1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/connode.hpp"
  35 #include "opto/idealKit.hpp"
  36 #include "opto/mathexactnode.hpp"
  37 #include "opto/mulnode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "prims/nativeLookup.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "trace/traceMacros.hpp"
  44 
  45 class LibraryIntrinsic : public InlineCallGenerator {
  46   // Extend the set of intrinsics known to the runtime:
  47  public:
  48  private:
  49   bool             _is_virtual;
  50   bool             _does_virtual_dispatch;
  51   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  52   int8_t           _last_predicate; // Last generated predicate
  53   vmIntrinsics::ID _intrinsic_id;
  54 
  55  public:
  56   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  57     : InlineCallGenerator(m),
  58       _is_virtual(is_virtual),
  59       _does_virtual_dispatch(does_virtual_dispatch),
  60       _predicates_count((int8_t)predicates_count),
  61       _last_predicate((int8_t)-1),
  62       _intrinsic_id(id)
  63   {
  64   }
  65   virtual bool is_intrinsic() const { return true; }
  66   virtual bool is_virtual()   const { return _is_virtual; }
  67   virtual bool is_predicated() const { return _predicates_count > 0; }
  68   virtual int  predicates_count() const { return _predicates_count; }
  69   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  70   virtual JVMState* generate(JVMState* jvms);
  71   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  72   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  73 };
  74 
  75 
  76 // Local helper class for LibraryIntrinsic:
  77 class LibraryCallKit : public GraphKit {
  78  private:
  79   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  80   Node*             _result;        // the result node, if any
  81   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  82 
  83   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  84 
  85  public:
  86   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  87     : GraphKit(jvms),
  88       _intrinsic(intrinsic),
  89       _result(NULL)
  90   {
  91     // Check if this is a root compile.  In that case we don't have a caller.
  92     if (!jvms->has_method()) {
  93       _reexecute_sp = sp();
  94     } else {
  95       // Find out how many arguments the interpreter needs when deoptimizing
  96       // and save the stack pointer value so it can used by uncommon_trap.
  97       // We find the argument count by looking at the declared signature.
  98       bool ignored_will_link;
  99       ciSignature* declared_signature = NULL;
 100       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 101       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 102       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 103     }
 104   }
 105 
 106   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 107 
 108   ciMethod*         caller()    const    { return jvms()->method(); }
 109   int               bci()       const    { return jvms()->bci(); }
 110   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 111   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 112   ciMethod*         callee()    const    { return _intrinsic->method(); }
 113 
 114   bool  try_to_inline(int predicate);
 115   Node* try_to_predicate(int predicate);
 116 
 117   void push_result() {
 118     // Push the result onto the stack.
 119     if (!stopped() && result() != NULL) {
 120       BasicType bt = result()->bottom_type()->basic_type();
 121       push_node(bt, result());
 122     }
 123   }
 124 
 125  private:
 126   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 127     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 128   }
 129 
 130   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 131   void  set_result(RegionNode* region, PhiNode* value);
 132   Node*     result() { return _result; }
 133 
 134   virtual int reexecute_sp() { return _reexecute_sp; }
 135 
 136   // Helper functions to inline natives
 137   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 138   Node* generate_slow_guard(Node* test, RegionNode* region);
 139   Node* generate_fair_guard(Node* test, RegionNode* region);
 140   Node* generate_negative_guard(Node* index, RegionNode* region,
 141                                 // resulting CastII of index:
 142                                 Node* *pos_index = NULL);
 143   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 144                                    // resulting CastII of index:
 145                                    Node* *pos_index = NULL);
 146   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 147                              Node* array_length,
 148                              RegionNode* region);
 149   Node* generate_current_thread(Node* &tls_output);
 150   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 151                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 152   Node* load_mirror_from_klass(Node* klass);
 153   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 154                                       RegionNode* region, int null_path,
 155                                       int offset);
 156   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 157                                RegionNode* region, int null_path) {
 158     int offset = java_lang_Class::klass_offset_in_bytes();
 159     return load_klass_from_mirror_common(mirror, never_see_null,
 160                                          region, null_path,
 161                                          offset);
 162   }
 163   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 164                                      RegionNode* region, int null_path) {
 165     int offset = java_lang_Class::array_klass_offset_in_bytes();
 166     return load_klass_from_mirror_common(mirror, never_see_null,
 167                                          region, null_path,
 168                                          offset);
 169   }
 170   Node* generate_access_flags_guard(Node* kls,
 171                                     int modifier_mask, int modifier_bits,
 172                                     RegionNode* region);
 173   Node* generate_interface_guard(Node* kls, RegionNode* region);
 174   Node* generate_array_guard(Node* kls, RegionNode* region) {
 175     return generate_array_guard_common(kls, region, false, false);
 176   }
 177   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, true);
 179   }
 180   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, true, false);
 182   }
 183   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, true);
 185   }
 186   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 187                                     bool obj_array, bool not_array);
 188   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 189   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 190                                      bool is_virtual = false, bool is_static = false);
 191   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 192     return generate_method_call(method_id, false, true);
 193   }
 194   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, true, false);
 196   }
 197   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 198 
 199   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 200   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 201   bool inline_string_compareTo();
 202   bool inline_string_indexOf();
 203   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 204   bool inline_string_equals();
 205   Node* round_double_node(Node* n);
 206   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 207   bool inline_math_native(vmIntrinsics::ID id);
 208   bool inline_trig(vmIntrinsics::ID id);
 209   bool inline_math(vmIntrinsics::ID id);
 210   template <typename OverflowOp>
 211   bool inline_math_overflow(Node* arg1, Node* arg2);
 212   void inline_math_mathExact(Node* math, Node* test);
 213   bool inline_math_addExactI(bool is_increment);
 214   bool inline_math_addExactL(bool is_increment);
 215   bool inline_math_multiplyExactI();
 216   bool inline_math_multiplyExactL();
 217   bool inline_math_negateExactI();
 218   bool inline_math_negateExactL();
 219   bool inline_math_subtractExactI(bool is_decrement);
 220   bool inline_math_subtractExactL(bool is_decrement);
 221   bool inline_exp();
 222   bool inline_pow();
 223   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 224   bool inline_min_max(vmIntrinsics::ID id);
 225   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 226   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 227   int classify_unsafe_addr(Node* &base, Node* &offset);
 228   Node* make_unsafe_address(Node* base, Node* offset);
 229   // Helper for inline_unsafe_access.
