1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * This file is available under and governed by the GNU General Public
  28  * License version 2 only, as published by the Free Software Foundation.
  29  * However, the following notice accompanied the original version of this
  30  * file:
  31  *
  32  * Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
  33  *
  34  * All rights reserved.
  35  *
  36  * Redistribution and use in source and binary forms, with or without
  37  * modification, are permitted provided that the following conditions are met:
  38  *
  39  *  * Redistributions of source code must retain the above copyright notice,
  40  *    this list of conditions and the following disclaimer.
  41  *
  42  *  * Redistributions in binary form must reproduce the above copyright notice,
  43  *    this list of conditions and the following disclaimer in the documentation
  44  *    and/or other materials provided with the distribution.
  45  *
  46  *  * Neither the name of JSR-310 nor the names of its contributors
  47  *    may be used to endorse or promote products derived from this software
  48  *    without specific prior written permission.
  49  *
  50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  54  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  55  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  56  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  57  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  58  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  59  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  60  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61  */
  62 package java.time;
  63 
  64 import static java.time.LocalTime.NANOS_PER_SECOND;
  65 import static java.time.LocalTime.SECONDS_PER_DAY;
  66 import static java.time.LocalTime.SECONDS_PER_HOUR;
  67 import static java.time.LocalTime.SECONDS_PER_MINUTE;
  68 import static java.time.temporal.ChronoField.INSTANT_SECONDS;
  69 import static java.time.temporal.ChronoField.MICRO_OF_SECOND;
  70 import static java.time.temporal.ChronoField.MILLI_OF_SECOND;
  71 import static java.time.temporal.ChronoField.NANO_OF_SECOND;
  72 import static java.time.temporal.ChronoUnit.NANOS;
  73 
  74 import java.io.DataInput;
  75 import java.io.DataOutput;
  76 import java.io.IOException;
  77 import java.io.InvalidObjectException;
  78 import java.io.ObjectStreamException;
  79 import java.io.Serializable;
  80 import java.time.format.DateTimeFormatter;
  81 import java.time.format.DateTimeParseException;
  82 import java.time.temporal.ChronoField;
  83 import java.time.temporal.ChronoUnit;
  84 import java.time.temporal.Queries;
  85 import java.time.temporal.Temporal;
  86 import java.time.temporal.TemporalAccessor;
  87 import java.time.temporal.TemporalAdjuster;
  88 import java.time.temporal.TemporalAmount;
  89 import java.time.temporal.TemporalField;
  90 import java.time.temporal.TemporalQuery;
  91 import java.time.temporal.TemporalUnit;
  92 import java.time.temporal.ValueRange;
  93 import java.util.Objects;
  94 
  95 /**
  96  * An instantaneous point on the time-line.
  97  * <p>
  98  * This class models a single instantaneous point on the time-line.
  99  * This might be used to record event time-stamps in the application.
 100  * <p>
 101  * For practicality, the instant is stored with some constraints.
 102  * The measurable time-line is restricted to the number of seconds that can be held
 103  * in a {@code long}. This is greater than the current estimated age of the universe.
 104  * The instant is stored to nanosecond resolution.
 105  * <p>
 106  * The range of an instant requires the storage of a number larger than a {@code long}.
 107  * To achieve this, the class stores a {@code long} representing epoch-seconds and an
 108  * {@code int} representing nanosecond-of-second, which will always be between 0 and 999,999,999.
 109  * The epoch-seconds are measured from the standard Java epoch of {@code 1970-01-01T00:00:00Z}
 110  * where instants after the epoch have positive values, and earlier instants have negative values.
 111  * For both the epoch-second and nanosecond parts, a larger value is always later on the time-line
 112  * than a smaller value.
 113  *
 114  * <h3>Time-scale</h3>
 115  * <p>
 116  * The length of the solar day is the standard way that humans measure time.
 117  * This has traditionally been subdivided into 24 hours of 60 minutes of 60 seconds,
 118  * forming a 86400 second day.
 119  * <p>
 120  * Modern timekeeping is based on atomic clocks which precisely define an SI second
 121  * relative to the transitions of a Caesium atom. The length of an SI second was defined
 122  * to be very close to the 86400th fraction of a day.
 123  * <p>
 124  * Unfortunately, as the Earth rotates the length of the day varies.
 125  * In addition, over time the average length of the day is getting longer as the Earth slows.
 126  * As a result, the length of a solar day in 2012 is slightly longer than 86400 SI seconds.
 127  * The actual length of any given day and the amount by which the Earth is slowing
 128  * are not predictable and can only be determined by measurement.
 129  * The UT1 time-scale captures the accurate length of day, but is only available some
 130  * time after the day has completed.
 131  * <p>
 132  * The UTC time-scale is a standard approach to bundle up all the additional fractions
 133  * of a second from UT1 into whole seconds, known as <i>leap-seconds</i>.
 134  * A leap-second may be added or removed depending on the Earth's rotational changes.
 135  * As such, UTC permits a day to have 86399 SI seconds or 86401 SI seconds where
 136  * necessary in order to keep the day aligned with the Sun.
 137  * <p>
 138  * The modern UTC time-scale was introduced in 1972, introducing the concept of whole leap-seconds.
 139  * Between 1958 and 1972, the definition of UTC was complex, with minor sub-second leaps and
 140  * alterations to the length of the notional second. As of 2012, discussions are underway
 141  * to change the definition of UTC again, with the potential to remove leap seconds or
 142  * introduce other changes.
 143  * <p>
 144  * Given the complexity of accurate timekeeping described above, this Java API defines
 145  * its own time-scale with a simplification. The Java time-scale is defined as follows:
 146  * <p><ul>
 147  * <li>midday will always be exactly as defined by the agreed international civil time</li>
 148  * <li>other times during the day will be broadly in line with the agreed international civil time</li>
 149  * <li>the day will be divided into exactly 86400 subdivisions, referred to as "seconds"</li>
 150  * <li>the Java "second" may differ from an SI second</li>
 151  * </ul><p>
 152  * Agreed international civil time is the base time-scale agreed by international convention,
 153  * which in 2012 is UTC (with leap-seconds).
 154  * <p>
 155  * In 2012, the definition of the Java time-scale is the same as UTC for all days except
 156  * those where a leap-second occurs. On days where a leap-second does occur, the time-scale
 157  * effectively eliminates the leap-second, maintaining the fiction of 86400 seconds in the day.
 158  * <p>
 159  * The main benefit of always dividing the day into 86400 subdivisions is that it matches the
 160  * expectations of most users of the API. The alternative is to force every user to understand
 161  * what a leap second is and to force them to have special logic to handle them.
 162  * Most applications do not have access to a clock that is accurate enough to record leap-seconds.
 163  * Most applications also do not have a problem with a second being a very small amount longer or
 164  * shorter than a real SI second during a leap-second.
 165  * <p>
 166  * If an application does have access to an accurate clock that reports leap-seconds, then the
 167  * recommended technique to implement the Java time-scale is to use the UTC-SLS convention.
