1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util.regex;
  27 
  28 import java.security.AccessController;
  29 import java.security.PrivilegedAction;
  30 import java.text.CharacterIterator;
  31 import java.text.Normalizer;
  32 import java.util.Locale;
  33 import java.util.Map;
  34 import java.util.ArrayList;
  35 import java.util.HashMap;
  36 import java.util.Arrays;
  37 
  38 
  39 /**
  40  * A compiled representation of a regular expression.
  41  *
  42  * <p> A regular expression, specified as a string, must first be compiled into
  43  * an instance of this class.  The resulting pattern can then be used to create
  44  * a {@link Matcher} object that can match arbitrary {@link
  45  * java.lang.CharSequence </code>character sequences<code>} against the regular
  46  * expression.  All of the state involved in performing a match resides in the
  47  * matcher, so many matchers can share the same pattern.
  48  *
  49  * <p> A typical invocation sequence is thus
  50  *
  51  * <blockquote><pre>
  52  * Pattern p = Pattern.{@link #compile compile}("a*b");
  53  * Matcher m = p.{@link #matcher matcher}("aaaaab");
  54  * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
  55  *
  56  * <p> A {@link #matches matches} method is defined by this class as a
  57  * convenience for when a regular expression is used just once.  This method
  58  * compiles an expression and matches an input sequence against it in a single
  59  * invocation.  The statement
  60  *
  61  * <blockquote><pre>
  62  * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
  63  *
  64  * is equivalent to the three statements above, though for repeated matches it
  65  * is less efficient since it does not allow the compiled pattern to be reused.
  66  *
  67  * <p> Instances of this class are immutable and are safe for use by multiple
  68  * concurrent threads.  Instances of the {@link Matcher} class are not safe for
  69  * such use.
  70  *
  71  *
  72  * <a name="sum">
  73  * <h4> Summary of regular-expression constructs </h4>
  74  *
  75  * <table border="0" cellpadding="1" cellspacing="0"
  76  *  summary="Regular expression constructs, and what they match">
  77  *
  78  * <tr align="left">
  79  * <th bgcolor="#CCCCFF" align="left" id="construct">Construct</th>
  80  * <th bgcolor="#CCCCFF" align="left" id="matches">Matches</th>
  81  * </tr>
  82  *
  83  * <tr><th>&nbsp;</th></tr>
  84  * <tr align="left"><th colspan="2" id="characters">Characters</th></tr>
  85  *
  86  * <tr><td valign="top" headers="construct characters"><i>x</i></td>
  87  *     <td headers="matches">The character <i>x</i></td></tr>
  88  * <tr><td valign="top" headers="construct characters"><tt>\\</tt></td>
  89  *     <td headers="matches">The backslash character</td></tr>
  90  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>n</i></td>
  91  *     <td headers="matches">The character with octal value <tt>0</tt><i>n</i>
  92  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  93  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>nn</i></td>
  94  *     <td headers="matches">The character with octal value <tt>0</tt><i>nn</i>
  95  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  96  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>mnn</i></td>
  97  *     <td headers="matches">The character with octal value <tt>0</tt><i>mnn</i>
  98  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>m</i>&nbsp;<tt>&lt;=</tt>&nbsp;3,
  99  *         0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
 100  * <tr><td valign="top" headers="construct characters"><tt>\x</tt><i>hh</i></td>
 101  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hh</i></td></tr>
 102  * <tr><td valign="top" headers="construct characters"><tt>&#92;u</tt><i>hhhh</i></td>
 103  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hhhh</i></td></tr>
 104  * <tr><td valign="top" headers="construct characters"><tt>&#92;x</tt><i>{h...h}</i></td>
 105  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>h...h</i>
 106  *         ({@link java.lang.Character#MIN_CODE_POINT Character.MIN_CODE_POINT}
 107  *         &nbsp;&lt;=&nbsp;<tt>0x</tt><i>h...h</i>&nbsp;&lt;=&nbsp
 108  *          {@link java.lang.Character#MAX_CODE_POINT Character.MAX_CODE_POINT})</td></tr>
 109  * <tr><td valign="top" headers="matches"><tt>\t</tt></td>
 110  *     <td headers="matches">The tab character (<tt>'&#92;u0009'</tt>)</td></tr>
 111  * <tr><td valign="top" headers="construct characters"><tt>\n</tt></td>
 112  *     <td headers="matches">The newline (line feed) character (<tt>'&#92;u000A'</tt>)</td></tr>
 113  * <tr><td valign="top" headers="construct characters"><tt>\r</tt></td>
 114  *     <td headers="matches">The carriage-return character (<tt>'&#92;u000D'</tt>)</td></tr>
 115  * <tr><td valign="top" headers="construct characters"><tt>\f</tt></td>
 116  *     <td headers="matches">The form-feed character (<tt>'&#92;u000C'</tt>)</td></tr>
 117  * <tr><td valign="top" headers="construct characters"><tt>\a</tt></td>
 118  *     <td headers="matches">The alert (bell) character (<tt>'&#92;u0007'</tt>)</td></tr>
 119  * <tr><td valign="top" headers="construct characters"><tt>\e</tt></td>
 120  *     <td headers="matches">The escape character (<tt>'&#92;u001B'</tt>)</td></tr>
 121  * <tr><td valign="top" headers="construct characters"><tt>\c</tt><i>x</i></td>
 122  *     <td headers="matches">The control character corresponding to <i>x</i></td></tr>
 123  *
 124  * <tr><th>&nbsp;</th></tr>
 125  * <tr align="left"><th colspan="2" id="classes">Character classes</th></tr>
 126  *
 127  * <tr><td valign="top" headers="construct classes"><tt>[abc]</tt></td>
 128  *     <td headers="matches"><tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (simple class)</td></tr>
 129  * <tr><td valign="top" headers="construct classes"><tt>[^abc]</tt></td>
 130  *     <td headers="matches">Any character except <tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (negation)</td></tr>
 131  * <tr><td valign="top" headers="construct classes"><tt>[a-zA-Z]</tt></td>
 132  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>
 133  *         or <tt>A</tt> through <tt>Z</tt>, inclusive (range)</td></tr>
 134  * <tr><td valign="top" headers="construct classes"><tt>[a-d[m-p]]</tt></td>
 135  *     <td headers="matches"><tt>a</tt> through <tt>d</tt>,
 136  *      or <tt>m</tt> through <tt>p</tt>: <tt>[a-dm-p]</tt> (union)</td></tr>
 137  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[def]]</tt></td>
 138  *     <td headers="matches"><tt>d</tt>, <tt>e</tt>, or <tt>f</tt> (intersection)</tr>
 139  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^bc]]</tt></td>
 140  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
 141  *         except for <tt>b</tt> and <tt>c</tt>: <tt>[ad-z]</tt> (subtraction)</td></tr>
 142  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^m-p]]</tt></td>
 143  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
 144  *          and not <tt>m</tt> through <tt>p</tt>: <tt>[a-lq-z]</tt>(subtraction)</td></tr>
 145  * <tr><th>&nbsp;</th></tr>
 146  *
 147  * <tr align="left"><th colspan="2" id="predef">Predefined character classes</th></tr>
 148  *
 149  * <tr><td valign="top" headers="construct predef"><tt>.</tt></td>
 150  *     <td headers="matches">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
 151  * <tr><td valign="top" headers="construct predef"><tt>\d</tt></td>
 152  *     <td headers="matches">A digit: <tt>[0-9]</tt></td></tr>
 153  * <tr><td valign="top" headers="construct predef"><tt>\D</tt></td>
 154  *     <td headers="matches">A non-digit: <tt>[^0-9]</tt></td></tr>
 155  * <tr><td valign="top" headers="construct predef"><tt>\s</tt></td>
 156  *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
 157  * <tr><td valign="top" headers="construct predef"><tt>\S</tt></td>
 158  *     <td headers="matches">A non-whitespace character: <tt>[^\s]</tt></td></tr>
 159  * <tr><td valign="top" headers="construct predef"><tt>\w</tt></td>
 160  *     <td headers="matches">A word character: <tt>[a-zA-Z_0-9]</tt></td></tr>
 161  * <tr><td valign="top" headers="construct predef"><tt>\W</tt></td>
 162  *     <td headers="matches">A non-word character: <tt>[^\w]</tt></td></tr>
 163  *
 164  * <tr><th>&nbsp;</th></tr>
 165  * <tr align="left"><th colspan="2" id="posix">POSIX character classes</b> (US-ASCII only)<b></th></tr>
 166  *
 167  * <tr><td valign="top" headers="construct posix"><tt>\p{Lower}</tt></td>
 168  *     <td headers="matches">A lower-case alphabetic character: <tt>[a-z]</tt></td></tr>
 169  * <tr><td valign="top" headers="construct posix"><tt>\p{Upper}</tt></td>
 170  *     <td headers="matches">An upper-case alphabetic character:<tt>[A-Z]</tt></td></tr>
 171  * <tr><td valign="top" headers="construct posix"><tt>\p{ASCII}</tt></td>
 172  *     <td headers="matches">All ASCII:<tt>[\x00-\x7F]</tt></td></tr>
 173  * <tr><td valign="top" headers="construct posix"><tt>\p{Alpha}</tt></td>
 174  *     <td headers="matches">An alphabetic character:<tt>[\p{Lower}\p{Upper}]</tt></td></tr>
 175  * <tr><td valign="top" headers="construct posix"><tt>\p{Digit}</tt></td>
 176  *     <td headers="matches">A decimal digit: <tt>[0-9]</tt></td></tr>
 177  * <tr><td valign="top" headers="construct posix"><tt>\p{Alnum}</tt></td>
 178  *     <td headers="matches">An alphanumeric character:<tt>[\p{Alpha}\p{Digit}]</tt></td></tr>
 179  * <tr><td valign="top" headers="construct posix"><tt>\p{Punct}</tt></td>
 180  *     <td headers="matches">Punctuation: One of <tt>!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~</tt></td></tr>
 181  *     <!-- <tt>[\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]</tt>
 182  *          <tt>[\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]</tt> -->
 183  * <tr><td valign="top" headers="construct posix"><tt>\p{Graph}</tt></td>
 184  *     <td headers="matches">A visible character: <tt>[\p{Alnum}\p{Punct}]</tt></td></tr>
 185  * <tr><td valign="top" headers="construct posix"><tt>\p{Print}</tt></td>
 186  *     <td headers="matches">A printable character: <tt>[\p{Graph}\x20]</tt></td></tr>
 187  * <tr><td valign="top" headers="construct posix"><tt>\p{Blank}</tt></td>
 188  *     <td headers="matches">A space or a tab: <tt>[ \t]</tt></td></tr>
 189  * <tr><td valign="top" headers="construct posix"><tt>\p{Cntrl}</tt></td>
 190  *     <td headers="matches">A control character: <tt>[\x00-\x1F\x7F]</tt></td></tr>
 191  * <tr><td valign="top" headers="construct posix"><tt>\p{XDigit}</tt></td>
 192  *     <td headers="matches">A hexadecimal digit: <tt>[0-9a-fA-F]</tt></td></tr>
 193  * <tr><td valign="top" headers="construct posix"><tt>\p{Space}</tt></td>
 194  *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
 195  *
 196  * <tr><th>&nbsp;</th></tr>
 197  * <tr align="left"><th colspan="2">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
 198  *
 199  * <tr><td valign="top"><tt>\p{javaLowerCase}</tt></td>
 200  *     <td>Equivalent to java.lang.Character.isLowerCase()</td></tr>
 201  * <tr><td valign="top"><tt>\p{javaUpperCase}</tt></td>
 202  *     <td>Equivalent to java.lang.Character.isUpperCase()</td></tr>
 203  * <tr><td valign="top"><tt>\p{javaWhitespace}</tt></td>
 204  *     <td>Equivalent to java.lang.Character.isWhitespace()</td></tr>
 205  * <tr><td valign="top"><tt>\p{javaMirrored}</tt></td>
 206  *     <td>Equivalent to java.lang.Character.isMirrored()</td></tr>
 207  *
 208  * <tr><th>&nbsp;</th></tr>
 209  * <tr align="left"><th colspan="2" id="unicode">Classes for Unicode scripts, blocks, categories and binary properties</th></tr>
 210  * * <tr><td valign="top" headers="construct unicode"><tt>\p{IsLatin}</tt></td>
 211  *     <td headers="matches">A Latin&nbsp;script character (<a href="#usc">script</a>)</td></tr>
 212  * <tr><td valign="top" headers="construct unicode"><tt>\p{InGreek}</tt></td>
 213  *     <td headers="matches">A character in the Greek&nbsp;block (<a href="#ubc">block</a>)</td></tr>
 214  * <tr><td valign="top" headers="construct unicode"><tt>\p{Lu}</tt></td>
 215  *     <td headers="matches">An uppercase letter (<a href="#ucc">category</a>)</td></tr>
 216  * <tr><td valign="top" headers="construct unicode"><tt>\p{IsAlphabetic}</tt></td>
 217  *     <td headers="matches">An alphabetic character (<a href="#ubpc">binary property</a>)</td></tr>
 218  * <tr><td valign="top" headers="construct unicode"><tt>\p{Sc}</tt></td>
 219  *     <td headers="matches">A currency symbol</td></tr>
 220  * <tr><td valign="top" headers="construct unicode"><tt>\P{InGreek}</tt></td>
 221  *     <td headers="matches">Any character except one in the Greek block (negation)</td></tr>
 222  * <tr><td valign="top" headers="construct unicode"><tt>[\p{L}&&[^\p{Lu}]]&nbsp;</tt></td>
 223  *     <td headers="matches">Any letter except an uppercase letter (subtraction)</td></tr>
 224  *
 225  * <tr><th>&nbsp;</th></tr>
 226  * <tr align="left"><th colspan="2" id="bounds">Boundary matchers</th></tr>
 227  *
 228  * <tr><td valign="top" headers="construct bounds"><tt>^</tt></td>
 229  *     <td headers="matches">The beginning of a line</td></tr>
 230  * <tr><td valign="top" headers="construct bounds"><tt>$</tt></td>
 231  *     <td headers="matches">The end of a line</td></tr>
 232  * <tr><td valign="top" headers="construct bounds"><tt>\b</tt></td>
 233  *     <td headers="matches">A word boundary</td></tr>
 234  * <tr><td valign="top" headers="construct bounds"><tt>\B</tt></td>
 235  *     <td headers="matches">A non-word boundary</td></tr>
 236  * <tr><td valign="top" headers="construct bounds"><tt>\A</tt></td>
 237  *     <td headers="matches">The beginning of the input</td></tr>
 238  * <tr><td valign="top" headers="construct bounds"><tt>\G</tt></td>
 239  *     <td headers="matches">The end of the previous match</td></tr>
 240  * <tr><td valign="top" headers="construct bounds"><tt>\Z</tt></td>
 241  *     <td headers="matches">The end of the input but for the final
 242  *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
 243  * <tr><td valign="top" headers="construct bounds"><tt>\z</tt></td>
 244  *     <td headers="matches">The end of the input</td></tr>
 245  *
 246  * <tr><th>&nbsp;</th></tr>
 247  * <tr align="left"><th colspan="2" id="greedy">Greedy quantifiers</th></tr>
 248  *
 249  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>?</tt></td>
 250  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 251  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>*</tt></td>
 252  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 253  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>+</tt></td>
 254  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 255  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>}</tt></td>
 256  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 257  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,}</tt></td>
 258  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 259  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}</tt></td>
 260  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 261  *
 262  * <tr><th>&nbsp;</th></tr>
 263  * <tr align="left"><th colspan="2" id="reluc">Reluctant quantifiers</th></tr>
 264  *
 265  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>??</tt></td>
 266  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 267  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>*?</tt></td>
 268  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 269  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>+?</tt></td>
 270  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 271  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>}?</tt></td>
 272  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 273  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,}?</tt></td>
 274  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 275  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}?</tt></td>
 276  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 277  *
 278  * <tr><th>&nbsp;</th></tr>
 279  * <tr align="left"><th colspan="2" id="poss">Possessive quantifiers</th></tr>
 280  *
 281  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>?+</tt></td>
 282  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 283  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>*+</tt></td>
 284  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 285  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>++</tt></td>
 286  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 287  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>}+</tt></td>
 288  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 289  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,}+</tt></td>
 290  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 291  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}+</tt></td>
 292  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 293  *
 294  * <tr><th>&nbsp;</th></tr>
 295  * <tr align="left"><th colspan="2" id="logical">Logical operators</th></tr>
 296  *
 297  * <tr><td valign="top" headers="construct logical"><i>XY</i></td>
 298  *     <td headers="matches"><i>X</i> followed by <i>Y</i></td></tr>
 299  * <tr><td valign="top" headers="construct logical"><i>X</i><tt>|</tt><i>Y</i></td>
 300  *     <td headers="matches">Either <i>X</i> or <i>Y</i></td></tr>
 301  * <tr><td valign="top" headers="construct logical"><tt>(</tt><i>X</i><tt>)</tt></td>
 302  *     <td headers="matches">X, as a <a href="#cg">capturing group</a></td></tr>
 303  *
 304  * <tr><th>&nbsp;</th></tr>
 305  * <tr align="left"><th colspan="2" id="backref">Back references</th></tr>
 306  *
 307  * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>n</i></td>
 308  *     <td valign="bottom" headers="matches">Whatever the <i>n</i><sup>th</sup>
 309  *     <a href="#cg">capturing group</a> matched</td></tr>
 310  *
 311  * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>k</i>&lt;<i>name</i>&gt;</td>
 312  *     <td valign="bottom" headers="matches">Whatever the
 313  *     <a href="#groupname">named-capturing group</a> "name" matched</td></tr>
 314  *
 315  * <tr><th>&nbsp;</th></tr>
 316  * <tr align="left"><th colspan="2" id="quot">Quotation</th></tr>
 317  *
 318  * <tr><td valign="top" headers="construct quot"><tt>\</tt></td>
 319  *     <td headers="matches">Nothing, but quotes the following character</td></tr>
 320  * <tr><td valign="top" headers="construct quot"><tt>\Q</tt></td>
 321  *     <td headers="matches">Nothing, but quotes all characters until <tt>\E</tt></td></tr>
 322  * <tr><td valign="top" headers="construct quot"><tt>\E</tt></td>
 323  *     <td headers="matches">Nothing, but ends quoting started by <tt>\Q</tt></td></tr>
 324  *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
 325  *
 326  * <tr><th>&nbsp;</th></tr>
 327  * <tr align="left"><th colspan="2" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
 328  *
 329  * <tr><td valign="top" headers="construct special"><tt>(?&lt;<a href="#groupname">name</a>&gt;</tt><i>X</i><tt>)</tt></td>
 330  *     <td headers="matches"><i>X</i>, as a named-capturing group</td></tr>
 331  * <tr><td valign="top" headers="construct special"><tt>(?:</tt><i>X</i><tt>)</tt></td>
 332  *     <td headers="matches"><i>X</i>, as a non-capturing group</td></tr>
 333  * <tr><td valign="top" headers="construct special"><tt>(?idmsuxU-idmsuxU)&nbsp;</tt></td>
 334  *     <td headers="matches">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
 335  * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
 336  * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a>
 337  * on - off</td></tr>
 338  * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux:</tt><i>X</i><tt>)</tt>&nbsp;&nbsp;</td>
 339  *     <td headers="matches"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
 340  *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
 341  * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
 342  * <a href="#COMMENTS">x</a> on - off</td></tr>
 343  * <tr><td valign="top" headers="construct special"><tt>(?=</tt><i>X</i><tt>)</tt></td>
 344  *     <td headers="matches"><i>X</i>, via zero-width positive lookahead</td></tr>
 345  * <tr><td valign="top" headers="construct special"><tt>(?!</tt><i>X</i><tt>)</tt></td>
 346  *     <td headers="matches"><i>X</i>, via zero-width negative lookahead</td></tr>
 347  * <tr><td valign="top" headers="construct special"><tt>(?&lt;=</tt><i>X</i><tt>)</tt></td>
 348  *     <td headers="matches"><i>X</i>, via zero-width positive lookbehind</td></tr>
 349  * <tr><td valign="top" headers="construct special"><tt>(?&lt;!</tt><i>X</i><tt>)</tt></td>
 350  *     <td headers="matches"><i>X</i>, via zero-width negative lookbehind</td></tr>
 351  * <tr><td valign="top" headers="construct special"><tt>(?&gt;</tt><i>X</i><tt>)</tt></td>
 352  *     <td headers="matches"><i>X</i>, as an independent, non-capturing group</td></tr>
 353  *
 354  * </table>
 355  *
 356  * <hr>
 357  *
 358  *
 359  * <a name="bs">
 360  * <h4> Backslashes, escapes, and quoting </h4>
 361  *
 362  * <p> The backslash character (<tt>'\'</tt>) serves to introduce escaped
 363  * constructs, as defined in the table above, as well as to quote characters
 364  * that otherwise would be interpreted as unescaped constructs.  Thus the
 365  * expression <tt>\\</tt> matches a single backslash and <tt>\{</tt> matches a
 366  * left brace.
 367  *
 368  * <p> It is an error to use a backslash prior to any alphabetic character that
 369  * does not denote an escaped construct; these are reserved for future
 370  * extensions to the regular-expression language.  A backslash may be used
 371  * prior to a non-alphabetic character regardless of whether that character is
 372  * part of an unescaped construct.
 373  *
 374  * <p> Backslashes within string literals in Java source code are interpreted
 375  * as required by
 376  * <cite>The Java&trade; Language Specification</cite>
 377  * as either Unicode escapes (section 3.3) or other character escapes (section 3.10.6)
 378  * It is therefore necessary to double backslashes in string
 379  * literals that represent regular expressions to protect them from
 380  * interpretation by the Java bytecode compiler.  The string literal
 381  * <tt>"&#92;b"</tt>, for example, matches a single backspace character when
 382  * interpreted as a regular expression, while <tt>"&#92;&#92;b"</tt> matches a
 383  * word boundary.  The string literal <tt>"&#92;(hello&#92;)"</tt> is illegal
 384  * and leads to a compile-time error; in order to match the string
 385  * <tt>(hello)</tt> the string literal <tt>"&#92;&#92;(hello&#92;&#92;)"</tt>
 386  * must be used.
 387  *
 388  * <a name="cc">
 389  * <h4> Character Classes </h4>
 390  *
 391  *    <p> Character classes may appear within other character classes, and
 392  *    may be composed by the union operator (implicit) and the intersection
 393  *    operator (<tt>&amp;&amp;</tt>).
 394  *    The union operator denotes a class that contains every character that is
 395  *    in at least one of its operand classes.  The intersection operator
 396  *    denotes a class that contains every character that is in both of its
 397  *    operand classes.
 398  *
 399  *    <p> The precedence of character-class operators is as follows, from
 400  *    highest to lowest:
 401  *
 402  *    <blockquote><table border="0" cellpadding="1" cellspacing="0"
 403  *                 summary="Precedence of character class operators.">
 404  *      <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 405  *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
 406  *        <td><tt>\x</tt></td></tr>
 407  *     <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 408  *        <td>Grouping</td>
 409  *        <td><tt>[...]</tt></td></tr>
 410  *     <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 411  *        <td>Range</td>
 412  *        <td><tt>a-z</tt></td></tr>
 413  *      <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 414  *        <td>Union</td>
 415  *        <td><tt>[a-e][i-u]</tt></td></tr>
 416  *      <tr><th>5&nbsp;&nbsp;&nbsp;&nbsp;</th>
 417  *        <td>Intersection</td>
 418  *        <td><tt>[a-z&&[aeiou]]</tt></td></tr>
 419  *    </table></blockquote>
 420  *
 421  *    <p> Note that a different set of metacharacters are in effect inside
 422  *    a character class than outside a character class. For instance, the
 423  *    regular expression <tt>.</tt> loses its special meaning inside a
 424  *    character class, while the expression <tt>-</tt> becomes a range
 425  *    forming metacharacter.
 426  *
 427  * <a name="lt">
 428  * <h4> Line terminators </h4>
 429  *
 430  * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
 431  * the end of a line of the input character sequence.  The following are
 432  * recognized as line terminators:
 433  *
 434  * <ul>
 435  *
 436  *   <li> A newline (line feed) character&nbsp;(<tt>'\n'</tt>),
 437  *
 438  *   <li> A carriage-return character followed immediately by a newline
 439  *   character&nbsp;(<tt>"\r\n"</tt>),
 440  *
 441  *   <li> A standalone carriage-return character&nbsp;(<tt>'\r'</tt>),
 442  *
 443  *   <li> A next-line character&nbsp;(<tt>'&#92;u0085'</tt>),
 444  *
 445  *   <li> A line-separator character&nbsp;(<tt>'&#92;u2028'</tt>), or
 446  *
 447  *   <li> A paragraph-separator character&nbsp;(<tt>'&#92;u2029</tt>).
 448  *
 449  * </ul>
 450  * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
 451  * recognized are newline characters.
 452  *
 453  * <p> The regular expression <tt>.</tt> matches any character except a line
 454  * terminator unless the {@link #DOTALL} flag is specified.
 455  *
 456  * <p> By default, the regular expressions <tt>^</tt> and <tt>$</tt> ignore
 457  * line terminators and only match at the beginning and the end, respectively,
 458  * of the entire input sequence. If {@link #MULTILINE} mode is activated then
 459  * <tt>^</tt> matches at the beginning of input and after any line terminator
 460  * except at the end of input. When in {@link #MULTILINE} mode <tt>$</tt>
 461  * matches just before a line terminator or the end of the input sequence.
