/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Copyright (c) 2008-2012, Stephen Colebourne & Michael Nascimento Santos * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * Neither the name of JSR-310 nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package java.time.format; import static java.time.temporal.ChronoField.DAY_OF_MONTH; import static java.time.temporal.ChronoField.HOUR_OF_DAY; import static java.time.temporal.ChronoField.INSTANT_SECONDS; import static java.time.temporal.ChronoField.MINUTE_OF_HOUR; import static java.time.temporal.ChronoField.MONTH_OF_YEAR; import static java.time.temporal.ChronoField.NANO_OF_SECOND; import static java.time.temporal.ChronoField.OFFSET_SECONDS; import static java.time.temporal.ChronoField.SECOND_OF_MINUTE; import static java.time.temporal.ChronoField.YEAR; import java.lang.ref.SoftReference; import java.math.BigDecimal; import java.math.BigInteger; import java.math.RoundingMode; import java.text.ParsePosition; import java.time.DateTimeException; import java.time.Instant; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZoneOffset; import java.time.chrono.Chronology; import java.time.chrono.IsoChronology; import java.time.chrono.JapaneseChronology; import java.time.format.DateTimeTextProvider.LocaleStore; import java.time.temporal.ChronoField; import java.time.temporal.IsoFields; import java.time.temporal.Queries; import java.time.temporal.TemporalAccessor; import java.time.temporal.TemporalField; import java.time.temporal.TemporalQuery; import java.time.temporal.ValueRange; import java.time.temporal.WeekFields; import java.time.zone.ZoneRulesProvider; import java.util.AbstractMap.SimpleImmutableEntry; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.List; import java.util.Locale; import java.util.Map; import java.util.Map.Entry; import java.util.Objects; import java.util.Set; import java.util.TimeZone; import java.util.concurrent.ConcurrentHashMap; import sun.util.locale.provider.TimeZoneNameUtility; /** * Builder to create date-time formatters. *

* This allows a {@code DateTimeFormatter} to be created. * All date-time formatters are created ultimately using this builder. *

* The basic elements of date-time can all be added: *

* In addition, any of the elements may be decorated by padding, either with spaces or any other character. *

* Finally, a shorthand pattern, mostly compatible with {@code java.text.SimpleDateFormat SimpleDateFormat} * can be used, see {@link #appendPattern(String)}. * In practice, this simply parses the pattern and calls other methods on the builder. * *

Specification for implementors

* This class is a mutable builder intended for use from a single thread. * * @since 1.8 */ public final class DateTimeFormatterBuilder { /** * Query for a time-zone that is region-only. */ private static final TemporalQuery QUERY_REGION_ONLY = (temporal) -> { ZoneId zone = temporal.query(Queries.zoneId()); return (zone != null && zone instanceof ZoneOffset == false ? zone : null); }; /** * The currently active builder, used by the outermost builder. */ private DateTimeFormatterBuilder active = this; /** * The parent builder, null for the outermost builder. */ private final DateTimeFormatterBuilder parent; /** * The list of printers that will be used. */ private final List printerParsers = new ArrayList<>(); /** * Whether this builder produces an optional formatter. */ private final boolean optional; /** * The width to pad the next field to. */ private int padNextWidth; /** * The character to pad the next field with. */ private char padNextChar; /** * The index of the last variable width value parser. */ private int valueParserIndex = -1; /** * Constructs a new instance of the builder. */ public DateTimeFormatterBuilder() { super(); parent = null; optional = false; } /** * Constructs a new instance of the builder. * * @param parent the parent builder, not null * @param optional whether the formatter is optional, not null */ private DateTimeFormatterBuilder(DateTimeFormatterBuilder parent, boolean optional) { super(); this.parent = parent; this.optional = optional; } //----------------------------------------------------------------------- /** * Changes the parse style to be case sensitive for the remainder of the formatter. *

* Parsing can be case sensitive or insensitive - by default it is case sensitive. * This method allows the case sensitivity setting of parsing to be changed. *

* Calling this method changes the state of the builder such that all * subsequent builder method calls will parse text in case sensitive mode. * See {@link #parseCaseInsensitive} for the opposite setting. * The parse case sensitive/insensitive methods may be called at any point * in the builder, thus the parser can swap between case parsing modes * multiple times during the parse. *

* Since the default is case sensitive, this method should only be used after * a previous call to {@code #parseCaseInsensitive}. * * @return this, for chaining, not null */ public DateTimeFormatterBuilder parseCaseSensitive() { appendInternal(SettingsParser.SENSITIVE); return this; } /** * Changes the parse style to be case insensitive for the remainder of the formatter. *

* Parsing can be case sensitive or insensitive - by default it is case sensitive. * This method allows the case sensitivity setting of parsing to be changed. *

* Calling this method changes the state of the builder such that all * subsequent builder method calls will parse text in case insensitive mode. * See {@link #parseCaseSensitive()} for the opposite setting. * The parse case sensitive/insensitive methods may be called at any point * in the builder, thus the parser can swap between case parsing modes * multiple times during the parse. * * @return this, for chaining, not null */ public DateTimeFormatterBuilder parseCaseInsensitive() { appendInternal(SettingsParser.INSENSITIVE); return this; } //----------------------------------------------------------------------- /** * Changes the parse style to be strict for the remainder of the formatter. *

* Parsing can be strict or lenient - by default its strict. * This controls the degree of flexibility in matching the text and sign styles. *

* When used, this method changes the parsing to be strict from this point onwards. * As strict is the default, this is normally only needed after calling {@link #parseLenient()}. * The change will remain in force until the end of the formatter that is eventually * constructed or until {@code parseLenient} is called. * * @return this, for chaining, not null */ public DateTimeFormatterBuilder parseStrict() { appendInternal(SettingsParser.STRICT); return this; } /** * Changes the parse style to be lenient for the remainder of the formatter. * Note that case sensitivity is set separately to this method. *

* Parsing can be strict or lenient - by default its strict. * This controls the degree of flexibility in matching the text and sign styles. * Applications calling this method should typically also call {@link #parseCaseInsensitive()}. *

* When used, this method changes the parsing to be lenient from this point onwards. * The change will remain in force until the end of the formatter that is eventually * constructed or until {@code parseStrict} is called. * * @return this, for chaining, not null */ public DateTimeFormatterBuilder parseLenient() { appendInternal(SettingsParser.LENIENT); return this; } //----------------------------------------------------------------------- /** * Appends the value of a date-time field to the formatter using a normal * output style. *

* The value of the field will be output during a format. * If the value cannot be obtained then an exception will be thrown. *

* The value will be printed as per the normal format of an integer value. * Only negative numbers will be signed. No padding will be added. *

* The parser for a variable width value such as this normally behaves greedily, * requiring one digit, but accepting as many digits as possible. * This behavior can be affected by 'adjacent value parsing'. * See {@link #appendValue(java.time.temporal.TemporalField, int)} for full details. * * @param field the field to append, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendValue(TemporalField field) { Objects.requireNonNull(field, "field"); active.valueParserIndex = appendInternal(new NumberPrinterParser(field, 1, 19, SignStyle.NORMAL)); return this; } /** * Appends the value of a date-time field to the formatter using a fixed * width, zero-padded approach. *

* The value of the field will be output during a format. * If the value cannot be obtained then an exception will be thrown. *

* The value will be zero-padded on the left. If the size of the value * means that it cannot be printed within the width then an exception is thrown. * If the value of the field is negative then an exception is thrown during formatting. *

* This method supports a special technique of parsing known as 'adjacent value parsing'. * This technique solves the problem where a variable length value is followed by one or more * fixed length values. The standard parser is greedy, and thus it would normally * steal the digits that are needed by the fixed width value parsers that follow the * variable width one. *

* No action is required to initiate 'adjacent value parsing'. * When a call to {@code appendValue} with a variable width is made, the builder * enters adjacent value parsing setup mode. If the immediately subsequent method * call or calls on the same builder are to this method, then the parser will reserve * space so that the fixed width values can be parsed. *

* For example, consider {@code builder.appendValue(YEAR).appendValue(MONTH_OF_YEAR, 2);} * The year is a variable width parse of between 1 and 19 digits. * The month is a fixed width parse of 2 digits. * Because these were appended to the same builder immediately after one another, * the year parser will reserve two digits for the month to parse. * Thus, the text '201106' will correctly parse to a year of 2011 and a month of 6. * Without adjacent value parsing, the year would greedily parse all six digits and leave * nothing for the month. *

* Adjacent value parsing applies to each set of fixed width not-negative values in the parser * that immediately follow any kind of variable width value. * Calling any other append method will end the setup of adjacent value parsing. * Thus, in the unlikely event that you need to avoid adjacent value parsing behavior, * simply add the {@code appendValue} to another {@code DateTimeFormatterBuilder} * and add that to this builder. *

* If adjacent parsing is active, then parsing must match exactly the specified * number of digits in both strict and lenient modes. * In addition, no positive or negative sign is permitted. * * @param field the field to append, not null * @param width the width of the printed field, from 1 to 19 * @return this, for chaining, not null * @throws IllegalArgumentException if the width is invalid */ public DateTimeFormatterBuilder appendValue(TemporalField field, int width) { Objects.requireNonNull(field, "field"); if (width < 1 || width > 19) { throw new IllegalArgumentException("The width must be from 1 to 19 inclusive but was " + width); } NumberPrinterParser pp = new NumberPrinterParser(field, width, width, SignStyle.NOT_NEGATIVE); return appendFixedWidth(width, pp); } /** * Appends the value of a date-time field to the formatter providing full * control over formatting. *

* The value of the field will be output during a format. * If the value cannot be obtained then an exception will be thrown. *

* This method provides full control of the numeric formatting, including * zero-padding and the positive/negative sign. *

* The parser for a variable width value such as this normally behaves greedily, * accepting as many digits as possible. * This behavior can be affected by 'adjacent value parsing'. * See {@link #appendValue(java.time.temporal.TemporalField, int)} for full details. *

* In strict parsing mode, the minimum number of parsed digits is {@code minWidth}. * In lenient parsing mode, the minimum number of parsed digits is one. *

* If this method is invoked with equal minimum and maximum widths and a sign style of * {@code NOT_NEGATIVE} then it delegates to {@code appendValue(TemporalField,int)}. * In this scenario, the formatting and parsing behavior described there occur. * * @param field the field to append, not null * @param minWidth the minimum field width of the printed field, from 1 to 19 * @param maxWidth the maximum field width of the printed field, from 1 to 19 * @param signStyle the positive/negative output style, not null * @return this, for chaining, not null * @throws IllegalArgumentException if the widths are invalid */ public DateTimeFormatterBuilder appendValue( TemporalField field, int minWidth, int maxWidth, SignStyle signStyle) { if (minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE) { return appendValue(field, maxWidth); } Objects.requireNonNull(field, "field"); Objects.requireNonNull(signStyle, "signStyle"); if (minWidth < 1 || minWidth > 19) { throw new IllegalArgumentException("The minimum width must be from 1 to 19 inclusive but was " + minWidth); } if (maxWidth < 1 || maxWidth > 19) { throw new IllegalArgumentException("The maximum width must be from 1 to 19 inclusive but was " + maxWidth); } if (maxWidth < minWidth) { throw new IllegalArgumentException("The maximum width must exceed or equal the minimum width but " + maxWidth + " < " + minWidth); } NumberPrinterParser pp = new NumberPrinterParser(field, minWidth, maxWidth, signStyle); if (minWidth == maxWidth) { appendInternal(pp); } else { active.valueParserIndex = appendInternal(pp); } return this; } //----------------------------------------------------------------------- /** * Appends the reduced value of a date-time field to the formatter. *

* This is typically used for formatting and parsing a two digit year. * The {@code width} is the printed and parsed width. * The {@code baseValue} is used during parsing to determine the valid range. *

* For formatting, the width is used to determine the number of characters to format. * The rightmost characters are output to match the width, left padding with zero. *

* For parsing, exactly the number of characters specified by the width are parsed. * This is incomplete information however, so the base value is used to complete the parse. * The base value is the first valid value in a range of ten to the power of width. *

* For example, a base value of {@code 1980} and a width of {@code 2} will have * valid values from {@code 1980} to {@code 2079}. * During parsing, the text {@code "12"} will result in the value {@code 2012} as that * is the value within the range where the last two digits are "12". *

* This is a fixed width parser operating using 'adjacent value parsing'. * See {@link #appendValue(java.time.temporal.TemporalField, int)} for full details. * * @param field the field to append, not null * @param width the width of the printed and parsed field, from 1 to 18 * @param baseValue the base value of the range of valid values * @return this, for chaining, not null * @throws IllegalArgumentException if the width or base value is invalid */ public DateTimeFormatterBuilder appendValueReduced( TemporalField field, int width, int baseValue) { Objects.requireNonNull(field, "field"); ReducedPrinterParser pp = new ReducedPrinterParser(field, width, baseValue); appendFixedWidth(width, pp); return this; } /** * Appends a fixed width printer-parser. * * @param width the width * @param pp the printer-parser, not null * @return this, for chaining, not null */ private DateTimeFormatterBuilder appendFixedWidth(int width, NumberPrinterParser pp) { if (active.valueParserIndex >= 0) { // adjacent parsing mode, update setting in previous parsers NumberPrinterParser basePP = (NumberPrinterParser) active.printerParsers.get(active.valueParserIndex); basePP = basePP.withSubsequentWidth(width); int activeValueParser = active.valueParserIndex; active.printerParsers.set(active.valueParserIndex, basePP); appendInternal(pp.withFixedWidth()); active.valueParserIndex = activeValueParser; } else { // not adjacent parsing appendInternal(pp); } return this; } //----------------------------------------------------------------------- /** * Appends the fractional value of a date-time field to the formatter. *

