1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * This file is available under and governed by the GNU General Public
  28  * License version 2 only, as published by the Free Software Foundation.
  29  * However, the following notice accompanied the original version of this
  30  * file:
  31  *
  32  * Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
  33  *
  34  * All rights reserved.
  35  *
  36  * Redistribution and use in source and binary forms, with or without
  37  * modification, are permitted provided that the following conditions are met:
  38  *
  39  *  * Redistributions of source code must retain the above copyright notice,
  40  *    this list of conditions and the following disclaimer.
  41  *
  42  *  * Redistributions in binary form must reproduce the above copyright notice,
  43  *    this list of conditions and the following disclaimer in the documentation
  44  *    and/or other materials provided with the distribution.
  45  *
  46  *  * Neither the name of JSR-310 nor the names of its contributors
  47  *    may be used to endorse or promote products derived from this software
  48  *    without specific prior written permission.
  49  *
  50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  54  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  55  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  56  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  57  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  58  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  59  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  60  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61  */
  62 package java.time;
  63 
  64 import static java.time.LocalTime.NANOS_PER_SECOND;
  65 import static java.time.LocalTime.SECONDS_PER_DAY;
  66 import static java.time.LocalTime.SECONDS_PER_HOUR;
  67 import static java.time.LocalTime.SECONDS_PER_MINUTE;
  68 import static java.time.temporal.ChronoField.INSTANT_SECONDS;
  69 import static java.time.temporal.ChronoField.MICRO_OF_SECOND;
  70 import static java.time.temporal.ChronoField.MILLI_OF_SECOND;
  71 import static java.time.temporal.ChronoField.NANO_OF_SECOND;
  72 import static java.time.temporal.ChronoUnit.DAYS;
  73 import static java.time.temporal.ChronoUnit.NANOS;
  74 
  75 import java.io.DataInput;
  76 import java.io.DataOutput;
  77 import java.io.IOException;
  78 import java.io.InvalidObjectException;
  79 import java.io.ObjectStreamException;
  80 import java.io.Serializable;
  81 import java.time.format.DateTimeFormatter;
  82 import java.time.format.DateTimeParseException;
  83 import java.time.temporal.ChronoField;
  84 import java.time.temporal.ChronoUnit;
  85 import java.time.temporal.Temporal;
  86 import java.time.temporal.TemporalAccessor;
  87 import java.time.temporal.TemporalAdjuster;
  88 import java.time.temporal.TemporalAmount;
  89 import java.time.temporal.TemporalField;
  90 import java.time.temporal.TemporalQuery;
  91 import java.time.temporal.TemporalUnit;
  92 import java.time.temporal.UnsupportedTemporalTypeException;
  93 import java.time.temporal.ValueRange;
  94 import java.util.Objects;
  95 
  96 /**
  97  * An instantaneous point on the time-line.
  98  * <p>
  99  * This class models a single instantaneous point on the time-line.
 100  * This might be used to record event time-stamps in the application.
 101  * <p>
 102  * For practicality, the instant is stored with some constraints.
 103  * The measurable time-line is restricted to the number of seconds that can be held
 104  * in a {@code long}. This is greater than the current estimated age of the universe.
 105  * The instant is stored to nanosecond resolution.
 106  * <p>
 107  * The range of an instant requires the storage of a number larger than a {@code long}.
 108  * To achieve this, the class stores a {@code long} representing epoch-seconds and an
 109  * {@code int} representing nanosecond-of-second, which will always be between 0 and 999,999,999.
 110  * The epoch-seconds are measured from the standard Java epoch of {@code 1970-01-01T00:00:00Z}
 111  * where instants after the epoch have positive values, and earlier instants have negative values.
 112  * For both the epoch-second and nanosecond parts, a larger value is always later on the time-line
 113  * than a smaller value.
 114  *
 115  * <h3>Time-scale</h3>
 116  * <p>
 117  * The length of the solar day is the standard way that humans measure time.
 118  * This has traditionally been subdivided into 24 hours of 60 minutes of 60 seconds,
 119  * forming a 86400 second day.
 120  * <p>
 121  * Modern timekeeping is based on atomic clocks which precisely define an SI second
 122  * relative to the transitions of a Caesium atom. The length of an SI second was defined
 123  * to be very close to the 86400th fraction of a day.
 124  * <p>
 125  * Unfortunately, as the Earth rotates the length of the day varies.
 126  * In addition, over time the average length of the day is getting longer as the Earth slows.
 127  * As a result, the length of a solar day in 2012 is slightly longer than 86400 SI seconds.
 128  * The actual length of any given day and the amount by which the Earth is slowing
 129  * are not predictable and can only be determined by measurement.
 130  * The UT1 time-scale captures the accurate length of day, but is only available some
 131  * time after the day has completed.
 132  * <p>
 133  * The UTC time-scale is a standard approach to bundle up all the additional fractions
 134  * of a second from UT1 into whole seconds, known as <i>leap-seconds</i>.
 135  * A leap-second may be added or removed depending on the Earth's rotational changes.
 136  * As such, UTC permits a day to have 86399 SI seconds or 86401 SI seconds where
 137  * necessary in order to keep the day aligned with the Sun.
 138  * <p>
 139  * The modern UTC time-scale was introduced in 1972, introducing the concept of whole leap-seconds.
 140  * Between 1958 and 1972, the definition of UTC was complex, with minor sub-second leaps and
 141  * alterations to the length of the notional second. As of 2012, discussions are underway
 142  * to change the definition of UTC again, with the potential to remove leap seconds or
 143  * introduce other changes.
 144  * <p>
 145  * Given the complexity of accurate timekeeping described above, this Java API defines
 146  * its own time-scale, the <i>Java Time-Scale</i>.
 147  * <p>
 148  * The Java Time-Scale divides each calendar day into exactly 86400
 149  * subdivisions, known as seconds.  These seconds may differ from the
 150  * SI second.  It closely matches the de facto international civil time
 151  * scale, the definition of which changes from time to time.
 152  * <p>
 153  * The Java Time-Scale has slightly different definitions for different
 154  * segments of the time-line, each based on the consensus international
 155  * time scale that is used as the basis for civil time. Whenever the
 156  * internationally-agreed time scale is modified or replaced, a new
 157  * segment of the Java Time-Scale must be defined for it.  Each segment
 158  * must meet these requirements:
 159  * <p><ul>
 160  * <li>the Java Time-Scale shall closely match the underlying international
 161  *  civil time scale;</li>
 162  * <li>the Java Time-Scale shall exactly match the international civil
 163  *  time scale at noon each day;</li>
 164  * <li>the Java Time-Scale shall have a precisely-defined relationship to
 165  *  the international civil time scale.</li>
 166  * </ul><p>
 167  * There are currently, as of 2013, two segments in the Java time-scale.
 168  * <p>
 169  * For the segment from 1972-11-03 (exact boundary discussed below) until
 170  * further notice, the consensus international time scale is UTC (with
 171  * leap seconds).  In this segment, the Java Time-Scale is identical to
 172  * <a href="http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/">UTC-SLS</a>.
 173  * This is identical to UTC on days that do not have a leap second.
 174  * On days that do have a leap second, the leap second is spread equally
 175  * over the last 1000 seconds of the day, maintaining the appearance of
 176  * exactly 86400 seconds per day.