 230   // Generates the guards that check whether the result of
 231   // Unsafe.getObject should be recorded in an SATB log buffer.
 232   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 233   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool is_unaligned);
 234   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 235   static bool klass_needs_init_guard(Node* kls);
 236   bool inline_unsafe_allocate();
 237   bool inline_unsafe_copyMemory();
 238   bool inline_native_currentThread();
 239 #ifdef TRACE_HAVE_INTRINSICS
 240   bool inline_native_classID();
 241   bool inline_native_threadID();
 242 #endif
 243   bool inline_native_time_funcs(address method, const char* funcName);
 244   bool inline_native_isInterrupted();
 245   bool inline_native_Class_query(vmIntrinsics::ID id);
 246   bool inline_native_subtype_check();
 247 
 248   bool inline_native_newArray();
 249   bool inline_native_getLength();
 250   bool inline_array_copyOf(bool is_copyOfRange);
 251   bool inline_array_equals();
 252   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 253   bool inline_native_clone(bool is_virtual);
 254   bool inline_native_Reflection_getCallerClass();
 255   // Helper function for inlining native object hash method
 256   bool inline_native_hashcode(bool is_virtual, bool is_static);
 257   bool inline_native_getClass();
 258 
 259   // Helper functions for inlining arraycopy
 260   bool inline_arraycopy();
 261   void generate_arraycopy(const TypePtr* adr_type,
 262                           BasicType basic_elem_type,
 263                           Node* src,  Node* src_offset,
 264                           Node* dest, Node* dest_offset,
 265                           Node* copy_length,
 266                           bool disjoint_bases = false,
 267                           bool length_never_negative = false,
 268                           RegionNode* slow_region = NULL);
 269   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 270                                                 RegionNode* slow_region);
 271   void generate_clear_array(const TypePtr* adr_type,
 272                             Node* dest,
 273                             BasicType basic_elem_type,
 274                             Node* slice_off,
 275                             Node* slice_len,
 276                             Node* slice_end);
 277   bool generate_block_arraycopy(const TypePtr* adr_type,
 278                                 BasicType basic_elem_type,
 279                                 AllocateNode* alloc,
 280                                 Node* src,  Node* src_offset,
 281                                 Node* dest, Node* dest_offset,
 282                                 Node* dest_size, bool dest_uninitialized);
 283   void generate_slow_arraycopy(const TypePtr* adr_type,
 284                                Node* src,  Node* src_offset,
 285                                Node* dest, Node* dest_offset,
 286                                Node* copy_length, bool dest_uninitialized);
 287   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 288                                      Node* dest_elem_klass,
 289                                      Node* src,  Node* src_offset,
 290                                      Node* dest, Node* dest_offset,
 291                                      Node* copy_length, bool dest_uninitialized);
 292   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 293                                    Node* src,  Node* src_offset,
 294                                    Node* dest, Node* dest_offset,
 295                                    Node* copy_length, bool dest_uninitialized);
 296   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 297                                     BasicType basic_elem_type,
 298                                     bool disjoint_bases,
 299                                     Node* src,  Node* src_offset,
 300                                     Node* dest, Node* dest_offset,
 301                                     Node* copy_length, bool dest_uninitialized);
 302   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 303   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 304   bool inline_unsafe_ordered_store(BasicType type);
 305   bool inline_unsafe_fence(vmIntrinsics::ID id);
 306   bool inline_fp_conversions(vmIntrinsics::ID id);
 307   bool inline_number_methods(vmIntrinsics::ID id);
 308   bool inline_reference_get();
 309   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 310   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 311   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 312   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 313   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 314   bool inline_sha_implCompress(vmIntrinsics::ID id);
 315   bool inline_digestBase_implCompressMB(int predicate);
 316   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 317                                  bool long_state, address stubAddr, const char *stubName,
 318                                  Node* src_start, Node* ofs, Node* limit);
 319   Node* get_state_from_sha_object(Node *sha_object);
 320   Node* get_state_from_sha5_object(Node *sha_object);
 321   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 322   bool inline_encodeISOArray();
 323   bool inline_updateCRC32();
 324   bool inline_updateBytesCRC32();
 325   bool inline_updateByteBufferCRC32();
 326   bool inline_multiplyToLen();
 327   bool inline_squareToLen();
 328   bool inline_mulAdd();
 329   bool inline_montgomeryMultiply();
 330   bool inline_montgomerySquare();
 331 
 332   bool inline_profileBoolean();
 333 };
 334 
 335 
 336 //---------------------------make_vm_intrinsic----------------------------
 337 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 338   vmIntrinsics::ID id = m->intrinsic_id();
 339   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 340 
 341   ccstr disable_intr = NULL;
 342 
 343   if ((DisableIntrinsic[0] != '\0'
 344        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 345       (method_has_option_value("DisableIntrinsic", disable_intr)
 346        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 347     // disabled by a user request on the command line:
 348     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 349     return NULL;
 350   }
 351 
 352   if (!m->is_loaded()) {
 353     // do not attempt to inline unloaded methods
 354     return NULL;
 355   }
 356 
 357   // Only a few intrinsics implement a virtual dispatch.
 358   // They are expensive calls which are also frequently overridden.