* The fractional value of the field will be output including the * preceding decimal point. The preceding value is not output. * For example, the second-of-minute value of 15 would be output as {@code .25}. *

* The width of the printed fraction can be controlled. Setting the * minimum width to zero will cause no output to be generated. * The printed fraction will have the minimum width necessary between * the minimum and maximum widths - trailing zeroes are omitted. * No rounding occurs due to the maximum width - digits are simply dropped. *

* When parsing in strict mode, the number of parsed digits must be between * the minimum and maximum width. When parsing in lenient mode, the minimum * width is considered to be zero and the maximum is nine. *

* If the value cannot be obtained then an exception will be thrown. * If the value is negative an exception will be thrown. * If the field does not have a fixed set of valid values then an * exception will be thrown. * If the field value in the date-time to be printed is invalid it * cannot be printed and an exception will be thrown. * * @param field the field to append, not null * @param minWidth the minimum width of the field excluding the decimal point, from 0 to 9 * @param maxWidth the maximum width of the field excluding the decimal point, from 1 to 9 * @param decimalPoint whether to output the localized decimal point symbol * @return this, for chaining, not null * @throws IllegalArgumentException if the field has a variable set of valid values or * either width is invalid */ public DateTimeFormatterBuilder appendFraction( TemporalField field, int minWidth, int maxWidth, boolean decimalPoint) { appendInternal(new FractionPrinterParser(field, minWidth, maxWidth, decimalPoint)); return this; } //----------------------------------------------------------------------- /** * Appends the text of a date-time field to the formatter using the full * text style. *

* The text of the field will be output during a format. * The value must be within the valid range of the field. * If the value cannot be obtained then an exception will be thrown. * If the field has no textual representation, then the numeric value will be used. *

* The value will be printed as per the normal format of an integer value. * Only negative numbers will be signed. No padding will be added. * * @param field the field to append, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendText(TemporalField field) { return appendText(field, TextStyle.FULL); } /** * Appends the text of a date-time field to the formatter. *

* The text of the field will be output during a format. * The value must be within the valid range of the field. * If the value cannot be obtained then an exception will be thrown. * If the field has no textual representation, then the numeric value will be used. *

* The value will be printed as per the normal format of an integer value. * Only negative numbers will be signed. No padding will be added. * * @param field the field to append, not null * @param textStyle the text style to use, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendText(TemporalField field, TextStyle textStyle) { Objects.requireNonNull(field, "field"); Objects.requireNonNull(textStyle, "textStyle"); appendInternal(new TextPrinterParser(field, textStyle, DateTimeTextProvider.getInstance())); return this; } /** * Appends the text of a date-time field to the formatter using the specified * map to supply the text. *

* The standard text outputting methods use the localized text in the JDK. * This method allows that text to be specified directly. * The supplied map is not validated by the builder to ensure that formatting or * parsing is possible, thus an invalid map may throw an error during later use. *

* Supplying the map of text provides considerable flexibility in formatting and parsing. * For example, a legacy application might require or supply the months of the * year as "JNY", "FBY", "MCH" etc. These do not match the standard set of text * for localized month names. Using this method, a map can be created which * defines the connection between each value and the text: *

     * Map<Long, String> map = new HashMap<>();
     * map.put(1, "JNY");
     * map.put(2, "FBY");
     * map.put(3, "MCH");
     * ...
     * builder.appendText(MONTH_OF_YEAR, map);
     * 
*

* Other uses might be to output the value with a suffix, such as "1st", "2nd", "3rd", * or as Roman numerals "I", "II", "III", "IV". *

* During formatting, the value is obtained and checked that it is in the valid range. * If text is not available for the value then it is output as a number. * During parsing, the parser will match against the map of text and numeric values. * * @param field the field to append, not null * @param textLookup the map from the value to the text * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendText(TemporalField field, Map textLookup) { Objects.requireNonNull(field, "field"); Objects.requireNonNull(textLookup, "textLookup"); Map copy = new LinkedHashMap<>(textLookup); Map> map = Collections.singletonMap(TextStyle.FULL, copy); final LocaleStore store = new LocaleStore(map); DateTimeTextProvider provider = new DateTimeTextProvider() { @Override public String getText(TemporalField field, long value, TextStyle style, Locale locale) { return store.getText(value, style); } @Override public Iterator> getTextIterator(TemporalField field, TextStyle style, Locale locale) { return store.getTextIterator(style); } }; appendInternal(new TextPrinterParser(field, TextStyle.FULL, provider)); return this; } //----------------------------------------------------------------------- /** * Appends an instant using ISO-8601 to the formatter. *

* Instants have a fixed output format. * They are converted to a date-time with a zone-offset of UTC and printed * using the standard ISO-8601 format. *

* An alternative to this method is to format/parse the instant as a single * epoch-seconds value. That is achieved using {@code appendValue(INSTANT_SECONDS)}. * * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendInstant() { appendInternal(new InstantPrinterParser()); return this; } /** * Appends the zone offset, such as '+01:00', to the formatter. *

* This appends an instruction to format/parse the offset ID to the builder. * This is equivalent to calling {@code appendOffset("HH:MM:ss", "Z")}. * * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendOffsetId() { appendInternal(OffsetIdPrinterParser.INSTANCE_ID_Z); return this; } /** * Appends the zone offset, such as '+01:00', to the formatter. *

* This appends an instruction to format/parse the offset ID to the builder. *

* During formatting, the offset is obtained using a mechanism equivalent * to querying the temporal with {@link Queries#offset()}. * It will be printed using the format defined below. * If the offset cannot be obtained then an exception is thrown unless the * section of the formatter is optional. *

* During parsing, the offset is parsed using the format defined below. * If the offset cannot be parsed then an exception is thrown unless the * section of the formatter is optional. *

* The format of the offset is controlled by a pattern which must be one * of the following: *

* The "no offset" text controls what text is printed when the total amount of * the offset fields to be output is zero. * Example values would be 'Z', '+00:00', 'UTC' or 'GMT'. * Three formats are accepted for parsing UTC - the "no offset" text, and the * plus and minus versions of zero defined by the pattern. * * @param pattern the pattern to use, not null * @param noOffsetText the text to use when the offset is zero, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendOffset(String pattern, String noOffsetText) { appendInternal(new OffsetIdPrinterParser(pattern, noOffsetText)); return this; } //----------------------------------------------------------------------- /** * Appends the time-zone ID, such as 'Europe/Paris' or '+02:00', to the formatter. *

* This appends an instruction to format/parse the zone ID to the builder. * The zone ID is obtained in a strict manner suitable for {@code ZonedDateTime}. * By contrast, {@code OffsetDateTime} does not have a zone ID suitable * for use with this method, see {@link #appendZoneOrOffsetId()}. *

* During formatting, the zone is obtained using a mechanism equivalent * to querying the temporal with {@link Queries#zoneId()}. * It will be printed using the result of {@link ZoneId#getId()}. * If the zone cannot be obtained then an exception is thrown unless the * section of the formatter is optional. *

* During parsing, the text must match a known zone or offset. * There are two types of zone ID, offset-based, such as '+01:30' and * region-based, such as 'Europe/London'. These are parsed differently. * If the parse starts with '+', '-', 'UT', 'UTC' or 'GMT', then the parser * expects an offset-based zone and will not match region-based zones. * The offset ID, such as '+02:30', may be at the start of the parse, * or prefixed by 'UT', 'UTC' or 'GMT'. The offset ID parsing is * equivalent to using {@link #appendOffset(String, String)} using the * arguments 'HH:MM:ss' and the no offset string '0'. * If the parse starts with 'UT', 'UTC' or 'GMT', and the parser cannot * match a following offset ID, then {@link ZoneOffset#UTC} is selected. * In all other cases, the list of known region-based zones is used to * find the longest available match. If no match is found, and the parse * starts with 'Z', then {@code ZoneOffset.UTC} is selected. * The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting. *

* For example, the following will parse: *

     *   "Europe/London"           -> ZoneId.of("Europe/London")
     *   "Z"                       -> ZoneOffset.UTC
     *   "UT"                      -> ZoneOffset.UTC
     *   "UTC"                     -> ZoneOffset.UTC
     *   "GMT"                     -> ZoneOffset.UTC
     *   "UT0"                     -> ZoneOffset.UTC
     *   "UTC0"                    -> ZoneOffset.UTC
     *   "GMT0"                    -> ZoneOffset.UTC
     *   "+01:30"                  -> ZoneOffset.of("+01:30")
     *   "UT+01:30"                -> ZoneOffset.of("+01:30")
     *   "UTC+01:30"               -> ZoneOffset.of("+01:30")
     *   "GMT+01:30"               -> ZoneOffset.of("+01:30")
     * 
* * @return this, for chaining, not null * @see #appendZoneRegionId() */ public DateTimeFormatterBuilder appendZoneId() { appendInternal(new ZoneIdPrinterParser(Queries.zoneId(), "ZoneId()")); return this; } /** * Appends the time-zone region ID, such as 'Europe/Paris', to the formatter, * rejecting the zone ID if it is a {@code ZoneOffset}. *

* This appends an instruction to format/parse the zone ID to the builder * only if it is a region-based ID. *

* During formatting, the zone is obtained using a mechanism equivalent * to querying the temporal with {@link Queries#zoneId()}. * If the zone is a {@code ZoneOffset} or it cannot be obtained then * an exception is thrown unless the section of the formatter is optional. * If the zone is not an offset, then the zone will be printed using * the zone ID from {@link ZoneId#getId()}. *

* During parsing, the text must match a known zone or offset. * There are two types of zone ID, offset-based, such as '+01:30' and * region-based, such as 'Europe/London'. These are parsed differently. * If the parse starts with '+', '-', 'UT', 'UTC' or 'GMT', then the parser * expects an offset-based zone and will not match region-based zones. * The offset ID, such as '+02:30', may be at the start of the parse, * or prefixed by 'UT', 'UTC' or 'GMT'. The offset ID parsing is * equivalent to using {@link #appendOffset(String, String)} using the * arguments 'HH:MM:ss' and the no offset string '0'. * If the parse starts with 'UT', 'UTC' or 'GMT', and the parser cannot * match a following offset ID, then {@link ZoneOffset#UTC} is selected. * In all other cases, the list of known region-based zones is used to * find the longest available match. If no match is found, and the parse * starts with 'Z', then {@code ZoneOffset.UTC} is selected. * The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting. *

* For example, the following will parse: *

     *   "Europe/London"           -> ZoneId.of("Europe/London")
     *   "Z"                       -> ZoneOffset.UTC
     *   "UT"                      -> ZoneOffset.UTC
     *   "UTC"                     -> ZoneOffset.UTC
     *   "GMT"                     -> ZoneOffset.UTC
     *   "UT0"                     -> ZoneOffset.UTC
     *   "UTC0"                    -> ZoneOffset.UTC
     *   "GMT0"                    -> ZoneOffset.UTC
     *   "+01:30"                  -> ZoneOffset.of("+01:30")
     *   "UT+01:30"                -> ZoneOffset.of("+01:30")
     *   "UTC+01:30"               -> ZoneOffset.of("+01:30")
     *   "GMT+01:30"               -> ZoneOffset.of("+01:30")
     * 
*

* Note that this method is is identical to {@code appendZoneId()} except * in the mechanism used to obtain the zone. * Note also that parsing accepts offsets, whereas formatting will never * produce one. * * @return this, for chaining, not null * @see #appendZoneId() */ public DateTimeFormatterBuilder appendZoneRegionId() { appendInternal(new ZoneIdPrinterParser(QUERY_REGION_ONLY, "ZoneRegionId()")); return this; } /** * Appends the time-zone ID, such as 'Europe/Paris' or '+02:00', to * the formatter, using the best available zone ID. *

* This appends an instruction to format/parse the best available * zone or offset ID to the builder. * The zone ID is obtained in a lenient manner that first attempts to * find a true zone ID, such as that on {@code ZonedDateTime}, and * then attempts to find an offset, such as that on {@code OffsetDateTime}. *

* During formatting, the zone is obtained using a mechanism equivalent * to querying the temporal with {@link Queries#zone()}. * It will be printed using the result of {@link ZoneId#getId()}. * If the zone cannot be obtained then an exception is thrown unless the * section of the formatter is optional. *

* During parsing, the text must match a known zone or offset. * There are two types of zone ID, offset-based, such as '+01:30' and * region-based, such as 'Europe/London'. These are parsed differently. * If the parse starts with '+', '-', 'UT', 'UTC' or 'GMT', then the parser * expects an offset-based zone and will not match region-based zones. * The offset ID, such as '+02:30', may be at the start of the parse, * or prefixed by 'UT', 'UTC' or 'GMT'. The offset ID parsing is * equivalent to using {@link #appendOffset(String, String)} using the * arguments 'HH:MM:ss' and the no offset string '0'. * If the parse starts with 'UT', 'UTC' or 'GMT', and the parser cannot * match a following offset ID, then {@link ZoneOffset#UTC} is selected. * In all other cases, the list of known region-based zones is used to * find the longest available match. If no match is found, and the parse * starts with 'Z', then {@code ZoneOffset.UTC} is selected. * The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting. *

* For example, the following will parse: *

     *   "Europe/London"           -> ZoneId.of("Europe/London")
     *   "Z"                       -> ZoneOffset.UTC
     *   "UT"                      -> ZoneOffset.UTC
     *   "UTC"                     -> ZoneOffset.UTC
     *   "GMT"                     -> ZoneOffset.UTC
     *   "UT0"                     -> ZoneOffset.UTC
     *   "UTC0"                    -> ZoneOffset.UTC
     *   "GMT0"                    -> ZoneOffset.UTC
     *   "+01:30"                  -> ZoneOffset.of("+01:30")
     *   "UT+01:30"                -> ZoneOffset.of("+01:30")
     *   "UTC+01:30"               -> ZoneOffset.of("+01:30")
     *   "GMT+01:30"               -> ZoneOffset.of("+01:30")
     * 
*

