1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  86 
  87 // Shared stub locations
  88 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  89 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  90 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 
 105 //----------------------------generate_stubs-----------------------------------
 106 void SharedRuntime::generate_stubs() {
 107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 113 
 114 #ifdef COMPILER2
 115   // Vectors are generated only by C2.
 116   if (is_wide_vector(MaxVectorSize)) {
 117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 118   }
 119 #endif // COMPILER2
 120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 122 
 123   generate_deopt_blob();
 124 
 125 #ifdef COMPILER2
 126   generate_uncommon_trap_blob();
 127 #endif // COMPILER2
 128 }
 129 
 130 #include <math.h>
 131 
 132 #ifndef USDT2
 133 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 134 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 135                       char*, int, char*, int, char*, int);
 136 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 137                       char*, int, char*, int, char*, int);
 138 #endif /* !USDT2 */
 139 
 140 // Implementation of SharedRuntime
 141 
 142 #ifndef PRODUCT
 143 // For statistics
 144 int SharedRuntime::_ic_miss_ctr = 0;
 145 int SharedRuntime::_wrong_method_ctr = 0;
 146 int SharedRuntime::_resolve_static_ctr = 0;
 147 int SharedRuntime::_resolve_virtual_ctr = 0;
 148 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 149 int SharedRuntime::_implicit_null_throws = 0;
 150 int SharedRuntime::_implicit_div0_throws = 0;
 151 int SharedRuntime::_throw_null_ctr = 0;
 152 
 153 int SharedRuntime::_nof_normal_calls = 0;
 154 int SharedRuntime::_nof_optimized_calls = 0;
 155 int SharedRuntime::_nof_inlined_calls = 0;
 156 int SharedRuntime::_nof_megamorphic_calls = 0;
 157 int SharedRuntime::_nof_static_calls = 0;
 158 int SharedRuntime::_nof_inlined_static_calls = 0;
 159 int SharedRuntime::_nof_interface_calls = 0;
 160 int SharedRuntime::_nof_optimized_interface_calls = 0;
 161 int SharedRuntime::_nof_inlined_interface_calls = 0;
 162 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 163 int SharedRuntime::_nof_removable_exceptions = 0;
 164 
 165 int SharedRuntime::_new_instance_ctr=0;
 166 int SharedRuntime::_new_array_ctr=0;
 167 int SharedRuntime::_multi1_ctr=0;
 168 int SharedRuntime::_multi2_ctr=0;
 169 int SharedRuntime::_multi3_ctr=0;
 170 int SharedRuntime::_multi4_ctr=0;
 171 int SharedRuntime::_multi5_ctr=0;
 172 int SharedRuntime::_mon_enter_stub_ctr=0;
 173 int SharedRuntime::_mon_exit_stub_ctr=0;
 174 int SharedRuntime::_mon_enter_ctr=0;
 175 int SharedRuntime::_mon_exit_ctr=0;
 176 int SharedRuntime::_partial_subtype_ctr=0;
 177 int SharedRuntime::_jbyte_array_copy_ctr=0;
 178 int SharedRuntime::_jshort_array_copy_ctr=0;
 179 int SharedRuntime::_jint_array_copy_ctr=0;
 180 int SharedRuntime::_jlong_array_copy_ctr=0;
 181 int SharedRuntime::_oop_array_copy_ctr=0;
 182 int SharedRuntime::_checkcast_array_copy_ctr=0;
 183 int SharedRuntime::_unsafe_array_copy_ctr=0;
 184 int SharedRuntime::_generic_array_copy_ctr=0;
 185 int SharedRuntime::_slow_array_copy_ctr=0;
 186 int SharedRuntime::_find_handler_ctr=0;
 187 int SharedRuntime::_rethrow_ctr=0;
 188 
 189 int     SharedRuntime::_ICmiss_index                    = 0;
 190 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 191 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 192 
 193 
 194 void SharedRuntime::trace_ic_miss(address at) {
 195   for (int i = 0; i < _ICmiss_index; i++) {
 196     if (_ICmiss_at[i] == at) {
 197       _ICmiss_count[i]++;
 198       return;
 199     }
 200   }
 201   int index = _ICmiss_index++;
 202   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 203   _ICmiss_at[index] = at;
 204   _ICmiss_count[index] = 1;
 205 }
 206 
 207 void SharedRuntime::print_ic_miss_histogram() {
 208   if (ICMissHistogram) {
 209     tty->print_cr ("IC Miss Histogram:");
 210     int tot_misses = 0;
 211     for (int i = 0; i < _ICmiss_index; i++) {
 212       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 213       tot_misses += _ICmiss_count[i];
 214     }
 215     tty->print_cr ("Total IC misses: %7d", tot_misses);
 216   }
 217 }
 218 #endif // PRODUCT
 219 
 220 #if INCLUDE_ALL_GCS
 221 
 222 // G1 write-barrier pre: executed before a pointer store.
 223 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 224   if (orig == NULL) {
 225     assert(false, "should be optimized out");
 226     return;
 227   }
 228   assert(orig->is_oop(true /* ignore mark word */), "Error");
 229   // store the original value that was in the field reference
 230   thread->satb_mark_queue().enqueue(orig);
 231 JRT_END
 232 
 233 // G1 write-barrier post: executed after a pointer store.
 234 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 235   thread->dirty_card_queue().enqueue(card_addr);
 236 JRT_END
 237 
 238 #endif // INCLUDE_ALL_GCS
 239 
 240 
 241 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 242   return x * y;
 243 JRT_END
 244 
 245 
 246 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 247   if (x == min_jlong && y == CONST64(-1)) {
 248     return x;
 249   } else {
 250     return x / y;
 251   }
 252 JRT_END
 253 
 254 
 255 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 256   if (x == min_jlong && y == CONST64(-1)) {
 257     return 0;
 258   } else {
 259     return x % y;
 260   }
 261 JRT_END
 262 
 263 
 264 const juint  float_sign_mask  = 0x7FFFFFFF;
 265 const juint  float_infinity   = 0x7F800000;
 266 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 267 const julong double_infinity  = CONST64(0x7FF0000000000000);
 268 
 269 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 270 #ifdef _WIN64
 271   // 64-bit Windows on amd64 returns the wrong values for
 272   // infinity operands.
 273   union { jfloat f; juint i; } xbits, ybits;
 274   xbits.f = x;
 275   ybits.f = y;
 276   // x Mod Infinity == x unless x is infinity
 277   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 278        ((ybits.i & float_sign_mask) == float_infinity) ) {
 279     return x;
 280   }
 281 #endif
 282   return ((jfloat)fmod((double)x,(double)y));
 283 JRT_END
 284 
 285 
 286 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 287 #ifdef _WIN64
 288   union { jdouble d; julong l; } xbits, ybits;
 289   xbits.d = x;
 290   ybits.d = y;
 291   // x Mod Infinity == x unless x is infinity
 292   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 293        ((ybits.l & double_sign_mask) == double_infinity) ) {
 294     return x;
 295   }
 296 #endif
 297   return ((jdouble)fmod((double)x,(double)y));
 298 JRT_END
 299 
 300 #ifdef __SOFTFP__
 301 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 302   return x + y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 306   return x - y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 310   return x * y;
 311 JRT_END
 312 
 313 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 314   return x / y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 318   return x + y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 322   return x - y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 326   return x * y;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 330   return x / y;
 331 JRT_END
 332 
 333 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 334   return (jfloat)x;
 335 JRT_END
 336 
 337 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 338   return (jdouble)x;
 339 JRT_END
 340 
 341 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 342   return (jdouble)x;
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 346   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 354   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 355 JRT_END
 356 
 357 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 358   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 359 JRT_END
 360 
 361 // Functions to return the opposite of the aeabi functions for nan.
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 367   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 375   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 383   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 391   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 392 JRT_END
 393 
 394 // Intrinsics make gcc generate code for these.
 395 float  SharedRuntime::fneg(float f)   {
 396   return -f;
 397 }
 398 
 399 double SharedRuntime::dneg(double f)  {
 400   return -f;
 401 }
 402 
 403 #endif // __SOFTFP__
 404 
 405 #if defined(__SOFTFP__) || defined(E500V2)
 406 // Intrinsics make gcc generate code for these.
 407 double SharedRuntime::dabs(double f)  {
 408   return (f <= (double)0.0) ? (double)0.0 - f : f;
 409 }
 410 
 411 #endif
 412 
 413 #if defined(__SOFTFP__) || defined(PPC32)
 414 double SharedRuntime::dsqrt(double f) {
 415   return sqrt(f);
 416 }
 417 #endif
 418 
 419 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jfloat) max_jint)
 423     return max_jint;
 424   if (x <= (jfloat) min_jint)
 425     return min_jint;
 426   return (jint) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jfloat) max_jlong)
 434     return max_jlong;
 435   if (x <= (jfloat) min_jlong)
 436     return min_jlong;
 437   return (jlong) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 442   if (g_isnan(x))
 443     return 0;
 444   if (x >= (jdouble) max_jint)
 445     return max_jint;
 446   if (x <= (jdouble) min_jint)
 447     return min_jint;
 448   return (jint) x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 453   if (g_isnan(x))
 454     return 0;
 455   if (x >= (jdouble) max_jlong)
 456     return max_jlong;
 457   if (x <= (jdouble) min_jlong)
 458     return min_jlong;
 459   return (jlong) x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 464   return (jfloat)x;
 465 JRT_END
 466 
 467 
 468 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 469   return (jfloat)x;
 470 JRT_END
 471 
 472 
 473 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 474   return (jdouble)x;
 475 JRT_END
 476 
 477 // Exception handling accross interpreter/compiler boundaries
 478 //
 479 // exception_handler_for_return_address(...) returns the continuation address.
 480 // The continuation address is the entry point of the exception handler of the
 481 // previous frame depending on the return address.
 482 
 483 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 484   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 485   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 486 
 487   // Reset method handle flag.
 488   thread->set_is_method_handle_return(false);
 489 
 490   // The fastest case first
 491   CodeBlob* blob = CodeCache::find_blob(return_address);
 492   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 493   if (nm != NULL) {
 494     // Set flag if return address is a method handle call site.
 495     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 496     // native nmethods don't have exception handlers
 497     assert(!nm->is_native_method(), "no exception handler");
 498     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 499     if (nm->is_deopt_pc(return_address)) {
 500       // If we come here because of a stack overflow, the stack may be
 501       // unguarded. Reguard the stack otherwise if we return to the
 502       // deopt blob and the stack bang causes a stack overflow we
 503       // crash.
