1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/node.hpp"
  55 #include "opto/opcodes.hpp"
  56 #include "opto/output.hpp"
  57 #include "opto/parse.hpp"
  58 #include "opto/phaseX.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/stringopts.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/timer.hpp"
  68 #include "trace/tracing.hpp"
  69 #include "utilities/copy.hpp"
  70 #if defined AD_MD_HPP
  71 # include AD_MD_HPP
  72 #elif defined TARGET_ARCH_MODEL_x86_32
  73 # include "adfiles/ad_x86_32.hpp"
  74 #elif defined TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #elif defined TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #elif defined TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #elif defined TARGET_ARCH_MODEL_ppc_64
  81 # include "adfiles/ad_ppc_64.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new (C) MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 101 #ifdef ASSERT
 102   for (int i = 1; i < _intrinsics->length(); i++) {
 103     CallGenerator* cg1 = _intrinsics->at(i-1);
 104     CallGenerator* cg2 = _intrinsics->at(i);
 105     assert(cg1->method() != cg2->method()
 106            ? cg1->method()     < cg2->method()
 107            : cg1->is_virtual() < cg2->is_virtual(),
 108            "compiler intrinsics list must stay sorted");
 109   }
 110 #endif
 111   // Binary search sorted list, in decreasing intervals [lo, hi].
 112   int lo = 0, hi = _intrinsics->length()-1;
 113   while (lo <= hi) {
 114     int mid = (uint)(hi + lo) / 2;
 115     ciMethod* mid_m = _intrinsics->at(mid)->method();
 116     if (m < mid_m) {
 117       hi = mid-1;
 118     } else if (m > mid_m) {
 119       lo = mid+1;
 120     } else {
 121       // look at minor sort key
 122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 123       if (is_virtual < mid_virt) {
 124         hi = mid-1;
 125       } else if (is_virtual > mid_virt) {
 126         lo = mid+1;
 127       } else {
 128         return mid;  // exact match
 129       }
 130     }
 131   }
 132   return lo;  // inexact match
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 138   }
 139   // This code is stolen from ciObjectFactory::insert.
 140   // Really, GrowableArray should have methods for
 141   // insert_at, remove_at, and binary_search.
 142   int len = _intrinsics->length();
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 144   if (index == len) {
 145     _intrinsics->append(cg);
 146   } else {
 147 #ifdef ASSERT
 148     CallGenerator* oldcg = _intrinsics->at(index);
 149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 150 #endif
 151     _intrinsics->append(_intrinsics->at(len-1));
 152     int pos;
 153     for (pos = len-2; pos >= index; pos--) {
 154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 155     }
 156     _intrinsics->at_put(index, cg);
 157   }
 158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 159 }
 160 
 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 162   assert(m->is_loaded(), "don't try this on unloaded methods");
 163   if (_intrinsics != NULL) {
 164     int index = intrinsic_insertion_index(m, is_virtual);
 165     if (index < _intrinsics->length()
 166         && _intrinsics->at(index)->method() == m
 167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 168       return _intrinsics->at(index);
 169     }
 170   }
 171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 172   if (m->intrinsic_id() != vmIntrinsics::_none &&
 173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 175     if (cg != NULL) {
 176       // Save it for next time:
 177       register_intrinsic(cg);
 178       return cg;
 179     } else {
 180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 181     }
 182   }
 183   return NULL;
 184 }
 185 
 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 187 // in library_call.cpp.
 188 
 189 
 190 #ifndef PRODUCT
 191 // statistics gathering...
 192 
 193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 195 
 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 198   int oflags = _intrinsic_hist_flags[id];
 199   assert(flags != 0, "what happened?");
 200   if (is_virtual) {
 201     flags |= _intrinsic_virtual;
 202   }
 203   bool changed = (flags != oflags);
 204   if ((flags & _intrinsic_worked) != 0) {
 205     juint count = (_intrinsic_hist_count[id] += 1);
 206     if (count == 1) {
 207       changed = true;           // first time
 208     }
 209     // increment the overall count also:
 210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 211   }
 212   if (changed) {
 213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 214       // Something changed about the intrinsic's virtuality.
 215       if ((flags & _intrinsic_virtual) != 0) {
 216         // This is the first use of this intrinsic as a virtual call.
 217         if (oflags != 0) {
 218           // We already saw it as a non-virtual, so note both cases.
 219           flags |= _intrinsic_both;
 220         }
 221       } else if ((oflags & _intrinsic_both) == 0) {
 222         // This is the first use of this intrinsic as a non-virtual
 223         flags |= _intrinsic_both;
 224       }
 225     }
 226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 227   }
 228   // update the overall flags also:
 229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 230   return changed;
 231 }
 232 
 233 static char* format_flags(int flags, char* buf) {
 234   buf[0] = 0;
 235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 240   if (buf[0] == 0)  strcat(buf, ",");
 241   assert(buf[0] == ',', "must be");
 242   return &buf[1];
 243 }
 244 
 245 void Compile::print_intrinsic_statistics() {
 246   char flagsbuf[100];
 247   ttyLocker ttyl;
 248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 249   tty->print_cr("Compiler intrinsic usage:");
 250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 252   #define PRINT_STAT_LINE(name, c, f) \
 253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 256     int   flags = _intrinsic_hist_flags[id];
 257     juint count = _intrinsic_hist_count[id];
 258     if ((flags | count) != 0) {
 259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 260     }
 261   }
 262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 263   if (xtty != NULL)  xtty->tail("statistics");
 264 }
 265 
 266 void Compile::print_statistics() {
 267   { ttyLocker ttyl;
 268     if (xtty != NULL)  xtty->head("statistics type='opto'");
 269     Parse::print_statistics();
 270     PhaseCCP::print_statistics();
 271     PhaseRegAlloc::print_statistics();
 272     Scheduling::print_statistics();
 273     PhasePeephole::print_statistics();
 274     PhaseIdealLoop::print_statistics();
 275     if (xtty != NULL)  xtty->tail("statistics");
 276   }
 277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 278     // put this under its own <statistics> element.
 279     print_intrinsic_statistics();
 280   }
 281 }
 282 #endif //PRODUCT
 283 
 284 // Support for bundling info
 285 Bundle* Compile::node_bundling(const Node *n) {
 286   assert(valid_bundle_info(n), "oob");
 287   return &_node_bundling_base[n->_idx];
 288 }
 289 
 290 bool Compile::valid_bundle_info(const Node *n) {
 291   return (_node_bundling_limit > n->_idx);
 292 }
 293 
 294 
 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
 296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 297     Node* use = n->last_out(i);
 298     bool is_in_table = initial_gvn()->hash_delete(use);
 299     uint uses_found = 0;
 300     for (uint j = 0; j < use->len(); j++) {
 301       if (use->in(j) == n) {
 302         if (j < use->req())
 303           use->set_req(j, nn);
 304         else
 305           use->set_prec(j, nn);
 306         uses_found++;
 307       }
 308     }
 309     if (is_in_table) {
 310       // reinsert into table
 311       initial_gvn()->hash_find_insert(use);
 312     }
 313     record_for_igvn(use);
 314     i -= uses_found;    // we deleted 1 or more copies of this edge
 315   }
 316 }
 317 
 318 
 319 static inline bool not_a_node(const Node* n) {
 320   if (n == NULL)                   return true;
 321   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 322   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 323   return false;
 324 }
 325 
 326 // Identify all nodes that are reachable from below, useful.
 327 // Use breadth-first pass that records state in a Unique_Node_List,
 328 // recursive traversal is slower.
 329 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 330   int estimated_worklist_size = live_nodes();
 331   useful.map( estimated_worklist_size, NULL );  // preallocate space
 332 
 333   // Initialize worklist
 334   if (root() != NULL)     { useful.push(root()); }
 335   // If 'top' is cached, declare it useful to preserve cached node
 336   if( cached_top_node() ) { useful.push(cached_top_node()); }
 337 
 338   // Push all useful nodes onto the list, breadthfirst
 339   for( uint next = 0; next < useful.size(); ++next ) {
 340     assert( next < unique(), "Unique useful nodes < total nodes");
 341     Node *n  = useful.at(next);
 342     uint max = n->len();
 343     for( uint i = 0; i < max; ++i ) {
 344       Node *m = n->in(i);
 345       if (not_a_node(m))  continue;
 346       useful.push(m);
 347     }
 348   }
 349 }
 350 
 351 // Update dead_node_list with any missing dead nodes using useful
 352 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 353 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 354   uint max_idx = unique();
 355   VectorSet& useful_node_set = useful.member_set();
 356 
 357   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 358     // If node with index node_idx is not in useful set,
 359     // mark it as dead in dead node list.
 360     if (! useful_node_set.test(node_idx) ) {
 361       record_dead_node(node_idx);
 362     }
 363   }
 364 }
 365 
 366 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 367   int shift = 0;
 368   for (int i = 0; i < inlines->length(); i++) {
 369     CallGenerator* cg = inlines->at(i);
 370     CallNode* call = cg->call_node();
 371     if (shift > 0) {
 372       inlines->at_put(i-shift, cg);
 373     }
 374     if (!useful.member(call)) {
 375       shift++;
 376     }
 377   }
 378   inlines->trunc_to(inlines->length()-shift);
 379 }
 380 
 381 // Disconnect all useless nodes by disconnecting those at the boundary.
 382 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 383   uint next = 0;
 384   while (next < useful.size()) {
 385     Node *n = useful.at(next++);
 386     if (n->is_SafePoint()) {
 387       // We're done with a parsing phase. Replaced nodes are not valid
 388       // beyond that point.
 389       n->as_SafePoint()->delete_replaced_nodes();
 390     }
 391     // Use raw traversal of out edges since this code removes out edges
 392     int max = n->outcnt();
 393     for (int j = 0; j < max; ++j) {
 394       Node* child = n->raw_out(j);
 395       if (! useful.member(child)) {
 396         assert(!child->is_top() || child != top(),
 397                "If top is cached in Compile object it is in useful list");
 398         // Only need to remove this out-edge to the useless node
 399         n->raw_del_out(j);
 400         --j;
 401         --max;
 402       }
 403     }
 404     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 405       record_for_igvn(n->unique_out());
 406     }
 407   }
 408   // Remove useless macro and predicate opaq nodes
 409   for (int i = C->macro_count()-1; i >= 0; i--) {
 410     Node* n = C->macro_node(i);
 411     if (!useful.member(n)) {
 412       remove_macro_node(n);
 413     }
 414   }
 415   // Remove useless CastII nodes with range check dependency
 416   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 417     Node* cast = range_check_cast_node(i);
 418     if (!useful.member(cast)) {
 419       remove_range_check_cast(cast);
 420     }
 421   }
 422   // Remove useless expensive node
 423   for (int i = C->expensive_count()-1; i >= 0; i--) {
 424     Node* n = C->expensive_node(i);
 425     if (!useful.member(n)) {
 426       remove_expensive_node(n);
 427     }
 428   }
 429   // clean up the late inline lists
 430   remove_useless_late_inlines(&_string_late_inlines, useful);
 431   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 432   remove_useless_late_inlines(&_late_inlines, useful);
 433   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 434 }
 435 
 436 //------------------------------frame_size_in_words-----------------------------
 437 // frame_slots in units of words
 438 int Compile::frame_size_in_words() const {
 439   // shift is 0 in LP32 and 1 in LP64
 440   const int shift = (LogBytesPerWord - LogBytesPerInt);
 441   int words = _frame_slots >> shift;
 442   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 443   return words;
 444 }
 445 
 446 // To bang the stack of this compiled method we use the stack size
 447 // that the interpreter would need in case of a deoptimization. This
 448 // removes the need to bang the stack in the deoptimization blob which
 449 // in turn simplifies stack overflow handling.
 450 int Compile::bang_size_in_bytes() const {
 451   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 452 }
 453 
 454 // ============================================================================
 455 //------------------------------CompileWrapper---------------------------------
 456 class CompileWrapper : public StackObj {
 457   Compile *const _compile;
 458  public:
 459   CompileWrapper(Compile* compile);
 460 
 461   ~CompileWrapper();
 462 };
 463 
 464 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 465   // the Compile* pointer is stored in the current ciEnv:
 466   ciEnv* env = compile->env();
 467   assert(env == ciEnv::current(), "must already be a ciEnv active");
 468   assert(env->compiler_data() == NULL, "compile already active?");
 469   env->set_compiler_data(compile);
 470   assert(compile == Compile::current(), "sanity");
 471 
 472   compile->set_type_dict(NULL);
 473   compile->set_type_hwm(NULL);
 474   compile->set_type_last_size(0);
 475   compile->set_last_tf(NULL, NULL);
 476   compile->set_indexSet_arena(NULL);
 477   compile->set_indexSet_free_block_list(NULL);
 478   compile->init_type_arena();
 479   Type::Initialize(compile);
 480   _compile->set_scratch_buffer_blob(NULL);
 481   _compile->begin_method();
 482 }
 483 CompileWrapper::~CompileWrapper() {
 484   _compile->end_method();
 485   if (_compile->scratch_buffer_blob() != NULL)
 486     BufferBlob::free(_compile->scratch_buffer_blob());
 487   _compile->env()->set_compiler_data(NULL);
 488 }
 489 
 490 
 491 //----------------------------print_compile_messages---------------------------
 492 void Compile::print_compile_messages() {
 493 #ifndef PRODUCT
 494   // Check if recompiling
 495   if (_subsume_loads == false && PrintOpto) {
 496     // Recompiling without allowing machine instructions to subsume loads
 497     tty->print_cr("*********************************************************");
 498     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 499     tty->print_cr("*********************************************************");
 500   }
 501   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 502     // Recompiling without escape analysis
 503     tty->print_cr("*********************************************************");
 504     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 505     tty->print_cr("*********************************************************");
 506   }
 507   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 508     // Recompiling without boxing elimination
 509     tty->print_cr("*********************************************************");
 510     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 511     tty->print_cr("*********************************************************");
 512   }
 513   if (env()->break_at_compile()) {
 514     // Open the debugger when compiling this method.
 515     tty->print("### Breaking when compiling: ");
 516     method()->print_short_name();
 517     tty->cr();
 518     BREAKPOINT;
 519   }
 520 
 521   if( PrintOpto ) {
 522     if (is_osr_compilation()) {
 523       tty->print("[OSR]%3d", _compile_id);
 524     } else {
 525       tty->print("%3d", _compile_id);
 526     }
 527   }
 528 #endif
 529 }
 530 
 531 
 532 //-----------------------init_scratch_buffer_blob------------------------------
 533 // Construct a temporary BufferBlob and cache it for this compile.
 534 void Compile::init_scratch_buffer_blob(int const_size) {
 535   // If there is already a scratch buffer blob allocated and the
 536   // constant section is big enough, use it.  Otherwise free the
 537   // current and allocate a new one.
 538   BufferBlob* blob = scratch_buffer_blob();
 539   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 540     // Use the current blob.
 541   } else {
 542     if (blob != NULL) {
 543       BufferBlob::free(blob);
 544     }
 545 
 546     ResourceMark rm;
 547     _scratch_const_size = const_size;
 548     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 549     blob = BufferBlob::create("Compile::scratch_buffer", size);
 550     // Record the buffer blob for next time.
 551     set_scratch_buffer_blob(blob);
 552     // Have we run out of code space?
 553     if (scratch_buffer_blob() == NULL) {
 554       // Let CompilerBroker disable further compilations.
 555       record_failure("Not enough space for scratch buffer in CodeCache");
 556       return;
 557     }
 558   }
 559 
 560   // Initialize the relocation buffers
 561   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 562   set_scratch_locs_memory(locs_buf);
 563 }
 564 
 565 
 566 //-----------------------scratch_emit_size-------------------------------------
 567 // Helper function that computes size by emitting code
 568 uint Compile::scratch_emit_size(const Node* n) {
 569   // Start scratch_emit_size section.
 570   set_in_scratch_emit_size(true);
 571 
 572   // Emit into a trash buffer and count bytes emitted.
 573   // This is a pretty expensive way to compute a size,
 574   // but it works well enough if seldom used.
 575   // All common fixed-size instructions are given a size
 576   // method by the AD file.
 577   // Note that the scratch buffer blob and locs memory are
 578   // allocated at the beginning of the compile task, and
 579   // may be shared by several calls to scratch_emit_size.
 580   // The allocation of the scratch buffer blob is particularly
 581   // expensive, since it has to grab the code cache lock.