 168  * <a href="http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/">UTC-SLS</a> effectively smoothes the
 169  * leap-second over the last 1000 seconds of the day, making each of the last 1000 "seconds"
 170  * 1/1000th longer or shorter than a real SI second.
 171  * <p>
 172  * One final problem is the definition of the agreed international civil time before the
 173  * introduction of modern UTC in 1972. This includes the Java epoch of {@code 1970-01-01}.
 174  * It is intended that instants before 1972 be interpreted based on the solar day divided
 175  * into 86400 subdivisions.
 176  * <p>
 177  * The Java time-scale is used for all date-time classes.
 178  * This includes {@code Instant}, {@code LocalDate}, {@code LocalTime}, {@code OffsetDateTime},
 179  * {@code ZonedDateTime} and {@code Duration}.
 180  *
 181  * <h3>Specification for implementors</h3>
 182  * This class is immutable and thread-safe.
 183  *
 184  * @since 1.8
 185  */
 186 public final class Instant
 187         implements Temporal, TemporalAdjuster, Comparable<Instant>, Serializable {
 188 
 189     /**
 190      * Constant for the 1970-01-01T00:00:00Z epoch instant.
 191      */
 192     public static final Instant EPOCH = new Instant(0, 0);
 193     /**
 194      * The minimum supported epoch second.
 195      */
 196     private static final long MIN_SECOND = -31557014167219200L;
 197     /**
 198      * The maximum supported epoch second.
 199      */
 200     private static final long MAX_SECOND = 31556889864403199L;
 201     /**
 202      * The minimum supported {@code Instant}, '-1000000000-01-01T00:00Z'.
 203      * This could be used by an application as a "far past" instant.
 204      * <p>
 205      * This is one year earlier than the minimum {@code LocalDateTime}.
 206      * This provides sufficient values to handle the range of {@code ZoneOffset}
 207      * which affect the instant in addition to the local date-time.
 208      * The value is also chosen such that the value of the year fits in
 209      * an {@code int}.
 210      */
 211     public static final Instant MIN = Instant.ofEpochSecond(MIN_SECOND, 0);
 212     /**
 213      * The minimum supported {@code Instant}, '-1000000000-01-01T00:00Z'.
 214      * This could be used by an application as a "far future" instant.
 215      * <p>
 216      * This is one year later than the maximum {@code LocalDateTime}.
 217      * This provides sufficient values to handle the range of {@code ZoneOffset}
 218      * which affect the instant in addition to the local date-time.
 219      * The value is also chosen such that the value of the year fits in
 220      * an {@code int}.
 221      */
 222     public static final Instant MAX = Instant.ofEpochSecond(MAX_SECOND, 999_999_999);
 223 
 224     /**
 225      * Serialization version.
 226      */
 227     private static final long serialVersionUID = -665713676816604388L;
 228 
 229     /**
 230      * The number of seconds from the epoch of 1970-01-01T00:00:00Z.
 231      */
 232     private final long seconds;
 233     /**
 234      * The number of nanoseconds, later along the time-line, from the seconds field.
 235      * This is always positive, and never exceeds 999,999,999.
 236      */
 237     private final int nanos;
 238 
 239     //-----------------------------------------------------------------------
 240     /**
 241      * Obtains the current instant from the system clock.
 242      * <p>
 243      * This will query the {@link Clock#systemUTC() system UTC clock} to
 244      * obtain the current instant.
 245      * <p>
 246      * Using this method will prevent the ability to use an alternate time-source for
 247      * testing because the clock is effectively hard-coded.
 248      *
 249      * @return the current instant using the system clock, not null
 250      */
 251     public static Instant now() {
 252         return Clock.systemUTC().instant();
 253     }
 254 
 255     /**
 256      * Obtains the current instant from the specified clock.
 257      * <p>
 258      * This will query the specified clock to obtain the current time.
 259      * <p>
 260      * Using this method allows the use of an alternate clock for testing.
 261      * The alternate clock may be introduced using {@link Clock dependency injection}.
 262      *
 263      * @param clock  the clock to use, not null
 264      * @return the current instant, not null
 265      */
 266     public static Instant now(Clock clock) {
 267         Objects.requireNonNull(clock, "clock");
 268         return clock.instant();
 269     }
 270 
 271     //-----------------------------------------------------------------------
 272     /**
 273      * Obtains an instance of {@code Instant} using seconds from the
 274      * epoch of 1970-01-01T00:00:00Z.
 275      * <p>
 276      * The nanosecond field is set to zero.
 277      *
 278      * @param epochSecond  the number of seconds from 1970-01-01T00:00:00Z
 279      * @return an instant, not null
 280      * @throws DateTimeException if the instant exceeds the maximum or minimum instant
 281      */
 282     public static Instant ofEpochSecond(long epochSecond) {
 283         return create(epochSecond, 0);
 284     }
 285 
 286     /**
 287      * Obtains an instance of {@code Instant} using seconds from the
 288      * epoch of 1970-01-01T00:00:00Z and nanosecond fraction of second.
 289      * <p>
 290      * This method allows an arbitrary number of nanoseconds to be passed in.
 291      * The factory will alter the values of the second and nanosecond in order
 292      * to ensure that the stored nanosecond is in the range 0 to 999,999,999.
 293      * For example, the following will result in the exactly the same instant:
 294      * <pre>
 295      *  Instant.ofSeconds(3, 1);
 296      *  Instant.ofSeconds(4, -999_999_999);
 297      *  Instant.ofSeconds(2, 1000_000_001);
 298      * </pre>
 299      *
 300      * @param epochSecond  the number of seconds from 1970-01-01T00:00:00Z
 301      * @param nanoAdjustment  the nanosecond adjustment to the number of seconds, positive or negative
 302      * @return an instant, not null
 303      * @throws DateTimeException if the instant exceeds the maximum or minimum instant
 304      * @throws ArithmeticException if numeric overflow occurs
 305      */
 306     public static Instant ofEpochSecond(long epochSecond, long nanoAdjustment) {
 307         long secs = Math.addExact(epochSecond, Math.floorDiv(nanoAdjustment, NANOS_PER_SECOND));
 308         int nos = (int)Math.floorMod(nanoAdjustment, NANOS_PER_SECOND);
 309         return create(secs, nos);
 310     }
 311 
 312     /**
 313      * Obtains an instance of {@code Instant} using milliseconds from the
 314      * epoch of 1970-01-01T00:00:00Z.
 315      * <p>
 316      * The seconds and nanoseconds are extracted from the specified milliseconds.
 317      *
 318      * @param epochMilli  the number of milliseconds from 1970-01-01T00:00:00Z
 319      * @return an instant, not null
 320      * @throws DateTimeException if the instant exceeds the maximum or minimum instant
 321      */
 322     public static Instant ofEpochMilli(long epochMilli) {
 323         long secs = Math.floorDiv(epochMilli, 1000);
 324         int mos = (int)Math.floorMod(epochMilli, 1000);
 325         return create(secs, mos * 1000_000);
 326     }
 327 
 328     //-----------------------------------------------------------------------
 329     /**
 330      * Obtains an instance of {@code Instant} from a temporal object.