 504       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 505       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 506       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 507       return SharedRuntime::deopt_blob()->unpack_with_exception();
 508     } else {
 509       return nm->exception_begin();
 510     }
 511   }
 512 
 513   // Entry code
 514   if (StubRoutines::returns_to_call_stub(return_address)) {
 515     return StubRoutines::catch_exception_entry();
 516   }
 517   // Interpreted code
 518   if (Interpreter::contains(return_address)) {
 519     return Interpreter::rethrow_exception_entry();
 520   }
 521 
 522   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 523   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 524 
 525 #ifndef PRODUCT
 526   { ResourceMark rm;
 527     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 528     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 529     tty->print_cr("b) other problem");
 530   }
 531 #endif // PRODUCT
 532 
 533   ShouldNotReachHere();
 534   return NULL;
 535 }
 536 
 537 
 538 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 539   return raw_exception_handler_for_return_address(thread, return_address);
 540 JRT_END
 541 
 542 
 543 address SharedRuntime::get_poll_stub(address pc) {
 544   address stub;
 545   // Look up the code blob
 546   CodeBlob *cb = CodeCache::find_blob(pc);
 547 
 548   // Should be an nmethod
 549   guarantee(cb != NULL && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 550 
 551   // Look up the relocation information
 552   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 553     "safepoint polling: type must be poll" );
 554 
 555   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 556     "Only polling locations are used for safepoint");
 557 
 558   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 559   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 560   if (at_poll_return) {
 561     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 562            "polling page return stub not created yet");
 563     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 564   } else if (has_wide_vectors) {
 565     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 566            "polling page vectors safepoint stub not created yet");
 567     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 568   } else {
 569     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 570            "polling page safepoint stub not created yet");
 571     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 572   }
 573 #ifndef PRODUCT
 574   if( TraceSafepoint ) {
 575     char buf[256];
 576     jio_snprintf(buf, sizeof(buf),
 577                  "... found polling page %s exception at pc = "
 578                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 579                  at_poll_return ? "return" : "loop",
 580                  (intptr_t)pc, (intptr_t)stub);
 581     tty->print_raw_cr(buf);
 582   }
 583 #endif // PRODUCT
 584   return stub;
 585 }
 586 
 587 
 588 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 589   assert(caller.is_interpreted_frame(), "");
 590   int args_size = ArgumentSizeComputer(sig).size() + 1;
 591   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 592   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 593   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 594   return result;
 595 }
 596 
 597 
 598 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 599   if (JvmtiExport::can_post_on_exceptions()) {
 600     vframeStream vfst(thread, true);
 601     methodHandle method = methodHandle(thread, vfst.method());
 602     address bcp = method()->bcp_from(vfst.bci());
 603     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 604   }
 605   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 606 }
 607 
 608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 609   Handle h_exception = Exceptions::new_exception(thread, name, message);
 610   throw_and_post_jvmti_exception(thread, h_exception);
 611 }
 612 
 613 // The interpreter code to call this tracing function is only
 614 // called/generated when TraceRedefineClasses has the right bits
 615 // set. Since obsolete methods are never compiled, we don't have
 616 // to modify the compilers to generate calls to this function.
 617 //
 618 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 619     JavaThread* thread, Method* method))
 620   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 621 
 622   if (method->is_obsolete()) {
 623     // We are calling an obsolete method, but this is not necessarily
 624     // an error. Our method could have been redefined just after we
 625     // fetched the Method* from the constant pool.
 626 
 627     // RC_TRACE macro has an embedded ResourceMark
 628     RC_TRACE_WITH_THREAD(0x00001000, thread,
 629                          ("calling obsolete method '%s'",
 630                           method->name_and_sig_as_C_string()));
 631     if (RC_TRACE_ENABLED(0x00002000)) {
 632       // this option is provided to debug calls to obsolete methods
 633       guarantee(false, "faulting at call to an obsolete method.");
 634     }
 635   }
 636   return 0;
 637 JRT_END
 638 
 639 // ret_pc points into caller; we are returning caller's exception handler
 640 // for given exception
 641 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 642                                                     bool force_unwind, bool top_frame_only) {
 643   assert(nm != NULL, "must exist");
 644   ResourceMark rm;
 645 
 646   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 647   // determine handler bci, if any
 648   EXCEPTION_MARK;
 649 
 650   int handler_bci = -1;
 651   int scope_depth = 0;
 652   if (!force_unwind) {
 653     int bci = sd->bci();
 654     bool recursive_exception = false;
 655     do {
 656       bool skip_scope_increment = false;
 657       // exception handler lookup
 658       KlassHandle ek (THREAD, exception->klass());
 659       methodHandle mh(THREAD, sd->method());
 660       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 661       if (HAS_PENDING_EXCEPTION) {
 662         recursive_exception = true;
 663         // We threw an exception while trying to find the exception handler.
 664         // Transfer the new exception to the exception handle which will
 665         // be set into thread local storage, and do another lookup for an
 666         // exception handler for this exception, this time starting at the
 667         // BCI of the exception handler which caused the exception to be
 668         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 669         // argument to ensure that the correct exception is thrown (4870175).
 670         exception = Handle(THREAD, PENDING_EXCEPTION);
 671         CLEAR_PENDING_EXCEPTION;
 672         if (handler_bci >= 0) {
 673           bci = handler_bci;
 674           handler_bci = -1;
 675           skip_scope_increment = true;
 676         }
 677       }
 678       else {
 679         recursive_exception = false;
 680       }
 681       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 682         sd = sd->sender();
 683         if (sd != NULL) {
 684           bci = sd->bci();
 685         }
 686         ++scope_depth;
 687       }
 688     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 689   }
 690 
 691   // found handling method => lookup exception handler
 692   int catch_pco = ret_pc - nm->code_begin();
 693 
 694   ExceptionHandlerTable table(nm);
 695   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 696   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 697     // Allow abbreviated catch tables.  The idea is to allow a method
 698     // to materialize its exceptions without committing to the exact
 699     // routing of exceptions.  In particular this is needed for adding
 700     // a synthethic handler to unlock monitors when inlining
 701     // synchonized methods since the unlock path isn't represented in
 702     // the bytecodes.
 703     t = table.entry_for(catch_pco, -1, 0);
 704   }
 705 
 706 #ifdef COMPILER1
 707   if (t == NULL && nm->is_compiled_by_c1()) {
 708     assert(nm->unwind_handler_begin() != NULL, "");
 709     return nm->unwind_handler_begin();
 710   }
 711 #endif
 712 
 713   if (t == NULL) {
 714     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 715     tty->print_cr("   Exception:");
 716     exception->print();
 717     tty->cr();
 718     tty->print_cr(" Compiled exception table :");
 719     table.print();
 720     nm->print_code();
 721     guarantee(false, "missing exception handler");
 722     return NULL;
 723   }
 724 
 725   return nm->code_begin() + t->pco();
 726 }
 727 
 728 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 729   // These errors occur only at call sites
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 734   // These errors occur only at call sites
 735   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 736 JRT_END
 737 
 738 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 740 JRT_END
 741 
 742 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 747   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 748   // cache sites (when the callee activation is not yet set up) so we are at a call site
 749   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 750 JRT_END
 751 
 752 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 753   // We avoid using the normal exception construction in this case because
 754   // it performs an upcall to Java, and we're already out of stack space.
 755   Klass* k = SystemDictionary::StackOverflowError_klass();
 756   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 757   Handle exception (thread, exception_oop);
 758   if (StackTraceInThrowable) {
 759     java_lang_Throwable::fill_in_stack_trace(exception);
 760   }
 761   // Increment counter for hs_err file reporting
 762   Atomic::inc(&Exceptions::_stack_overflow_errors);
 763   throw_and_post_jvmti_exception(thread, exception);
 764 JRT_END
 765 
 766 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 767                                                            address pc,
 768                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 769 {
 770   address target_pc = NULL;
 771 
 772   if (Interpreter::contains(pc)) {
 773 #ifdef CC_INTERP
 774     // C++ interpreter doesn't throw implicit exceptions
 775     ShouldNotReachHere();
 776 #else
 777     switch (exception_kind) {
 778       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 779       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 780       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 781       default:                      ShouldNotReachHere();
 782     }
 783 #endif // !CC_INTERP
 784   } else {
 785     switch (exception_kind) {
 786       case STACK_OVERFLOW: {
 787         // Stack overflow only occurs upon frame setup; the callee is
 788         // going to be unwound. Dispatch to a shared runtime stub
 789         // which will cause the StackOverflowError to be fabricated
 790         // and processed.
 791         // Stack overflow should never occur during deoptimization:
 792         // the compiled method bangs the stack by as much as the
 793         // interpreter would need in case of a deoptimization. The
 794         // deoptimization blob and uncommon trap blob bang the stack
 795         // in a debug VM to verify the correctness of the compiled
 796         // method stack banging.
 797         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 798         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 799         return StubRoutines::throw_StackOverflowError_entry();
 800       }
 801 
 802       case IMPLICIT_NULL: {
 803         if (VtableStubs::contains(pc)) {
 804           // We haven't yet entered the callee frame. Fabricate an
 805           // exception and begin dispatching it in the caller. Since
 806           // the caller was at a call site, it's safe to destroy all
 807           // caller-saved registers, as these entry points do.
 808           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 809 
 810           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 811           if (vt_stub == NULL) return NULL;
 812 
 813           if (vt_stub->is_abstract_method_error(pc)) {
 814             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 815             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 816             return StubRoutines::throw_AbstractMethodError_entry();
 817           } else {
 818             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 819             return StubRoutines::throw_NullPointerException_at_call_entry();
 820           }
 821         } else {
 822           CodeBlob* cb = CodeCache::find_blob(pc);
 823 
 824           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 825           if (cb == NULL) return NULL;
 826 
 827           // Exception happened in CodeCache. Must be either:
 828           // 1. Inline-cache check in C2I handler blob,
 829           // 2. Inline-cache check in nmethod, or
 830           // 3. Implict null exception in nmethod
 831 
 832           if (!cb->is_nmethod()) {
 833             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 834             if (!is_in_blob) {
 835               cb->print();
 836               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 837             }
 838             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 839             // There is no handler here, so we will simply unwind.
 840             return StubRoutines::throw_NullPointerException_at_call_entry();
 841           }
 842 
 843           // Otherwise, it's an nmethod.  Consult its exception handlers.
 844           nmethod* nm = (nmethod*)cb;
 845           if (nm->inlinecache_check_contains(pc)) {
 846             // exception happened inside inline-cache check code
 847             // => the nmethod is not yet active (i.e., the frame
 848             // is not set up yet) => use return address pushed by
 849             // caller => don't push another return address
 850             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 851             return StubRoutines::throw_NullPointerException_at_call_entry();
 852           }
 853 
 854           if (nm->method()->is_method_handle_intrinsic()) {
 855             // exception happened inside MH dispatch code, similar to a vtable stub
 856             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 857             return StubRoutines::throw_NullPointerException_at_call_entry();
 858           }
 859 
 860 #ifndef PRODUCT
 861           _implicit_null_throws++;
 862 #endif
 863           target_pc = nm->continuation_for_implicit_exception(pc);
 864           // If there's an unexpected fault, target_pc might be NULL,
 865           // in which case we want to fall through into the normal
 866           // error handling code.
 867         }
 868 
 869         break; // fall through
 870       }
 871 
 872 
 873       case IMPLICIT_DIVIDE_BY_ZERO: {
 874         nmethod* nm = CodeCache::find_nmethod(pc);
 875         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 876 #ifndef PRODUCT
 877         _implicit_div0_throws++;
 878 #endif
 879         target_pc = nm->continuation_for_implicit_exception(pc);
 880         // If there's an unexpected fault, target_pc might be NULL,
 881         // in which case we want to fall through into the normal
 882         // error handling code.