 582   BufferBlob* blob = this->scratch_buffer_blob();
 583   assert(blob != NULL, "Initialize BufferBlob at start");
 584   assert(blob->size() > MAX_inst_size, "sanity");
 585   relocInfo* locs_buf = scratch_locs_memory();
 586   address blob_begin = blob->content_begin();
 587   address blob_end   = (address)locs_buf;
 588   assert(blob->content_contains(blob_end), "sanity");
 589   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 590   buf.initialize_consts_size(_scratch_const_size);
 591   buf.initialize_stubs_size(MAX_stubs_size);
 592   assert(locs_buf != NULL, "sanity");
 593   int lsize = MAX_locs_size / 3;
 594   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 595   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 596   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 597 
 598   // Do the emission.
 599 
 600   Label fakeL; // Fake label for branch instructions.
 601   Label*   saveL = NULL;
 602   uint save_bnum = 0;
 603   bool is_branch = n->is_MachBranch();
 604   if (is_branch) {
 605     MacroAssembler masm(&buf);
 606     masm.bind(fakeL);
 607     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 608     n->as_MachBranch()->label_set(&fakeL, 0);
 609   }
 610   n->emit(buf, this->regalloc());
 611 
 612   // Emitting into the scratch buffer should not fail
 613   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
 614 
 615   if (is_branch) // Restore label.
 616     n->as_MachBranch()->label_set(saveL, save_bnum);
 617 
 618   // End scratch_emit_size section.
 619   set_in_scratch_emit_size(false);
 620 
 621   return buf.insts_size();
 622 }
 623 
 624 
 625 // ============================================================================
 626 //------------------------------Compile standard-------------------------------
 627 debug_only( int Compile::_debug_idx = 100000; )
 628 
 629 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 630 // the continuation bci for on stack replacement.
 631 
 632 
 633 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 634                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 635                 : Phase(Compiler),
 636                   _env(ci_env),
 637                   _log(ci_env->log()),
 638                   _compile_id(ci_env->compile_id()),
 639                   _save_argument_registers(false),
 640                   _stub_name(NULL),
 641                   _stub_function(NULL),
 642                   _stub_entry_point(NULL),
 643                   _method(target),
 644                   _entry_bci(osr_bci),
 645                   _initial_gvn(NULL),
 646                   _for_igvn(NULL),
 647                   _warm_calls(NULL),
 648                   _subsume_loads(subsume_loads),
 649                   _do_escape_analysis(do_escape_analysis),
 650                   _eliminate_boxing(eliminate_boxing),
 651                   _failure_reason(NULL),
 652                   _code_buffer("Compile::Fill_buffer"),
 653                   _orig_pc_slot(0),
 654                   _orig_pc_slot_offset_in_bytes(0),
 655                   _has_method_handle_invokes(false),
 656                   _mach_constant_base_node(NULL),
 657                   _node_bundling_limit(0),
 658                   _node_bundling_base(NULL),
 659                   _java_calls(0),
 660                   _inner_loops(0),
 661                   _scratch_const_size(-1),
 662                   _in_scratch_emit_size(false),
 663                   _dead_node_list(comp_arena()),
 664                   _dead_node_count(0),
 665 #ifndef PRODUCT
 666                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 667                   _in_dump_cnt(0),
 668                   _printer(IdealGraphPrinter::printer()),
 669 #endif
 670                   _congraph(NULL),
 671                   _comp_arena(mtCompiler),
 672                   _node_arena(mtCompiler),
 673                   _old_arena(mtCompiler),
 674                   _Compile_types(mtCompiler),
 675                   _replay_inline_data(NULL),
 676                   _late_inlines(comp_arena(), 2, 0, NULL),
 677                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 678                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 679                   _late_inlines_pos(0),
 680                   _number_of_mh_late_inlines(0),
 681                   _inlining_progress(false),
 682                   _inlining_incrementally(false),
 683                   _print_inlining_list(NULL),
 684                   _print_inlining_idx(0),
 685                   _interpreter_frame_size(0),
 686                   _max_node_limit(MaxNodeLimit) {
 687   C = this;
 688 
 689   CompileWrapper cw(this);
 690 #ifndef PRODUCT
 691   if (TimeCompiler2) {
 692     tty->print(" ");
 693     target->holder()->name()->print();
 694     tty->print(".");
 695     target->print_short_name();
 696     tty->print("  ");
 697   }
 698   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 699   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 700   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 701   if (!print_opto_assembly) {
 702     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 703     if (print_assembly && !Disassembler::can_decode()) {
 704       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 705       print_opto_assembly = true;
 706     }
 707   }
 708   set_print_assembly(print_opto_assembly);
 709   set_parsed_irreducible_loop(false);
 710 
 711   if (method()->has_option("ReplayInline")) {
 712     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 713   }
 714 #endif
 715   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 716   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 717   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 718 
 719   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 720     // Make sure the method being compiled gets its own MDO,
 721     // so we can at least track the decompile_count().
 722     // Need MDO to record RTM code generation state.
 723     method()->ensure_method_data();
 724   }
 725 
 726   Init(::AliasLevel);
 727 
 728 
 729   print_compile_messages();
 730 
 731   _ilt = InlineTree::build_inline_tree_root();
 732 
 733   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 734   assert(num_alias_types() >= AliasIdxRaw, "");
 735 
 736 #define MINIMUM_NODE_HASH  1023
 737   // Node list that Iterative GVN will start with
 738   Unique_Node_List for_igvn(comp_arena());
 739   set_for_igvn(&for_igvn);
 740 
 741   // GVN that will be run immediately on new nodes
 742   uint estimated_size = method()->code_size()*4+64;
 743   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 744   PhaseGVN gvn(node_arena(), estimated_size);
 745   set_initial_gvn(&gvn);
 746 
 747   if (print_inlining() || print_intrinsics()) {
 748     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 749   }
 750   { // Scope for timing the parser
 751     TracePhase t3("parse", &_t_parser, true);
 752 
 753     // Put top into the hash table ASAP.
 754     initial_gvn()->transform_no_reclaim(top());
 755 
 756     // Set up tf(), start(), and find a CallGenerator.
 757     CallGenerator* cg = NULL;
 758     if (is_osr_compilation()) {
 759       const TypeTuple *domain = StartOSRNode::osr_domain();
 760       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 761       init_tf(TypeFunc::make(domain, range));
 762       StartNode* s = new (this) StartOSRNode(root(), domain);
 763       initial_gvn()->set_type_bottom(s);
 764       init_start(s);
 765       cg = CallGenerator::for_osr(method(), entry_bci());
 766     } else {
 767       // Normal case.
 768       init_tf(TypeFunc::make(method()));
 769       StartNode* s = new (this) StartNode(root(), tf()->domain());
 770       initial_gvn()->set_type_bottom(s);
 771       init_start(s);
 772       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 773         // With java.lang.ref.reference.get() we must go through the
 774         // intrinsic when G1 is enabled - even when get() is the root
 775         // method of the compile - so that, if necessary, the value in
 776         // the referent field of the reference object gets recorded by
 777         // the pre-barrier code.
 778         // Specifically, if G1 is enabled, the value in the referent
 779         // field is recorded by the G1 SATB pre barrier. This will
 780         // result in the referent being marked live and the reference
 781         // object removed from the list of discovered references during
 782         // reference processing.
 783         cg = find_intrinsic(method(), false);
 784       }
 785       if (cg == NULL) {
 786         float past_uses = method()->interpreter_invocation_count();
 787         float expected_uses = past_uses;
 788         cg = CallGenerator::for_inline(method(), expected_uses);
 789       }
 790     }
 791     if (failing())  return;
 792     if (cg == NULL) {
 793       record_method_not_compilable_all_tiers("cannot parse method");
 794       return;
 795     }
 796     JVMState* jvms = build_start_state(start(), tf());
 797     if ((jvms = cg->generate(jvms)) == NULL) {
 798       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 799         record_method_not_compilable("method parse failed");
 800       }
 801       return;
 802     }
 803     GraphKit kit(jvms);
 804 
 805     if (!kit.stopped()) {
 806       // Accept return values, and transfer control we know not where.
 807       // This is done by a special, unique ReturnNode bound to root.
 808       return_values(kit.jvms());
 809     }
 810 
 811     if (kit.has_exceptions()) {
 812       // Any exceptions that escape from this call must be rethrown
 813       // to whatever caller is dynamically above us on the stack.
 814       // This is done by a special, unique RethrowNode bound to root.
 815       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 816     }
 817 
 818     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 819 
 820     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 821       inline_string_calls(true);
 822     }
 823 
 824     if (failing())  return;
 825 
 826     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 827 
 828     // Remove clutter produced by parsing.
 829     if (!failing()) {
 830       ResourceMark rm;
 831       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 832     }
 833   }
 834 
 835   // Note:  Large methods are capped off in do_one_bytecode().
 836   if (failing())  return;
 837 
 838   // After parsing, node notes are no longer automagic.
 839   // They must be propagated by register_new_node_with_optimizer(),
 840   // clone(), or the like.
 841   set_default_node_notes(NULL);
 842 
 843   for (;;) {
 844     int successes = Inline_Warm();
 845     if (failing())  return;
 846     if (successes == 0)  break;
 847   }
 848 
 849   // Drain the list.
 850   Finish_Warm();
 851 #ifndef PRODUCT
 852   if (_printer) {
 853     _printer->print_inlining(this);
 854   }
 855 #endif
 856 
 857   if (failing())  return;
 858   NOT_PRODUCT( verify_graph_edges(); )
 859 
 860   // Now optimize
 861   Optimize();
 862   if (failing())  return;
 863   NOT_PRODUCT( verify_graph_edges(); )
 864 
 865 #ifndef PRODUCT
 866   if (PrintIdeal) {
 867     ttyLocker ttyl;  // keep the following output all in one block
 868     // This output goes directly to the tty, not the compiler log.
 869     // To enable tools to match it up with the compilation activity,
 870     // be sure to tag this tty output with the compile ID.
 871     if (xtty != NULL) {
 872       xtty->head("ideal compile_id='%d'%s", compile_id(),
 873                  is_osr_compilation()    ? " compile_kind='osr'" :
 874                  "");
 875     }
 876     root()->dump(9999);
 877     if (xtty != NULL) {
 878       xtty->tail("ideal");
 879     }
 880   }
 881 #endif
 882 
 883   NOT_PRODUCT( verify_barriers(); )
 884 
 885   // Dump compilation data to replay it.
 886   if (method()->has_option("DumpReplay")) {
 887     env()->dump_replay_data(_compile_id);
 888   }
 889   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 890     env()->dump_inline_data(_compile_id);
 891   }
 892 
 893   // Now that we know the size of all the monitors we can add a fixed slot
 894   // for the original deopt pc.
 895 
 896   _orig_pc_slot =  fixed_slots();
 897   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 898   set_fixed_slots(next_slot);
 899 
 900   // Compute when to use implicit null checks. Used by matching trap based
 901   // nodes and NullCheck optimization.
 902   set_allowed_deopt_reasons();
 903 
 904   // Now generate code
 905   Code_Gen();
 906   if (failing())  return;
 907 
 908   // Check if we want to skip execution of all compiled code.
 909   {
 910 #ifndef PRODUCT
 911     if (OptoNoExecute) {
 912       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 913       return;
 914     }
 915     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 916 #endif
 917 
 918     if (is_osr_compilation()) {
 919       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 920       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 921     } else {
 922       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 923       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 924     }
 925 
 926     env()->register_method(_method, _entry_bci,
 927                            &_code_offsets,
 928                            _orig_pc_slot_offset_in_bytes,
 929                            code_buffer(),
 930                            frame_size_in_words(), _oop_map_set,
 931                            &_handler_table, &_inc_table,
 932                            compiler,
 933                            env()->comp_level(),
 934                            has_unsafe_access(),
 935                            SharedRuntime::is_wide_vector(max_vector_size()),
 936                            rtm_state()
 937                            );
 938 
 939     if (log() != NULL) // Print code cache state into compiler log
 940       log()->code_cache_state();
 941   }
 942 }
 943 
 944 //------------------------------Compile----------------------------------------
 945 // Compile a runtime stub
 946 Compile::Compile( ciEnv* ci_env,
 947                   TypeFunc_generator generator,
 948                   address stub_function,
 949                   const char *stub_name,
 950                   int is_fancy_jump,
 951                   bool pass_tls,
 952                   bool save_arg_registers,
 953                   bool return_pc )
 954   : Phase(Compiler),
 955     _env(ci_env),
 956     _log(ci_env->log()),
 957     _compile_id(0),
 958     _save_argument_registers(save_arg_registers),
 959     _method(NULL),
 960     _stub_name(stub_name),
 961     _stub_function(stub_function),
 962     _stub_entry_point(NULL),
 963     _entry_bci(InvocationEntryBci),
 964     _initial_gvn(NULL),
 965     _for_igvn(NULL),
 966     _warm_calls(NULL),
 967     _orig_pc_slot(0),
 968     _orig_pc_slot_offset_in_bytes(0),
 969     _subsume_loads(true),
 970     _do_escape_analysis(false),
 971     _eliminate_boxing(false),
 972     _failure_reason(NULL),
 973     _code_buffer("Compile::Fill_buffer"),
 974     _has_method_handle_invokes(false),
 975     _mach_constant_base_node(NULL),
 976     _node_bundling_limit(0),
 977     _node_bundling_base(NULL),
 978     _java_calls(0),
 979     _inner_loops(0),
 980 #ifndef PRODUCT
 981     _trace_opto_output(TraceOptoOutput),
 982     _in_dump_cnt(0),
 983     _printer(NULL),
 984 #endif
 985     _comp_arena(mtCompiler),
 986     _node_arena(mtCompiler),
 987     _old_arena(mtCompiler),
 988     _Compile_types(mtCompiler),
 989     _dead_node_list(comp_arena()),
 990     _dead_node_count(0),
 991     _congraph(NULL),
 992     _replay_inline_data(NULL),
 993     _number_of_mh_late_inlines(0),
 994     _inlining_progress(false),
 995     _inlining_incrementally(false),
 996     _print_inlining_list(NULL),
 997     _print_inlining_idx(0),
 998     _allowed_reasons(0),
 999     _interpreter_frame_size(0),
1000     _max_node_limit(MaxNodeLimit) {
1001   C = this;
1002 
1003 #ifndef PRODUCT
1004   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
1005   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
1006   set_print_assembly(PrintFrameConverterAssembly);
1007   set_parsed_irreducible_loop(false);
1008 #endif
1009   set_has_irreducible_loop(false); // no loops
1010 
1011   CompileWrapper cw(this);
1012   Init(/*AliasLevel=*/ 0);
1013   init_tf((*generator)());
1014 
1015   {
1016     // The following is a dummy for the sake of GraphKit::gen_stub
1017     Unique_Node_List for_igvn(comp_arena());
1018     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1019     PhaseGVN gvn(Thread::current()->resource_area(),255);
1020     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1021     gvn.transform_no_reclaim(top());
1022 
1023     GraphKit kit;
1024     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1025   }
1026 
1027   NOT_PRODUCT( verify_graph_edges(); )
1028   Code_Gen();
1029   if (failing())  return;
1030 
1031 
1032   // Entry point will be accessed using compile->stub_entry_point();
1033   if (code_buffer() == NULL) {
1034     Matcher::soft_match_failure();
1035   } else {
1036     if (PrintAssembly && (WizardMode || Verbose))
1037       tty->print_cr("### Stub::%s", stub_name);
1038 
1039     if (!failing()) {
1040       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1041 
1042       // Make the NMethod
1043       // For now we mark the frame as never safe for profile stackwalking
1044       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1045                                                       code_buffer(),
1046                                                       CodeOffsets::frame_never_safe,
1047                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1048                                                       frame_size_in_words(),
1049                                                       _oop_map_set,
1050                                                       save_arg_registers);
1051       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1052 
1053       _stub_entry_point = rs->entry_point();
1054     }
1055   }
1056 }
1057 
1058 //------------------------------Init-------------------------------------------
1059 // Prepare for a single compilation
1060 void Compile::Init(int aliaslevel) {
1061   _unique  = 0;
1062   _regalloc = NULL;
1063 
1064   _tf      = NULL;  // filled in later
1065   _top     = NULL;  // cached later
1066   _matcher = NULL;  // filled in later
1067   _cfg     = NULL;  // filled in later
1068 
1069   set_24_bit_selection_and_mode(Use24BitFP, false);
1070 
1071   _node_note_array = NULL;
1072   _default_node_notes = NULL;
1073 
1074   _immutable_memory = NULL; // filled in at first inquiry
1075 
1076   // Globally visible Nodes
1077   // First set TOP to NULL to give safe behavior during creation of RootNode
1078   set_cached_top_node(NULL);
1079   set_root(new (this) RootNode());
1080   // Now that you have a Root to point to, create the real TOP
1081   set_cached_top_node( new (this) ConNode(Type::TOP) );
1082   set_recent_alloc(NULL, NULL);
1083 
1084   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1085   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1086   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1087   env()->set_dependencies(new Dependencies(env()));
1088 
1089   _fixed_slots = 0;
1090   set_has_split_ifs(false);
1091   set_has_loops(has_method() && method()->has_loops()); // first approximation
1092   set_has_stringbuilder(false);
1093   set_has_boxed_value(false);
1094   _trap_can_recompile = false;  // no traps emitted yet
1095   _major_progress = true; // start out assuming good things will happen
1096   set_has_unsafe_access(false);
1097   set_max_vector_size(0);
1098   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1099   set_decompile_count(0);
1100 
1101   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1102   set_num_loop_opts(LoopOptsCount);
1103   set_do_inlining(Inline);
1104   set_max_inline_size(MaxInlineSize);
1105   set_freq_inline_size(FreqInlineSize);
1106   set_do_scheduling(OptoScheduling);
1107   set_do_count_invocations(false);
1108   set_do_method_data_update(false);
1109   set_rtm_state(NoRTM); // No RTM lock eliding by default
1110   method_has_option_value("MaxNodeLimit", _max_node_limit);
1111 #if INCLUDE_RTM_OPT
1112   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1113     int rtm_state = method()->method_data()->rtm_state();
1114     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1115       // Don't generate RTM lock eliding code.