 331      * <p>
 332      * This obtains an instant based on the specified temporal.
 333      * A {@code TemporalAccessor} represents an arbitrary set of date and time information,
 334      * which this factory converts to an instance of {@code Instant}.
 335      * <p>
 336      * The conversion extracts the {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
 337      * and {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} fields.
 338      * <p>
 339      * This method matches the signature of the functional interface {@link TemporalQuery}
 340      * allowing it to be used as a query via method reference, {@code Instant::from}.
 341      *
 342      * @param temporal  the temporal object to convert, not null
 343      * @return the instant, not null
 344      * @throws DateTimeException if unable to convert to an {@code Instant}
 345      */
 346     public static Instant from(TemporalAccessor temporal) {
 347         long instantSecs = temporal.getLong(INSTANT_SECONDS);
 348         int nanoOfSecond = temporal.get(NANO_OF_SECOND);
 349         return Instant.ofEpochSecond(instantSecs, nanoOfSecond);
 350     }
 351 
 352     //-----------------------------------------------------------------------
 353     /**
 354      * Obtains an instance of {@code Instant} from a text string such as
 355      * {@code 2007-12-03T10:15:30:00}.
 356      * <p>
 357      * The string must represent a valid instant in UTC and is parsed using
 358      * {@link DateTimeFormatter#ISO_INSTANT}.
 359      *
 360      * @param text  the text to parse, not null
 361      * @return the parsed instant, not null
 362      * @throws DateTimeParseException if the text cannot be parsed
 363      */
 364     public static Instant parse(final CharSequence text) {
 365         return DateTimeFormatter.ISO_INSTANT.parse(text, Instant::from);
 366     }
 367 
 368     //-----------------------------------------------------------------------
 369     /**
 370      * Obtains an instance of {@code Instant} using seconds and nanoseconds.
 371      *
 372      * @param seconds  the length of the duration in seconds
 373      * @param nanoOfSecond  the nano-of-second, from 0 to 999,999,999
 374      * @throws DateTimeException if the instant exceeds the maximum or minimum instant
 375      */
 376     private static Instant create(long seconds, int nanoOfSecond) {
 377         if ((seconds | nanoOfSecond) == 0) {
 378             return EPOCH;
 379         }
 380         if (seconds < MIN_SECOND || seconds > MAX_SECOND) {
 381             throw new DateTimeException("Instant exceeds minimum or maximum instant");
 382         }
 383         return new Instant(seconds, nanoOfSecond);
 384     }
 385 
 386     /**
 387      * Constructs an instance of {@code Instant} using seconds from the epoch of
 388      * 1970-01-01T00:00:00Z and nanosecond fraction of second.
 389      *
 390      * @param epochSecond  the number of seconds from 1970-01-01T00:00:00Z
 391      * @param nanos  the nanoseconds within the second, must be positive
 392      */
 393     private Instant(long epochSecond, int nanos) {
 394         super();
 395         this.seconds = epochSecond;
 396         this.nanos = nanos;
 397     }
 398 
 399     //-----------------------------------------------------------------------
 400     /**
 401      * Checks if the specified field is supported.
 402      * <p>
 403      * This checks if this instant can be queried for the specified field.
 404      * If false, then calling the {@link #range(TemporalField) range} and
 405      * {@link #get(TemporalField) get} methods will throw an exception.
 406      * <p>
 407      * If the field is a {@link ChronoField} then the query is implemented here.
 408      * The supported fields are:
 409      * <ul>
 410      * <li>{@code NANO_OF_SECOND}
 411      * <li>{@code MICRO_OF_SECOND}
 412      * <li>{@code MILLI_OF_SECOND}
 413      * <li>{@code INSTANT_SECONDS}
 414      * </ul>
 415      * All other {@code ChronoField} instances will return false.
 416      * <p>
 417      * If the field is not a {@code ChronoField}, then the result of this method
 418      * is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)}
 419      * passing {@code this} as the argument.
 420      * Whether the field is supported is determined by the field.
 421      *
 422      * @param field  the field to check, null returns false
 423      * @return true if the field is supported on this instant, false if not
 424      */
 425     @Override
 426     public boolean isSupported(TemporalField field) {
 427         if (field instanceof ChronoField) {
 428             return field == INSTANT_SECONDS || field == NANO_OF_SECOND || field == MICRO_OF_SECOND || field == MILLI_OF_SECOND;
 429         }
 430         return field != null && field.isSupportedBy(this);
 431     }
 432 
 433     /**
 434      * Gets the range of valid values for the specified field.
 435      * <p>
 436      * The range object expresses the minimum and maximum valid values for a field.
 437      * This instant is used to enhance the accuracy of the returned range.
 438      * If it is not possible to return the range, because the field is not supported
 439      * or for some other reason, an exception is thrown.
 440      * <p>
 441      * If the field is a {@link ChronoField} then the query is implemented here.
 442      * The {@link #isSupported(TemporalField) supported fields} will return
 443      * appropriate range instances.
 444      * All other {@code ChronoField} instances will throw a {@code DateTimeException}.
 445      * <p>
 446      * If the field is not a {@code ChronoField}, then the result of this method
 447      * is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)}
 448      * passing {@code this} as the argument.
 449      * Whether the range can be obtained is determined by the field.
 450      *
 451      * @param field  the field to query the range for, not null
 452      * @return the range of valid values for the field, not null
 453      * @throws DateTimeException if the range for the field cannot be obtained
 454      */
 455     @Override  // override for Javadoc
 456     public ValueRange range(TemporalField field) {
 457         return Temporal.super.range(field);
 458     }
 459 
 460     /**
 461      * Gets the value of the specified field from this instant as an {@code int}.
 462      * <p>
 463      * This queries this instant for the value for the specified field.
 464      * The returned value will always be within the valid range of values for the field.
 465      * If it is not possible to return the value, because the field is not supported
 466      * or for some other reason, an exception is thrown.
 467      * <p>
 468      * If the field is a {@link ChronoField} then the query is implemented here.
 469      * The {@link #isSupported(TemporalField) supported fields} will return valid
 470      * values based on this date-time, except {@code INSTANT_SECONDS} which is too
 471      * large to fit in an {@code int} and throws a {@code DateTimeException}.
 472      * All other {@code ChronoField} instances will throw a {@code DateTimeException}.
 473      * <p>
 474      * If the field is not a {@code ChronoField}, then the result of this method
 475      * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
 476      * passing {@code this} as the argument. Whether the value can be obtained,
 477      * and what the value represents, is determined by the field.