 359   if (is_virtual) {
 360     switch (id) {
 361     case vmIntrinsics::_hashCode:
 362     case vmIntrinsics::_clone:
 363       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 364       break;
 365     default:
 366       return NULL;
 367     }
 368   }
 369 
 370   // -XX:-InlineNatives disables nearly all intrinsics:
 371   if (!InlineNatives) {
 372     switch (id) {
 373     case vmIntrinsics::_indexOf:
 374     case vmIntrinsics::_compareTo:
 375     case vmIntrinsics::_equals:
 376     case vmIntrinsics::_equalsC:
 377     case vmIntrinsics::_getAndAddInt:
 378     case vmIntrinsics::_getAndAddLong:
 379     case vmIntrinsics::_getAndSetInt:
 380     case vmIntrinsics::_getAndSetLong:
 381     case vmIntrinsics::_getAndSetObject:
 382     case vmIntrinsics::_loadFence:
 383     case vmIntrinsics::_storeFence:
 384     case vmIntrinsics::_fullFence:
 385       break;  // InlineNatives does not control String.compareTo
 386     case vmIntrinsics::_Reference_get:
 387       break;  // InlineNatives does not control Reference.get
 388     default:
 389       return NULL;
 390     }
 391   }
 392 
 393   int predicates = 0;
 394   bool does_virtual_dispatch = false;
 395 
 396   switch (id) {
 397   case vmIntrinsics::_compareTo:
 398     if (!SpecialStringCompareTo)  return NULL;
 399     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 400     break;
 401   case vmIntrinsics::_indexOf:
 402     if (!SpecialStringIndexOf)  return NULL;
 403     break;
 404   case vmIntrinsics::_equals:
 405     if (!SpecialStringEquals)  return NULL;
 406     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 407     break;
 408   case vmIntrinsics::_equalsC:
 409     if (!SpecialArraysEquals)  return NULL;
 410     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 411     break;
 412   case vmIntrinsics::_arraycopy:
 413     if (!InlineArrayCopy)  return NULL;
 414     break;
 415   case vmIntrinsics::_copyMemory:
 416     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 417     if (!InlineArrayCopy)  return NULL;
 418     break;
 419   case vmIntrinsics::_hashCode:
 420     if (!InlineObjectHash)  return NULL;
 421     does_virtual_dispatch = true;
 422     break;
 423   case vmIntrinsics::_clone:
 424     does_virtual_dispatch = true;
 425   case vmIntrinsics::_copyOf:
 426   case vmIntrinsics::_copyOfRange:
 427     if (!InlineObjectCopy)  return NULL;
 428     // These also use the arraycopy intrinsic mechanism:
 429     if (!InlineArrayCopy)  return NULL;
 430     break;
 431   case vmIntrinsics::_encodeISOArray:
 432     if (!SpecialEncodeISOArray)  return NULL;
 433     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 434     break;
 435   case vmIntrinsics::_checkIndex:
 436     // We do not intrinsify this.  The optimizer does fine with it.
 437     return NULL;
 438 
 439   case vmIntrinsics::_getCallerClass:
 440     if (!UseNewReflection)  return NULL;
 441     if (!InlineReflectionGetCallerClass)  return NULL;
 442     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 443     break;
 444 
 445   case vmIntrinsics::_bitCount_i:
 446     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 447     break;
 448 
 449   case vmIntrinsics::_bitCount_l:
 450     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 451     break;
 452 
 453   case vmIntrinsics::_numberOfLeadingZeros_i:
 454     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_numberOfLeadingZeros_l:
 458     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_numberOfTrailingZeros_i:
 462     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_numberOfTrailingZeros_l:
 466     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_reverseBytes_c:
 470     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 471     break;
 472   case vmIntrinsics::_reverseBytes_s:
 473     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 474     break;
 475   case vmIntrinsics::_reverseBytes_i:
 476     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 477     break;
 478   case vmIntrinsics::_reverseBytes_l:
 479     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_Reference_get:
 483     // Use the intrinsic version of Reference.get() so that the value in
 484     // the referent field can be registered by the G1 pre-barrier code.
 485     // Also add memory barrier to prevent commoning reads from this field
 486     // across safepoint since GC can change it value.
 487     break;
 488 
 489   case vmIntrinsics::_compareAndSwapObject:
 490 #ifdef _LP64
 491     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 492 #endif
 493     break;
 494 
 495   case vmIntrinsics::_compareAndSwapLong:
 496     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 497     break;
 498 
 499   case vmIntrinsics::_getAndAddInt:
 500     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 501     break;
 502 
 503   case vmIntrinsics::_getAndAddLong:
 504     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 505     break;
 506 
 507   case vmIntrinsics::_getAndSetInt:
 508     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 509     break;
 510 
 511   case vmIntrinsics::_getAndSetLong:
 512     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 513     break;
 514 
 515   case vmIntrinsics::_getAndSetObject:
 516 #ifdef _LP64
 517     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 518     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 519     break;
 520 #else
 521     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 522     break;
 523 #endif
 524 
 525   case vmIntrinsics::_aescrypt_encryptBlock:
 526   case vmIntrinsics::_aescrypt_decryptBlock:
 527     if (!UseAESIntrinsics) return NULL;
 528     break;
 529 
 530   case vmIntrinsics::_multiplyToLen:
 531     if (!UseMultiplyToLenIntrinsic) return NULL;
 532     break;
 533 
 534   case vmIntrinsics::_squareToLen:
 535     if (!UseSquareToLenIntrinsic) return NULL;
 536     break;
 537 
 538   case vmIntrinsics::_mulAdd:
 539     if (!UseMulAddIntrinsic) return NULL;
 540     break;
 541 
 542   case vmIntrinsics::_montgomeryMultiply:
 543      if (!UseMontgomeryMultiplyIntrinsic) return NULL;
 544     break;
 545   case vmIntrinsics::_montgomerySquare:
 546      if (!UseMontgomerySquareIntrinsic) return NULL;
 547     break;
 548 
 549   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 550   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 551     if (!UseAESIntrinsics) return NULL;
 552     // these two require the predicated logic
 553     predicates = 1;
 554     break;
 555 
 556   case vmIntrinsics::_sha_implCompress:
 557     if (!UseSHA1Intrinsics) return NULL;
 558     break;
 559 
 560   case vmIntrinsics::_sha2_implCompress:
 561     if (!UseSHA256Intrinsics) return NULL;
 562     break;
 563 
 564   case vmIntrinsics::_sha5_implCompress:
 565     if (!UseSHA512Intrinsics) return NULL;
 566     break;
 567 
 568   case vmIntrinsics::_digestBase_implCompressMB:
 569     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 570     predicates = 3;
 571     break;
 572 
 573   case vmIntrinsics::_updateCRC32:
 574   case vmIntrinsics::_updateBytesCRC32:
 575   case vmIntrinsics::_updateByteBufferCRC32:
 576     if (!UseCRC32Intrinsics) return NULL;
 577     break;
 578 
 579   case vmIntrinsics::_incrementExactI:
 580   case vmIntrinsics::_addExactI:
 581     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 582     break;
 583   case vmIntrinsics::_incrementExactL:
 584   case vmIntrinsics::_addExactL:
 585     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 586     break;
 587   case vmIntrinsics::_decrementExactI:
 588   case vmIntrinsics::_subtractExactI:
 589     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 590     break;
 591   case vmIntrinsics::_decrementExactL:
 592   case vmIntrinsics::_subtractExactL:
 593     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 594     break;
 595   case vmIntrinsics::_negateExactI:
 596     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 597     break;
 598   case vmIntrinsics::_negateExactL:
 599     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 600     break;
 601   case vmIntrinsics::_multiplyExactI:
 602     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 603     break;
 604   case vmIntrinsics::_multiplyExactL:
 605     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 606     break;
 607 
 608  default:
 609     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 610     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 611     break;
 612   }
 613 
 614   // -XX:-InlineClassNatives disables natives from the Class class.