 177  * <p>
 178  * For the segment prior to 1972-11-03, extending back arbitrarily far,
 179  * the consensus international time scale is defined to be UT1, applied
 180  * proleptically, which is equivalent to the (mean) solar time on the
 181  * prime meridian (Greenwich). In this segment, the Java Time-Scale is
 182  * identical to the consensus international time scale. The exact
 183  * boundary between the two segments is the instant where UT1 = UTC
 184  * between 1972-11-03T00:00 and 1972-11-04T12:00.
 185  * <p>
 186  * Implementations of the Java time-scale using the JSR-310 API are not
 187  * required to provide any clock that is sub-second accurate, or that
 188  * progresses monotonically or smoothly. Implementations are therefore
 189  * not required to actually perform the UTC-SLS slew or to otherwise be
 190  * aware of leap seconds. JSR-310 does, however, require that
 191  * implementations must document the approach they use when defining a
 192  * clock representing the current instant.
 193  * See {@link Clock} for details on the available clocks.
 194  * <p>
 195  * The Java time-scale is used for all date-time classes.
 196  * This includes {@code Instant}, {@code LocalDate}, {@code LocalTime}, {@code OffsetDateTime},
 197  * {@code ZonedDateTime} and {@code Duration}.
 198  *
 199  * @implSpec
 200  * This class is immutable and thread-safe.
 201  *
 202  * @since 1.8
 203  */
 204 public final class Instant
 205         implements Temporal, TemporalAdjuster, Comparable<Instant>, Serializable {
 206 
 207     /**
 208      * Constant for the 1970-01-01T00:00:00Z epoch instant.
 209      */
 210     public static final Instant EPOCH = new Instant(0, 0);
 211     /**
 212      * The minimum supported epoch second.
 213      */
 214     private static final long MIN_SECOND = -31557014167219200L;
 215     /**
 216      * The maximum supported epoch second.
 217      */
 218     private static final long MAX_SECOND = 31556889864403199L;
 219     /**
 220      * The minimum supported {@code Instant}, '-1000000000-01-01T00:00Z'.
 221      * This could be used by an application as a "far past" instant.
 222      * <p>
 223      * This is one year earlier than the minimum {@code LocalDateTime}.
 224      * This provides sufficient values to handle the range of {@code ZoneOffset}
 225      * which affect the instant in addition to the local date-time.
 226      * The value is also chosen such that the value of the year fits in
 227      * an {@code int}.
 228      */
 229     public static final Instant MIN = Instant.ofEpochSecond(MIN_SECOND, 0);
 230     /**
 231      * The maximum supported {@code Instant}, '1000000000-12-31T23:59:59.999999999Z'.
 232      * This could be used by an application as a "far future" instant.
 233      * <p>
 234      * This is one year later than the maximum {@code LocalDateTime}.
 235      * This provides sufficient values to handle the range of {@code ZoneOffset}
 236      * which affect the instant in addition to the local date-time.
 237      * The value is also chosen such that the value of the year fits in
 238      * an {@code int}.
 239      */
 240     public static final Instant MAX = Instant.ofEpochSecond(MAX_SECOND, 999_999_999);
 241 
 242     /**
 243      * Serialization version.
 244      */
 245     private static final long serialVersionUID = -665713676816604388L;
 246 
 247     /**
 248      * The number of seconds from the epoch of 1970-01-01T00:00:00Z.
 249      */
 250     private final long seconds;
 251     /**
 252      * The number of nanoseconds, later along the time-line, from the seconds field.
 253      * This is always positive, and never exceeds 999,999,999.
 254      */
 255     private final int nanos;
 256 
 257     //-----------------------------------------------------------------------
 258     /**
 259      * Obtains the current instant from the system clock.
 260      * <p>
 261      * This will query the {@link Clock#systemUTC() system UTC clock} to
 262      * obtain the current instant.
 263      * <p>
 264      * Using this method will prevent the ability to use an alternate time-source for
 265      * testing because the clock is effectively hard-coded.
 266      *
 267      * @return the current instant using the system clock, not null
 268      */
 269     public static Instant now() {
 270         return Clock.systemUTC().instant();
 271     }
 272 
 273     /**
 274      * Obtains the current instant from the specified clock.
 275      * <p>
 276      * This will query the specified clock to obtain the current time.
 277      * <p>
 278      * Using this method allows the use of an alternate clock for testing.
 279      * The alternate clock may be introduced using {@link Clock dependency injection}.
 280      *
 281      * @param clock  the clock to use, not null
 282      * @return the current instant, not null
 283      */
 284     public static Instant now(Clock clock) {
 285         Objects.requireNonNull(clock, "clock");
 286         return clock.instant();
 287     }
 288 
 289     //-----------------------------------------------------------------------
 290     /**
 291      * Obtains an instance of {@code Instant} using seconds from the
 292      * epoch of 1970-01-01T00:00:00Z.
 293      * <p>
 294      * The nanosecond field is set to zero.
 295      *
 296      * @param epochSecond  the number of seconds from 1970-01-01T00:00:00Z
 297      * @return an instant, not null
 298      * @throws DateTimeException if the instant exceeds the maximum or minimum instant
 299      */
 300     public static Instant ofEpochSecond(long epochSecond) {
 301         return create(epochSecond, 0);
 302     }
 303 
 304     /**
 305      * Obtains an instance of {@code Instant} using seconds from the
 306      * epoch of 1970-01-01T00:00:00Z and nanosecond fraction of second.
 307      * <p>
 308      * This method allows an arbitrary number of nanoseconds to be passed in.
 309      * The factory will alter the values of the second and nanosecond in order
 310      * to ensure that the stored nanosecond is in the range 0 to 999,999,999.
 311      * For example, the following will result in the exactly the same instant:
 312      * <pre>
 313      *  Instant.ofEpochSecond(3, 1);
 314      *  Instant.ofEpochSecond(4, -999_999_999);
 315      *  Instant.ofEpochSecond(2, 1000_000_001);
 316      * </pre>
 317      *
 318      * @param epochSecond  the number of seconds from 1970-01-01T00:00:00Z
 319      * @param nanoAdjustment  the nanosecond adjustment to the number of seconds, positive or negative
 320      * @return an instant, not null
 321      * @throws DateTimeException if the instant exceeds the maximum or minimum instant
 322      * @throws ArithmeticException if numeric overflow occurs
 323      */
 324     public static Instant ofEpochSecond(long epochSecond, long nanoAdjustment) {
 325         long secs = Math.addExact(epochSecond, Math.floorDiv(nanoAdjustment, NANOS_PER_SECOND));
 326         int nos = (int)Math.floorMod(nanoAdjustment, NANOS_PER_SECOND);
 327         return create(secs, nos);
 328     }
 329 
 330     /**
 331      * Obtains an instance of {@code Instant} using milliseconds from the
 332      * epoch of 1970-01-01T00:00:00Z.
 333      * <p>
 334      * The seconds and nanoseconds are extracted from the specified milliseconds.
 335      *
 336      * @param epochMilli  the number of milliseconds from 1970-01-01T00:00:00Z
 337      * @return an instant, not null
 338      * @throws DateTimeException if the instant exceeds the maximum or minimum instant
 339      */
 340     public static Instant ofEpochMilli(long epochMilli) {
 341         long secs = Math.floorDiv(epochMilli, 1000);
 342         int mos = (int)Math.floorMod(epochMilli, 1000);
 343         return create(secs, mos * 1000_000);
 344     }
 345 
 346     //-----------------------------------------------------------------------
 347     /**
 348      * Obtains an instance of {@code Instant} from a temporal object.