 883         break; // fall through
 884       }
 885 
 886       default: ShouldNotReachHere();
 887     }
 888 
 889     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 890 
 891     // for AbortVMOnException flag
 892     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 893     if (exception_kind == IMPLICIT_NULL) {
 894       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 895     } else {
 896       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 897     }
 898     return target_pc;
 899   }
 900 
 901   ShouldNotReachHere();
 902   return NULL;
 903 }
 904 
 905 
 906 /**
 907  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 908  * installed in the native function entry of all native Java methods before
 909  * they get linked to their actual native methods.
 910  *
 911  * \note
 912  * This method actually never gets called!  The reason is because
 913  * the interpreter's native entries call NativeLookup::lookup() which
 914  * throws the exception when the lookup fails.  The exception is then
 915  * caught and forwarded on the return from NativeLookup::lookup() call
 916  * before the call to the native function.  This might change in the future.
 917  */
 918 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 919 {
 920   // We return a bad value here to make sure that the exception is
 921   // forwarded before we look at the return value.
 922   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 923 }
 924 JNI_END
 925 
 926 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 927   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 928 }
 929 
 930 
 931 #ifndef PRODUCT
 932 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 933   const frame f = thread->last_frame();
 934   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 935 #ifndef PRODUCT
 936   methodHandle mh(THREAD, f.interpreter_frame_method());
 937   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 938 #endif // !PRODUCT
 939   return preserve_this_value;
 940 JRT_END
 941 #endif // !PRODUCT
 942 
 943 
 944 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 945   os::yield_all(attempts);
 946 JRT_END
 947 
 948 
 949 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 950   assert(obj->is_oop(), "must be a valid oop");
 951   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 952   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 953 JRT_END
 954 
 955 
 956 jlong SharedRuntime::get_java_tid(Thread* thread) {
 957   if (thread != NULL) {
 958     if (thread->is_Java_thread()) {
 959       oop obj = ((JavaThread*)thread)->threadObj();
 960       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 961     }
 962   }
 963   return 0;
 964 }
 965 
 966 /**
 967  * This function ought to be a void function, but cannot be because
 968  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 969  * 6254741.  Once that is fixed we can remove the dummy return value.
 970  */
 971 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 972   return dtrace_object_alloc_base(Thread::current(), o, size);
 973 }
 974 
 975 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 976   assert(DTraceAllocProbes, "wrong call");
 977   Klass* klass = o->klass();
 978   Symbol* name = klass->name();
 979 #ifndef USDT2
 980   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 981                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 982 #else /* USDT2 */
 983   HOTSPOT_OBJECT_ALLOC(
 984                    get_java_tid(thread),
 985                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 986 #endif /* USDT2 */
 987   return 0;
 988 }
 989 
 990 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 991     JavaThread* thread, Method* method))
 992   assert(DTraceMethodProbes, "wrong call");
 993   Symbol* kname = method->klass_name();
 994   Symbol* name = method->name();
 995   Symbol* sig = method->signature();
 996 #ifndef USDT2
 997   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 998       kname->bytes(), kname->utf8_length(),
 999       name->bytes(), name->utf8_length(),
1000       sig->bytes(), sig->utf8_length());
1001 #else /* USDT2 */
1002   HOTSPOT_METHOD_ENTRY(
1003       get_java_tid(thread),
1004       (char *) kname->bytes(), kname->utf8_length(),
1005       (char *) name->bytes(), name->utf8_length(),
1006       (char *) sig->bytes(), sig->utf8_length());
1007 #endif /* USDT2 */
1008   return 0;
1009 JRT_END
1010 
1011 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1012     JavaThread* thread, Method* method))
1013   assert(DTraceMethodProbes, "wrong call");
1014   Symbol* kname = method->klass_name();
1015   Symbol* name = method->name();
1016   Symbol* sig = method->signature();
1017 #ifndef USDT2
1018   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1019       kname->bytes(), kname->utf8_length(),
1020       name->bytes(), name->utf8_length(),
1021       sig->bytes(), sig->utf8_length());
1022 #else /* USDT2 */
1023   HOTSPOT_METHOD_RETURN(
1024       get_java_tid(thread),
1025       (char *) kname->bytes(), kname->utf8_length(),
1026       (char *) name->bytes(), name->utf8_length(),
1027       (char *) sig->bytes(), sig->utf8_length());
1028 #endif /* USDT2 */
1029   return 0;
1030 JRT_END
1031 
1032 
1033 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1034 // for a call current in progress, i.e., arguments has been pushed on stack
1035 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1036 // vtable updates, etc.  Caller frame must be compiled.
1037 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1038   ResourceMark rm(THREAD);
1039 
1040   // last java frame on stack (which includes native call frames)
1041   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1042 
1043   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1044 }
1045 
1046 
1047 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1048 // for a call current in progress, i.e., arguments has been pushed on stack
1049 // but callee has not been invoked yet.  Caller frame must be compiled.
1050 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1051                                               vframeStream& vfst,
1052                                               Bytecodes::Code& bc,
1053                                               CallInfo& callinfo, TRAPS) {
1054   Handle receiver;
1055   Handle nullHandle;  //create a handy null handle for exception returns
1056 
1057   assert(!vfst.at_end(), "Java frame must exist");
1058 
1059   // Find caller and bci from vframe
1060   methodHandle caller(THREAD, vfst.method());
1061   int          bci   = vfst.bci();
1062 
1063   // Find bytecode
1064   Bytecode_invoke bytecode(caller, bci);
1065   bc = bytecode.invoke_code();
1066   int bytecode_index = bytecode.index();
1067 
1068   // Find receiver for non-static call
1069   if (bc != Bytecodes::_invokestatic &&
1070       bc != Bytecodes::_invokedynamic &&
1071       bc != Bytecodes::_invokehandle) {
1072     // This register map must be update since we need to find the receiver for
1073     // compiled frames. The receiver might be in a register.
1074     RegisterMap reg_map2(thread);
1075     frame stubFrame   = thread->last_frame();
1076     // Caller-frame is a compiled frame
1077     frame callerFrame = stubFrame.sender(&reg_map2);
1078 
1079     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1080     if (callee.is_null()) {
1081       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1082     }
1083     // Retrieve from a compiled argument list
1084     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1085 
1086     if (receiver.is_null()) {
1087       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1088     }
1089   }
1090 
1091   // Resolve method. This is parameterized by bytecode.
1092   constantPoolHandle constants(THREAD, caller->constants());
1093   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1094   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1095 
1096 #ifdef ASSERT
1097   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1098   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1099     assert(receiver.not_null(), "should have thrown exception");
1100     KlassHandle receiver_klass(THREAD, receiver->klass());
1101     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1102                             // klass is already loaded
1103     KlassHandle static_receiver_klass(THREAD, rk);
1104     // Method handle invokes might have been optimized to a direct call
1105     // so don't check for the receiver class.
1106     // FIXME this weakens the assert too much
1107     methodHandle callee = callinfo.selected_method();
1108     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1109            callee->is_method_handle_intrinsic() ||
1110            callee->is_compiled_lambda_form(),
1111            "actual receiver must be subclass of static receiver klass");
1112     if (receiver_klass->oop_is_instance()) {
1113       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1114         tty->print_cr("ERROR: Klass not yet initialized!!");
1115         receiver_klass()->print();
1116       }
1117       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1118     }
1119   }
1120 #endif
1121 
1122   return receiver;
1123 }
1124 
1125 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1126   ResourceMark rm(THREAD);
1127   // We need first to check if any Java activations (compiled, interpreted)
1128   // exist on the stack since last JavaCall.  If not, we need
1129   // to get the target method from the JavaCall wrapper.
1130   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1131   methodHandle callee_method;
1132   if (vfst.at_end()) {
1133     // No Java frames were found on stack since we did the JavaCall.
1134     // Hence the stack can only contain an entry_frame.  We need to
1135     // find the target method from the stub frame.
1136     RegisterMap reg_map(thread, false);
1137     frame fr = thread->last_frame();
1138     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1139     fr = fr.sender(&reg_map);
1140     assert(fr.is_entry_frame(), "must be");
1141     // fr is now pointing to the entry frame.
1142     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1143     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1144   } else {
1145     Bytecodes::Code bc;
1146     CallInfo callinfo;
1147     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1148     callee_method = callinfo.selected_method();
1149   }
1150   assert(callee_method()->is_method(), "must be");
1151   return callee_method;
1152 }
1153 
1154 // Resolves a call.
1155 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1156                                            bool is_virtual,
1157                                            bool is_optimized, TRAPS) {
1158   methodHandle callee_method;
1159   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1160   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1161     int retry_count = 0;
1162     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1163            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1164       // If has a pending exception then there is no need to re-try to
1165       // resolve this method.
1166       // If the method has been redefined, we need to try again.
1167       // Hack: we have no way to update the vtables of arrays, so don't
1168       // require that java.lang.Object has been updated.
1169 
1170       // It is very unlikely that method is redefined more than 100 times
1171       // in the middle of resolve. If it is looping here more than 100 times
1172       // means then there could be a bug here.
1173       guarantee((retry_count++ < 100),
1174                 "Could not resolve to latest version of redefined method");
1175       // method is redefined in the middle of resolve so re-try.
1176       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1177     }
1178   }
1179   return callee_method;
1180 }
1181 
1182 // Resolves a call.  The compilers generate code for calls that go here
1183 // and are patched with the real destination of the call.
1184 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1185                                            bool is_virtual,
1186                                            bool is_optimized, TRAPS) {
1187 
1188   ResourceMark rm(thread);
1189   RegisterMap cbl_map(thread, false);
1190   frame caller_frame = thread->last_frame().sender(&cbl_map);
1191 
1192   CodeBlob* caller_cb = caller_frame.cb();
1193   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1194   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1195 
1196   // make sure caller is not getting deoptimized
1197   // and removed before we are done with it.
1198   // CLEANUP - with lazy deopt shouldn't need this lock
1199   nmethodLocker caller_lock(caller_nm);
1200 
1201   // determine call info & receiver
1202   // note: a) receiver is NULL for static calls
1203   //       b) an exception is thrown if receiver is NULL for non-static calls
1204   CallInfo call_info;
1205   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1206   Handle receiver = find_callee_info(thread, invoke_code,
1207                                      call_info, CHECK_(methodHandle()));
1208   methodHandle callee_method = call_info.selected_method();
1209 
1210   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1211          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1212          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1213          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1214 
1215   assert(caller_nm->is_alive(), "It should be alive");
1216 
1217 #ifndef PRODUCT
1218   // tracing/debugging/statistics
1219   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1220                 (is_virtual) ? (&_resolve_virtual_ctr) :
1221                                (&_resolve_static_ctr);
1222   Atomic::inc(addr);
1223 
1224   if (TraceCallFixup) {
1225     ResourceMark rm(thread);
1226     tty->print("resolving %s%s (%s) call to",
1227       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1228       Bytecodes::name(invoke_code));
1229     callee_method->print_short_name(tty);
1230     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1231   }
1232 #endif
1233 
1234   // JSR 292 key invariant:
1235   // If the resolved method is a MethodHandle invoke target, the call
1236   // site must be a MethodHandle call site, because the lambda form might tail-call
1237   // leaving the stack in a state unknown to either caller or callee
1238   // TODO detune for now but we might need it again
1239 //  assert(!callee_method->is_compiled_lambda_form() ||
1240 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1241 
1242   // Compute entry points. This might require generation of C2I converter
1243   // frames, so we cannot be holding any locks here. Furthermore, the
1244   // computation of the entry points is independent of patching the call.  We
1245   // always return the entry-point, but we only patch the stub if the call has
1246   // not been deoptimized.  Return values: For a virtual call this is an
1247   // (cached_oop, destination address) pair. For a static call/optimized
1248   // virtual this is just a destination address.