 478      *
 479      * @param field  the field to get, not null
 480      * @return the value for the field
 481      * @throws DateTimeException if a value for the field cannot be obtained
 482      * @throws ArithmeticException if numeric overflow occurs
 483      */
 484     @Override  // override for Javadoc and performance
 485     public int get(TemporalField field) {
 486         if (field instanceof ChronoField) {
 487             switch ((ChronoField) field) {
 488                 case NANO_OF_SECOND: return nanos;
 489                 case MICRO_OF_SECOND: return nanos / 1000;
 490                 case MILLI_OF_SECOND: return nanos / 1000_000;
 491                 case INSTANT_SECONDS: INSTANT_SECONDS.checkValidIntValue(seconds);
 492             }
 493             throw new DateTimeException("Unsupported field: " + field.getName());
 494         }
 495         return range(field).checkValidIntValue(field.getFrom(this), field);
 496     }
 497 
 498     /**
 499      * Gets the value of the specified field from this instant as a {@code long}.
 500      * <p>
 501      * This queries this instant for the value for the specified field.
 502      * If it is not possible to return the value, because the field is not supported
 503      * or for some other reason, an exception is thrown.
 504      * <p>
 505      * If the field is a {@link ChronoField} then the query is implemented here.
 506      * The {@link #isSupported(TemporalField) supported fields} will return valid
 507      * values based on this date-time.
 508      * All other {@code ChronoField} instances will throw a {@code DateTimeException}.
 509      * <p>
 510      * If the field is not a {@code ChronoField}, then the result of this method
 511      * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
 512      * passing {@code this} as the argument. Whether the value can be obtained,
 513      * and what the value represents, is determined by the field.
 514      *
 515      * @param field  the field to get, not null
 516      * @return the value for the field
 517      * @throws DateTimeException if a value for the field cannot be obtained
 518      * @throws ArithmeticException if numeric overflow occurs
 519      */
 520     @Override
 521     public long getLong(TemporalField field) {
 522         if (field instanceof ChronoField) {
 523             switch ((ChronoField) field) {
 524                 case NANO_OF_SECOND: return nanos;
 525                 case MICRO_OF_SECOND: return nanos / 1000;
 526                 case MILLI_OF_SECOND: return nanos / 1000_000;
 527                 case INSTANT_SECONDS: return seconds;
 528             }
 529             throw new DateTimeException("Unsupported field: " + field.getName());
 530         }
 531         return field.getFrom(this);
 532     }
 533 
 534     //-----------------------------------------------------------------------
 535     /**
 536      * Gets the number of seconds from the Java epoch of 1970-01-01T00:00:00Z.
 537      * <p>
 538      * The epoch second count is a simple incrementing count of seconds where
 539      * second 0 is 1970-01-01T00:00:00Z.
 540      * The nanosecond part of the day is returned by {@code getNanosOfSecond}.
 541      *
 542      * @return the seconds from the epoch of 1970-01-01T00:00:00Z
 543      */
 544     public long getEpochSecond() {
 545         return seconds;
 546     }
 547 
 548     /**
 549      * Gets the number of nanoseconds, later along the time-line, from the start
 550      * of the second.
 551      * <p>
 552      * The nanosecond-of-second value measures the total number of nanoseconds from
 553      * the second returned by {@code getEpochSecond}.
 554      *
 555      * @return the nanoseconds within the second, always positive, never exceeds 999,999,999
 556      */
 557     public int getNano() {
 558         return nanos;
 559     }
 560 
 561     //-------------------------------------------------------------------------
 562     /**
 563      * Returns an adjusted copy of this instant.
 564      * <p>
 565      * This returns an {@code Instant}, based on this one, with the instant adjusted.
 566      * The adjustment takes place using the specified adjuster strategy object.
 567      * Read the documentation of the adjuster to understand what adjustment will be made.
 568      * <p>
 569      * The result of this method is obtained by invoking the
 570      * {@link TemporalAdjuster#adjustInto(Temporal)} method on the
 571      * specified adjuster passing {@code this} as the argument.
 572      * <p>
 573      * This instance is immutable and unaffected by this method call.
 574      *
 575      * @param adjuster the adjuster to use, not null
 576      * @return an {@code Instant} based on {@code this} with the adjustment made, not null
 577      * @throws DateTimeException if the adjustment cannot be made
 578      * @throws ArithmeticException if numeric overflow occurs
 579      */
 580     @Override
 581     public Instant with(TemporalAdjuster adjuster) {
 582         return (Instant) adjuster.adjustInto(this);
 583     }
 584 
 585     /**
 586      * Returns a copy of this instant with the specified field set to a new value.
 587      * <p>
 588      * This returns an {@code Instant}, based on this one, with the value
 589      * for the specified field changed.
 590      * If it is not possible to set the value, because the field is not supported or for
 591      * some other reason, an exception is thrown.
 592      * <p>
 593      * If the field is a {@link ChronoField} then the adjustment is implemented here.
 594      * The supported fields behave as follows:
 595      * <ul>
 596      * <li>{@code NANO_OF_SECOND} -
 597      *  Returns an {@code Instant} with the specified nano-of-second.
 598      *  The epoch-second will be unchanged.
 599      * <li>{@code MICRO_OF_SECOND} -
 600      *  Returns an {@code Instant} with the nano-of-second replaced by the specified
 601      *  micro-of-second multiplied by 1,000. The epoch-second will be unchanged.
 602      * <li>{@code MILLI_OF_SECOND} -
 603      *  Returns an {@code Instant} with the nano-of-second replaced by the specified
 604      *  milli-of-second multiplied by 1,000,000. The epoch-second will be unchanged.
 605      * <li>{@code INSTANT_SECONDS} -
 606      *  Returns an {@code Instant} with the specified epoch-second.
 607      *  The nano-of-second will be unchanged.
 608      * </ul>
 609      * <p>
 610      * In all cases, if the new value is outside the valid range of values for the field
 611      * then a {@code DateTimeException} will be thrown.
 612      * <p>
 613      * All other {@code ChronoField} instances will throw a {@code DateTimeException}.
 614      * <p>
 615      * If the field is not a {@code ChronoField}, then the result of this method
 616      * is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)}
 617      * passing {@code this} as the argument. In this case, the field determines
 618      * whether and how to adjust the instant.
 619      * <p>
 620      * This instance is immutable and unaffected by this method call.
 621      *
 622      * @param field  the field to set in the result, not null
 623      * @param newValue  the new value of the field in the result
 624      * @return an {@code Instant} based on {@code this} with the specified field set, not null
 625      * @throws DateTimeException if the field cannot be set
 626      * @throws ArithmeticException if numeric overflow occurs
 627      */
 628     @Override
 629     public Instant with(TemporalField field, long newValue) {
 630         if (field instanceof ChronoField) {
 631             ChronoField f = (ChronoField) field;
 632             f.checkValidValue(newValue);
 633             switch (f) {
 634                 case MILLI_OF_SECOND: {
 635                     int nval = (int) newValue * 1000_000;
 636                     return (nval != nanos ? create(seconds, nval) : this);
 637                 }
 638                 case MICRO_OF_SECOND: {
 639                     int nval = (int) newValue * 1000;
 640                     return (nval != nanos ? create(seconds, nval) : this);
 641                 }
 642                 case NANO_OF_SECOND: return (newValue != nanos ? create(seconds, (int) newValue) : this);
 643                 case INSTANT_SECONDS: return (newValue != seconds ? create(newValue, nanos) : this);
 644             }
 645             throw new DateTimeException("Unsupported field: " + field.getName());
 646         }
 647         return field.adjustInto(this, newValue);
 648     }
 649 
 650     //-----------------------------------------------------------------------
 651     /**
 652      * Returns a copy of this {@code Instant} truncated to the specified unit.