 462  *
 463  * <a name="cg">
 464  * <h4> Groups and capturing </h4>
 465  *
 466  * <a name="gnumber">
 467  * <h5> Group number </h5>
 468  * <p> Capturing groups are numbered by counting their opening parentheses from
 469  * left to right.  In the expression <tt>((A)(B(C)))</tt>, for example, there
 470  * are four such groups: </p>
 471  *
 472  * <blockquote><table cellpadding=1 cellspacing=0 summary="Capturing group numberings">
 473  * <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 474  *     <td><tt>((A)(B(C)))</tt></td></tr>
 475  * <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 476  *     <td><tt>(A)</tt></td></tr>
 477  * <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 478  *     <td><tt>(B(C))</tt></td></tr>
 479  * <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 480  *     <td><tt>(C)</tt></td></tr>
 481  * </table></blockquote>
 482  *
 483  * <p> Group zero always stands for the entire expression.
 484  *
 485  * <p> Capturing groups are so named because, during a match, each subsequence
 486  * of the input sequence that matches such a group is saved.  The captured
 487  * subsequence may be used later in the expression, via a back reference, and
 488  * may also be retrieved from the matcher once the match operation is complete.
 489  *
 490  * <a name="groupname">
 491  * <h5> Group name </h5>
 492  * <p>A capturing group can also be assigned a "name", a <tt>named-capturing group</tt>,
 493  * and then be back-referenced later by the "name". Group names are composed of
 494  * the following characters. The first character must be a <tt>letter</tt>.
 495  *
 496  * <ul>
 497  *   <li> The uppercase letters <tt>'A'</tt> through <tt>'Z'</tt>
 498  *        (<tt>'&#92;u0041'</tt>&nbsp;through&nbsp;<tt>'&#92;u005a'</tt>),
 499  *   <li> The lowercase letters <tt>'a'</tt> through <tt>'z'</tt>
 500  *        (<tt>'&#92;u0061'</tt>&nbsp;through&nbsp;<tt>'&#92;u007a'</tt>),
 501  *   <li> The digits <tt>'0'</tt> through <tt>'9'</tt>
 502  *        (<tt>'&#92;u0030'</tt>&nbsp;through&nbsp;<tt>'&#92;u0039'</tt>),
 503  * </ul>
 504  *
 505  * <p> A <tt>named-capturing group</tt> is still numbered as described in
 506  * <a href="#gnumber">Group number</a>.
 507  *
 508  * <p> The captured input associated with a group is always the subsequence
 509  * that the group most recently matched.  If a group is evaluated a second time
 510  * because of quantification then its previously-captured value, if any, will
 511  * be retained if the second evaluation fails.  Matching the string
 512  * <tt>"aba"</tt> against the expression <tt>(a(b)?)+</tt>, for example, leaves
 513  * group two set to <tt>"b"</tt>.  All captured input is discarded at the
 514  * beginning of each match.
 515  *
 516  * <p> Groups beginning with <tt>(?</tt> are either pure, <i>non-capturing</i> groups
 517  * that do not capture text and do not count towards the group total, or
 518  * <i>named-capturing</i> group.
 519  *
 520  * <h4> Unicode support </h4>
 521  *
 522  * <p> This class is in conformance with Level 1 of <a
 523  * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 524  * Standard #18: Unicode Regular Expression</i></a>, plus RL2.1
 525  * Canonical Equivalents.
 526  * <p>
 527  * <b>Unicode escape sequences</b> such as <tt>&#92;u2014</tt> in Java source code
 528  * are processed as described in section 3.3 of
 529  * <cite>The Java&trade; Language Specification</cite>.
 530  * Such escape sequences are also implemented directly by the regular-expression
 531  * parser so that Unicode escapes can be used in expressions that are read from
 532  * files or from the keyboard.  Thus the strings <tt>"&#92;u2014"</tt> and
 533  * <tt>"\\u2014"</tt>, while not equal, compile into the same pattern, which
 534  * matches the character with hexadecimal value <tt>0x2014</tt>.
 535  * <p>
 536  * A Unicode character can also be represented in a regular-expression by
 537  * using its <b>Hex notation</b>(hexadecimal code point value) directly as described in construct
 538  * <tt>&#92;x{...}</tt>, for example a supplementary character U+2011F
 539  * can be specified as <tt>&#92;x{2011F}</tt>, instead of two consecutive
 540  * Unicode escape sequences of the surrogate pair
 541  * <tt>&#92;uD840</tt><tt>&#92;uDD1F</tt>.
 542  * <p>
 543  * Unicode scripts, blocks, categories and binary properties are written with
 544  * the <tt>\p</tt> and <tt>\P</tt> constructs as in Perl.
 545  * <tt>\p{</tt><i>prop</i><tt>}</tt> matches if
 546  * the input has the property <i>prop</i>, while <tt>\P{</tt><i>prop</i><tt>}</tt>
 547  * does not match if the input has that property.
 548  * <p>
 549  * Scripts, blocks, categories and binary properties can be used both inside
 550  * and outside of a character class.
 551  * <a name="usc">
 552  * <p>
 553  * <b>Scripts</b> are specified either with the prefix {@code Is}, as in
 554  * {@code IsHiragana}, or by using  the {@code script} keyword (or its short
 555  * form {@code sc})as in {@code script=Hiragana} or {@code sc=Hiragana}.
 556  * <p>
 557  * The script names supported by <code>Pattern</code> are the valid script names
 558  * accepted and defined by
 559  * {@link java.lang.Character.UnicodeScript#forName(String) UnicodeScript.forName}.
 560  * <a name="ubc">
 561  * <p>
 562  * <b>Blocks</b> are specified with the prefix {@code In}, as in
 563  * {@code InMongolian}, or by using the keyword {@code block} (or its short
 564  * form {@code blk}) as in {@code block=Mongolian} or {@code blk=Mongolian}.
 565  * <p>
 566  * The block names supported by <code>Pattern</code> are the valid block names
 567  * accepted and defined by
 568  * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
 569  * <p>
 570  * <a name="ucc">
 571  * <b>Categories</b> may be specified with the optional prefix {@code Is}:
 572  * Both {@code \p{L}} and {@code \p{IsL}} denote the category of Unicode
 573  * letters. Same as scripts and blocks, categories can also be specified
 574  * by using the keyword {@code general_category} (or its short form
 575  * {@code gc}) as in {@code general_category=Lu} or {@code gc=Lu}.
 576  * <p>
 577  * The supported categories are those of
 578  * <a href="http://www.unicode.org/unicode/standard/standard.html">
 579  * <i>The Unicode Standard</i></a> in the version specified by the
 580  * {@link java.lang.Character Character} class. The category names are those
 581  * defined in the Standard, both normative and informative.
 582  * <p>
 583  * <a name="ubpc">
 584  * <b>Binary properties</b> are specified with the prefix {@code Is}, as in
 585  * {@code IsAlphabetic}. The supported binary properties by <code>Pattern</code>
 586  * are
 587  * <ul>
 588  *   <li> Alphabetic
 589  *   <li> Ideographic
 590  *   <li> Letter
 591  *   <li> Lowercase
 592  *   <li> Uppercase
 593  *   <li> Titlecase
 594  *   <li> Punctuation
 595  *   <Li> Control
 596  *   <li> White_Space
 597  *   <li> Digit
 598  *   <li> Hex_Digit
 599  *   <li> Noncharacter_Code_Point
 600  *   <li> Assigned
 601  * </ul>
 602 
 603 
 604  * <p>
 605  * <b>Predefined Character classes</b> and <b>POSIX character classes</b> are in
 606  * conformance with the recommendation of <i>Annex C: Compatibility Properties</i>
 607  * of <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Regular Expression
 608  * </i></a>, when {@link #UNICODE_CHARACTER_CLASS} flag is specified.
 609  * <p>
 610  * <table border="0" cellpadding="1" cellspacing="0"
 611  *  summary="predefined and posix character classes in Unicode mode">
 612  * <tr align="left">
 613  * <th bgcolor="#CCCCFF" align="left" id="classes">Classes</th>
 614  * <th bgcolor="#CCCCFF" align="left" id="matches">Matches</th>
 615  *</tr>
 616  * <tr><td><tt>\p{Lower}</tt></td>
 617  *     <td>A lowercase character:<tt>\p{IsLowercase}</tt></td></tr>
 618  * <tr><td><tt>\p{Upper}</tt></td>
 619  *     <td>An uppercase character:<tt>\p{IsUppercase}</tt></td></tr>
 620  * <tr><td><tt>\p{ASCII}</tt></td>
 621  *     <td>All ASCII:<tt>[\x00-\x7F]</tt></td></tr>
 622  * <tr><td><tt>\p{Alpha}</tt></td>
 623  *     <td>An alphabetic character:<tt>\p{IsAlphabetic}</tt></td></tr>
 624  * <tr><td><tt>\p{Digit}</tt></td>
 625  *     <td>A decimal digit character:<tt>p{IsDigit}</tt></td></tr>
 626  * <tr><td><tt>\p{Alnum}</tt></td>
 627  *     <td>An alphanumeric character:<tt>[\p{IsAlphabetic}\p{IsDigit}]</tt></td></tr>
 628  * <tr><td><tt>\p{Punct}</tt></td>
 629  *     <td>A punctuation character:<tt>p{IsPunctuation}</tt></td></tr>
 630  * <tr><td><tt>\p{Graph}</tt></td>
 631  *     <td>A visible character: <tt>[^\p{IsWhite_Space}\p{gc=Cc}\p{gc=Cs}\p{gc=Cn}]</tt></td></tr>
 632  * <tr><td><tt>\p{Print}</tt></td>
 633  *     <td>A printable character: <tt>[\p{Graph}\p{Blank}&&[^\p{Cntrl}]]</tt></td></tr>
 634  * <tr><td><tt>\p{Blank}</tt></td>
 635  *     <td>A space or a tab: <tt>[\p{IsWhite_Space}&&[^\p{gc=Zl}\p{gc=Zp}\x0a\x0b\x0c\x0d\x85]]</tt></td></tr>
 636  * <tr><td><tt>\p{Cntrl}</tt></td>
 637  *     <td>A control character: <tt>\p{gc=Cc}</tt></td></tr>
 638  * <tr><td><tt>\p{XDigit}</tt></td>
 639  *     <td>A hexadecimal digit: <tt>[\p{gc=Nd}\p{IsHex_Digit}]</tt></td></tr>
 640  * <tr><td><tt>\p{Space}</tt></td>
 641  *     <td>A whitespace character:<tt>\p{IsWhite_Space}</tt></td></tr>
 642  * <tr><td><tt>\d</tt></td>
 643  *     <td>A digit: <tt>\p{IsDigit}</tt></td></tr>
 644  * <tr><td><tt>\D</tt></td>
 645  *     <td>A non-digit: <tt>[^\d]</tt></td></tr>
 646  * <tr><td><tt>\s</tt></td>
 647  *     <td>A whitespace character: <tt>\p{IsWhite_Space}</tt></td></tr>
 648  * <tr><td><tt>\S</tt></td>
 649  *     <td>A non-whitespace character: <tt>[^\s]</tt></td></tr>
 650  * <tr><td><tt>\w</tt></td>
 651  *     <td>A word character: <tt>[\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}]</tt></td></tr>
 652  * <tr><td><tt>\W</tt></td>
 653  *     <td>A non-word character: <tt>[^\w]</tt></td></tr>
 654  * </table>
 655  * <p>
 656  * <a name="jcc">
 657  * Categories that behave like the java.lang.Character
 658  * boolean is<i>methodname</i> methods (except for the deprecated ones) are
 659  * available through the same <tt>\p{</tt><i>prop</i><tt>}</tt> syntax where
 660  * the specified property has the name <tt>java<i>methodname</i></tt>.
 661  *
 662  * <h4> Comparison to Perl 5 </h4>
 663  *
 664  * <p>The <code>Pattern</code> engine performs traditional NFA-based matching
 665  * with ordered alternation as occurs in Perl 5.
 666  *
 667  * <p> Perl constructs not supported by this class: </p>
 668  *
 669  * <ul>
 670  *    <li><p> Predefined character classes (Unicode character)
 671  *    <p><tt>\h&nbsp;&nbsp;&nbsp;&nbsp;</tt>A horizontal whitespace
 672  *    <p><tt>\H&nbsp;&nbsp;&nbsp;&nbsp;</tt>A non horizontal whitespace
 673  *    <p><tt>\v&nbsp;&nbsp;&nbsp;&nbsp;</tt>A vertical whitespace
 674  *    <p><tt>\V&nbsp;&nbsp;&nbsp;&nbsp;</tt>A non vertical whitespace
 675  *    <p><tt>\R&nbsp;&nbsp;&nbsp;&nbsp;</tt>Any Unicode linebreak sequence
 676  *    <tt>\u005cu000D\u005cu000A|[\u005cu000A\u005cu000B\u005cu000C\u005cu000D\u005cu0085\u005cu2028\u005cu2029]</tt>
 677  *    <p><tt>\X&nbsp;&nbsp;&nbsp;&nbsp;</tt>Match Unicode
 678  *    <a href="http://www.unicode.org/reports/tr18/#Default_Grapheme_Clusters">
 679  *    <i>extended grapheme cluster</i></a>
 680  *    </p></li>
 681  *
 682  *    <li><p> The backreference constructs, <tt>\g{</tt><i>n</i><tt>}</tt> for
 683  *    the <i>n</i><sup>th</sup><a href="#cg">capturing group</a> and
 684  *    <tt>\g{</tt><i>name</i><tt>}</tt> for
 685  *    <a href="#groupname">named-capturing group</a>.
 686  *    </p></li>
 687  *
 688  *    <li><p> The named character construct, <tt>\N{</tt><i>name</i><tt>}</tt>
 689  *    for a Unicode character by its name.
 690  *    </p></li>
 691  *
 692  *    <li><p> The conditional constructs
 693  *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>)</tt> and
 694  *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>|</tt><i>Y</i><tt>)</tt>,
 695  *    </p></li>
 696  *
 697  *    <li><p> The embedded code constructs <tt>(?{</tt><i>code</i><tt>})</tt>
 698  *    and <tt>(??{</tt><i>code</i><tt>})</tt>,</p></li>
 699  *
 700  *    <li><p> The embedded comment syntax <tt>(?#comment)</tt>, and </p></li>
 701  *
 702  *    <li><p> The preprocessing operations <tt>\l</tt> <tt>&#92;u</tt>,
 703  *    <tt>\L</tt>, and <tt>\U</tt>.  </p></li>
 704  *
 705  * </ul>
 706  *
 707  * <p> Constructs supported by this class but not by Perl: </p>
 708  *
 709  * <ul>
 710  *
 711  *    <li><p> Character-class union and intersection as described
 712  *    <a href="#cc">above</a>.</p></li>
 713  *
 714  * </ul>
 715  *
 716  * <p> Notable differences from Perl: </p>
 717  *
 718  * <ul>
 719  *
 720  *    <li><p> In Perl, <tt>\1</tt> through <tt>\9</tt> are always interpreted
 721  *    as back references; a backslash-escaped number greater than <tt>9</tt> is
 722  *    treated as a back reference if at least that many subexpressions exist,
 723  *    otherwise it is interpreted, if possible, as an octal escape.  In this
 724  *    class octal escapes must always begin with a zero. In this class,
 725  *    <tt>\1</tt> through <tt>\9</tt> are always interpreted as back
 726  *    references, and a larger number is accepted as a back reference if at
 727  *    least that many subexpressions exist at that point in the regular
 728  *    expression, otherwise the parser will drop digits until the number is
 729  *    smaller or equal to the existing number of groups or it is one digit.
 730  *    </p></li>
 731  *
 732  *    <li><p> Perl uses the <tt>g</tt> flag to request a match that resumes
 733  *    where the last match left off.  This functionality is provided implicitly
 734  *    by the {@link Matcher} class: Repeated invocations of the {@link
 735  *    Matcher#find find} method will resume where the last match left off,
 736  *    unless the matcher is reset.  </p></li>
 737  *
 738  *    <li><p> In Perl, embedded flags at the top level of an expression affect
 739  *    the whole expression.  In this class, embedded flags always take effect
 740  *    at the point at which they appear, whether they are at the top level or
 741  *    within a group; in the latter case, flags are restored at the end of the
 742  *    group just as in Perl.  </p></li>
 743  *
 744  * </ul>
 745  *
 746  *
 747  * <p> For a more precise description of the behavior of regular expression
 748  * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
 749  * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
 750  * O'Reilly and Associates, 2006.</a>
 751  * </p>
 752  *
 753  * @see java.lang.String#split(String, int)
 754  * @see java.lang.String#split(String)
 755  *
 756  * @author      Mike McCloskey
 757  * @author      Mark Reinhold
 758  * @author      JSR-51 Expert Group
 759  * @since       1.4
 760  * @spec        JSR-51
 761  */
 762 
 763 public final class Pattern
 764     implements java.io.Serializable
 765 {
 766 
 767     /**
 768      * Regular expression modifier values.  Instead of being passed as
 769      * arguments, they can also be passed as inline modifiers.
 770      * For example, the following statements have the same effect.
 771      * <pre>
 772      * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
 773      * RegExp r2 = RegExp.compile("(?im)abc", 0);
 774      * </pre>
 775      *
 776      * The flags are duplicated so that the familiar Perl match flag
 777      * names are available.
 778      */
 779 
 780     /**
 781      * Enables Unix lines mode.
 782      *
 783      * <p> In this mode, only the <tt>'\n'</tt> line terminator is recognized
 784      * in the behavior of <tt>.</tt>, <tt>^</tt>, and <tt>$</tt>.
 785      *
 786      * <p> Unix lines mode can also be enabled via the embedded flag
 787      * expression&nbsp;<tt>(?d)</tt>.
 788      */
 789     public static final int UNIX_LINES = 0x01;
 790 
 791     /**
 792      * Enables case-insensitive matching.
 793      *
 794      * <p> By default, case-insensitive matching assumes that only characters
 795      * in the US-ASCII charset are being matched.  Unicode-aware
 796      * case-insensitive matching can be enabled by specifying the {@link
 797      * #UNICODE_CASE} flag in conjunction with this flag.
 798      *
 799      * <p> Case-insensitive matching can also be enabled via the embedded flag
 800      * expression&nbsp;<tt>(?i)</tt>.
 801      *
 802      * <p> Specifying this flag may impose a slight performance penalty.  </p>
 803      */
 804     public static final int CASE_INSENSITIVE = 0x02;
 805 
 806     /**
 807      * Permits whitespace and comments in pattern.
 808      *
 809      * <p> In this mode, whitespace is ignored, and embedded comments starting
 810      * with <tt>#</tt> are ignored until the end of a line.
 811      *
 812      * <p> Comments mode can also be enabled via the embedded flag
 813      * expression&nbsp;<tt>(?x)</tt>.
 814      */
 815     public static final int COMMENTS = 0x04;
 816 
 817     /**
 818      * Enables multiline mode.
 819      *
 820      * <p> In multiline mode the expressions <tt>^</tt> and <tt>$</tt> match
 821      * just after or just before, respectively, a line terminator or the end of
 822      * the input sequence.  By default these expressions only match at the
 823      * beginning and the end of the entire input sequence.
 824      *
 825      * <p> Multiline mode can also be enabled via the embedded flag
 826      * expression&nbsp;<tt>(?m)</tt>.  </p>
 827      */
 828     public static final int MULTILINE = 0x08;
 829 
 830     /**
 831      * Enables literal parsing of the pattern.
 832      *
 833      * <p> When this flag is specified then the input string that specifies
 834      * the pattern is treated as a sequence of literal characters.
 835      * Metacharacters or escape sequences in the input sequence will be
 836      * given no special meaning.
 837      *
 838      * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
 839      * matching when used in conjunction with this flag. The other flags
 840      * become superfluous.
 841      *
 842      * <p> There is no embedded flag character for enabling literal parsing.
 843      * @since 1.5
 844      */
 845     public static final int LITERAL = 0x10;
 846 
 847     /**
 848      * Enables dotall mode.
 849      *
 850      * <p> In dotall mode, the expression <tt>.</tt> matches any character,
 851      * including a line terminator.  By default this expression does not match
 852      * line terminators.
 853      *
 854      * <p> Dotall mode can also be enabled via the embedded flag
 855      * expression&nbsp;<tt>(?s)</tt>.  (The <tt>s</tt> is a mnemonic for
 856      * "single-line" mode, which is what this is called in Perl.)  </p>
 857      */
 858     public static final int DOTALL = 0x20;
 859 
 860     /**
 861      * Enables Unicode-aware case folding.
 862      *
 863      * <p> When this flag is specified then case-insensitive matching, when
 864      * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
 865      * consistent with the Unicode Standard.  By default, case-insensitive
 866      * matching assumes that only characters in the US-ASCII charset are being
 867      * matched.
 868      *
 869      * <p> Unicode-aware case folding can also be enabled via the embedded flag
 870      * expression&nbsp;<tt>(?u)</tt>.
 871      *
 872      * <p> Specifying this flag may impose a performance penalty.  </p>
 873      */
 874     public static final int UNICODE_CASE = 0x40;
 875 
 876     /**
 877      * Enables canonical equivalence.
 878      *
 879      * <p> When this flag is specified then two characters will be considered
 880      * to match if, and only if, their full canonical decompositions match.
 881      * The expression <tt>"a&#92;u030A"</tt>, for example, will match the
 882      * string <tt>"&#92;u00E5"</tt> when this flag is specified.  By default,
 883      * matching does not take canonical equivalence into account.
 884      *
 885      * <p> There is no embedded flag character for enabling canonical
 886      * equivalence.
 887      *
 888      * <p> Specifying this flag may impose a performance penalty.  </p>
 889      */
 890     public static final int CANON_EQ = 0x80;
 891 
 892     /**
 893      * Enables the Unicode version of <i>Predefined character classes</i> and
 894      * <i>POSIX character classes</i>.
 895      *
 896      * <p> When this flag is specified then the (US-ASCII only)
 897      * <i>Predefined character classes</i> and <i>POSIX character classes</i>
 898      * are in conformance with
 899      * <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 900      * Standard #18: Unicode Regular Expression</i></a>
 901      * <i>Annex C: Compatibility Properties</i>.
 902      * <p>
 903      * The UNICODE_CHARACTER_CLASS mode can also be enabled via the embedded
 904      * flag expression&nbsp;<tt>(?U)</tt>.
 905      * <p>
 906      * The flag implies UNICODE_CASE, that is, it enables Unicode-aware case
 907      * folding.
 908      * <p>
 909      * Specifying this flag may impose a performance penalty.  </p>
 910      * @since 1.7
 911      */
 912     public static final int UNICODE_CHARACTER_CLASS = 0x100;
 913 
 914     /* Pattern has only two serialized components: The pattern string
 915      * and the flags, which are all that is needed to recompile the pattern
 916      * when it is deserialized.
 917      */
 918 
 919     /** use serialVersionUID from Merlin b59 for interoperability */
 920     private static final long serialVersionUID = 5073258162644648461L;
 921 
 922     /**
 923      * The original regular-expression pattern string.
 924      *
 925      * @serial
 926      */
 927     private String pattern;
 928 
 929     /**
 930      * The original pattern flags.
 931      *
 932      * @serial
 933      */
 934     private int flags;
 935 
 936     /**
 937      * Boolean indicating this Pattern is compiled; this is necessary in order
 938      * to lazily compile deserialized Patterns.
 939      */
 940     private transient volatile boolean compiled = false;
 941 
 942     /**
 943      * The normalized pattern string.
 944      */
 945     private transient String normalizedPattern;
 946 
 947     /**
 948      * The starting point of state machine for the find operation.  This allows
 949      * a match to start anywhere in the input.
 950      */
 951     transient Node root;
 952 
 953     /**
 954      * The root of object tree for a match operation.  The pattern is matched
 955      * at the beginning.  This may include a find that uses BnM or a First
 956      * node.
 957      */
 958     transient Node matchRoot;
 959 
 960     /**
 961      * Temporary storage used by parsing pattern slice.
 962      */
 963     transient int[] buffer;
 964 
 965     /**
 966      * Map the "name" of the "named capturing group" to its group id
 967      * node.
 968      */
 969     transient volatile Map<String, Integer> namedGroups;
 970 
 971     /**
 972      * Temporary storage used while parsing group references.
 973      */
 974     transient GroupHead[] groupNodes;
 975 
 976     /**
 977      * Temporary null terminated code point array used by pattern compiling.
 978      */
 979     private transient int[] temp;
 980 
 981     /**
 982      * The number of capturing groups in this Pattern. Used by matchers to
 983      * allocate storage needed to perform a match.
 984      */
 985     transient int capturingGroupCount;
 986 
 987     /**
 988      * The local variable count used by parsing tree. Used by matchers to
 989      * allocate storage needed to perform a match.
 990      */
 991     transient int localCount;
 992 
 993     /**
 994      * Index into the pattern string that keeps track of how much has been
 995      * parsed.
 996      */
 997     private transient int cursor;
 998 
 999     /**
1000      * Holds the length of the pattern string.
1001      */
1002     private transient int patternLength;
1003 
1004     /**
1005      * If the Start node might possibly match supplementary characters.