 615   // The flag applies to all reflective calls, notably Array.newArray
 616   // (visible to Java programmers as Array.newInstance).
 617   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 618       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 619     if (!InlineClassNatives)  return NULL;
 620   }
 621 
 622   // -XX:-InlineThreadNatives disables natives from the Thread class.
 623   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 624     if (!InlineThreadNatives)  return NULL;
 625   }
 626 
 627   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 628   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 629       m->holder()->name() == ciSymbol::java_lang_Float() ||
 630       m->holder()->name() == ciSymbol::java_lang_Double()) {
 631     if (!InlineMathNatives)  return NULL;
 632   }
 633 
 634   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 635   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 636     if (!InlineUnsafeOps)  return NULL;
 637   }
 638 
 639   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 640 }
 641 
 642 //----------------------register_library_intrinsics-----------------------
 643 // Initialize this file's data structures, for each Compile instance.
 644 void Compile::register_library_intrinsics() {
 645   // Nothing to do here.
 646 }
 647 
 648 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 649   LibraryCallKit kit(jvms, this);
 650   Compile* C = kit.C;
 651   int nodes = C->unique();
 652 #ifndef PRODUCT
 653   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 654     char buf[1000];
 655     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 656     tty->print_cr("Intrinsic %s", str);
 657   }
 658 #endif
 659   ciMethod* callee = kit.callee();
 660   const int bci    = kit.bci();
 661 
 662   // Try to inline the intrinsic.
 663   if (kit.try_to_inline(_last_predicate)) {
 664     if (C->print_intrinsics() || C->print_inlining()) {
 665       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 666     }
 667     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 668     if (C->log()) {
 669       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 670                      vmIntrinsics::name_at(intrinsic_id()),
 671                      (is_virtual() ? " virtual='1'" : ""),
 672                      C->unique() - nodes);
 673     }
 674     // Push the result from the inlined method onto the stack.
 675     kit.push_result();
 676     return kit.transfer_exceptions_into_jvms();
 677   }
 678 
 679   // The intrinsic bailed out
 680   if (C->print_intrinsics() || C->print_inlining()) {
 681     if (jvms->has_method()) {
 682       // Not a root compile.
 683       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 684       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 685     } else {
 686       // Root compile
 687       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 688                vmIntrinsics::name_at(intrinsic_id()),
 689                (is_virtual() ? " (virtual)" : ""), bci);
 690     }
 691   }
 692   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 693   return NULL;
 694 }
 695 
 696 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 697   LibraryCallKit kit(jvms, this);
 698   Compile* C = kit.C;
 699   int nodes = C->unique();
 700   _last_predicate = predicate;
 701 #ifndef PRODUCT
 702   assert(is_predicated() && predicate < predicates_count(), "sanity");
 703   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 704     char buf[1000];
 705     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 706     tty->print_cr("Predicate for intrinsic %s", str);
 707   }
 708 #endif
 709   ciMethod* callee = kit.callee();
 710   const int bci    = kit.bci();
 711 
 712   Node* slow_ctl = kit.try_to_predicate(predicate);
 713   if (!kit.failing()) {
 714     if (C->print_intrinsics() || C->print_inlining()) {
 715       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 716     }
 717     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 718     if (C->log()) {
 719       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 720                      vmIntrinsics::name_at(intrinsic_id()),
 721                      (is_virtual() ? " virtual='1'" : ""),
 722                      C->unique() - nodes);
 723     }
 724     return slow_ctl; // Could be NULL if the check folds.
 725   }
 726 
 727   // The intrinsic bailed out
 728   if (C->print_intrinsics() || C->print_inlining()) {
 729     if (jvms->has_method()) {
 730       // Not a root compile.
 731       const char* msg = "failed to generate predicate for intrinsic";
 732       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 733     } else {
 734       // Root compile
 735       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 736                                         vmIntrinsics::name_at(intrinsic_id()),
 737                                         (is_virtual() ? " (virtual)" : ""), bci);
 738     }
 739   }
 740   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 741   return NULL;
 742 }
 743 
 744 bool LibraryCallKit::try_to_inline(int predicate) {
 745   // Handle symbolic names for otherwise undistinguished boolean switches:
 746   const bool is_store       = true;
 747   const bool is_native_ptr  = true;
 748   const bool is_static      = true;
 749   const bool is_volatile    = true;
 750 
 751   if (!jvms()->has_method()) {
 752     // Root JVMState has a null method.