 653      * <p>
 654      * Truncating the instant returns a copy of the original with fields
 655      * smaller than the specified unit set to zero.
 656      * The fields are calculated on the basis of using a UTC offset as seen
 657      * in {@code toString}.
 658      * For example, truncating with the {@link ChronoUnit#MINUTES MINUTES} unit will
 659      * round down to the nearest minute, setting the seconds and nanoseconds to zero.
 660      * <p>
 661      * The unit must have a {@linkplain TemporalUnit#getDuration() duration}
 662      * that divides into the length of a standard day without remainder.
 663      * This includes all supplied time units on {@link ChronoUnit} and
 664      * {@link ChronoUnit#DAYS DAYS}. Other units throw an exception.
 665      * <p>
 666      * This instance is immutable and unaffected by this method call.
 667      *
 668      * @param unit  the unit to truncate to, not null
 669      * @return an {@code Instant} based on this instant with the time truncated, not null
 670      * @throws DateTimeException if the unit is invalid for truncation
 671      */
 672     public Instant truncatedTo(TemporalUnit unit) {
 673         if (unit == ChronoUnit.NANOS) {
 674             return this;
 675         }
 676         Duration unitDur = unit.getDuration();
 677         if (unitDur.getSeconds() > LocalTime.SECONDS_PER_DAY) {
 678             throw new DateTimeException("Unit is too large to be used for truncation");
 679         }
 680         long dur = unitDur.toNanos();
 681         if ((LocalTime.NANOS_PER_DAY % dur) != 0) {
 682             throw new DateTimeException("Unit must divide into a standard day without remainder");
 683         }
 684         long nod = (seconds % LocalTime.SECONDS_PER_DAY) * LocalTime.NANOS_PER_SECOND + nanos;
 685         long result = (nod / dur) * dur;
 686         return plusNanos(result - nod);
 687     }
 688 
 689     //-----------------------------------------------------------------------
 690     /**
 691      * Returns a copy of this instant with the specified amount added.
 692      * <p>
 693      * This returns an {@code Instant}, based on this one, with the specified amount added.
 694      * The amount is typically {@link Duration} but may be any other type implementing
 695      * the {@link TemporalAmount} interface.
 696      * <p>
 697      * The calculation is delegated to the amount object by calling
 698      * {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free
 699      * to implement the addition in any way it wishes, however it typically
 700      * calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation
 701      * of the amount implementation to determine if it can be successfully added.
 702      * <p>
 703      * This instance is immutable and unaffected by this method call.
 704      *
 705      * @param amountToAdd  the amount to add, not null
 706      * @return an {@code Instant} based on this instant with the addition made, not null
 707      * @throws DateTimeException if the addition cannot be made
 708      * @throws ArithmeticException if numeric overflow occurs
 709      */
 710     @Override
 711     public Instant plus(TemporalAmount amountToAdd) {
 712         return (Instant) amountToAdd.addTo(this);
 713     }
 714 
 715     /**
 716      * Returns a copy of this instant with the specified amount added.
 717      * <p>
 718      * This returns an {@code Instant}, based on this one, with the amount
 719      * in terms of the unit added. If it is not possible to add the amount, because the
 720      * unit is not supported or for some other reason, an exception is thrown.
 721      * <p>
 722      * If the field is a {@link ChronoUnit} then the addition is implemented here.
 723      * The supported fields behave as follows:
 724      * <ul>
 725      * <li>{@code NANOS} -
 726      *  Returns a {@code Instant} with the specified number of nanoseconds added.
 727      *  This is equivalent to {@link #plusNanos(long)}.
 728      * <li>{@code MICROS} -
 729      *  Returns a {@code Instant} with the specified number of microseconds added.
 730      *  This is equivalent to {@link #plusNanos(long)} with the amount
 731      *  multiplied by 1,000.
 732      * <li>{@code MILLIS} -
 733      *  Returns a {@code Instant} with the specified number of milliseconds added.
 734      *  This is equivalent to {@link #plusNanos(long)} with the amount
 735      *  multiplied by 1,000,000.
 736      * <li>{@code SECONDS} -
 737      *  Returns a {@code Instant} with the specified number of seconds added.
 738      *  This is equivalent to {@link #plusSeconds(long)}.
 739      * <li>{@code MINUTES} -
 740      *  Returns a {@code Instant} with the specified number of minutes added.
 741      *  This is equivalent to {@link #plusSeconds(long)} with the amount
 742      *  multiplied by 60.
 743      * <li>{@code HOURS} -
 744      *  Returns a {@code Instant} with the specified number of hours added.
 745      *  This is equivalent to {@link #plusSeconds(long)} with the amount
 746      *  multiplied by 3,600.
 747      * <li>{@code HALF_DAYS} -
 748      *  Returns a {@code Instant} with the specified number of half-days added.
 749      *  This is equivalent to {@link #plusSeconds(long)} with the amount
 750      *  multiplied by 43,200 (12 hours).
 751      * <li>{@code DAYS} -
 752      *  Returns a {@code Instant} with the specified number of days added.
 753      *  This is equivalent to {@link #plusSeconds(long)} with the amount
 754      *  multiplied by 86,400 (24 hours).
 755      * </ul>
 756      * <p>
 757      * All other {@code ChronoUnit} instances will throw a {@code DateTimeException}.
 758      * <p>
 759      * If the field is not a {@code ChronoUnit}, then the result of this method
 760      * is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)}
 761      * passing {@code this} as the argument. In this case, the unit determines
 762      * whether and how to perform the addition.
 763      * <p>
 764      * This instance is immutable and unaffected by this method call.
 765      *
 766      * @param amountToAdd  the amount of the unit to add to the result, may be negative
 767      * @param unit  the unit of the amount to add, not null
 768      * @return an {@code Instant} based on this instant with the specified amount added, not null
 769      * @throws DateTimeException if the addition cannot be made
 770      * @throws ArithmeticException if numeric overflow occurs
 771      */
 772     @Override
 773     public Instant plus(long amountToAdd, TemporalUnit unit) {
 774         if (unit instanceof ChronoUnit) {
 775             switch ((ChronoUnit) unit) {
 776                 case NANOS: return plusNanos(amountToAdd);
 777                 case MICROS: return plus(amountToAdd / 1000_000, (amountToAdd % 1000_000) * 1000);
 778                 case MILLIS: return plusMillis(amountToAdd);
 779                 case SECONDS: return plusSeconds(amountToAdd);
 780                 case MINUTES: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_MINUTE));
 781                 case HOURS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_HOUR));
 782                 case HALF_DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY / 2));
 783                 case DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY));
 784             }
 785             throw new DateTimeException("Unsupported unit: " + unit.getName());
 786         }
 787         return unit.addTo(this, amountToAdd);
 788     }
 789 
 790     //-----------------------------------------------------------------------
 791     /**
 792      * Returns a copy of this instant with the specified duration in seconds added.