* Note that this method is is identical to {@code appendZoneId()} except * in the mechanism used to obtain the zone. * * @return this, for chaining, not null * @see #appendZoneId() */ public DateTimeFormatterBuilder appendZoneOrOffsetId() { appendInternal(new ZoneIdPrinterParser(Queries.zone(), "ZoneOrOffsetId()")); return this; } /** * Appends the time-zone name, such as 'British Summer Time', to the formatter. *

* This appends an instruction to format/parse the textual name of the zone to * the builder. *

* During formatting, the zone is obtained using a mechanism equivalent * to querying the temporal with {@link Queries#zoneId()}. * If the zone is a {@code ZoneOffset} it will be printed using the * result of {@link ZoneOffset#getId()}. * If the zone is not an offset, the textual name will be looked up * for the locale set in the {@link DateTimeFormatter}. * If the temporal object being printed represents an instant, then the text * will be the summer or winter time text as appropriate. * If the lookup for text does not find any suitable reuslt, then the * {@link ZoneId#getId() ID} will be printed instead. * If the zone cannot be obtained then an exception is thrown unless the * section of the formatter is optional. *

* During parsing, either the textual zone name, the zone ID or the offset * is accepted. Many textual zone names are not unique, such as CST can be * for both "Central Standard Time" and "China Standard Time". In this * situation, the zone id will be determined by the region information from * formatter's {@link DateTimeFormatter#getLocale() locale} and the standard * zone id for that area, for example, America/New_York for the America Eastern * zone. The {@link #appendZoneText(TextStyle, Set)} may be used * to specify a set of preferred {@link ZoneId} in this situation. * * @param textStyle the text style to use, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendZoneText(TextStyle textStyle) { appendInternal(new ZoneTextPrinterParser(textStyle, null)); return this; } /** * Appends the time-zone name, such as 'British Summer Time', to the formatter. *

* This appends an instruction to format/parse the textual name of the zone to * the builder. *

* During formatting, the zone is obtained using a mechanism equivalent * to querying the temporal with {@link Queries#zoneId()}. * If the zone is a {@code ZoneOffset} it will be printed using the * result of {@link ZoneOffset#getId()}. * If the zone is not an offset, the textual name will be looked up * for the locale set in the {@link DateTimeFormatter}. * If the temporal object being printed represents an instant, then the text * will be the summer or winter time text as appropriate. * If the lookup for text does not find any suitable reuslt, then the * {@link ZoneId#getId() ID} will be printed instead. * If the zone cannot be obtained then an exception is thrown unless the * section of the formatter is optional. *

* During parsing, either the textual zone name, the zone ID or the offset * is accepted. Many textual zone names are not unique, such as CST can be * for both "Central Standard Time" and "China Standard Time". In this * situation, the zone id will be determined by the region information from * formatter's {@link DateTimeFormatter#getLocale() locale} and the standard * zone id for that area, for example, America/New_York for the America Eastern * zone. This method also allows a set of preferred {@link ZoneId} to be * specified for parsing. The matched preferred zone id will be used if the * textural zone name being parsed is not unique. * * If the zone cannot be parsed then an exception is thrown unless the * section of the formatter is optional. * * @param textStyle the text style to use, not null * @param preferredZones the set of preferred zone ids, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendZoneText(TextStyle textStyle, Set preferredZones) { Objects.requireNonNull(preferredZones, "preferredZones"); appendInternal(new ZoneTextPrinterParser(textStyle, preferredZones)); return this; } //----------------------------------------------------------------------- /** * Appends the chronology ID, such as 'ISO' or 'ThaiBuddhist', to the formatter. *

* This appends an instruction to format/parse the chronology ID to the builder. *

* During formatting, the chronology is obtained using a mechanism equivalent * to querying the temporal with {@link Queries#chronology()}. * It will be printed using the result of {@link Chronology#getId()}. * If the chronology cannot be obtained then an exception is thrown unless the * section of the formatter is optional. *

* During parsing, the chronology is parsed and must match one of the chronologies * in {@link Chronology#getAvailableChronologies()}. * If the chronology cannot be parsed then an exception is thrown unless the * section of the formatter is optional. * The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting. * * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendChronologyId() { appendInternal(new ChronoPrinterParser(null)); return this; } /** * Appends the chronology name to the formatter. *

* The calendar system name will be output during a format. * If the chronology cannot be obtained then an exception will be thrown. * The calendar system name is obtained from the formatting symbols. * * @param textStyle the text style to use, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendChronologyText(TextStyle textStyle) { Objects.requireNonNull(textStyle, "textStyle"); appendInternal(new ChronoPrinterParser(textStyle)); return this; } //----------------------------------------------------------------------- /** * Appends a localized date-time pattern to the formatter. *

* This appends a localized section to the builder, suitable for outputting * a date, time or date-time combination. The format of the localized * section is lazily looked up based on four items: *

* During formatting, the chronology is obtained from the temporal object * being formatted, which may have been overridden by * {@link DateTimeFormatter#withChronology(Chronology)}. *

* During parsing, if a chronology has already been parsed, then it is used. * Otherwise the default from {@code DateTimeFormatter.withChronology(Chronology)} * is used, with {@code IsoChronology} as the fallback. *

* Note that this method provides similar functionality to methods on * {@code DateFormat} such as {@link DateFormat#getDateTimeInstance(int, int)}. * * @param dateStyle the date style to use, null means no date required * @param timeStyle the time style to use, null means no time required * @return this, for chaining, not null * @throws IllegalArgumentException if both the date and time styles are null */ public DateTimeFormatterBuilder appendLocalized(FormatStyle dateStyle, FormatStyle timeStyle) { if (dateStyle == null && timeStyle == null) { throw new IllegalArgumentException("Either the date or time style must be non-null"); } appendInternal(new LocalizedPrinterParser(dateStyle, timeStyle)); return this; } //----------------------------------------------------------------------- /** * Appends a character literal to the formatter. *

* This character will be output during a format. * * @param literal the literal to append, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendLiteral(char literal) { appendInternal(new CharLiteralPrinterParser(literal)); return this; } /** * Appends a string literal to the formatter. *

* This string will be output during a format. *

* If the literal is empty, nothing is added to the formatter. * * @param literal the literal to append, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendLiteral(String literal) { Objects.requireNonNull(literal, "literal"); if (literal.length() > 0) { if (literal.length() == 1) { appendInternal(new CharLiteralPrinterParser(literal.charAt(0))); } else { appendInternal(new StringLiteralPrinterParser(literal)); } } return this; } //----------------------------------------------------------------------- /** * Appends all the elements of a formatter to the builder. *

* This method has the same effect as appending each of the constituent * parts of the formatter directly to this builder. * * @param formatter the formatter to add, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder append(DateTimeFormatter formatter) { Objects.requireNonNull(formatter, "formatter"); appendInternal(formatter.toPrinterParser(false)); return this; } /** * Appends a formatter to the builder which will optionally format/parse. *

* This method has the same effect as appending each of the constituent * parts directly to this builder surrounded by an {@link #optionalStart()} and * {@link #optionalEnd()}. *

* The formatter will format if data is available for all the fields contained within it. * The formatter will parse if the string matches, otherwise no error is returned. * * @param formatter the formatter to add, not null * @return this, for chaining, not null */ public DateTimeFormatterBuilder appendOptional(DateTimeFormatter formatter) { Objects.requireNonNull(formatter, "formatter"); appendInternal(formatter.toPrinterParser(true)); return this; } //----------------------------------------------------------------------- /** * Appends the elements defined by the specified pattern to the builder. *

* All letters 'A' to 'Z' and 'a' to 'z' are reserved as pattern letters. * The characters '{' and '}' are reserved for future use. * The characters '[' and ']' indicate optional patterns. * The following pattern letters are defined: *

     *  Symbol  Meaning                     Presentation      Examples
     *  ------  -------                     ------------      -------
     *   G       era                         text              A; AD; Anno Domini
     *   y       year                        year              2004; 04
     *   D       day-of-year                 number            189
     *   M       month-of-year               number/text       7; 07; Jul; July; J
     *   d       day-of-month                number            10
     *
     *   Q       quarter-of-year             number/text       3; 03; Q3
     *   Y       week-based-year             year              1996; 96
     *   w       week-of-year                number            27
     *   W       week-of-month               number            27
     *   e       localized day-of-week       number            2; Tue; Tuesday; T
     *   E       day-of-week                 number/text       2; Tue; Tuesday; T
     *   F       week-of-month               number            3
     *
     *   a       am-pm-of-day                text              PM
     *   h       clock-hour-of-am-pm (1-12)  number            12
     *   K       hour-of-am-pm (0-11)        number            0
     *   k       clock-hour-of-am-pm (1-24)  number            0
     *
     *   H       hour-of-day (0-23)          number            0
     *   m       minute-of-hour              number            30
     *   s       second-of-minute            number            55
     *   S       fraction-of-second          fraction          978
     *   A       milli-of-day                number            1234
     *   n       nano-of-second              number            987654321
     *   N       nano-of-day                 number            1234000000
     *
     *   V       time-zone ID                zone-id           America/Los_Angeles; Z; -08:30
     *   z       time-zone name              zone-name         Pacific Standard Time; PST
     *   X       zone-offset 'Z' for zero    offset-X          Z; -08; -0830; -08:30; -083015; -08:30:15;
     *   x       zone-offset                 offset-x          +0000; -08; -0830; -08:30; -083015; -08:30:15;
     *   Z       zone-offset                 offset-Z          +0000; -0800; -08:00;
     *
     *   p       pad next                    pad modifier      1
     *
     *   '       escape for text             delimiter
     *   ''      single quote                literal           '
     *   [       optional section start
     *   ]       optional section end
     *   {}      reserved for future use
     * 
*

* The count of pattern letters determine the format. *

* Text: The text style is determined based on the number of pattern letters used. * Less than 4 pattern letters will use the {@link TextStyle#SHORT short form}. * Exactly 4 pattern letters will use the {@link TextStyle#FULL full form}. * Exactly 5 pattern letters will use the {@link TextStyle#NARROW narrow form}. *

* Number: If the count of letters is one, then the value is printed using the minimum number * of digits and without padding as per {@link #appendValue(java.time.temporal.TemporalField)}. Otherwise, the * count of digits is used as the width of the output field as per {@link #appendValue(java.time.temporal.TemporalField, int)}. *

* Number/Text: If the count of pattern letters is 3 or greater, use the Text rules above. * Otherwise use the Number rules above. *

* Fraction: Outputs the nano-of-second field as a fraction-of-second. * The nano-of-second value has nine digits, thus the count of pattern letters is from 1 to 9. * If it is less than 9, then the nano-of-second value is truncated, with only the most * significant digits being output. * When parsing in strict mode, the number of parsed digits must match the count of pattern letters. * When parsing in lenient mode, the number of parsed digits must be at least the count of pattern * letters, up to 9 digits. *

* Year: The count of letters determines the minimum field width below which padding is used. * If the count of letters is two, then a {@link #appendValueReduced reduced} two digit form is used. * For formatting, this outputs the rightmost two digits. For parsing, this will parse using the * base value of 2000, resulting in a year within the range 2000 to 2099 inclusive. * If the count of letters is less than four (but not two), then the sign is only output for negative * years as per {@link SignStyle#NORMAL}. * Otherwise, the sign is output if the pad width is exceeded, as per {@link SignStyle#EXCEEDS_PAD} *

* ZoneId: This outputs the time-zone ID, such as 'Europe/Paris'. * If the count of letters is two, then the time-zone ID is output. * Any other count of letters throws {@code IllegalArgumentException}. *

     *  Pattern     Equivalent builder methods
     *   VV          appendZoneId()
     * 
*

* Zone names: This outputs the display name of the time-zone ID. * If the count of letters is one, two or three, then the short name is output. * If the count of letters is four, then the full name is output. * Five or more letters throws {@code IllegalArgumentException}. *

     *  Pattern     Equivalent builder methods
     *   z           appendZoneText(TextStyle.SHORT)
     *   zz          appendZoneText(TextStyle.SHORT)
     *   zzz         appendZoneText(TextStyle.SHORT)
     *   zzzz        appendZoneText(TextStyle.FULL)
     * 
*

* Offset X and x: This formats the offset based on the number of pattern letters. * One letter outputs just the hour', such as '+01', unless the minute is non-zero * in which case the minute is also output, such as '+0130'. * Two letters outputs the hour and minute, without a colon, such as '+0130'. * Three letters outputs the hour and minute, with a colon, such as '+01:30'. * Four letters outputs the hour and minute and optional second, without a colon, such as '+013015'. * Five letters outputs the hour and minute and optional second, with a colon, such as '+01:30:15'. * Six or more letters throws {@code IllegalArgumentException}. * Pattern letter 'X' (upper case) will output 'Z' when the offset to be output would be zero, * whereas pattern letter 'x' (lower case) will output '+00', '+0000', or '+00:00'. *

     *  Pattern     Equivalent builder methods
     *   X           appendOffset("+HHmm","Z")
     *   XX          appendOffset("+HHMM","Z")
     *   XXX         appendOffset("+HH:MM","Z")
     *   XXXX        appendOffset("+HHMMss","Z")
     *   XXXXX       appendOffset("+HH:MM:ss","Z")
     *   x           appendOffset("+HHmm","+00")
     *   xx          appendOffset("+HHMM","+0000")
     *   xxx         appendOffset("+HH:MM","+00:00")
     *   xxxx        appendOffset("+HHMMss","+0000")
     *   xxxxx       appendOffset("+HH:MM:ss","+00:00")
     * 
*