1006      * It is set to true during compiling if
1007      * (1) There is supplementary char in pattern, or
1008      * (2) There is complement node of Category or Block
1009      */
1010     private transient boolean hasSupplementary;
1011 
1012     /**
1013      * Compiles the given regular expression into a pattern.  </p>
1014      *
1015      * @param  regex
1016      *         The expression to be compiled
1017      *
1018      * @throws  PatternSyntaxException
1019      *          If the expression's syntax is invalid
1020      */
1021     public static Pattern compile(String regex) {
1022         return new Pattern(regex, 0);
1023     }
1024 
1025     /**
1026      * Compiles the given regular expression into a pattern with the given
1027      * flags.  </p>
1028      *
1029      * @param  regex
1030      *         The expression to be compiled
1031      *
1032      * @param  flags
1033      *         Match flags, a bit mask that may include
1034      *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
1035      *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
1036      *         {@link #LITERAL}, {@link #UNICODE_CHARACTER_CLASS}
1037      *         and {@link #COMMENTS}
1038      *
1039      * @throws  IllegalArgumentException
1040      *          If bit values other than those corresponding to the defined
1041      *          match flags are set in <tt>flags</tt>
1042      *
1043      * @throws  PatternSyntaxException
1044      *          If the expression's syntax is invalid
1045      */
1046     public static Pattern compile(String regex, int flags) {
1047         return new Pattern(regex, flags);
1048     }
1049 
1050     /**
1051      * Returns the regular expression from which this pattern was compiled.
1052      * </p>
1053      *
1054      * @return  The source of this pattern
1055      */
1056     public String pattern() {
1057         return pattern;
1058     }
1059 
1060     /**
1061      * <p>Returns the string representation of this pattern. This
1062      * is the regular expression from which this pattern was
1063      * compiled.</p>
1064      *
1065      * @return  The string representation of this pattern
1066      * @since 1.5
1067      */
1068     public String toString() {
1069         return pattern;
1070     }
1071 
1072     /**
1073      * Creates a matcher that will match the given input against this pattern.
1074      * </p>
1075      *
1076      * @param  input
1077      *         The character sequence to be matched
1078      *
1079      * @return  A new matcher for this pattern
1080      */
1081     public Matcher matcher(CharSequence input) {
1082         if (!compiled) {
1083             synchronized(this) {
1084                 if (!compiled)
1085                     compile();
1086             }
1087         }
1088         Matcher m = new Matcher(this, input);
1089         return m;
1090     }
1091 
1092     /**
1093      * Returns this pattern's match flags.  </p>
1094      *
1095      * @return  The match flags specified when this pattern was compiled
1096      */
1097     public int flags() {
1098         return flags;
1099     }
1100 
1101     /**
1102      * Compiles the given regular expression and attempts to match the given
1103      * input against it.
1104      *
1105      * <p> An invocation of this convenience method of the form
1106      *
1107      * <blockquote><pre>
1108      * Pattern.matches(regex, input);</pre></blockquote>
1109      *
1110      * behaves in exactly the same way as the expression
1111      *
1112      * <blockquote><pre>
1113      * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
1114      *
1115      * <p> If a pattern is to be used multiple times, compiling it once and reusing
1116      * it will be more efficient than invoking this method each time.  </p>
1117      *
1118      * @param  regex
1119      *         The expression to be compiled
1120      *
1121      * @param  input
1122      *         The character sequence to be matched
1123      *
1124      * @throws  PatternSyntaxException
1125      *          If the expression's syntax is invalid
1126      */
1127     public static boolean matches(String regex, CharSequence input) {
1128         Pattern p = Pattern.compile(regex);
1129         Matcher m = p.matcher(input);
1130         return m.matches();
1131     }
1132 
1133     /**
1134      * Splits the given input sequence around matches of this pattern.
1135      *
1136      * <p> The array returned by this method contains each substring of the
1137      * input sequence that is terminated by another subsequence that matches
1138      * this pattern or is terminated by the end of the input sequence.  The
1139      * substrings in the array are in the order in which they occur in the
1140      * input.  If this pattern does not match any subsequence of the input then
1141      * the resulting array has just one element, namely the input sequence in
1142      * string form.
1143      *
1144      * <p> The <tt>limit</tt> parameter controls the number of times the
1145      * pattern is applied and therefore affects the length of the resulting
1146      * array.  If the limit <i>n</i> is greater than zero then the pattern
1147      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
1148      * length will be no greater than <i>n</i>, and the array's last entry
1149      * will contain all input beyond the last matched delimiter.  If <i>n</i>
1150      * is non-positive then the pattern will be applied as many times as
1151      * possible and the array can have any length.  If <i>n</i> is zero then
1152      * the pattern will be applied as many times as possible, the array can
1153      * have any length, and trailing empty strings will be discarded.
1154      *
1155      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
1156      * results with these parameters:
1157      *
1158      * <blockquote><table cellpadding=1 cellspacing=0
1159      *              summary="Split examples showing regex, limit, and result">
1160      * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1161      *     <th><P align="left"><i>Limit&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1162      *     <th><P align="left"><i>Result&nbsp;&nbsp;&nbsp;&nbsp;</i></th></tr>
1163      * <tr><td align=center>:</td>
1164      *     <td align=center>2</td>
1165      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
1166      * <tr><td align=center>:</td>
1167      *     <td align=center>5</td>
1168      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1169      * <tr><td align=center>:</td>
1170      *     <td align=center>-2</td>
1171      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1172      * <tr><td align=center>o</td>
1173      *     <td align=center>5</td>
1174      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
1175      * <tr><td align=center>o</td>
1176      *     <td align=center>-2</td>
1177      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
1178      * <tr><td align=center>o</td>
1179      *     <td align=center>0</td>
1180      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
1181      * </table></blockquote>
1182      *
1183      *
1184      * @param  input
1185      *         The character sequence to be split
1186      *
1187      * @param  limit
1188      *         The result threshold, as described above
1189      *
1190      * @return  The array of strings computed by splitting the input
1191      *          around matches of this pattern
1192      */
1193     public String[] split(CharSequence input, int limit) {
1194         int index = 0;
1195         boolean matchLimited = limit > 0;
1196         ArrayList<String> matchList = new ArrayList<>();
1197         Matcher m = matcher(input);
1198 
1199         // Add segments before each match found
1200         while(m.find()) {
1201             if (!matchLimited || matchList.size() < limit - 1) {
1202                 String match = input.subSequence(index, m.start()).toString();
1203                 matchList.add(match);
1204                 index = m.end();
1205             } else if (matchList.size() == limit - 1) { // last one
1206                 String match = input.subSequence(index,
1207                                                  input.length()).toString();
1208                 matchList.add(match);
1209                 index = m.end();
1210             }
1211         }
1212 
1213         // If no match was found, return this
1214         if (index == 0)
1215             return new String[] {input.toString()};
1216 
1217         // Add remaining segment
1218         if (!matchLimited || matchList.size() < limit)
1219             matchList.add(input.subSequence(index, input.length()).toString());
1220 
1221         // Construct result
1222         int resultSize = matchList.size();
1223         if (limit == 0)
1224             while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
1225                 resultSize--;
1226         String[] result = new String[resultSize];
1227         return matchList.subList(0, resultSize).toArray(result);
1228     }
1229 
1230     /**
1231      * Splits the given input sequence around matches of this pattern.
1232      *
1233      * <p> This method works as if by invoking the two-argument {@link
1234      * #split(java.lang.CharSequence, int) split} method with the given input
1235      * sequence and a limit argument of zero.  Trailing empty strings are
1236      * therefore not included in the resulting array. </p>
1237      *
1238      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
1239      * results with these expressions:
1240      *
1241      * <blockquote><table cellpadding=1 cellspacing=0
1242      *              summary="Split examples showing regex and result">
1243      * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1244      *     <th><P align="left"><i>Result</i></th></tr>
1245      * <tr><td align=center>:</td>
1246      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1247      * <tr><td align=center>o</td>
1248      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
1249      * </table></blockquote>
1250      *
1251      *
1252      * @param  input
1253      *         The character sequence to be split
1254      *
1255      * @return  The array of strings computed by splitting the input
1256      *          around matches of this pattern
1257      */
1258     public String[] split(CharSequence input) {
1259         return split(input, 0);
1260     }
1261 
1262     /**
1263      * Returns a literal pattern <code>String</code> for the specified
1264      * <code>String</code>.
1265      *
1266      * <p>This method produces a <code>String</code> that can be used to
1267      * create a <code>Pattern</code> that would match the string
1268      * <code>s</code> as if it were a literal pattern.</p> Metacharacters
1269      * or escape sequences in the input sequence will be given no special
1270      * meaning.
1271      *
1272      * @param  s The string to be literalized
1273      * @return  A literal string replacement
1274      * @since 1.5
1275      */
1276     public static String quote(String s) {
1277         int slashEIndex = s.indexOf("\\E");
1278         if (slashEIndex == -1)
1279             return "\\Q" + s + "\\E";
1280 
1281         StringBuilder sb = new StringBuilder(s.length() * 2);
1282         sb.append("\\Q");
1283         slashEIndex = 0;
1284         int current = 0;
1285         while ((slashEIndex = s.indexOf("\\E", current)) != -1) {
1286             sb.append(s.substring(current, slashEIndex));
1287             current = slashEIndex + 2;
1288             sb.append("\\E\\\\E\\Q");
1289         }
1290         sb.append(s.substring(current, s.length()));
1291         sb.append("\\E");
1292         return sb.toString();
1293     }
1294 
1295     /**
1296      * Recompile the Pattern instance from a stream.  The original pattern
1297      * string is read in and the object tree is recompiled from it.
1298      */
1299     private void readObject(java.io.ObjectInputStream s)
1300         throws java.io.IOException, ClassNotFoundException {
1301 
1302         // Read in all fields
1303         s.defaultReadObject();
1304 
1305         // Initialize counts
1306         capturingGroupCount = 1;
1307         localCount = 0;
1308 
1309         // if length > 0, the Pattern is lazily compiled
1310         compiled = false;
1311         if (pattern.length() == 0) {
1312             root = new Start(lastAccept);
1313             matchRoot = lastAccept;
1314             compiled = true;
1315         }
1316     }
1317 
1318     /**
1319      * This private constructor is used to create all Patterns. The pattern
1320      * string and match flags are all that is needed to completely describe
1321      * a Pattern. An empty pattern string results in an object tree with
1322      * only a Start node and a LastNode node.
1323      */
1324     private Pattern(String p, int f) {
1325         pattern = p;
1326         flags = f;
1327 
1328         // to use UNICODE_CASE if UNICODE_CHARACTER_CLASS present
1329         if ((flags & UNICODE_CHARACTER_CLASS) != 0)
1330             flags |= UNICODE_CASE;
1331 
1332         // Reset group index count
1333         capturingGroupCount = 1;
1334         localCount = 0;
1335 
1336         if (pattern.length() > 0) {
1337             compile();
1338         } else {
1339             root = new Start(lastAccept);
1340             matchRoot = lastAccept;
1341         }
1342     }
1343 
1344     /**
1345      * The pattern is converted to normalizedD form and then a pure group
1346      * is constructed to match canonical equivalences of the characters.
1347      */
1348     private void normalize() {
1349         boolean inCharClass = false;
1350         int lastCodePoint = -1;
1351 
1352         // Convert pattern into normalizedD form
1353         normalizedPattern = Normalizer.normalize(pattern, Normalizer.Form.NFD);
1354         patternLength = normalizedPattern.length();
1355 
1356         // Modify pattern to match canonical equivalences
1357         StringBuilder newPattern = new StringBuilder(patternLength);
1358         for(int i=0; i<patternLength; ) {
1359             int c = normalizedPattern.codePointAt(i);
1360             StringBuilder sequenceBuffer;
1361             if ((Character.getType(c) == Character.NON_SPACING_MARK)
1362                 && (lastCodePoint != -1)) {
1363                 sequenceBuffer = new StringBuilder();
1364                 sequenceBuffer.appendCodePoint(lastCodePoint);
1365                 sequenceBuffer.appendCodePoint(c);
1366                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1367                     i += Character.charCount(c);
1368                     if (i >= patternLength)
1369                         break;
1370                     c = normalizedPattern.codePointAt(i);
1371                     sequenceBuffer.appendCodePoint(c);
1372                 }
1373                 String ea = produceEquivalentAlternation(
1374                                                sequenceBuffer.toString());
1375                 newPattern.setLength(newPattern.length()-Character.charCount(lastCodePoint));
1376                 newPattern.append("(?:").append(ea).append(")");
1377             } else if (c == '[' && lastCodePoint != '\\') {
1378                 i = normalizeCharClass(newPattern, i);
1379             } else {
1380                 newPattern.appendCodePoint(c);
1381             }
1382             lastCodePoint = c;
1383             i += Character.charCount(c);
1384         }
1385         normalizedPattern = newPattern.toString();
1386     }
1387 
1388     /**
1389      * Complete the character class being parsed and add a set
1390      * of alternations to it that will match the canonical equivalences
1391      * of the characters within the class.
1392      */
1393     private int normalizeCharClass(StringBuilder newPattern, int i) {
1394         StringBuilder charClass = new StringBuilder();
1395         StringBuilder eq = null;
1396         int lastCodePoint = -1;
1397         String result;
1398 
1399         i++;
1400         charClass.append("[");
1401         while(true) {
1402             int c = normalizedPattern.codePointAt(i);
1403             StringBuilder sequenceBuffer;
1404 
1405             if (c == ']' && lastCodePoint != '\\') {
1406                 charClass.append((char)c);
1407                 break;
1408             } else if (Character.getType(c) == Character.NON_SPACING_MARK) {
1409                 sequenceBuffer = new StringBuilder();
1410                 sequenceBuffer.appendCodePoint(lastCodePoint);
1411                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1412                     sequenceBuffer.appendCodePoint(c);
1413                     i += Character.charCount(c);
1414                     if (i >= normalizedPattern.length())
1415                         break;
1416                     c = normalizedPattern.codePointAt(i);
1417                 }
1418                 String ea = produceEquivalentAlternation(
1419                                                   sequenceBuffer.toString());
1420 
1421                 charClass.setLength(charClass.length()-Character.charCount(lastCodePoint));
1422                 if (eq == null)
1423                     eq = new StringBuilder();
1424                 eq.append('|');
1425                 eq.append(ea);
1426             } else {
1427                 charClass.appendCodePoint(c);
1428                 i++;
1429             }
1430             if (i == normalizedPattern.length())
1431                 throw error("Unclosed character class");
1432             lastCodePoint = c;
1433         }
1434 
1435         if (eq != null) {
1436             result = "(?:"+charClass.toString()+eq.toString()+")";
1437         } else {
1438             result = charClass.toString();
1439         }
1440 
1441         newPattern.append(result);
1442         return i;
1443     }
1444 
1445     /**
1446      * Given a specific sequence composed of a regular character and
1447      * combining marks that follow it, produce the alternation that will
1448      * match all canonical equivalences of that sequence.
1449      */
1450     private String produceEquivalentAlternation(String source) {
1451         int len = countChars(source, 0, 1);
1452         if (source.length() == len)
1453             // source has one character.
1454             return source;
1455 
1456         String base = source.substring(0,len);
1457         String combiningMarks = source.substring(len);
1458 
1459         String[] perms = producePermutations(combiningMarks);
1460         StringBuilder result = new StringBuilder(source);
1461 
1462         // Add combined permutations
1463         for(int x=0; x<perms.length; x++) {
1464             String next = base + perms[x];
1465             if (x>0)
1466                 result.append("|"+next);
1467             next = composeOneStep(next);
1468             if (next != null)
1469                 result.append("|"+produceEquivalentAlternation(next));
1470         }
1471         return result.toString();
1472     }
1473 
1474     /**
1475      * Returns an array of strings that have all the possible
1476      * permutations of the characters in the input string.
1477      * This is used to get a list of all possible orderings
1478      * of a set of combining marks. Note that some of the permutations
1479      * are invalid because of combining class collisions, and these
1480      * possibilities must be removed because they are not canonically
1481      * equivalent.
1482      */
1483     private String[] producePermutations(String input) {
1484         if (input.length() == countChars(input, 0, 1))
1485             return new String[] {input};
1486 
1487         if (input.length() == countChars(input, 0, 2)) {
1488             int c0 = Character.codePointAt(input, 0);
1489             int c1 = Character.codePointAt(input, Character.charCount(c0));
1490             if (getClass(c1) == getClass(c0)) {
1491                 return new String[] {input};
1492             }
1493             String[] result = new String[2];
1494             result[0] = input;
1495             StringBuilder sb = new StringBuilder(2);
1496             sb.appendCodePoint(c1);
1497             sb.appendCodePoint(c0);
1498             result[1] = sb.toString();
1499             return result;
1500         }
1501 
1502         int length = 1;
1503         int nCodePoints = countCodePoints(input);
1504         for(int x=1; x<nCodePoints; x++)
1505             length = length * (x+1);
1506 
1507         String[] temp = new String[length];
1508 
1509         int combClass[] = new int[nCodePoints];
1510         for(int x=0, i=0; x<nCodePoints; x++) {
1511             int c = Character.codePointAt(input, i);
1512             combClass[x] = getClass(c);
1513             i +=  Character.charCount(c);
1514         }
1515 
1516         // For each char, take it out and add the permutations
1517         // of the remaining chars
1518         int index = 0;
1519         int len;
1520         // offset maintains the index in code units.
1521 loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1522             len = countChars(input, offset, 1);
1523             boolean skip = false;
1524             for(int y=x-1; y>=0; y--) {
1525                 if (combClass[y] == combClass[x]) {
1526                     continue loop;
1527                 }
1528             }
1529             StringBuilder sb = new StringBuilder(input);
1530             String otherChars = sb.delete(offset, offset+len).toString();
1531             String[] subResult = producePermutations(otherChars);
1532 
1533             String prefix = input.substring(offset, offset+len);
1534             for(int y=0; y<subResult.length; y++)
1535                 temp[index++] =  prefix + subResult[y];
1536         }
1537         String[] result = new String[index];
1538         for (int x=0; x<index; x++)
1539             result[x] = temp[x];
1540         return result;
1541     }
1542 
1543     private int getClass(int c) {
1544         return sun.text.Normalizer.getCombiningClass(c);
1545     }
1546 
1547     /**
1548      * Attempts to compose input by combining the first character
1549      * with the first combining mark following it. Returns a String
1550      * that is the composition of the leading character with its first
1551      * combining mark followed by the remaining combining marks. Returns
1552      * null if the first two characters cannot be further composed.
1553      */
1554     private String composeOneStep(String input) {
1555         int len = countChars(input, 0, 2);
1556         String firstTwoCharacters = input.substring(0, len);
1557         String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1558 
1559         if (result.equals(firstTwoCharacters))
1560             return null;
1561         else {
1562             String remainder = input.substring(len);
1563             return result + remainder;
1564         }
1565     }
1566 
1567     /**
1568      * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
1569      * See the description of `quotemeta' in perlfunc(1).
1570      */
1571     private void RemoveQEQuoting() {
1572         final int pLen = patternLength;
1573         int i = 0;
1574         while (i < pLen-1) {
1575             if (temp[i] != '\\')
1576                 i += 1;
1577             else if (temp[i + 1] != 'Q')
1578                 i += 2;
1579             else
1580                 break;
1581         }
1582         if (i >= pLen - 1)    // No \Q sequence found
1583             return;
1584         int j = i;
1585         i += 2;
1586         int[] newtemp = new int[j + 2*(pLen-i) + 2];
1587         System.arraycopy(temp, 0, newtemp, 0, j);
1588 
1589         boolean inQuote = true;
1590         while (i < pLen) {
1591             int c = temp[i++];
1592             if (! ASCII.isAscii(c) || ASCII.isAlnum(c)) {
1593                 newtemp[j++] = c;
1594             } else if (c != '\\') {
1595                 if (inQuote) newtemp[j++] = '\\';
1596                 newtemp[j++] = c;
1597             } else if (inQuote) {
1598                 if (temp[i] == 'E') {
1599                     i++;
1600                     inQuote = false;
1601                 } else {
1602                     newtemp[j++] = '\\';
1603                     newtemp[j++] = '\\';
1604                 }
1605             } else {
1606                 if (temp[i] == 'Q') {
1607                     i++;
1608                     inQuote = true;
1609                 } else {
1610                     newtemp[j++] = c;
1611                     if (i != pLen)
1612                         newtemp[j++] = temp[i++];
1613                 }
1614             }
1615         }
1616 
1617         patternLength = j;
1618         temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
1619     }
1620 
1621     /**
1622      * Copies regular expression to an int array and invokes the parsing
1623      * of the expression which will create the object tree.
1624      */
1625     private void compile() {
1626         // Handle canonical equivalences
1627         if (has(CANON_EQ) && !has(LITERAL)) {
1628             normalize();
1629         } else {
1630             normalizedPattern = pattern;
1631         }
1632         patternLength = normalizedPattern.length();
1633 
1634         // Copy pattern to int array for convenience
1635         // Use double zero to terminate pattern
1636         temp = new int[patternLength + 2];
1637 
1638         hasSupplementary = false;
1639         int c, count = 0;
1640         // Convert all chars into code points
1641         for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1642             c = normalizedPattern.codePointAt(x);
1643             if (isSupplementary(c)) {
1644                 hasSupplementary = true;
1645             }
1646             temp[count++] = c;
1647         }
1648 
1649         patternLength = count;   // patternLength now in code points
1650 
1651         if (! has(LITERAL))
1652             RemoveQEQuoting();
1653 
1654         // Allocate all temporary objects here.
1655         buffer = new int[32];
1656         groupNodes = new GroupHead[10];
1657         namedGroups = null;
1658 
1659         if (has(LITERAL)) {
1660             // Literal pattern handling
1661             matchRoot = newSlice(temp, patternLength, hasSupplementary);
1662             matchRoot.next = lastAccept;
1663         } else {
1664             // Start recursive descent parsing
1665             matchRoot = expr(lastAccept);
1666             // Check extra pattern characters
1667             if (patternLength != cursor) {
1668                 if (peek() == ')') {
1669                     throw error("Unmatched closing ')'");
1670                 } else {
1671                     throw error("Unexpected internal error");
1672                 }
1673             }
1674         }
1675 
1676         // Peephole optimization
1677         if (matchRoot instanceof Slice) {
1678             root = BnM.optimize(matchRoot);
1679             if (root == matchRoot) {
1680                 root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1681             }
1682         } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1683             root = matchRoot;
1684         } else {
1685             root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1686         }
1687 
1688         // Release temporary storage
1689         temp = null;
1690         buffer = null;
1691         groupNodes = null;
1692         patternLength = 0;
1693         compiled = true;
1694     }
1695 
1696     Map<String, Integer> namedGroups() {
1697         if (namedGroups == null)
1698             namedGroups = new HashMap<>(2);
1699         return namedGroups;
1700     }
1701 
1702     /**
1703      * Used to print out a subtree of the Pattern to help with debugging.
1704      */
1705     private static void printObjectTree(Node node) {
1706         while(node != null) {
1707             if (node instanceof Prolog) {
1708                 System.out.println(node);
1709                 printObjectTree(((Prolog)node).loop);
1710                 System.out.println("**** end contents prolog loop");
1711             } else if (node instanceof Loop) {
1712                 System.out.println(node);
1713                 printObjectTree(((Loop)node).body);
1714                 System.out.println("**** end contents Loop body");
1715             } else if (node instanceof Curly) {
1716                 System.out.println(node);
1717                 printObjectTree(((Curly)node).atom);
1718                 System.out.println("**** end contents Curly body");
1719             } else if (node instanceof GroupCurly) {
1720                 System.out.println(node);
1721                 printObjectTree(((GroupCurly)node).atom);
1722                 System.out.println("**** end contents GroupCurly body");
1723             } else if (node instanceof GroupTail) {
1724                 System.out.println(node);
1725                 System.out.println("Tail next is "+node.next);
1726                 return;
1727             } else {
1728                 System.out.println(node);
1729             }
1730             node = node.next;
1731             if (node != null)
1732                 System.out.println("->next:");
1733             if (node == Pattern.accept) {
1734                 System.out.println("Accept Node");
1735                 node = null;
1736             }
1737        }
1738     }
1739 
1740     /**
1741      * Used to accumulate information about a subtree of the object graph
1742      * so that optimizations can be applied to the subtree.
1743      */
1744     static final class TreeInfo {
1745         int minLength;
1746         int maxLength;
1747         boolean maxValid;
1748         boolean deterministic;
1749 
1750         TreeInfo() {
1751             reset();
1752         }
1753         void reset() {
1754             minLength = 0;
1755             maxLength = 0;
1756             maxValid = true;
1757             deterministic = true;
1758         }
1759     }
1760 
1761     /*
1762      * The following private methods are mainly used to improve the
1763      * readability of the code. In order to let the Java compiler easily
1764      * inline them, we should not put many assertions or error checks in them.
1765      */
1766 
1767     /**
1768      * Indicates whether a particular flag is set or not.
1769      */
1770     private boolean has(int f) {
1771         return (flags & f) != 0;
1772     }
1773 
1774     /**
1775      * Match next character, signal error if failed.
1776      */
1777     private void accept(int ch, String s) {
1778         int testChar = temp[cursor++];
1779         if (has(COMMENTS))
1780             testChar = parsePastWhitespace(testChar);
1781         if (ch != testChar) {
1782             throw error(s);
1783         }
1784     }
1785 
1786     /**
1787      * Mark the end of pattern with a specific character.
1788      */
1789     private void mark(int c) {
1790         temp[patternLength] = c;
1791     }
1792 
1793     /**
1794      * Peek the next character, and do not advance the cursor.
1795      */
1796     private int peek() {
1797         int ch = temp[cursor];
1798         if (has(COMMENTS))
1799             ch = peekPastWhitespace(ch);
1800         return ch;
1801     }
1802 
1803     /**
1804      * Read the next character, and advance the cursor by one.