 793      * <p>
 794      * This instance is immutable and unaffected by this method call.
 795      *
 796      * @param secondsToAdd  the seconds to add, positive or negative
 797      * @return an {@code Instant} based on this instant with the specified seconds added, not null
 798      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 799      * @throws ArithmeticException if numeric overflow occurs
 800      */
 801     public Instant plusSeconds(long secondsToAdd) {
 802         return plus(secondsToAdd, 0);
 803     }
 804 
 805     /**
 806      * Returns a copy of this instant with the specified duration in milliseconds added.
 807      * <p>
 808      * This instance is immutable and unaffected by this method call.
 809      *
 810      * @param millisToAdd  the milliseconds to add, positive or negative
 811      * @return an {@code Instant} based on this instant with the specified milliseconds added, not null
 812      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 813      * @throws ArithmeticException if numeric overflow occurs
 814      */
 815     public Instant plusMillis(long millisToAdd) {
 816         return plus(millisToAdd / 1000, (millisToAdd % 1000) * 1000_000);
 817     }
 818 
 819     /**
 820      * Returns a copy of this instant with the specified duration in nanoseconds added.
 821      * <p>
 822      * This instance is immutable and unaffected by this method call.
 823      *
 824      * @param nanosToAdd  the nanoseconds to add, positive or negative
 825      * @return an {@code Instant} based on this instant with the specified nanoseconds added, not null
 826      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 827      * @throws ArithmeticException if numeric overflow occurs
 828      */
 829     public Instant plusNanos(long nanosToAdd) {
 830         return plus(0, nanosToAdd);
 831     }
 832 
 833     /**
 834      * Returns a copy of this instant with the specified duration added.
 835      * <p>
 836      * This instance is immutable and unaffected by this method call.
 837      *
 838      * @param secondsToAdd  the seconds to add, positive or negative
 839      * @param nanosToAdd  the nanos to add, positive or negative
 840      * @return an {@code Instant} based on this instant with the specified seconds added, not null
 841      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 842      * @throws ArithmeticException if numeric overflow occurs
 843      */
 844     private Instant plus(long secondsToAdd, long nanosToAdd) {
 845         if ((secondsToAdd | nanosToAdd) == 0) {
 846             return this;
 847         }
 848         long epochSec = Math.addExact(seconds, secondsToAdd);
 849         epochSec = Math.addExact(epochSec, nanosToAdd / NANOS_PER_SECOND);
 850         nanosToAdd = nanosToAdd % NANOS_PER_SECOND;
 851         long nanoAdjustment = nanos + nanosToAdd;  // safe int+NANOS_PER_SECOND
 852         return ofEpochSecond(epochSec, nanoAdjustment);
 853     }
 854 
 855     //-----------------------------------------------------------------------
 856     /**
 857      * Returns a copy of this instant with the specified amount subtracted.
 858      * <p>
 859      * This returns an {@code Instant}, based on this one, with the specified amount subtracted.
 860      * The amount is typically {@link Duration} but may be any other type implementing
 861      * the {@link TemporalAmount} interface.
 862      * <p>
 863      * The calculation is delegated to the amount object by calling
 864      * {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
 865      * to implement the subtraction in any way it wishes, however it typically
 866      * calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
 867      * of the amount implementation to determine if it can be successfully subtracted.
 868      * <p>
 869      * This instance is immutable and unaffected by this method call.
 870      *
 871      * @param amountToSubtract  the amount to subtract, not null
 872      * @return an {@code Instant} based on this instant with the subtraction made, not null
 873      * @throws DateTimeException if the subtraction cannot be made
 874      * @throws ArithmeticException if numeric overflow occurs
 875      */
 876     @Override
 877     public Instant minus(TemporalAmount amountToSubtract) {
 878         return (Instant) amountToSubtract.subtractFrom(this);
 879     }
 880 
 881     /**
 882      * Returns a copy of this instant with the specified amount subtracted.
 883      * <p>
 884      * This returns a {@code Instant}, based on this one, with the amount
 885      * in terms of the unit subtracted. If it is not possible to subtract the amount,
 886      * because the unit is not supported or for some other reason, an exception is thrown.
 887      * <p>
 888      * This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated.
 889      * See that method for a full description of how addition, and thus subtraction, works.
 890      * <p>
 891      * This instance is immutable and unaffected by this method call.
 892      *
 893      * @param amountToSubtract  the amount of the unit to subtract from the result, may be negative
 894      * @param unit  the unit of the amount to subtract, not null
 895      * @return an {@code Instant} based on this instant with the specified amount subtracted, not null
 896      * @throws DateTimeException if the subtraction cannot be made
 897      * @throws ArithmeticException if numeric overflow occurs
 898      */
 899     @Override
 900     public Instant minus(long amountToSubtract, TemporalUnit unit) {
 901         return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit));
 902     }
 903 
 904     //-----------------------------------------------------------------------
 905     /**
 906      * Returns a copy of this instant with the specified duration in seconds subtracted.
 907      * <p>
 908      * This instance is immutable and unaffected by this method call.
 909      *
 910      * @param secondsToSubtract  the seconds to subtract, positive or negative
 911      * @return an {@code Instant} based on this instant with the specified seconds subtracted, not null
 912      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 913      * @throws ArithmeticException if numeric overflow occurs
 914      */
 915     public Instant minusSeconds(long secondsToSubtract) {
 916         if (secondsToSubtract == Long.MIN_VALUE) {
 917             return plusSeconds(Long.MAX_VALUE).plusSeconds(1);
 918         }
 919         return plusSeconds(-secondsToSubtract);
 920     }
 921 
 922     /**
 923      * Returns a copy of this instant with the specified duration in milliseconds subtracted.
 924      * <p>
 925      * This instance is immutable and unaffected by this method call.
 926      *
 927      * @param millisToSubtract  the milliseconds to subtract, positive or negative
 928      * @return an {@code Instant} based on this instant with the specified milliseconds subtracted, not null
 929      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 930      * @throws ArithmeticException if numeric overflow occurs
 931      */
 932     public Instant minusMillis(long millisToSubtract) {
 933         if (millisToSubtract == Long.MIN_VALUE) {
 934             return plusMillis(Long.MAX_VALUE).plusMillis(1);
 935         }
 936         return plusMillis(-millisToSubtract);
 937     }
 938 
 939     /**
 940      * Returns a copy of this instant with the specified duration in nanoseconds subtracted.