* Offset Z: This formats the offset based on the number of pattern letters. * One, two or three letters outputs the hour and minute, without a colon, such as '+0130'. * Four or more letters throws {@code IllegalArgumentException}. * The output will be '+0000' when the offset is zero. *

     *  Pattern     Equivalent builder methods
     *   Z           appendOffset("+HHMM","+0000")
     *   ZZ          appendOffset("+HHMM","+0000")
     *   ZZZ         appendOffset("+HHMM","+0000")
     * 
*

* Optional section: The optional section markers work exactly like calling {@link #optionalStart()} * and {@link #optionalEnd()}. *

* Pad modifier: Modifies the pattern that immediately follows to be padded with spaces. * The pad width is determined by the number of pattern letters. * This is the same as calling {@link #padNext(int)}. *

* For example, 'ppH' outputs the hour-of-day padded on the left with spaces to a width of 2. *

* Any unrecognized letter is an error. * Any non-letter character, other than '[', ']', '{', '}' and the single quote will be output directly. * Despite this, it is recommended to use single quotes around all characters that you want to * output directly to ensure that future changes do not break your application. *

* Note that the pattern string is similar, but not identical, to * {@link java.text.SimpleDateFormat SimpleDateFormat}. * The pattern string is also similar, but not identical, to that defined by the * Unicode Common Locale Data Repository (CLDR/LDML). * Pattern letters 'E' and 'u' are merged, which changes the meaning of "E" and "EE" to be numeric. * Pattern letters 'X' is aligned with Unicode CLDR/LDML, which affects pattern 'X'. * Pattern letter 'y' and 'Y' parse years of two digits and more than 4 digits differently. * Pattern letters 'n', 'A', 'N', 'I' and 'p' are added. * Number types will reject large numbers. * * @param pattern the pattern to add, not null * @return this, for chaining, not null * @throws IllegalArgumentException if the pattern is invalid */ public DateTimeFormatterBuilder appendPattern(String pattern) { Objects.requireNonNull(pattern, "pattern"); parsePattern(pattern); return this; } private void parsePattern(String pattern) { for (int pos = 0; pos < pattern.length(); pos++) { char cur = pattern.charAt(pos); if ((cur >= 'A' && cur <= 'Z') || (cur >= 'a' && cur <= 'z')) { int start = pos++; for ( ; pos < pattern.length() && pattern.charAt(pos) == cur; pos++); // short loop int count = pos - start; // padding if (cur == 'p') { int pad = 0; if (pos < pattern.length()) { cur = pattern.charAt(pos); if ((cur >= 'A' && cur <= 'Z') || (cur >= 'a' && cur <= 'z')) { pad = count; start = pos++; for ( ; pos < pattern.length() && pattern.charAt(pos) == cur; pos++); // short loop count = pos - start; } } if (pad == 0) { throw new IllegalArgumentException( "Pad letter 'p' must be followed by valid pad pattern: " + pattern); } padNext(pad); // pad and continue parsing } // main rules TemporalField field = FIELD_MAP.get(cur); if (field != null) { parseField(cur, count, field); } else if (cur == 'z') { if (count > 4) { throw new IllegalArgumentException("Too many pattern letters: " + cur); } else if (count == 4) { appendZoneText(TextStyle.FULL); } else { appendZoneText(TextStyle.SHORT); } } else if (cur == 'V') { if (count != 2) { throw new IllegalArgumentException("Pattern letter count must be 2: " + cur); } appendZoneId(); } else if (cur == 'Z') { if (count > 3) { throw new IllegalArgumentException("Too many pattern letters: " + cur); } appendOffset("+HHMM", "+0000"); } else if (cur == 'X') { if (count > 5) { throw new IllegalArgumentException("Too many pattern letters: " + cur); } appendOffset(OffsetIdPrinterParser.PATTERNS[count + (count == 1 ? 0 : 1)], "Z"); } else if (cur == 'x') { if (count > 5) { throw new IllegalArgumentException("Too many pattern letters: " + cur); } String zero = (count == 1 ? "+00" : (count % 2 == 0 ? "+0000" : "+00:00")); appendOffset(OffsetIdPrinterParser.PATTERNS[count + (count == 1 ? 0 : 1)], zero); } else if (cur == 'w' || cur == 'e') { // Fields defined by Locale if (count > 1) { throw new IllegalArgumentException("Too many pattern letters: " + cur); } appendInternal(new WeekBasedFieldPrinterParser(cur, count)); } else if (cur == 'W') { // Fields defined by Locale if (count > 2) { throw new IllegalArgumentException("Too many pattern letters: " + cur); } appendInternal(new WeekBasedFieldPrinterParser(cur, count)); } else { throw new IllegalArgumentException("Unknown pattern letter: " + cur); } pos--; } else if (cur == '\'') { // parse literals int start = pos++; for ( ; pos < pattern.length(); pos++) { if (pattern.charAt(pos) == '\'') { if (pos + 1 < pattern.length() && pattern.charAt(pos + 1) == '\'') { pos++; } else { break; // end of literal } } } if (pos >= pattern.length()) { throw new IllegalArgumentException("Pattern ends with an incomplete string literal: " + pattern); } String str = pattern.substring(start + 1, pos); if (str.length() == 0) { appendLiteral('\''); } else { appendLiteral(str.replace("''", "'")); } } else if (cur == '[') { optionalStart(); } else if (cur == ']') { if (active.parent == null) { throw new IllegalArgumentException("Pattern invalid as it contains ] without previous ["); } optionalEnd(); } else if (cur == '{' || cur == '}') { throw new IllegalArgumentException("Pattern includes reserved character: '" + cur + "'"); } else { appendLiteral(cur); } } } private void parseField(char cur, int count, TemporalField field) { switch (cur) { case 'y': case 'Y': if (count == 2) { appendValueReduced(field, 2, 2000); } else if (count < 4) { appendValue(field, count, 19, SignStyle.NORMAL); } else { appendValue(field, count, 19, SignStyle.EXCEEDS_PAD); } break; case 'M': case 'Q': case 'E': switch (count) { case 1: appendValue(field); break; case 2: appendValue(field, 2); break; case 3: appendText(field, TextStyle.SHORT); break; case 4: appendText(field, TextStyle.FULL); break; case 5: appendText(field, TextStyle.NARROW); break; default: throw new IllegalArgumentException("Too many pattern letters: " + cur); } break; case 'G': case 'a': switch (count) { case 1: case 2: case 3: appendText(field, TextStyle.SHORT); break; case 4: appendText(field, TextStyle.FULL); break; case 5: appendText(field, TextStyle.NARROW); break; default: throw new IllegalArgumentException("Too many pattern letters: " + cur); } break; case 'S': appendFraction(NANO_OF_SECOND, count, count, false); break; default: if (count == 1) { appendValue(field); } else { appendValue(field, count); } break; } } /** Map of letters to fields. */ private static final Map FIELD_MAP = new HashMap<>(); static { FIELD_MAP.put('G', ChronoField.ERA); // Java, LDML (different to both for 1/2 chars) FIELD_MAP.put('y', ChronoField.YEAR); // LDML // FIELD_MAP.put('y', ChronoField.YEAR_OF_ERA); // Java, LDML // TODO redefine from above // FIELD_MAP.put('u', ChronoField.YEAR); // LDML // TODO // FIELD_MAP.put('Y', IsoFields.WEEK_BASED_YEAR); // Java7, LDML (needs localized week number) // TODO FIELD_MAP.put('Q', IsoFields.QUARTER_OF_YEAR); // LDML (removed quarter from 310) FIELD_MAP.put('M', ChronoField.MONTH_OF_YEAR); // Java, LDML // FIELD_MAP.put('w', WeekFields.weekOfYear()); // Java, LDML (needs localized week number) // FIELD_MAP.put('W', WeekFields.weekOfMonth()); // Java, LDML (needs localized week number) FIELD_MAP.put('D', ChronoField.DAY_OF_YEAR); // Java, LDML FIELD_MAP.put('d', ChronoField.DAY_OF_MONTH); // Java, LDML FIELD_MAP.put('F', ChronoField.ALIGNED_WEEK_OF_MONTH); // Java, LDML FIELD_MAP.put('E', ChronoField.DAY_OF_WEEK); // Java, LDML (different to both for 1/2 chars) // FIELD_MAP.put('e', WeekFields.dayOfWeek()); // LDML (needs localized week number) FIELD_MAP.put('a', ChronoField.AMPM_OF_DAY); // Java, LDML FIELD_MAP.put('H', ChronoField.HOUR_OF_DAY); // Java, LDML FIELD_MAP.put('k', ChronoField.CLOCK_HOUR_OF_DAY); // Java, LDML FIELD_MAP.put('K', ChronoField.HOUR_OF_AMPM); // Java, LDML FIELD_MAP.put('h', ChronoField.CLOCK_HOUR_OF_AMPM); // Java, LDML FIELD_MAP.put('m', ChronoField.MINUTE_OF_HOUR); // Java, LDML FIELD_MAP.put('s', ChronoField.SECOND_OF_MINUTE); // Java, LDML FIELD_MAP.put('S', ChronoField.NANO_OF_SECOND); // LDML (Java uses milli-of-second number) FIELD_MAP.put('A', ChronoField.MILLI_OF_DAY); // LDML FIELD_MAP.put('n', ChronoField.NANO_OF_SECOND); // 310 (proposed for LDML) FIELD_MAP.put('N', ChronoField.NANO_OF_DAY); // 310 (proposed for LDML) // 310 - z - time-zone names, matches LDML and SimpleDateFormat 1 to 4 // 310 - Z - matches SimpleDateFormat and LDML // 310 - V - time-zone id, matches proposed LDML // 310 - p - prefix for padding // 310 - X - matches proposed LDML, almost matches JavaSDF for 1, exact match 2&3, extended 4&5 // 310 - x - matches proposed LDML // Java - u - clashes with LDML, go with LDML (year-proleptic) here // LDML - U - cycle year name, not supported by 310 yet // LDML - l - deprecated // LDML - j - not relevant // LDML - g - modified-julian-day // LDML - v,V - extended time-zone names // LDML - q/c/L - standalone quarter/day-of-week/month } //----------------------------------------------------------------------- /** * Causes the next added printer/parser to pad to a fixed width using a space. *

* This padding will pad to a fixed width using spaces. *

* During formatting, the decorated element will be output and then padded * to the specified width. An exception will be thrown during formatting if * the pad width is exceeded. *

* During parsing, the padding and decorated element are parsed. * If parsing is lenient, then the pad width is treated as a maximum. * If parsing is case insensitive, then the pad character is matched ignoring case. * The padding is parsed greedily. Thus, if the decorated element starts with * the pad character, it will not be parsed. * * @param padWidth the pad width, 1 or greater * @return this, for chaining, not null * @throws IllegalArgumentException if pad width is too small */ public DateTimeFormatterBuilder padNext(int padWidth) { return padNext(padWidth, ' '); } /** * Causes the next added printer/parser to pad to a fixed width. *

* This padding is intended for padding other than zero-padding. * Zero-padding should be achieved using the appendValue methods. *

* During formatting, the decorated element will be output and then padded * to the specified width. An exception will be thrown during formatting if * the pad width is exceeded. *

* During parsing, the padding and decorated element are parsed. * If parsing is lenient, then the pad width is treated as a maximum. * If parsing is case insensitive, then the pad character is matched ignoring case. * The padding is parsed greedily. Thus, if the decorated element starts with * the pad character, it will not be parsed. * * @param padWidth the pad width, 1 or greater * @param padChar the pad character * @return this, for chaining, not null * @throws IllegalArgumentException if pad width is too small */ public DateTimeFormatterBuilder padNext(int padWidth, char padChar) { if (padWidth < 1) { throw new IllegalArgumentException("The pad width must be at least one but was " + padWidth); } active.padNextWidth = padWidth; active.padNextChar = padChar; active.valueParserIndex = -1; return this; } //----------------------------------------------------------------------- /** * Mark the start of an optional section. *

* The output of formatting can include optional sections, which may be nested. * An optional section is started by calling this method and ended by calling * {@link #optionalEnd()} or by ending the build process. *

* All elements in the optional section are treated as optional. * During formatting, the section is only output if data is available in the * {@code TemporalAccessor} for all the elements in the section. * During parsing, the whole section may be missing from the parsed string. *

* For example, consider a builder setup as * {@code builder.appendValue(HOUR_OF_DAY,2).optionalStart().appendValue(MINUTE_OF_HOUR,2)}. * The optional section ends automatically at the end of the builder. * During formatting, the minute will only be output if its value can be obtained from the date-time. * During parsing, the input will be successfully parsed whether the minute is present or not. * * @return this, for chaining, not null */ public DateTimeFormatterBuilder optionalStart() { active.valueParserIndex = -1; active = new DateTimeFormatterBuilder(active, true); return this; } /** * Ends an optional section. *

* The output of formatting can include optional sections, which may be nested. * An optional section is started by calling {@link #optionalStart()} and ended * using this method (or at the end of the builder). *

* Calling this method without having previously called {@code optionalStart} * will throw an exception. * Calling this method immediately after calling {@code optionalStart} has no effect * on the formatter other than ending the (empty) optional section. *

* All elements in the optional section are treated as optional. * During formatting, the section is only output if data is available in the * {@code TemporalAccessor} for all the elements in the section. * During parsing, the whole section may be missing from the parsed string. *