1249 
1250   StaticCallInfo static_call_info;
1251   CompiledICInfo virtual_call_info;
1252 
1253   // Make sure the callee nmethod does not get deoptimized and removed before
1254   // we are done patching the code.
1255   nmethod* callee_nm = callee_method->code();
1256   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1257     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1258     callee_nm = NULL;
1259   }
1260   nmethodLocker nl_callee(callee_nm);
1261 #ifdef ASSERT
1262   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1263 #endif
1264 
1265   if (is_virtual) {
1266     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1267     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1268     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1269     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1270                      is_optimized, static_bound, virtual_call_info,
1271                      CHECK_(methodHandle()));
1272   } else {
1273     // static call
1274     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1275   }
1276 
1277   // grab lock, check for deoptimization and potentially patch caller
1278   {
1279     MutexLocker ml_patch(CompiledIC_lock);
1280 
1281     // Lock blocks for safepoint during which both nmethods can change state.
1282 
1283     // Now that we are ready to patch if the Method* was redefined then
1284     // don't update call site and let the caller retry.
1285     // Don't update call site if callee nmethod was unloaded or deoptimized.
1286     // Don't update call site if callee nmethod was replaced by an other nmethod
1287     // which may happen when multiply alive nmethod (tiered compilation)
1288     // will be supported.
1289     if (!callee_method->is_old() &&
1290         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1291 #ifdef ASSERT
1292       // We must not try to patch to jump to an already unloaded method.
1293       if (dest_entry_point != 0) {
1294         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1295         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1296                "should not call unloaded nmethod");
1297       }
1298 #endif
1299       if (is_virtual) {
1300         nmethod* nm = callee_nm;
1301         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1302         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1303         if (inline_cache->is_clean()) {
1304           inline_cache->set_to_monomorphic(virtual_call_info);
1305         }
1306       } else {
1307         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1308         if (ssc->is_clean()) ssc->set(static_call_info);
1309       }
1310     }
1311 
1312   } // unlock CompiledIC_lock
1313 
1314   return callee_method;
1315 }
1316 
1317 
1318 // Inline caches exist only in compiled code
1319 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1320 #ifdef ASSERT
1321   RegisterMap reg_map(thread, false);
1322   frame stub_frame = thread->last_frame();
1323   assert(stub_frame.is_runtime_frame(), "sanity check");
1324   frame caller_frame = stub_frame.sender(&reg_map);
1325   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1326 #endif /* ASSERT */
1327 
1328   methodHandle callee_method;
1329   JRT_BLOCK
1330     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1331     // Return Method* through TLS
1332     thread->set_vm_result_2(callee_method());
1333   JRT_BLOCK_END
1334   // return compiled code entry point after potential safepoints
1335   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1336   return callee_method->verified_code_entry();
1337 JRT_END
1338 
1339 
1340 // Handle call site that has been made non-entrant
1341 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1342   // 6243940 We might end up in here if the callee is deoptimized
1343   // as we race to call it.  We don't want to take a safepoint if
1344   // the caller was interpreted because the caller frame will look
1345   // interpreted to the stack walkers and arguments are now
1346   // "compiled" so it is much better to make this transition
1347   // invisible to the stack walking code. The i2c path will
1348   // place the callee method in the callee_target. It is stashed
1349   // there because if we try and find the callee by normal means a
1350   // safepoint is possible and have trouble gc'ing the compiled args.
1351   RegisterMap reg_map(thread, false);
1352   frame stub_frame = thread->last_frame();
1353   assert(stub_frame.is_runtime_frame(), "sanity check");
1354   frame caller_frame = stub_frame.sender(&reg_map);
1355 
1356   if (caller_frame.is_interpreted_frame() ||
1357       caller_frame.is_entry_frame()) {
1358     Method* callee = thread->callee_target();
1359     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1360     thread->set_vm_result_2(callee);
1361     thread->set_callee_target(NULL);
1362     return callee->get_c2i_entry();
1363   }
1364 
1365   // Must be compiled to compiled path which is safe to stackwalk
1366   methodHandle callee_method;
1367   JRT_BLOCK
1368     // Force resolving of caller (if we called from compiled frame)
1369     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1370     thread->set_vm_result_2(callee_method());
1371   JRT_BLOCK_END
1372   // return compiled code entry point after potential safepoints
1373   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1374   return callee_method->verified_code_entry();
1375 JRT_END
1376 
1377 // Handle abstract method call
1378 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1379   return StubRoutines::throw_AbstractMethodError_entry();
1380 JRT_END
1381 
1382 
1383 // resolve a static call and patch code
1384 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1385   methodHandle callee_method;
1386   JRT_BLOCK
1387     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1388     thread->set_vm_result_2(callee_method());
1389   JRT_BLOCK_END
1390   // return compiled code entry point after potential safepoints
1391   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1392   return callee_method->verified_code_entry();
1393 JRT_END
1394 
1395 
1396 // resolve virtual call and update inline cache to monomorphic
1397 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1398   methodHandle callee_method;
1399   JRT_BLOCK
1400     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1401     thread->set_vm_result_2(callee_method());
1402   JRT_BLOCK_END
1403   // return compiled code entry point after potential safepoints
1404   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1405   return callee_method->verified_code_entry();
1406 JRT_END
1407 
1408 
1409 // Resolve a virtual call that can be statically bound (e.g., always
1410 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1411 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1412   methodHandle callee_method;
1413   JRT_BLOCK
1414     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1415     thread->set_vm_result_2(callee_method());
1416   JRT_BLOCK_END
1417   // return compiled code entry point after potential safepoints
1418   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1419   return callee_method->verified_code_entry();
1420 JRT_END
1421 
1422 
1423 
1424 
1425 
1426 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1427   ResourceMark rm(thread);
1428   CallInfo call_info;
1429   Bytecodes::Code bc;
1430 
1431   // receiver is NULL for static calls. An exception is thrown for NULL
1432   // receivers for non-static calls
1433   Handle receiver = find_callee_info(thread, bc, call_info,
1434                                      CHECK_(methodHandle()));
1435   // Compiler1 can produce virtual call sites that can actually be statically bound
1436   // If we fell thru to below we would think that the site was going megamorphic
1437   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1438   // we'd try and do a vtable dispatch however methods that can be statically bound
1439   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1440   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1441   // plain ic_miss) and the site will be converted to an optimized virtual call site
1442   // never to miss again. I don't believe C2 will produce code like this but if it
1443   // did this would still be the correct thing to do for it too, hence no ifdef.
1444   //
1445   if (call_info.resolved_method()->can_be_statically_bound()) {
1446     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1447     if (TraceCallFixup) {
1448       RegisterMap reg_map(thread, false);
1449       frame caller_frame = thread->last_frame().sender(&reg_map);
1450       ResourceMark rm(thread);
1451       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1452       callee_method->print_short_name(tty);
1453       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1454       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1455     }
1456     return callee_method;
1457   }
1458 
1459   methodHandle callee_method = call_info.selected_method();
1460 
1461   bool should_be_mono = false;
1462 
1463 #ifndef PRODUCT
1464   Atomic::inc(&_ic_miss_ctr);
1465 
1466   // Statistics & Tracing
1467   if (TraceCallFixup) {
1468     ResourceMark rm(thread);
1469     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1470     callee_method->print_short_name(tty);
1471     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1472   }
1473 
1474   if (ICMissHistogram) {
1475     MutexLocker m(VMStatistic_lock);
1476     RegisterMap reg_map(thread, false);
1477     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1478     // produce statistics under the lock
1479     trace_ic_miss(f.pc());
1480   }
1481 #endif
1482 
1483   // install an event collector so that when a vtable stub is created the
1484   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1485   // event can't be posted when the stub is created as locks are held
1486   // - instead the event will be deferred until the event collector goes
1487   // out of scope.
1488   JvmtiDynamicCodeEventCollector event_collector;
1489 
1490   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1491   { MutexLocker ml_patch (CompiledIC_lock);
1492     RegisterMap reg_map(thread, false);
1493     frame caller_frame = thread->last_frame().sender(&reg_map);
1494     CodeBlob* cb = caller_frame.cb();
1495     if (cb->is_nmethod()) {
1496       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1497       bool should_be_mono = false;
1498       if (inline_cache->is_optimized()) {
1499         if (TraceCallFixup) {
1500           ResourceMark rm(thread);
1501           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1502           callee_method->print_short_name(tty);
1503           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1504         }
1505         should_be_mono = true;
1506       } else if (inline_cache->is_icholder_call()) {
1507         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1508         if ( ic_oop != NULL) {
1509 
1510           if (receiver()->klass() == ic_oop->holder_klass()) {
1511             // This isn't a real miss. We must have seen that compiled code
1512             // is now available and we want the call site converted to a
1513             // monomorphic compiled call site.
1514             // We can't assert for callee_method->code() != NULL because it
1515             // could have been deoptimized in the meantime
1516             if (TraceCallFixup) {
1517               ResourceMark rm(thread);
1518               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1519               callee_method->print_short_name(tty);
1520               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1521             }
1522             should_be_mono = true;
1523           }
1524         }
1525       }
1526 
1527       if (should_be_mono) {
1528 
1529         // We have a path that was monomorphic but was going interpreted
1530         // and now we have (or had) a compiled entry. We correct the IC
1531         // by using a new icBuffer.
1532         CompiledICInfo info;
1533         KlassHandle receiver_klass(THREAD, receiver()->klass());
1534         inline_cache->compute_monomorphic_entry(callee_method,
1535                                                 receiver_klass,
1536                                                 inline_cache->is_optimized(),
1537                                                 false,
1538                                                 info, CHECK_(methodHandle()));
1539         inline_cache->set_to_monomorphic(info);
1540       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1541         // Potential change to megamorphic
1542         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1543         if (!successful) {
1544           inline_cache->set_to_clean();
1545         }
1546       } else {
1547         // Either clean or megamorphic
1548       }
1549     }
1550   } // Release CompiledIC_lock
1551 
1552   return callee_method;
1553 }
1554 
1555 //
1556 // Resets a call-site in compiled code so it will get resolved again.
1557 // This routines handles both virtual call sites, optimized virtual call
1558 // sites, and static call sites. Typically used to change a call sites
1559 // destination from compiled to interpreted.
1560 //
1561 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1562   ResourceMark rm(thread);
1563   RegisterMap reg_map(thread, false);
1564   frame stub_frame = thread->last_frame();
1565   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1566   frame caller = stub_frame.sender(&reg_map);
1567 
1568   // Do nothing if the frame isn't a live compiled frame.