 349      * <p>
 350      * This obtains an instant based on the specified temporal.
 351      * A {@code TemporalAccessor} represents an arbitrary set of date and time information,
 352      * which this factory converts to an instance of {@code Instant}.
 353      * <p>
 354      * The conversion extracts the {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
 355      * and {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} fields.
 356      * <p>
 357      * This method matches the signature of the functional interface {@link TemporalQuery}
 358      * allowing it to be used as a query via method reference, {@code Instant::from}.
 359      *
 360      * @param temporal  the temporal object to convert, not null
 361      * @return the instant, not null
 362      * @throws DateTimeException if unable to convert to an {@code Instant}
 363      */
 364     public static Instant from(TemporalAccessor temporal) {
 365         long instantSecs = temporal.getLong(INSTANT_SECONDS);
 366         int nanoOfSecond = temporal.get(NANO_OF_SECOND);
 367         return Instant.ofEpochSecond(instantSecs, nanoOfSecond);
 368     }
 369 
 370     //-----------------------------------------------------------------------
 371     /**
 372      * Obtains an instance of {@code Instant} from a text string such as
 373      * {@code 2007-12-03T10:15:30:00}.
 374      * <p>
 375      * The string must represent a valid instant in UTC and is parsed using
 376      * {@link DateTimeFormatter#ISO_INSTANT}.
 377      *
 378      * @param text  the text to parse, not null
 379      * @return the parsed instant, not null
 380      * @throws DateTimeParseException if the text cannot be parsed
 381      */
 382     public static Instant parse(final CharSequence text) {
 383         return DateTimeFormatter.ISO_INSTANT.parse(text, Instant::from);
 384     }
 385 
 386     //-----------------------------------------------------------------------
 387     /**
 388      * Obtains an instance of {@code Instant} using seconds and nanoseconds.
 389      *
 390      * @param seconds  the length of the duration in seconds
 391      * @param nanoOfSecond  the nano-of-second, from 0 to 999,999,999
 392      * @throws DateTimeException if the instant exceeds the maximum or minimum instant
 393      */
 394     private static Instant create(long seconds, int nanoOfSecond) {
 395         if ((seconds | nanoOfSecond) == 0) {
 396             return EPOCH;
 397         }
 398         if (seconds < MIN_SECOND || seconds > MAX_SECOND) {
 399             throw new DateTimeException("Instant exceeds minimum or maximum instant");
 400         }
 401         return new Instant(seconds, nanoOfSecond);
 402     }
 403 
 404     /**
 405      * Constructs an instance of {@code Instant} using seconds from the epoch of
 406      * 1970-01-01T00:00:00Z and nanosecond fraction of second.
 407      *
 408      * @param epochSecond  the number of seconds from 1970-01-01T00:00:00Z
 409      * @param nanos  the nanoseconds within the second, must be positive
 410      */
 411     private Instant(long epochSecond, int nanos) {
 412         super();
 413         this.seconds = epochSecond;
 414         this.nanos = nanos;
 415     }
 416 
 417     //-----------------------------------------------------------------------
 418     /**
 419      * Checks if the specified field is supported.
 420      * <p>
 421      * This checks if this instant can be queried for the specified field.
 422      * If false, then calling the {@link #range(TemporalField) range},
 423      * {@link #get(TemporalField) get} and {@link #with(TemporalField, long)}
 424      * methods will throw an exception.
 425      * <p>
 426      * If the field is a {@link ChronoField} then the query is implemented here.
 427      * The supported fields are:
 428      * <ul>
 429      * <li>{@code NANO_OF_SECOND}
 430      * <li>{@code MICRO_OF_SECOND}
 431      * <li>{@code MILLI_OF_SECOND}
 432      * <li>{@code INSTANT_SECONDS}
 433      * </ul>
 434      * All other {@code ChronoField} instances will return false.
 435      * <p>
 436      * If the field is not a {@code ChronoField}, then the result of this method
 437      * is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)}
 438      * passing {@code this} as the argument.
 439      * Whether the field is supported is determined by the field.
 440      *
 441      * @param field  the field to check, null returns false
 442      * @return true if the field is supported on this instant, false if not
 443      */
 444     @Override
 445     public boolean isSupported(TemporalField field) {
 446         if (field instanceof ChronoField) {
 447             return field == INSTANT_SECONDS || field == NANO_OF_SECOND || field == MICRO_OF_SECOND || field == MILLI_OF_SECOND;
 448         }
 449         return field != null && field.isSupportedBy(this);
 450     }
 451 
 452     /**
 453      * Checks if the specified unit is supported.
 454      * <p>
 455      * This checks if the specified unit can be added to, or subtracted from, this date-time.
 456      * If false, then calling the {@link #plus(long, TemporalUnit)} and
 457      * {@link #minus(long, TemporalUnit) minus} methods will throw an exception.
 458      * <p>
 459      * If the unit is a {@link ChronoUnit} then the query is implemented here.
 460      * The supported units are:
 461      * <ul>
 462      * <li>{@code NANOS}
 463      * <li>{@code MICROS}
 464      * <li>{@code MILLIS}
 465      * <li>{@code SECONDS}
 466      * <li>{@code MINUTES}
 467      * <li>{@code HOURS}
 468      * <li>{@code HALF_DAYS}
 469      * <li>{@code DAYS}
 470      * </ul>
 471      * All other {@code ChronoUnit} instances will return false.
 472      * <p>
 473      * If the unit is not a {@code ChronoUnit}, then the result of this method
 474      * is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)}
 475      * passing {@code this} as the argument.
 476      * Whether the unit is supported is determined by the unit.
 477      *
 478      * @param unit  the unit to check, null returns false
 479      * @return true if the unit can be added/subtracted, false if not
 480      */
 481     @Override
 482     public boolean isSupported(TemporalUnit unit) {
 483         if (unit instanceof ChronoUnit) {
 484             return unit.isTimeBased() || unit == DAYS;
 485         }
 486         return unit != null && unit.isSupportedBy(this);
 487     }
 488 
 489     //-----------------------------------------------------------------------
 490     /**
 491      * Gets the range of valid values for the specified field.
 492      * <p>
 493      * The range object expresses the minimum and maximum valid values for a field.
 494      * This instant is used to enhance the accuracy of the returned range.
 495      * If it is not possible to return the range, because the field is not supported
 496      * or for some other reason, an exception is thrown.
 497      * <p>
 498      * If the field is a {@link ChronoField} then the query is implemented here.
 499      * The {@link #isSupported(TemporalField) supported fields} will return
 500      * appropriate range instances.
 501      * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
 502      * <p>
 503      * If the field is not a {@code ChronoField}, then the result of this method
 504      * is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)}
 505      * passing {@code this} as the argument.
 506      * Whether the range can be obtained is determined by the field.
 507      *
 508      * @param field  the field to query the range for, not null
 509      * @return the range of valid values for the field, not null
 510      * @throws DateTimeException if the range for the field cannot be obtained
 511      * @throws UnsupportedTemporalTypeException if the field is not supported
 512      */
 513     @Override  // override for Javadoc
 514     public ValueRange range(TemporalField field) {
 515         return Temporal.super.range(field);
 516     }
 517 
 518     /**
 519      * Gets the value of the specified field from this instant as an {@code int}.