1805      */
1806     private int read() {
1807         int ch = temp[cursor++];
1808         if (has(COMMENTS))
1809             ch = parsePastWhitespace(ch);
1810         return ch;
1811     }
1812 
1813     /**
1814      * Read the next character, and advance the cursor by one,
1815      * ignoring the COMMENTS setting
1816      */
1817     private int readEscaped() {
1818         int ch = temp[cursor++];
1819         return ch;
1820     }
1821 
1822     /**
1823      * Advance the cursor by one, and peek the next character.
1824      */
1825     private int next() {
1826         int ch = temp[++cursor];
1827         if (has(COMMENTS))
1828             ch = peekPastWhitespace(ch);
1829         return ch;
1830     }
1831 
1832     /**
1833      * Advance the cursor by one, and peek the next character,
1834      * ignoring the COMMENTS setting
1835      */
1836     private int nextEscaped() {
1837         int ch = temp[++cursor];
1838         return ch;
1839     }
1840 
1841     /**
1842      * If in xmode peek past whitespace and comments.
1843      */
1844     private int peekPastWhitespace(int ch) {
1845         while (ASCII.isSpace(ch) || ch == '#') {
1846             while (ASCII.isSpace(ch))
1847                 ch = temp[++cursor];
1848             if (ch == '#') {
1849                 ch = peekPastLine();
1850             }
1851         }
1852         return ch;
1853     }
1854 
1855     /**
1856      * If in xmode parse past whitespace and comments.
1857      */
1858     private int parsePastWhitespace(int ch) {
1859         while (ASCII.isSpace(ch) || ch == '#') {
1860             while (ASCII.isSpace(ch))
1861                 ch = temp[cursor++];
1862             if (ch == '#')
1863                 ch = parsePastLine();
1864         }
1865         return ch;
1866     }
1867 
1868     /**
1869      * xmode parse past comment to end of line.
1870      */
1871     private int parsePastLine() {
1872         int ch = temp[cursor++];
1873         while (ch != 0 && !isLineSeparator(ch))
1874             ch = temp[cursor++];
1875         return ch;
1876     }
1877 
1878     /**
1879      * xmode peek past comment to end of line.
1880      */
1881     private int peekPastLine() {
1882         int ch = temp[++cursor];
1883         while (ch != 0 && !isLineSeparator(ch))
1884             ch = temp[++cursor];
1885         return ch;
1886     }
1887 
1888     /**
1889      * Determines if character is a line separator in the current mode
1890      */
1891     private boolean isLineSeparator(int ch) {
1892         if (has(UNIX_LINES)) {
1893             return ch == '\n';
1894         } else {
1895             return (ch == '\n' ||
1896                     ch == '\r' ||
1897                     (ch|1) == '\u2029' ||
1898                     ch == '\u0085');
1899         }
1900     }
1901 
1902     /**
1903      * Read the character after the next one, and advance the cursor by two.
1904      */
1905     private int skip() {
1906         int i = cursor;
1907         int ch = temp[i+1];
1908         cursor = i + 2;
1909         return ch;
1910     }
1911 
1912     /**
1913      * Unread one next character, and retreat cursor by one.
1914      */
1915     private void unread() {
1916         cursor--;
1917     }
1918 
1919     /**
1920      * Internal method used for handling all syntax errors. The pattern is
1921      * displayed with a pointer to aid in locating the syntax error.
1922      */
1923     private PatternSyntaxException error(String s) {
1924         return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
1925     }
1926 
1927     /**
1928      * Determines if there is any supplementary character or unpaired
1929      * surrogate in the specified range.
1930      */
1931     private boolean findSupplementary(int start, int end) {
1932         for (int i = start; i < end; i++) {
1933             if (isSupplementary(temp[i]))
1934                 return true;
1935         }
1936         return false;
1937     }
1938 
1939     /**
1940      * Determines if the specified code point is a supplementary
1941      * character or unpaired surrogate.
1942      */
1943     private static final boolean isSupplementary(int ch) {
1944         return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
1945                Character.isSurrogate((char)ch);
1946     }
1947 
1948     /**
1949      *  The following methods handle the main parsing. They are sorted
1950      *  according to their precedence order, the lowest one first.
1951      */
1952 
1953     /**
1954      * The expression is parsed with branch nodes added for alternations.
1955      * This may be called recursively to parse sub expressions that may
1956      * contain alternations.
1957      */
1958     private Node expr(Node end) {
1959         Node prev = null;
1960         Node firstTail = null;
1961         Node branchConn = null;
1962 
1963         for (;;) {
1964             Node node = sequence(end);
1965             Node nodeTail = root;      //double return
1966             if (prev == null) {
1967                 prev = node;
1968                 firstTail = nodeTail;
1969             } else {
1970                 // Branch
1971                 if (branchConn == null) {
1972                     branchConn = new BranchConn();
1973                     branchConn.next = end;
1974                 }
1975                 if (node == end) {
1976                     // if the node returned from sequence() is "end"
1977                     // we have an empty expr, set a null atom into
1978                     // the branch to indicate to go "next" directly.
1979                     node = null;
1980                 } else {
1981                     // the "tail.next" of each atom goes to branchConn
1982                     nodeTail.next = branchConn;
1983                 }
1984                 if (prev instanceof Branch) {
1985                     ((Branch)prev).add(node);
1986                 } else {
1987                     if (prev == end) {
1988                         prev = null;
1989                     } else {
1990                         // replace the "end" with "branchConn" at its tail.next
1991                         // when put the "prev" into the branch as the first atom.
1992                         firstTail.next = branchConn;
1993                     }
1994                     prev = new Branch(prev, node, branchConn);
1995                 }
1996             }
1997             if (peek() != '|') {
1998                 return prev;
1999             }
2000             next();
2001         }
2002     }
2003 
2004     /**
2005      * Parsing of sequences between alternations.
2006      */
2007     private Node sequence(Node end) {
2008         Node head = null;
2009         Node tail = null;
2010         Node node = null;
2011     LOOP:
2012         for (;;) {
2013             int ch = peek();
2014             switch (ch) {
2015             case '(':
2016                 // Because group handles its own closure,
2017                 // we need to treat it differently
2018                 node = group0();
2019                 // Check for comment or flag group
2020                 if (node == null)
2021                     continue;
2022                 if (head == null)
2023                     head = node;
2024                 else
2025                     tail.next = node;
2026                 // Double return: Tail was returned in root
2027                 tail = root;
2028                 continue;
2029             case '[':
2030                 node = clazz(true);
2031                 break;
2032             case '\\':
2033                 ch = nextEscaped();
2034                 if (ch == 'p' || ch == 'P') {
2035                     boolean oneLetter = true;
2036                     boolean comp = (ch == 'P');
2037                     ch = next(); // Consume { if present
2038                     if (ch != '{') {
2039                         unread();
2040                     } else {
2041                         oneLetter = false;
2042                     }
2043                     node = family(oneLetter, comp);
2044                 } else {
2045                     unread();
2046                     node = atom();
2047                 }
2048                 break;
2049             case '^':
2050                 next();
2051                 if (has(MULTILINE)) {
2052                     if (has(UNIX_LINES))
2053                         node = new UnixCaret();
2054                     else
2055                         node = new Caret();
2056                 } else {
2057                     node = new Begin();
2058                 }
2059                 break;
2060             case '$':
2061                 next();
2062                 if (has(UNIX_LINES))
2063                     node = new UnixDollar(has(MULTILINE));
2064                 else
2065                     node = new Dollar(has(MULTILINE));
2066                 break;
2067             case '.':
2068                 next();
2069                 if (has(DOTALL)) {
2070                     node = new All();
2071                 } else {
2072                     if (has(UNIX_LINES))
2073                         node = new UnixDot();
2074                     else {
2075                         node = new Dot();
2076                     }
2077                 }
2078                 break;
2079             case '|':
2080             case ')':
2081                 break LOOP;
2082             case ']': // Now interpreting dangling ] and } as literals
2083             case '}':
2084                 node = atom();
2085                 break;
2086             case '?':
2087             case '*':
2088             case '+':
2089                 next();
2090                 throw error("Dangling meta character '" + ((char)ch) + "'");
2091             case 0:
2092                 if (cursor >= patternLength) {
2093                     break LOOP;
2094                 }
2095                 // Fall through
2096             default:
2097                 node = atom();
2098                 break;
2099             }
2100 
2101             node = closure(node);
2102 
2103             if (head == null) {
2104                 head = tail = node;
2105             } else {
2106                 tail.next = node;
2107                 tail = node;
2108             }
2109         }
2110         if (head == null) {
2111             return end;
2112         }
2113         tail.next = end;
2114         root = tail;      //double return
2115         return head;
2116     }
2117 
2118     /**
2119      * Parse and add a new Single or Slice.
2120      */
2121     private Node atom() {
2122         int first = 0;
2123         int prev = -1;
2124         boolean hasSupplementary = false;
2125         int ch = peek();
2126         for (;;) {
2127             switch (ch) {
2128             case '*':
2129             case '+':
2130             case '?':
2131             case '{':
2132                 if (first > 1) {
2133                     cursor = prev;    // Unwind one character
2134                     first--;
2135                 }
2136                 break;
2137             case '$':
2138             case '.':
2139             case '^':
2140             case '(':
2141             case '[':
2142             case '|':
2143             case ')':
2144                 break;
2145             case '\\':
2146                 ch = nextEscaped();
2147                 if (ch == 'p' || ch == 'P') { // Property
2148                     if (first > 0) { // Slice is waiting; handle it first
2149                         unread();
2150                         break;
2151                     } else { // No slice; just return the family node
2152                         boolean comp = (ch == 'P');
2153                         boolean oneLetter = true;
2154                         ch = next(); // Consume { if present
2155                         if (ch != '{')
2156                             unread();
2157                         else
2158                             oneLetter = false;
2159                         return family(oneLetter, comp);
2160                     }
2161                 }
2162                 unread();
2163                 prev = cursor;
2164                 ch = escape(false, first == 0);
2165                 if (ch >= 0) {
2166                     append(ch, first);
2167                     first++;
2168                     if (isSupplementary(ch)) {
2169                         hasSupplementary = true;
2170                     }
2171                     ch = peek();
2172                     continue;
2173                 } else if (first == 0) {
2174                     return root;
2175                 }
2176                 // Unwind meta escape sequence
2177                 cursor = prev;
2178                 break;
2179             case 0:
2180                 if (cursor >= patternLength) {
2181                     break;
2182                 }
2183                 // Fall through
2184             default:
2185                 prev = cursor;
2186                 append(ch, first);
2187                 first++;
2188                 if (isSupplementary(ch)) {
2189                     hasSupplementary = true;
2190                 }
2191                 ch = next();
2192                 continue;
2193             }
2194             break;
2195         }
2196         if (first == 1) {
2197             return newSingle(buffer[0]);
2198         } else {
2199             return newSlice(buffer, first, hasSupplementary);
2200         }
2201     }
2202 
2203     private void append(int ch, int len) {
2204         if (len >= buffer.length) {
2205             int[] tmp = new int[len+len];
2206             System.arraycopy(buffer, 0, tmp, 0, len);
2207             buffer = tmp;
2208         }
2209         buffer[len] = ch;
2210     }
2211 
2212     /**
2213      * Parses a backref greedily, taking as many numbers as it
2214      * can. The first digit is always treated as a backref, but
2215      * multi digit numbers are only treated as a backref if at
2216      * least that many backrefs exist at this point in the regex.
2217      */
2218     private Node ref(int refNum) {
2219         boolean done = false;
2220         while(!done) {
2221             int ch = peek();
2222             switch(ch) {
2223             case '0':
2224             case '1':
2225             case '2':
2226             case '3':
2227             case '4':
2228             case '5':
2229             case '6':
2230             case '7':
2231             case '8':
2232             case '9':
2233                 int newRefNum = (refNum * 10) + (ch - '0');
2234                 // Add another number if it doesn't make a group
2235                 // that doesn't exist
2236                 if (capturingGroupCount - 1 < newRefNum) {
2237                     done = true;
2238                     break;
2239                 }
2240                 refNum = newRefNum;
2241                 read();
2242                 break;
2243             default:
2244                 done = true;
2245                 break;
2246             }
2247         }
2248         if (has(CASE_INSENSITIVE))
2249             return new CIBackRef(refNum, has(UNICODE_CASE));
2250         else
2251             return new BackRef(refNum);
2252     }
2253 
2254     /**
2255      * Parses an escape sequence to determine the actual value that needs
2256      * to be matched.
2257      * If -1 is returned and create was true a new object was added to the tree
2258      * to handle the escape sequence.
2259      * If the returned value is greater than zero, it is the value that
2260      * matches the escape sequence.
2261      */
2262     private int escape(boolean inclass, boolean create) {
2263         int ch = skip();
2264         switch (ch) {
2265         case '0':
2266             return o();
2267         case '1':
2268         case '2':
2269         case '3':
2270         case '4':
2271         case '5':
2272         case '6':
2273         case '7':
2274         case '8':
2275         case '9':
2276             if (inclass) break;
2277             if (create) {
2278                 root = ref((ch - '0'));
2279             }
2280             return -1;
2281         case 'A':
2282             if (inclass) break;
2283             if (create) root = new Begin();
2284             return -1;
2285         case 'B':
2286             if (inclass) break;
2287             if (create) root = new Bound(Bound.NONE, has(UNICODE_CHARACTER_CLASS));
2288             return -1;
2289         case 'C':
2290             break;
2291         case 'D':
2292             if (create) root = has(UNICODE_CHARACTER_CLASS)
2293                                ? new Utype(UnicodeProp.DIGIT).complement()
2294                                : new Ctype(ASCII.DIGIT).complement();
2295             return -1;
2296         case 'E':
2297         case 'F':
2298             break;
2299         case 'G':
2300             if (inclass) break;
2301             if (create) root = new LastMatch();
2302             return -1;
2303         case 'H':
2304         case 'I':
2305         case 'J':
2306         case 'K':
2307         case 'L':
2308         case 'M':
2309         case 'N':
2310         case 'O':
2311         case 'P':
2312         case 'Q':
2313         case 'R':
2314             break;
2315         case 'S':
2316             if (create) root = has(UNICODE_CHARACTER_CLASS)
2317                                ? new Utype(UnicodeProp.WHITE_SPACE).complement()
2318                                : new Ctype(ASCII.SPACE).complement();
2319             return -1;
2320         case 'T':
2321         case 'U':
2322         case 'V':
2323             break;
2324         case 'W':
2325             if (create) root = has(UNICODE_CHARACTER_CLASS)
2326                                ? new Utype(UnicodeProp.WORD).complement()
2327                                : new Ctype(ASCII.WORD).complement();
2328             return -1;
2329         case 'X':
2330         case 'Y':
2331             break;
2332         case 'Z':
2333             if (inclass) break;
2334             if (create) {
2335                 if (has(UNIX_LINES))
2336                     root = new UnixDollar(false);
2337                 else
2338                     root = new Dollar(false);
2339             }
2340             return -1;
2341         case 'a':
2342             return '\007';
2343         case 'b':
2344             if (inclass) break;
2345             if (create) root = new Bound(Bound.BOTH, has(UNICODE_CHARACTER_CLASS));
2346             return -1;
2347         case 'c':
2348             return c();
2349         case 'd':
2350             if (create) root = has(UNICODE_CHARACTER_CLASS)
2351                                ? new Utype(UnicodeProp.DIGIT)
2352                                : new Ctype(ASCII.DIGIT);
2353             return -1;
2354         case 'e':
2355             return '\033';
2356         case 'f':
2357             return '\f';
2358         case 'g':
2359         case 'h':
2360         case 'i':
2361         case 'j':
2362             break;
2363         case 'k':
2364             if (inclass)
2365                 break;
2366             if (read() != '<')
2367                 throw error("\\k is not followed by '<' for named capturing group");
2368             String name = groupname(read());
2369             if (!namedGroups().containsKey(name))
2370                 throw error("(named capturing group <"+ name+"> does not exit");
2371             if (create) {
2372                 if (has(CASE_INSENSITIVE))
2373                     root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
2374                 else
2375                     root = new BackRef(namedGroups().get(name));
2376             }
2377             return -1;
2378         case 'l':
2379         case 'm':
2380             break;
2381         case 'n':
2382             return '\n';
2383         case 'o':
2384         case 'p':
2385         case 'q':
2386             break;
2387         case 'r':
2388             return '\r';
2389         case 's':
2390             if (create) root = has(UNICODE_CHARACTER_CLASS)
2391                                ? new Utype(UnicodeProp.WHITE_SPACE)
2392                                : new Ctype(ASCII.SPACE);
2393             return -1;
2394         case 't':
2395             return '\t';
2396         case 'u':
2397             return u();
2398         case 'v':
2399             return '\013';
2400         case 'w':
2401             if (create) root = has(UNICODE_CHARACTER_CLASS)
2402                                ? new Utype(UnicodeProp.WORD)
2403                                : new Ctype(ASCII.WORD);
2404             return -1;
2405         case 'x':
2406             return x();
2407         case 'y':
2408             break;
2409         case 'z':
2410             if (inclass) break;
2411             if (create) root = new End();
2412             return -1;
2413         default:
2414             return ch;
2415         }
2416         throw error("Illegal/unsupported escape sequence");
2417     }
2418 
2419     /**
2420      * Parse a character class, and return the node that matches it.
2421      *
2422      * Consumes a ] on the way out if consume is true. Usually consume
2423      * is true except for the case of [abc&&def] where def is a separate
2424      * right hand node with "understood" brackets.
2425      */
2426     private CharProperty clazz(boolean consume) {
2427         CharProperty prev = null;
2428         CharProperty node = null;
2429         BitClass bits = new BitClass();
2430         boolean include = true;
2431         boolean firstInClass = true;
2432         int ch = next();
2433         for (;;) {
2434             switch (ch) {
2435                 case '^':
2436                     // Negates if first char in a class, otherwise literal
2437                     if (firstInClass) {
2438                         if (temp[cursor-1] != '[')
2439                             break;
2440                         ch = next();
2441                         include = !include;
2442                         continue;
2443                     } else {
2444                         // ^ not first in class, treat as literal
2445                         break;
2446                     }
2447                 case '[':
2448                     firstInClass = false;
2449                     node = clazz(true);
2450                     if (prev == null)
2451                         prev = node;
2452                     else
2453                         prev = union(prev, node);
2454                     ch = peek();
2455                     continue;
2456                 case '&':
2457                     firstInClass = false;
2458                     ch = next();
2459                     if (ch == '&') {
2460                         ch = next();
2461                         CharProperty rightNode = null;
2462                         while (ch != ']' && ch != '&') {
2463                             if (ch == '[') {
2464                                 if (rightNode == null)
2465                                     rightNode = clazz(true);
2466                                 else
2467                                     rightNode = union(rightNode, clazz(true));
2468                             } else { // abc&&def
2469                                 unread();
2470                                 rightNode = clazz(false);
2471                             }
2472                             ch = peek();
2473                         }
2474                         if (rightNode != null)
2475                             node = rightNode;
2476                         if (prev == null) {
2477                             if (rightNode == null)
2478                                 throw error("Bad class syntax");
2479                             else
2480                                 prev = rightNode;
2481                         } else {
2482                             prev = intersection(prev, node);
2483                         }
2484                     } else {
2485                         // treat as a literal &
2486                         unread();
2487                         break;
2488                     }
2489                     continue;
2490                 case 0:
2491                     firstInClass = false;
2492                     if (cursor >= patternLength)
2493                         throw error("Unclosed character class");
2494                     break;
2495                 case ']':
2496                     firstInClass = false;
2497                     if (prev != null) {
2498                         if (consume)
2499                             next();
2500                         return prev;
2501                     }
2502                     break;
2503                 default:
2504                     firstInClass = false;
2505                     break;
2506             }
2507             node = range(bits);
2508             if (include) {
2509                 if (prev == null) {
2510                     prev = node;
2511                 } else {
2512                     if (prev != node)
2513                         prev = union(prev, node);
2514                 }
2515             } else {
2516                 if (prev == null) {
2517                     prev = node.complement();
2518                 } else {
2519                     if (prev != node)
2520                         prev = setDifference(prev, node);
2521                 }
2522             }
2523             ch = peek();
2524         }
2525     }
2526 
2527     private CharProperty bitsOrSingle(BitClass bits, int ch) {
2528         /* Bits can only handle codepoints in [u+0000-u+00ff] range.
2529            Use "single" node instead of bits when dealing with unicode
2530            case folding for codepoints listed below.
2531            (1)Uppercase out of range: u+00ff, u+00b5
2532               toUpperCase(u+00ff) -> u+0178
2533               toUpperCase(u+00b5) -> u+039c
2534            (2)LatinSmallLetterLongS u+17f
2535               toUpperCase(u+017f) -> u+0053
2536            (3)LatinSmallLetterDotlessI u+131
2537               toUpperCase(u+0131) -> u+0049
2538            (4)LatinCapitalLetterIWithDotAbove u+0130
2539               toLowerCase(u+0130) -> u+0069
2540            (5)KelvinSign u+212a
2541               toLowerCase(u+212a) ==> u+006B
2542            (6)AngstromSign u+212b
2543               toLowerCase(u+212b) ==> u+00e5
2544         */
2545         int d;
2546         if (ch < 256 &&
2547             !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
2548               (ch == 0xff || ch == 0xb5 ||
2549                ch == 0x49 || ch == 0x69 ||  //I and i
2550                ch == 0x53 || ch == 0x73 ||  //S and s
2551                ch == 0x4b || ch == 0x6b ||  //K and k
2552                ch == 0xc5 || ch == 0xe5)))  //A+ring
2553             return bits.add(ch, flags());
2554         return newSingle(ch);
2555     }
2556 
2557     /**
2558      * Parse a single character or a character range in a character class
2559      * and return its representative node.
2560      */
2561     private CharProperty range(BitClass bits) {
2562         int ch = peek();
2563         if (ch == '\\') {
2564             ch = nextEscaped();
2565             if (ch == 'p' || ch == 'P') { // A property
2566                 boolean comp = (ch == 'P');
2567                 boolean oneLetter = true;
2568                 // Consume { if present
2569                 ch = next();
2570                 if (ch != '{')
2571                     unread();
2572                 else
2573                     oneLetter = false;
2574                 return family(oneLetter, comp);
2575             } else { // ordinary escape
2576                 unread();
2577                 ch = escape(true, true);
2578                 if (ch == -1)
2579                     return (CharProperty) root;
2580             }
2581         } else {
2582             ch = single();
2583         }
2584         if (ch >= 0) {
2585             if (peek() == '-') {
2586                 int endRange = temp[cursor+1];
2587                 if (endRange == '[') {
2588                     return bitsOrSingle(bits, ch);
2589                 }
2590                 if (endRange != ']') {
2591                     next();
2592                     int m = single();
2593                     if (m < ch)
2594                         throw error("Illegal character range");
2595                     if (has(CASE_INSENSITIVE))
2596                         return caseInsensitiveRangeFor(ch, m);
2597                     else
2598                         return rangeFor(ch, m);
2599                 }
2600             }
2601             return bitsOrSingle(bits, ch);
2602         }
2603         throw error("Unexpected character '"+((char)ch)+"'");
2604     }
2605 
2606     private int single() {
2607         int ch = peek();
2608         switch (ch) {
2609         case '\\':
2610             return escape(true, false);
2611         default:
2612             next();
2613             return ch;
2614         }
2615     }
2616 
2617     /**
2618      * Parses a Unicode character family and returns its representative node.
2619      */
2620     private CharProperty family(boolean singleLetter,
2621                                 boolean maybeComplement)
2622     {
2623         next();
2624         String name;
2625         CharProperty node = null;
2626 
2627         if (singleLetter) {
2628             int c = temp[cursor];
2629             if (!Character.isSupplementaryCodePoint(c)) {
2630                 name = String.valueOf((char)c);
2631             } else {
2632                 name = new String(temp, cursor, 1);
2633             }
2634             read();
2635         } else {
2636             int i = cursor;
2637             mark('}');
2638             while(read() != '}') {
2639             }
2640             mark('\000');
2641             int j = cursor;
2642             if (j > patternLength)
2643                 throw error("Unclosed character family");
2644             if (i + 1 >= j)
2645                 throw error("Empty character family");
2646             name = new String(temp, i, j-i-1);
2647         }
2648 
2649         int i = name.indexOf('=');
2650         if (i != -1) {
2651             // property construct \p{name=value}
2652             String value = name.substring(i + 1);
2653             name = name.substring(0, i).toLowerCase(Locale.ENGLISH);
2654             if ("sc".equals(name) || "script".equals(name)) {
2655                 node = unicodeScriptPropertyFor(value);
2656             } else if ("blk".equals(name) || "block".equals(name)) {
2657                 node = unicodeBlockPropertyFor(value);
2658             } else if ("gc".equals(name) || "general_category".equals(name)) {
2659                 node = charPropertyNodeFor(value);
2660             } else {
2661                 throw error("Unknown Unicode property {name=<" + name + ">, "
2662                              + "value=<" + value + ">}");
2663             }
2664         } else {
2665             if (name.startsWith("In")) {
2666                 // \p{inBlockName}
2667                 node = unicodeBlockPropertyFor(name.substring(2));
2668             } else if (name.startsWith("Is")) {
2669                 // \p{isGeneralCategory} and \p{isScriptName}
2670                 name = name.substring(2);
2671                 UnicodeProp uprop = UnicodeProp.forName(name);
2672                 if (uprop != null)
2673                     node = new Utype(uprop);
2674                 if (node == null)
2675                     node = CharPropertyNames.charPropertyFor(name);
2676                 if (node == null)
2677                     node = unicodeScriptPropertyFor(name);
2678             } else {
2679                 if (has(UNICODE_CHARACTER_CLASS)) {
2680                     UnicodeProp uprop = UnicodeProp.forPOSIXName(name);
2681                     if (uprop != null)
2682                         node = new Utype(uprop);
2683                 }
2684                 if (node == null)
2685                     node = charPropertyNodeFor(name);
2686             }
2687         }
2688         if (maybeComplement) {
2689             if (node instanceof Category || node instanceof Block)
2690                 hasSupplementary = true;
2691             node = node.complement();
2692         }
2693         return node;
2694     }
2695 
2696 
2697     /**
2698      * Returns a CharProperty matching all characters belong to
2699      * a UnicodeScript.