 753     assert(map()->memory()->Opcode() == Op_Parm, "");
 754     // Insert the memory aliasing node
 755     set_all_memory(reset_memory());
 756   }
 757   assert(merged_memory(), "");
 758 
 759 
 760   switch (intrinsic_id()) {
 761   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 762   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 763   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 764 
 765   case vmIntrinsics::_dsin:
 766   case vmIntrinsics::_dcos:
 767   case vmIntrinsics::_dtan:
 768   case vmIntrinsics::_dabs:
 769   case vmIntrinsics::_datan2:
 770   case vmIntrinsics::_dsqrt:
 771   case vmIntrinsics::_dexp:
 772   case vmIntrinsics::_dlog:
 773   case vmIntrinsics::_dlog10:
 774   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 775 
 776   case vmIntrinsics::_min:
 777   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 778 
 779   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 780   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 781   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 782   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 783   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 784   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 785   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 786   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 787   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 788   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 789   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 790   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 791 
 792   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 793 
 794   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 795   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 796   case vmIntrinsics::_equals:                   return inline_string_equals();
 797 
 798   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile, false);
 799   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile, false);
 800   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 801   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 802   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 803   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 804   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 805   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 806   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 807 
 808   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile, false);
 809   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile, false);
 810   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 811   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 812   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 813   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 814   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 815   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 816   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 817 
 818   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 819   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 820   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 821   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 822   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 823   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 824   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 825   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile, false);
 826 
 827   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 828   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 829   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 830   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 831   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 832   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 833   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 834   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile, false);
 835 
 836   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile, false);
 837   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile, false);
 838   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile, false);
 839   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile, false);
 840   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile, false);
 841   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile, false);
 842   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile, false);
 843   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile, false);
 844   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile, false);
 845 
 846   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile, false);
 847   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile, false);
 848   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile, false);
 849   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile, false);
 850   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile, false);
 851   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile, false);
 852   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile, false);
 853   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile, false);
 854   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile, false);
 855 
 856   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 857   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 858   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 859   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 860 
 861   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 862   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 863   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 864 
 865   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 866   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 867   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 868 
 869   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 870   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 871   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 872   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 873   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 874 
 875   case vmIntrinsics::_loadFence:
 876   case vmIntrinsics::_storeFence:
 877   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 878 
 879   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 880   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 881 
 882 #ifdef TRACE_HAVE_INTRINSICS
 883   case vmIntrinsics::_classID:                  return inline_native_classID();
 884   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 885   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 886 #endif
 887   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 888   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 889   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 890   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 891   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 892   case vmIntrinsics::_getLength:                return inline_native_getLength();
 893   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 894   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 895   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 896   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 897 
 898   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 899 
 900   case vmIntrinsics::_isInstance:
 901   case vmIntrinsics::_getModifiers:
 902   case vmIntrinsics::_isInterface:
 903   case vmIntrinsics::_isArray:
 904   case vmIntrinsics::_isPrimitive:
 905   case vmIntrinsics::_getSuperclass:
 906   case vmIntrinsics::_getComponentType:
 907   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 908 
 909   case vmIntrinsics::_floatToRawIntBits:
 910   case vmIntrinsics::_floatToIntBits:
 911   case vmIntrinsics::_intBitsToFloat:
 912   case vmIntrinsics::_doubleToRawLongBits:
 913   case vmIntrinsics::_doubleToLongBits:
 914   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 915 
 916   case vmIntrinsics::_numberOfLeadingZeros_i:
 917   case vmIntrinsics::_numberOfLeadingZeros_l:
 918   case vmIntrinsics::_numberOfTrailingZeros_i:
 919   case vmIntrinsics::_numberOfTrailingZeros_l:
 920   case vmIntrinsics::_bitCount_i:
 921   case vmIntrinsics::_bitCount_l:
 922   case vmIntrinsics::_reverseBytes_i:
 923   case vmIntrinsics::_reverseBytes_l:
 924   case vmIntrinsics::_reverseBytes_s:
 925   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 926 
 927   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 928 
 929   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 930 
 931   case vmIntrinsics::_aescrypt_encryptBlock:
 932   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 933 
 934   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 935   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 936     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 937 
 938   case vmIntrinsics::_sha_implCompress:
 939   case vmIntrinsics::_sha2_implCompress:
 940   case vmIntrinsics::_sha5_implCompress:
 941     return inline_sha_implCompress(intrinsic_id());
 942 
 943   case vmIntrinsics::_digestBase_implCompressMB:
 944     return inline_digestBase_implCompressMB(predicate);
 945 
 946   case vmIntrinsics::_multiplyToLen:
 947     return inline_multiplyToLen();
 948 
 949   case vmIntrinsics::_squareToLen:
 950     return inline_squareToLen();
 951 
 952   case vmIntrinsics::_mulAdd:
 953     return inline_mulAdd();
 954 
 955   case vmIntrinsics::_montgomeryMultiply:
 956     return inline_montgomeryMultiply();
 957   case vmIntrinsics::_montgomerySquare:
 958     return inline_montgomerySquare();
 959 
 960   case vmIntrinsics::_encodeISOArray:
 961     return inline_encodeISOArray();
 962 
 963   case vmIntrinsics::_updateCRC32:
 964     return inline_updateCRC32();
 965   case vmIntrinsics::_updateBytesCRC32:
 966     return inline_updateBytesCRC32();
 967   case vmIntrinsics::_updateByteBufferCRC32:
 968     return inline_updateByteBufferCRC32();
 969 
 970   case vmIntrinsics::_profileBoolean:
 971     return inline_profileBoolean();
 972 
 973   default:
 974     // If you get here, it may be that someone has added a new intrinsic
 975     // to the list in vmSymbols.hpp without implementing it here.
 976 #ifndef PRODUCT
 977     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 978       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 979                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 980     }
 981 #endif
 982     return false;
 983   }
 984 }
 985 
 986 Node* LibraryCallKit::try_to_predicate(int predicate) {
 987   if (!jvms()->has_method()) {
 988     // Root JVMState has a null method.
 989     assert(map()->memory()->Opcode() == Op_Parm, "");
 990     // Insert the memory aliasing node
 991     set_all_memory(reset_memory());
 992   }
 993   assert(merged_memory(), "");
 994 
 995   switch (intrinsic_id()) {
 996   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 997     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 998   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 999     return inline_cipherBlockChaining_AESCrypt_predicate(true);
1000   case vmIntrinsics::_digestBase_implCompressMB:
1001     return inline_digestBase_implCompressMB_predicate(predicate);
1002 
1003   default:
1004     // If you get here, it may be that someone has added a new intrinsic
1005     // to the list in vmSymbols.hpp without implementing it here.
1006 #ifndef PRODUCT
1007     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
1008       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
1009                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
1010     }
1011 #endif
1012     Node* slow_ctl = control();
1013     set_control(top()); // No fast path instrinsic
1014     return slow_ctl;
1015   }
1016 }
1017 
1018 //------------------------------set_result-------------------------------
1019 // Helper function for finishing intrinsics.