* For example, consider a builder setup as * {@code builder.appendValue(HOUR_OF_DAY,2).optionalStart().appendValue(MINUTE_OF_HOUR,2).optionalEnd()}. * During formatting, the minute will only be output if its value can be obtained from the date-time. * During parsing, the input will be successfully parsed whether the minute is present or not. * * @return this, for chaining, not null * @throws IllegalStateException if there was no previous call to {@code optionalStart} */ public DateTimeFormatterBuilder optionalEnd() { if (active.parent == null) { throw new IllegalStateException("Cannot call optionalEnd() as there was no previous call to optionalStart()"); } if (active.printerParsers.size() > 0) { CompositePrinterParser cpp = new CompositePrinterParser(active.printerParsers, active.optional); active = active.parent; appendInternal(cpp); } else { active = active.parent; } return this; } //----------------------------------------------------------------------- /** * Appends a printer and/or parser to the internal list handling padding. * * @param pp the printer-parser to add, not null * @return the index into the active parsers list */ private int appendInternal(DateTimePrinterParser pp) { Objects.requireNonNull(pp, "pp"); if (active.padNextWidth > 0) { if (pp != null) { pp = new PadPrinterParserDecorator(pp, active.padNextWidth, active.padNextChar); } active.padNextWidth = 0; active.padNextChar = 0; } active.printerParsers.add(pp); active.valueParserIndex = -1; return active.printerParsers.size() - 1; } //----------------------------------------------------------------------- /** * Completes this builder by creating the DateTimeFormatter using the default locale. *

* This will create a formatter with the {@link Locale#getDefault(Locale.Category) default FORMAT locale}. * Numbers will be printed and parsed using the standard non-localized set of symbols. *

* Calling this method will end any open optional sections by repeatedly * calling {@link #optionalEnd()} before creating the formatter. *

* This builder can still be used after creating the formatter if desired, * although the state may have been changed by calls to {@code optionalEnd}. * * @return the created formatter, not null */ public DateTimeFormatter toFormatter() { return toFormatter(Locale.getDefault(Locale.Category.FORMAT)); } /** * Completes this builder by creating the DateTimeFormatter using the specified locale. *

* This will create a formatter with the specified locale. * Numbers will be printed and parsed using the standard non-localized set of symbols. *

* Calling this method will end any open optional sections by repeatedly * calling {@link #optionalEnd()} before creating the formatter. *

* This builder can still be used after creating the formatter if desired, * although the state may have been changed by calls to {@code optionalEnd}. * * @param locale the locale to use for formatting, not null * @return the created formatter, not null */ public DateTimeFormatter toFormatter(Locale locale) { Objects.requireNonNull(locale, "locale"); while (active.parent != null) { optionalEnd(); } CompositePrinterParser pp = new CompositePrinterParser(printerParsers, false); return new DateTimeFormatter(pp, locale, DateTimeFormatSymbols.STANDARD, null, null); } //----------------------------------------------------------------------- /** * Strategy for formatting/parsing date-time information. *

* The printer may format any part, or the whole, of the input date-time object. * Typically, a complete format is constructed from a number of smaller * units, each outputting a single field. *

* The parser may parse any piece of text from the input, storing the result * in the context. Typically, each individual parser will just parse one * field, such as the day-of-month, storing the value in the context. * Once the parse is complete, the caller will then resolve the parsed values * to create the desired object, such as a {@code LocalDate}. *

* The parse position will be updated during the parse. Parsing will start at * the specified index and the return value specifies the new parse position * for the next parser. If an error occurs, the returned index will be negative * and will have the error position encoded using the complement operator. * *

Specification for implementors

* This interface must be implemented with care to ensure other classes operate correctly. * All implementations that can be instantiated must be final, immutable and thread-safe. *

* The context is not a thread-safe object and a new instance will be created * for each format that occurs. The context must not be stored in an instance * variable or shared with any other threads. */ interface DateTimePrinterParser { /** * Prints the date-time object to the buffer. *

* The context holds information to use during the format. * It also contains the date-time information to be printed. *

* The buffer must not be mutated beyond the content controlled by the implementation. * * @param context the context to format using, not null * @param buf the buffer to append to, not null * @return false if unable to query the value from the date-time, true otherwise * @throws DateTimeException if the date-time cannot be printed successfully */ boolean format(DateTimePrintContext context, StringBuilder buf); /** * Parses text into date-time information. *

* The context holds information to use during the parse. * It is also used to store the parsed date-time information. * * @param context the context to use and parse into, not null * @param text the input text to parse, not null * @param position the position to start parsing at, from 0 to the text length * @return the new parse position, where negative means an error with the * error position encoded using the complement ~ operator * @throws NullPointerException if the context or text is null * @throws IndexOutOfBoundsException if the position is invalid */ int parse(DateTimeParseContext context, CharSequence text, int position); } //----------------------------------------------------------------------- /** * Composite printer and parser. */ static final class CompositePrinterParser implements DateTimePrinterParser { private final DateTimePrinterParser[] printerParsers; private final boolean optional; CompositePrinterParser(List printerParsers, boolean optional) { this(printerParsers.toArray(new DateTimePrinterParser[printerParsers.size()]), optional); } CompositePrinterParser(DateTimePrinterParser[] printerParsers, boolean optional) { this.printerParsers = printerParsers; this.optional = optional; } /** * Returns a copy of this printer-parser with the optional flag changed. * * @param optional the optional flag to set in the copy * @return the new printer-parser, not null */ public CompositePrinterParser withOptional(boolean optional) { if (optional == this.optional) { return this; } return new CompositePrinterParser(printerParsers, optional); } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { int length = buf.length(); if (optional) { context.startOptional(); } try { for (DateTimePrinterParser pp : printerParsers) { if (pp.format(context, buf) == false) { buf.setLength(length); // reset buffer return true; } } } finally { if (optional) { context.endOptional(); } } return true; } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { if (optional) { context.startOptional(); int pos = position; for (DateTimePrinterParser pp : printerParsers) { pos = pp.parse(context, text, pos); if (pos < 0) { context.endOptional(false); return position; // return original position } } context.endOptional(true); return pos; } else { for (DateTimePrinterParser pp : printerParsers) { position = pp.parse(context, text, position); if (position < 0) { break; } } return position; } } @Override public String toString() { StringBuilder buf = new StringBuilder(); if (printerParsers != null) { buf.append(optional ? "[" : "("); for (DateTimePrinterParser pp : printerParsers) { buf.append(pp); } buf.append(optional ? "]" : ")"); } return buf.toString(); } } //----------------------------------------------------------------------- /** * Pads the output to a fixed width. */ static final class PadPrinterParserDecorator implements DateTimePrinterParser { private final DateTimePrinterParser printerParser; private final int padWidth; private final char padChar; /** * Constructor. * * @param printerParser the printer, not null * @param padWidth the width to pad to, 1 or greater * @param padChar the pad character */ PadPrinterParserDecorator(DateTimePrinterParser printerParser, int padWidth, char padChar) { // input checked by DateTimeFormatterBuilder this.printerParser = printerParser; this.padWidth = padWidth; this.padChar = padChar; } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { int preLen = buf.length(); if (printerParser.format(context, buf) == false) { return false; } int len = buf.length() - preLen; if (len > padWidth) { throw new DateTimeException( "Cannot print as output of " + len + " characters exceeds pad width of " + padWidth); } for (int i = 0; i < padWidth - len; i++) { buf.insert(preLen, padChar); } return true; } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { // cache context before changed by decorated parser final boolean strict = context.isStrict(); // parse if (position > text.length()) { throw new IndexOutOfBoundsException(); } if (position == text.length()) { return ~position; // no more characters in the string } int endPos = position + padWidth; if (endPos > text.length()) { if (strict) { return ~position; // not enough characters in the string to meet the parse width } endPos = text.length(); } int pos = position; while (pos < endPos && context.charEquals(text.charAt(pos), padChar)) { pos++; } text = text.subSequence(0, endPos); int resultPos = printerParser.parse(context, text, pos); if (resultPos != endPos && strict) { return ~(position + pos); // parse of decorated field didn't parse to the end } return resultPos; } @Override public String toString() { return "Pad(" + printerParser + "," + padWidth + (padChar == ' ' ? ")" : ",'" + padChar + "')"); } } //----------------------------------------------------------------------- /** * Enumeration to apply simple parse settings. */ static enum SettingsParser implements DateTimePrinterParser { SENSITIVE, INSENSITIVE, STRICT, LENIENT; @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { return true; // nothing to do here } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { // using ordinals to avoid javac synthetic inner class switch (ordinal()) { case 0: context.setCaseSensitive(true); break; case 1: context.setCaseSensitive(false); break; case 2: context.setStrict(true); break; case 3: context.setStrict(false); break; } return position; } @Override public String toString() { // using ordinals to avoid javac synthetic inner class switch (ordinal()) { case 0: return "ParseCaseSensitive(true)"; case 1: return "ParseCaseSensitive(false)"; case 2: return "ParseStrict(true)"; case 3: return "ParseStrict(false)"; } throw new IllegalStateException("Unreachable"); } } //----------------------------------------------------------------------- /** * Prints or parses a character literal. */ static final class CharLiteralPrinterParser implements DateTimePrinterParser { private final char literal; CharLiteralPrinterParser(char literal) { this.literal = literal; } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { buf.append(literal); return true; } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { int length = text.length(); if (position == length) { return ~position; } char ch = text.charAt(position); if (ch != literal) { if (context.isCaseSensitive() || (Character.toUpperCase(ch) != Character.toUpperCase(literal) && Character.toLowerCase(ch) != Character.toLowerCase(literal))) { return ~position; } } return position + 1; } @Override public String toString() { if (literal == '\'') { return "''"; } return "'" + literal + "'"; } } //----------------------------------------------------------------------- /** * Prints or parses a string literal. */ static final class StringLiteralPrinterParser implements DateTimePrinterParser { private final String literal; StringLiteralPrinterParser(String literal) { this.literal = literal; // validated by caller } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { buf.append(literal); return true; } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { int length = text.length(); if (position > length || position < 0) { throw new IndexOutOfBoundsException(); } if (context.subSequenceEquals(text, position, literal, 0, literal.length()) == false) { return ~position; } return position + literal.length(); } @Override public String toString() { String converted = literal.replace("'", "''"); return "'" + converted + "'"; } } //----------------------------------------------------------------------- /** * Prints and parses a numeric date-time field with optional padding. */ static class NumberPrinterParser implements DateTimePrinterParser { /** * Array of 10 to the power of n. */ static final int[] EXCEED_POINTS = new int[] { 0, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, }; final TemporalField field; final int minWidth; private final int maxWidth; private final SignStyle signStyle; private final int subsequentWidth; /** * Constructor. * * @param field the field to format, not null * @param minWidth the minimum field width, from 1 to 19 * @param maxWidth the maximum field width, from minWidth to 19 * @param signStyle the positive/negative sign style, not null */ NumberPrinterParser(TemporalField field, int minWidth, int maxWidth, SignStyle signStyle) { // validated by caller this.field = field; this.minWidth = minWidth; this.maxWidth = maxWidth; this.signStyle = signStyle; this.subsequentWidth = 0; } /** * Constructor. * * @param field the field to format, not null * @param minWidth the minimum field width, from 1 to 19 * @param maxWidth the maximum field width, from minWidth to 19 * @param signStyle the positive/negative sign style, not null * @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater, * -1 if fixed width due to active adjacent parsing */ private NumberPrinterParser(TemporalField field, int minWidth, int maxWidth, SignStyle signStyle, int subsequentWidth) { // validated by caller this.field = field; this.minWidth = minWidth; this.maxWidth = maxWidth; this.signStyle = signStyle; this.subsequentWidth = subsequentWidth; } /** * Returns a new instance with fixed width flag set. * * @return a new updated printer-parser, not null */ NumberPrinterParser withFixedWidth() { return new NumberPrinterParser(field, minWidth, maxWidth, signStyle, -1); } /** * Returns a new instance with an updated subsequent width. * * @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater * @return a new updated printer-parser, not null */ NumberPrinterParser withSubsequentWidth(int subsequentWidth) { return new NumberPrinterParser(field, minWidth, maxWidth, signStyle, this.subsequentWidth + subsequentWidth); } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { Chronology chrono = context.getTemporal().query(Queries.chronology()); Long valueLong; if (chrono == JapaneseChronology.INSTANCE && field == ChronoField.YEAR) { valueLong = context.getValue(ChronoField.YEAR_OF_ERA); } else { valueLong = context.getValue(field); } if (valueLong == null) { return false; } long value = getValue(valueLong); DateTimeFormatSymbols symbols = context.getSymbols(); String str = (value == Long.MIN_VALUE ? "9223372036854775808" : Long.toString(Math.abs(value))); if (str.length() > maxWidth) { throw new DateTimeException("Field " + field.getName() + " cannot be printed as the value " + value + " exceeds the maximum print width of " + maxWidth); } str = symbols.convertNumberToI18N(str); if (value >= 0) { switch (signStyle) { case EXCEEDS_PAD: if (minWidth < 19 && value >= EXCEED_POINTS[minWidth]) { buf.append(symbols.getPositiveSign()); } break; case ALWAYS: buf.append(symbols.getPositiveSign()); break; } } else { switch (signStyle) { case NORMAL: case EXCEEDS_PAD: case ALWAYS: buf.append(symbols.getNegativeSign()); break; case NOT_NEGATIVE: throw new DateTimeException("Field " + field.getName() + " cannot be printed as the value " + value + " cannot be negative according to the SignStyle"); } } for (int i = 0; i < minWidth - str.length(); i++) { buf.append(symbols.getZeroDigit()); } buf.append(str); return true; } /** * Gets the value to output. * * @param value the base value of the field, not null * @return the value */ long getValue(long value) { return value; } boolean isFixedWidth() { return subsequentWidth == -1; } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { int length = text.length(); if (position == length) { return ~position; } char sign = text.charAt(position); // IOOBE if invalid position boolean negative = false; boolean positive = false; if (sign == context.getSymbols().getPositiveSign()) { if (signStyle.parse(true, context.isStrict(), minWidth == maxWidth) == false) { return ~position; } positive = true; position++; } else if (sign == context.getSymbols().getNegativeSign()) { if (signStyle.parse(false, context.isStrict(), minWidth == maxWidth) == false) { return ~position; } negative = true; position++; } else { if (signStyle == SignStyle.ALWAYS && context.isStrict()) { return ~position; } } int effMinWidth = (context.isStrict() || isFixedWidth() ? minWidth : 1); int minEndPos = position + effMinWidth; if (minEndPos > length) { return ~position; } int effMaxWidth = maxWidth + Math.max(subsequentWidth, 0); long total = 0; BigInteger totalBig = null; int pos = position; for (int pass = 0; pass < 2; pass++) { int maxEndPos = Math.min(pos + effMaxWidth, length); while (pos < maxEndPos) { char ch = text.charAt(pos++); int digit = context.getSymbols().convertToDigit(ch); if (digit < 0) { pos--; if (pos < minEndPos) { return ~position; // need at least min width digits } break; } if ((pos - position) > 18) { if (totalBig == null) { totalBig = BigInteger.valueOf(total); } totalBig = totalBig.multiply(BigInteger.TEN).add(BigInteger.valueOf(digit)); } else { total = total * 10 + digit; } } if (subsequentWidth > 0 && pass == 0) { // re-parse now we know the correct width int parseLen = pos - position; effMaxWidth = Math.max(effMinWidth, parseLen - subsequentWidth); pos = position; total = 0; totalBig = null; } else { break; } } if (negative) { if (totalBig != null) { if (totalBig.equals(BigInteger.ZERO) && context.isStrict()) { return ~(position - 1); // minus zero not allowed } totalBig = totalBig.negate(); } else { if (total == 0 && context.isStrict()) { return ~(position - 1); // minus zero not allowed } total = -total; } } else if (signStyle == SignStyle.EXCEEDS_PAD && context.isStrict()) { int parseLen = pos - position; if (positive) { if (parseLen <= minWidth) { return ~(position - 1); // '+' only parsed if minWidth exceeded } } else { if (parseLen > minWidth) { return ~position; // '+' must be parsed if minWidth exceeded } } } if (totalBig != null) { if (totalBig.bitLength() > 63) { // overflow, parse 1 less digit totalBig = totalBig.divide(BigInteger.TEN); pos--; } return setValue(context, totalBig.longValue(), position, pos); } return setValue(context, total, position, pos); } /** * Stores the value. * * @param context the context to store into, not null * @param value the value * @param errorPos the position of the field being parsed * @param successPos the position after the field being parsed * @return the new position */ int setValue(DateTimeParseContext context, long value, int errorPos, int successPos) { TemporalField f = field; if (field == ChronoField.YEAR) { Chronology chrono = context.getEffectiveChronology(); if (chrono == JapaneseChronology.INSTANCE) { f = ChronoField.YEAR_OF_ERA; } } return context.setParsedField(f, value, errorPos, successPos); } @Override public String toString() { if (minWidth == 1 && maxWidth == 19 && signStyle == SignStyle.NORMAL) { return "Value(" + field.getName() + ")"; } if (minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE) { return "Value(" + field.getName() + "," + minWidth + ")"; } return "Value(" + field.getName() + "," + minWidth + "," + maxWidth + "," + signStyle + ")"; } } //----------------------------------------------------------------------- /** * Prints and parses a reduced numeric date-time field. */ static final class ReducedPrinterParser extends NumberPrinterParser { private final int baseValue; private final int range; /** * Constructor. * * @param field the field to format, validated not null * @param width the field width, from 1 to 18 * @param baseValue the base value */ ReducedPrinterParser(TemporalField field, int width, int baseValue) { super(field, width, width, SignStyle.NOT_NEGATIVE); if (width < 1 || width > 18) { throw new IllegalArgumentException("The width must be from 1 to 18 inclusive but was " + width); } if (field.range().isValidValue(baseValue) == false) { throw new IllegalArgumentException("The base value must be within the range of the field"); } this.baseValue = baseValue; this.range = EXCEED_POINTS[width]; if ((((long) baseValue) + range) > Integer.MAX_VALUE) { throw new DateTimeException("Unable to add printer-parser as the range exceeds the capacity of an int"); } } @Override long getValue(long value) { return Math.abs(value % range); } @Override int setValue(DateTimeParseContext context, long value, int errorPos, int successPos) { int lastPart = baseValue % range; if (baseValue > 0) { value = baseValue - lastPart + value; } else { value = baseValue - lastPart - value; } if (value < baseValue) { value += range; } return context.setParsedField(field, value, errorPos, successPos); } @Override NumberPrinterParser withFixedWidth() { return this; } @Override boolean isFixedWidth() { return true; } @Override public String toString() { return "ReducedValue(" + field.getName() + "," + minWidth + "," + baseValue + ")"; } } //----------------------------------------------------------------------- /** * Prints and parses a numeric date-time field with optional padding. */ static final class FractionPrinterParser implements DateTimePrinterParser { private final TemporalField field; private final int minWidth; private final int maxWidth; private final boolean decimalPoint; /** * Constructor. * * @param field the field to output, not null * @param minWidth the minimum width to output, from 0 to 9 * @param maxWidth the maximum width to output, from 0 to 9 * @param decimalPoint whether to output the localized decimal point symbol */ FractionPrinterParser(TemporalField field, int minWidth, int maxWidth, boolean decimalPoint) { Objects.requireNonNull(field, "field"); if (field.range().isFixed() == false) { throw new IllegalArgumentException("Field must have a fixed set of values: " + field.getName()); } if (minWidth < 0 || minWidth > 9) { throw new IllegalArgumentException("Minimum width must be from 0 to 9 inclusive but was " + minWidth); } if (maxWidth < 1 || maxWidth > 9) { throw new IllegalArgumentException("Maximum width must be from 1 to 9 inclusive but was " + maxWidth); } if (maxWidth < minWidth) { throw new IllegalArgumentException("Maximum width must exceed or equal the minimum width but " + maxWidth + " < " + minWidth); } this.field = field; this.minWidth = minWidth; this.maxWidth = maxWidth; this.decimalPoint = decimalPoint; } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { Long value = context.getValue(field); if (value == null) { return false; } DateTimeFormatSymbols symbols = context.getSymbols(); BigDecimal fraction = convertToFraction(value); if (fraction.scale() == 0) { // scale is zero if value is zero if (minWidth > 0) { if (decimalPoint) { buf.append(symbols.getDecimalSeparator()); } for (int i = 0; i < minWidth; i++) { buf.append(symbols.getZeroDigit()); } } } else { int outputScale = Math.min(Math.max(fraction.scale(), minWidth), maxWidth); fraction = fraction.setScale(outputScale, RoundingMode.FLOOR); String str = fraction.toPlainString().substring(2); str = symbols.convertNumberToI18N(str); if (decimalPoint) { buf.append(symbols.getDecimalSeparator()); } buf.append(str); } return true; } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { int effectiveMin = (context.isStrict() ? minWidth : 0); int effectiveMax = (context.isStrict() ? maxWidth : 9); int length = text.length(); if (position == length) { // valid if whole field is optional, invalid if minimum width return (effectiveMin > 0 ? ~position : position); } if (decimalPoint) { if (text.charAt(position) != context.getSymbols().getDecimalSeparator()) { // valid if whole field is optional, invalid if minimum width return (effectiveMin > 0 ? ~position : position); } position++; } int minEndPos = position + effectiveMin; if (minEndPos > length) { return ~position; // need at least min width digits } int maxEndPos = Math.min(position + effectiveMax, length); int total = 0; // can use int because we are only parsing up to 9 digits int pos = position; while (pos < maxEndPos) { char ch = text.charAt(pos++); int digit = context.getSymbols().convertToDigit(ch); if (digit < 0) { if (pos < minEndPos) { return ~position; // need at least min width digits } pos--; break; } total = total * 10 + digit; } BigDecimal fraction = new BigDecimal(total).movePointLeft(pos - position); long value = convertFromFraction(fraction); return context.setParsedField(field, value, position, pos); } /** * Converts a value for this field to a fraction between 0 and 1. *