 520      * <p>
 521      * This queries this instant for the value for the specified field.
 522      * The returned value will always be within the valid range of values for the field.
 523      * If it is not possible to return the value, because the field is not supported
 524      * or for some other reason, an exception is thrown.
 525      * <p>
 526      * If the field is a {@link ChronoField} then the query is implemented here.
 527      * The {@link #isSupported(TemporalField) supported fields} will return valid
 528      * values based on this date-time, except {@code INSTANT_SECONDS} which is too
 529      * large to fit in an {@code int} and throws a {@code DateTimeException}.
 530      * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
 531      * <p>
 532      * If the field is not a {@code ChronoField}, then the result of this method
 533      * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
 534      * passing {@code this} as the argument. Whether the value can be obtained,
 535      * and what the value represents, is determined by the field.
 536      *
 537      * @param field  the field to get, not null
 538      * @return the value for the field
 539      * @throws DateTimeException if a value for the field cannot be obtained or
 540      *         the value is outside the range of valid values for the field
 541      * @throws UnsupportedTemporalTypeException if the field is not supported or
 542      *         the range of values exceeds an {@code int}
 543      * @throws ArithmeticException if numeric overflow occurs
 544      */
 545     @Override  // override for Javadoc and performance
 546     public int get(TemporalField field) {
 547         if (field instanceof ChronoField) {
 548             switch ((ChronoField) field) {
 549                 case NANO_OF_SECOND: return nanos;
 550                 case MICRO_OF_SECOND: return nanos / 1000;
 551                 case MILLI_OF_SECOND: return nanos / 1000_000;
 552                 case INSTANT_SECONDS: INSTANT_SECONDS.checkValidIntValue(seconds);
 553             }
 554             throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
 555         }
 556         return range(field).checkValidIntValue(field.getFrom(this), field);
 557     }
 558 
 559     /**
 560      * Gets the value of the specified field from this instant as a {@code long}.
 561      * <p>
 562      * This queries this instant for the value for the specified field.
 563      * If it is not possible to return the value, because the field is not supported
 564      * or for some other reason, an exception is thrown.
 565      * <p>
 566      * If the field is a {@link ChronoField} then the query is implemented here.
 567      * The {@link #isSupported(TemporalField) supported fields} will return valid
 568      * values based on this date-time.
 569      * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
 570      * <p>
 571      * If the field is not a {@code ChronoField}, then the result of this method
 572      * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
 573      * passing {@code this} as the argument. Whether the value can be obtained,
 574      * and what the value represents, is determined by the field.
 575      *
 576      * @param field  the field to get, not null
 577      * @return the value for the field
 578      * @throws DateTimeException if a value for the field cannot be obtained
 579      * @throws UnsupportedTemporalTypeException if the field is not supported
 580      * @throws ArithmeticException if numeric overflow occurs
 581      */
 582     @Override
 583     public long getLong(TemporalField field) {
 584         if (field instanceof ChronoField) {
 585             switch ((ChronoField) field) {
 586                 case NANO_OF_SECOND: return nanos;
 587                 case MICRO_OF_SECOND: return nanos / 1000;
 588                 case MILLI_OF_SECOND: return nanos / 1000_000;
 589                 case INSTANT_SECONDS: return seconds;
 590             }
 591             throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
 592         }
 593         return field.getFrom(this);
 594     }
 595 
 596     //-----------------------------------------------------------------------
 597     /**
 598      * Gets the number of seconds from the Java epoch of 1970-01-01T00:00:00Z.
 599      * <p>
 600      * The epoch second count is a simple incrementing count of seconds where
 601      * second 0 is 1970-01-01T00:00:00Z.
 602      * The nanosecond part of the day is returned by {@code getNanosOfSecond}.
 603      *
 604      * @return the seconds from the epoch of 1970-01-01T00:00:00Z
 605      */
 606     public long getEpochSecond() {
 607         return seconds;
 608     }
 609 
 610     /**
 611      * Gets the number of nanoseconds, later along the time-line, from the start
 612      * of the second.
 613      * <p>
 614      * The nanosecond-of-second value measures the total number of nanoseconds from
 615      * the second returned by {@code getEpochSecond}.
 616      *
 617      * @return the nanoseconds within the second, always positive, never exceeds 999,999,999
 618      */
 619     public int getNano() {
 620         return nanos;
 621     }
 622 
 623     //-------------------------------------------------------------------------
 624     /**
 625      * Returns an adjusted copy of this instant.
 626      * <p>
 627      * This returns an {@code Instant}, based on this one, with the instant adjusted.
 628      * The adjustment takes place using the specified adjuster strategy object.
 629      * Read the documentation of the adjuster to understand what adjustment will be made.
 630      * <p>
 631      * The result of this method is obtained by invoking the
 632      * {@link TemporalAdjuster#adjustInto(Temporal)} method on the
 633      * specified adjuster passing {@code this} as the argument.
 634      * <p>
 635      * This instance is immutable and unaffected by this method call.
 636      *
 637      * @param adjuster the adjuster to use, not null
 638      * @return an {@code Instant} based on {@code this} with the adjustment made, not null
 639      * @throws DateTimeException if the adjustment cannot be made
 640      * @throws ArithmeticException if numeric overflow occurs
 641      */
 642     @Override
 643     public Instant with(TemporalAdjuster adjuster) {
 644         return (Instant) adjuster.adjustInto(this);
 645     }
 646 
 647     /**
 648      * Returns a copy of this instant with the specified field set to a new value.
 649      * <p>
 650      * This returns an {@code Instant}, based on this one, with the value
 651      * for the specified field changed.
 652      * If it is not possible to set the value, because the field is not supported or for
 653      * some other reason, an exception is thrown.
 654      * <p>
 655      * If the field is a {@link ChronoField} then the adjustment is implemented here.
 656      * The supported fields behave as follows:
 657      * <ul>
 658      * <li>{@code NANO_OF_SECOND} -
 659      *  Returns an {@code Instant} with the specified nano-of-second.
 660      *  The epoch-second will be unchanged.
 661      * <li>{@code MICRO_OF_SECOND} -
 662      *  Returns an {@code Instant} with the nano-of-second replaced by the specified
 663      *  micro-of-second multiplied by 1,000. The epoch-second will be unchanged.
 664      * <li>{@code MILLI_OF_SECOND} -
 665      *  Returns an {@code Instant} with the nano-of-second replaced by the specified
 666      *  milli-of-second multiplied by 1,000,000. The epoch-second will be unchanged.
 667      * <li>{@code INSTANT_SECONDS} -
 668      *  Returns an {@code Instant} with the specified epoch-second.
 669      *  The nano-of-second will be unchanged.
 670      * </ul>
 671      * <p>
 672      * In all cases, if the new value is outside the valid range of values for the field
 673      * then a {@code DateTimeException} will be thrown.
 674      * <p>
 675      * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
 676      * <p>
 677      * If the field is not a {@code ChronoField}, then the result of this method
 678      * is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)}
 679      * passing {@code this} as the argument. In this case, the field determines
 680      * whether and how to adjust the instant.
 681      * <p>
 682      * This instance is immutable and unaffected by this method call.