1020 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
1021   record_for_igvn(region);
1022   set_control(_gvn.transform(region));
1023   set_result( _gvn.transform(value));
1024   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
1025 }
1026 
1027 //------------------------------generate_guard---------------------------
1028 // Helper function for generating guarded fast-slow graph structures.
1029 // The given 'test', if true, guards a slow path.  If the test fails
1030 // then a fast path can be taken.  (We generally hope it fails.)
1031 // In all cases, GraphKit::control() is updated to the fast path.
1032 // The returned value represents the control for the slow path.
1033 // The return value is never 'top'; it is either a valid control
1034 // or NULL if it is obvious that the slow path can never be taken.
1035 // Also, if region and the slow control are not NULL, the slow edge
1036 // is appended to the region.
1037 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1038   if (stopped()) {
1039     // Already short circuited.
1040     return NULL;
1041   }
1042 
1043   // Build an if node and its projections.
1044   // If test is true we take the slow path, which we assume is uncommon.
1045   if (_gvn.type(test) == TypeInt::ZERO) {
1046     // The slow branch is never taken.  No need to build this guard.
1047     return NULL;
1048   }
1049 
1050   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1051 
1052   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
1053   if (if_slow == top()) {
1054     // The slow branch is never taken.  No need to build this guard.
1055     return NULL;
1056   }
1057 
1058   if (region != NULL)
1059     region->add_req(if_slow);
1060 
1061   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
1062   set_control(if_fast);
1063 
1064   return if_slow;
1065 }
1066 
1067 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1068   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1069 }
1070 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1071   return generate_guard(test, region, PROB_FAIR);
1072 }
1073 
1074 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1075                                                      Node* *pos_index) {
1076   if (stopped())
1077     return NULL;                // already stopped
1078   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1079     return NULL;                // index is already adequately typed
1080   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1081   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1082   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1083   if (is_neg != NULL && pos_index != NULL) {
1084     // Emulate effect of Parse::adjust_map_after_if.
1085     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1086     ccast->set_req(0, control());
1087     (*pos_index) = _gvn.transform(ccast);
1088   }
1089   return is_neg;
1090 }
1091 
1092 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1093                                                         Node* *pos_index) {
1094   if (stopped())
1095     return NULL;                // already stopped
1096   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1097     return NULL;                // index is already adequately typed
1098   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1099   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1100   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1101   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1102   if (is_notp != NULL && pos_index != NULL) {
1103     // Emulate effect of Parse::adjust_map_after_if.
1104     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1105     ccast->set_req(0, control());
1106     (*pos_index) = _gvn.transform(ccast);
1107   }
1108   return is_notp;
1109 }
1110 
1111 // Make sure that 'position' is a valid limit index, in [0..length].
1112 // There are two equivalent plans for checking this:
1113 //   A. (offset + copyLength)  unsigned<=  arrayLength
1114 //   B. offset  <=  (arrayLength - copyLength)
1115 // We require that all of the values above, except for the sum and
1116 // difference, are already known to be non-negative.
1117 // Plan A is robust in the face of overflow, if offset and copyLength
1118 // are both hugely positive.
1119 //
1120 // Plan B is less direct and intuitive, but it does not overflow at
1121 // all, since the difference of two non-negatives is always
1122 // representable.  Whenever Java methods must perform the equivalent
1123 // check they generally use Plan B instead of Plan A.
1124 // For the moment we use Plan A.
1125 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1126                                                   Node* subseq_length,
1127                                                   Node* array_length,
1128                                                   RegionNode* region) {
1129   if (stopped())
1130     return NULL;                // already stopped
1131   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1132   if (zero_offset && subseq_length->eqv_uncast(array_length))
1133     return NULL;                // common case of whole-array copy
1134   Node* last = subseq_length;
1135   if (!zero_offset)             // last += offset
1136     last = _gvn.transform(new (C) AddINode(last, offset));
1137   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1138   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1139   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1140   return is_over;
1141 }
1142 
1143 
1144 //--------------------------generate_current_thread--------------------
1145 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1146   ciKlass*    thread_klass = env()->Thread_klass();
1147   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1148   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1149   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1150   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1151   tls_output = thread;
1152   return threadObj;
1153 }
1154 
1155 
1156 //------------------------------make_string_method_node------------------------
1157 // Helper method for String intrinsic functions. This version is called
1158 // with str1 and str2 pointing to String object nodes.
1159 //
1160 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1161   Node* no_ctrl = NULL;
1162 
1163   // Get start addr of string
1164   Node* str1_value   = load_String_value(no_ctrl, str1);
1165   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1166   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1167 
1168   // Get length of string 1
1169   Node* str1_len  = load_String_length(no_ctrl, str1);
1170 
1171   Node* str2_value   = load_String_value(no_ctrl, str2);
1172   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1173   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1174 
1175   Node* str2_len = NULL;
1176   Node* result = NULL;
1177 
1178   switch (opcode) {
1179   case Op_StrIndexOf:
1180     // Get length of string 2
1181     str2_len = load_String_length(no_ctrl, str2);
1182 
1183     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1184                                  str1_start, str1_len, str2_start, str2_len);
1185     break;
1186   case Op_StrComp:
1187     // Get length of string 2
1188     str2_len = load_String_length(no_ctrl, str2);
1189 
1190     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1191                                  str1_start, str1_len, str2_start, str2_len);
1192     break;
1193   case Op_StrEquals:
1194     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1195                                str1_start, str2_start, str1_len);
1196     break;
1197   default:
1198     ShouldNotReachHere();
1199     return NULL;
1200   }
1201 
1202   // All these intrinsics have checks.
1203   C->set_has_split_ifs(true); // Has chance for split-if optimization
1204 
1205   return _gvn.transform(result);
1206 }
1207 
1208 // Helper method for String intrinsic functions. This version is called
1209 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1210 // to Int nodes containing the lenghts of str1 and str2.
1211 //
1212 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1213   Node* result = NULL;
1214   switch (opcode) {
1215   case Op_StrIndexOf:
1216     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1217                                  str1_start, cnt1, str2_start, cnt2);
1218     break;
1219   case Op_StrComp:
1220     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1221                                  str1_start, cnt1, str2_start, cnt2);
1222     break;
1223   case Op_StrEquals:
1224     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1225                                  str1_start, str2_start, cnt1);
1226     break;
1227   default:
1228     ShouldNotReachHere();
1229     return NULL;
1230   }
1231 
1232   // All these intrinsics have checks.