1116       set_rtm_state(NoRTM);
1117     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1118       // Generate RTM lock eliding code without abort ratio calculation code.
1119       set_rtm_state(UseRTM);
1120     } else if (UseRTMDeopt) {
1121       // Generate RTM lock eliding code and include abort ratio calculation
1122       // code if UseRTMDeopt is on.
1123       set_rtm_state(ProfileRTM);
1124     }
1125   }
1126 #endif
1127   if (debug_info()->recording_non_safepoints()) {
1128     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1129                         (comp_arena(), 8, 0, NULL));
1130     set_default_node_notes(Node_Notes::make(this));
1131   }
1132 
1133   // // -- Initialize types before each compile --
1134   // // Update cached type information
1135   // if( _method && _method->constants() )
1136   //   Type::update_loaded_types(_method, _method->constants());
1137 
1138   // Init alias_type map.
1139   if (!_do_escape_analysis && aliaslevel == 3)
1140     aliaslevel = 2;  // No unique types without escape analysis
1141   _AliasLevel = aliaslevel;
1142   const int grow_ats = 16;
1143   _max_alias_types = grow_ats;
1144   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1145   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1146   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1147   {
1148     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1149   }
1150   // Initialize the first few types.
1151   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1152   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1153   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1154   _num_alias_types = AliasIdxRaw+1;
1155   // Zero out the alias type cache.
1156   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1157   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1158   probe_alias_cache(NULL)->_index = AliasIdxTop;
1159 
1160   _intrinsics = NULL;
1161   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1162   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1163   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1164   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1165   register_library_intrinsics();
1166 }
1167 
1168 //---------------------------init_start----------------------------------------
1169 // Install the StartNode on this compile object.
1170 void Compile::init_start(StartNode* s) {
1171   if (failing())
1172     return; // already failing
1173   assert(s == start(), "");
1174 }
1175 
1176 StartNode* Compile::start() const {
1177   assert(!failing(), "");
1178   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1179     Node* start = root()->fast_out(i);
1180     if( start->is_Start() )
1181       return start->as_Start();
1182   }
1183   fatal("Did not find Start node!");
1184   return NULL;
1185 }
1186 
1187 //-------------------------------immutable_memory-------------------------------------
1188 // Access immutable memory
1189 Node* Compile::immutable_memory() {
1190   if (_immutable_memory != NULL) {
1191     return _immutable_memory;
1192   }
1193   StartNode* s = start();
1194   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1195     Node *p = s->fast_out(i);
1196     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1197       _immutable_memory = p;
1198       return _immutable_memory;
1199     }
1200   }
1201   ShouldNotReachHere();
1202   return NULL;
1203 }
1204 
1205 //----------------------set_cached_top_node------------------------------------
1206 // Install the cached top node, and make sure Node::is_top works correctly.
1207 void Compile::set_cached_top_node(Node* tn) {
1208   if (tn != NULL)  verify_top(tn);
1209   Node* old_top = _top;
1210   _top = tn;
1211   // Calling Node::setup_is_top allows the nodes the chance to adjust
1212   // their _out arrays.
1213   if (_top != NULL)     _top->setup_is_top();
1214   if (old_top != NULL)  old_top->setup_is_top();
1215   assert(_top == NULL || top()->is_top(), "");
1216 }
1217 
1218 #ifdef ASSERT
1219 uint Compile::count_live_nodes_by_graph_walk() {
1220   Unique_Node_List useful(comp_arena());
1221   // Get useful node list by walking the graph.
1222   identify_useful_nodes(useful);
1223   return useful.size();
1224 }
1225 
1226 void Compile::print_missing_nodes() {
1227 
1228   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1229   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1230     return;
1231   }
1232 
1233   // This is an expensive function. It is executed only when the user
1234   // specifies VerifyIdealNodeCount option or otherwise knows the
1235   // additional work that needs to be done to identify reachable nodes
1236   // by walking the flow graph and find the missing ones using
1237   // _dead_node_list.
1238 
1239   Unique_Node_List useful(comp_arena());
1240   // Get useful node list by walking the graph.
1241   identify_useful_nodes(useful);
1242 
1243   uint l_nodes = C->live_nodes();
1244   uint l_nodes_by_walk = useful.size();
1245 
1246   if (l_nodes != l_nodes_by_walk) {
1247     if (_log != NULL) {
1248       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1249       _log->stamp();
1250       _log->end_head();
1251     }
1252     VectorSet& useful_member_set = useful.member_set();
1253     int last_idx = l_nodes_by_walk;
1254     for (int i = 0; i < last_idx; i++) {
1255       if (useful_member_set.test(i)) {
1256         if (_dead_node_list.test(i)) {
1257           if (_log != NULL) {
1258             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1259           }
1260           if (PrintIdealNodeCount) {
1261             // Print the log message to tty
1262               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1263               useful.at(i)->dump();
1264           }
1265         }
1266       }
1267       else if (! _dead_node_list.test(i)) {
1268         if (_log != NULL) {
1269           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1270         }
1271         if (PrintIdealNodeCount) {
1272           // Print the log message to tty
1273           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1274         }
1275       }
1276     }
1277     if (_log != NULL) {
1278       _log->tail("mismatched_nodes");
1279     }
1280   }
1281 }
1282 #endif
1283 
1284 #ifndef PRODUCT
1285 void Compile::verify_top(Node* tn) const {
1286   if (tn != NULL) {
1287     assert(tn->is_Con(), "top node must be a constant");
1288     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1289     assert(tn->in(0) != NULL, "must have live top node");
1290   }
1291 }
1292 #endif
1293 
1294 
1295 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1296 
1297 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1298   guarantee(arr != NULL, "");
1299   int num_blocks = arr->length();
1300   if (grow_by < num_blocks)  grow_by = num_blocks;
1301   int num_notes = grow_by * _node_notes_block_size;
1302   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1303   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1304   while (num_notes > 0) {
1305     arr->append(notes);
1306     notes     += _node_notes_block_size;
1307     num_notes -= _node_notes_block_size;
1308   }
1309   assert(num_notes == 0, "exact multiple, please");
1310 }
1311 
1312 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1313   if (source == NULL || dest == NULL)  return false;
1314 
1315   if (dest->is_Con())
1316     return false;               // Do not push debug info onto constants.
1317 
1318 #ifdef ASSERT
1319   // Leave a bread crumb trail pointing to the original node:
1320   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1321     dest->set_debug_orig(source);
1322   }
1323 #endif
1324 
1325   if (node_note_array() == NULL)
1326     return false;               // Not collecting any notes now.
1327 
1328   // This is a copy onto a pre-existing node, which may already have notes.
1329   // If both nodes have notes, do not overwrite any pre-existing notes.
1330   Node_Notes* source_notes = node_notes_at(source->_idx);
1331   if (source_notes == NULL || source_notes->is_clear())  return false;
1332   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1333   if (dest_notes == NULL || dest_notes->is_clear()) {
1334     return set_node_notes_at(dest->_idx, source_notes);
1335   }
1336 
1337   Node_Notes merged_notes = (*source_notes);
1338   // The order of operations here ensures that dest notes will win...
1339   merged_notes.update_from(dest_notes);
1340   return set_node_notes_at(dest->_idx, &merged_notes);
1341 }
1342 
1343 
1344 //--------------------------allow_range_check_smearing-------------------------
1345 // Gating condition for coalescing similar range checks.
1346 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1347 // single covering check that is at least as strong as any of them.
1348 // If the optimization succeeds, the simplified (strengthened) range check
1349 // will always succeed.  If it fails, we will deopt, and then give up
1350 // on the optimization.
1351 bool Compile::allow_range_check_smearing() const {
1352   // If this method has already thrown a range-check,
1353   // assume it was because we already tried range smearing
1354   // and it failed.
1355   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1356   return !already_trapped;
1357 }
1358 
1359 
1360 //------------------------------flatten_alias_type-----------------------------
1361 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1362   int offset = tj->offset();
1363   TypePtr::PTR ptr = tj->ptr();
1364 
1365   // Known instance (scalarizable allocation) alias only with itself.
1366   bool is_known_inst = tj->isa_oopptr() != NULL &&
1367                        tj->is_oopptr()->is_known_instance();
1368 
1369   // Process weird unsafe references.
1370   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1371     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1372     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1373     tj = TypeOopPtr::BOTTOM;
1374     ptr = tj->ptr();
1375     offset = tj->offset();
1376   }
1377 
1378   // Array pointers need some flattening
1379   const TypeAryPtr *ta = tj->isa_aryptr();
1380   if (ta && ta->is_stable()) {
1381     // Erase stability property for alias analysis.
1382     tj = ta = ta->cast_to_stable(false);
1383   }
1384   if( ta && is_known_inst ) {
1385     if ( offset != Type::OffsetBot &&
1386          offset > arrayOopDesc::length_offset_in_bytes() ) {
1387       offset = Type::OffsetBot; // Flatten constant access into array body only
1388       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1389     }
1390   } else if( ta && _AliasLevel >= 2 ) {
1391     // For arrays indexed by constant indices, we flatten the alias
1392     // space to include all of the array body.  Only the header, klass
1393     // and array length can be accessed un-aliased.
1394     if( offset != Type::OffsetBot ) {
1395       if( ta->const_oop() ) { // MethodData* or Method*
1396         offset = Type::OffsetBot;   // Flatten constant access into array body
1397         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1398       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1399         // range is OK as-is.
1400         tj = ta = TypeAryPtr::RANGE;
1401       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1402         tj = TypeInstPtr::KLASS; // all klass loads look alike
1403         ta = TypeAryPtr::RANGE; // generic ignored junk
1404         ptr = TypePtr::BotPTR;
1405       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1406         tj = TypeInstPtr::MARK;
1407         ta = TypeAryPtr::RANGE; // generic ignored junk
1408         ptr = TypePtr::BotPTR;
1409       } else {                  // Random constant offset into array body
1410         offset = Type::OffsetBot;   // Flatten constant access into array body
1411         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1412       }
1413     }
1414     // Arrays of fixed size alias with arrays of unknown size.
1415     if (ta->size() != TypeInt::POS) {
1416       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1417       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1418     }
1419     // Arrays of known objects become arrays of unknown objects.
1420     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1421       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1422       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1423     }
1424     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1425       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1426       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1427     }
1428     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1429     // cannot be distinguished by bytecode alone.
1430     if (ta->elem() == TypeInt::BOOL) {
1431       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1432       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1433       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1434     }
1435     // During the 2nd round of IterGVN, NotNull castings are removed.
1436     // Make sure the Bottom and NotNull variants alias the same.
1437     // Also, make sure exact and non-exact variants alias the same.
1438     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1439       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1440     }
1441   }
1442 
1443   // Oop pointers need some flattening
1444   const TypeInstPtr *to = tj->isa_instptr();
1445   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1446     ciInstanceKlass *k = to->klass()->as_instance_klass();
1447     if( ptr == TypePtr::Constant ) {
1448       if (to->klass() != ciEnv::current()->Class_klass() ||
1449           offset < k->size_helper() * wordSize) {
1450         // No constant oop pointers (such as Strings); they alias with
1451         // unknown strings.
1452         assert(!is_known_inst, "not scalarizable allocation");
1453         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1454       }
1455     } else if( is_known_inst ) {
1456       tj = to; // Keep NotNull and klass_is_exact for instance type
1457     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1458       // During the 2nd round of IterGVN, NotNull castings are removed.
1459       // Make sure the Bottom and NotNull variants alias the same.
1460       // Also, make sure exact and non-exact variants alias the same.
1461       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1462     }
1463     if (to->speculative() != NULL) {
1464       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1465     }
1466     // Canonicalize the holder of this field
1467     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1468       // First handle header references such as a LoadKlassNode, even if the
1469       // object's klass is unloaded at compile time (4965979).
1470       if (!is_known_inst) { // Do it only for non-instance types
1471         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1472       }
1473     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1474       // Static fields are in the space above the normal instance
1475       // fields in the java.lang.Class instance.
1476       if (to->klass() != ciEnv::current()->Class_klass()) {
1477         to = NULL;
1478         tj = TypeOopPtr::BOTTOM;
1479         offset = tj->offset();
1480       }
1481     } else {
1482       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1483       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1484         if( is_known_inst ) {
1485           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1486         } else {
1487           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1488         }
1489       }
1490     }
1491   }
1492 
1493   // Klass pointers to object array klasses need some flattening
1494   const TypeKlassPtr *tk = tj->isa_klassptr();
1495   if( tk ) {
1496     // If we are referencing a field within a Klass, we need
1497     // to assume the worst case of an Object.  Both exact and
1498     // inexact types must flatten to the same alias class so
1499     // use NotNull as the PTR.
1500     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1501 
1502       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1503                                    TypeKlassPtr::OBJECT->klass(),
1504                                    offset);
1505     }
1506 
1507     ciKlass* klass = tk->klass();
1508     if( klass->is_obj_array_klass() ) {
1509       ciKlass* k = TypeAryPtr::OOPS->klass();
1510       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1511         k = TypeInstPtr::BOTTOM->klass();
1512       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1513     }
1514 
1515     // Check for precise loads from the primary supertype array and force them
1516     // to the supertype cache alias index.  Check for generic array loads from
1517     // the primary supertype array and also force them to the supertype cache
1518     // alias index.  Since the same load can reach both, we need to merge
1519     // these 2 disparate memories into the same alias class.  Since the
1520     // primary supertype array is read-only, there's no chance of confusion
1521     // where we bypass an array load and an array store.
1522     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1523     if (offset == Type::OffsetBot ||
1524         (offset >= primary_supers_offset &&
1525          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1526         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1527       offset = in_bytes(Klass::secondary_super_cache_offset());
1528       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1529     }
1530   }
1531 
1532   // Flatten all Raw pointers together.
1533   if (tj->base() == Type::RawPtr)
1534     tj = TypeRawPtr::BOTTOM;
1535 
1536   if (tj->base() == Type::AnyPtr)
1537     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1538 
1539   // Flatten all to bottom for now
1540   switch( _AliasLevel ) {
1541   case 0:
1542     tj = TypePtr::BOTTOM;
1543     break;
1544   case 1:                       // Flatten to: oop, static, field or array
1545     switch (tj->base()) {
1546     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1547     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1548     case Type::AryPtr:   // do not distinguish arrays at all
1549     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1550     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1551     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1552     default: ShouldNotReachHere();
1553     }
1554     break;
1555   case 2:                       // No collapsing at level 2; keep all splits
1556   case 3:                       // No collapsing at level 3; keep all splits
1557     break;
1558   default:
1559     Unimplemented();
1560   }
1561 
1562   offset = tj->offset();
1563   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1564 
1565   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1566           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1567           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1568           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1569           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1570           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1571           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1572           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1573   assert( tj->ptr() != TypePtr::TopPTR &&
1574           tj->ptr() != TypePtr::AnyNull &&
1575           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1576 //    assert( tj->ptr() != TypePtr::Constant ||
1577 //            tj->base() == Type::RawPtr ||
1578 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1579 
1580   return tj;
1581 }
1582 
1583 void Compile::AliasType::Init(int i, const TypePtr* at) {
1584   _index = i;
1585   _adr_type = at;
1586   _field = NULL;
1587   _element = NULL;
1588   _is_rewritable = true; // default
1589   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1590   if (atoop != NULL && atoop->is_known_instance()) {
1591     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1592     _general_index = Compile::current()->get_alias_index(gt);
1593   } else {
1594     _general_index = 0;
1595   }
1596 }
1597 
1598 //---------------------------------print_on------------------------------------
1599 #ifndef PRODUCT
1600 void Compile::AliasType::print_on(outputStream* st) {
1601   if (index() < 10)
1602         st->print("@ <%d> ", index());
1603   else  st->print("@ <%d>",  index());
1604   st->print(is_rewritable() ? "   " : " RO");
1605   int offset = adr_type()->offset();
1606   if (offset == Type::OffsetBot)
1607         st->print(" +any");
1608   else  st->print(" +%-3d", offset);
1609   st->print(" in ");
1610   adr_type()->dump_on(st);
1611   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1612   if (field() != NULL && tjp) {
1613     if (tjp->klass()  != field()->holder() ||
1614         tjp->offset() != field()->offset_in_bytes()) {
1615       st->print(" != ");
1616       field()->print();
1617       st->print(" ***");
1618     }
1619   }
1620 }
1621 
1622 void print_alias_types() {
1623   Compile* C = Compile::current();
1624   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1625   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1626     C->alias_type(idx)->print_on(tty);
1627     tty->cr();
1628   }
1629 }
1630 #endif
1631 
1632 
1633 //----------------------------probe_alias_cache--------------------------------
1634 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1635   intptr_t key = (intptr_t) adr_type;
1636   key ^= key >> logAliasCacheSize;
1637   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1638 }
1639 
1640 
1641 //-----------------------------grow_alias_types--------------------------------
1642 void Compile::grow_alias_types() {
1643   const int old_ats  = _max_alias_types; // how many before?