* The fractional value is between 0 (inclusive) and 1 (exclusive). * It can only be returned if the {@link java.time.temporal.TemporalField#range() value range} is fixed. * The fraction is obtained by calculation from the field range using 9 decimal * places and a rounding mode of {@link RoundingMode#FLOOR FLOOR}. * The calculation is inaccurate if the values do not run continuously from smallest to largest. *

* For example, the second-of-minute value of 15 would be returned as 0.25, * assuming the standard definition of 60 seconds in a minute. * * @param value the value to convert, must be valid for this rule * @return the value as a fraction within the range, from 0 to 1, not null * @throws DateTimeException if the value cannot be converted to a fraction */ private BigDecimal convertToFraction(long value) { ValueRange range = field.range(); range.checkValidValue(value, field); BigDecimal minBD = BigDecimal.valueOf(range.getMinimum()); BigDecimal rangeBD = BigDecimal.valueOf(range.getMaximum()).subtract(minBD).add(BigDecimal.ONE); BigDecimal valueBD = BigDecimal.valueOf(value).subtract(minBD); BigDecimal fraction = valueBD.divide(rangeBD, 9, RoundingMode.FLOOR); // stripTrailingZeros bug return fraction.compareTo(BigDecimal.ZERO) == 0 ? BigDecimal.ZERO : fraction.stripTrailingZeros(); } /** * Converts a fraction from 0 to 1 for this field to a value. *

* The fractional value must be between 0 (inclusive) and 1 (exclusive). * It can only be returned if the {@link java.time.temporal.TemporalField#range() value range} is fixed. * The value is obtained by calculation from the field range and a rounding * mode of {@link RoundingMode#FLOOR FLOOR}. * The calculation is inaccurate if the values do not run continuously from smallest to largest. *