1233   C->set_has_split_ifs(true); // Has chance for split-if optimization
1234 
1235   return _gvn.transform(result);
1236 }
1237 
1238 //------------------------------inline_string_compareTo------------------------
1239 // public int java.lang.String.compareTo(String anotherString);
1240 bool LibraryCallKit::inline_string_compareTo() {
1241   Node* receiver = null_check(argument(0));
1242   Node* arg      = null_check(argument(1));
1243   if (stopped()) {
1244     return true;
1245   }
1246   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1247   return true;
1248 }
1249 
1250 //------------------------------inline_string_equals------------------------
1251 bool LibraryCallKit::inline_string_equals() {
1252   Node* receiver = null_check_receiver();
1253   // NOTE: Do not null check argument for String.equals() because spec
1254   // allows to specify NULL as argument.
1255   Node* argument = this->argument(1);
1256   if (stopped()) {
1257     return true;
1258   }
1259 
1260   // paths (plus control) merge
1261   RegionNode* region = new (C) RegionNode(5);
1262   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1263 
1264   // does source == target string?
1265   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1266   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1267 
1268   Node* if_eq = generate_slow_guard(bol, NULL);
1269   if (if_eq != NULL) {
1270     // receiver == argument
1271     phi->init_req(2, intcon(1));
1272     region->init_req(2, if_eq);
1273   }
1274 
1275   // get String klass for instanceOf
1276   ciInstanceKlass* klass = env()->String_klass();
1277 
1278   if (!stopped()) {
1279     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1280     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1281     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1282 
1283     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1284     //instanceOf == true, fallthrough
1285 
1286     if (inst_false != NULL) {
1287       phi->init_req(3, intcon(0));
1288       region->init_req(3, inst_false);
1289     }
1290   }
1291 
1292   if (!stopped()) {
1293     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1294 
1295     // Properly cast the argument to String
1296     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1297     // This path is taken only when argument's type is String:NotNull.
1298     argument = cast_not_null(argument, false);
1299 
1300     Node* no_ctrl = NULL;
1301 
1302     // Get start addr of receiver
1303     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1304     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1305     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1306 
1307     // Get length of receiver
1308     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1309 
1310     // Get start addr of argument
1311     Node* argument_val    = load_String_value(no_ctrl, argument);
1312     Node* argument_offset = load_String_offset(no_ctrl, argument);
1313     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1314 
1315     // Get length of argument
1316     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1317 
1318     // Check for receiver count != argument count
1319     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1320     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1321     Node* if_ne = generate_slow_guard(bol, NULL);
1322     if (if_ne != NULL) {
1323       phi->init_req(4, intcon(0));
1324       region->init_req(4, if_ne);
1325     }
1326 
1327     // Check for count == 0 is done by assembler code for StrEquals.
1328 
1329     if (!stopped()) {
1330       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1331       phi->init_req(1, equals);
1332       region->init_req(1, control());
1333     }
1334   }
1335 
1336   // post merge
1337   set_control(_gvn.transform(region));
1338   record_for_igvn(region);
1339 
1340   set_result(_gvn.transform(phi));
1341   return true;
1342 }
1343 
1344 //------------------------------inline_array_equals----------------------------
1345 bool LibraryCallKit::inline_array_equals() {
1346   Node* arg1 = argument(0);
1347   Node* arg2 = argument(1);
1348   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1349   return true;
1350 }
1351 
1352 // Java version of String.indexOf(constant string)
1353 // class StringDecl {
1354 //   StringDecl(char[] ca) {
1355 //     offset = 0;
1356 //     count = ca.length;
1357 //     value = ca;
1358 //   }
1359 //   int offset;
1360 //   int count;
1361 //   char[] value;
1362 // }
1363 //
1364 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1365 //                             int targetOffset, int cache_i, int md2) {
1366 //   int cache = cache_i;
1367 //   int sourceOffset = string_object.offset;
1368 //   int sourceCount = string_object.count;
1369 //   int targetCount = target_object.length;
1370 //
1371 //   int targetCountLess1 = targetCount - 1;
1372 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1373 //
1374 //   char[] source = string_object.value;
1375 //   char[] target = target_object;
1376 //   int lastChar = target[targetCountLess1];
1377 //
1378 //  outer_loop:
1379 //   for (int i = sourceOffset; i < sourceEnd; ) {
1380 //     int src = source[i + targetCountLess1];
1381 //     if (src == lastChar) {
1382 //       // With random strings and a 4-character alphabet,
1383 //       // reverse matching at this point sets up 0.8% fewer
1384 //       // frames, but (paradoxically) makes 0.3% more probes.
1385 //       // Since those probes are nearer the lastChar probe,
1386 //       // there is may be a net D$ win with reverse matching.
1387 //       // But, reversing loop inhibits unroll of inner loop
1388 //       // for unknown reason.  So, does running outer loop from
1389 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1390 //       for (int j = 0; j < targetCountLess1; j++) {
1391 //         if (target[targetOffset + j] != source[i+j]) {
1392 //           if ((cache & (1 << source[i+j])) == 0) {
1393 //             if (md2 < j+1) {
1394 //               i += j+1;
1395 //               continue outer_loop;
1396 //             }
1397 //           }
1398 //           i += md2;
1399 //           continue outer_loop;
1400 //         }
1401 //       }
1402 //       return i - sourceOffset;
1403 //     }
1404 //     if ((cache & (1 << src)) == 0) {
1405 //       i += targetCountLess1;
1406 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1407 //     i++;
1408 //   }
1409 //   return -1;
1410 // }
1411 
1412 //------------------------------string_indexOf------------------------
1413 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1414                                      jint cache_i, jint md2_i) {
1415 
1416   Node* no_ctrl  = NULL;
1417   float likely   = PROB_LIKELY(0.9);
1418   float unlikely = PROB_UNLIKELY(0.9);
1419 
1420   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1421 
1422   Node* source        = load_String_value(no_ctrl, string_object);
1423   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1424   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1425 
1426   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1427   jint target_length = target_array->length();
1428   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1429   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1430 
1431   // String.value field is known to be @Stable.