1644   const int new_ats  = old_ats;          // how many more?
1645   const int grow_ats = old_ats+new_ats;  // how many now?
1646   _max_alias_types = grow_ats;
1647   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1648   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1649   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1650   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1651 }
1652 
1653 
1654 //--------------------------------find_alias_type------------------------------
1655 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1656   if (_AliasLevel == 0)
1657     return alias_type(AliasIdxBot);
1658 
1659   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1660   if (ace->_adr_type == adr_type) {
1661     return alias_type(ace->_index);
1662   }
1663 
1664   // Handle special cases.
1665   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1666   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1667 
1668   // Do it the slow way.
1669   const TypePtr* flat = flatten_alias_type(adr_type);
1670 
1671 #ifdef ASSERT
1672   assert(flat == flatten_alias_type(flat), "idempotent");
1673   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1674   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1675     const TypeOopPtr* foop = flat->is_oopptr();
1676     // Scalarizable allocations have exact klass always.
1677     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1678     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1679     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1680   }
1681   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1682 #endif
1683 
1684   int idx = AliasIdxTop;
1685   for (int i = 0; i < num_alias_types(); i++) {
1686     if (alias_type(i)->adr_type() == flat) {
1687       idx = i;
1688       break;
1689     }
1690   }
1691 
1692   if (idx == AliasIdxTop) {
1693     if (no_create)  return NULL;
1694     // Grow the array if necessary.
1695     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1696     // Add a new alias type.
1697     idx = _num_alias_types++;
1698     _alias_types[idx]->Init(idx, flat);
1699     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1700     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1701     if (flat->isa_instptr()) {
1702       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1703           && flat->is_instptr()->klass() == env()->Class_klass())
1704         alias_type(idx)->set_rewritable(false);
1705     }
1706     if (flat->isa_aryptr()) {
1707 #ifdef ASSERT
1708       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1709       // (T_BYTE has the weakest alignment and size restrictions...)
1710       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1711 #endif
1712       if (flat->offset() == TypePtr::OffsetBot) {
1713         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1714       }
1715     }
1716     if (flat->isa_klassptr()) {
1717       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1718         alias_type(idx)->set_rewritable(false);
1719       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1720         alias_type(idx)->set_rewritable(false);
1721       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1722         alias_type(idx)->set_rewritable(false);
1723       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1724         alias_type(idx)->set_rewritable(false);
1725     }
1726     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1727     // but the base pointer type is not distinctive enough to identify
1728     // references into JavaThread.)
1729 
1730     // Check for final fields.
1731     const TypeInstPtr* tinst = flat->isa_instptr();
1732     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1733       ciField* field;
1734       if (tinst->const_oop() != NULL &&
1735           tinst->klass() == ciEnv::current()->Class_klass() &&
1736           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1737         // static field
1738         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1739         field = k->get_field_by_offset(tinst->offset(), true);
1740       } else {
1741         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1742         field = k->get_field_by_offset(tinst->offset(), false);
1743       }
1744       assert(field == NULL ||
1745              original_field == NULL ||
1746              (field->holder() == original_field->holder() &&
1747               field->offset() == original_field->offset() &&
1748               field->is_static() == original_field->is_static()), "wrong field?");
1749       // Set field() and is_rewritable() attributes.
1750       if (field != NULL)  alias_type(idx)->set_field(field);
1751     }
1752   }
1753 
1754   // Fill the cache for next time.
1755   ace->_adr_type = adr_type;
1756   ace->_index    = idx;
1757   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1758 
1759   // Might as well try to fill the cache for the flattened version, too.
1760   AliasCacheEntry* face = probe_alias_cache(flat);
1761   if (face->_adr_type == NULL) {
1762     face->_adr_type = flat;
1763     face->_index    = idx;
1764     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1765   }
1766 
1767   return alias_type(idx);
1768 }
1769 
1770 
1771 Compile::AliasType* Compile::alias_type(ciField* field) {
1772   const TypeOopPtr* t;
1773   if (field->is_static())
1774     t = TypeInstPtr::make(field->holder()->java_mirror());
1775   else
1776     t = TypeOopPtr::make_from_klass_raw(field->holder());
1777   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1778   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1779   return atp;
1780 }
1781 
1782 
1783 //------------------------------have_alias_type--------------------------------
1784 bool Compile::have_alias_type(const TypePtr* adr_type) {
1785   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1786   if (ace->_adr_type == adr_type) {
1787     return true;
1788   }
1789 
1790   // Handle special cases.
1791   if (adr_type == NULL)             return true;
1792   if (adr_type == TypePtr::BOTTOM)  return true;
1793 
1794   return find_alias_type(adr_type, true, NULL) != NULL;
1795 }
1796 
1797 //-----------------------------must_alias--------------------------------------
1798 // True if all values of the given address type are in the given alias category.
1799 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1800   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1801   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1802   if (alias_idx == AliasIdxTop)         return false; // the empty category
1803   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1804 
1805   // the only remaining possible overlap is identity
1806   int adr_idx = get_alias_index(adr_type);
1807   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1808   assert(adr_idx == alias_idx ||
1809          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1810           && adr_type                       != TypeOopPtr::BOTTOM),
1811          "should not be testing for overlap with an unsafe pointer");
1812   return adr_idx == alias_idx;
1813 }
1814 
1815 //------------------------------can_alias--------------------------------------
1816 // True if any values of the given address type are in the given alias category.
1817 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1818   if (alias_idx == AliasIdxTop)         return false; // the empty category
1819   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1820   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1821   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1822 
1823   // the only remaining possible overlap is identity
1824   int adr_idx = get_alias_index(adr_type);
1825   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1826   return adr_idx == alias_idx;
1827 }
1828 
1829 
1830 
1831 //---------------------------pop_warm_call-------------------------------------
1832 WarmCallInfo* Compile::pop_warm_call() {
1833   WarmCallInfo* wci = _warm_calls;
1834   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1835   return wci;
1836 }
1837 
1838 //----------------------------Inline_Warm--------------------------------------
1839 int Compile::Inline_Warm() {
1840   // If there is room, try to inline some more warm call sites.
1841   // %%% Do a graph index compaction pass when we think we're out of space?
1842   if (!InlineWarmCalls)  return 0;
1843 
1844   int calls_made_hot = 0;
1845   int room_to_grow   = NodeCountInliningCutoff - unique();
1846   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1847   int amount_grown   = 0;
1848   WarmCallInfo* call;
1849   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1850     int est_size = (int)call->size();
1851     if (est_size > (room_to_grow - amount_grown)) {
1852       // This one won't fit anyway.  Get rid of it.
1853       call->make_cold();
1854       continue;
1855     }
1856     call->make_hot();
1857     calls_made_hot++;
1858     amount_grown   += est_size;
1859     amount_to_grow -= est_size;
1860   }
1861 
1862   if (calls_made_hot > 0)  set_major_progress();
1863   return calls_made_hot;
1864 }
1865 
1866 
1867 //----------------------------Finish_Warm--------------------------------------
1868 void Compile::Finish_Warm() {
1869   if (!InlineWarmCalls)  return;
1870   if (failing())  return;
1871   if (warm_calls() == NULL)  return;
1872 
1873   // Clean up loose ends, if we are out of space for inlining.
1874   WarmCallInfo* call;
1875   while ((call = pop_warm_call()) != NULL) {
1876     call->make_cold();
1877   }
1878 }
1879 
1880 //---------------------cleanup_loop_predicates-----------------------
1881 // Remove the opaque nodes that protect the predicates so that all unused
1882 // checks and uncommon_traps will be eliminated from the ideal graph
1883 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1884   if (predicate_count()==0) return;
1885   for (int i = predicate_count(); i > 0; i--) {
1886     Node * n = predicate_opaque1_node(i-1);
1887     assert(n->Opcode() == Op_Opaque1, "must be");
1888     igvn.replace_node(n, n->in(1));
1889   }
1890   assert(predicate_count()==0, "should be clean!");
1891 }
1892 
1893 void Compile::add_range_check_cast(Node* n) {
1894   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1895   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1896   _range_check_casts->append(n);
1897 }
1898 
1899 // Remove all range check dependent CastIINodes.
1900 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1901   for (int i = range_check_cast_count(); i > 0; i--) {
1902     Node* cast = range_check_cast_node(i-1);
1903     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1904     igvn.replace_node(cast, cast->in(1));
1905   }
1906   assert(range_check_cast_count() == 0, "should be empty");
1907 }
1908 
1909 // StringOpts and late inlining of string methods
1910 void Compile::inline_string_calls(bool parse_time) {
1911   {
1912     // remove useless nodes to make the usage analysis simpler
1913     ResourceMark rm;
1914     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1915   }
1916 
1917   {
1918     ResourceMark rm;
1919     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1920     PhaseStringOpts pso(initial_gvn(), for_igvn());
1921     print_method(PHASE_AFTER_STRINGOPTS, 3);
1922   }
1923 
1924   // now inline anything that we skipped the first time around
1925   if (!parse_time) {
1926     _late_inlines_pos = _late_inlines.length();
1927   }
1928 
1929   while (_string_late_inlines.length() > 0) {
1930     CallGenerator* cg = _string_late_inlines.pop();
1931     cg->do_late_inline();
1932     if (failing())  return;
1933   }
1934   _string_late_inlines.trunc_to(0);
1935 }
1936 
1937 // Late inlining of boxing methods
1938 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1939   if (_boxing_late_inlines.length() > 0) {
1940     assert(has_boxed_value(), "inconsistent");
1941 
1942     PhaseGVN* gvn = initial_gvn();
1943     set_inlining_incrementally(true);
1944 
1945     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1946     for_igvn()->clear();
1947     gvn->replace_with(&igvn);
1948 
1949     _late_inlines_pos = _late_inlines.length();
1950 
1951     while (_boxing_late_inlines.length() > 0) {
1952       CallGenerator* cg = _boxing_late_inlines.pop();
1953       cg->do_late_inline();
1954       if (failing())  return;
1955     }
1956     _boxing_late_inlines.trunc_to(0);
1957 
1958     {
1959       ResourceMark rm;
1960       PhaseRemoveUseless pru(gvn, for_igvn());
1961     }
1962 
1963     igvn = PhaseIterGVN(gvn);
1964     igvn.optimize();
1965 
1966     set_inlining_progress(false);
1967     set_inlining_incrementally(false);
1968   }
1969 }
1970 
1971 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1972   assert(IncrementalInline, "incremental inlining should be on");
1973   PhaseGVN* gvn = initial_gvn();
1974 
1975   set_inlining_progress(false);
1976   for_igvn()->clear();
1977   gvn->replace_with(&igvn);
1978 
1979   int i = 0;
1980 
1981   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1982     CallGenerator* cg = _late_inlines.at(i);
1983     _late_inlines_pos = i+1;
1984     cg->do_late_inline();
1985     if (failing())  return;
1986   }
1987   int j = 0;
1988   for (; i < _late_inlines.length(); i++, j++) {
1989     _late_inlines.at_put(j, _late_inlines.at(i));
1990   }
1991   _late_inlines.trunc_to(j);
1992 
1993   {
1994     ResourceMark rm;
1995     PhaseRemoveUseless pru(gvn, for_igvn());
1996   }
1997 
1998   igvn = PhaseIterGVN(gvn);
1999 }
2000 
2001 // Perform incremental inlining until bound on number of live nodes is reached
2002 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2003   PhaseGVN* gvn = initial_gvn();
2004 
2005   set_inlining_incrementally(true);
2006   set_inlining_progress(true);
2007   uint low_live_nodes = 0;
2008 
2009   while(inlining_progress() && _late_inlines.length() > 0) {
2010 
2011     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2012       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2013         // PhaseIdealLoop is expensive so we only try it once we are
2014         // out of live nodes and we only try it again if the previous
2015         // helped got the number of nodes down significantly
2016         PhaseIdealLoop ideal_loop( igvn, false, true );
2017         if (failing())  return;
2018         low_live_nodes = live_nodes();
2019         _major_progress = true;
2020       }
2021 
2022       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2023         break;
2024       }
2025     }
2026 
2027     inline_incrementally_one(igvn);
2028 
2029     if (failing())  return;
2030 
2031     igvn.optimize();
2032 
2033     if (failing())  return;
2034   }
2035 
2036   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2037 
2038   if (_string_late_inlines.length() > 0) {
2039     assert(has_stringbuilder(), "inconsistent");
2040     for_igvn()->clear();
2041     initial_gvn()->replace_with(&igvn);
2042 
2043     inline_string_calls(false);
2044 
2045     if (failing())  return;
2046 
2047     {
2048       ResourceMark rm;
2049       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2050     }
2051 
2052     igvn = PhaseIterGVN(gvn);
2053 
2054     igvn.optimize();
2055   }
2056 
2057   set_inlining_incrementally(false);
2058 }
2059 
2060 
2061 //------------------------------Optimize---------------------------------------
2062 // Given a graph, optimize it.
2063 void Compile::Optimize() {
2064   TracePhase t1("optimizer", &_t_optimizer, true);
2065 
2066 #ifndef PRODUCT
2067   if (env()->break_at_compile()) {
2068     BREAKPOINT;
2069   }
2070 
2071 #endif
2072 
2073   ResourceMark rm;
2074   int          loop_opts_cnt;
2075 
2076   NOT_PRODUCT( verify_graph_edges(); )
2077 
2078   print_method(PHASE_AFTER_PARSING);
2079 
2080  {
2081   // Iterative Global Value Numbering, including ideal transforms
2082   // Initialize IterGVN with types and values from parse-time GVN
2083   PhaseIterGVN igvn(initial_gvn());
2084   {
2085     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2086     igvn.optimize();
2087   }
2088 
2089   print_method(PHASE_ITER_GVN1, 2);
2090 
2091   if (failing())  return;
2092 
2093   {
2094     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2095     inline_incrementally(igvn);
2096   }
2097 
2098   print_method(PHASE_INCREMENTAL_INLINE, 2);
2099 
2100   if (failing())  return;
2101 
2102   if (eliminate_boxing()) {
2103     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2104     // Inline valueOf() methods now.
2105     inline_boxing_calls(igvn);
2106 
2107     if (AlwaysIncrementalInline) {
2108       inline_incrementally(igvn);
2109     }
2110 
2111     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2112 
2113     if (failing())  return;
2114   }
2115 
2116   // Remove the speculative part of types and clean up the graph from
2117   // the extra CastPP nodes whose only purpose is to carry them. Do
2118   // that early so that optimizations are not disrupted by the extra
2119   // CastPP nodes.
2120   remove_speculative_types(igvn);
2121 
2122   // No more new expensive nodes will be added to the list from here
2123   // so keep only the actual candidates for optimizations.
2124   cleanup_expensive_nodes(igvn);
2125 
2126   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2127     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
2128     initial_gvn()->replace_with(&igvn);
2129     for_igvn()->clear();
2130     Unique_Node_List new_worklist(C->comp_arena());
2131     {
2132       ResourceMark rm;
2133       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2134     }
2135     set_for_igvn(&new_worklist);
2136     igvn = PhaseIterGVN(initial_gvn());
2137     igvn.optimize();
2138   }
2139 
2140   // Perform escape analysis
2141   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2142     if (has_loops()) {
2143       // Cleanup graph (remove dead nodes).
