code 2012-12-04T12:00 (ISO)}
  4. *
  5. {@code 2555-12-04T12:00 (ThaiBuddhist)}
  6. *
  7. {@code 2012-12-05T12:00 (ISO)}
  8. *
* Values #2 and #3 represent the same date-time on the time-line. * When two values represent the same date-time, the chronology ID is compared to distinguish them. * This step is needed to make the ordering "consistent with equals". *

* If all the date-time objects being compared are in the same chronology, then the * additional chronology stage is not required and only the local date-time is used. *

* This default implementation performs the comparison defined above. * * @param other the other date-time to compare to, not null * @return the comparator value, negative if less, positive if greater */ @Override public default int compareTo(ChronoLocalDateTime other) { int cmp = getDate().compareTo(other.getDate()); if (cmp == 0) { cmp = getTime().compareTo(other.getTime()); if (cmp == 0) { cmp = getDate().getChrono().compareTo(other.getDate().getChrono()); } } return cmp; } /** * Checks if this date-time is after the specified date-time ignoring the chronology. *

* This method differs from the comparison in {@link #compareTo} in that it * only compares the underlying date-time and not the chronology. * This allows dates in different calendar systems to be compared based * on the time-line position. *

* This default implementation performs the comparison based on the epoch-day * and nano-of-day. * * @param other the other date-time to compare to, not null * @return true if this is after the specified date-time */ public default boolean isAfter(ChronoLocalDateTime other) { long thisEpDay = this.getDate().toEpochDay(); long otherEpDay = other.getDate().toEpochDay(); return thisEpDay > otherEpDay || (thisEpDay == otherEpDay && this.getTime().toNanoOfDay() > other.getTime().toNanoOfDay()); } /** * Checks if this date-time is before the specified date-time ignoring the chronology. *

* This method differs from the comparison in {@link #compareTo} in that it * only compares the underlying date-time and not the chronology. * This allows dates in different calendar systems to be compared based * on the time-line position. *

* This default implementation performs the comparison based on the epoch-day * and nano-of-day. * * @param other the other date-time to compare to, not null * @return true if this is before the specified date-time */ public default boolean isBefore(ChronoLocalDateTime other) { long thisEpDay = this.getDate().toEpochDay(); long otherEpDay = other.getDate().toEpochDay(); return thisEpDay < otherEpDay || (thisEpDay == otherEpDay && this.getTime().toNanoOfDay() < other.getTime().toNanoOfDay()); } /** * Checks if this date-time is equal to the specified date-time ignoring the chronology. *

* This method differs from the comparison in {@link #compareTo} in that it * only compares the underlying date and time and not the chronology. * This allows date-times in different calendar systems to be compared based * on the time-line position. *

* This default implementation performs the comparison based on the epoch-day * and nano-of-day. * * @param other the other date-time to compare to, not null * @return true if the underlying date-time is equal to the specified date-time on the timeline */ public default boolean isEqual(ChronoLocalDateTime other) { // Do the time check first, it is cheaper than computing EPOCH day. return this.getTime().toNanoOfDay() == other.getTime().toNanoOfDay() && this.getDate().toEpochDay() == other.getDate().toEpochDay(); } /** * Checks if this date-time is equal to another date-time, including the chronology. *

* Compares this date-time with another ensuring that the date-time and chronology are the same. * * @param obj the object to check, null returns false * @return true if this is equal to the other date */ @Override boolean equals(Object obj); /** * A hash code for this date-time. * * @return a suitable hash code */ @Override int hashCode(); //----------------------------------------------------------------------- /** * Outputs this date-time as a {@code String}. *

* The output will include the full local date-time and the chronology ID. * * @return a string representation of this date-time, not null */ @Override String toString(); /** * Outputs this date-time as a {@code String} using the formatter. *

* The default implementation must behave as follows: *

     *  return formatter.print(this);
     * 
* * @param formatter the formatter to use, not null * @return the formatted date-time string, not null * @throws DateTimeException if an error occurs during printing */ public default String toString(DateTimeFormatter formatter) { Objects.requireNonNull(formatter, "formatter"); return formatter.print(this); } }