* For example, the fractional second-of-minute of 0.25 would be converted to 15, * assuming the standard definition of 60 seconds in a minute. * * @param fraction the fraction to convert, not null * @return the value of the field, valid for this rule * @throws DateTimeException if the value cannot be converted */ private long convertFromFraction(BigDecimal fraction) { ValueRange range = field.range(); BigDecimal minBD = BigDecimal.valueOf(range.getMinimum()); BigDecimal rangeBD = BigDecimal.valueOf(range.getMaximum()).subtract(minBD).add(BigDecimal.ONE); BigDecimal valueBD = fraction.multiply(rangeBD).setScale(0, RoundingMode.FLOOR).add(minBD); return valueBD.longValueExact(); } @Override public String toString() { String decimal = (decimalPoint ? ",DecimalPoint" : ""); return "Fraction(" + field.getName() + "," + minWidth + "," + maxWidth + decimal + ")"; } } //----------------------------------------------------------------------- /** * Prints or parses field text. */ static final class TextPrinterParser implements DateTimePrinterParser { private final TemporalField field; private final TextStyle textStyle; private final DateTimeTextProvider provider; /** * The cached number printer parser. * Immutable and volatile, so no synchronization needed. */ private volatile NumberPrinterParser numberPrinterParser; /** * Constructor. * * @param field the field to output, not null * @param textStyle the text style, not null * @param provider the text provider, not null */ TextPrinterParser(TemporalField field, TextStyle textStyle, DateTimeTextProvider provider) { // validated by caller this.field = field; this.textStyle = textStyle; this.provider = provider; } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { Long value = context.getValue(field); if (value == null) { return false; } String text; Chronology chrono = context.getTemporal().query(Queries.chronology()); if (chrono == null || chrono == IsoChronology.INSTANCE) { text = provider.getText(field, value, textStyle, context.getLocale()); } else { text = provider.getText(chrono, field, value, textStyle, context.getLocale()); } if (text == null) { return numberPrinterParser().format(context, buf); } buf.append(text); return true; } @Override public int parse(DateTimeParseContext context, CharSequence parseText, int position) { int length = parseText.length(); if (position < 0 || position > length) { throw new IndexOutOfBoundsException(); } TextStyle style = (context.isStrict() ? textStyle : null); Chronology chrono = context.getEffectiveChronology(); Iterator> it; if (chrono == null || chrono == IsoChronology.INSTANCE) { it = provider.getTextIterator(field, style, context.getLocale()); } else { it = provider.getTextIterator(chrono, field, style, context.getLocale()); } if (it != null) { while (it.hasNext()) { Entry entry = it.next(); String itText = entry.getKey(); if (context.subSequenceEquals(itText, 0, parseText, position, itText.length())) { return context.setParsedField(field, entry.getValue(), position, position + itText.length()); } } if (context.isStrict()) { return ~position; } } return numberPrinterParser().parse(context, parseText, position); } /** * Create and cache a number printer parser. * @return the number printer parser for this field, not null */ private NumberPrinterParser numberPrinterParser() { if (numberPrinterParser == null) { numberPrinterParser = new NumberPrinterParser(field, 1, 19, SignStyle.NORMAL); } return numberPrinterParser; } @Override public String toString() { if (textStyle == TextStyle.FULL) { return "Text(" + field.getName() + ")"; } return "Text(" + field.getName() + "," + textStyle + ")"; } } //----------------------------------------------------------------------- /** * Prints or parses an ISO-8601 instant. */ static final class InstantPrinterParser implements DateTimePrinterParser { // days in a 400 year cycle = 146097 // days in a 10,000 year cycle = 146097 * 25 // seconds per day = 86400 private static final long SECONDS_PER_10000_YEARS = 146097L * 25L * 86400L; private static final long SECONDS_0000_TO_1970 = ((146097L * 5L) - (30L * 365L + 7L)) * 86400L; private static final CompositePrinterParser PARSER = new DateTimeFormatterBuilder() .parseCaseInsensitive() .append(DateTimeFormatter.ISO_LOCAL_DATE).appendLiteral('T') .append(DateTimeFormatter.ISO_LOCAL_TIME).appendLiteral('Z') .toFormatter().toPrinterParser(false); InstantPrinterParser() { } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { // use INSTANT_SECONDS, thus this code is not bound by Instant.MAX Long inSecs = context.getValue(INSTANT_SECONDS); Long inNanos = context.getValue(NANO_OF_SECOND); if (inSecs == null || inNanos == null) { return false; } long inSec = inSecs; int inNano = NANO_OF_SECOND.checkValidIntValue(inNanos); if (inSec >= -SECONDS_0000_TO_1970) { // current era long zeroSecs = inSec - SECONDS_PER_10000_YEARS + SECONDS_0000_TO_1970; long hi = Math.floorDiv(zeroSecs, SECONDS_PER_10000_YEARS) + 1; long lo = Math.floorMod(zeroSecs, SECONDS_PER_10000_YEARS); LocalDateTime ldt = LocalDateTime.ofEpochSecond(lo - SECONDS_0000_TO_1970, inNano, ZoneOffset.UTC); if (hi > 0) { buf.append('+').append(hi); } buf.append(ldt).append('Z'); } else { // before current era long zeroSecs = inSec + SECONDS_0000_TO_1970; long hi = zeroSecs / SECONDS_PER_10000_YEARS; long lo = zeroSecs % SECONDS_PER_10000_YEARS; LocalDateTime ldt = LocalDateTime.ofEpochSecond(lo - SECONDS_0000_TO_1970, inNano, ZoneOffset.UTC); int pos = buf.length(); buf.append(ldt).append('Z'); if (hi < 0) { if (ldt.getYear() == -10_000) { buf.replace(pos, pos + 2, Long.toString(hi - 1)); } else if (lo == 0) { buf.insert(pos, hi); } else { buf.insert(pos + 1, Math.abs(hi)); } } } return true; } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { // new context to avoid overwriting fields like year/month/day DateTimeParseContext newContext = context.copy(); int pos = PARSER.parse(newContext, text, position); if (pos < 0) { return pos; } // parser restricts most fields to 2 digits, so definitely int // correctly parsed nano is also guaranteed to be valid long yearParsed = newContext.getParsed(YEAR); int month = newContext.getParsed(MONTH_OF_YEAR).intValue(); int day = newContext.getParsed(DAY_OF_MONTH).intValue(); int hour = newContext.getParsed(HOUR_OF_DAY).intValue(); int min = newContext.getParsed(MINUTE_OF_HOUR).intValue(); Long secVal = newContext.getParsed(SECOND_OF_MINUTE); Long nanoVal = newContext.getParsed(NANO_OF_SECOND); int sec = (secVal != null ? secVal.intValue() : 0); int nano = (nanoVal != null ? nanoVal.intValue() : 0); int year = (int) yearParsed % 10_000; long instantSecs; try { LocalDateTime ldt = LocalDateTime.of(year, month, day, hour, min, sec, 0); instantSecs = ldt.toEpochSecond(ZoneOffset.UTC); instantSecs += Math.multiplyExact(yearParsed / 10_000L, SECONDS_PER_10000_YEARS); } catch (RuntimeException ex) { return ~position; } int successPos = text.length(); successPos = context.setParsedField(INSTANT_SECONDS, instantSecs, position, successPos); return context.setParsedField(NANO_OF_SECOND, nano, position, successPos); } @Override public String toString() { return "Instant()"; } } //----------------------------------------------------------------------- /** * Prints or parses an offset ID. */ static final class OffsetIdPrinterParser implements DateTimePrinterParser { static final String[] PATTERNS = new String[] { "+HH", "+HHmm", "+HH:mm", "+HHMM", "+HH:MM", "+HHMMss", "+HH:MM:ss", "+HHMMSS", "+HH:MM:SS", }; // order used in pattern builder static final OffsetIdPrinterParser INSTANCE_ID_Z = new OffsetIdPrinterParser("+HH:MM:ss", "Z"); static final OffsetIdPrinterParser INSTANCE_ID_ZERO = new OffsetIdPrinterParser("+HH:MM:ss", "0"); private final String noOffsetText; private final int type; /** * Constructor. * * @param pattern the pattern * @param noOffsetText the text to use for UTC, not null */ OffsetIdPrinterParser(String pattern, String noOffsetText) { Objects.requireNonNull(pattern, "pattern"); Objects.requireNonNull(noOffsetText, "noOffsetText"); this.type = checkPattern(pattern); this.noOffsetText = noOffsetText; } private int checkPattern(String pattern) { for (int i = 0; i < PATTERNS.length; i++) { if (PATTERNS[i].equals(pattern)) { return i; } } throw new IllegalArgumentException("Invalid zone offset pattern: " + pattern); } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { Long offsetSecs = context.getValue(OFFSET_SECONDS); if (offsetSecs == null) { return false; } int totalSecs = Math.toIntExact(offsetSecs); if (totalSecs == 0) { buf.append(noOffsetText); } else { int absHours = Math.abs((totalSecs / 3600) % 100); // anything larger than 99 silently dropped int absMinutes = Math.abs((totalSecs / 60) % 60); int absSeconds = Math.abs(totalSecs % 60); int bufPos = buf.length(); int output = absHours; buf.append(totalSecs < 0 ? "-" : "+") .append((char) (absHours / 10 + '0')).append((char) (absHours % 10 + '0')); if (type >= 3 || (type >= 1 && absMinutes > 0)) { buf.append((type % 2) == 0 ? ":" : "") .append((char) (absMinutes / 10 + '0')).append((char) (absMinutes % 10 + '0')); output += absMinutes; if (type >= 7 || (type >= 5 && absSeconds > 0)) { buf.append((type % 2) == 0 ? ":" : "") .append((char) (absSeconds / 10 + '0')).append((char) (absSeconds % 10 + '0')); output += absSeconds; } } if (output == 0) { buf.setLength(bufPos); buf.append(noOffsetText); } } return true; } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { int length = text.length(); int noOffsetLen = noOffsetText.length(); if (noOffsetLen == 0) { if (position == length) { return context.setParsedField(OFFSET_SECONDS, 0, position, position); } } else { if (position == length) { return ~position; } if (context.subSequenceEquals(text, position, noOffsetText, 0, noOffsetLen)) { return context.setParsedField(OFFSET_SECONDS, 0, position, position + noOffsetLen); } } // parse normal plus/minus offset char sign = text.charAt(position); // IOOBE if invalid position if (sign == '+' || sign == '-') { // starts int negative = (sign == '-' ? -1 : 1); int[] array = new int[4]; array[0] = position + 1; if ((parseNumber(array, 1, text, true) || parseNumber(array, 2, text, type >=3) || parseNumber(array, 3, text, false)) == false) { // success long offsetSecs = negative * (array[1] * 3600L + array[2] * 60L + array[3]); return context.setParsedField(OFFSET_SECONDS, offsetSecs, position, array[0]); } } // handle special case of empty no offset text if (noOffsetLen == 0) { return context.setParsedField(OFFSET_SECONDS, 0, position, position + noOffsetLen); } return ~position; } /** * Parse a two digit zero-prefixed number. * * @param array the array of parsed data, 0=pos,1=hours,2=mins,3=secs, not null * @param arrayIndex the index to parse the value into * @param parseText the offset ID, not null * @param required whether this number is required * @return true if an error occurred */ private boolean parseNumber(int[] array, int arrayIndex, CharSequence parseText, boolean required) { if ((type + 3) / 2 < arrayIndex) { return false; // ignore seconds/minutes } int pos = array[0]; if ((type % 2) == 0 && arrayIndex > 1) { if (pos + 1 > parseText.length() || parseText.charAt(pos) != ':') { return required; } pos++; } if (pos + 2 > parseText.length()) { return required; } char ch1 = parseText.charAt(pos++); char ch2 = parseText.charAt(pos++); if (ch1 < '0' || ch1 > '9' || ch2 < '0' || ch2 > '9') { return required; } int value = (ch1 - 48) * 10 + (ch2 - 48); if (value < 0 || value > 59) { return required; } array[arrayIndex] = value; array[0] = pos; return false; } @Override public String toString() { String converted = noOffsetText.replace("'", "''"); return "Offset(" + PATTERNS[type] + ",'" + converted + "')"; } } //----------------------------------------------------------------------- /** * Prints or parses a zone ID. */ static final class ZoneTextPrinterParser extends ZoneIdPrinterParser { /** The text style to output. */ private final TextStyle textStyle; /** The preferred zoneid map */ private Set preferredZones; ZoneTextPrinterParser(TextStyle textStyle, Set preferredZones) { super(Queries.zone(), "ZoneText(" + textStyle + ")"); this.textStyle = Objects.requireNonNull(textStyle, "textStyle"); if (preferredZones != null && preferredZones.size() != 0) { this.preferredZones = new HashSet<>(); for (ZoneId id : preferredZones) { this.preferredZones.add(id.getId()); } } } private static final int STD = 0; private static final int DST = 1; private static final int GENERIC = 2; private static final Map>> cache = new ConcurrentHashMap<>(); private String getDisplayName(String id, int type, Locale locale) { if (textStyle == TextStyle.NARROW) { return null; } String[] names; SoftReference> ref = cache.get(id); Map perLocale = null; if (ref == null || (perLocale = ref.get()) == null || (names = perLocale.get(locale)) == null) { names = TimeZoneNameUtility.retrieveDisplayNames(id, locale); if (names == null) { return null; } names = Arrays.copyOfRange(names, 0, 7); names[5] = TimeZoneNameUtility.retrieveGenericDisplayName(id, TimeZone.LONG,locale); if (names[5] == null) { names[5] = names[0]; // use the id } names[6] = TimeZoneNameUtility.retrieveGenericDisplayName(id, TimeZone.SHORT,locale); if (names[6] == null) { names[6] = names[0]; } if (perLocale == null) { perLocale = new ConcurrentHashMap<>(); } perLocale.put(locale, names); cache.put(id, new SoftReference<>(perLocale)); } switch (type) { case STD: return names[textStyle.ordinal() + 1]; case DST: return names[textStyle.ordinal() + 3]; } return names[textStyle.ordinal() + 5]; } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { ZoneId zone = context.getValue(Queries.zoneId()); if (zone == null) { return false; } String zname = zone.getId(); if (!(zone instanceof ZoneOffset)) { TemporalAccessor dt = context.getTemporal(); String name = getDisplayName(zname, dt.isSupported(ChronoField.INSTANT_SECONDS) ? (zone.getRules().isDaylightSavings(Instant.from(dt)) ? DST : STD) : GENERIC, context.getLocale()); if (name != null) { zname = name; } } buf.append(zname); return true; } // cache per instance for now private final Map>> cachedTree = new HashMap<>(); private final Map>> cachedTreeCI = new HashMap<>(); @Override protected PrefixTree getTree(DateTimeParseContext context) { if (textStyle == TextStyle.NARROW) { return super.getTree(context); } Locale locale = context.getLocale(); boolean isCaseSensitive = context.isCaseSensitive(); Set regionIds = ZoneRulesProvider.getAvailableZoneIds(); int regionIdsSize = regionIds.size(); Map>> cached = isCaseSensitive ? cachedTree : cachedTreeCI; Entry> entry = null; PrefixTree tree = null; String[][] zoneStrings = null; if ((entry = cached.get(locale)) == null || (entry.getKey() != regionIdsSize || (tree = entry.getValue().get()) == null)) { tree = PrefixTree.newTree(context); zoneStrings = TimeZoneNameUtility.getZoneStrings(locale); for (String[] names : zoneStrings) { String zid = names[0]; if (!regionIds.contains(zid)) { continue; } tree.add(zid, zid); // don't convert zid -> metazone zid = ZoneName.toZid(zid, locale); int i = textStyle == TextStyle.FULL ? 1 : 2; for (; i < names.length; i += 2) { tree.add(names[i], zid); } } // if we have a set of preferred zones, need a copy and // add the preferred zones again to overwrite if (preferredZones != null) { for (String[] names : zoneStrings) { String zid = names[0]; if (!preferredZones.contains(zid) || !regionIds.contains(zid)) { continue; } int i = textStyle == TextStyle.FULL ? 