2700      */
2701     private CharProperty unicodeScriptPropertyFor(String name) {
2702         final Character.UnicodeScript script;
2703         try {
2704             script = Character.UnicodeScript.forName(name);
2705         } catch (IllegalArgumentException iae) {
2706             throw error("Unknown character script name {" + name + "}");
2707         }
2708         return new Script(script);
2709     }
2710 
2711     /**
2712      * Returns a CharProperty matching all characters in a UnicodeBlock.
2713      */
2714     private CharProperty unicodeBlockPropertyFor(String name) {
2715         final Character.UnicodeBlock block;
2716         try {
2717             block = Character.UnicodeBlock.forName(name);
2718         } catch (IllegalArgumentException iae) {
2719             throw error("Unknown character block name {" + name + "}");
2720         }
2721         return new Block(block);
2722     }
2723 
2724     /**
2725      * Returns a CharProperty matching all characters in a named property.
2726      */
2727     private CharProperty charPropertyNodeFor(String name) {
2728         CharProperty p = CharPropertyNames.charPropertyFor(name);
2729         if (p == null)
2730             throw error("Unknown character property name {" + name + "}");
2731         return p;
2732     }
2733 
2734     /**
2735      * Parses and returns the name of a "named capturing group", the trailing
2736      * ">" is consumed after parsing.
2737      */
2738     private String groupname(int ch) {
2739         StringBuilder sb = new StringBuilder();
2740         sb.append(Character.toChars(ch));
2741         while (ASCII.isLower(ch=read()) || ASCII.isUpper(ch) ||
2742                ASCII.isDigit(ch)) {
2743             sb.append(Character.toChars(ch));
2744         }
2745         if (sb.length() == 0)
2746             throw error("named capturing group has 0 length name");
2747         if (ch != '>')
2748             throw error("named capturing group is missing trailing '>'");
2749         return sb.toString();
2750     }
2751 
2752     /**
2753      * Parses a group and returns the head node of a set of nodes that process
2754      * the group. Sometimes a double return system is used where the tail is
2755      * returned in root.
2756      */
2757     private Node group0() {
2758         boolean capturingGroup = false;
2759         Node head = null;
2760         Node tail = null;
2761         int save = flags;
2762         root = null;
2763         int ch = next();
2764         if (ch == '?') {
2765             ch = skip();
2766             switch (ch) {
2767             case ':':   //  (?:xxx) pure group
2768                 head = createGroup(true);
2769                 tail = root;
2770                 head.next = expr(tail);
2771                 break;
2772             case '=':   // (?=xxx) and (?!xxx) lookahead
2773             case '!':
2774                 head = createGroup(true);
2775                 tail = root;
2776                 head.next = expr(tail);
2777                 if (ch == '=') {
2778                     head = tail = new Pos(head);
2779                 } else {
2780                     head = tail = new Neg(head);
2781                 }
2782                 break;
2783             case '>':   // (?>xxx)  independent group
2784                 head = createGroup(true);
2785                 tail = root;
2786                 head.next = expr(tail);
2787                 head = tail = new Ques(head, INDEPENDENT);
2788                 break;
2789             case '<':   // (?<xxx)  look behind
2790                 ch = read();
2791                 if (ASCII.isLower(ch) || ASCII.isUpper(ch)) {
2792                     // named captured group
2793                     String name = groupname(ch);
2794                     if (namedGroups().containsKey(name))
2795                         throw error("Named capturing group <" + name
2796                                     + "> is already defined");
2797                     capturingGroup = true;
2798                     head = createGroup(false);
2799                     tail = root;
2800                     namedGroups().put(name, capturingGroupCount-1);
2801                     head.next = expr(tail);
2802                     break;
2803                 }
2804                 int start = cursor;
2805                 head = createGroup(true);
2806                 tail = root;
2807                 head.next = expr(tail);
2808                 tail.next = lookbehindEnd;
2809                 TreeInfo info = new TreeInfo();
2810                 head.study(info);
2811                 if (info.maxValid == false) {
2812                     throw error("Look-behind group does not have "
2813                                 + "an obvious maximum length");
2814                 }
2815                 boolean hasSupplementary = findSupplementary(start, patternLength);
2816                 if (ch == '=') {
2817                     head = tail = (hasSupplementary ?
2818                                    new BehindS(head, info.maxLength,
2819                                                info.minLength) :
2820                                    new Behind(head, info.maxLength,
2821                                               info.minLength));
2822                 } else if (ch == '!') {
2823                     head = tail = (hasSupplementary ?
2824                                    new NotBehindS(head, info.maxLength,
2825                                                   info.minLength) :
2826                                    new NotBehind(head, info.maxLength,
2827                                                  info.minLength));
2828                 } else {
2829                     throw error("Unknown look-behind group");
2830                 }
2831                 break;
2832             case '$':
2833             case '@':
2834                 throw error("Unknown group type");
2835             default:    // (?xxx:) inlined match flags
2836                 unread();
2837                 addFlag();
2838                 ch = read();
2839                 if (ch == ')') {
2840                     return null;    // Inline modifier only
2841                 }
2842                 if (ch != ':') {
2843                     throw error("Unknown inline modifier");
2844                 }
2845                 head = createGroup(true);
2846                 tail = root;
2847                 head.next = expr(tail);
2848                 break;
2849             }
2850         } else { // (xxx) a regular group
2851             capturingGroup = true;
2852             head = createGroup(false);
2853             tail = root;
2854             head.next = expr(tail);
2855         }
2856 
2857         accept(')', "Unclosed group");
2858         flags = save;
2859 
2860         // Check for quantifiers
2861         Node node = closure(head);
2862         if (node == head) { // No closure
2863             root = tail;
2864             return node;    // Dual return
2865         }
2866         if (head == tail) { // Zero length assertion
2867             root = node;
2868             return node;    // Dual return
2869         }
2870 
2871         if (node instanceof Ques) {
2872             Ques ques = (Ques) node;
2873             if (ques.type == POSSESSIVE) {
2874                 root = node;
2875                 return node;
2876             }
2877             tail.next = new BranchConn();
2878             tail = tail.next;
2879             if (ques.type == GREEDY) {
2880                 head = new Branch(head, null, tail);
2881             } else { // Reluctant quantifier
2882                 head = new Branch(null, head, tail);
2883             }
2884             root = tail;
2885             return head;
2886         } else if (node instanceof Curly) {
2887             Curly curly = (Curly) node;
2888             if (curly.type == POSSESSIVE) {
2889                 root = node;
2890                 return node;
2891             }
2892             // Discover if the group is deterministic
2893             TreeInfo info = new TreeInfo();
2894             if (head.study(info)) { // Deterministic
2895                 GroupTail temp = (GroupTail) tail;
2896                 head = root = new GroupCurly(head.next, curly.cmin,
2897                                    curly.cmax, curly.type,
2898                                    ((GroupTail)tail).localIndex,
2899                                    ((GroupTail)tail).groupIndex,
2900                                              capturingGroup);
2901                 return head;
2902             } else { // Non-deterministic
2903                 int temp = ((GroupHead) head).localIndex;
2904                 Loop loop;
2905                 if (curly.type == GREEDY)
2906                     loop = new Loop(this.localCount, temp);
2907                 else  // Reluctant Curly
2908                     loop = new LazyLoop(this.localCount, temp);
2909                 Prolog prolog = new Prolog(loop);
2910                 this.localCount += 1;
2911                 loop.cmin = curly.cmin;
2912                 loop.cmax = curly.cmax;
2913                 loop.body = head;
2914                 tail.next = loop;
2915                 root = loop;
2916                 return prolog; // Dual return
2917             }
2918         }
2919         throw error("Internal logic error");
2920     }
2921 
2922     /**
2923      * Create group head and tail nodes using double return. If the group is
2924      * created with anonymous true then it is a pure group and should not
2925      * affect group counting.
2926      */
2927     private Node createGroup(boolean anonymous) {
2928         int localIndex = localCount++;
2929         int groupIndex = 0;
2930         if (!anonymous)
2931             groupIndex = capturingGroupCount++;
2932         GroupHead head = new GroupHead(localIndex);
2933         root = new GroupTail(localIndex, groupIndex);
2934         if (!anonymous && groupIndex < 10)
2935             groupNodes[groupIndex] = head;
2936         return head;
2937     }
2938 
2939     /**
2940      * Parses inlined match flags and set them appropriately.
2941      */
2942     private void addFlag() {
2943         int ch = peek();
2944         for (;;) {
2945             switch (ch) {
2946             case 'i':
2947                 flags |= CASE_INSENSITIVE;
2948                 break;
2949             case 'm':
2950                 flags |= MULTILINE;
2951                 break;
2952             case 's':
2953                 flags |= DOTALL;
2954                 break;
2955             case 'd':
2956                 flags |= UNIX_LINES;
2957                 break;
2958             case 'u':
2959                 flags |= UNICODE_CASE;
2960                 break;
2961             case 'c':
2962                 flags |= CANON_EQ;
2963                 break;
2964             case 'x':
2965                 flags |= COMMENTS;
2966                 break;
2967             case 'U':
2968                 flags |= (UNICODE_CHARACTER_CLASS | UNICODE_CASE);
2969                 break;
2970             case '-': // subFlag then fall through
2971                 ch = next();
2972                 subFlag();
2973             default:
2974                 return;
2975             }
2976             ch = next();
2977         }
2978     }
2979 
2980     /**
2981      * Parses the second part of inlined match flags and turns off
2982      * flags appropriately.
2983      */
2984     private void subFlag() {
2985         int ch = peek();
2986         for (;;) {
2987             switch (ch) {
2988             case 'i':
2989                 flags &= ~CASE_INSENSITIVE;
2990                 break;
2991             case 'm':
2992                 flags &= ~MULTILINE;
2993                 break;
2994             case 's':
2995                 flags &= ~DOTALL;
2996                 break;
2997             case 'd':
2998                 flags &= ~UNIX_LINES;
2999                 break;
3000             case 'u':
3001                 flags &= ~UNICODE_CASE;
3002                 break;
3003             case 'c':
3004                 flags &= ~CANON_EQ;
3005                 break;
3006             case 'x':
3007                 flags &= ~COMMENTS;
3008                 break;
3009             case 'U':
3010                 flags &= ~(UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3011             default:
3012                 return;
3013             }
3014             ch = next();
3015         }
3016     }
3017 
3018     static final int MAX_REPS   = 0x7FFFFFFF;
3019 
3020     static final int GREEDY     = 0;
3021 
3022     static final int LAZY       = 1;
3023 
3024     static final int POSSESSIVE = 2;
3025 
3026     static final int INDEPENDENT = 3;
3027 
3028     /**
3029      * Processes repetition. If the next character peeked is a quantifier
3030      * then new nodes must be appended to handle the repetition.
3031      * Prev could be a single or a group, so it could be a chain of nodes.
3032      */
3033     private Node closure(Node prev) {
3034         Node atom;
3035         int ch = peek();
3036         switch (ch) {
3037         case '?':
3038             ch = next();
3039             if (ch == '?') {
3040                 next();
3041                 return new Ques(prev, LAZY);
3042             } else if (ch == '+') {
3043                 next();
3044                 return new Ques(prev, POSSESSIVE);
3045             }
3046             return new Ques(prev, GREEDY);
3047         case '*':
3048             ch = next();
3049             if (ch == '?') {
3050                 next();
3051                 return new Curly(prev, 0, MAX_REPS, LAZY);
3052             } else if (ch == '+') {
3053                 next();
3054                 return new Curly(prev, 0, MAX_REPS, POSSESSIVE);
3055             }
3056             return new Curly(prev, 0, MAX_REPS, GREEDY);
3057         case '+':
3058             ch = next();
3059             if (ch == '?') {
3060                 next();
3061                 return new Curly(prev, 1, MAX_REPS, LAZY);
3062             } else if (ch == '+') {
3063                 next();
3064                 return new Curly(prev, 1, MAX_REPS, POSSESSIVE);
3065             }
3066             return new Curly(prev, 1, MAX_REPS, GREEDY);
3067         case '{':
3068             ch = temp[cursor+1];
3069             if (ASCII.isDigit(ch)) {
3070                 skip();
3071                 int cmin = 0;
3072                 do {
3073                     cmin = cmin * 10 + (ch - '0');
3074                 } while (ASCII.isDigit(ch = read()));
3075                 int cmax = cmin;
3076                 if (ch == ',') {
3077                     ch = read();
3078                     cmax = MAX_REPS;
3079                     if (ch != '}') {
3080                         cmax = 0;
3081                         while (ASCII.isDigit(ch)) {
3082                             cmax = cmax * 10 + (ch - '0');
3083                             ch = read();
3084                         }
3085                     }
3086                 }
3087                 if (ch != '}')
3088                     throw error("Unclosed counted closure");
3089                 if (((cmin) | (cmax) | (cmax - cmin)) < 0)
3090                     throw error("Illegal repetition range");
3091                 Curly curly;
3092                 ch = peek();
3093                 if (ch == '?') {
3094                     next();
3095                     curly = new Curly(prev, cmin, cmax, LAZY);
3096                 } else if (ch == '+') {
3097                     next();
3098                     curly = new Curly(prev, cmin, cmax, POSSESSIVE);
3099                 } else {
3100                     curly = new Curly(prev, cmin, cmax, GREEDY);
3101                 }
3102                 return curly;
3103             } else {
3104                 throw error("Illegal repetition");
3105             }
3106         default:
3107             return prev;
3108         }
3109     }
3110 
3111     /**
3112      *  Utility method for parsing control escape sequences.
3113      */
3114     private int c() {
3115         if (cursor < patternLength) {
3116             return read() ^ 64;
3117         }
3118         throw error("Illegal control escape sequence");
3119     }
3120 
3121     /**
3122      *  Utility method for parsing octal escape sequences.
3123      */
3124     private int o() {
3125         int n = read();
3126         if (((n-'0')|('7'-n)) >= 0) {
3127             int m = read();
3128             if (((m-'0')|('7'-m)) >= 0) {
3129                 int o = read();
3130                 if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
3131                     return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
3132                 }
3133                 unread();
3134                 return (n - '0') * 8 + (m - '0');
3135             }
3136             unread();
3137             return (n - '0');
3138         }
3139         throw error("Illegal octal escape sequence");
3140     }
3141 
3142     /**
3143      *  Utility method for parsing hexadecimal escape sequences.
3144      */
3145     private int x() {
3146         int n = read();
3147         if (ASCII.isHexDigit(n)) {
3148             int m = read();
3149             if (ASCII.isHexDigit(m)) {
3150                 return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
3151             }
3152         } else if (n == '{' && ASCII.isHexDigit(peek())) {
3153             int ch = 0;
3154             while (ASCII.isHexDigit(n = read())) {
3155                 ch = (ch << 4) + ASCII.toDigit(n);
3156                 if (ch > Character.MAX_CODE_POINT)
3157                     throw error("Hexadecimal codepoint is too big");
3158             }
3159             if (n != '}')
3160                 throw error("Unclosed hexadecimal escape sequence");
3161             return ch;
3162         }
3163         throw error("Illegal hexadecimal escape sequence");
3164     }
3165 
3166     /**
3167      *  Utility method for parsing unicode escape sequences.
3168      */
3169     private int cursor() {
3170         return cursor;
3171     }
3172 
3173     private void setcursor(int pos) {
3174         cursor = pos;
3175     }
3176 
3177     private int uxxxx() {
3178         int n = 0;
3179         for (int i = 0; i < 4; i++) {
3180             int ch = read();
3181             if (!ASCII.isHexDigit(ch)) {
3182                 throw error("Illegal Unicode escape sequence");
3183             }
3184             n = n * 16 + ASCII.toDigit(ch);
3185         }
3186         return n;
3187     }
3188 
3189     private int u() {
3190         int n = uxxxx();
3191         if (Character.isHighSurrogate((char)n)) {
3192             int cur = cursor();
3193             if (read() == '\\' && read() == 'u') {
3194                 int n2 = uxxxx();
3195                 if (Character.isLowSurrogate((char)n2))
3196                     return Character.toCodePoint((char)n, (char)n2);
3197             }
3198             setcursor(cur);
3199         }
3200         return n;
3201     }
3202 
3203     //
3204     // Utility methods for code point support
3205     //
3206 
3207     private static final int countChars(CharSequence seq, int index,
3208                                         int lengthInCodePoints) {
3209         // optimization
3210         if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
3211             assert (index >= 0 && index < seq.length());
3212             return 1;
3213         }
3214         int length = seq.length();
3215         int x = index;
3216         if (lengthInCodePoints >= 0) {
3217             assert (index >= 0 && index < length);
3218             for (int i = 0; x < length && i < lengthInCodePoints; i++) {
3219                 if (Character.isHighSurrogate(seq.charAt(x++))) {
3220                     if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
3221                         x++;
3222                     }
3223                 }
3224             }
3225             return x - index;
3226         }
3227 
3228         assert (index >= 0 && index <= length);
3229         if (index == 0) {
3230             return 0;
3231         }
3232         int len = -lengthInCodePoints;
3233         for (int i = 0; x > 0 && i < len; i++) {
3234             if (Character.isLowSurrogate(seq.charAt(--x))) {
3235                 if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
3236                     x--;
3237                 }
3238             }
3239         }
3240         return index - x;
3241     }
3242 
3243     private static final int countCodePoints(CharSequence seq) {
3244         int length = seq.length();
3245         int n = 0;
3246         for (int i = 0; i < length; ) {
3247             n++;
3248             if (Character.isHighSurrogate(seq.charAt(i++))) {
3249                 if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
3250                     i++;
3251                 }
3252             }
3253         }
3254         return n;
3255     }
3256 
3257     /**
3258      *  Creates a bit vector for matching Latin-1 values. A normal BitClass
3259      *  never matches values above Latin-1, and a complemented BitClass always
3260      *  matches values above Latin-1.
3261      */
3262     private static final class BitClass extends BmpCharProperty {
3263         final boolean[] bits;
3264         BitClass() { bits = new boolean[256]; }
3265         private BitClass(boolean[] bits) { this.bits = bits; }
3266         BitClass add(int c, int flags) {
3267             assert c >= 0 && c <= 255;
3268             if ((flags & CASE_INSENSITIVE) != 0) {
3269                 if (ASCII.isAscii(c)) {
3270                     bits[ASCII.toUpper(c)] = true;
3271                     bits[ASCII.toLower(c)] = true;
3272                 } else if ((flags & UNICODE_CASE) != 0) {
3273                     bits[Character.toLowerCase(c)] = true;
3274                     bits[Character.toUpperCase(c)] = true;
3275                 }
3276             }
3277             bits[c] = true;
3278             return this;
3279         }
3280         boolean isSatisfiedBy(int ch) {
3281             return ch < 256 && bits[ch];
3282         }
3283     }
3284 
3285     /**
3286      *  Returns a suitably optimized, single character matcher.
3287      */
3288     private CharProperty newSingle(final int ch) {
3289         if (has(CASE_INSENSITIVE)) {
3290             int lower, upper;
3291             if (has(UNICODE_CASE)) {
3292                 upper = Character.toUpperCase(ch);
3293                 lower = Character.toLowerCase(upper);
3294                 if (upper != lower)
3295                     return new SingleU(lower);
3296             } else if (ASCII.isAscii(ch)) {
3297                 lower = ASCII.toLower(ch);
3298                 upper = ASCII.toUpper(ch);
3299                 if (lower != upper)
3300                     return new SingleI(lower, upper);
3301             }
3302         }
3303         if (isSupplementary(ch))
3304             return new SingleS(ch);    // Match a given Unicode character
3305         return new Single(ch);         // Match a given BMP character
3306     }
3307 
3308     /**
3309      *  Utility method for creating a string slice matcher.
3310      */
3311     private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
3312         int[] tmp = new int[count];
3313         if (has(CASE_INSENSITIVE)) {
3314             if (has(UNICODE_CASE)) {
3315                 for (int i = 0; i < count; i++) {
3316                     tmp[i] = Character.toLowerCase(
3317                                  Character.toUpperCase(buf[i]));
3318                 }
3319                 return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
3320             }
3321             for (int i = 0; i < count; i++) {
3322                 tmp[i] = ASCII.toLower(buf[i]);
3323             }
3324             return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
3325         }
3326         for (int i = 0; i < count; i++) {
3327             tmp[i] = buf[i];
3328         }
3329         return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
3330     }
3331 
3332     /**
3333      * The following classes are the building components of the object
3334      * tree that represents a compiled regular expression. The object tree
3335      * is made of individual elements that handle constructs in the Pattern.
3336      * Each type of object knows how to match its equivalent construct with
3337      * the match() method.
3338      */
3339 
3340     /**
3341      * Base class for all node classes. Subclasses should override the match()
3342      * method as appropriate. This class is an accepting node, so its match()
3343      * always returns true.
3344      */
3345     static class Node extends Object {
3346         Node next;
3347         Node() {
3348             next = Pattern.accept;
3349         }
3350         /**
3351          * This method implements the classic accept node.
3352          */
3353         boolean match(Matcher matcher, int i, CharSequence seq) {
3354             matcher.last = i;
3355             matcher.groups[0] = matcher.first;
3356             matcher.groups[1] = matcher.last;
3357             return true;
3358         }
3359         /**
3360          * This method is good for all zero length assertions.
3361          */
3362         boolean study(TreeInfo info) {
3363             if (next != null) {
3364                 return next.study(info);
3365             } else {
3366                 return info.deterministic;
3367             }
3368         }
3369     }
3370 
3371     static class LastNode extends Node {
3372         /**
3373          * This method implements the classic accept node with
3374          * the addition of a check to see if the match occurred
3375          * using all of the input.
3376          */
3377         boolean match(Matcher matcher, int i, CharSequence seq) {
3378             if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
3379                 return false;
3380             matcher.last = i;
3381             matcher.groups[0] = matcher.first;
3382             matcher.groups[1] = matcher.last;
3383             return true;
3384         }
3385     }
3386 
3387     /**
3388      * Used for REs that can start anywhere within the input string.
3389      * This basically tries to match repeatedly at each spot in the
3390      * input string, moving forward after each try. An anchored search
3391      * or a BnM will bypass this node completely.
3392      */
3393     static class Start extends Node {
3394         int minLength;
3395         Start(Node node) {
3396             this.next = node;
3397             TreeInfo info = new TreeInfo();
3398             next.study(info);
3399             minLength = info.minLength;
3400         }
3401         boolean match(Matcher matcher, int i, CharSequence seq) {
3402             if (i > matcher.to - minLength) {
3403                 matcher.hitEnd = true;
3404                 return false;
3405             }
3406             int guard = matcher.to - minLength;
3407             for (; i <= guard; i++) {
3408                 if (next.match(matcher, i, seq)) {
3409                     matcher.first = i;
3410                     matcher.groups[0] = matcher.first;
3411                     matcher.groups[1] = matcher.last;
3412                     return true;
3413                 }
3414             }
3415             matcher.hitEnd = true;
3416             return false;
3417         }
3418         boolean study(TreeInfo info) {
3419             next.study(info);
3420             info.maxValid = false;
3421             info.deterministic = false;
3422             return false;
3423         }
3424     }
3425 
3426     /*
3427      * StartS supports supplementary characters, including unpaired surrogates.
3428      */
3429     static final class StartS extends Start {
3430         StartS(Node node) {
3431             super(node);
3432         }
3433         boolean match(Matcher matcher, int i, CharSequence seq) {
3434             if (i > matcher.to - minLength) {
3435                 matcher.hitEnd = true;
3436                 return false;
3437             }
3438             int guard = matcher.to - minLength;
3439             while (i <= guard) {
3440                 //if ((ret = next.match(matcher, i, seq)) || i == guard)
3441                 if (next.match(matcher, i, seq)) {
3442                     matcher.first = i;
3443                     matcher.groups[0] = matcher.first;
3444                     matcher.groups[1] = matcher.last;
3445                     return true;
3446                 }
3447                 if (i == guard)
3448                     break;
3449                 // Optimization to move to the next character. This is
3450                 // faster than countChars(seq, i, 1).
3451                 if (Character.isHighSurrogate(seq.charAt(i++))) {
3452                     if (i < seq.length() &&
3453                         Character.isLowSurrogate(seq.charAt(i))) {
3454                         i++;
3455                     }
3456                 }
3457             }
3458             matcher.hitEnd = true;
3459             return false;
3460         }
3461     }
3462 
3463     /**
3464      * Node to anchor at the beginning of input. This object implements the
3465      * match for a \A sequence, and the caret anchor will use this if not in
3466      * multiline mode.
3467      */
3468     static final class Begin extends Node {
3469         boolean match(Matcher matcher, int i, CharSequence seq) {
3470             int fromIndex = (matcher.anchoringBounds) ?
3471                 matcher.from : 0;
3472             if (i == fromIndex && next.match(matcher, i, seq)) {
3473                 matcher.first = i;
3474                 matcher.groups[0] = i;
3475                 matcher.groups[1] = matcher.last;
3476                 return true;
3477             } else {
3478                 return false;
3479             }
3480         }
3481     }
3482 
3483     /**
3484      * Node to anchor at the end of input. This is the absolute end, so this
3485      * should not match at the last newline before the end as $ will.