 941      * <p>
 942      * This instance is immutable and unaffected by this method call.
 943      *
 944      * @param nanosToSubtract  the nanoseconds to subtract, positive or negative
 945      * @return an {@code Instant} based on this instant with the specified nanoseconds subtracted, not null
 946      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 947      * @throws ArithmeticException if numeric overflow occurs
 948      */
 949     public Instant minusNanos(long nanosToSubtract) {
 950         if (nanosToSubtract == Long.MIN_VALUE) {
 951             return plusNanos(Long.MAX_VALUE).plusNanos(1);
 952         }
 953         return plusNanos(-nanosToSubtract);
 954     }
 955 
 956     //-------------------------------------------------------------------------
 957     /**
 958      * Queries this instant using the specified query.
 959      * <p>
 960      * This queries this instant using the specified query strategy object.
 961      * The {@code TemporalQuery} object defines the logic to be used to
 962      * obtain the result. Read the documentation of the query to understand
 963      * what the result of this method will be.
 964      * <p>
 965      * The result of this method is obtained by invoking the
 966      * {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the
 967      * specified query passing {@code this} as the argument.
 968      *
 969      * @param <R> the type of the result
 970      * @param query  the query to invoke, not null
 971      * @return the query result, null may be returned (defined by the query)
 972      * @throws DateTimeException if unable to query (defined by the query)
 973      * @throws ArithmeticException if numeric overflow occurs (defined by the query)
 974      */
 975     @SuppressWarnings("unchecked")
 976     @Override
 977     public <R> R query(TemporalQuery<R> query) {
 978         if (query == Queries.precision()) {
 979             return (R) NANOS;
 980         }
 981         // inline TemporalAccessor.super.query(query) as an optimization
 982         if (query == Queries.chronology() || query == Queries.zoneId() || query == Queries.zone() || query == Queries.offset()) {
 983             return null;
 984         }
 985         return query.queryFrom(this);
 986     }
 987 
 988     /**
 989      * Adjusts the specified temporal object to have this instant.
 990      * <p>
 991      * This returns a temporal object of the same observable type as the input
 992      * with the instant changed to be the same as this.
 993      * <p>
 994      * The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)}
 995      * twice, passing {@link ChronoField#INSTANT_SECONDS} and
 996      * {@link ChronoField#NANO_OF_SECOND} as the fields.
 997      * <p>
 998      * In most cases, it is clearer to reverse the calling pattern by using
 999      * {@link Temporal#with(TemporalAdjuster)}:
1000      * <pre>
1001      *   // these two lines are equivalent, but the second approach is recommended
1002      *   temporal = thisInstant.adjustInto(temporal);
1003      *   temporal = temporal.with(thisInstant);
1004      * </pre>
1005      * <p>
1006      * This instance is immutable and unaffected by this method call.
1007      *
1008      * @param temporal  the target object to be adjusted, not null
1009      * @return the adjusted object, not null
1010      * @throws DateTimeException if unable to make the adjustment
1011      * @throws ArithmeticException if numeric overflow occurs
1012      */
1013     @Override
1014     public Temporal adjustInto(Temporal temporal) {
1015         return temporal.with(INSTANT_SECONDS, seconds).with(NANO_OF_SECOND, nanos);
1016     }
1017 
1018     /**
1019      * Calculates the period between this instant and another instant in
1020      * terms of the specified unit.
1021      * <p>
1022      * This calculates the period between two instants in terms of a single unit.
1023      * The start and end points are {@code this} and the specified instant.
1024      * The result will be negative if the end is before the start.
1025      * The calculation returns a whole number, representing the number of
1026      * complete units between the two instants.
1027      * The {@code Temporal} passed to this method must be an {@code Instant}.
1028      * For example, the period in days between two dates can be calculated
1029      * using {@code startInstant.periodUntil(endInstant, SECONDS)}.
1030      * <p>
1031      * This method operates in association with {@link TemporalUnit#between}.
1032      * The result of this method is a {@code long} representing the amount of
1033      * the specified unit. By contrast, the result of {@code between} is an
1034      * object that can be used directly in addition/subtraction:
1035      * <pre>
1036      *   long period = start.periodUntil(end, SECONDS);   // this method
1037      *   dateTime.plus(SECONDS.between(start, end));      // use in plus/minus
1038      * </pre>
1039      * <p>
1040      * The calculation is implemented in this method for {@link ChronoUnit}.
1041      * The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS},
1042      * {@code MINUTES}, {@code HOURS}, {@code HALF_DAYS} and {@code DAYS}
1043      * are supported. Other {@code ChronoUnit} values will throw an exception.
1044      * <p>
1045      * If the unit is not a {@code ChronoUnit}, then the result of this method
1046      * is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)}
1047      * passing {@code this} as the first argument and the input temporal as
1048      * the second argument.
1049      * <p>
1050      * This instance is immutable and unaffected by this method call.
1051      *
1052      * @param endInstant  the end date, which must be a {@code LocalDate}, not null
1053      * @param unit  the unit to measure the period in, not null
1054      * @return the amount of the period between this date and the end date
1055      * @throws DateTimeException if the period cannot be calculated
1056      * @throws ArithmeticException if numeric overflow occurs
1057      */
1058     @Override
1059     public long periodUntil(Temporal endInstant, TemporalUnit unit) {
1060         if (endInstant instanceof Instant == false) {
1061             Objects.requireNonNull(endInstant, "endInstant");
1062             throw new DateTimeException("Unable to calculate period between objects of two different types");
1063         }
1064         Instant end = (Instant) endInstant;
1065         if (unit instanceof ChronoUnit) {
1066             ChronoUnit f = (ChronoUnit) unit;
1067             switch (f) {
1068                 case NANOS: return nanosUntil(end);
1069                 case MICROS: return nanosUntil(end) / 1000;
1070                 case MILLIS: return Math.subtractExact(end.toEpochMilli(), toEpochMilli());
1071                 case SECONDS: return secondsUntil(end);
1072                 case MINUTES: return secondsUntil(end) / SECONDS_PER_MINUTE;
1073                 case HOURS: return secondsUntil(end) / SECONDS_PER_HOUR;
1074                 case HALF_DAYS: return secondsUntil(end) / (12 * SECONDS_PER_HOUR);
1075                 case DAYS: return secondsUntil(end) / (SECONDS_PER_DAY);
1076             }
1077             throw new DateTimeException("Unsupported unit: " + unit.getName());
1078         }
1079         return unit.between(this, endInstant);
1080     }
1081 
1082     private long nanosUntil(Instant end) {
1083         long secs = Math.multiplyExact(secondsUntil(end), NANOS_PER_SECOND);
1084         return Math.addExact(secs, end.nanos - nanos);
1085     }
1086 
1087     private long secondsUntil(Instant end) {
1088         return Math.subtractExact(end.seconds, seconds);
1089     }
1090 
1091     //-----------------------------------------------------------------------
1092     /**
1093      * Combines this instant with an offset to create an {@code OffsetDateTime}.