 683      *
 684      * @param field  the field to set in the result, not null
 685      * @param newValue  the new value of the field in the result
 686      * @return an {@code Instant} based on {@code this} with the specified field set, not null
 687      * @throws DateTimeException if the field cannot be set
 688      * @throws UnsupportedTemporalTypeException if the field is not supported
 689      * @throws ArithmeticException if numeric overflow occurs
 690      */
 691     @Override
 692     public Instant with(TemporalField field, long newValue) {
 693         if (field instanceof ChronoField) {
 694             ChronoField f = (ChronoField) field;
 695             f.checkValidValue(newValue);
 696             switch (f) {
 697                 case MILLI_OF_SECOND: {
 698                     int nval = (int) newValue * 1000_000;
 699                     return (nval != nanos ? create(seconds, nval) : this);
 700                 }
 701                 case MICRO_OF_SECOND: {
 702                     int nval = (int) newValue * 1000;
 703                     return (nval != nanos ? create(seconds, nval) : this);
 704                 }
 705                 case NANO_OF_SECOND: return (newValue != nanos ? create(seconds, (int) newValue) : this);
 706                 case INSTANT_SECONDS: return (newValue != seconds ? create(newValue, nanos) : this);
 707             }
 708             throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
 709         }
 710         return field.adjustInto(this, newValue);
 711     }
 712 
 713     //-----------------------------------------------------------------------
 714     /**
 715      * Returns a copy of this {@code Instant} truncated to the specified unit.
 716      * <p>
 717      * Truncating the instant returns a copy of the original with fields
 718      * smaller than the specified unit set to zero.
 719      * The fields are calculated on the basis of using a UTC offset as seen
 720      * in {@code toString}.
 721      * For example, truncating with the {@link ChronoUnit#MINUTES MINUTES} unit will
 722      * round down to the nearest minute, setting the seconds and nanoseconds to zero.
 723      * <p>
 724      * The unit must have a {@linkplain TemporalUnit#getDuration() duration}
 725      * that divides into the length of a standard day without remainder.
 726      * This includes all supplied time units on {@link ChronoUnit} and
 727      * {@link ChronoUnit#DAYS DAYS}. Other units throw an exception.
 728      * <p>
 729      * This instance is immutable and unaffected by this method call.
 730      *
 731      * @param unit  the unit to truncate to, not null
 732      * @return an {@code Instant} based on this instant with the time truncated, not null
 733      * @throws DateTimeException if the unit is invalid for truncation
 734      * @throws UnsupportedTemporalTypeException if the unit is not supported
 735      */
 736     public Instant truncatedTo(TemporalUnit unit) {
 737         if (unit == ChronoUnit.NANOS) {
 738             return this;
 739         }
 740         Duration unitDur = unit.getDuration();
 741         if (unitDur.getSeconds() > LocalTime.SECONDS_PER_DAY) {
 742             throw new UnsupportedTemporalTypeException("Unit is too large to be used for truncation");
 743         }
 744         long dur = unitDur.toNanos();
 745         if ((LocalTime.NANOS_PER_DAY % dur) != 0) {
 746             throw new UnsupportedTemporalTypeException("Unit must divide into a standard day without remainder");
 747         }
 748         long nod = (seconds % LocalTime.SECONDS_PER_DAY) * LocalTime.NANOS_PER_SECOND + nanos;
 749         long result = (nod / dur) * dur;
 750         return plusNanos(result - nod);
 751     }
 752 
 753     //-----------------------------------------------------------------------
 754     /**
 755      * Returns a copy of this instant with the specified amount added.
 756      * <p>
 757      * This returns an {@code Instant}, based on this one, with the specified amount added.
 758      * The amount is typically {@link Duration} but may be any other type implementing
 759      * the {@link TemporalAmount} interface.
 760      * <p>
 761      * The calculation is delegated to the amount object by calling
 762      * {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free
 763      * to implement the addition in any way it wishes, however it typically
 764      * calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation
 765      * of the amount implementation to determine if it can be successfully added.
 766      * <p>
 767      * This instance is immutable and unaffected by this method call.
 768      *
 769      * @param amountToAdd  the amount to add, not null
 770      * @return an {@code Instant} based on this instant with the addition made, not null
 771      * @throws DateTimeException if the addition cannot be made
 772      * @throws ArithmeticException if numeric overflow occurs
 773      */
 774     @Override
 775     public Instant plus(TemporalAmount amountToAdd) {
 776         return (Instant) amountToAdd.addTo(this);
 777     }
 778 
 779     /**
 780      * Returns a copy of this instant with the specified amount added.
 781      * <p>
 782      * This returns an {@code Instant}, based on this one, with the amount
 783      * in terms of the unit added. If it is not possible to add the amount, because the
 784      * unit is not supported or for some other reason, an exception is thrown.
 785      * <p>
 786      * If the field is a {@link ChronoUnit} then the addition is implemented here.
 787      * The supported fields behave as follows:
 788      * <ul>
 789      * <li>{@code NANOS} -
 790      *  Returns a {@code Instant} with the specified number of nanoseconds added.
 791      *  This is equivalent to {@link #plusNanos(long)}.
 792      * <li>{@code MICROS} -
 793      *  Returns a {@code Instant} with the specified number of microseconds added.
 794      *  This is equivalent to {@link #plusNanos(long)} with the amount
 795      *  multiplied by 1,000.
 796      * <li>{@code MILLIS} -
 797      *  Returns a {@code Instant} with the specified number of milliseconds added.
 798      *  This is equivalent to {@link #plusNanos(long)} with the amount
 799      *  multiplied by 1,000,000.
 800      * <li>{@code SECONDS} -
 801      *  Returns a {@code Instant} with the specified number of seconds added.
 802      *  This is equivalent to {@link #plusSeconds(long)}.
 803      * <li>{@code MINUTES} -
 804      *  Returns a {@code Instant} with the specified number of minutes added.
 805      *  This is equivalent to {@link #plusSeconds(long)} with the amount
 806      *  multiplied by 60.
 807      * <li>{@code HOURS} -
 808      *  Returns a {@code Instant} with the specified number of hours added.
 809      *  This is equivalent to {@link #plusSeconds(long)} with the amount
 810      *  multiplied by 3,600.
 811      * <li>{@code HALF_DAYS} -
 812      *  Returns a {@code Instant} with the specified number of half-days added.
 813      *  This is equivalent to {@link #plusSeconds(long)} with the amount
 814      *  multiplied by 43,200 (12 hours).
 815      * <li>{@code DAYS} -
 816      *  Returns a {@code Instant} with the specified number of days added.
 817      *  This is equivalent to {@link #plusSeconds(long)} with the amount
 818      *  multiplied by 86,400 (24 hours).
 819      * </ul>
 820      * <p>
 821      * All other {@code ChronoUnit} instances will throw an {@code UnsupportedTemporalTypeException}.
 822      * <p>
 823      * If the field is not a {@code ChronoUnit}, then the result of this method
 824      * is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)}
 825      * passing {@code this} as the argument. In this case, the unit determines
 826      * whether and how to perform the addition.
 827      * <p>
 828      * This instance is immutable and unaffected by this method call.