3486      */
3487     static final class End extends Node {
3488         boolean match(Matcher matcher, int i, CharSequence seq) {
3489             int endIndex = (matcher.anchoringBounds) ?
3490                 matcher.to : matcher.getTextLength();
3491             if (i == endIndex) {
3492                 matcher.hitEnd = true;
3493                 return next.match(matcher, i, seq);
3494             }
3495             return false;
3496         }
3497     }
3498 
3499     /**
3500      * Node to anchor at the beginning of a line. This is essentially the
3501      * object to match for the multiline ^.
3502      */
3503     static final class Caret extends Node {
3504         boolean match(Matcher matcher, int i, CharSequence seq) {
3505             int startIndex = matcher.from;
3506             int endIndex = matcher.to;
3507             if (!matcher.anchoringBounds) {
3508                 startIndex = 0;
3509                 endIndex = matcher.getTextLength();
3510             }
3511             // Perl does not match ^ at end of input even after newline
3512             if (i == endIndex) {
3513                 matcher.hitEnd = true;
3514                 return false;
3515             }
3516             if (i > startIndex) {
3517                 char ch = seq.charAt(i-1);
3518                 if (ch != '\n' && ch != '\r'
3519                     && (ch|1) != '\u2029'
3520                     && ch != '\u0085' ) {
3521                     return false;
3522                 }
3523                 // Should treat /r/n as one newline
3524                 if (ch == '\r' && seq.charAt(i) == '\n')
3525                     return false;
3526             }
3527             return next.match(matcher, i, seq);
3528         }
3529     }
3530 
3531     /**
3532      * Node to anchor at the beginning of a line when in unixdot mode.
3533      */
3534     static final class UnixCaret extends Node {
3535         boolean match(Matcher matcher, int i, CharSequence seq) {
3536             int startIndex = matcher.from;
3537             int endIndex = matcher.to;
3538             if (!matcher.anchoringBounds) {
3539                 startIndex = 0;
3540                 endIndex = matcher.getTextLength();
3541             }
3542             // Perl does not match ^ at end of input even after newline
3543             if (i == endIndex) {
3544                 matcher.hitEnd = true;
3545                 return false;
3546             }
3547             if (i > startIndex) {
3548                 char ch = seq.charAt(i-1);
3549                 if (ch != '\n') {
3550                     return false;
3551                 }
3552             }
3553             return next.match(matcher, i, seq);
3554         }
3555     }
3556 
3557     /**
3558      * Node to match the location where the last match ended.
3559      * This is used for the \G construct.
3560      */
3561     static final class LastMatch extends Node {
3562         boolean match(Matcher matcher, int i, CharSequence seq) {
3563             if (i != matcher.oldLast)
3564                 return false;
3565             return next.match(matcher, i, seq);
3566         }
3567     }
3568 
3569     /**
3570      * Node to anchor at the end of a line or the end of input based on the
3571      * multiline mode.
3572      *
3573      * When not in multiline mode, the $ can only match at the very end
3574      * of the input, unless the input ends in a line terminator in which
3575      * it matches right before the last line terminator.
3576      *
3577      * Note that \r\n is considered an atomic line terminator.
3578      *
3579      * Like ^ the $ operator matches at a position, it does not match the
3580      * line terminators themselves.
3581      */
3582     static final class Dollar extends Node {
3583         boolean multiline;
3584         Dollar(boolean mul) {
3585             multiline = mul;
3586         }
3587         boolean match(Matcher matcher, int i, CharSequence seq) {
3588             int endIndex = (matcher.anchoringBounds) ?
3589                 matcher.to : matcher.getTextLength();
3590             if (!multiline) {
3591                 if (i < endIndex - 2)
3592                     return false;
3593                 if (i == endIndex - 2) {
3594                     char ch = seq.charAt(i);
3595                     if (ch != '\r')
3596                         return false;
3597                     ch = seq.charAt(i + 1);
3598                     if (ch != '\n')
3599                         return false;
3600                 }
3601             }
3602             // Matches before any line terminator; also matches at the
3603             // end of input
3604             // Before line terminator:
3605             // If multiline, we match here no matter what
3606             // If not multiline, fall through so that the end
3607             // is marked as hit; this must be a /r/n or a /n
3608             // at the very end so the end was hit; more input
3609             // could make this not match here
3610             if (i < endIndex) {
3611                 char ch = seq.charAt(i);
3612                  if (ch == '\n') {
3613                      // No match between \r\n
3614                      if (i > 0 && seq.charAt(i-1) == '\r')
3615                          return false;
3616                      if (multiline)
3617                          return next.match(matcher, i, seq);
3618                  } else if (ch == '\r' || ch == '\u0085' ||
3619                             (ch|1) == '\u2029') {
3620                      if (multiline)
3621                          return next.match(matcher, i, seq);
3622                  } else { // No line terminator, no match
3623                      return false;
3624                  }
3625             }
3626             // Matched at current end so hit end
3627             matcher.hitEnd = true;
3628             // If a $ matches because of end of input, then more input
3629             // could cause it to fail!
3630             matcher.requireEnd = true;
3631             return next.match(matcher, i, seq);
3632         }
3633         boolean study(TreeInfo info) {
3634             next.study(info);
3635             return info.deterministic;
3636         }
3637     }
3638 
3639     /**
3640      * Node to anchor at the end of a line or the end of input based on the
3641      * multiline mode when in unix lines mode.
3642      */
3643     static final class UnixDollar extends Node {
3644         boolean multiline;
3645         UnixDollar(boolean mul) {
3646             multiline = mul;
3647         }
3648         boolean match(Matcher matcher, int i, CharSequence seq) {
3649             int endIndex = (matcher.anchoringBounds) ?
3650                 matcher.to : matcher.getTextLength();
3651             if (i < endIndex) {
3652                 char ch = seq.charAt(i);
3653                 if (ch == '\n') {
3654                     // If not multiline, then only possible to
3655                     // match at very end or one before end
3656                     if (multiline == false && i != endIndex - 1)
3657                         return false;
3658                     // If multiline return next.match without setting
3659                     // matcher.hitEnd
3660                     if (multiline)
3661                         return next.match(matcher, i, seq);
3662                 } else {
3663                     return false;
3664                 }
3665             }
3666             // Matching because at the end or 1 before the end;
3667             // more input could change this so set hitEnd
3668             matcher.hitEnd = true;
3669             // If a $ matches because of end of input, then more input
3670             // could cause it to fail!
3671             matcher.requireEnd = true;
3672             return next.match(matcher, i, seq);
3673         }
3674         boolean study(TreeInfo info) {
3675             next.study(info);
3676             return info.deterministic;
3677         }
3678     }
3679 
3680     /**
3681      * Abstract node class to match one character satisfying some
3682      * boolean property.
3683      */
3684     private static abstract class CharProperty extends Node {
3685         abstract boolean isSatisfiedBy(int ch);
3686         CharProperty complement() {
3687             return new CharProperty() {
3688                     boolean isSatisfiedBy(int ch) {
3689                         return ! CharProperty.this.isSatisfiedBy(ch);}};
3690         }
3691         boolean match(Matcher matcher, int i, CharSequence seq) {
3692             if (i < matcher.to) {
3693                 int ch = Character.codePointAt(seq, i);
3694                 return isSatisfiedBy(ch)
3695                     && next.match(matcher, i+Character.charCount(ch), seq);
3696             } else {
3697                 matcher.hitEnd = true;
3698                 return false;
3699             }
3700         }
3701         boolean study(TreeInfo info) {
3702             info.minLength++;
3703             info.maxLength++;
3704             return next.study(info);
3705         }
3706     }
3707 
3708     /**
3709      * Optimized version of CharProperty that works only for
3710      * properties never satisfied by Supplementary characters.
3711      */
3712     private static abstract class BmpCharProperty extends CharProperty {
3713         boolean match(Matcher matcher, int i, CharSequence seq) {
3714             if (i < matcher.to) {
3715                 return isSatisfiedBy(seq.charAt(i))
3716                     && next.match(matcher, i+1, seq);
3717             } else {
3718                 matcher.hitEnd = true;
3719                 return false;
3720             }
3721         }
3722     }
3723 
3724     /**
3725      * Node class that matches a Supplementary Unicode character
3726      */
3727     static final class SingleS extends CharProperty {
3728         final int c;
3729         SingleS(int c) { this.c = c; }
3730         boolean isSatisfiedBy(int ch) {
3731             return ch == c;
3732         }
3733     }
3734 
3735     /**
3736      * Optimization -- matches a given BMP character
3737      */
3738     static final class Single extends BmpCharProperty {
3739         final int c;
3740         Single(int c) { this.c = c; }
3741         boolean isSatisfiedBy(int ch) {
3742             return ch == c;
3743         }
3744     }
3745 
3746     /**
3747      * Case insensitive matches a given BMP character
3748      */
3749     static final class SingleI extends BmpCharProperty {
3750         final int lower;
3751         final int upper;
3752         SingleI(int lower, int upper) {
3753             this.lower = lower;
3754             this.upper = upper;
3755         }
3756         boolean isSatisfiedBy(int ch) {
3757             return ch == lower || ch == upper;
3758         }
3759     }
3760 
3761     /**
3762      * Unicode case insensitive matches a given Unicode character
3763      */
3764     static final class SingleU extends CharProperty {
3765         final int lower;
3766         SingleU(int lower) {
3767             this.lower = lower;
3768         }
3769         boolean isSatisfiedBy(int ch) {
3770             return lower == ch ||
3771                 lower == Character.toLowerCase(Character.toUpperCase(ch));
3772         }
3773     }
3774 
3775 
3776     /**
3777      * Node class that matches a Unicode block.
3778      */
3779     static final class Block extends CharProperty {
3780         final Character.UnicodeBlock block;
3781         Block(Character.UnicodeBlock block) {
3782             this.block = block;
3783         }
3784         boolean isSatisfiedBy(int ch) {
3785             return block == Character.UnicodeBlock.of(ch);
3786         }
3787     }
3788 
3789     /**
3790      * Node class that matches a Unicode script
3791      */
3792     static final class Script extends CharProperty {
3793         final Character.UnicodeScript script;
3794         Script(Character.UnicodeScript script) {
3795             this.script = script;
3796         }
3797         boolean isSatisfiedBy(int ch) {
3798             return script == Character.UnicodeScript.of(ch);
3799         }
3800     }
3801 
3802     /**
3803      * Node class that matches a Unicode category.
3804      */
3805     static final class Category extends CharProperty {
3806         final int typeMask;
3807         Category(int typeMask) { this.typeMask = typeMask; }
3808         boolean isSatisfiedBy(int ch) {
3809             return (typeMask & (1 << Character.getType(ch))) != 0;
3810         }
3811     }
3812 
3813     /**
3814      * Node class that matches a Unicode "type"
3815      */
3816     static final class Utype extends CharProperty {
3817         final UnicodeProp uprop;
3818         Utype(UnicodeProp uprop) { this.uprop = uprop; }
3819         boolean isSatisfiedBy(int ch) {
3820             return uprop.is(ch);
3821         }
3822     }
3823 
3824 
3825     /**
3826      * Node class that matches a POSIX type.
3827      */
3828     static final class Ctype extends BmpCharProperty {
3829         final int ctype;
3830         Ctype(int ctype) { this.ctype = ctype; }
3831         boolean isSatisfiedBy(int ch) {
3832             return ch < 128 && ASCII.isType(ch, ctype);
3833         }
3834     }
3835 
3836     /**
3837      * Base class for all Slice nodes
3838      */
3839     static class SliceNode extends Node {
3840         int[] buffer;
3841         SliceNode(int[] buf) {
3842             buffer = buf;
3843         }
3844         boolean study(TreeInfo info) {
3845             info.minLength += buffer.length;
3846             info.maxLength += buffer.length;
3847             return next.study(info);
3848         }
3849     }
3850 
3851     /**
3852      * Node class for a case sensitive/BMP-only sequence of literal
3853      * characters.
3854      */
3855     static final class Slice extends SliceNode {
3856         Slice(int[] buf) {
3857             super(buf);
3858         }
3859         boolean match(Matcher matcher, int i, CharSequence seq) {
3860             int[] buf = buffer;
3861             int len = buf.length;
3862             for (int j=0; j<len; j++) {
3863                 if ((i+j) >= matcher.to) {
3864                     matcher.hitEnd = true;
3865                     return false;
3866                 }
3867                 if (buf[j] != seq.charAt(i+j))
3868                     return false;
3869             }
3870             return next.match(matcher, i+len, seq);
3871         }
3872     }
3873 
3874     /**
3875      * Node class for a case_insensitive/BMP-only sequence of literal
3876      * characters.
3877      */
3878     static class SliceI extends SliceNode {
3879         SliceI(int[] buf) {
3880             super(buf);
3881         }
3882         boolean match(Matcher matcher, int i, CharSequence seq) {
3883             int[] buf = buffer;
3884             int len = buf.length;
3885             for (int j=0; j<len; j++) {
3886                 if ((i+j) >= matcher.to) {
3887                     matcher.hitEnd = true;
3888                     return false;
3889                 }
3890                 int c = seq.charAt(i+j);
3891                 if (buf[j] != c &&
3892                     buf[j] != ASCII.toLower(c))
3893                     return false;
3894             }
3895             return next.match(matcher, i+len, seq);
3896         }
3897     }
3898 
3899     /**
3900      * Node class for a unicode_case_insensitive/BMP-only sequence of
3901      * literal characters. Uses unicode case folding.
3902      */
3903     static final class SliceU extends SliceNode {
3904         SliceU(int[] buf) {
3905             super(buf);
3906         }
3907         boolean match(Matcher matcher, int i, CharSequence seq) {
3908             int[] buf = buffer;
3909             int len = buf.length;
3910             for (int j=0; j<len; j++) {
3911                 if ((i+j) >= matcher.to) {
3912                     matcher.hitEnd = true;
3913                     return false;
3914                 }
3915                 int c = seq.charAt(i+j);
3916                 if (buf[j] != c &&
3917                     buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
3918                     return false;
3919             }
3920             return next.match(matcher, i+len, seq);
3921         }
3922     }
3923 
3924     /**
3925      * Node class for a case sensitive sequence of literal characters
3926      * including supplementary characters.
3927      */
3928     static final class SliceS extends SliceNode {
3929         SliceS(int[] buf) {
3930             super(buf);
3931         }
3932         boolean match(Matcher matcher, int i, CharSequence seq) {
3933             int[] buf = buffer;
3934             int x = i;
3935             for (int j = 0; j < buf.length; j++) {
3936                 if (x >= matcher.to) {
3937                     matcher.hitEnd = true;
3938                     return false;
3939                 }
3940                 int c = Character.codePointAt(seq, x);
3941                 if (buf[j] != c)
3942                     return false;
3943                 x += Character.charCount(c);
3944                 if (x > matcher.to) {
3945                     matcher.hitEnd = true;
3946                     return false;
3947                 }
3948             }
3949             return next.match(matcher, x, seq);
3950         }
3951     }
3952 
3953     /**
3954      * Node class for a case insensitive sequence of literal characters
3955      * including supplementary characters.
3956      */
3957     static class SliceIS extends SliceNode {
3958         SliceIS(int[] buf) {
3959             super(buf);
3960         }
3961         int toLower(int c) {
3962             return ASCII.toLower(c);
3963         }
3964         boolean match(Matcher matcher, int i, CharSequence seq) {
3965             int[] buf = buffer;
3966             int x = i;
3967             for (int j = 0; j < buf.length; j++) {
3968                 if (x >= matcher.to) {
3969                     matcher.hitEnd = true;
3970                     return false;
3971                 }
3972                 int c = Character.codePointAt(seq, x);
3973                 if (buf[j] != c && buf[j] != toLower(c))
3974                     return false;
3975                 x += Character.charCount(c);
3976                 if (x > matcher.to) {
3977                     matcher.hitEnd = true;
3978                     return false;
3979                 }
3980             }
3981             return next.match(matcher, x, seq);
3982         }
3983     }
3984 
3985     /**
3986      * Node class for a case insensitive sequence of literal characters.
3987      * Uses unicode case folding.
3988      */
3989     static final class SliceUS extends SliceIS {
3990         SliceUS(int[] buf) {
3991             super(buf);
3992         }
3993         int toLower(int c) {
3994             return Character.toLowerCase(Character.toUpperCase(c));
3995         }
3996     }
3997 
3998     private static boolean inRange(int lower, int ch, int upper) {
3999         return lower <= ch && ch <= upper;
4000     }
4001 
4002     /**
4003      * Returns node for matching characters within an explicit value range.
4004      */
4005     private static CharProperty rangeFor(final int lower,
4006                                          final int upper) {
4007         return new CharProperty() {
4008                 boolean isSatisfiedBy(int ch) {
4009                     return inRange(lower, ch, upper);}};
4010     }
4011 
4012     /**
4013      * Returns node for matching characters within an explicit value
4014      * range in a case insensitive manner.
4015      */
4016     private CharProperty caseInsensitiveRangeFor(final int lower,
4017                                                  final int upper) {
4018         if (has(UNICODE_CASE))
4019             return new CharProperty() {
4020                 boolean isSatisfiedBy(int ch) {
4021                     if (inRange(lower, ch, upper))
4022                         return true;
4023                     int up = Character.toUpperCase(ch);
4024                     return inRange(lower, up, upper) ||
4025                            inRange(lower, Character.toLowerCase(up), upper);}};
4026         return new CharProperty() {
4027             boolean isSatisfiedBy(int ch) {
4028                 return inRange(lower, ch, upper) ||
4029                     ASCII.isAscii(ch) &&
4030                         (inRange(lower, ASCII.toUpper(ch), upper) ||
4031                          inRange(lower, ASCII.toLower(ch), upper));
4032             }};
4033     }
4034 
4035     /**
4036      * Implements the Unicode category ALL and the dot metacharacter when
4037      * in dotall mode.
4038      */
4039     static final class All extends CharProperty {
4040         boolean isSatisfiedBy(int ch) {
4041             return true;
4042         }
4043     }
4044 
4045     /**
4046      * Node class for the dot metacharacter when dotall is not enabled.
4047      */
4048     static final class Dot extends CharProperty {
4049         boolean isSatisfiedBy(int ch) {
4050             return (ch != '\n' && ch != '\r'
4051                     && (ch|1) != '\u2029'
4052                     && ch != '\u0085');
4053         }
4054     }
4055 
4056     /**
4057      * Node class for the dot metacharacter when dotall is not enabled
4058      * but UNIX_LINES is enabled.
4059      */
4060     static final class UnixDot extends CharProperty {
4061         boolean isSatisfiedBy(int ch) {
4062             return ch != '\n';
4063         }
4064     }
4065 
4066     /**
4067      * The 0 or 1 quantifier. This one class implements all three types.
4068      */
4069     static final class Ques extends Node {
4070         Node atom;
4071         int type;
4072         Ques(Node node, int type) {
4073             this.atom = node;
4074             this.type = type;
4075         }
4076         boolean match(Matcher matcher, int i, CharSequence seq) {
4077             switch (type) {
4078             case GREEDY:
4079                 return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
4080                     || next.match(matcher, i, seq);
4081             case LAZY:
4082                 return next.match(matcher, i, seq)
4083                     || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
4084             case POSSESSIVE:
4085                 if (atom.match(matcher, i, seq)) i = matcher.last;
4086                 return next.match(matcher, i, seq);
4087             default:
4088                 return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
4089             }
4090         }
4091         boolean study(TreeInfo info) {
4092             if (type != INDEPENDENT) {
4093                 int minL = info.minLength;
4094                 atom.study(info);
4095                 info.minLength = minL;
4096                 info.deterministic = false;
4097                 return next.study(info);
4098             } else {
4099                 atom.study(info);
4100                 return next.study(info);
4101             }
4102         }
4103     }
4104 
4105     /**
4106      * Handles the curly-brace style repetition with a specified minimum and
4107      * maximum occurrences. The * quantifier is handled as a special case.
4108      * This class handles the three types.
4109      */
4110     static final class Curly extends Node {
4111         Node atom;
4112         int type;
4113         int cmin;
4114         int cmax;
4115 
4116         Curly(Node node, int cmin, int cmax, int type) {
4117             this.atom = node;
4118             this.type = type;
4119             this.cmin = cmin;
4120             this.cmax = cmax;
4121         }
4122         boolean match(Matcher matcher, int i, CharSequence seq) {
4123             int j;
4124             for (j = 0; j < cmin; j++) {
4125                 if (atom.match(matcher, i, seq)) {
4126                     i = matcher.last;
4127                     continue;
4128                 }
4129                 return false;
4130             }
4131             if (type == GREEDY)
4132                 return match0(matcher, i, j, seq);
4133             else if (type == LAZY)
4134                 return match1(matcher, i, j, seq);
4135             else
4136                 return match2(matcher, i, j, seq);
4137         }
4138         // Greedy match.
4139         // i is the index to start matching at
4140         // j is the number of atoms that have matched
4141         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4142             if (j >= cmax) {
4143                 // We have matched the maximum... continue with the rest of
4144                 // the regular expression
4145                 return next.match(matcher, i, seq);
4146             }
4147             int backLimit = j;
4148             while (atom.match(matcher, i, seq)) {
4149                 // k is the length of this match
4150                 int k = matcher.last - i;
4151                 if (k == 0) // Zero length match
4152                     break;
4153                 // Move up index and number matched
4154                 i = matcher.last;
4155                 j++;
4156                 // We are greedy so match as many as we can
4157                 while (j < cmax) {
4158                     if (!atom.match(matcher, i, seq))
4159                         break;
4160                     if (i + k != matcher.last) {
4161                         if (match0(matcher, matcher.last, j+1, seq))
4162                             return true;
4163                         break;
4164                     }
4165                     i += k;
4166                     j++;
4167                 }
4168                 // Handle backing off if match fails
4169                 while (j >= backLimit) {
4170                    if (next.match(matcher, i, seq))
4171                         return true;
4172                     i -= k;
4173                     j--;
4174                 }
4175                 return false;
4176             }
4177             return next.match(matcher, i, seq);
4178         }
4179         // Reluctant match. At this point, the minimum has been satisfied.
4180         // i is the index to start matching at
4181         // j is the number of atoms that have matched
4182         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4183             for (;;) {
4184                 // Try finishing match without consuming any more
4185                 if (next.match(matcher, i, seq))
4186                     return true;
4187                 // At the maximum, no match found
4188                 if (j >= cmax)
4189                     return false;
4190                 // Okay, must try one more atom
4191                 if (!atom.match(matcher, i, seq))
4192                     return false;
4193                 // If we haven't moved forward then must break out
4194                 if (i == matcher.last)
4195                     return false;
4196                 // Move up index and number matched
4197                 i = matcher.last;
4198                 j++;
4199             }
4200         }
4201         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4202             for (; j < cmax; j++) {
4203                 if (!atom.match(matcher, i, seq))
4204                     break;
4205                 if (i == matcher.last)
4206                     break;
4207                 i = matcher.last;
4208             }
4209             return next.match(matcher, i, seq);
4210         }
4211         boolean study(TreeInfo info) {
4212             // Save original info
4213             int minL = info.minLength;
4214             int maxL = info.maxLength;
4215             boolean maxV = info.maxValid;
4216             boolean detm = info.deterministic;
4217             info.reset();
4218 
4219             atom.study(info);
4220 
4221             int temp = info.minLength * cmin + minL;
4222             if (temp < minL) {
4223                 temp = 0xFFFFFFF; // arbitrary large number
4224             }
4225             info.minLength = temp;
4226 
4227             if (maxV & info.maxValid) {
4228                 temp = info.maxLength * cmax + maxL;
4229                 info.maxLength = temp;
4230                 if (temp < maxL) {
4231                     info.maxValid = false;
4232                 }
4233             } else {
4234                 info.maxValid = false;
4235             }
4236 
4237             if (info.deterministic && cmin == cmax)
4238                 info.deterministic = detm;
4239             else
4240                 info.deterministic = false;
4241 
4242             return next.study(info);
4243         }
4244     }
4245 
4246     /**
4247      * Handles the curly-brace style repetition with a specified minimum and
4248      * maximum occurrences in deterministic cases. This is an iterative
4249      * optimization over the Prolog and Loop system which would handle this
4250      * in a recursive way. The * quantifier is handled as a special case.
4251      * If capture is true then this class saves group settings and ensures
4252      * that groups are unset when backing off of a group match.