1569   // nmethod could be deoptimized by the time we get here
1570   // so no update to the caller is needed.
1571 
1572   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1573 
1574     address pc = caller.pc();
1575 
1576     // Default call_addr is the location of the "basic" call.
1577     // Determine the address of the call we a reresolving. With
1578     // Inline Caches we will always find a recognizable call.
1579     // With Inline Caches disabled we may or may not find a
1580     // recognizable call. We will always find a call for static
1581     // calls and for optimized virtual calls. For vanilla virtual
1582     // calls it depends on the state of the UseInlineCaches switch.
1583     //
1584     // With Inline Caches disabled we can get here for a virtual call
1585     // for two reasons:
1586     //   1 - calling an abstract method. The vtable for abstract methods
1587     //       will run us thru handle_wrong_method and we will eventually
1588     //       end up in the interpreter to throw the ame.
1589     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1590     //       call and between the time we fetch the entry address and
1591     //       we jump to it the target gets deoptimized. Similar to 1
1592     //       we will wind up in the interprter (thru a c2i with c2).
1593     //
1594     address call_addr = NULL;
1595     {
1596       // Get call instruction under lock because another thread may be
1597       // busy patching it.
1598       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1599       // Location of call instruction
1600       if (NativeCall::is_call_before(pc)) {
1601         NativeCall *ncall = nativeCall_before(pc);
1602         call_addr = ncall->instruction_address();
1603       }
1604     }
1605 
1606     // Check for static or virtual call
1607     bool is_static_call = false;
1608     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1609     // Make sure nmethod doesn't get deoptimized and removed until
1610     // this is done with it.
1611     // CLEANUP - with lazy deopt shouldn't need this lock
1612     nmethodLocker nmlock(caller_nm);
1613 
1614     if (call_addr != NULL) {
1615       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1616       int ret = iter.next(); // Get item
1617       if (ret) {
1618         assert(iter.addr() == call_addr, "must find call");
1619         if (iter.type() == relocInfo::static_call_type) {
1620           is_static_call = true;
1621         } else {
1622           assert(iter.type() == relocInfo::virtual_call_type ||
1623                  iter.type() == relocInfo::opt_virtual_call_type
1624                 , "unexpected relocInfo. type");
1625         }
1626       } else {
1627         assert(!UseInlineCaches, "relocation info. must exist for this address");
1628       }
1629 
1630       // Cleaning the inline cache will force a new resolve. This is more robust
1631       // than directly setting it to the new destination, since resolving of calls
1632       // is always done through the same code path. (experience shows that it
1633       // leads to very hard to track down bugs, if an inline cache gets updated
1634       // to a wrong method). It should not be performance critical, since the
1635       // resolve is only done once.
1636 
1637       MutexLocker ml(CompiledIC_lock);
1638       if (is_static_call) {
1639         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1640         ssc->set_to_clean();
1641       } else {
1642         // compiled, dispatched call (which used to call an interpreted method)
1643         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1644         inline_cache->set_to_clean();
1645       }
1646     }
1647 
1648   }
1649 
1650   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1651 
1652 
1653 #ifndef PRODUCT
1654   Atomic::inc(&_wrong_method_ctr);
1655 
1656   if (TraceCallFixup) {
1657     ResourceMark rm(thread);
1658     tty->print("handle_wrong_method reresolving call to");
1659     callee_method->print_short_name(tty);
1660     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1661   }
1662 #endif
1663 
1664   return callee_method;
1665 }
1666 
1667 #ifdef ASSERT
1668 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1669                                                                 const BasicType* sig_bt,
1670                                                                 const VMRegPair* regs) {
1671   ResourceMark rm;
1672   const int total_args_passed = method->size_of_parameters();
1673   const VMRegPair*    regs_with_member_name = regs;
1674         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1675 
1676   const int member_arg_pos = total_args_passed - 1;
1677   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1678   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1679 
1680   const bool is_outgoing = method->is_method_handle_intrinsic();
1681   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1682 
1683   for (int i = 0; i < member_arg_pos; i++) {
1684     VMReg a =    regs_with_member_name[i].first();
1685     VMReg b = regs_without_member_name[i].first();
1686     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1687   }
1688   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1689 }
1690 #endif
1691 
1692 // ---------------------------------------------------------------------------
1693 // We are calling the interpreter via a c2i. Normally this would mean that
1694 // we were called by a compiled method. However we could have lost a race
1695 // where we went int -> i2c -> c2i and so the caller could in fact be
1696 // interpreted. If the caller is compiled we attempt to patch the caller
1697 // so he no longer calls into the interpreter.
1698 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1699   Method* moop(method);
1700 
1701   address entry_point = moop->from_compiled_entry();
1702 
1703   // It's possible that deoptimization can occur at a call site which hasn't
1704   // been resolved yet, in which case this function will be called from
1705   // an nmethod that has been patched for deopt and we can ignore the
1706   // request for a fixup.
1707   // Also it is possible that we lost a race in that from_compiled_entry
1708   // is now back to the i2c in that case we don't need to patch and if
1709   // we did we'd leap into space because the callsite needs to use
1710   // "to interpreter" stub in order to load up the Method*. Don't
1711   // ask me how I know this...
1712 
1713   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1714   if (cb == NULL || !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1715     return;
1716   }
1717 
1718   // The check above makes sure this is a nmethod.
1719   nmethod* nm = cb->as_nmethod_or_null();
1720   assert(nm, "must be");
1721 
1722   // Get the return PC for the passed caller PC.
1723   address return_pc = caller_pc + frame::pc_return_offset;
1724 
1725   // There is a benign race here. We could be attempting to patch to a compiled
1726   // entry point at the same time the callee is being deoptimized. If that is
1727   // the case then entry_point may in fact point to a c2i and we'd patch the
1728   // call site with the same old data. clear_code will set code() to NULL
1729   // at the end of it. If we happen to see that NULL then we can skip trying
1730   // to patch. If we hit the window where the callee has a c2i in the
1731   // from_compiled_entry and the NULL isn't present yet then we lose the race
1732   // and patch the code with the same old data. Asi es la vida.
1733 
1734   if (moop->code() == NULL) return;
1735 
1736   if (nm->is_in_use()) {
1737 
1738     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1739     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1740     if (NativeCall::is_call_before(return_pc)) {
1741       NativeCall *call = nativeCall_before(return_pc);
1742       //
1743       // bug 6281185. We might get here after resolving a call site to a vanilla
1744       // virtual call. Because the resolvee uses the verified entry it may then
1745       // see compiled code and attempt to patch the site by calling us. This would
1746       // then incorrectly convert the call site to optimized and its downhill from
1747       // there. If you're lucky you'll get the assert in the bugid, if not you've
1748       // just made a call site that could be megamorphic into a monomorphic site
1749       // for the rest of its life! Just another racing bug in the life of
1750       // fixup_callers_callsite ...
1751       //
1752       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1753       iter.next();
1754       assert(iter.has_current(), "must have a reloc at java call site");
1755       relocInfo::relocType typ = iter.reloc()->type();
1756       if ( typ != relocInfo::static_call_type &&
1757            typ != relocInfo::opt_virtual_call_type &&
1758            typ != relocInfo::static_stub_type) {
1759         return;
1760       }
1761       address destination = call->destination();
1762       if (destination != entry_point) {
1763         CodeBlob* callee = CodeCache::find_blob(destination);
1764         // callee == cb seems weird. It means calling interpreter thru stub.
1765         if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1766           // static call or optimized virtual
1767           if (TraceCallFixup) {
1768             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1769             moop->print_short_name(tty);
1770             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1771           }
1772           call->set_destination_mt_safe(entry_point);
1773         } else {
1774           if (TraceCallFixup) {
1775             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1776             moop->print_short_name(tty);
1777             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1778           }
1779           // assert is too strong could also be resolve destinations.
1780           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1781         }
1782       } else {
1783           if (TraceCallFixup) {
1784             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1785             moop->print_short_name(tty);
1786             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1787           }
1788       }
1789     }
1790   }
1791 IRT_END
1792 
1793 
1794 // same as JVM_Arraycopy, but called directly from compiled code
1795 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1796                                                 oopDesc* dest, jint dest_pos,
1797                                                 jint length,
1798                                                 JavaThread* thread)) {
1799 #ifndef PRODUCT
1800   _slow_array_copy_ctr++;
1801 #endif
1802   // Check if we have null pointers
1803   if (src == NULL || dest == NULL) {
1804     THROW(vmSymbols::java_lang_NullPointerException());
1805   }
1806   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1807   // even though the copy_array API also performs dynamic checks to ensure
1808   // that src and dest are truly arrays (and are conformable).
1809   // The copy_array mechanism is awkward and could be removed, but
1810   // the compilers don't call this function except as a last resort,
1811   // so it probably doesn't matter.
1812   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1813                                         (arrayOopDesc*)dest, dest_pos,
1814                                         length, thread);
1815 }
1816 JRT_END
1817 
1818 char* SharedRuntime::generate_class_cast_message(
1819     JavaThread* thread, const char* objName) {
1820 
1821   // Get target class name from the checkcast instruction
1822   vframeStream vfst(thread, true);
1823   assert(!vfst.at_end(), "Java frame must exist");
1824   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1825   Klass* targetKlass = vfst.method()->constants()->klass_at(
1826     cc.index(), thread);
1827   return generate_class_cast_message(objName, targetKlass->external_name());
1828 }
1829 
1830 char* SharedRuntime::generate_class_cast_message(
1831     const char* objName, const char* targetKlassName, const char* desc) {
1832   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1833 
1834   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1835   if (NULL == message) {
1836     // Shouldn't happen, but don't cause even more problems if it does
1837     message = const_cast<char*>(objName);
1838   } else {
1839     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1840   }
1841   return message;
1842 }
1843 
1844 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1845   (void) JavaThread::current()->reguard_stack();
1846 JRT_END
1847 
1848 
1849 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1850 #ifndef PRODUCT
1851 int SharedRuntime::_monitor_enter_ctr=0;
1852 #endif
1853 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1854   oop obj(_obj);
1855 #ifndef PRODUCT
1856   _monitor_enter_ctr++;             // monitor enter slow
1857 #endif
1858   if (PrintBiasedLockingStatistics) {
1859     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1860   }
1861   Handle h_obj(THREAD, obj);
1862   if (UseBiasedLocking) {
1863     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1864     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1865   } else {
1866     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1867   }
1868   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1869 JRT_END
1870 
1871 #ifndef PRODUCT
1872 int SharedRuntime::_monitor_exit_ctr=0;
1873 #endif
1874 // Handles the uncommon cases of monitor unlocking in compiled code
1875 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1876    oop obj(_obj);
1877 #ifndef PRODUCT
1878   _monitor_exit_ctr++;              // monitor exit slow
1879 #endif
1880   Thread* THREAD = JavaThread::current();
1881   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1882   // testing was unable to ever fire the assert that guarded it so I have removed it.
1883   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1884 #undef MIGHT_HAVE_PENDING
1885 #ifdef MIGHT_HAVE_PENDING
1886   // Save and restore any pending_exception around the exception mark.
1887   // While the slow_exit must not throw an exception, we could come into
1888   // this routine with one set.