2144       TracePhase t2("idealLoop", &_t_idealLoop, true);
2145       PhaseIdealLoop ideal_loop( igvn, false, true );
2146       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2147       if (failing())  return;
2148     }
2149     ConnectionGraph::do_analysis(this, &igvn);
2150 
2151     if (failing())  return;
2152 
2153     // Optimize out fields loads from scalar replaceable allocations.
2154     igvn.optimize();
2155     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2156 
2157     if (failing())  return;
2158 
2159     if (congraph() != NULL && macro_count() > 0) {
2160       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2161       PhaseMacroExpand mexp(igvn);
2162       mexp.eliminate_macro_nodes();
2163       igvn.set_delay_transform(false);
2164 
2165       igvn.optimize();
2166       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2167 
2168       if (failing())  return;
2169     }
2170   }
2171 
2172   // Loop transforms on the ideal graph.  Range Check Elimination,
2173   // peeling, unrolling, etc.
2174 
2175   // Set loop opts counter
2176   loop_opts_cnt = num_loop_opts();
2177   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2178     {
2179       TracePhase t2("idealLoop", &_t_idealLoop, true);
2180       PhaseIdealLoop ideal_loop( igvn, true );
2181       loop_opts_cnt--;
2182       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2183       if (failing())  return;
2184     }
2185     // Loop opts pass if partial peeling occurred in previous pass
2186     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2187       TracePhase t3("idealLoop", &_t_idealLoop, true);
2188       PhaseIdealLoop ideal_loop( igvn, false );
2189       loop_opts_cnt--;
2190       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2191       if (failing())  return;
2192     }
2193     // Loop opts pass for loop-unrolling before CCP
2194     if(major_progress() && (loop_opts_cnt > 0)) {
2195       TracePhase t4("idealLoop", &_t_idealLoop, true);
2196       PhaseIdealLoop ideal_loop( igvn, false );
2197       loop_opts_cnt--;
2198       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2199     }
2200     if (!failing()) {
2201       // Verify that last round of loop opts produced a valid graph
2202       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2203       PhaseIdealLoop::verify(igvn);
2204     }
2205   }
2206   if (failing())  return;
2207 
2208   // Conditional Constant Propagation;
2209   PhaseCCP ccp( &igvn );
2210   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2211   {
2212     TracePhase t2("ccp", &_t_ccp, true);
2213     ccp.do_transform();
2214   }
2215   print_method(PHASE_CPP1, 2);
2216 
2217   assert( true, "Break here to ccp.dump_old2new_map()");
2218 
2219   // Iterative Global Value Numbering, including ideal transforms
2220   {
2221     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2222     igvn = ccp;
2223     igvn.optimize();
2224   }
2225 
2226   print_method(PHASE_ITER_GVN2, 2);
2227 
2228   if (failing())  return;
2229 
2230   // Loop transforms on the ideal graph.  Range Check Elimination,
2231   // peeling, unrolling, etc.
2232   if(loop_opts_cnt > 0) {
2233     debug_only( int cnt = 0; );
2234     while(major_progress() && (loop_opts_cnt > 0)) {
2235       TracePhase t2("idealLoop", &_t_idealLoop, true);
2236       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2237       PhaseIdealLoop ideal_loop( igvn, true);
2238       loop_opts_cnt--;
2239       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2240       if (failing())  return;
2241     }
2242   }
2243 
2244   {
2245     // Verify that all previous optimizations produced a valid graph
2246     // at least to this point, even if no loop optimizations were done.
2247     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2248     PhaseIdealLoop::verify(igvn);
2249   }
2250 
2251   if (range_check_cast_count() > 0) {
2252     // No more loop optimizations. Remove all range check dependent CastIINodes.
2253     C->remove_range_check_casts(igvn);
2254     igvn.optimize();
2255   }
2256 
2257   {
2258     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2259     PhaseMacroExpand  mex(igvn);
2260     if (mex.expand_macro_nodes()) {
2261       assert(failing(), "must bail out w/ explicit message");
2262       return;
2263     }
2264   }
2265 
2266  } // (End scope of igvn; run destructor if necessary for asserts.)
2267 
2268   dump_inlining();
2269   // A method with only infinite loops has no edges entering loops from root
2270   {
2271     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2272     if (final_graph_reshaping()) {
2273       assert(failing(), "must bail out w/ explicit message");
2274       return;
2275     }
2276   }
2277 
2278   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2279 }
2280 
2281 
2282 //------------------------------Code_Gen---------------------------------------
2283 // Given a graph, generate code for it
2284 void Compile::Code_Gen() {
2285   if (failing()) {
2286     return;
2287   }
2288 
2289   // Perform instruction selection.  You might think we could reclaim Matcher
2290   // memory PDQ, but actually the Matcher is used in generating spill code.
2291   // Internals of the Matcher (including some VectorSets) must remain live
2292   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2293   // set a bit in reclaimed memory.
2294 
2295   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2296   // nodes.  Mapping is only valid at the root of each matched subtree.
2297   NOT_PRODUCT( verify_graph_edges(); )
2298 
2299   Matcher matcher;
2300   _matcher = &matcher;
2301   {
2302     TracePhase t2("matcher", &_t_matcher, true);
2303     matcher.match();
2304   }
2305   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2306   // nodes.  Mapping is only valid at the root of each matched subtree.
2307   NOT_PRODUCT( verify_graph_edges(); )
2308 
2309   // If you have too many nodes, or if matching has failed, bail out
2310   check_node_count(0, "out of nodes matching instructions");
2311   if (failing()) {
2312     return;
2313   }
2314 
2315   // Build a proper-looking CFG
2316   PhaseCFG cfg(node_arena(), root(), matcher);
2317   _cfg = &cfg;
2318   {
2319     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2320     bool success = cfg.do_global_code_motion();
2321     if (!success) {
2322       return;
2323     }
2324 
2325     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2326     NOT_PRODUCT( verify_graph_edges(); )
2327     debug_only( cfg.verify(); )
2328   }
2329 
2330   PhaseChaitin regalloc(unique(), cfg, matcher);
2331   _regalloc = &regalloc;
2332   {
2333     TracePhase t2("regalloc", &_t_registerAllocation, true);
2334     // Perform register allocation.  After Chaitin, use-def chains are
2335     // no longer accurate (at spill code) and so must be ignored.
2336     // Node->LRG->reg mappings are still accurate.
2337     _regalloc->Register_Allocate();
2338 
2339     // Bail out if the allocator builds too many nodes
2340     if (failing()) {
2341       return;
2342     }
2343   }
2344 
2345   // Prior to register allocation we kept empty basic blocks in case the
2346   // the allocator needed a place to spill.  After register allocation we
2347   // are not adding any new instructions.  If any basic block is empty, we
2348   // can now safely remove it.
2349   {
2350     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2351     cfg.remove_empty_blocks();
2352     if (do_freq_based_layout()) {
2353       PhaseBlockLayout layout(cfg);
2354     } else {
2355       cfg.set_loop_alignment();
2356     }
2357     cfg.fixup_flow();
2358   }
2359 
2360   // Apply peephole optimizations
2361   if( OptoPeephole ) {
2362     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2363     PhasePeephole peep( _regalloc, cfg);
2364     peep.do_transform();
2365   }
2366 
2367   // Do late expand if CPU requires this.
2368   if (Matcher::require_postalloc_expand) {
2369     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2370     cfg.postalloc_expand(_regalloc);
2371   }
2372 
2373   // Convert Nodes to instruction bits in a buffer
2374   {
2375     // %%%% workspace merge brought two timers together for one job
2376     TracePhase t2a("output", &_t_output, true);
2377     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2378     Output();
2379   }
2380 
2381   print_method(PHASE_FINAL_CODE);
2382 
2383   // He's dead, Jim.
2384   _cfg     = (PhaseCFG*)0xdeadbeef;
2385   _regalloc = (PhaseChaitin*)0xdeadbeef;
2386 }
2387 
2388 
2389 //------------------------------dump_asm---------------------------------------
2390 // Dump formatted assembly
2391 #ifndef PRODUCT
2392 void Compile::dump_asm(int *pcs, uint pc_limit) {
2393   bool cut_short = false;
2394   tty->print_cr("#");
2395   tty->print("#  ");  _tf->dump();  tty->cr();
2396   tty->print_cr("#");
2397 
2398   // For all blocks
2399   int pc = 0x0;                 // Program counter
2400   char starts_bundle = ' ';
2401   _regalloc->dump_frame();
2402 
2403   Node *n = NULL;
2404   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2405     if (VMThread::should_terminate()) {
2406       cut_short = true;
2407       break;
2408     }
2409     Block* block = _cfg->get_block(i);
2410     if (block->is_connector() && !Verbose) {
2411       continue;
2412     }
2413     n = block->head();
2414     if (pcs && n->_idx < pc_limit) {
2415       tty->print("%3.3x   ", pcs[n->_idx]);
2416     } else {
2417       tty->print("      ");
2418     }
2419     block->dump_head(_cfg);
2420     if (block->is_connector()) {
2421       tty->print_cr("        # Empty connector block");
2422     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2423       tty->print_cr("        # Block is sole successor of call");
2424     }
2425 
2426     // For all instructions
2427     Node *delay = NULL;
2428     for (uint j = 0; j < block->number_of_nodes(); j++) {
2429       if (VMThread::should_terminate()) {
2430         cut_short = true;
2431         break;
2432       }
2433       n = block->get_node(j);
2434       if (valid_bundle_info(n)) {
2435         Bundle* bundle = node_bundling(n);
2436         if (bundle->used_in_unconditional_delay()) {
2437           delay = n;
2438           continue;
2439         }
2440         if (bundle->starts_bundle()) {
2441           starts_bundle = '+';
2442         }
2443       }
2444 
2445       if (WizardMode) {
2446         n->dump();
2447       }
2448 
2449       if( !n->is_Region() &&    // Dont print in the Assembly
2450           !n->is_Phi() &&       // a few noisely useless nodes
2451           !n->is_Proj() &&
2452           !n->is_MachTemp() &&
2453           !n->is_SafePointScalarObject() &&
2454           !n->is_Catch() &&     // Would be nice to print exception table targets
2455           !n->is_MergeMem() &&  // Not very interesting
2456           !n->is_top() &&       // Debug info table constants
2457           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2458           ) {
2459         if (pcs && n->_idx < pc_limit)
2460           tty->print("%3.3x", pcs[n->_idx]);
2461         else
2462           tty->print("   ");
2463         tty->print(" %c ", starts_bundle);
2464         starts_bundle = ' ';
2465         tty->print("\t");
2466         n->format(_regalloc, tty);
2467         tty->cr();
2468       }
2469 
2470       // If we have an instruction with a delay slot, and have seen a delay,
2471       // then back up and print it
2472       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2473         assert(delay != NULL, "no unconditional delay instruction");
2474         if (WizardMode) delay->dump();
2475 
2476         if (node_bundling(delay)->starts_bundle())
2477           starts_bundle = '+';
2478         if (pcs && n->_idx < pc_limit)
2479           tty->print("%3.3x", pcs[n->_idx]);
2480         else
2481           tty->print("   ");
2482         tty->print(" %c ", starts_bundle);
2483         starts_bundle = ' ';
2484         tty->print("\t");
2485         delay->format(_regalloc, tty);
2486         tty->cr();
2487         delay = NULL;
2488       }
2489 
2490       // Dump the exception table as well
2491       if( n->is_Catch() && (Verbose || WizardMode) ) {
2492         // Print the exception table for this offset
2493         _handler_table.print_subtable_for(pc);
2494       }
2495     }
2496 
2497     if (pcs && n->_idx < pc_limit)
2498       tty->print_cr("%3.3x", pcs[n->_idx]);
2499     else
2500       tty->cr();
2501 
2502     assert(cut_short || delay == NULL, "no unconditional delay branch");
2503 
2504   } // End of per-block dump
2505   tty->cr();
2506 
2507   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2508 }
2509 #endif
2510 
2511 //------------------------------Final_Reshape_Counts---------------------------
2512 // This class defines counters to help identify when a method
2513 // may/must be executed using hardware with only 24-bit precision.
2514 struct Final_Reshape_Counts : public StackObj {
2515   int  _call_count;             // count non-inlined 'common' calls
2516   int  _float_count;            // count float ops requiring 24-bit precision
2517   int  _double_count;           // count double ops requiring more precision
2518   int  _java_call_count;        // count non-inlined 'java' calls
2519   int  _inner_loop_count;       // count loops which need alignment
2520   VectorSet _visited;           // Visitation flags
2521   Node_List _tests;             // Set of IfNodes & PCTableNodes
2522 
2523   Final_Reshape_Counts() :
2524     _call_count(0), _float_count(0), _double_count(0),
2525     _java_call_count(0), _inner_loop_count(0),
2526     _visited( Thread::current()->resource_area() ) { }
2527 
2528   void inc_call_count  () { _call_count  ++; }
2529   void inc_float_count () { _float_count ++; }
2530   void inc_double_count() { _double_count++; }
2531   void inc_java_call_count() { _java_call_count++; }
2532   void inc_inner_loop_count() { _inner_loop_count++; }
2533 
2534   int  get_call_count  () const { return _call_count  ; }
2535   int  get_float_count () const { return _float_count ; }
2536   int  get_double_count() const { return _double_count; }
2537   int  get_java_call_count() const { return _java_call_count; }
2538   int  get_inner_loop_count() const { return _inner_loop_count; }
2539 };
2540 
2541 #ifdef ASSERT
2542 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2543   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2544   // Make sure the offset goes inside the instance layout.
2545   return k->contains_field_offset(tp->offset());
2546   // Note that OffsetBot and OffsetTop are very negative.
2547 }
2548 #endif
2549 
2550 // Eliminate trivially redundant StoreCMs and accumulate their
2551 // precedence edges.
2552 void Compile::eliminate_redundant_card_marks(Node* n) {
2553   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2554   if (n->in(MemNode::Address)->outcnt() > 1) {
2555     // There are multiple users of the same address so it might be
2556     // possible to eliminate some of the StoreCMs
2557     Node* mem = n->in(MemNode::Memory);
2558     Node* adr = n->in(MemNode::Address);
2559     Node* val = n->in(MemNode::ValueIn);
2560     Node* prev = n;
2561     bool done = false;
2562     // Walk the chain of StoreCMs eliminating ones that match.  As
2563     // long as it's a chain of single users then the optimization is
2564     // safe.  Eliminating partially redundant StoreCMs would require
2565     // cloning copies down the other paths.
2566     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2567       if (adr == mem->in(MemNode::Address) &&
2568           val == mem->in(MemNode::ValueIn)) {
2569         // redundant StoreCM
2570         if (mem->req() > MemNode::OopStore) {
2571           // Hasn't been processed by this code yet.
2572           n->add_prec(mem->in(MemNode::OopStore));
2573         } else {
2574           // Already converted to precedence edge
2575           for (uint i = mem->req(); i < mem->len(); i++) {
2576             // Accumulate any precedence edges
2577             if (mem->in(i) != NULL) {
2578               n->add_prec(mem->in(i));
2579             }
2580           }
2581           // Everything above this point has been processed.
2582           done = true;
2583         }
2584         // Eliminate the previous StoreCM
2585         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2586         assert(mem->outcnt() == 0, "should be dead");
2587         mem->disconnect_inputs(NULL, this);
2588       } else {
2589         prev = mem;
2590       }
2591       mem = prev->in(MemNode::Memory);
2592     }
2593   }
2594 }
2595 
2596 //------------------------------final_graph_reshaping_impl----------------------
2597 // Implement items 1-5 from final_graph_reshaping below.
2598 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2599 
2600   if ( n->outcnt() == 0 ) return; // dead node
2601   uint nop = n->Opcode();
2602 
2603   // Check for 2-input instruction with "last use" on right input.
2604   // Swap to left input.  Implements item (2).