1094      * <p>
1095      * This returns an {@code OffsetDateTime} formed from this instant at the
1096      * specified offset from UTC/Greenwich. An exception will be thrown if the
1097      * instant is too large to fit into an offset date-time.
1098      * <p>
1099      * This method is equivalent to
1100      * {@link OffsetDateTime#ofInstant(Instant, ZoneId) OffsetDateTime.ofInstant(this, offset)}.
1101      *
1102      * @param offset  the offset to combine with, not null
1103      * @return the offset date-time formed from this instant and the specified offset, not null
1104      * @throws DateTimeException if the result exceeds the supported range
1105      */
1106     public OffsetDateTime atOffset(ZoneOffset offset) {
1107         return OffsetDateTime.ofInstant(this, offset);
1108     }
1109 
1110     /**
1111      * Combines this instant with a time-zone to create a {@code ZonedDateTime}.
1112      * <p>
1113      * This returns an {@code ZonedDateTime} formed from this instant at the
1114      * specified time-zone. An exception will be thrown if the instant is too
1115      * large to fit into a zoned date-time.
1116      * <p>
1117      * This method is equivalent to
1118      * {@link ZonedDateTime#ofInstant(Instant, ZoneId) ZonedDateTime.ofInstant(this, zone)}.
1119      *
1120      * @param zone  the zone to combine with, not null
1121      * @return the zoned date-time formed from this instant and the specified zone, not null
1122      * @throws DateTimeException if the result exceeds the supported range
1123      */
1124     public ZonedDateTime atZone(ZoneId zone) {
1125         return ZonedDateTime.ofInstant(this, zone);
1126     }
1127 
1128     //-----------------------------------------------------------------------
1129     /**
1130      * Converts this instant to the number of milliseconds from the epoch
1131      * of 1970-01-01T00:00:00Z.
1132      * <p>
1133      * If this instant represents a point on the time-line too far in the future
1134      * or past to fit in a {@code long} milliseconds, then an exception is thrown.
1135      * <p>
1136      * If this instant has greater than millisecond precision, then the conversion
1137      * will drop any excess precision information as though the amount in nanoseconds
1138      * was subject to integer division by one million.
1139      *
1140      * @return the number of milliseconds since the epoch of 1970-01-01T00:00:00Z
1141      * @throws ArithmeticException if numeric overflow occurs
1142      */
1143     public long toEpochMilli() {
1144         long millis = Math.multiplyExact(seconds, 1000);
1145         return millis + nanos / 1000_000;
1146     }
1147 
1148     //-----------------------------------------------------------------------
1149     /**
1150      * Compares this instant to the specified instant.
1151      * <p>
1152      * The comparison is based on the time-line position of the instants.
1153      * It is "consistent with equals", as defined by {@link Comparable}.
1154      *
1155      * @param otherInstant  the other instant to compare to, not null
1156      * @return the comparator value, negative if less, positive if greater
1157      * @throws NullPointerException if otherInstant is null
1158      */
1159     @Override
1160     public int compareTo(Instant otherInstant) {
1161         int cmp = Long.compare(seconds, otherInstant.seconds);
1162         if (cmp != 0) {
1163             return cmp;
1164         }
1165         return nanos - otherInstant.nanos;
1166     }
1167 
1168     /**
1169      * Checks if this instant is after the specified instant.
1170      * <p>
1171      * The comparison is based on the time-line position of the instants.
1172      *
1173      * @param otherInstant  the other instant to compare to, not null
1174      * @return true if this instant is after the specified instant
1175      * @throws NullPointerException if otherInstant is null
1176      */
1177     public boolean isAfter(Instant otherInstant) {
1178         return compareTo(otherInstant) > 0;
1179     }
1180 
1181     /**
1182      * Checks if this instant is before the specified instant.
1183      * <p>
1184      * The comparison is based on the time-line position of the instants.
1185      *
1186      * @param otherInstant  the other instant to compare to, not null
1187      * @return true if this instant is before the specified instant
1188      * @throws NullPointerException if otherInstant is null
1189      */
1190     public boolean isBefore(Instant otherInstant) {
1191         return compareTo(otherInstant) < 0;
1192     }
1193 
1194     //-----------------------------------------------------------------------
1195     /**
1196      * Checks if this instant is equal to the specified instant.
1197      * <p>
1198      * The comparison is based on the time-line position of the instants.
1199      *
1200      * @param otherInstant  the other instant, null returns false
1201      * @return true if the other instant is equal to this one
1202      */
1203     @Override
1204     public boolean equals(Object otherInstant) {
1205         if (this == otherInstant) {
1206             return true;
1207         }
1208         if (otherInstant instanceof Instant) {
1209             Instant other = (Instant) otherInstant;
1210             return this.seconds == other.seconds &&
1211                    this.nanos == other.nanos;
1212         }
1213         return false;
1214     }
1215 
1216     /**
1217      * Returns a hash code for this instant.
1218      *
1219      * @return a suitable hash code
1220      */
1221     @Override
1222     public int hashCode() {
1223         return ((int) (seconds ^ (seconds >>> 32))) + 51 * nanos;
1224     }
1225 
1226     //-----------------------------------------------------------------------
1227     /**
1228      * A string representation of this instant using ISO-8601 representation.
1229      * <p>
1230      * The format used is the same as {@link DateTimeFormatter#ISO_INSTANT}.
1231      *
1232      * @return an ISO-8601 representation of this instant, not null
1233      */
1234     @Override
1235     public String toString() {
1236         return DateTimeFormatter.ISO_INSTANT.format(this);
1237     }
1238 
1239     // -----------------------------------------------------------------------
1240     /**
1241      * Writes the object using a
1242      * <a href="../../serialized-form.html#java.time.Ser">dedicated serialized form</a>.
1243      * <pre>
1244      *  out.writeByte(2);  // identifies this as an Instant
1245      *  out.writeLong(seconds);
1246      *  out.writeInt(nanos);
1247      * </pre>
1248      *
1249      * @return the instance of {@code Ser}, not null
1250      */
1251     private Object writeReplace() {
1252         return new Ser(Ser.INSTANT_TYPE, this);
1253     }
1254 
1255     /**
1256      * Defend against malicious streams.
1257      * @return never
1258      * @throws InvalidObjectException always
1259      */
1260     private Object readResolve() throws ObjectStreamException {
1261         throw new InvalidObjectException("Deserialization via serialization delegate");
1262     }
1263 
1264     void writeExternal(DataOutput out) throws IOException {
1265         out.writeLong(seconds);
1266         out.writeInt(nanos);
1267     }
1268 
1269     static Instant readExternal(DataInput in) throws IOException {
1270         long seconds = in.readLong();
1271         int nanos = in.readInt();
1272         return Instant.ofEpochSecond(seconds, nanos);
1273     }
1274 
1275 }