1889   oop pending_excep = NULL;
1890   const char* pending_file;
1891   int pending_line;
1892   if (HAS_PENDING_EXCEPTION) {
1893     pending_excep = PENDING_EXCEPTION;
1894     pending_file  = THREAD->exception_file();
1895     pending_line  = THREAD->exception_line();
1896     CLEAR_PENDING_EXCEPTION;
1897   }
1898 #endif /* MIGHT_HAVE_PENDING */
1899 
1900   {
1901     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1902     EXCEPTION_MARK;
1903     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1904   }
1905 
1906 #ifdef MIGHT_HAVE_PENDING
1907   if (pending_excep != NULL) {
1908     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1909   }
1910 #endif /* MIGHT_HAVE_PENDING */
1911 JRT_END
1912 
1913 #ifndef PRODUCT
1914 
1915 void SharedRuntime::print_statistics() {
1916   ttyLocker ttyl;
1917   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1918 
1919   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1920   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1921   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1922 
1923   SharedRuntime::print_ic_miss_histogram();
1924 
1925   if (CountRemovableExceptions) {
1926     if (_nof_removable_exceptions > 0) {
1927       Unimplemented(); // this counter is not yet incremented
1928       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1929     }
1930   }
1931 
1932   // Dump the JRT_ENTRY counters
1933   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1934   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1935   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1936   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1937   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1938   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1939   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1940 
1941   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1942   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1943   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1944   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1945   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1946 
1947   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1948   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1949   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1950   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1951   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1952   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1953   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1954   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1955   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1956   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1957   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1958   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1959   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1960   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1961   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1962   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1963 
1964   AdapterHandlerLibrary::print_statistics();
1965 
1966   if (xtty != NULL)  xtty->tail("statistics");
1967 }
1968 
1969 inline double percent(int x, int y) {
1970   return 100.0 * x / MAX2(y, 1);
1971 }
1972 
1973 class MethodArityHistogram {
1974  public:
1975   enum { MAX_ARITY = 256 };
1976  private:
1977   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1978   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1979   static int _max_arity;                      // max. arity seen
1980   static int _max_size;                       // max. arg size seen
1981 
1982   static void add_method_to_histogram(nmethod* nm) {
1983     Method* m = nm->method();
1984     ArgumentCount args(m->signature());
1985     int arity   = args.size() + (m->is_static() ? 0 : 1);
1986     int argsize = m->size_of_parameters();
1987     arity   = MIN2(arity, MAX_ARITY-1);
1988     argsize = MIN2(argsize, MAX_ARITY-1);
1989     int count = nm->method()->compiled_invocation_count();
1990     _arity_histogram[arity]  += count;
1991     _size_histogram[argsize] += count;
1992     _max_arity = MAX2(_max_arity, arity);
1993     _max_size  = MAX2(_max_size, argsize);
1994   }
1995 
1996   void print_histogram_helper(int n, int* histo, const char* name) {
1997     const int N = MIN2(5, n);
1998     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1999     double sum = 0;
2000     double weighted_sum = 0;
2001     int i;
2002     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2003     double rest = sum;
2004     double percent = sum / 100;
2005     for (i = 0; i <= N; i++) {
2006       rest -= histo[i];
2007       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2008     }
2009     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2010     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2011   }
2012 
2013   void print_histogram() {
2014     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2015     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2016     tty->print_cr("\nSame for parameter size (in words):");
2017     print_histogram_helper(_max_size, _size_histogram, "size");
2018     tty->cr();
2019   }
2020 
2021  public:
2022   MethodArityHistogram() {
2023     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2024     _max_arity = _max_size = 0;
2025     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2026     CodeCache::nmethods_do(add_method_to_histogram);
2027     print_histogram();
2028   }
2029 };
2030 
2031 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2032 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2033 int MethodArityHistogram::_max_arity;
2034 int MethodArityHistogram::_max_size;
2035 
2036 void SharedRuntime::print_call_statistics(int comp_total) {
2037   tty->print_cr("Calls from compiled code:");
2038   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2039   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2040   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2041   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2042   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2043   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2044   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2045   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2046   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2047   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2048   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2049   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2050   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2051   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2052   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2053   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2054   tty->cr();
2055   tty->print_cr("Note 1: counter updates are not MT-safe.");
2056   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2057   tty->print_cr("        %% in nested categories are relative to their category");
2058   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2059   tty->cr();
2060 
2061   MethodArityHistogram h;
2062 }
2063 #endif
2064 
2065 
2066 // A simple wrapper class around the calling convention information
2067 // that allows sharing of adapters for the same calling convention.
2068 class AdapterFingerPrint : public CHeapObj<mtCode> {
2069  private:
2070   enum {
2071     _basic_type_bits = 4,
2072     _basic_type_mask = right_n_bits(_basic_type_bits),
2073     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2074     _compact_int_count = 3
2075   };
2076   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2077   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2078 
2079   union {
2080     int  _compact[_compact_int_count];
2081     int* _fingerprint;
2082   } _value;
2083   int _length; // A negative length indicates the fingerprint is in the compact form,
2084                // Otherwise _value._fingerprint is the array.
2085 
2086   // Remap BasicTypes that are handled equivalently by the adapters.
2087   // These are correct for the current system but someday it might be
2088   // necessary to make this mapping platform dependent.
2089   static int adapter_encoding(BasicType in) {
2090     switch(in) {
2091       case T_BOOLEAN:
2092       case T_BYTE:
2093       case T_SHORT:
2094       case T_CHAR:
2095         // There are all promoted to T_INT in the calling convention
2096         return T_INT;
2097 
2098       case T_OBJECT:
2099       case T_ARRAY:
2100         // In other words, we assume that any register good enough for
2101         // an int or long is good enough for a managed pointer.
2102 #ifdef _LP64
2103         return T_LONG;
2104 #else
2105         return T_INT;
2106 #endif
2107 
2108       case T_INT:
2109       case T_LONG:
2110       case T_FLOAT:
2111       case T_DOUBLE:
2112       case T_VOID:
2113         return in;
2114 
2115       default:
2116         ShouldNotReachHere();
2117         return T_CONFLICT;
2118     }
2119   }
2120 
2121  public:
2122   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2123     // The fingerprint is based on the BasicType signature encoded
2124     // into an array of ints with eight entries per int.
2125     int* ptr;
2126     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2127     if (len <= _compact_int_count) {
2128       assert(_compact_int_count == 3, "else change next line");
2129       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2130       // Storing the signature encoded as signed chars hits about 98%
2131       // of the time.
2132       _length = -len;
2133       ptr = _value._compact;
2134     } else {
2135       _length = len;
2136       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2137       ptr = _value._fingerprint;
2138     }
2139 
2140     // Now pack the BasicTypes with 8 per int
2141     int sig_index = 0;
2142     for (int index = 0; index < len; index++) {
2143       int value = 0;
2144       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2145         int bt = ((sig_index < total_args_passed)
2146                   ? adapter_encoding(sig_bt[sig_index++])
2147                   : 0);
2148         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2149         value = (value << _basic_type_bits) | bt;
2150       }
2151       ptr[index] = value;
2152     }
2153   }
2154 
2155   ~AdapterFingerPrint() {
2156     if (_length > 0) {
2157       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2158     }
2159   }
2160 
2161   int value(int index) {
2162     if (_length < 0) {
2163       return _value._compact[index];
2164     }
2165     return _value._fingerprint[index];
2166   }
2167   int length() {
2168     if (_length < 0) return -_length;
2169     return _length;
2170   }
2171 
2172   bool is_compact() {
2173     return _length <= 0;
2174   }
2175 
2176   unsigned int compute_hash() {
2177     int hash = 0;
2178     for (int i = 0; i < length(); i++) {
2179       int v = value(i);
2180       hash = (hash << 8) ^ v ^ (hash >> 5);
2181     }
2182     return (unsigned int)hash;
2183   }
2184 
2185   const char* as_string() {
2186     stringStream st;
2187     st.print("0x");
2188     for (int i = 0; i < length(); i++) {
2189       st.print("%08x", value(i));
2190     }
2191     return st.as_string();
2192   }
2193 
2194   bool equals(AdapterFingerPrint* other) {
2195     if (other->_length != _length) {
2196       return false;
2197     }
2198     if (_length < 0) {
2199       assert(_compact_int_count == 3, "else change next line");
2200       return _value._compact[0] == other->_value._compact[0] &&
2201              _value._compact[1] == other->_value._compact[1] &&
2202              _value._compact[2] == other->_value._compact[2];
2203     } else {
2204       for (int i = 0; i < _length; i++) {
2205         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2206           return false;
2207         }
2208       }
2209     }
2210     return true;
2211   }
2212 };
2213 
2214 
2215 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2216 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2217   friend class AdapterHandlerTableIterator;
2218 
2219  private:
2220 
2221 #ifndef PRODUCT
2222   static int _lookups; // number of calls to lookup
2223   static int _buckets; // number of buckets checked
2224   static int _equals;  // number of buckets checked with matching hash
2225   static int _hits;    // number of successful lookups
2226   static int _compact; // number of equals calls with compact signature
2227 #endif
2228 
2229   AdapterHandlerEntry* bucket(int i) {
2230     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2231   }
2232 
2233  public:
2234   AdapterHandlerTable()
2235     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2236 
2237   // Create a new entry suitable for insertion in the table
2238   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2239     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2240     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2241     return entry;
2242   }
2243 
2244   // Insert an entry into the table
2245   void add(AdapterHandlerEntry* entry) {
2246     int index = hash_to_index(entry->hash());
2247     add_entry(index, entry);
2248   }
2249 
2250   void free_entry(AdapterHandlerEntry* entry) {
2251     entry->deallocate();
2252     BasicHashtable<mtCode>::free_entry(entry);
2253   }
2254 
2255   // Find a entry with the same fingerprint if it exists
2256   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2257     NOT_PRODUCT(_lookups++);
2258     AdapterFingerPrint fp(total_args_passed, sig_bt);
2259     unsigned int hash = fp.compute_hash();
2260     int index = hash_to_index(hash);
2261     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2262       NOT_PRODUCT(_buckets++);
2263       if (e->hash() == hash) {
2264         NOT_PRODUCT(_equals++);
2265         if (fp.equals(e->fingerprint())) {
2266 #ifndef PRODUCT
2267           if (fp.is_compact()) _compact++;
2268           _hits++;
2269 #endif
2270           return e;
2271         }
2272       }
2273     }
2274     return NULL;
2275   }
2276 
2277 #ifndef PRODUCT
2278   void print_statistics() {
2279     ResourceMark rm;
2280     int longest = 0;
2281     int empty = 0;
2282     int total = 0;
2283     int nonempty = 0;
2284     for (int index = 0; index < table_size(); index++) {
2285       int count = 0;
2286       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2287         count++;
2288       }
2289       if (count != 0) nonempty++;
2290       if (count == 0) empty++;
2291       if (count > longest) longest = count;
2292       total += count;
2293     }
2294     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2295                   empty, longest, total, total / (double)nonempty);
2296     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2297                   _lookups, _buckets, _equals, _hits, _compact);
2298   }
2299 #endif
2300 };
2301 
2302 
2303 #ifndef PRODUCT
2304 
2305 int AdapterHandlerTable::_lookups;
2306 int AdapterHandlerTable::_buckets;
2307 int AdapterHandlerTable::_equals;
2308 int AdapterHandlerTable::_hits;
2309 int AdapterHandlerTable::_compact;
2310 
2311 #endif
2312 
2313 class AdapterHandlerTableIterator : public StackObj {
2314  private:
2315   AdapterHandlerTable* _table;
2316   int _index;
2317   AdapterHandlerEntry* _current;
2318 
2319   void scan() {
2320     while (_index < _table->table_size()) {
2321       AdapterHandlerEntry* a = _table->bucket(_index);
2322       _index++;
2323       if (a != NULL) {
2324         _current = a;
2325         return;
2326       }
2327     }
2328   }
2329 
2330  public:
2331   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2332     scan();
2333   }
2334   bool has_next() {
2335     return _current != NULL;
2336   }
2337   AdapterHandlerEntry* next() {
2338     if (_current != NULL) {
2339       AdapterHandlerEntry* result = _current;
2340       _current = _current->next();
2341       if (_current == NULL) scan();
2342       return result;
2343     } else {
2344       return NULL;
2345     }
2346   }
2347 };
2348 
2349 
2350 // ---------------------------------------------------------------------------
2351 // Implementation of AdapterHandlerLibrary
2352 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2353 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2354 const int AdapterHandlerLibrary_size = 16*K;
2355 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2356 
2357 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2358   // Should be called only when AdapterHandlerLibrary_lock is active.