2605   if( n->req() == 3 &&          // two-input instruction
2606       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2607       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2608       n->in(2)->outcnt() == 1 &&// right use IS a last use
2609       !n->in(2)->is_Con() ) {   // right use is not a constant
2610     // Check for commutative opcode
2611     switch( nop ) {
2612     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2613     case Op_MaxI:  case Op_MinI:
2614     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2615     case Op_AndL:  case Op_XorL:  case Op_OrL:
2616     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2617       // Move "last use" input to left by swapping inputs
2618       n->swap_edges(1, 2);
2619       break;
2620     }
2621     default:
2622       break;
2623     }
2624   }
2625 
2626 #ifdef ASSERT
2627   if( n->is_Mem() ) {
2628     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2629     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2630             // oop will be recorded in oop map if load crosses safepoint
2631             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2632                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2633             "raw memory operations should have control edge");
2634   }
2635 #endif
2636   // Count FPU ops and common calls, implements item (3)
2637   switch( nop ) {
2638   // Count all float operations that may use FPU
2639   case Op_AddF:
2640   case Op_SubF:
2641   case Op_MulF:
2642   case Op_DivF:
2643   case Op_NegF:
2644   case Op_ModF:
2645   case Op_ConvI2F:
2646   case Op_ConF:
2647   case Op_CmpF:
2648   case Op_CmpF3:
2649   // case Op_ConvL2F: // longs are split into 32-bit halves
2650     frc.inc_float_count();
2651     break;
2652 
2653   case Op_ConvF2D:
2654   case Op_ConvD2F:
2655     frc.inc_float_count();
2656     frc.inc_double_count();
2657     break;
2658 
2659   // Count all double operations that may use FPU
2660   case Op_AddD:
2661   case Op_SubD:
2662   case Op_MulD:
2663   case Op_DivD:
2664   case Op_NegD:
2665   case Op_ModD:
2666   case Op_ConvI2D:
2667   case Op_ConvD2I:
2668   // case Op_ConvL2D: // handled by leaf call
2669   // case Op_ConvD2L: // handled by leaf call
2670   case Op_ConD:
2671   case Op_CmpD:
2672   case Op_CmpD3:
2673     frc.inc_double_count();
2674     break;
2675   case Op_Opaque1:              // Remove Opaque Nodes before matching
2676   case Op_Opaque2:              // Remove Opaque Nodes before matching
2677   case Op_Opaque3:
2678     n->subsume_by(n->in(1), this);
2679     break;
2680   case Op_CallStaticJava:
2681   case Op_CallJava:
2682   case Op_CallDynamicJava:
2683     frc.inc_java_call_count(); // Count java call site;
2684   case Op_CallRuntime:
2685   case Op_CallLeaf:
2686   case Op_CallLeafNoFP: {
2687     assert( n->is_Call(), "" );
2688     CallNode *call = n->as_Call();
2689     // Count call sites where the FP mode bit would have to be flipped.
2690     // Do not count uncommon runtime calls:
2691     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2692     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2693     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2694       frc.inc_call_count();   // Count the call site
2695     } else {                  // See if uncommon argument is shared
2696       Node *n = call->in(TypeFunc::Parms);
2697       int nop = n->Opcode();
2698       // Clone shared simple arguments to uncommon calls, item (1).
2699       if( n->outcnt() > 1 &&
2700           !n->is_Proj() &&
2701           nop != Op_CreateEx &&
2702           nop != Op_CheckCastPP &&
2703           nop != Op_DecodeN &&
2704           nop != Op_DecodeNKlass &&
2705           !n->is_Mem() ) {
2706         Node *x = n->clone();
2707         call->set_req( TypeFunc::Parms, x );
2708       }
2709     }
2710     break;
2711   }
2712 
2713   case Op_StoreD:
2714   case Op_LoadD:
2715   case Op_LoadD_unaligned:
2716     frc.inc_double_count();
2717     goto handle_mem;
2718   case Op_StoreF:
2719   case Op_LoadF:
2720     frc.inc_float_count();
2721     goto handle_mem;
2722 
2723   case Op_StoreCM:
2724     {
2725       // Convert OopStore dependence into precedence edge
2726       Node* prec = n->in(MemNode::OopStore);
2727       n->del_req(MemNode::OopStore);
2728       n->add_prec(prec);
2729       eliminate_redundant_card_marks(n);
2730     }
2731 
2732     // fall through
2733 
2734   case Op_StoreB:
2735   case Op_StoreC:
2736   case Op_StorePConditional:
2737   case Op_StoreI:
2738   case Op_StoreL:
2739   case Op_StoreIConditional:
2740   case Op_StoreLConditional:
2741   case Op_CompareAndSwapI:
2742   case Op_CompareAndSwapL:
2743   case Op_CompareAndSwapP:
2744   case Op_CompareAndSwapN:
2745   case Op_GetAndAddI:
2746   case Op_GetAndAddL:
2747   case Op_GetAndSetI:
2748   case Op_GetAndSetL:
2749   case Op_GetAndSetP:
2750   case Op_GetAndSetN:
2751   case Op_StoreP:
2752   case Op_StoreN:
2753   case Op_StoreNKlass:
2754   case Op_LoadB:
2755   case Op_LoadUB:
2756   case Op_LoadUS:
2757   case Op_LoadI:
2758   case Op_LoadKlass:
2759   case Op_LoadNKlass:
2760   case Op_LoadL:
2761   case Op_LoadL_unaligned:
2762   case Op_LoadPLocked:
2763   case Op_LoadP:
2764   case Op_LoadN:
2765   case Op_LoadRange:
2766   case Op_LoadS: {
2767   handle_mem:
2768 #ifdef ASSERT
2769     if( VerifyOptoOopOffsets ) {
2770       assert( n->is_Mem(), "" );
2771       MemNode *mem  = (MemNode*)n;
2772       // Check to see if address types have grounded out somehow.
2773       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2774       assert( !tp || oop_offset_is_sane(tp), "" );
2775     }
2776 #endif
2777     break;
2778   }
2779 
2780   case Op_AddP: {               // Assert sane base pointers
2781     Node *addp = n->in(AddPNode::Address);
2782     assert( !addp->is_AddP() ||
2783             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2784             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2785             "Base pointers must match" );
2786 #ifdef _LP64
2787     if ((UseCompressedOops || UseCompressedClassPointers) &&
2788         addp->Opcode() == Op_ConP &&
2789         addp == n->in(AddPNode::Base) &&
2790         n->in(AddPNode::Offset)->is_Con()) {
2791       // Use addressing with narrow klass to load with offset on x86.
2792       // On sparc loading 32-bits constant and decoding it have less
2793       // instructions (4) then load 64-bits constant (7).
2794       // Do this transformation here since IGVN will convert ConN back to ConP.
2795       const Type* t = addp->bottom_type();
2796       if (t->isa_oopptr() || t->isa_klassptr()) {
2797         Node* nn = NULL;
2798 
2799         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2800 
2801         // Look for existing ConN node of the same exact type.
2802         Node* r  = root();
2803         uint cnt = r->outcnt();
2804         for (uint i = 0; i < cnt; i++) {
2805           Node* m = r->raw_out(i);
2806           if (m!= NULL && m->Opcode() == op &&
2807               m->bottom_type()->make_ptr() == t) {
2808             nn = m;
2809             break;
2810           }
2811         }
2812         if (nn != NULL) {
2813           // Decode a narrow oop to match address
2814           // [R12 + narrow_oop_reg<<3 + offset]
2815           if (t->isa_oopptr()) {
2816             nn = new (this) DecodeNNode(nn, t);
2817           } else {
2818             nn = new (this) DecodeNKlassNode(nn, t);
2819           }
2820           n->set_req(AddPNode::Base, nn);
2821           n->set_req(AddPNode::Address, nn);
2822           if (addp->outcnt() == 0) {
2823             addp->disconnect_inputs(NULL, this);
2824           }
2825         }
2826       }
2827     }
2828 #endif
2829     break;
2830   }
2831 
2832 #ifdef _LP64
2833   case Op_CastPP:
2834     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2835       Node* in1 = n->in(1);
2836       const Type* t = n->bottom_type();
2837       Node* new_in1 = in1->clone();
2838       new_in1->as_DecodeN()->set_type(t);
2839 
2840       if (!Matcher::narrow_oop_use_complex_address()) {
2841         //
2842         // x86, ARM and friends can handle 2 adds in addressing mode
2843         // and Matcher can fold a DecodeN node into address by using
2844         // a narrow oop directly and do implicit NULL check in address:
2845         //
2846         // [R12 + narrow_oop_reg<<3 + offset]
2847         // NullCheck narrow_oop_reg
2848         //
2849         // On other platforms (Sparc) we have to keep new DecodeN node and
2850         // use it to do implicit NULL check in address:
2851         //
2852         // decode_not_null narrow_oop_reg, base_reg
2853         // [base_reg + offset]
2854         // NullCheck base_reg
2855         //
2856         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2857         // to keep the information to which NULL check the new DecodeN node
2858         // corresponds to use it as value in implicit_null_check().
2859         //
2860         new_in1->set_req(0, n->in(0));
2861       }
2862 
2863       n->subsume_by(new_in1, this);
2864       if (in1->outcnt() == 0) {
2865         in1->disconnect_inputs(NULL, this);
2866       }
2867     }
2868     break;
2869 
2870   case Op_CmpP:
2871     // Do this transformation here to preserve CmpPNode::sub() and
2872     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2873     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2874       Node* in1 = n->in(1);
2875       Node* in2 = n->in(2);
2876       if (!in1->is_DecodeNarrowPtr()) {
2877         in2 = in1;
2878         in1 = n->in(2);
2879       }
2880       assert(in1->is_DecodeNarrowPtr(), "sanity");
2881 
2882       Node* new_in2 = NULL;
2883       if (in2->is_DecodeNarrowPtr()) {
2884         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2885         new_in2 = in2->in(1);
2886       } else if (in2->Opcode() == Op_ConP) {
2887         const Type* t = in2->bottom_type();
2888         if (t == TypePtr::NULL_PTR) {
2889           assert(in1->is_DecodeN(), "compare klass to null?");
2890           // Don't convert CmpP null check into CmpN if compressed
2891           // oops implicit null check is not generated.
2892           // This will allow to generate normal oop implicit null check.
2893           if (Matcher::gen_narrow_oop_implicit_null_checks())
2894             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2895           //
2896           // This transformation together with CastPP transformation above
2897           // will generated code for implicit NULL checks for compressed oops.
2898           //
2899           // The original code after Optimize()
2900           //
2901           //    LoadN memory, narrow_oop_reg
2902           //    decode narrow_oop_reg, base_reg
2903           //    CmpP base_reg, NULL
2904           //    CastPP base_reg // NotNull
2905           //    Load [base_reg + offset], val_reg
2906           //
2907           // after these transformations will be
2908           //
2909           //    LoadN memory, narrow_oop_reg
2910           //    CmpN narrow_oop_reg, NULL
2911           //    decode_not_null narrow_oop_reg, base_reg
2912           //    Load [base_reg + offset], val_reg
2913           //
2914           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2915           // since narrow oops can be used in debug info now (see the code in
2916           // final_graph_reshaping_walk()).
2917           //
2918           // At the end the code will be matched to
2919           // on x86:
2920           //
2921           //    Load_narrow_oop memory, narrow_oop_reg
2922           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2923           //    NullCheck narrow_oop_reg
2924           //
2925           // and on sparc:
2926           //
2927           //    Load_narrow_oop memory, narrow_oop_reg
2928           //    decode_not_null narrow_oop_reg, base_reg
2929           //    Load [base_reg + offset], val_reg
2930           //    NullCheck base_reg
2931           //
2932         } else if (t->isa_oopptr()) {
2933           new_in2 = ConNode::make(this, t->make_narrowoop());
2934         } else if (t->isa_klassptr()) {
2935           new_in2 = ConNode::make(this, t->make_narrowklass());
2936         }
2937       }
2938       if (new_in2 != NULL) {
2939         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2940         n->subsume_by(cmpN, this);
2941         if (in1->outcnt() == 0) {
2942           in1->disconnect_inputs(NULL, this);
2943         }
2944         if (in2->outcnt() == 0) {
2945           in2->disconnect_inputs(NULL, this);
2946         }
2947       }
2948     }
2949     break;
2950 
2951   case Op_DecodeN:
2952   case Op_DecodeNKlass:
2953     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2954     // DecodeN could be pinned when it can't be fold into
2955     // an address expression, see the code for Op_CastPP above.
2956     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2957     break;
2958 
2959   case Op_EncodeP:
2960   case Op_EncodePKlass: {
2961     Node* in1 = n->in(1);
2962     if (in1->is_DecodeNarrowPtr()) {
2963       n->subsume_by(in1->in(1), this);
2964     } else if (in1->Opcode() == Op_ConP) {
2965       const Type* t = in1->bottom_type();
2966       if (t == TypePtr::NULL_PTR) {
2967         assert(t->isa_oopptr(), "null klass?");
2968         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2969       } else if (t->isa_oopptr()) {
2970         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2971       } else if (t->isa_klassptr()) {
2972         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2973       }
2974     }
2975     if (in1->outcnt() == 0) {
2976       in1->disconnect_inputs(NULL, this);
2977     }
2978     break;
2979   }
2980 
2981   case Op_Proj: {
2982     if (OptimizeStringConcat) {
2983       ProjNode* p = n->as_Proj();
2984       if (p->_is_io_use) {
2985         // Separate projections were used for the exception path which
2986         // are normally removed by a late inline.  If it wasn't inlined
2987         // then they will hang around and should just be replaced with
2988         // the original one.
2989         Node* proj = NULL;
2990         // Replace with just one
2991         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2992           Node *use = i.get();
2993           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2994             proj = use;
2995             break;
2996           }
2997         }
2998         assert(proj != NULL, "must be found");
2999         p->subsume_by(proj, this);
3000       }
3001     }
3002     break;
3003   }
3004 
3005   case Op_Phi:
3006     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3007       // The EncodeP optimization may create Phi with the same edges
3008       // for all paths. It is not handled well by Register Allocator.
3009       Node* unique_in = n->in(1);
3010       assert(unique_in != NULL, "");
3011       uint cnt = n->req();
3012       for (uint i = 2; i < cnt; i++) {
3013         Node* m = n->in(i);
3014         assert(m != NULL, "");
3015         if (unique_in != m)
3016           unique_in = NULL;
3017       }
3018       if (unique_in != NULL) {
3019         n->subsume_by(unique_in, this);
3020       }
3021     }
3022     break;
3023 
3024 #endif
3025 
3026 #ifdef ASSERT
3027   case Op_CastII:
3028     // Verify that all range check dependent CastII nodes were removed.
3029     if (n->isa_CastII()->has_range_check()) {
3030       n->dump(3);
3031       assert(false, "Range check dependent CastII node was not removed");
3032     }
3033     break;
3034 #endif
3035 
3036   case Op_ModI:
3037     if (UseDivMod) {
3038       // Check if a%b and a/b both exist
3039       Node* d = n->find_similar(Op_DivI);
3040       if (d) {
3041         // Replace them with a fused divmod if supported
3042         if (Matcher::has_match_rule(Op_DivModI)) {
3043           DivModINode* divmod = DivModINode::make(this, n);
3044           d->subsume_by(divmod->div_proj(), this);
3045           n->subsume_by(divmod->mod_proj(), this);
3046         } else {
3047           // replace a%b with a-((a/b)*b)
3048           Node* mult = new (this) MulINode(d, d->in(2));
3049           Node* sub  = new (this) SubINode(d->in(1), mult);
3050           n->subsume_by(sub, this);
3051         }
3052       }
3053     }
3054     break;
3055 
3056   case Op_ModL:
3057     if (UseDivMod) {
3058       // Check if a%b and a/b both exist
3059       Node* d = n->find_similar(Op_DivL);
3060       if (d) {
3061         // Replace them with a fused divmod if supported
3062         if (Matcher::has_match_rule(Op_DivModL)) {
3063           DivModLNode* divmod = DivModLNode::make(this, n);
3064           d->subsume_by(divmod->div_proj(), this);
3065           n->subsume_by(divmod->mod_proj(), this);
3066         } else {
3067           // replace a%b with a-((a/b)*b)
3068           Node* mult = new (this) MulLNode(d, d->in(2));
3069           Node* sub  = new (this) SubLNode(d->in(1), mult);
3070           n->subsume_by(sub, this);
3071         }
3072       }
3073     }
3074     break;
3075 
3076   case Op_LoadVector:
3077   case Op_StoreVector:
3078     break;
3079 
3080   case Op_PackB:
3081   case Op_PackS:
3082   case Op_PackI:
3083   case Op_PackF:
3084   case Op_PackL:
3085   case Op_PackD:
3086     if (n->req()-1 > 2) {
3087       // Replace many operand PackNodes with a binary tree for matching
3088       PackNode* p = (PackNode*) n;
3089       Node* btp = p->binary_tree_pack(this, 1, n->req());
3090       n->subsume_by(btp, this);
3091     }
3092     break;
3093   case Op_Loop:
3094   case Op_CountedLoop:
3095     if (n->as_Loop()->is_inner_loop()) {
3096       frc.inc_inner_loop_count();
3097     }
3098     break;
3099   case Op_LShiftI:
3100   case Op_RShiftI:
3101   case Op_URShiftI:
3102   case Op_LShiftL:
3103   case Op_RShiftL:
3104   case Op_URShiftL:
3105     if (Matcher::need_masked_shift_count) {
3106       // The cpu's shift instructions don't restrict the count to the
3107       // lower 5/6 bits. We need to do the masking ourselves.