4253      */
4254     static final class GroupCurly extends Node {
4255         Node atom;
4256         int type;
4257         int cmin;
4258         int cmax;
4259         int localIndex;
4260         int groupIndex;
4261         boolean capture;
4262 
4263         GroupCurly(Node node, int cmin, int cmax, int type, int local,
4264                    int group, boolean capture) {
4265             this.atom = node;
4266             this.type = type;
4267             this.cmin = cmin;
4268             this.cmax = cmax;
4269             this.localIndex = local;
4270             this.groupIndex = group;
4271             this.capture = capture;
4272         }
4273         boolean match(Matcher matcher, int i, CharSequence seq) {
4274             int[] groups = matcher.groups;
4275             int[] locals = matcher.locals;
4276             int save0 = locals[localIndex];
4277             int save1 = 0;
4278             int save2 = 0;
4279 
4280             if (capture) {
4281                 save1 = groups[groupIndex];
4282                 save2 = groups[groupIndex+1];
4283             }
4284 
4285             // Notify GroupTail there is no need to setup group info
4286             // because it will be set here
4287             locals[localIndex] = -1;
4288 
4289             boolean ret = true;
4290             for (int j = 0; j < cmin; j++) {
4291                 if (atom.match(matcher, i, seq)) {
4292                     if (capture) {
4293                         groups[groupIndex] = i;
4294                         groups[groupIndex+1] = matcher.last;
4295                     }
4296                     i = matcher.last;
4297                 } else {
4298                     ret = false;
4299                     break;
4300                 }
4301             }
4302             if (ret) {
4303                 if (type == GREEDY) {
4304                     ret = match0(matcher, i, cmin, seq);
4305                 } else if (type == LAZY) {
4306                     ret = match1(matcher, i, cmin, seq);
4307                 } else {
4308                     ret = match2(matcher, i, cmin, seq);
4309                 }
4310             }
4311             if (!ret) {
4312                 locals[localIndex] = save0;
4313                 if (capture) {
4314                     groups[groupIndex] = save1;
4315                     groups[groupIndex+1] = save2;
4316                 }
4317             }
4318             return ret;
4319         }
4320         // Aggressive group match
4321         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4322             int[] groups = matcher.groups;
4323             int save0 = 0;
4324             int save1 = 0;
4325             if (capture) {
4326                 save0 = groups[groupIndex];
4327                 save1 = groups[groupIndex+1];
4328             }
4329             for (;;) {
4330                 if (j >= cmax)
4331                     break;
4332                 if (!atom.match(matcher, i, seq))
4333                     break;
4334                 int k = matcher.last - i;
4335                 if (k <= 0) {
4336                     if (capture) {
4337                         groups[groupIndex] = i;
4338                         groups[groupIndex+1] = i + k;
4339                     }
4340                     i = i + k;
4341                     break;
4342                 }
4343                 for (;;) {
4344                     if (capture) {
4345                         groups[groupIndex] = i;
4346                         groups[groupIndex+1] = i + k;
4347                     }
4348                     i = i + k;
4349                     if (++j >= cmax)
4350                         break;
4351                     if (!atom.match(matcher, i, seq))
4352                         break;
4353                     if (i + k != matcher.last) {
4354                         if (match0(matcher, i, j, seq))
4355                             return true;
4356                         break;
4357                     }
4358                 }
4359                 while (j > cmin) {
4360                     if (next.match(matcher, i, seq)) {
4361                         if (capture) {
4362                             groups[groupIndex+1] = i;
4363                             groups[groupIndex] = i - k;
4364                         }
4365                         i = i - k;
4366                         return true;
4367                     }
4368                     // backing off
4369                     if (capture) {
4370                         groups[groupIndex+1] = i;
4371                         groups[groupIndex] = i - k;
4372                     }
4373                     i = i - k;
4374                     j--;
4375                 }
4376                 break;
4377             }
4378             if (capture) {
4379                 groups[groupIndex] = save0;
4380                 groups[groupIndex+1] = save1;
4381             }
4382             return next.match(matcher, i, seq);
4383         }
4384         // Reluctant matching
4385         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4386             for (;;) {
4387                 if (next.match(matcher, i, seq))
4388                     return true;
4389                 if (j >= cmax)
4390                     return false;
4391                 if (!atom.match(matcher, i, seq))
4392                     return false;
4393                 if (i == matcher.last)
4394                     return false;
4395                 if (capture) {
4396                     matcher.groups[groupIndex] = i;
4397                     matcher.groups[groupIndex+1] = matcher.last;
4398                 }
4399                 i = matcher.last;
4400                 j++;
4401             }
4402         }
4403         // Possessive matching
4404         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4405             for (; j < cmax; j++) {
4406                 if (!atom.match(matcher, i, seq)) {
4407                     break;
4408                 }
4409                 if (capture) {
4410                     matcher.groups[groupIndex] = i;
4411                     matcher.groups[groupIndex+1] = matcher.last;
4412                 }
4413                 if (i == matcher.last) {
4414                     break;
4415                 }
4416                 i = matcher.last;
4417             }
4418             return next.match(matcher, i, seq);
4419         }
4420         boolean study(TreeInfo info) {
4421             // Save original info
4422             int minL = info.minLength;
4423             int maxL = info.maxLength;
4424             boolean maxV = info.maxValid;
4425             boolean detm = info.deterministic;
4426             info.reset();
4427 
4428             atom.study(info);
4429 
4430             int temp = info.minLength * cmin + minL;
4431             if (temp < minL) {
4432                 temp = 0xFFFFFFF; // Arbitrary large number
4433             }
4434             info.minLength = temp;
4435 
4436             if (maxV & info.maxValid) {
4437                 temp = info.maxLength * cmax + maxL;
4438                 info.maxLength = temp;
4439                 if (temp < maxL) {
4440                     info.maxValid = false;
4441                 }
4442             } else {
4443                 info.maxValid = false;
4444             }
4445 
4446             if (info.deterministic && cmin == cmax) {
4447                 info.deterministic = detm;
4448             } else {
4449                 info.deterministic = false;
4450             }
4451 
4452             return next.study(info);
4453         }
4454     }
4455 
4456     /**
4457      * A Guard node at the end of each atom node in a Branch. It
4458      * serves the purpose of chaining the "match" operation to
4459      * "next" but not the "study", so we can collect the TreeInfo
4460      * of each atom node without including the TreeInfo of the
4461      * "next".
4462      */
4463     static final class BranchConn extends Node {
4464         BranchConn() {};
4465         boolean match(Matcher matcher, int i, CharSequence seq) {
4466             return next.match(matcher, i, seq);
4467         }
4468         boolean study(TreeInfo info) {
4469             return info.deterministic;
4470         }
4471     }
4472 
4473     /**
4474      * Handles the branching of alternations. Note this is also used for
4475      * the ? quantifier to branch between the case where it matches once
4476      * and where it does not occur.
4477      */
4478     static final class Branch extends Node {
4479         Node[] atoms = new Node[2];
4480         int size = 2;
4481         Node conn;
4482         Branch(Node first, Node second, Node branchConn) {
4483             conn = branchConn;
4484             atoms[0] = first;
4485             atoms[1] = second;
4486         }
4487 
4488         void add(Node node) {
4489             if (size >= atoms.length) {
4490                 Node[] tmp = new Node[atoms.length*2];
4491                 System.arraycopy(atoms, 0, tmp, 0, atoms.length);
4492                 atoms = tmp;
4493             }
4494             atoms[size++] = node;
4495         }
4496 
4497         boolean match(Matcher matcher, int i, CharSequence seq) {
4498             for (int n = 0; n < size; n++) {
4499                 if (atoms[n] == null) {
4500                     if (conn.next.match(matcher, i, seq))
4501                         return true;
4502                 } else if (atoms[n].match(matcher, i, seq)) {
4503                     return true;
4504                 }
4505             }
4506             return false;
4507         }
4508 
4509         boolean study(TreeInfo info) {
4510             int minL = info.minLength;
4511             int maxL = info.maxLength;
4512             boolean maxV = info.maxValid;
4513 
4514             int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4515             int maxL2 = -1;
4516             for (int n = 0; n < size; n++) {
4517                 info.reset();
4518                 if (atoms[n] != null)
4519                     atoms[n].study(info);
4520                 minL2 = Math.min(minL2, info.minLength);
4521                 maxL2 = Math.max(maxL2, info.maxLength);
4522                 maxV = (maxV & info.maxValid);
4523             }
4524 
4525             minL += minL2;
4526             maxL += maxL2;
4527 
4528             info.reset();
4529             conn.next.study(info);
4530 
4531             info.minLength += minL;
4532             info.maxLength += maxL;
4533             info.maxValid &= maxV;
4534             info.deterministic = false;
4535             return false;
4536         }
4537     }
4538 
4539     /**
4540      * The GroupHead saves the location where the group begins in the locals
4541      * and restores them when the match is done.
4542      *
4543      * The matchRef is used when a reference to this group is accessed later
4544      * in the expression. The locals will have a negative value in them to
4545      * indicate that we do not want to unset the group if the reference
4546      * doesn't match.
4547      */
4548     static final class GroupHead extends Node {
4549         int localIndex;
4550         GroupHead(int localCount) {
4551             localIndex = localCount;
4552         }
4553         boolean match(Matcher matcher, int i, CharSequence seq) {
4554             int save = matcher.locals[localIndex];
4555             matcher.locals[localIndex] = i;
4556             boolean ret = next.match(matcher, i, seq);
4557             matcher.locals[localIndex] = save;
4558             return ret;
4559         }
4560         boolean matchRef(Matcher matcher, int i, CharSequence seq) {
4561             int save = matcher.locals[localIndex];
4562             matcher.locals[localIndex] = ~i; // HACK
4563             boolean ret = next.match(matcher, i, seq);
4564             matcher.locals[localIndex] = save;
4565             return ret;
4566         }
4567     }
4568 
4569     /**
4570      * Recursive reference to a group in the regular expression. It calls
4571      * matchRef because if the reference fails to match we would not unset
4572      * the group.
4573      */
4574     static final class GroupRef extends Node {
4575         GroupHead head;
4576         GroupRef(GroupHead head) {
4577             this.head = head;
4578         }
4579         boolean match(Matcher matcher, int i, CharSequence seq) {
4580             return head.matchRef(matcher, i, seq)
4581                 && next.match(matcher, matcher.last, seq);
4582         }
4583         boolean study(TreeInfo info) {
4584             info.maxValid = false;
4585             info.deterministic = false;
4586             return next.study(info);
4587         }
4588     }
4589 
4590     /**
4591      * The GroupTail handles the setting of group beginning and ending
4592      * locations when groups are successfully matched. It must also be able to
4593      * unset groups that have to be backed off of.
4594      *
4595      * The GroupTail node is also used when a previous group is referenced,
4596      * and in that case no group information needs to be set.
4597      */
4598     static final class GroupTail extends Node {
4599         int localIndex;
4600         int groupIndex;
4601         GroupTail(int localCount, int groupCount) {
4602             localIndex = localCount;
4603             groupIndex = groupCount + groupCount;
4604         }
4605         boolean match(Matcher matcher, int i, CharSequence seq) {
4606             int tmp = matcher.locals[localIndex];
4607             if (tmp >= 0) { // This is the normal group case.
4608                 // Save the group so we can unset it if it
4609                 // backs off of a match.
4610                 int groupStart = matcher.groups[groupIndex];
4611                 int groupEnd = matcher.groups[groupIndex+1];
4612 
4613                 matcher.groups[groupIndex] = tmp;
4614                 matcher.groups[groupIndex+1] = i;
4615                 if (next.match(matcher, i, seq)) {
4616                     return true;
4617                 }
4618                 matcher.groups[groupIndex] = groupStart;
4619                 matcher.groups[groupIndex+1] = groupEnd;
4620                 return false;
4621             } else {
4622                 // This is a group reference case. We don't need to save any
4623                 // group info because it isn't really a group.
4624                 matcher.last = i;
4625                 return true;
4626             }
4627         }
4628     }
4629 
4630     /**
4631      * This sets up a loop to handle a recursive quantifier structure.
4632      */
4633     static final class Prolog extends Node {
4634         Loop loop;
4635         Prolog(Loop loop) {
4636             this.loop = loop;
4637         }
4638         boolean match(Matcher matcher, int i, CharSequence seq) {
4639             return loop.matchInit(matcher, i, seq);
4640         }
4641         boolean study(TreeInfo info) {
4642             return loop.study(info);
4643         }
4644     }
4645 
4646     /**
4647      * Handles the repetition count for a greedy Curly. The matchInit
4648      * is called from the Prolog to save the index of where the group
4649      * beginning is stored. A zero length group check occurs in the
4650      * normal match but is skipped in the matchInit.
4651      */
4652     static class Loop extends Node {
4653         Node body;
4654         int countIndex; // local count index in matcher locals
4655         int beginIndex; // group beginning index
4656         int cmin, cmax;
4657         Loop(int countIndex, int beginIndex) {
4658             this.countIndex = countIndex;
4659             this.beginIndex = beginIndex;
4660         }
4661         boolean match(Matcher matcher, int i, CharSequence seq) {
4662             // Avoid infinite loop in zero-length case.
4663             if (i > matcher.locals[beginIndex]) {
4664                 int count = matcher.locals[countIndex];
4665 
4666                 // This block is for before we reach the minimum
4667                 // iterations required for the loop to match
4668                 if (count < cmin) {
4669                     matcher.locals[countIndex] = count + 1;
4670                     boolean b = body.match(matcher, i, seq);
4671                     // If match failed we must backtrack, so
4672                     // the loop count should NOT be incremented
4673                     if (!b)
4674                         matcher.locals[countIndex] = count;
4675                     // Return success or failure since we are under
4676                     // minimum
4677                     return b;
4678                 }
4679                 // This block is for after we have the minimum
4680                 // iterations required for the loop to match
4681                 if (count < cmax) {
4682                     matcher.locals[countIndex] = count + 1;
4683                     boolean b = body.match(matcher, i, seq);
4684                     // If match failed we must backtrack, so
4685                     // the loop count should NOT be incremented
4686                     if (!b)
4687                         matcher.locals[countIndex] = count;
4688                     else
4689                         return true;
4690                 }
4691             }
4692             return next.match(matcher, i, seq);
4693         }
4694         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4695             int save = matcher.locals[countIndex];
4696             boolean ret = false;
4697             if (0 < cmin) {
4698                 matcher.locals[countIndex] = 1;
4699                 ret = body.match(matcher, i, seq);
4700             } else if (0 < cmax) {
4701                 matcher.locals[countIndex] = 1;
4702                 ret = body.match(matcher, i, seq);
4703                 if (ret == false)
4704                     ret = next.match(matcher, i, seq);
4705             } else {
4706                 ret = next.match(matcher, i, seq);
4707             }
4708             matcher.locals[countIndex] = save;
4709             return ret;
4710         }
4711         boolean study(TreeInfo info) {
4712             info.maxValid = false;
4713             info.deterministic = false;
4714             return false;
4715         }
4716     }
4717 
4718     /**
4719      * Handles the repetition count for a reluctant Curly. The matchInit
4720      * is called from the Prolog to save the index of where the group
4721      * beginning is stored. A zero length group check occurs in the
4722      * normal match but is skipped in the matchInit.
4723      */
4724     static final class LazyLoop extends Loop {
4725         LazyLoop(int countIndex, int beginIndex) {
4726             super(countIndex, beginIndex);
4727         }
4728         boolean match(Matcher matcher, int i, CharSequence seq) {
4729             // Check for zero length group
4730             if (i > matcher.locals[beginIndex]) {
4731                 int count = matcher.locals[countIndex];
4732                 if (count < cmin) {
4733                     matcher.locals[countIndex] = count + 1;
4734                     boolean result = body.match(matcher, i, seq);
4735                     // If match failed we must backtrack, so
4736                     // the loop count should NOT be incremented
4737                     if (!result)
4738                         matcher.locals[countIndex] = count;
4739                     return result;
4740                 }
4741                 if (next.match(matcher, i, seq))
4742                     return true;
4743                 if (count < cmax) {
4744                     matcher.locals[countIndex] = count + 1;
4745                     boolean result = body.match(matcher, i, seq);
4746                     // If match failed we must backtrack, so
4747                     // the loop count should NOT be incremented
4748                     if (!result)
4749                         matcher.locals[countIndex] = count;
4750                     return result;
4751                 }
4752                 return false;
4753             }
4754             return next.match(matcher, i, seq);
4755         }
4756         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4757             int save = matcher.locals[countIndex];
4758             boolean ret = false;
4759             if (0 < cmin) {
4760                 matcher.locals[countIndex] = 1;
4761                 ret = body.match(matcher, i, seq);
4762             } else if (next.match(matcher, i, seq)) {
4763                 ret = true;
4764             } else if (0 < cmax) {
4765                 matcher.locals[countIndex] = 1;
4766                 ret = body.match(matcher, i, seq);
4767             }
4768             matcher.locals[countIndex] = save;
4769             return ret;
4770         }
4771         boolean study(TreeInfo info) {
4772             info.maxValid = false;
4773             info.deterministic = false;
4774             return false;
4775         }
4776     }
4777 
4778     /**
4779      * Refers to a group in the regular expression. Attempts to match
4780      * whatever the group referred to last matched.
4781      */
4782     static class BackRef extends Node {
4783         int groupIndex;
4784         BackRef(int groupCount) {
4785             super();
4786             groupIndex = groupCount + groupCount;
4787         }
4788         boolean match(Matcher matcher, int i, CharSequence seq) {
4789             int j = matcher.groups[groupIndex];
4790             int k = matcher.groups[groupIndex+1];
4791 
4792             int groupSize = k - j;
4793 
4794             // If the referenced group didn't match, neither can this
4795             if (j < 0)
4796                 return false;
4797 
4798             // If there isn't enough input left no match
4799             if (i + groupSize > matcher.to) {
4800                 matcher.hitEnd = true;
4801                 return false;
4802             }
4803 
4804             // Check each new char to make sure it matches what the group
4805             // referenced matched last time around
4806             for (int index=0; index<groupSize; index++)
4807                 if (seq.charAt(i+index) != seq.charAt(j+index))
4808                     return false;
4809 
4810             return next.match(matcher, i+groupSize, seq);
4811         }
4812         boolean study(TreeInfo info) {
4813             info.maxValid = false;
4814             return next.study(info);
4815         }
4816     }
4817 
4818     static class CIBackRef extends Node {
4819         int groupIndex;
4820         boolean doUnicodeCase;
4821         CIBackRef(int groupCount, boolean doUnicodeCase) {
4822             super();
4823             groupIndex = groupCount + groupCount;
4824             this.doUnicodeCase = doUnicodeCase;
4825         }
4826         boolean match(Matcher matcher, int i, CharSequence seq) {
4827             int j = matcher.groups[groupIndex];
4828             int k = matcher.groups[groupIndex+1];
4829 
4830             int groupSize = k - j;
4831 
4832             // If the referenced group didn't match, neither can this
4833             if (j < 0)
4834                 return false;
4835 
4836             // If there isn't enough input left no match
4837             if (i + groupSize > matcher.to) {
4838                 matcher.hitEnd = true;
4839                 return false;
4840             }
4841 
4842             // Check each new char to make sure it matches what the group
4843             // referenced matched last time around
4844             int x = i;
4845             for (int index=0; index<groupSize; index++) {
4846                 int c1 = Character.codePointAt(seq, x);
4847                 int c2 = Character.codePointAt(seq, j);
4848                 if (c1 != c2) {
4849                     if (doUnicodeCase) {
4850                         int cc1 = Character.toUpperCase(c1);
4851                         int cc2 = Character.toUpperCase(c2);
4852                         if (cc1 != cc2 &&
4853                             Character.toLowerCase(cc1) !=
4854                             Character.toLowerCase(cc2))
4855                             return false;
4856                     } else {
4857                         if (ASCII.toLower(c1) != ASCII.toLower(c2))
4858                             return false;
4859                     }
4860                 }
4861                 x += Character.charCount(c1);
4862                 j += Character.charCount(c2);
4863             }
4864 
4865             return next.match(matcher, i+groupSize, seq);
4866         }
4867         boolean study(TreeInfo info) {
4868             info.maxValid = false;
4869             return next.study(info);
4870         }
4871     }
4872 
4873     /**
4874      * Searches until the next instance of its atom. This is useful for
4875      * finding the atom efficiently without passing an instance of it
4876      * (greedy problem) and without a lot of wasted search time (reluctant
4877      * problem).
4878      */
4879     static final class First extends Node {
4880         Node atom;
4881         First(Node node) {
4882             this.atom = BnM.optimize(node);
4883         }
4884         boolean match(Matcher matcher, int i, CharSequence seq) {
4885             if (atom instanceof BnM) {
4886                 return atom.match(matcher, i, seq)
4887                     && next.match(matcher, matcher.last, seq);
4888             }
4889             for (;;) {
4890                 if (i > matcher.to) {
4891                     matcher.hitEnd = true;
4892                     return false;
4893                 }
4894                 if (atom.match(matcher, i, seq)) {
4895                     return next.match(matcher, matcher.last, seq);
4896                 }
4897                 i += countChars(seq, i, 1);
4898                 matcher.first++;
4899             }
4900         }
4901         boolean study(TreeInfo info) {
4902             atom.study(info);
4903             info.maxValid = false;
4904             info.deterministic = false;
4905             return next.study(info);
4906         }
4907     }
4908 
4909     static final class Conditional extends Node {
4910         Node cond, yes, not;
4911         Conditional(Node cond, Node yes, Node not) {
4912             this.cond = cond;
4913             this.yes = yes;
4914             this.not = not;
4915         }
4916         boolean match(Matcher matcher, int i, CharSequence seq) {
4917             if (cond.match(matcher, i, seq)) {
4918                 return yes.match(matcher, i, seq);
4919             } else {
4920                 return not.match(matcher, i, seq);
4921             }
4922         }
4923         boolean study(TreeInfo info) {
4924             int minL = info.minLength;
4925             int maxL = info.maxLength;
4926             boolean maxV = info.maxValid;
4927             info.reset();
4928             yes.study(info);
4929 
4930             int minL2 = info.minLength;
4931             int maxL2 = info.maxLength;
4932             boolean maxV2 = info.maxValid;
4933             info.reset();
4934             not.study(info);
4935 
4936             info.minLength = minL + Math.min(minL2, info.minLength);
4937             info.maxLength = maxL + Math.max(maxL2, info.maxLength);
4938             info.maxValid = (maxV & maxV2 & info.maxValid);
4939             info.deterministic = false;
4940             return next.study(info);
4941         }
4942     }
4943 
4944     /**
4945      * Zero width positive lookahead.
4946      */
4947     static final class Pos extends Node {
4948         Node cond;
4949         Pos(Node cond) {
4950             this.cond = cond;
4951         }
4952         boolean match(Matcher matcher, int i, CharSequence seq) {
4953             int savedTo = matcher.to;
4954             boolean conditionMatched = false;
4955 
4956             // Relax transparent region boundaries for lookahead
4957             if (matcher.transparentBounds)
4958                 matcher.to = matcher.getTextLength();
4959             try {
4960                 conditionMatched = cond.match(matcher, i, seq);
4961             } finally {
4962                 // Reinstate region boundaries
4963                 matcher.to = savedTo;
4964             }
4965             return conditionMatched && next.match(matcher, i, seq);
4966         }
4967     }
4968 
4969     /**
4970      * Zero width negative lookahead.
4971      */
4972     static final class Neg extends Node {
4973         Node cond;
4974         Neg(Node cond) {
4975             this.cond = cond;
4976         }
4977         boolean match(Matcher matcher, int i, CharSequence seq) {
4978             int savedTo = matcher.to;
4979             boolean conditionMatched = false;
4980 
4981             // Relax transparent region boundaries for lookahead
4982             if (matcher.transparentBounds)
4983                 matcher.to = matcher.getTextLength();
4984             try {
4985                 if (i < matcher.to) {
4986                     conditionMatched = !cond.match(matcher, i, seq);
4987                 } else {
4988                     // If a negative lookahead succeeds then more input
4989                     // could cause it to fail!
4990                     matcher.requireEnd = true;
4991                     conditionMatched = !cond.match(matcher, i, seq);
4992                 }
4993             } finally {
4994                 // Reinstate region boundaries
4995                 matcher.to = savedTo;
4996             }
4997             return conditionMatched && next.match(matcher, i, seq);
4998         }
4999     }
5000 
5001     /**
5002      * For use with lookbehinds; matches the position where the lookbehind
5003      * was encountered.
5004      */
5005     static Node lookbehindEnd = new Node() {
5006         boolean match(Matcher matcher, int i, CharSequence seq) {
5007             return i == matcher.lookbehindTo;
5008         }
5009     };
5010 
5011     /**
5012      * Zero width positive lookbehind.
5013      */
5014     static class Behind extends Node {
5015         Node cond;
5016         int rmax, rmin;
5017         Behind(Node cond, int rmax, int rmin) {
5018             this.cond = cond;
5019             this.rmax = rmax;
5020             this.rmin = rmin;
5021         }
5022 
5023         boolean match(Matcher matcher, int i, CharSequence seq) {
5024             int savedFrom = matcher.from;
5025             boolean conditionMatched = false;
5026             int startIndex = (!matcher.transparentBounds) ?
5027                              matcher.from : 0;
5028             int from = Math.max(i - rmax, startIndex);
5029             // Set end boundary
5030             int savedLBT = matcher.lookbehindTo;
5031             matcher.lookbehindTo = i;
5032             // Relax transparent region boundaries for lookbehind
5033             if (matcher.transparentBounds)
5034                 matcher.from = 0;
5035             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5036                 conditionMatched = cond.match(matcher, j, seq);
5037             }
5038             matcher.from = savedFrom;
5039             matcher.lookbehindTo = savedLBT;
5040             return conditionMatched && next.match(matcher, i, seq);
5041         }
5042     }
5043 
5044     /**
5045      * Zero width positive lookbehind, including supplementary
5046      * characters or unpaired surrogates.
5047      */
5048     static final class BehindS extends Behind {
5049         BehindS(Node cond, int rmax, int rmin) {
5050             super(cond, rmax, rmin);
5051         }
5052         boolean match(Matcher matcher, int i, CharSequence seq) {
5053             int rmaxChars = countChars(seq, i, -rmax);
5054             int rminChars = countChars(seq, i, -rmin);
5055             int savedFrom = matcher.from;
5056             int startIndex = (!matcher.transparentBounds) ?