 829      *
 830      * @param amountToAdd  the amount of the unit to add to the result, may be negative
 831      * @param unit  the unit of the amount to add, not null
 832      * @return an {@code Instant} based on this instant with the specified amount added, not null
 833      * @throws DateTimeException if the addition cannot be made
 834      * @throws UnsupportedTemporalTypeException if the unit is not supported
 835      * @throws ArithmeticException if numeric overflow occurs
 836      */
 837     @Override
 838     public Instant plus(long amountToAdd, TemporalUnit unit) {
 839         if (unit instanceof ChronoUnit) {
 840             switch ((ChronoUnit) unit) {
 841                 case NANOS: return plusNanos(amountToAdd);
 842                 case MICROS: return plus(amountToAdd / 1000_000, (amountToAdd % 1000_000) * 1000);
 843                 case MILLIS: return plusMillis(amountToAdd);
 844                 case SECONDS: return plusSeconds(amountToAdd);
 845                 case MINUTES: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_MINUTE));
 846                 case HOURS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_HOUR));
 847                 case HALF_DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY / 2));
 848                 case DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY));
 849             }
 850             throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
 851         }
 852         return unit.addTo(this, amountToAdd);
 853     }
 854 
 855     //-----------------------------------------------------------------------
 856     /**
 857      * Returns a copy of this instant with the specified duration in seconds added.
 858      * <p>
 859      * This instance is immutable and unaffected by this method call.
 860      *
 861      * @param secondsToAdd  the seconds to add, positive or negative
 862      * @return an {@code Instant} based on this instant with the specified seconds added, not null
 863      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 864      * @throws ArithmeticException if numeric overflow occurs
 865      */
 866     public Instant plusSeconds(long secondsToAdd) {
 867         return plus(secondsToAdd, 0);
 868     }
 869 
 870     /**
 871      * Returns a copy of this instant with the specified duration in milliseconds added.
 872      * <p>
 873      * This instance is immutable and unaffected by this method call.
 874      *
 875      * @param millisToAdd  the milliseconds to add, positive or negative
 876      * @return an {@code Instant} based on this instant with the specified milliseconds added, not null
 877      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 878      * @throws ArithmeticException if numeric overflow occurs
 879      */
 880     public Instant plusMillis(long millisToAdd) {
 881         return plus(millisToAdd / 1000, (millisToAdd % 1000) * 1000_000);
 882     }
 883 
 884     /**
 885      * Returns a copy of this instant with the specified duration in nanoseconds added.
 886      * <p>
 887      * This instance is immutable and unaffected by this method call.
 888      *
 889      * @param nanosToAdd  the nanoseconds to add, positive or negative
 890      * @return an {@code Instant} based on this instant with the specified nanoseconds added, not null
 891      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 892      * @throws ArithmeticException if numeric overflow occurs
 893      */
 894     public Instant plusNanos(long nanosToAdd) {
 895         return plus(0, nanosToAdd);
 896     }
 897 
 898     /**
 899      * Returns a copy of this instant with the specified duration added.
 900      * <p>
 901      * This instance is immutable and unaffected by this method call.
 902      *
 903      * @param secondsToAdd  the seconds to add, positive or negative
 904      * @param nanosToAdd  the nanos to add, positive or negative
 905      * @return an {@code Instant} based on this instant with the specified seconds added, not null
 906      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 907      * @throws ArithmeticException if numeric overflow occurs
 908      */
 909     private Instant plus(long secondsToAdd, long nanosToAdd) {
 910         if ((secondsToAdd | nanosToAdd) == 0) {
 911             return this;
 912         }
 913         long epochSec = Math.addExact(seconds, secondsToAdd);
 914         epochSec = Math.addExact(epochSec, nanosToAdd / NANOS_PER_SECOND);
 915         nanosToAdd = nanosToAdd % NANOS_PER_SECOND;
 916         long nanoAdjustment = nanos + nanosToAdd;  // safe int+NANOS_PER_SECOND
 917         return ofEpochSecond(epochSec, nanoAdjustment);
 918     }
 919 
 920     //-----------------------------------------------------------------------
 921     /**
 922      * Returns a copy of this instant with the specified amount subtracted.
 923      * <p>
 924      * This returns an {@code Instant}, based on this one, with the specified amount subtracted.
 925      * The amount is typically {@link Duration} but may be any other type implementing
 926      * the {@link TemporalAmount} interface.
 927      * <p>
 928      * The calculation is delegated to the amount object by calling
 929      * {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
 930      * to implement the subtraction in any way it wishes, however it typically
 931      * calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
 932      * of the amount implementation to determine if it can be successfully subtracted.
 933      * <p>
 934      * This instance is immutable and unaffected by this method call.
 935      *
 936      * @param amountToSubtract  the amount to subtract, not null
 937      * @return an {@code Instant} based on this instant with the subtraction made, not null
 938      * @throws DateTimeException if the subtraction cannot be made
 939      * @throws ArithmeticException if numeric overflow occurs
 940      */
 941     @Override
 942     public Instant minus(TemporalAmount amountToSubtract) {
 943         return (Instant) amountToSubtract.subtractFrom(this);
 944     }
 945 
 946     /**
 947      * Returns a copy of this instant with the specified amount subtracted.
 948      * <p>
 949      * This returns a {@code Instant}, based on this one, with the amount
 950      * in terms of the unit subtracted. If it is not possible to subtract the amount,
 951      * because the unit is not supported or for some other reason, an exception is thrown.
 952      * <p>
 953      * This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated.
 954      * See that method for a full description of how addition, and thus subtraction, works.
 955      * <p>
 956      * This instance is immutable and unaffected by this method call.
 957      *
 958      * @param amountToSubtract  the amount of the unit to subtract from the result, may be negative
 959      * @param unit  the unit of the amount to subtract, not null
 960      * @return an {@code Instant} based on this instant with the specified amount subtracted, not null
 961      * @throws DateTimeException if the subtraction cannot be made
 962      * @throws UnsupportedTemporalTypeException if the unit is not supported
 963      * @throws ArithmeticException if numeric overflow occurs
 964      */
 965     @Override
 966     public Instant minus(long amountToSubtract, TemporalUnit unit) {
 967         return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit));
 968     }
 969 
 970     //-----------------------------------------------------------------------
 971     /**
 972      * Returns a copy of this instant with the specified duration in seconds subtracted.
 973      * <p>
 974      * This instance is immutable and unaffected by this method call.
 975      *
 976      * @param secondsToSubtract  the seconds to subtract, positive or negative
 977      * @return an {@code Instant} based on this instant with the specified seconds subtracted, not null
 978      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 979      * @throws ArithmeticException if numeric overflow occurs
 980      */
 981     public Instant minusSeconds(long secondsToSubtract) {
 982         if (secondsToSubtract == Long.MIN_VALUE) {
 983             return plusSeconds(Long.MAX_VALUE).plusSeconds(1);
 984         }
 985         return plusSeconds(-secondsToSubtract);
 986     }
 987 
 988     /**
 989      * Returns a copy of this instant with the specified duration in milliseconds subtracted.
 990      * <p>
 991      * This instance is immutable and unaffected by this method call.
 992      *
 993      * @param millisToSubtract  the milliseconds to subtract, positive or negative
 994      * @return an {@code Instant} based on this instant with the specified milliseconds subtracted, not null
 995      * @throws DateTimeException if the result exceeds the maximum or minimum instant
 996      * @throws ArithmeticException if numeric overflow occurs
 997      */
 998     public Instant minusMillis(long millisToSubtract) {
 999         if (millisToSubtract == Long.MIN_VALUE) {
1000             return plusMillis(Long.MAX_VALUE).plusMillis(1);
1001         }
1002         return plusMillis(-millisToSubtract);
1003     }
1004 
1005     /**
1006      * Returns a copy of this instant with the specified duration in nanoseconds subtracted.