3108       Node* in2 = n->in(2);
3109       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3110       const TypeInt* t = in2->find_int_type();
3111       if (t != NULL && t->is_con()) {
3112         juint shift = t->get_con();
3113         if (shift > mask) { // Unsigned cmp
3114           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3115         }
3116       } else {
3117         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3118           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3119           n->set_req(2, shift);
3120         }
3121       }
3122       if (in2->outcnt() == 0) { // Remove dead node
3123         in2->disconnect_inputs(NULL, this);
3124       }
3125     }
3126     break;
3127   case Op_MemBarStoreStore:
3128   case Op_MemBarRelease:
3129     // Break the link with AllocateNode: it is no longer useful and
3130     // confuses register allocation.
3131     if (n->req() > MemBarNode::Precedent) {
3132       n->set_req(MemBarNode::Precedent, top());
3133     }
3134     break;
3135   default:
3136     assert( !n->is_Call(), "" );
3137     assert( !n->is_Mem(), "" );
3138     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3139     break;
3140   }
3141 
3142   // Collect CFG split points
3143   if (n->is_MultiBranch())
3144     frc._tests.push(n);
3145 }
3146 
3147 //------------------------------final_graph_reshaping_walk---------------------
3148 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3149 // requires that the walk visits a node's inputs before visiting the node.
3150 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3151   ResourceArea *area = Thread::current()->resource_area();
3152   Unique_Node_List sfpt(area);
3153 
3154   frc._visited.set(root->_idx); // first, mark node as visited
3155   uint cnt = root->req();
3156   Node *n = root;
3157   uint  i = 0;
3158   while (true) {
3159     if (i < cnt) {
3160       // Place all non-visited non-null inputs onto stack
3161       Node* m = n->in(i);
3162       ++i;
3163       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3164         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3165           // compute worst case interpreter size in case of a deoptimization
3166           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3167 
3168           sfpt.push(m);
3169         }
3170         cnt = m->req();
3171         nstack.push(n, i); // put on stack parent and next input's index
3172         n = m;
3173         i = 0;
3174       }
3175     } else {
3176       // Now do post-visit work
3177       final_graph_reshaping_impl( n, frc );
3178       if (nstack.is_empty())
3179         break;             // finished
3180       n = nstack.node();   // Get node from stack
3181       cnt = n->req();
3182       i = nstack.index();
3183       nstack.pop();        // Shift to the next node on stack
3184     }
3185   }
3186 
3187   // Skip next transformation if compressed oops are not used.
3188   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3189       (!UseCompressedOops && !UseCompressedClassPointers))
3190     return;
3191 
3192   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3193   // It could be done for an uncommon traps or any safepoints/calls
3194   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3195   while (sfpt.size() > 0) {
3196     n = sfpt.pop();
3197     JVMState *jvms = n->as_SafePoint()->jvms();
3198     assert(jvms != NULL, "sanity");
3199     int start = jvms->debug_start();
3200     int end   = n->req();
3201     bool is_uncommon = (n->is_CallStaticJava() &&
3202                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3203     for (int j = start; j < end; j++) {
3204       Node* in = n->in(j);
3205       if (in->is_DecodeNarrowPtr()) {
3206         bool safe_to_skip = true;
3207         if (!is_uncommon ) {
3208           // Is it safe to skip?
3209           for (uint i = 0; i < in->outcnt(); i++) {
3210             Node* u = in->raw_out(i);
3211             if (!u->is_SafePoint() ||
3212                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3213               safe_to_skip = false;
3214             }
3215           }
3216         }
3217         if (safe_to_skip) {
3218           n->set_req(j, in->in(1));
3219         }
3220         if (in->outcnt() == 0) {
3221           in->disconnect_inputs(NULL, this);
3222         }
3223       }
3224     }
3225   }
3226 }
3227 
3228 //------------------------------final_graph_reshaping--------------------------
3229 // Final Graph Reshaping.
3230 //
3231 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3232 //     and not commoned up and forced early.  Must come after regular
3233 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3234 //     inputs to Loop Phis; these will be split by the allocator anyways.
3235 //     Remove Opaque nodes.
3236 // (2) Move last-uses by commutative operations to the left input to encourage
3237 //     Intel update-in-place two-address operations and better register usage
3238 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3239 //     calls canonicalizing them back.
3240 // (3) Count the number of double-precision FP ops, single-precision FP ops
3241 //     and call sites.  On Intel, we can get correct rounding either by
3242 //     forcing singles to memory (requires extra stores and loads after each
3243 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3244 //     clearing the mode bit around call sites).  The mode bit is only used
3245 //     if the relative frequency of single FP ops to calls is low enough.
3246 //     This is a key transform for SPEC mpeg_audio.
3247 // (4) Detect infinite loops; blobs of code reachable from above but not
3248 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3249 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3250 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3251 //     Detection is by looking for IfNodes where only 1 projection is
3252 //     reachable from below or CatchNodes missing some targets.
3253 // (5) Assert for insane oop offsets in debug mode.
3254 
3255 bool Compile::final_graph_reshaping() {
3256   // an infinite loop may have been eliminated by the optimizer,
3257   // in which case the graph will be empty.
3258   if (root()->req() == 1) {
3259     record_method_not_compilable("trivial infinite loop");
3260     return true;
3261   }
3262 
3263   // Expensive nodes have their control input set to prevent the GVN
3264   // from freely commoning them. There's no GVN beyond this point so
3265   // no need to keep the control input. We want the expensive nodes to
3266   // be freely moved to the least frequent code path by gcm.
3267   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3268   for (int i = 0; i < expensive_count(); i++) {
3269     _expensive_nodes->at(i)->set_req(0, NULL);
3270   }
3271 
3272   Final_Reshape_Counts frc;
3273 
3274   // Visit everybody reachable!
3275   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3276   Node_Stack nstack(live_nodes() >> 1);
3277   final_graph_reshaping_walk(nstack, root(), frc);
3278 
3279   // Check for unreachable (from below) code (i.e., infinite loops).
3280   for( uint i = 0; i < frc._tests.size(); i++ ) {
3281     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3282     // Get number of CFG targets.
3283     // Note that PCTables include exception targets after calls.
3284     uint required_outcnt = n->required_outcnt();
3285     if (n->outcnt() != required_outcnt) {
3286       // Check for a few special cases.  Rethrow Nodes never take the
3287       // 'fall-thru' path, so expected kids is 1 less.
3288       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3289         if (n->in(0)->in(0)->is_Call()) {
3290           CallNode *call = n->in(0)->in(0)->as_Call();
3291           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3292             required_outcnt--;      // Rethrow always has 1 less kid
3293           } else if (call->req() > TypeFunc::Parms &&
3294                      call->is_CallDynamicJava()) {
3295             // Check for null receiver. In such case, the optimizer has
3296             // detected that the virtual call will always result in a null
3297             // pointer exception. The fall-through projection of this CatchNode
3298             // will not be populated.
3299             Node *arg0 = call->in(TypeFunc::Parms);
3300             if (arg0->is_Type() &&
3301                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3302               required_outcnt--;
3303             }
3304           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3305                      call->req() > TypeFunc::Parms+1 &&
3306                      call->is_CallStaticJava()) {
3307             // Check for negative array length. In such case, the optimizer has
3308             // detected that the allocation attempt will always result in an
3309             // exception. There is no fall-through projection of this CatchNode .
3310             Node *arg1 = call->in(TypeFunc::Parms+1);
3311             if (arg1->is_Type() &&
3312                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3313               required_outcnt--;
3314             }
3315           }
3316         }
3317       }
3318       // Recheck with a better notion of 'required_outcnt'
3319       if (n->outcnt() != required_outcnt) {
3320         record_method_not_compilable("malformed control flow");
3321         return true;            // Not all targets reachable!
3322       }
3323     }
3324     // Check that I actually visited all kids.  Unreached kids
3325     // must be infinite loops.
3326     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3327       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3328         record_method_not_compilable("infinite loop");
3329         return true;            // Found unvisited kid; must be unreach
3330       }
3331   }
3332 
3333   // If original bytecodes contained a mixture of floats and doubles
3334   // check if the optimizer has made it homogenous, item (3).
3335   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3336       frc.get_float_count() > 32 &&
3337       frc.get_double_count() == 0 &&
3338       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3339     set_24_bit_selection_and_mode( false,  true );
3340   }
3341 
3342   set_java_calls(frc.get_java_call_count());
3343   set_inner_loops(frc.get_inner_loop_count());
3344 
3345   // No infinite loops, no reason to bail out.
3346   return false;
3347 }
3348 
3349 //-----------------------------too_many_traps----------------------------------
3350 // Report if there are too many traps at the current method and bci.
3351 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3352 bool Compile::too_many_traps(ciMethod* method,
3353                              int bci,
3354                              Deoptimization::DeoptReason reason) {
3355   ciMethodData* md = method->method_data();
3356   if (md->is_empty()) {
3357     // Assume the trap has not occurred, or that it occurred only
3358     // because of a transient condition during start-up in the interpreter.
3359     return false;
3360   }
3361   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3362   if (md->has_trap_at(bci, m, reason) != 0) {
3363     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3364     // Also, if there are multiple reasons, or if there is no per-BCI record,
3365     // assume the worst.
3366     if (log())
3367       log()->elem("observe trap='%s' count='%d'",
3368                   Deoptimization::trap_reason_name(reason),
3369                   md->trap_count(reason));
3370     return true;
3371   } else {
3372     // Ignore method/bci and see if there have been too many globally.
3373     return too_many_traps(reason, md);
3374   }
3375 }
3376 
3377 // Less-accurate variant which does not require a method and bci.
3378 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3379                              ciMethodData* logmd) {
3380   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3381     // Too many traps globally.
3382     // Note that we use cumulative trap_count, not just md->trap_count.
3383     if (log()) {
3384       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3385       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3386                   Deoptimization::trap_reason_name(reason),
3387                   mcount, trap_count(reason));
3388     }
3389     return true;
3390   } else {
3391     // The coast is clear.
3392     return false;
3393   }
3394 }
3395 
3396 //--------------------------too_many_recompiles--------------------------------
3397 // Report if there are too many recompiles at the current method and bci.
3398 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3399 // Is not eager to return true, since this will cause the compiler to use
3400 // Action_none for a trap point, to avoid too many recompilations.
3401 bool Compile::too_many_recompiles(ciMethod* method,
3402                                   int bci,
3403                                   Deoptimization::DeoptReason reason) {
3404   ciMethodData* md = method->method_data();
3405   if (md->is_empty()) {
3406     // Assume the trap has not occurred, or that it occurred only
3407     // because of a transient condition during start-up in the interpreter.
3408     return false;
3409   }
3410   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3411   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3412   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3413   Deoptimization::DeoptReason per_bc_reason
3414     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3415   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3416   if ((per_bc_reason == Deoptimization::Reason_none
3417        || md->has_trap_at(bci, m, reason) != 0)
3418       // The trap frequency measure we care about is the recompile count:
3419       && md->trap_recompiled_at(bci, m)
3420       && md->overflow_recompile_count() >= bc_cutoff) {
3421     // Do not emit a trap here if it has already caused recompilations.
3422     // Also, if there are multiple reasons, or if there is no per-BCI record,
3423     // assume the worst.
3424     if (log())
3425       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3426                   Deoptimization::trap_reason_name(reason),
3427                   md->trap_count(reason),
3428                   md->overflow_recompile_count());
3429     return true;
3430   } else if (trap_count(reason) != 0
3431              && decompile_count() >= m_cutoff) {
3432     // Too many recompiles globally, and we have seen this sort of trap.
3433     // Use cumulative decompile_count, not just md->decompile_count.
3434     if (log())
3435       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3436                   Deoptimization::trap_reason_name(reason),
3437                   md->trap_count(reason), trap_count(reason),
3438                   md->decompile_count(), decompile_count());
3439     return true;
3440   } else {
3441     // The coast is clear.
3442     return false;
3443   }
3444 }
3445 
3446 // Compute when not to trap. Used by matching trap based nodes and
3447 // NullCheck optimization.
3448 void Compile::set_allowed_deopt_reasons() {
3449   _allowed_reasons = 0;
3450   if (is_method_compilation()) {
3451     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3452       assert(rs < BitsPerInt, "recode bit map");
3453       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3454         _allowed_reasons |= nth_bit(rs);
3455       }
3456     }
3457   }
3458 }
3459 
3460 #ifndef PRODUCT
3461 //------------------------------verify_graph_edges---------------------------
3462 // Walk the Graph and verify that there is a one-to-one correspondence
3463 // between Use-Def edges and Def-Use edges in the graph.
3464 void Compile::verify_graph_edges(bool no_dead_code) {
3465   if (VerifyGraphEdges) {
3466     ResourceArea *area = Thread::current()->resource_area();
3467     Unique_Node_List visited(area);
3468     // Call recursive graph walk to check edges
3469     _root->verify_edges(visited);
3470     if (no_dead_code) {
3471       // Now make sure that no visited node is used by an unvisited node.
3472       bool dead_nodes = 0;
3473       Unique_Node_List checked(area);
3474       while (visited.size() > 0) {
3475         Node* n = visited.pop();
3476         checked.push(n);
3477         for (uint i = 0; i < n->outcnt(); i++) {
3478           Node* use = n->raw_out(i);
3479           if (checked.member(use))  continue;  // already checked
3480           if (visited.member(use))  continue;  // already in the graph
3481           if (use->is_Con())        continue;  // a dead ConNode is OK
3482           // At this point, we have found a dead node which is DU-reachable.
3483           if (dead_nodes++ == 0)
3484             tty->print_cr("*** Dead nodes reachable via DU edges:");
3485           use->dump(2);
3486           tty->print_cr("---");
3487           checked.push(use);  // No repeats; pretend it is now checked.
3488         }
3489       }
3490       assert(dead_nodes == 0, "using nodes must be reachable from root");
3491     }
3492   }
3493 }
3494 
3495 // Verify GC barriers consistency
3496 // Currently supported:
3497 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3498 void Compile::verify_barriers() {
3499   if (UseG1GC) {
3500     // Verify G1 pre-barriers
3501     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3502 
3503     ResourceArea *area = Thread::current()->resource_area();
3504     Unique_Node_List visited(area);
3505     Node_List worklist(area);
3506     // We're going to walk control flow backwards starting from the Root
3507     worklist.push(_root);
3508     while (worklist.size() > 0) {
3509       Node* x = worklist.pop();
3510       if (x == NULL || x == top()) continue;
3511       if (visited.member(x)) {
3512         continue;
3513       } else {
3514         visited.push(x);
3515       }
3516 
3517       if (x->is_Region()) {
3518         for (uint i = 1; i < x->req(); i++) {
3519           worklist.push(x->in(i));
3520         }
3521       } else {
3522         worklist.push(x->in(0));
3523         // We are looking for the pattern:
3524         //                            /->ThreadLocal
3525         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3526         //              \->ConI(0)
3527         // We want to verify that the If and the LoadB have the same control
3528         // See GraphKit::g1_write_barrier_pre()
3529         if (x->is_If()) {
3530           IfNode *iff = x->as_If();
3531           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3532             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3533             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3534                 && cmp->in(1)->is_Load()) {
3535               LoadNode* load = cmp->in(1)->as_Load();
3536               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3537                   && load->in(2)->in(3)->is_Con()
3538                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3539 
3540                 Node* if_ctrl = iff->in(0);
3541                 Node* load_ctrl = load->in(0);
3542 
3543                 if (if_ctrl != load_ctrl) {
3544                   // Skip possible CProj->NeverBranch in infinite loops
3545                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3546                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3547                     if_ctrl = if_ctrl->in(0)->in(0);
3548                   }
3549                 }
3550                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3551               }
3552             }
3553           }
3554         }
3555       }
3556     }
3557   }
3558 }
3559 
3560 #endif
3561 
3562 // The Compile object keeps track of failure reasons separately from the ciEnv.
3563 // This is required because there is not quite a 1-1 relation between the
3564 // ciEnv and its compilation task and the Compile object.  Note that one
3565 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3566 // to backtrack and retry without subsuming loads.  Other than this backtracking
3567 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3568 // by the logic in C2Compiler.
3569 void Compile::record_failure(const char* reason) {
3570   if (log() != NULL) {
3571     log()->elem("failure reason='%s' phase='compile'", reason);
3572   }
3573   if (_failure_reason == NULL) {
3574     // Record the first failure reason.