2359   if (_buffer == NULL) // Initialize lazily
2360       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2361   return _buffer;
2362 }
2363 
2364 void AdapterHandlerLibrary::initialize() {
2365   if (_adapters != NULL) return;
2366   _adapters = new AdapterHandlerTable();
2367 
2368   // Create a special handler for abstract methods.  Abstract methods
2369   // are never compiled so an i2c entry is somewhat meaningless, but
2370   // throw AbstractMethodError just in case.
2371   // Pass wrong_method_abstract for the c2i transitions to return
2372   // AbstractMethodError for invalid invocations.
2373   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2374   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2375                                                               StubRoutines::throw_AbstractMethodError_entry(),
2376                                                               wrong_method_abstract, wrong_method_abstract);
2377 }
2378 
2379 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2380                                                       address i2c_entry,
2381                                                       address c2i_entry,
2382                                                       address c2i_unverified_entry) {
2383   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2384 }
2385 
2386 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2387   // Use customized signature handler.  Need to lock around updates to
2388   // the AdapterHandlerTable (it is not safe for concurrent readers
2389   // and a single writer: this could be fixed if it becomes a
2390   // problem).
2391 
2392   // Get the address of the ic_miss handlers before we grab the
2393   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2394   // was caused by the initialization of the stubs happening
2395   // while we held the lock and then notifying jvmti while
2396   // holding it. This just forces the initialization to be a little
2397   // earlier.
2398   address ic_miss = SharedRuntime::get_ic_miss_stub();
2399   assert(ic_miss != NULL, "must have handler");
2400 
2401   ResourceMark rm;
2402 
2403   NOT_PRODUCT(int insts_size);
2404   AdapterBlob* new_adapter = NULL;
2405   AdapterHandlerEntry* entry = NULL;
2406   AdapterFingerPrint* fingerprint = NULL;
2407   {
2408     MutexLocker mu(AdapterHandlerLibrary_lock);
2409     // make sure data structure is initialized
2410     initialize();
2411 
2412     if (method->is_abstract()) {
2413       return _abstract_method_handler;
2414     }
2415 
2416     // Fill in the signature array, for the calling-convention call.
2417     int total_args_passed = method->size_of_parameters(); // All args on stack
2418 
2419     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2420     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2421     int i = 0;
2422     if (!method->is_static())  // Pass in receiver first
2423       sig_bt[i++] = T_OBJECT;
2424     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2425       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2426       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2427         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2428     }
2429     assert(i == total_args_passed, "");
2430 
2431     // Lookup method signature's fingerprint
2432     entry = _adapters->lookup(total_args_passed, sig_bt);
2433 
2434 #ifdef ASSERT
2435     AdapterHandlerEntry* shared_entry = NULL;
2436     // Start adapter sharing verification only after the VM is booted.
2437     if (VerifyAdapterSharing && (entry != NULL)) {
2438       shared_entry = entry;
2439       entry = NULL;
2440     }
2441 #endif
2442 
2443     if (entry != NULL) {
2444       return entry;
2445     }
2446 
2447     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2448     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2449 
2450     // Make a C heap allocated version of the fingerprint to store in the adapter
2451     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2452 
2453     // StubRoutines::code2() is initialized after this function can be called. As a result,
2454     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2455     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2456     // stub that ensure that an I2C stub is called from an interpreter frame.
2457     bool contains_all_checks = StubRoutines::code2() != NULL;
2458 
2459     // Create I2C & C2I handlers
2460     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2461     if (buf != NULL) {
2462       CodeBuffer buffer(buf);
2463       short buffer_locs[20];
2464       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2465                                              sizeof(buffer_locs)/sizeof(relocInfo));
2466 
2467       MacroAssembler _masm(&buffer);
2468       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2469                                                      total_args_passed,
2470                                                      comp_args_on_stack,
2471                                                      sig_bt,
2472                                                      regs,
2473                                                      fingerprint);
2474 #ifdef ASSERT
2475       if (VerifyAdapterSharing) {
2476         if (shared_entry != NULL) {
2477           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2478           // Release the one just created and return the original
2479           _adapters->free_entry(entry);
2480           return shared_entry;
2481         } else  {
2482           entry->save_code(buf->code_begin(), buffer.insts_size());
2483         }
2484       }
2485 #endif
2486 
2487       new_adapter = AdapterBlob::create(&buffer);
2488       NOT_PRODUCT(insts_size = buffer.insts_size());
2489     }
2490     if (new_adapter == NULL) {
2491       // CodeCache is full, disable compilation
2492       // Ought to log this but compile log is only per compile thread
2493       // and we're some non descript Java thread.
2494       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2495       CompileBroker::handle_full_code_cache();
2496       return NULL; // Out of CodeCache space
2497     }
2498     entry->relocate(new_adapter->content_begin());
2499 #ifndef PRODUCT
2500     // debugging suppport
2501     if (PrintAdapterHandlers || PrintStubCode) {
2502       ttyLocker ttyl;
2503       entry->print_adapter_on(tty);
2504       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2505                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2506                     method->signature()->as_C_string(), insts_size);
2507       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2508       if (Verbose || PrintStubCode) {
2509         address first_pc = entry->base_address();
2510         if (first_pc != NULL) {
2511           Disassembler::decode(first_pc, first_pc + insts_size);
2512           tty->cr();
2513         }
2514       }
2515     }
2516 #endif
2517     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2518     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2519     if (contains_all_checks || !VerifyAdapterCalls) {
2520       _adapters->add(entry);
2521     }
2522   }
2523   // Outside of the lock
2524   if (new_adapter != NULL) {
2525     char blob_id[256];
2526     jio_snprintf(blob_id,
2527                  sizeof(blob_id),
2528                  "%s(%s)@" PTR_FORMAT,
2529                  new_adapter->name(),
2530                  fingerprint->as_string(),
2531                  new_adapter->content_begin());
2532     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2533 
2534     if (JvmtiExport::should_post_dynamic_code_generated()) {
2535       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2536     }
2537   }
2538   return entry;
2539 }
2540 
2541 address AdapterHandlerEntry::base_address() {
2542   address base = _i2c_entry;
2543   if (base == NULL)  base = _c2i_entry;
2544   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2545   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2546   return base;
2547 }
2548 
2549 void AdapterHandlerEntry::relocate(address new_base) {
2550   address old_base = base_address();
2551   assert(old_base != NULL, "");
2552   ptrdiff_t delta = new_base - old_base;
2553   if (_i2c_entry != NULL)
2554     _i2c_entry += delta;
2555   if (_c2i_entry != NULL)
2556     _c2i_entry += delta;
2557   if (_c2i_unverified_entry != NULL)
2558     _c2i_unverified_entry += delta;
2559   assert(base_address() == new_base, "");
2560 }
2561 
2562 
2563 void AdapterHandlerEntry::deallocate() {
2564   delete _fingerprint;
2565 #ifdef ASSERT
2566   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2567 #endif
2568 }
2569 
2570 
2571 #ifdef ASSERT
2572 // Capture the code before relocation so that it can be compared
2573 // against other versions.  If the code is captured after relocation
2574 // then relative instructions won't be equivalent.
2575 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2576   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2577   _saved_code_length = length;
2578   memcpy(_saved_code, buffer, length);
2579 }
2580 
2581 
2582 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2583   if (length != _saved_code_length) {
2584     return false;
2585   }
2586 
2587   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2588 }
2589 #endif
2590 
2591 
2592 /**
2593  * Create a native wrapper for this native method.  The wrapper converts the
2594  * Java-compiled calling convention to the native convention, handles
2595  * arguments, and transitions to native.  On return from the native we transition
2596  * back to java blocking if a safepoint is in progress.
2597  */
2598 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2599   ResourceMark rm;
2600   nmethod* nm = NULL;
2601 
2602   assert(method->is_native(), "must be native");
2603   assert(method->is_method_handle_intrinsic() ||
2604          method->has_native_function(), "must have something valid to call!");
2605 
2606   {
2607     // Perform the work while holding the lock, but perform any printing outside the lock
2608     MutexLocker mu(AdapterHandlerLibrary_lock);
2609     // See if somebody beat us to it
2610     nm = method->code();
2611     if (nm != NULL) {
2612       return;
2613     }
2614 
2615     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2616     assert(compile_id > 0, "Must generate native wrapper");
2617 
2618 
2619     ResourceMark rm;
2620     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2621     if (buf != NULL) {
2622       CodeBuffer buffer(buf);
2623       double locs_buf[20];
2624       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2625       MacroAssembler _masm(&buffer);
2626 
2627       // Fill in the signature array, for the calling-convention call.
2628       const int total_args_passed = method->size_of_parameters();
2629 
2630       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2631       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2632       int i=0;
2633       if( !method->is_static() )  // Pass in receiver first
2634         sig_bt[i++] = T_OBJECT;
2635       SignatureStream ss(method->signature());
2636       for( ; !ss.at_return_type(); ss.next()) {
2637         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2638         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2639           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2640       }
2641       assert(i == total_args_passed, "");
2642       BasicType ret_type = ss.type();
2643 
2644       // Now get the compiled-Java layout as input (or output) arguments.
2645       // NOTE: Stubs for compiled entry points of method handle intrinsics
2646       // are just trampolines so the argument registers must be outgoing ones.
2647       const bool is_outgoing = method->is_method_handle_intrinsic();
2648       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2649 
2650       // Generate the compiled-to-native wrapper code
2651       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2652 
2653       if (nm != NULL) {
2654         method->set_code(method, nm);
2655       }
2656     }
2657   } // Unlock AdapterHandlerLibrary_lock
2658 
2659 
2660   // Install the generated code.