1007      * <p>
1008      * This instance is immutable and unaffected by this method call.
1009      *
1010      * @param nanosToSubtract  the nanoseconds to subtract, positive or negative
1011      * @return an {@code Instant} based on this instant with the specified nanoseconds subtracted, not null
1012      * @throws DateTimeException if the result exceeds the maximum or minimum instant
1013      * @throws ArithmeticException if numeric overflow occurs
1014      */
1015     public Instant minusNanos(long nanosToSubtract) {
1016         if (nanosToSubtract == Long.MIN_VALUE) {
1017             return plusNanos(Long.MAX_VALUE).plusNanos(1);
1018         }
1019         return plusNanos(-nanosToSubtract);
1020     }
1021 
1022     //-------------------------------------------------------------------------
1023     /**
1024      * Queries this instant using the specified query.
1025      * <p>
1026      * This queries this instant using the specified query strategy object.
1027      * The {@code TemporalQuery} object defines the logic to be used to
1028      * obtain the result. Read the documentation of the query to understand
1029      * what the result of this method will be.
1030      * <p>
1031      * The result of this method is obtained by invoking the
1032      * {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the
1033      * specified query passing {@code this} as the argument.
1034      *
1035      * @param <R> the type of the result
1036      * @param query  the query to invoke, not null
1037      * @return the query result, null may be returned (defined by the query)
1038      * @throws DateTimeException if unable to query (defined by the query)
1039      * @throws ArithmeticException if numeric overflow occurs (defined by the query)
1040      */
1041     @SuppressWarnings("unchecked")
1042     @Override
1043     public <R> R query(TemporalQuery<R> query) {
1044         if (query == TemporalQuery.precision()) {
1045             return (R) NANOS;
1046         }
1047         // inline TemporalAccessor.super.query(query) as an optimization
1048         if (query == TemporalQuery.chronology() || query == TemporalQuery.zoneId() ||
1049                 query == TemporalQuery.zone() || query == TemporalQuery.offset()) {
1050             return null;
1051         }
1052         return query.queryFrom(this);
1053     }
1054 
1055     /**
1056      * Adjusts the specified temporal object to have this instant.
1057      * <p>
1058      * This returns a temporal object of the same observable type as the input
1059      * with the instant changed to be the same as this.
1060      * <p>
1061      * The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)}
1062      * twice, passing {@link ChronoField#INSTANT_SECONDS} and
1063      * {@link ChronoField#NANO_OF_SECOND} as the fields.
1064      * <p>
1065      * In most cases, it is clearer to reverse the calling pattern by using
1066      * {@link Temporal#with(TemporalAdjuster)}:
1067      * <pre>
1068      *   // these two lines are equivalent, but the second approach is recommended
1069      *   temporal = thisInstant.adjustInto(temporal);
1070      *   temporal = temporal.with(thisInstant);
1071      * </pre>
1072      * <p>
1073      * This instance is immutable and unaffected by this method call.
1074      *
1075      * @param temporal  the target object to be adjusted, not null
1076      * @return the adjusted object, not null
1077      * @throws DateTimeException if unable to make the adjustment
1078      * @throws ArithmeticException if numeric overflow occurs
1079      */
1080     @Override
1081     public Temporal adjustInto(Temporal temporal) {
1082         return temporal.with(INSTANT_SECONDS, seconds).with(NANO_OF_SECOND, nanos);
1083     }
1084 
1085     /**
1086      * Calculates the amount of time until another instant in terms of the specified unit.
1087      * <p>
1088      * This calculates the amount of time between two {@code Instant}
1089      * objects in terms of a single {@code TemporalUnit}.
1090      * The start and end points are {@code this} and the specified instant.
1091      * The result will be negative if the end is before the start.
1092      * The calculation returns a whole number, representing the number of
1093      * complete units between the two instants.
1094      * The {@code Temporal} passed to this method must be an {@code Instant}.
1095      * For example, the amount in days between two dates can be calculated
1096      * using {@code startInstant.until(endInstant, SECONDS)}.
1097      * <p>
1098      * There are two equivalent ways of using this method.
1099      * The first is to invoke this method.
1100      * The second is to use {@link TemporalUnit#between(Temporal, Temporal)}:
1101      * <pre>
1102      *   // these two lines are equivalent
1103      *   amount = start.until(end, SECONDS);
1104      *   amount = SECONDS.between(start, end);
1105      * </pre>
1106      * The choice should be made based on which makes the code more readable.
1107      * <p>
1108      * The calculation is implemented in this method for {@link ChronoUnit}.
1109      * The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS},
1110      * {@code MINUTES}, {@code HOURS}, {@code HALF_DAYS} and {@code DAYS}
1111      * are supported. Other {@code ChronoUnit} values will throw an exception.
1112      * <p>
1113      * If the unit is not a {@code ChronoUnit}, then the result of this method
1114      * is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)}
1115      * passing {@code this} as the first argument and the input temporal as
1116      * the second argument.
1117      * <p>
1118      * This instance is immutable and unaffected by this method call.
1119      *
1120      * @param endInstant  the end date, which must be an {@code Instant}, not null
1121      * @param unit  the unit to measure the amount in, not null
1122      * @return the amount of time between this instant and the end instant
1123      * @throws DateTimeException if the amount cannot be calculated
1124      * @throws UnsupportedTemporalTypeException if the unit is not supported
1125      * @throws ArithmeticException if numeric overflow occurs
1126      */
1127     @Override
1128     public long until(Temporal endInstant, TemporalUnit unit) {
1129         if (endInstant instanceof Instant == false) {
1130             Objects.requireNonNull(endInstant, "endInstant");
1131             throw new DateTimeException("Unable to calculate amount as objects are of two different types");
1132         }
1133         Instant end = (Instant) endInstant;
1134         if (unit instanceof ChronoUnit) {
1135             ChronoUnit f = (ChronoUnit) unit;
1136             switch (f) {
1137                 case NANOS: return nanosUntil(end);
1138                 case MICROS: return nanosUntil(end) / 1000;
1139                 case MILLIS: return Math.subtractExact(end.toEpochMilli(), toEpochMilli());
1140                 case SECONDS: return secondsUntil(end);
1141                 case MINUTES: return secondsUntil(end) / SECONDS_PER_MINUTE;
1142                 case HOURS: return secondsUntil(end) / SECONDS_PER_HOUR;
1143                 case HALF_DAYS: return secondsUntil(end) / (12 * SECONDS_PER_HOUR);
1144                 case DAYS: return secondsUntil(end) / (SECONDS_PER_DAY);
1145             }
1146             throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
1147         }
1148         return unit.between(this, endInstant);
1149     }
1150 
1151     private long nanosUntil(Instant end) {
1152         long secsDiff = Math.subtractExact(end.seconds, seconds);
1153         long totalNanos = Math.multiplyExact(secsDiff, NANOS_PER_SECOND);
1154         return Math.addExact(totalNanos, end.nanos - nanos);
1155     }
1156 
1157     private long secondsUntil(Instant end) {
1158         long secsDiff = Math.subtractExact(end.seconds, seconds);
1159         long nanosDiff = end.nanos - nanos;
1160         if (secsDiff > 0 && nanosDiff < 0) {
1161             secsDiff--;
1162         } else if (secsDiff < 0 && nanosDiff > 0) {
1163             secsDiff++;
1164         }
1165         return secsDiff;
1166     }
1167 
1168     //-----------------------------------------------------------------------
1169     /**
1170      * Combines this instant with an offset to create an {@code OffsetDateTime}.