1 : 2; for (; i < names.length; i += 2) { tree.add(names[i], zid); } } } cached.put(locale, new SimpleImmutableEntry<>(regionIdsSize, new SoftReference<>(tree))); } return tree; } } //----------------------------------------------------------------------- /** * Prints or parses a zone ID. */ static class ZoneIdPrinterParser implements DateTimePrinterParser { private final TemporalQuery query; private final String description; ZoneIdPrinterParser(TemporalQuery query, String description) { this.query = query; this.description = description; } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { ZoneId zone = context.getValue(query); if (zone == null) { return false; } buf.append(zone.getId()); return true; } /** * The cached tree to speed up parsing. */ private static volatile Entry cachedPrefixTree; private static volatile Entry cachedPrefixTreeCI; protected PrefixTree getTree(DateTimeParseContext context) { // prepare parse tree Set regionIds = ZoneRulesProvider.getAvailableZoneIds(); final int regionIdsSize = regionIds.size(); Entry cached = context.isCaseSensitive() ? cachedPrefixTree : cachedPrefixTreeCI; if (cached == null || cached.getKey() != regionIdsSize) { synchronized (this) { cached = context.isCaseSensitive() ? cachedPrefixTree : cachedPrefixTreeCI; if (cached == null || cached.getKey() != regionIdsSize) { cached = new SimpleImmutableEntry<>(regionIdsSize, PrefixTree.newTree(regionIds, context)); if (context.isCaseSensitive()) { cachedPrefixTree = cached; } else { cachedPrefixTreeCI = cached; } } } } return cached.getValue(); } /** * This implementation looks for the longest matching string. * For example, parsing Etc/GMT-2 will return Etc/GMC-2 rather than just * Etc/GMC although both are valid. */ @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { int length = text.length(); if (position > length) { throw new IndexOutOfBoundsException(); } if (position == length) { return ~position; } // handle fixed time-zone IDs char nextChar = text.charAt(position); if (nextChar == '+' || nextChar == '-') { return parseOffsetBased(context, text, position, OffsetIdPrinterParser.INSTANCE_ID_Z); } else if (length >= position + 2) { char nextNextChar = text.charAt(position + 1); if (context.charEquals(nextChar, 'U') && context.charEquals(nextNextChar, 'T')) { if (length >= position + 3 && context.charEquals(text.charAt(position + 2), 'C')) { return parseOffsetBased(context, text, position + 3, OffsetIdPrinterParser.INSTANCE_ID_ZERO); } return parseOffsetBased(context, text, position + 2, OffsetIdPrinterParser.INSTANCE_ID_ZERO); } else if (context.charEquals(nextChar, 'G') && length >= position + 3 && context.charEquals(nextNextChar, 'M') && context.charEquals(text.charAt(position + 2), 'T')) { return parseOffsetBased(context, text, position + 3, OffsetIdPrinterParser.INSTANCE_ID_ZERO); } } // parse PrefixTree tree = getTree(context); ParsePosition ppos = new ParsePosition(position); String parsedZoneId = tree.match(text, ppos); if (parsedZoneId == null) { if (context.charEquals(nextChar, 'Z')) { context.setParsed(ZoneOffset.UTC); return position + 1; } return ~position; } context.setParsed(ZoneId.of(parsedZoneId)); return ppos.getIndex(); } private int parseOffsetBased(DateTimeParseContext context, CharSequence text, int position, OffsetIdPrinterParser parser) { DateTimeParseContext newContext = context.copy(); int endPos = parser.parse(newContext, text, position); if (endPos < 0) { if (parser == OffsetIdPrinterParser.INSTANCE_ID_Z) { return ~position; } context.setParsed(ZoneOffset.UTC); return position; } int offset = (int) newContext.getParsed(OFFSET_SECONDS).longValue(); ZoneId zone = ZoneOffset.ofTotalSeconds(offset); context.setParsed(zone); return endPos; } @Override public String toString() { return description; } } //----------------------------------------------------------------------- /** * A String based prefix tree for parsing time-zone names. */ static class PrefixTree { protected String key; protected String value; protected char c0; // performance optimization to avoid the // boundary check cost of key.charat(0) protected PrefixTree child; protected PrefixTree sibling; private PrefixTree(String k, String v, PrefixTree child) { this.key = k; this.value = v; this.child = child; if (k.length() == 0){ c0 = 0xffff; } else { c0 = key.charAt(0); } } /** * Creates a new prefix parsing tree based on parse context. * * @param context the parse context * @return the tree, not null */ public static PrefixTree newTree(DateTimeParseContext context) { //if (!context.isStrict()) { // return new LENIENT("", null, null); //} if (context.isCaseSensitive()) { return new PrefixTree("", null, null); } return new CI("", null, null); } /** * Creates a new prefix parsing tree. * * @param keys a set of strings to build the prefix parsing tree, not null * @param context the parse context * @return the tree, not null */ public static PrefixTree newTree(Set keys, DateTimeParseContext context) { PrefixTree tree = newTree(context); for (String k : keys) { tree.add0(k, k); } return tree; } /** * Clone a copy of this tree */ public PrefixTree copyTree() { PrefixTree copy = new PrefixTree(key, value, null); if (child != null) { copy.child = child.copyTree(); } if (sibling != null) { copy.sibling = sibling.copyTree(); } return copy; } /** * Adds a pair of {key, value} into the prefix tree. * * @param k the key, not null * @param v the value, not null * @return true if the pair is added successfully */ public boolean add(String k, String v) { return add0(k, v); } private boolean add0(String k, String v) { k = toKey(k); int prefixLen = prefixLength(k); if (prefixLen == key.length()) { if (prefixLen < k.length()) { // down the tree String subKey = k.substring(prefixLen); PrefixTree c = child; while (c != null) { if (isEqual(c.c0, subKey.charAt(0))) { return c.add0(subKey, v); } c = c.sibling; } // add the node as the child of the current node c = newNode(subKey, v, null); c.sibling = child; child = c; return true; } // have an existing already, overwrite it // if (value != null) { // return false; //} value = v; return true; } // split the existing node PrefixTree n1 = newNode(key.substring(prefixLen), value, child); key = k.substring(0, prefixLen); child = n1; if (prefixLen < k.length()) { PrefixTree n2 = newNode(k.substring(prefixLen), v, null); child.sibling = n2; value = null; } else { value = v; } return true; } /** * Match text with the prefix tree. * * @param text the input text to parse, not null * @param off the offset position to start parsing at * @param end the end position to stop parsing * @return the resulting string, or null if no match found. */ public String match(CharSequence text, int off, int end) { if (!prefixOf(text, off, end)){ return null; } if (child != null && (off += key.length()) != end) { PrefixTree c = child; do { if (isEqual(c.c0, text.charAt(off))) { String found = c.match(text, off, end); if (found != null) { return found; } return value; } c = c.sibling; } while (c != null); } return value; } /** * Match text with the prefix tree. * * @param text the input text to parse, not null * @param pos the position to start parsing at, from 0 to the text * length. Upon return, position will be updated to the new parse * position, or unchanged, if no match found. * @return the resulting string, or null if no match found. */ public String match(CharSequence text, ParsePosition pos) { int off = pos.getIndex(); int end = text.length(); if (!prefixOf(text, off, end)){ return null; } off += key.length(); if (child != null && off != end) { PrefixTree c = child; do { if (isEqual(c.c0, text.charAt(off))) { pos.setIndex(off); String found = c.match(text, pos); if (found != null) { return found; } break; } c = c.sibling; } while (c != null); } pos.setIndex(off); return value; } protected String toKey(String k) { return k; } protected PrefixTree newNode(String k, String v, PrefixTree child) { return new PrefixTree(k, v, child); } protected boolean isEqual(char c1, char c2) { return c1 == c2; } protected boolean prefixOf(CharSequence text, int off, int end) { if (text instanceof String) { return ((String)text).startsWith(key, off); } int len = key.length(); if (len > end - off) { return false; } int off0 = 0; while (len-- > 0) { if (!isEqual(key.charAt(off0++), text.charAt(off++))) { return false; } } return true; } private int prefixLength(String k) { int off = 0; while (off < k.length() && off < key.length()) { if (!isEqual(k.charAt(off), key.charAt(off))) { return off; } off++; } return off; } /** * Case Insensitive prefix tree. */ private static class CI extends PrefixTree { private CI(String k, String v, PrefixTree child) { super(k, v, child); } @Override protected CI newNode(String k, String v, PrefixTree child) { return new CI(k, v, child); } @Override protected boolean isEqual(char c1, char c2) { return DateTimeParseContext.charEqualsIgnoreCase(c1, c2); } @Override protected boolean prefixOf(CharSequence text, int off, int end) { int len = key.length(); if (len > end - off) { return false; } int off0 = 0; while (len-- > 0) { if (!isEqual(key.charAt(off0++), text.charAt(off++))) { return false; } } return true; } } /** * Lenient prefix tree. Case insensitive and ignores characters * like space, underscore and slash. */ private static class LENIENT extends CI { private LENIENT(String k, String v, PrefixTree child) { super(k, v, child); } @Override protected CI newNode(String k, String v, PrefixTree child) { return new LENIENT(k, v, child); } private boolean isLenientChar(char c) { return c == ' ' || c == '_' || c == '/'; } protected String toKey(String k) { for (int i = 0; i < k.length(); i++) { if (isLenientChar(k.charAt(i))) { StringBuilder sb = new StringBuilder(k.length()); sb.append(k, 0, i); i++; while (i < k.length()) { if (!isLenientChar(k.charAt(i))) { sb.append(k.charAt(i)); } i++; } return sb.toString(); } } return k; } @Override public String match(CharSequence text, ParsePosition pos) { int off = pos.getIndex(); int end = text.length(); int len = key.length(); int koff = 0; while (koff < len && off < end) { if (isLenientChar(text.charAt(off))) { off++; continue; } if (!isEqual(key.charAt(koff++), text.charAt(off++))) { return null; } } if (koff != len) { return null; } if (child != null && off != end) { int off0 = off; while (off0 < end && isLenientChar(text.charAt(off0))) { off0++; } if (off0 < end) { PrefixTree c = child; do { if (isEqual(c.c0, text.charAt(off0))) { pos.setIndex(off0); String found = c.match(text, pos); if (found != null) { return found; } break; } c = c.sibling; } while (c != null); } } pos.setIndex(off); return value; } } } //----------------------------------------------------------------------- /** * Prints or parses a chronology. */ static final class ChronoPrinterParser implements DateTimePrinterParser { /** The text style to output, null means the ID. */ private final TextStyle textStyle; ChronoPrinterParser(TextStyle textStyle) { // validated by caller this.textStyle = textStyle; } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { Chronology chrono = context.getValue(Queries.chronology()); if (chrono == null) { return false; } if (textStyle == null) { buf.append(chrono.getId()); } else { buf.append(chrono.getId()); // TODO: Use symbols } return true; } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { // simple looping parser to find the chronology if (position < 0 || position > text.length()) { throw new IndexOutOfBoundsException(); } Set chronos = Chronology.getAvailableChronologies(); Chronology bestMatch = null; int matchLen = -1; for (Chronology chrono : chronos) { String id = chrono.getId(); int idLen = id.length(); if (idLen > matchLen && context.subSequenceEquals(text, position, id, 0, idLen)) { bestMatch = chrono; matchLen = idLen; } } if (bestMatch == null) { return ~position; } context.setParsed(bestMatch); return position + matchLen; } } //----------------------------------------------------------------------- /** * Prints or parses a localized pattern. */ static final class LocalizedPrinterParser implements DateTimePrinterParser { private final FormatStyle dateStyle; private final FormatStyle timeStyle; /** * Constructor. * * @param dateStyle the date style to use, may be null * @param timeStyle the time style to use, may be null */ LocalizedPrinterParser(FormatStyle dateStyle, FormatStyle timeStyle) { // validated by caller this.dateStyle = dateStyle; this.timeStyle = timeStyle; } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { Chronology chrono = Chronology.from(context.getTemporal()); return formatter(context.getLocale(), chrono).toPrinterParser(false).format(context, buf); } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { Chronology chrono = context.getEffectiveChronology(); return formatter(context.getLocale(), chrono).toPrinterParser(false).parse(context, text, position); } /** * Gets the formatter to use. * * @param locale the locale to use, not null * @param chrono the chronology to use, not null * @return the formatter, not null * @throws IllegalArgumentException if the formatter cannot be found */ private DateTimeFormatter formatter(Locale locale, Chronology chrono) { return DateTimeFormatStyleProvider.getInstance() .getFormatter(dateStyle, timeStyle, chrono, locale); } @Override public String toString() { return "Localized(" + (dateStyle != null ? dateStyle : "") + "," + (timeStyle != null ? timeStyle : "") + ")"; } } //----------------------------------------------------------------------- /** * Prints or parses a localized pattern from a localized field. * The specific formatter and parameters is not selected until the * the field is to be printed or parsed. * The locale is needed to select the proper WeekFields from which * the field for day-of-week, week-of-month, or week-of-year is selected. */ static final class WeekBasedFieldPrinterParser implements DateTimePrinterParser { private char chr; private int count; /** * Constructor. * * @param chr the pattern format letter that added this PrinterParser. * @param count the repeat count of the format letter */ WeekBasedFieldPrinterParser(char chr, int count) { this.chr = chr; this.count = count; } @Override public boolean format(DateTimePrintContext context, StringBuilder buf) { return printerParser(context.getLocale()).format(context, buf); } @Override public int parse(DateTimeParseContext context, CharSequence text, int position) { return printerParser(context.getLocale()).parse(context, text, position); } /** * Gets the printerParser to use based on the field and the locale. * * @param locale the locale to use, not null * @return the formatter, not null * @throws IllegalArgumentException if the formatter cannot be found */ private DateTimePrinterParser printerParser(Locale locale) { WeekFields weekDef = WeekFields.of(locale); TemporalField field = null; switch (chr) { case 'e': field = weekDef.dayOfWeek(); break; case 'w': field = weekDef.weekOfMonth(); break; case 'W': field = weekDef.weekOfYear(); break; default: throw new IllegalStateException("unreachable"); } return new NumberPrinterParser(field, (count == 2 ? 2 : 1), 2, SignStyle.NOT_NEGATIVE); } @Override public String toString() { return String.format("WeekBased(%c%d)", chr, count); } } //------------------------------------------------------------------------- /** * Length comparator. */ static final Comparator LENGTH_SORT = new Comparator() { @Override public int compare(String str1, String str2) { return str1.length() == str2.length() ? str1.compareTo(str2) : str1.length() - str2.length(); } }; }