2661   if (nm != NULL) {
2662     if (PrintCompilation) {
2663       ttyLocker ttyl;
2664       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2665     }
2666     nm->post_compiled_method_load_event();
2667   } else {
2668     // CodeCache is full, disable compilation
2669     CompileBroker::handle_full_code_cache();
2670   }
2671 }
2672 
2673 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2674   assert(thread == JavaThread::current(), "must be");
2675   // The code is about to enter a JNI lazy critical native method and
2676   // _needs_gc is true, so if this thread is already in a critical
2677   // section then just return, otherwise this thread should block
2678   // until needs_gc has been cleared.
2679   if (thread->in_critical()) {
2680     return;
2681   }
2682   // Lock and unlock a critical section to give the system a chance to block
2683   GC_locker::lock_critical(thread);
2684   GC_locker::unlock_critical(thread);
2685 JRT_END
2686 
2687 #ifdef HAVE_DTRACE_H
2688 /**
2689  * Create a dtrace nmethod for this method.  The wrapper converts the
2690  * Java-compiled calling convention to the native convention, makes a dummy call
2691  * (actually nops for the size of the call instruction, which become a trap if
2692  * probe is enabled), and finally returns to the caller. Since this all looks like a
2693  * leaf, no thread transition is needed.
2694  */
2695 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2696   ResourceMark rm;
2697   nmethod* nm = NULL;
2698 
2699   if (PrintCompilation) {
2700     ttyLocker ttyl;
2701     tty->print("---   n  ");
2702     method->print_short_name(tty);
2703     if (method->is_static()) {
2704       tty->print(" (static)");
2705     }
2706     tty->cr();
2707   }
2708 
2709   {
2710     // perform the work while holding the lock, but perform any printing
2711     // outside the lock
2712     MutexLocker mu(AdapterHandlerLibrary_lock);
2713     // See if somebody beat us to it
2714     nm = method->code();
2715     if (nm) {
2716       return nm;
2717     }
2718 
2719     ResourceMark rm;
2720 
2721     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2722     if (buf != NULL) {
2723       CodeBuffer buffer(buf);
2724       // Need a few relocation entries
2725       double locs_buf[20];
2726       buffer.insts()->initialize_shared_locs(
2727         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2728       MacroAssembler _masm(&buffer);
2729 
2730       // Generate the compiled-to-native wrapper code
2731       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2732     }
2733   }
2734   return nm;
2735 }
2736 
2737 // the dtrace method needs to convert java lang string to utf8 string.
2738 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2739   typeArrayOop jlsValue  = java_lang_String::value(src);
2740   int          jlsOffset = java_lang_String::offset(src);
2741   int          jlsLen    = java_lang_String::length(src);
2742   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2743                                            jlsValue->char_at_addr(jlsOffset);
2744   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2745   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2746 }
2747 #endif // ndef HAVE_DTRACE_H
2748 
2749 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2750   int argcnt = in_args_count;
2751   if (CCallingConventionRequiresIntsAsLongs) {
2752     for (int in = 0; in < in_args_count; in++) {
2753       BasicType bt = in_sig_bt[in];
2754       switch (bt) {
2755         case T_BOOLEAN:
2756         case T_CHAR:
2757         case T_BYTE:
2758         case T_SHORT:
2759         case T_INT:
2760           argcnt++;
2761           break;
2762         default:
2763           break;
2764       }
2765     }
2766   } else {
2767     assert(0, "This should not be needed on this platform");
2768   }
2769 
2770   return argcnt;
2771 }
2772 
2773 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2774                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2775   if (CCallingConventionRequiresIntsAsLongs) {
2776     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2777     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2778 
2779     int argcnt = 0;
2780     for (int in = 0; in < in_args_count; in++, argcnt++) {
2781       BasicType bt  = in_sig_bt[in];
2782       VMRegPair reg = in_regs[in];
2783       switch (bt) {
2784         case T_BOOLEAN:
2785         case T_CHAR:
2786         case T_BYTE:
2787         case T_SHORT:
2788         case T_INT:
2789           // Convert (bt) to (T_LONG,bt).
2790           new_in_sig_bt[argcnt  ] = T_LONG;
2791           new_in_sig_bt[argcnt+1] = bt;
2792           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2793           new_in_regs[argcnt  ].set2(reg.first());
2794           new_in_regs[argcnt+1].set_bad();
2795           argcnt++;
2796           break;
2797         default:
2798           // No conversion needed.
2799           new_in_sig_bt[argcnt] = bt;
2800           new_in_regs[argcnt]   = reg;
2801           break;
2802       }
2803     }
2804     assert(argcnt == i2l_argcnt, "must match");
2805 
2806     in_regs = new_in_regs;
2807     in_sig_bt = new_in_sig_bt;
2808     in_args_count = i2l_argcnt;
2809   } else {
2810     assert(0, "This should not be needed on this platform");
2811   }
2812 }
2813 
2814 // -------------------------------------------------------------------------
2815 // Java-Java calling convention
2816 // (what you use when Java calls Java)
2817 
2818 //------------------------------name_for_receiver----------------------------------
2819 // For a given signature, return the VMReg for parameter 0.
2820 VMReg SharedRuntime::name_for_receiver() {
2821   VMRegPair regs;
2822   BasicType sig_bt = T_OBJECT;
2823   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2824   // Return argument 0 register.  In the LP64 build pointers
2825   // take 2 registers, but the VM wants only the 'main' name.
2826   return regs.first();
2827 }
2828 
2829 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2830   // This method is returning a data structure allocating as a
2831   // ResourceObject, so do not put any ResourceMarks in here.
2832   char *s = sig->as_C_string();
2833   int len = (int)strlen(s);
2834   s++; len--;                   // Skip opening paren
2835 
2836   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2837   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2838   int cnt = 0;
2839   if (has_receiver) {
2840     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2841   }
2842 
2843   while( *s != ')' ) {          // Find closing right paren
2844     switch( *s++ ) {            // Switch on signature character
2845     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2846     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2847     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2848     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2849     case 'I': sig_bt[cnt++] = T_INT;     break;
2850     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2851     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2852     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2853     case 'V': sig_bt[cnt++] = T_VOID;    break;
2854     case 'L':                   // Oop
2855       while( *s++ != ';'  ) ;   // Skip signature
2856       sig_bt[cnt++] = T_OBJECT;
2857       break;
2858     case '[': {                 // Array
2859       do {                      // Skip optional size
2860         while( *s >= '0' && *s <= '9' ) s++;
2861       } while( *s++ == '[' );   // Nested arrays?
2862       // Skip element type
2863       if( s[-1] == 'L' )
2864         while( *s++ != ';'  ) ; // Skip signature
2865       sig_bt[cnt++] = T_ARRAY;
2866       break;
2867     }
2868     default : ShouldNotReachHere();
2869     }
2870   }
2871 
2872   if (has_appendix) {
2873     sig_bt[cnt++] = T_OBJECT;
2874   }
2875 
2876   assert( cnt < 256, "grow table size" );
2877 
2878   int comp_args_on_stack;
2879   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2880 
2881   // the calling convention doesn't count out_preserve_stack_slots so
2882   // we must add that in to get "true" stack offsets.
2883 
2884   if (comp_args_on_stack) {
2885     for (int i = 0; i < cnt; i++) {
2886       VMReg reg1 = regs[i].first();
2887       if( reg1->is_stack()) {
2888         // Yuck
2889         reg1 = reg1->bias(out_preserve_stack_slots());
2890       }
2891       VMReg reg2 = regs[i].second();
2892       if( reg2->is_stack()) {
2893         // Yuck
2894         reg2 = reg2->bias(out_preserve_stack_slots());
2895       }
2896       regs[i].set_pair(reg2, reg1);
2897     }
2898   }
2899 
2900   // results
2901   *arg_size = cnt;
2902   return regs;
2903 }
2904 
2905 // OSR Migration Code
2906 //
2907 // This code is used convert interpreter frames into compiled frames.  It is
2908 // called from very start of a compiled OSR nmethod.  A temp array is
2909 // allocated to hold the interesting bits of the interpreter frame.  All
2910 // active locks are inflated to allow them to move.  The displaced headers and
2911 // active interpeter locals are copied into the temp buffer.  Then we return
2912 // back to the compiled code.  The compiled code then pops the current
2913 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2914 // copies the interpreter locals and displaced headers where it wants.
2915 // Finally it calls back to free the temp buffer.
2916 //
2917 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2918 
2919 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2920 
2921   //
2922   // This code is dependent on the memory layout of the interpreter local
2923   // array and the monitors. On all of our platforms the layout is identical
2924   // so this code is shared. If some platform lays the their arrays out
2925   // differently then this code could move to platform specific code or
2926   // the code here could be modified to copy items one at a time using
2927   // frame accessor methods and be platform independent.
2928 
2929   frame fr = thread->last_frame();
2930   assert( fr.is_interpreted_frame(), "" );
2931   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2932 
2933   // Figure out how many monitors are active.
2934   int active_monitor_count = 0;
2935   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2936        kptr < fr.interpreter_frame_monitor_begin();
2937        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2938     if( kptr->obj() != NULL ) active_monitor_count++;
2939   }
2940 
2941   // QQQ we could place number of active monitors in the array so that compiled code
2942   // could double check it.
2943 
2944   Method* moop = fr.interpreter_frame_method();
2945   int max_locals = moop->max_locals();
2946   // Allocate temp buffer, 1 word per local & 2 per active monitor
2947   int buf_size_words = max_locals + active_monitor_count*2;
2948   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2949 
2950   // Copy the locals.  Order is preserved so that loading of longs works.
2951   // Since there's no GC I can copy the oops blindly.
2952   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2953   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2954                        (HeapWord*)&buf[0],
2955                        max_locals);
2956 
2957   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2958   int i = max_locals;
2959   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2960        kptr2 < fr.interpreter_frame_monitor_begin();
2961        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2962     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2963       BasicLock *lock = kptr2->lock();
2964       // Inflate so the displaced header becomes position-independent
2965       if (lock->displaced_header()->is_unlocked())
2966         ObjectSynchronizer::inflate_helper(kptr2->obj());
2967       // Now the displaced header is free to move
2968       buf[i++] = (intptr_t)lock->displaced_header();
2969       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2970     }
2971   }
2972   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2973 
2974   return buf;
2975 JRT_END
2976 
2977 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2978   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2979 JRT_END
2980 
2981 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2982   AdapterHandlerTableIterator iter(_adapters);
2983   while (iter.has_next()) {
2984     AdapterHandlerEntry* a = iter.next();
2985     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2986   }
2987   return false;
2988 }
2989 
2990 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2991   AdapterHandlerTableIterator iter(_adapters);
2992   while (iter.has_next()) {
2993     AdapterHandlerEntry* a = iter.next();
2994     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2995       st->print("Adapter for signature: ");
2996       a->print_adapter_on(tty);
2997       return;
2998     }
2999   }
3000   assert(false, "Should have found handler");
3001 }
3002 
3003 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3004   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3005                (intptr_t) this, fingerprint()->as_string(),
3006                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
3007 
3008 }
3009 
3010 #ifndef PRODUCT
3011 
3012 void AdapterHandlerLibrary::print_statistics() {
3013   _adapters->print_statistics();
3014 }
3015 
3016 #endif /* PRODUCT */