3575     _failure_reason = reason;
3576   }
3577 
3578   EventCompilerFailure event;
3579   if (event.should_commit()) {
3580     event.set_compileID(Compile::compile_id());
3581     event.set_failure(reason);
3582     event.commit();
3583   }
3584 
3585   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3586     C->print_method(PHASE_FAILURE);
3587   }
3588   _root = NULL;  // flush the graph, too
3589 }
3590 
3591 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3592   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3593     _phase_name(name), _dolog(dolog)
3594 {
3595   if (dolog) {
3596     C = Compile::current();
3597     _log = C->log();
3598   } else {
3599     C = NULL;
3600     _log = NULL;
3601   }
3602   if (_log != NULL) {
3603     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3604     _log->stamp();
3605     _log->end_head();
3606   }
3607 }
3608 
3609 Compile::TracePhase::~TracePhase() {
3610 
3611   C = Compile::current();
3612   if (_dolog) {
3613     _log = C->log();
3614   } else {
3615     _log = NULL;
3616   }
3617 
3618 #ifdef ASSERT
3619   if (PrintIdealNodeCount) {
3620     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3621                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3622   }
3623 
3624   if (VerifyIdealNodeCount) {
3625     Compile::current()->print_missing_nodes();
3626   }
3627 #endif
3628 
3629   if (_log != NULL) {
3630     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3631   }
3632 }
3633 
3634 //=============================================================================
3635 // Two Constant's are equal when the type and the value are equal.
3636 bool Compile::Constant::operator==(const Constant& other) {
3637   if (type()          != other.type()         )  return false;
3638   if (can_be_reused() != other.can_be_reused())  return false;
3639   // For floating point values we compare the bit pattern.
3640   switch (type()) {
3641   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3642   case T_LONG:
3643   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3644   case T_OBJECT:
3645   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3646   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3647   case T_METADATA: return (_v._metadata == other._v._metadata);
3648   default: ShouldNotReachHere();
3649   }
3650   return false;
3651 }
3652 
3653 static int type_to_size_in_bytes(BasicType t) {
3654   switch (t) {
3655   case T_LONG:    return sizeof(jlong  );
3656   case T_FLOAT:   return sizeof(jfloat );
3657   case T_DOUBLE:  return sizeof(jdouble);
3658   case T_METADATA: return sizeof(Metadata*);
3659     // We use T_VOID as marker for jump-table entries (labels) which
3660     // need an internal word relocation.
3661   case T_VOID:
3662   case T_ADDRESS:
3663   case T_OBJECT:  return sizeof(jobject);
3664   }
3665 
3666   ShouldNotReachHere();
3667   return -1;
3668 }
3669 
3670 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3671   // sort descending
3672   if (a->freq() > b->freq())  return -1;
3673   if (a->freq() < b->freq())  return  1;
3674   return 0;
3675 }
3676 
3677 void Compile::ConstantTable::calculate_offsets_and_size() {
3678   // First, sort the array by frequencies.
3679   _constants.sort(qsort_comparator);
3680 
3681 #ifdef ASSERT
3682   // Make sure all jump-table entries were sorted to the end of the
3683   // array (they have a negative frequency).
3684   bool found_void = false;
3685   for (int i = 0; i < _constants.length(); i++) {
3686     Constant con = _constants.at(i);
3687     if (con.type() == T_VOID)
3688       found_void = true;  // jump-tables
3689     else
3690       assert(!found_void, "wrong sorting");
3691   }
3692 #endif
3693 
3694   int offset = 0;
3695   for (int i = 0; i < _constants.length(); i++) {
3696     Constant* con = _constants.adr_at(i);
3697 
3698     // Align offset for type.
3699     int typesize = type_to_size_in_bytes(con->type());
3700     offset = align_size_up(offset, typesize);
3701     con->set_offset(offset);   // set constant's offset
3702 
3703     if (con->type() == T_VOID) {
3704       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3705       offset = offset + typesize * n->outcnt();  // expand jump-table
3706     } else {
3707       offset = offset + typesize;
3708     }
3709   }
3710 
3711   // Align size up to the next section start (which is insts; see
3712   // CodeBuffer::align_at_start).
3713   assert(_size == -1, "already set?");
3714   _size = align_size_up(offset, CodeEntryAlignment);
3715 }
3716 
3717 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3718   MacroAssembler _masm(&cb);
3719   for (int i = 0; i < _constants.length(); i++) {
3720     Constant con = _constants.at(i);
3721     address constant_addr = NULL;
3722     switch (con.type()) {
3723     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3724     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3725     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3726     case T_OBJECT: {
3727       jobject obj = con.get_jobject();
3728       int oop_index = _masm.oop_recorder()->find_index(obj);
3729       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3730       break;
3731     }
3732     case T_ADDRESS: {
3733       address addr = (address) con.get_jobject();
3734       constant_addr = _masm.address_constant(addr);
3735       break;
3736     }
3737     // We use T_VOID as marker for jump-table entries (labels) which
3738     // need an internal word relocation.
3739     case T_VOID: {
3740       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3741       // Fill the jump-table with a dummy word.  The real value is
3742       // filled in later in fill_jump_table.
3743       address dummy = (address) n;
3744       constant_addr = _masm.address_constant(dummy);
3745       // Expand jump-table
3746       for (uint i = 1; i < n->outcnt(); i++) {
3747         address temp_addr = _masm.address_constant(dummy + i);
3748         assert(temp_addr, "consts section too small");
3749       }
3750       break;
3751     }
3752     case T_METADATA: {
3753       Metadata* obj = con.get_metadata();
3754       int metadata_index = _masm.oop_recorder()->find_index(obj);
3755       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3756       break;
3757     }
3758     default: ShouldNotReachHere();
3759     }
3760     assert(constant_addr, "consts section too small");
3761     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3762             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3763   }
3764 }
3765 
3766 int Compile::ConstantTable::find_offset(Constant& con) const {
3767   int idx = _constants.find(con);
3768   assert(idx != -1, "constant must be in constant table");
3769   int offset = _constants.at(idx).offset();
3770   assert(offset != -1, "constant table not emitted yet?");
3771   return offset;
3772 }
3773 
3774 void Compile::ConstantTable::add(Constant& con) {
3775   if (con.can_be_reused()) {
3776     int idx = _constants.find(con);
3777     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3778       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3779       return;
3780     }
3781   }
3782   (void) _constants.append(con);
3783 }
3784 
3785 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3786   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3787   Constant con(type, value, b->_freq);
3788   add(con);
3789   return con;
3790 }
3791 
3792 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3793   Constant con(metadata);
3794   add(con);
3795   return con;
3796 }
3797 
3798 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3799   jvalue value;
3800   BasicType type = oper->type()->basic_type();
3801   switch (type) {
3802   case T_LONG:    value.j = oper->constantL(); break;
3803   case T_FLOAT:   value.f = oper->constantF(); break;
3804   case T_DOUBLE:  value.d = oper->constantD(); break;
3805   case T_OBJECT:
3806   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3807   case T_METADATA: return add((Metadata*)oper->constant()); break;
3808   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3809   }
3810   return add(n, type, value);
3811 }
3812 
3813 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3814   jvalue value;
3815   // We can use the node pointer here to identify the right jump-table
3816   // as this method is called from Compile::Fill_buffer right before
3817   // the MachNodes are emitted and the jump-table is filled (means the
3818   // MachNode pointers do not change anymore).
3819   value.l = (jobject) n;
3820   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3821   add(con);
3822   return con;
3823 }
3824 
3825 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3826   // If called from Compile::scratch_emit_size do nothing.
3827   if (Compile::current()->in_scratch_emit_size())  return;
3828 
3829   assert(labels.is_nonempty(), "must be");
3830   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3831 
3832   // Since MachConstantNode::constant_offset() also contains
3833   // table_base_offset() we need to subtract the table_base_offset()
3834   // to get the plain offset into the constant table.
3835   int offset = n->constant_offset() - table_base_offset();
3836 
3837   MacroAssembler _masm(&cb);
3838   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3839 
3840   for (uint i = 0; i < n->outcnt(); i++) {
3841     address* constant_addr = &jump_table_base[i];
3842     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3843     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3844     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3845   }
3846 }
3847 
3848 void Compile::dump_inlining() {
3849   if (print_inlining() || print_intrinsics()) {
3850     // Print inlining message for candidates that we couldn't inline
3851     // for lack of space or non constant receiver
3852     for (int i = 0; i < _late_inlines.length(); i++) {
3853       CallGenerator* cg = _late_inlines.at(i);
3854       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3855     }
3856     Unique_Node_List useful;
3857     useful.push(root());
3858     for (uint next = 0; next < useful.size(); ++next) {
3859       Node* n  = useful.at(next);
3860       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3861         CallNode* call = n->as_Call();
3862         CallGenerator* cg = call->generator();
3863         cg->print_inlining_late("receiver not constant");
3864       }
3865       uint max = n->len();
3866       for ( uint i = 0; i < max; ++i ) {
3867         Node *m = n->in(i);
3868         if ( m == NULL ) continue;
3869         useful.push(m);
3870       }
3871     }
3872     for (int i = 0; i < _print_inlining_list->length(); i++) {
3873       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3874     }
3875   }
3876 }
3877 
3878 // Dump inlining replay data to the stream.
3879 // Don't change thread state and acquire any locks.
3880 void Compile::dump_inline_data(outputStream* out) {
3881   InlineTree* inl_tree = ilt();
3882   if (inl_tree != NULL) {
3883     out->print(" inline %d", inl_tree->count());
3884     inl_tree->dump_replay_data(out);
3885   }
3886 }
3887 
3888 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3889   if (n1->Opcode() < n2->Opcode())      return -1;
3890   else if (n1->Opcode() > n2->Opcode()) return 1;
3891 
3892   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3893   for (uint i = 1; i < n1->req(); i++) {
3894     if (n1->in(i) < n2->in(i))      return -1;
3895     else if (n1->in(i) > n2->in(i)) return 1;
3896   }
3897 
3898   return 0;
3899 }
3900 
3901 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3902   Node* n1 = *n1p;
3903   Node* n2 = *n2p;
3904 
3905   return cmp_expensive_nodes(n1, n2);
3906 }
3907 
3908 void Compile::sort_expensive_nodes() {
3909   if (!expensive_nodes_sorted()) {
3910     _expensive_nodes->sort(cmp_expensive_nodes);
3911   }
3912 }
3913 
3914 bool Compile::expensive_nodes_sorted() const {
3915   for (int i = 1; i < _expensive_nodes->length(); i++) {
3916     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3917       return false;
3918     }
3919   }
3920   return true;
3921 }
3922 
3923 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3924   if (_expensive_nodes->length() == 0) {
3925     return false;
3926   }
3927 
3928   assert(OptimizeExpensiveOps, "optimization off?");
3929 
3930   // Take this opportunity to remove dead nodes from the list
3931   int j = 0;
3932   for (int i = 0; i < _expensive_nodes->length(); i++) {
3933     Node* n = _expensive_nodes->at(i);
3934     if (!n->is_unreachable(igvn)) {
3935       assert(n->is_expensive(), "should be expensive");
3936       _expensive_nodes->at_put(j, n);
3937       j++;
3938     }
3939   }
3940   _expensive_nodes->trunc_to(j);
3941 
3942   // Then sort the list so that similar nodes are next to each other
3943   // and check for at least two nodes of identical kind with same data
3944   // inputs.
3945   sort_expensive_nodes();
3946 
3947   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3948     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3949       return true;
3950     }
3951   }
3952 
3953   return false;
3954 }
3955 
3956 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3957   if (_expensive_nodes->length() == 0) {
3958     return;
3959   }
3960 
3961   assert(OptimizeExpensiveOps, "optimization off?");
3962 
3963   // Sort to bring similar nodes next to each other and clear the
3964   // control input of nodes for which there's only a single copy.
3965   sort_expensive_nodes();
3966 
3967   int j = 0;
3968   int identical = 0;
3969   int i = 0;
3970   for (; i < _expensive_nodes->length()-1; i++) {
3971     assert(j <= i, "can't write beyond current index");
3972     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3973       identical++;
3974       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3975       continue;
3976     }
3977     if (identical > 0) {
3978       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3979       identical = 0;
3980     } else {
3981       Node* n = _expensive_nodes->at(i);
3982       igvn.hash_delete(n);
3983       n->set_req(0, NULL);
3984       igvn.hash_insert(n);
3985     }
3986   }
3987   if (identical > 0) {
3988     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3989   } else if (_expensive_nodes->length() >= 1) {
3990     Node* n = _expensive_nodes->at(i);
3991     igvn.hash_delete(n);
3992     n->set_req(0, NULL);
3993     igvn.hash_insert(n);
3994   }
3995   _expensive_nodes->trunc_to(j);
3996 }
3997 
3998 void Compile::add_expensive_node(Node * n) {
3999   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4000   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4001   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4002   if (OptimizeExpensiveOps) {
4003     _expensive_nodes->append(n);
4004   } else {
4005     // Clear control input and let IGVN optimize expensive nodes if
4006     // OptimizeExpensiveOps is off.
4007     n->set_req(0, NULL);
4008   }
4009 }
4010 
4011 /**
4012  * Remove the speculative part of types and clean up the graph
4013  */
4014 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4015   if (UseTypeSpeculation) {
4016     Unique_Node_List worklist;
4017     worklist.push(root());
4018     int modified = 0;
4019     // Go over all type nodes that carry a speculative type, drop the
4020     // speculative part of the type and enqueue the node for an igvn
4021     // which may optimize it out.
4022     for (uint next = 0; next < worklist.size(); ++next) {
4023       Node *n  = worklist.at(next);
4024       if (n->is_Type()) {
4025         TypeNode* tn = n->as_Type();
4026         const Type* t = tn->type();
4027         const Type* t_no_spec = t->remove_speculative();
4028         if (t_no_spec != t) {
4029           bool in_hash = igvn.hash_delete(n);
4030           assert(in_hash, "node should be in igvn hash table");
4031           tn->set_type(t_no_spec);
4032           igvn.hash_insert(n);
4033           igvn._worklist.push(n); // give it a chance to go away
4034           modified++;
4035         }
4036       }
4037       uint max = n->len();
4038       for( uint i = 0; i < max; ++i ) {
4039         Node *m = n->in(i);
4040         if (not_a_node(m))  continue;
4041         worklist.push(m);
4042       }
4043     }
4044     // Drop the speculative part of all types in the igvn's type table
4045     igvn.remove_speculative_types();
4046     if (modified > 0) {
4047       igvn.optimize();
4048     }
4049 #ifdef ASSERT
4050     // Verify that after the IGVN is over no speculative type has resurfaced
4051     worklist.clear();
4052     worklist.push(root());
4053     for (uint next = 0; next < worklist.size(); ++next) {
4054       Node *n  = worklist.at(next);
4055       const Type* t = igvn.type_or_null(n);
4056       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4057       if (n->is_Type()) {
4058         t = n->as_Type()->type();
4059         assert(t == t->remove_speculative(), "no more speculative types");
4060       }
4061       uint max = n->len();
4062       for( uint i = 0; i < max; ++i ) {
4063         Node *m = n->in(i);
4064         if (not_a_node(m))  continue;
4065         worklist.push(m);
4066       }
4067     }
4068     igvn.check_no_speculative_types();
4069 #endif
4070   }
4071 }
4072 
4073 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4074 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4075   if (ctrl != NULL) {
4076     // Express control dependency by a CastII node with a narrow type.
4077     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
4078     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4079     // node from floating above the range check during loop optimizations. Otherwise, the
4080     // ConvI2L node may be eliminated independently of the range check, causing the data path
4081     // to become TOP while the control path is still there (although it's unreachable).
4082     value->set_req(0, ctrl);
4083     // Save CastII node to remove it after loop optimizations.
4084     phase->C->add_range_check_cast(value);
4085     value = phase->transform(value);
4086   }
4087   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4088   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
4089 }
4090 
4091 // Auxiliary method to support randomized stressing/fuzzing.
4092 //
4093 // This method can be called the arbitrary number of times, with current count
4094 // as the argument. The logic allows selecting a single candidate from the
4095 // running list of candidates as follows:
4096 //    int count = 0;
4097 //    Cand* selected = null;
4098 //    while(cand = cand->next()) {
4099 //      if (randomized_select(++count)) {
4100 //        selected = cand;
4101 //      }
4102 //    }
4103 //
4104 // Including count equalizes the chances any candidate is "selected".
4105 // This is useful when we don't have the complete list of candidates to choose
4106 // from uniformly. In this case, we need to adjust the randomicity of the
4107 // selection, or else we will end up biasing the selection towards the latter
4108 // candidates.
4109 //
4110 // Quick back-envelope calculation shows that for the list of n candidates
4111 // the equal probability for the candidate to persist as "best" can be
4112 // achieved by replacing it with "next" k-th candidate with the probability
4113 // of 1/k. It can be easily shown that by the end of the run, the
4114 // probability for any candidate is converged to 1/n, thus giving the
4115 // uniform distribution among all the candidates.
4116 //
4117 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4118 #define RANDOMIZED_DOMAIN_POW 29
4119 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4120 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4121 bool Compile::randomized_select(int count) {
4122   assert(count > 0, "only positive");
4123   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4124 }