5057                              matcher.from : 0;
5058             boolean conditionMatched = false;
5059             int from = Math.max(i - rmaxChars, startIndex);
5060             // Set end boundary
5061             int savedLBT = matcher.lookbehindTo;
5062             matcher.lookbehindTo = i;
5063             // Relax transparent region boundaries for lookbehind
5064             if (matcher.transparentBounds)
5065                 matcher.from = 0;
5066 
5067             for (int j = i - rminChars;
5068                  !conditionMatched && j >= from;
5069                  j -= j>from ? countChars(seq, j, -1) : 1) {
5070                 conditionMatched = cond.match(matcher, j, seq);
5071             }
5072             matcher.from = savedFrom;
5073             matcher.lookbehindTo = savedLBT;
5074             return conditionMatched && next.match(matcher, i, seq);
5075         }
5076     }
5077 
5078     /**
5079      * Zero width negative lookbehind.
5080      */
5081     static class NotBehind extends Node {
5082         Node cond;
5083         int rmax, rmin;
5084         NotBehind(Node cond, int rmax, int rmin) {
5085             this.cond = cond;
5086             this.rmax = rmax;
5087             this.rmin = rmin;
5088         }
5089 
5090         boolean match(Matcher matcher, int i, CharSequence seq) {
5091             int savedLBT = matcher.lookbehindTo;
5092             int savedFrom = matcher.from;
5093             boolean conditionMatched = false;
5094             int startIndex = (!matcher.transparentBounds) ?
5095                              matcher.from : 0;
5096             int from = Math.max(i - rmax, startIndex);
5097             matcher.lookbehindTo = i;
5098             // Relax transparent region boundaries for lookbehind
5099             if (matcher.transparentBounds)
5100                 matcher.from = 0;
5101             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5102                 conditionMatched = cond.match(matcher, j, seq);
5103             }
5104             // Reinstate region boundaries
5105             matcher.from = savedFrom;
5106             matcher.lookbehindTo = savedLBT;
5107             return !conditionMatched && next.match(matcher, i, seq);
5108         }
5109     }
5110 
5111     /**
5112      * Zero width negative lookbehind, including supplementary
5113      * characters or unpaired surrogates.
5114      */
5115     static final class NotBehindS extends NotBehind {
5116         NotBehindS(Node cond, int rmax, int rmin) {
5117             super(cond, rmax, rmin);
5118         }
5119         boolean match(Matcher matcher, int i, CharSequence seq) {
5120             int rmaxChars = countChars(seq, i, -rmax);
5121             int rminChars = countChars(seq, i, -rmin);
5122             int savedFrom = matcher.from;
5123             int savedLBT = matcher.lookbehindTo;
5124             boolean conditionMatched = false;
5125             int startIndex = (!matcher.transparentBounds) ?
5126                              matcher.from : 0;
5127             int from = Math.max(i - rmaxChars, startIndex);
5128             matcher.lookbehindTo = i;
5129             // Relax transparent region boundaries for lookbehind
5130             if (matcher.transparentBounds)
5131                 matcher.from = 0;
5132             for (int j = i - rminChars;
5133                  !conditionMatched && j >= from;
5134                  j -= j>from ? countChars(seq, j, -1) : 1) {
5135                 conditionMatched = cond.match(matcher, j, seq);
5136             }
5137             //Reinstate region boundaries
5138             matcher.from = savedFrom;
5139             matcher.lookbehindTo = savedLBT;
5140             return !conditionMatched && next.match(matcher, i, seq);
5141         }
5142     }
5143 
5144     /**
5145      * Returns the set union of two CharProperty nodes.
5146      */
5147     private static CharProperty union(final CharProperty lhs,
5148                                       final CharProperty rhs) {
5149         return new CharProperty() {
5150                 boolean isSatisfiedBy(int ch) {
5151                     return lhs.isSatisfiedBy(ch) || rhs.isSatisfiedBy(ch);}};
5152     }
5153 
5154     /**
5155      * Returns the set intersection of two CharProperty nodes.
5156      */
5157     private static CharProperty intersection(final CharProperty lhs,
5158                                              final CharProperty rhs) {
5159         return new CharProperty() {
5160                 boolean isSatisfiedBy(int ch) {
5161                     return lhs.isSatisfiedBy(ch) && rhs.isSatisfiedBy(ch);}};
5162     }
5163 
5164     /**
5165      * Returns the set difference of two CharProperty nodes.
5166      */
5167     private static CharProperty setDifference(final CharProperty lhs,
5168                                               final CharProperty rhs) {
5169         return new CharProperty() {
5170                 boolean isSatisfiedBy(int ch) {
5171                     return ! rhs.isSatisfiedBy(ch) && lhs.isSatisfiedBy(ch);}};
5172     }
5173 
5174     /**
5175      * Handles word boundaries. Includes a field to allow this one class to
5176      * deal with the different types of word boundaries we can match. The word
5177      * characters include underscores, letters, and digits. Non spacing marks
5178      * can are also part of a word if they have a base character, otherwise
5179      * they are ignored for purposes of finding word boundaries.
5180      */
5181     static final class Bound extends Node {
5182         static int LEFT = 0x1;
5183         static int RIGHT= 0x2;
5184         static int BOTH = 0x3;
5185         static int NONE = 0x4;
5186         int type;
5187         boolean useUWORD;
5188         Bound(int n, boolean useUWORD) {
5189             type = n;
5190             this.useUWORD = useUWORD;
5191         }
5192 
5193         boolean isWord(int ch) {
5194             return useUWORD ? UnicodeProp.WORD.is(ch)
5195                             : (ch == '_' || Character.isLetterOrDigit(ch));
5196         }
5197 
5198         int check(Matcher matcher, int i, CharSequence seq) {
5199             int ch;
5200             boolean left = false;
5201             int startIndex = matcher.from;
5202             int endIndex = matcher.to;
5203             if (matcher.transparentBounds) {
5204                 startIndex = 0;
5205                 endIndex = matcher.getTextLength();
5206             }
5207             if (i > startIndex) {
5208                 ch = Character.codePointBefore(seq, i);
5209                 left = (isWord(ch) ||
5210                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5211                      && hasBaseCharacter(matcher, i-1, seq)));
5212             }
5213             boolean right = false;
5214             if (i < endIndex) {
5215                 ch = Character.codePointAt(seq, i);
5216                 right = (isWord(ch) ||
5217                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5218                      && hasBaseCharacter(matcher, i, seq)));
5219             } else {
5220                 // Tried to access char past the end
5221                 matcher.hitEnd = true;
5222                 // The addition of another char could wreck a boundary
5223                 matcher.requireEnd = true;
5224             }
5225             return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
5226         }
5227         boolean match(Matcher matcher, int i, CharSequence seq) {
5228             return (check(matcher, i, seq) & type) > 0
5229                 && next.match(matcher, i, seq);
5230         }
5231     }
5232 
5233     /**
5234      * Non spacing marks only count as word characters in bounds calculations
5235      * if they have a base character.
5236      */
5237     private static boolean hasBaseCharacter(Matcher matcher, int i,
5238                                             CharSequence seq)
5239     {
5240         int start = (!matcher.transparentBounds) ?
5241             matcher.from : 0;
5242         for (int x=i; x >= start; x--) {
5243             int ch = Character.codePointAt(seq, x);
5244             if (Character.isLetterOrDigit(ch))
5245                 return true;
5246             if (Character.getType(ch) == Character.NON_SPACING_MARK)
5247                 continue;
5248             return false;
5249         }
5250         return false;
5251     }
5252 
5253     /**
5254      * Attempts to match a slice in the input using the Boyer-Moore string
5255      * matching algorithm. The algorithm is based on the idea that the
5256      * pattern can be shifted farther ahead in the search text if it is
5257      * matched right to left.
5258      * <p>
5259      * The pattern is compared to the input one character at a time, from
5260      * the rightmost character in the pattern to the left. If the characters
5261      * all match the pattern has been found. If a character does not match,
5262      * the pattern is shifted right a distance that is the maximum of two
5263      * functions, the bad character shift and the good suffix shift. This
5264      * shift moves the attempted match position through the input more
5265      * quickly than a naive one position at a time check.
5266      * <p>
5267      * The bad character shift is based on the character from the text that
5268      * did not match. If the character does not appear in the pattern, the
5269      * pattern can be shifted completely beyond the bad character. If the
5270      * character does occur in the pattern, the pattern can be shifted to
5271      * line the pattern up with the next occurrence of that character.
5272      * <p>
5273      * The good suffix shift is based on the idea that some subset on the right
5274      * side of the pattern has matched. When a bad character is found, the
5275      * pattern can be shifted right by the pattern length if the subset does
5276      * not occur again in pattern, or by the amount of distance to the
5277      * next occurrence of the subset in the pattern.
5278      *
5279      * Boyer-Moore search methods adapted from code by Amy Yu.
5280      */
5281     static class BnM extends Node {
5282         int[] buffer;
5283         int[] lastOcc;
5284         int[] optoSft;
5285 
5286         /**
5287          * Pre calculates arrays needed to generate the bad character
5288          * shift and the good suffix shift. Only the last seven bits
5289          * are used to see if chars match; This keeps the tables small
5290          * and covers the heavily used ASCII range, but occasionally
5291          * results in an aliased match for the bad character shift.
5292          */
5293         static Node optimize(Node node) {
5294             if (!(node instanceof Slice)) {
5295                 return node;
5296             }
5297 
5298             int[] src = ((Slice) node).buffer;
5299             int patternLength = src.length;
5300             // The BM algorithm requires a bit of overhead;
5301             // If the pattern is short don't use it, since
5302             // a shift larger than the pattern length cannot
5303             // be used anyway.
5304             if (patternLength < 4) {
5305                 return node;
5306             }
5307             int i, j, k;
5308             int[] lastOcc = new int[128];
5309             int[] optoSft = new int[patternLength];
5310             // Precalculate part of the bad character shift
5311             // It is a table for where in the pattern each
5312             // lower 7-bit value occurs
5313             for (i = 0; i < patternLength; i++) {
5314                 lastOcc[src[i]&0x7F] = i + 1;
5315             }
5316             // Precalculate the good suffix shift
5317             // i is the shift amount being considered
5318 NEXT:       for (i = patternLength; i > 0; i--) {
5319                 // j is the beginning index of suffix being considered
5320                 for (j = patternLength - 1; j >= i; j--) {
5321                     // Testing for good suffix
5322                     if (src[j] == src[j-i]) {
5323                         // src[j..len] is a good suffix
5324                         optoSft[j-1] = i;
5325                     } else {
5326                         // No match. The array has already been
5327                         // filled up with correct values before.
5328                         continue NEXT;
5329                     }
5330                 }
5331                 // This fills up the remaining of optoSft
5332                 // any suffix can not have larger shift amount
5333                 // then its sub-suffix. Why???
5334                 while (j > 0) {
5335                     optoSft[--j] = i;
5336                 }
5337             }
5338             // Set the guard value because of unicode compression
5339             optoSft[patternLength-1] = 1;
5340             if (node instanceof SliceS)
5341                 return new BnMS(src, lastOcc, optoSft, node.next);
5342             return new BnM(src, lastOcc, optoSft, node.next);
5343         }
5344         BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5345             this.buffer = src;
5346             this.lastOcc = lastOcc;
5347             this.optoSft = optoSft;
5348             this.next = next;
5349         }
5350         boolean match(Matcher matcher, int i, CharSequence seq) {
5351             int[] src = buffer;
5352             int patternLength = src.length;
5353             int last = matcher.to - patternLength;
5354 
5355             // Loop over all possible match positions in text
5356 NEXT:       while (i <= last) {
5357                 // Loop over pattern from right to left
5358                 for (int j = patternLength - 1; j >= 0; j--) {
5359                     int ch = seq.charAt(i+j);
5360                     if (ch != src[j]) {
5361                         // Shift search to the right by the maximum of the
5362                         // bad character shift and the good suffix shift
5363                         i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
5364                         continue NEXT;
5365                     }
5366                 }
5367                 // Entire pattern matched starting at i
5368                 matcher.first = i;
5369                 boolean ret = next.match(matcher, i + patternLength, seq);
5370                 if (ret) {
5371                     matcher.first = i;
5372                     matcher.groups[0] = matcher.first;
5373                     matcher.groups[1] = matcher.last;
5374                     return true;
5375                 }
5376                 i++;
5377             }
5378             // BnM is only used as the leading node in the unanchored case,
5379             // and it replaced its Start() which always searches to the end
5380             // if it doesn't find what it's looking for, so hitEnd is true.
5381             matcher.hitEnd = true;
5382             return false;
5383         }
5384         boolean study(TreeInfo info) {
5385             info.minLength += buffer.length;
5386             info.maxValid = false;
5387             return next.study(info);
5388         }
5389     }
5390 
5391     /**
5392      * Supplementary support version of BnM(). Unpaired surrogates are
5393      * also handled by this class.
5394      */
5395     static final class BnMS extends BnM {
5396         int lengthInChars;
5397 
5398         BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5399             super(src, lastOcc, optoSft, next);
5400             for (int x = 0; x < buffer.length; x++) {
5401                 lengthInChars += Character.charCount(buffer[x]);
5402             }
5403         }
5404         boolean match(Matcher matcher, int i, CharSequence seq) {
5405             int[] src = buffer;
5406             int patternLength = src.length;
5407             int last = matcher.to - lengthInChars;
5408 
5409             // Loop over all possible match positions in text
5410 NEXT:       while (i <= last) {
5411                 // Loop over pattern from right to left
5412                 int ch;
5413                 for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
5414                      j > 0; j -= Character.charCount(ch), x--) {
5415                     ch = Character.codePointBefore(seq, i+j);
5416                     if (ch != src[x]) {
5417                         // Shift search to the right by the maximum of the
5418                         // bad character shift and the good suffix shift
5419                         int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
5420                         i += countChars(seq, i, n);
5421                         continue NEXT;
5422                     }
5423                 }
5424                 // Entire pattern matched starting at i
5425                 matcher.first = i;
5426                 boolean ret = next.match(matcher, i + lengthInChars, seq);
5427                 if (ret) {
5428                     matcher.first = i;
5429                     matcher.groups[0] = matcher.first;
5430                     matcher.groups[1] = matcher.last;
5431                     return true;
5432                 }
5433                 i += countChars(seq, i, 1);
5434             }
5435             matcher.hitEnd = true;
5436             return false;
5437         }
5438     }
5439 
5440 ///////////////////////////////////////////////////////////////////////////////
5441 ///////////////////////////////////////////////////////////////////////////////
5442 
5443     /**
5444      *  This must be the very first initializer.
5445      */
5446     static Node accept = new Node();
5447 
5448     static Node lastAccept = new LastNode();
5449 
5450     private static class CharPropertyNames {
5451 
5452         static CharProperty charPropertyFor(String name) {
5453             CharPropertyFactory m = map.get(name);
5454             return m == null ? null : m.make();
5455         }
5456 
5457         private static abstract class CharPropertyFactory {
5458             abstract CharProperty make();
5459         }
5460 
5461         private static void defCategory(String name,
5462                                         final int typeMask) {
5463             map.put(name, new CharPropertyFactory() {
5464                     CharProperty make() { return new Category(typeMask);}});
5465         }
5466 
5467         private static void defRange(String name,
5468                                      final int lower, final int upper) {
5469             map.put(name, new CharPropertyFactory() {
5470                     CharProperty make() { return rangeFor(lower, upper);}});
5471         }
5472 
5473         private static void defCtype(String name,
5474                                      final int ctype) {
5475             map.put(name, new CharPropertyFactory() {
5476                     CharProperty make() { return new Ctype(ctype);}});
5477         }
5478 
5479         private static abstract class CloneableProperty
5480             extends CharProperty implements Cloneable
5481         {
5482             public CloneableProperty clone() {
5483                 try {
5484                     return (CloneableProperty) super.clone();
5485                 } catch (CloneNotSupportedException e) {
5486                     throw new AssertionError(e);
5487                 }
5488             }
5489         }
5490 
5491         private static void defClone(String name,
5492                                      final CloneableProperty p) {
5493             map.put(name, new CharPropertyFactory() {
5494                     CharProperty make() { return p.clone();}});
5495         }
5496 
5497         private static final HashMap<String, CharPropertyFactory> map
5498             = new HashMap<>();
5499 
5500         static {
5501             // Unicode character property aliases, defined in
5502             // http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt
5503             defCategory("Cn", 1<<Character.UNASSIGNED);
5504             defCategory("Lu", 1<<Character.UPPERCASE_LETTER);
5505             defCategory("Ll", 1<<Character.LOWERCASE_LETTER);
5506             defCategory("Lt", 1<<Character.TITLECASE_LETTER);
5507             defCategory("Lm", 1<<Character.MODIFIER_LETTER);
5508             defCategory("Lo", 1<<Character.OTHER_LETTER);
5509             defCategory("Mn", 1<<Character.NON_SPACING_MARK);
5510             defCategory("Me", 1<<Character.ENCLOSING_MARK);
5511             defCategory("Mc", 1<<Character.COMBINING_SPACING_MARK);
5512             defCategory("Nd", 1<<Character.DECIMAL_DIGIT_NUMBER);
5513             defCategory("Nl", 1<<Character.LETTER_NUMBER);
5514             defCategory("No", 1<<Character.OTHER_NUMBER);
5515             defCategory("Zs", 1<<Character.SPACE_SEPARATOR);
5516             defCategory("Zl", 1<<Character.LINE_SEPARATOR);
5517             defCategory("Zp", 1<<Character.PARAGRAPH_SEPARATOR);
5518             defCategory("Cc", 1<<Character.CONTROL);
5519             defCategory("Cf", 1<<Character.FORMAT);
5520             defCategory("Co", 1<<Character.PRIVATE_USE);
5521             defCategory("Cs", 1<<Character.SURROGATE);
5522             defCategory("Pd", 1<<Character.DASH_PUNCTUATION);
5523             defCategory("Ps", 1<<Character.START_PUNCTUATION);
5524             defCategory("Pe", 1<<Character.END_PUNCTUATION);
5525             defCategory("Pc", 1<<Character.CONNECTOR_PUNCTUATION);
5526             defCategory("Po", 1<<Character.OTHER_PUNCTUATION);
5527             defCategory("Sm", 1<<Character.MATH_SYMBOL);
5528             defCategory("Sc", 1<<Character.CURRENCY_SYMBOL);
5529             defCategory("Sk", 1<<Character.MODIFIER_SYMBOL);
5530             defCategory("So", 1<<Character.OTHER_SYMBOL);
5531             defCategory("Pi", 1<<Character.INITIAL_QUOTE_PUNCTUATION);
5532             defCategory("Pf", 1<<Character.FINAL_QUOTE_PUNCTUATION);
5533             defCategory("L", ((1<<Character.UPPERCASE_LETTER) |
5534                               (1<<Character.LOWERCASE_LETTER) |
5535                               (1<<Character.TITLECASE_LETTER) |
5536                               (1<<Character.MODIFIER_LETTER)  |
5537                               (1<<Character.OTHER_LETTER)));
5538             defCategory("M", ((1<<Character.NON_SPACING_MARK) |
5539                               (1<<Character.ENCLOSING_MARK)   |
5540                               (1<<Character.COMBINING_SPACING_MARK)));
5541             defCategory("N", ((1<<Character.DECIMAL_DIGIT_NUMBER) |
5542                               (1<<Character.LETTER_NUMBER)        |
5543                               (1<<Character.OTHER_NUMBER)));
5544             defCategory("Z", ((1<<Character.SPACE_SEPARATOR) |
5545                               (1<<Character.LINE_SEPARATOR)  |
5546                               (1<<Character.PARAGRAPH_SEPARATOR)));
5547             defCategory("C", ((1<<Character.CONTROL)     |
5548                               (1<<Character.FORMAT)      |
5549                               (1<<Character.PRIVATE_USE) |
5550                               (1<<Character.SURROGATE))); // Other
5551             defCategory("P", ((1<<Character.DASH_PUNCTUATION)      |
5552                               (1<<Character.START_PUNCTUATION)     |
5553                               (1<<Character.END_PUNCTUATION)       |
5554                               (1<<Character.CONNECTOR_PUNCTUATION) |
5555                               (1<<Character.OTHER_PUNCTUATION)     |
5556                               (1<<Character.INITIAL_QUOTE_PUNCTUATION) |
5557                               (1<<Character.FINAL_QUOTE_PUNCTUATION)));
5558             defCategory("S", ((1<<Character.MATH_SYMBOL)     |
5559                               (1<<Character.CURRENCY_SYMBOL) |
5560                               (1<<Character.MODIFIER_SYMBOL) |
5561                               (1<<Character.OTHER_SYMBOL)));
5562             defCategory("LC", ((1<<Character.UPPERCASE_LETTER) |
5563                                (1<<Character.LOWERCASE_LETTER) |
5564                                (1<<Character.TITLECASE_LETTER)));
5565             defCategory("LD", ((1<<Character.UPPERCASE_LETTER) |
5566                                (1<<Character.LOWERCASE_LETTER) |
5567                                (1<<Character.TITLECASE_LETTER) |
5568                                (1<<Character.MODIFIER_LETTER)  |
5569                                (1<<Character.OTHER_LETTER)     |
5570                                (1<<Character.DECIMAL_DIGIT_NUMBER)));
5571             defRange("L1", 0x00, 0xFF); // Latin-1
5572             map.put("all", new CharPropertyFactory() {
5573                     CharProperty make() { return new All(); }});
5574 
5575             // Posix regular expression character classes, defined in
5576             // http://www.unix.org/onlinepubs/009695399/basedefs/xbd_chap09.html
5577             defRange("ASCII", 0x00, 0x7F);   // ASCII
5578             defCtype("Alnum", ASCII.ALNUM);  // Alphanumeric characters
5579             defCtype("Alpha", ASCII.ALPHA);  // Alphabetic characters
5580             defCtype("Blank", ASCII.BLANK);  // Space and tab characters
5581             defCtype("Cntrl", ASCII.CNTRL);  // Control characters
5582             defRange("Digit", '0', '9');     // Numeric characters
5583             defCtype("Graph", ASCII.GRAPH);  // printable and visible
5584             defRange("Lower", 'a', 'z');     // Lower-case alphabetic
5585             defRange("Print", 0x20, 0x7E);   // Printable characters
5586             defCtype("Punct", ASCII.PUNCT);  // Punctuation characters
5587             defCtype("Space", ASCII.SPACE);  // Space characters
5588             defRange("Upper", 'A', 'Z');     // Upper-case alphabetic
5589             defCtype("XDigit",ASCII.XDIGIT); // hexadecimal digits
5590 
5591             // Java character properties, defined by methods in Character.java
5592             defClone("javaLowerCase", new CloneableProperty() {
5593                 boolean isSatisfiedBy(int ch) {
5594                     return Character.isLowerCase(ch);}});
5595             defClone("javaUpperCase", new CloneableProperty() {
5596                 boolean isSatisfiedBy(int ch) {
5597                     return Character.isUpperCase(ch);}});
5598             defClone("javaAlphabetic", new CloneableProperty() {
5599                 boolean isSatisfiedBy(int ch) {
5600                     return Character.isAlphabetic(ch);}});
5601             defClone("javaIdeographic", new CloneableProperty() {
5602                 boolean isSatisfiedBy(int ch) {
5603                     return Character.isIdeographic(ch);}});
5604             defClone("javaTitleCase", new CloneableProperty() {
5605                 boolean isSatisfiedBy(int ch) {
5606                     return Character.isTitleCase(ch);}});
5607             defClone("javaDigit", new CloneableProperty() {
5608                 boolean isSatisfiedBy(int ch) {
5609                     return Character.isDigit(ch);}});
5610             defClone("javaDefined", new CloneableProperty() {
5611                 boolean isSatisfiedBy(int ch) {
5612                     return Character.isDefined(ch);}});
5613             defClone("javaLetter", new CloneableProperty() {
5614                 boolean isSatisfiedBy(int ch) {
5615                     return Character.isLetter(ch);}});
5616             defClone("javaLetterOrDigit", new CloneableProperty() {
5617                 boolean isSatisfiedBy(int ch) {
5618                     return Character.isLetterOrDigit(ch);}});
5619             defClone("javaJavaIdentifierStart", new CloneableProperty() {
5620                 boolean isSatisfiedBy(int ch) {
5621                     return Character.isJavaIdentifierStart(ch);}});
5622             defClone("javaJavaIdentifierPart", new CloneableProperty() {
5623                 boolean isSatisfiedBy(int ch) {
5624                     return Character.isJavaIdentifierPart(ch);}});
5625             defClone("javaUnicodeIdentifierStart", new CloneableProperty() {
5626                 boolean isSatisfiedBy(int ch) {
5627                     return Character.isUnicodeIdentifierStart(ch);}});
5628             defClone("javaUnicodeIdentifierPart", new CloneableProperty() {
5629                 boolean isSatisfiedBy(int ch) {
5630                     return Character.isUnicodeIdentifierPart(ch);}});
5631             defClone("javaIdentifierIgnorable", new CloneableProperty() {
5632                 boolean isSatisfiedBy(int ch) {
5633                     return Character.isIdentifierIgnorable(ch);}});
5634             defClone("javaSpaceChar", new CloneableProperty() {
5635                 boolean isSatisfiedBy(int ch) {
5636                     return Character.isSpaceChar(ch);}});
5637             defClone("javaWhitespace", new CloneableProperty() {
5638                 boolean isSatisfiedBy(int ch) {
5639                     return Character.isWhitespace(ch);}});
5640             defClone("javaISOControl", new CloneableProperty() {
5641                 boolean isSatisfiedBy(int ch) {
5642                     return Character.isISOControl(ch);}});
5643             defClone("javaMirrored", new CloneableProperty() {
5644                 boolean isSatisfiedBy(int ch) {
5645                     return Character.isMirrored(ch);}});
5646         }
5647     }
5648 }