1171      * <p>
1172      * This returns an {@code OffsetDateTime} formed from this instant at the
1173      * specified offset from UTC/Greenwich. An exception will be thrown if the
1174      * instant is too large to fit into an offset date-time.
1175      * <p>
1176      * This method is equivalent to
1177      * {@link OffsetDateTime#ofInstant(Instant, ZoneId) OffsetDateTime.ofInstant(this, offset)}.
1178      *
1179      * @param offset  the offset to combine with, not null
1180      * @return the offset date-time formed from this instant and the specified offset, not null
1181      * @throws DateTimeException if the result exceeds the supported range
1182      */
1183     public OffsetDateTime atOffset(ZoneOffset offset) {
1184         return OffsetDateTime.ofInstant(this, offset);
1185     }
1186 
1187     /**
1188      * Combines this instant with a time-zone to create a {@code ZonedDateTime}.
1189      * <p>
1190      * This returns an {@code ZonedDateTime} formed from this instant at the
1191      * specified time-zone. An exception will be thrown if the instant is too
1192      * large to fit into a zoned date-time.
1193      * <p>
1194      * This method is equivalent to
1195      * {@link ZonedDateTime#ofInstant(Instant, ZoneId) ZonedDateTime.ofInstant(this, zone)}.
1196      *
1197      * @param zone  the zone to combine with, not null
1198      * @return the zoned date-time formed from this instant and the specified zone, not null
1199      * @throws DateTimeException if the result exceeds the supported range
1200      */
1201     public ZonedDateTime atZone(ZoneId zone) {
1202         return ZonedDateTime.ofInstant(this, zone);
1203     }
1204 
1205     //-----------------------------------------------------------------------
1206     /**
1207      * Converts this instant to the number of milliseconds from the epoch
1208      * of 1970-01-01T00:00:00Z.
1209      * <p>
1210      * If this instant represents a point on the time-line too far in the future
1211      * or past to fit in a {@code long} milliseconds, then an exception is thrown.
1212      * <p>
1213      * If this instant has greater than millisecond precision, then the conversion
1214      * will drop any excess precision information as though the amount in nanoseconds
1215      * was subject to integer division by one million.
1216      *
1217      * @return the number of milliseconds since the epoch of 1970-01-01T00:00:00Z
1218      * @throws ArithmeticException if numeric overflow occurs
1219      */
1220     public long toEpochMilli() {
1221         long millis = Math.multiplyExact(seconds, 1000);
1222         return millis + nanos / 1000_000;
1223     }
1224 
1225     //-----------------------------------------------------------------------
1226     /**
1227      * Compares this instant to the specified instant.
1228      * <p>
1229      * The comparison is based on the time-line position of the instants.
1230      * It is "consistent with equals", as defined by {@link Comparable}.
1231      *
1232      * @param otherInstant  the other instant to compare to, not null
1233      * @return the comparator value, negative if less, positive if greater
1234      * @throws NullPointerException if otherInstant is null
1235      */
1236     @Override
1237     public int compareTo(Instant otherInstant) {
1238         int cmp = Long.compare(seconds, otherInstant.seconds);
1239         if (cmp != 0) {
1240             return cmp;
1241         }
1242         return nanos - otherInstant.nanos;
1243     }
1244 
1245     /**
1246      * Checks if this instant is after the specified instant.
1247      * <p>
1248      * The comparison is based on the time-line position of the instants.
1249      *
1250      * @param otherInstant  the other instant to compare to, not null
1251      * @return true if this instant is after the specified instant
1252      * @throws NullPointerException if otherInstant is null
1253      */
1254     public boolean isAfter(Instant otherInstant) {
1255         return compareTo(otherInstant) > 0;
1256     }
1257 
1258     /**
1259      * Checks if this instant is before the specified instant.
1260      * <p>
1261      * The comparison is based on the time-line position of the instants.
1262      *
1263      * @param otherInstant  the other instant to compare to, not null
1264      * @return true if this instant is before the specified instant
1265      * @throws NullPointerException if otherInstant is null
1266      */
1267     public boolean isBefore(Instant otherInstant) {
1268         return compareTo(otherInstant) < 0;
1269     }
1270 
1271     //-----------------------------------------------------------------------
1272     /**
1273      * Checks if this instant is equal to the specified instant.
1274      * <p>
1275      * The comparison is based on the time-line position of the instants.
1276      *
1277      * @param otherInstant  the other instant, null returns false
1278      * @return true if the other instant is equal to this one
1279      */
1280     @Override
1281     public boolean equals(Object otherInstant) {
1282         if (this == otherInstant) {
1283             return true;
1284         }
1285         if (otherInstant instanceof Instant) {
1286             Instant other = (Instant) otherInstant;
1287             return this.seconds == other.seconds &&
1288                    this.nanos == other.nanos;
1289         }
1290         return false;
1291     }
1292 
1293     /**
1294      * Returns a hash code for this instant.
1295      *
1296      * @return a suitable hash code
1297      */
1298     @Override
1299     public int hashCode() {
1300         return ((int) (seconds ^ (seconds >>> 32))) + 51 * nanos;
1301     }
1302 
1303     //-----------------------------------------------------------------------
1304     /**
1305      * A string representation of this instant using ISO-8601 representation.
1306      * <p>
1307      * The format used is the same as {@link DateTimeFormatter#ISO_INSTANT}.
1308      *
1309      * @return an ISO-8601 representation of this instant, not null
1310      */
1311     @Override
1312     public String toString() {
1313         return DateTimeFormatter.ISO_INSTANT.format(this);
1314     }
1315 
1316     // -----------------------------------------------------------------------
1317     /**
1318      * Writes the object using a
1319      * <a href="../../serialized-form.html#java.time.Ser">dedicated serialized form</a>.
1320      * <pre>
1321      *  out.writeByte(2);  // identifies this as an Instant
1322      *  out.writeLong(seconds);
1323      *  out.writeInt(nanos);
1324      * </pre>
1325      *
1326      * @return the instance of {@code Ser}, not null
1327      */
1328     private Object writeReplace() {
1329         return new Ser(Ser.INSTANT_TYPE, this);
1330     }
1331 
1332     /**
1333      * Defend against malicious streams.
1334      * @return never
1335      * @throws InvalidObjectException always
1336      */
1337     private Object readResolve() throws ObjectStreamException {
1338         throw new InvalidObjectException("Deserialization via serialization delegate");
1339     }
1340 
1341     void writeExternal(DataOutput out) throws IOException {
1342         out.writeLong(seconds);
1343         out.writeInt(nanos);
1344     }
1345 
1346     static Instant readExternal(DataInput in) throws IOException {
1347         long seconds = in.readLong();
1348         int nanos = in.readInt();
1349         return Instant.ofEpochSecond(seconds, nanos);
1350     }
1351 
1352 }