1432   if (UseImplicitStableValues) {
1433     target = cast_array_to_stable(target, target_type);
1434   }
1435 
1436   IdealKit kit(this, false, true);
1437 #define __ kit.
1438   Node* zero             = __ ConI(0);
1439   Node* one              = __ ConI(1);
1440   Node* cache            = __ ConI(cache_i);
1441   Node* md2              = __ ConI(md2_i);
1442   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1443   Node* targetCount      = __ ConI(target_length);
1444   Node* targetCountLess1 = __ ConI(target_length - 1);
1445   Node* targetOffset     = __ ConI(targetOffset_i);
1446   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1447 
1448   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1449   Node* outer_loop = __ make_label(2 /* goto */);
1450   Node* return_    = __ make_label(1);
1451 
1452   __ set(rtn,__ ConI(-1));
1453   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1454        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1455        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1456        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1457        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1458          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1459               Node* tpj = __ AddI(targetOffset, __ value(j));
1460               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1461               Node* ipj  = __ AddI(__ value(i), __ value(j));
1462               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1463               __ if_then(targ, BoolTest::ne, src2); {
1464                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1465                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1466                     __ increment(i, __ AddI(__ value(j), one));
1467                     __ goto_(outer_loop);
1468                   } __ end_if(); __ dead(j);
1469                 }__ end_if(); __ dead(j);
1470                 __ increment(i, md2);
1471                 __ goto_(outer_loop);
1472               }__ end_if();
1473               __ increment(j, one);
1474          }__ end_loop(); __ dead(j);
1475          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1476          __ goto_(return_);
1477        }__ end_if();
1478        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1479          __ increment(i, targetCountLess1);
1480        }__ end_if();
1481        __ increment(i, one);
1482        __ bind(outer_loop);
1483   }__ end_loop(); __ dead(i);
1484   __ bind(return_);
1485 
1486   // Final sync IdealKit and GraphKit.
1487   final_sync(kit);
1488   Node* result = __ value(rtn);
1489 #undef __
1490   C->set_has_loops(true);
1491   return result;
1492 }
1493 
1494 //------------------------------inline_string_indexOf------------------------
1495 bool LibraryCallKit::inline_string_indexOf() {
1496   Node* receiver = argument(0);
1497   Node* arg      = argument(1);
1498 
1499   Node* result;
1500   // Disable the use of pcmpestri until it can be guaranteed that
1501   // the load doesn't cross into the uncommited space.
1502   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1503       UseSSE42Intrinsics) {
1504     // Generate SSE4.2 version of indexOf
1505     // We currently only have match rules that use SSE4.2
1506 
1507     receiver = null_check(receiver);
1508     arg      = null_check(arg);
1509     if (stopped()) {
1510       return true;
1511     }
1512 
1513     ciInstanceKlass* str_klass = env()->String_klass();
1514     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1515 
1516     // Make the merge point
1517     RegionNode* result_rgn = new (C) RegionNode(4);
1518     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1519     Node* no_ctrl  = NULL;
1520 
1521     // Get start addr of source string
1522     Node* source = load_String_value(no_ctrl, receiver);
1523     Node* source_offset = load_String_offset(no_ctrl, receiver);
1524     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1525 
1526     // Get length of source string
1527     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1528 
1529     // Get start addr of substring
1530     Node* substr = load_String_value(no_ctrl, arg);
1531     Node* substr_offset = load_String_offset(no_ctrl, arg);
1532     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1533 
1534     // Get length of source string
1535     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1536 
1537     // Check for substr count > string count
1538     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1539     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1540     Node* if_gt = generate_slow_guard(bol, NULL);
1541     if (if_gt != NULL) {
1542       result_phi->init_req(2, intcon(-1));
1543       result_rgn->init_req(2, if_gt);
1544     }
1545 
1546     if (!stopped()) {
1547       // Check for substr count == 0
1548       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1549       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1550       Node* if_zero = generate_slow_guard(bol, NULL);
1551       if (if_zero != NULL) {
1552         result_phi->init_req(3, intcon(0));
1553         result_rgn->init_req(3, if_zero);
1554       }
1555     }
1556 
1557     if (!stopped()) {
1558       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1559       result_phi->init_req(1, result);
1560       result_rgn->init_req(1, control());
1561     }
1562     set_control(_gvn.transform(result_rgn));
1563     record_for_igvn(result_rgn);
1564     result = _gvn.transform(result_phi);
1565 
1566   } else { // Use LibraryCallKit::string_indexOf
1567     // don't intrinsify if argument isn't a constant string.
1568     if (!arg->is_Con()) {
1569      return false;
1570     }
1571     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1572     if (str_type == NULL) {
1573       return false;
1574     }
1575     ciInstanceKlass* klass = env()->String_klass();
1576     ciObject* str_const = str_type->const_oop();
1577     if (str_const == NULL || str_const->klass() != klass) {
1578       return false;
1579     }
1580     ciInstance* str = str_const->as_instance();
1581     assert(str != NULL, "must be instance");
1582 
1583     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1584     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1585 
1586     int o;
1587     int c;
1588     if (java_lang_String::has_offset_field()) {
1589       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1590       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1591     } else {
1592       o = 0;
1593       c = pat->length();
1594     }
1595 
1596     // constant strings have no offset and count == length which
1597     // simplifies the resulting code somewhat so lets optimize for that.
1598     if (o != 0 || c != pat->length()) {
1599      return false;
1600     }
1601 
1602     receiver = null_check(receiver, T_OBJECT);
1603     // NOTE: No null check on the argument is needed since it's a constant String oop.
1604     if (stopped()) {
1605       return true;
1606     }
1607 
1608     // The null string as a pattern always returns 0 (match at beginning of string)
1609     if (c == 0) {
1610       set_result(intcon(0));
1611       return true;
1612     }
1613 
1614     // Generate default indexOf
1615     jchar lastChar = pat->char_at(o + (c - 1));
1616     int cache = 0;
1617     int i;
1618     for (i = 0; i < c - 1; i++) {
1619       assert(i < pat->length(), "out of range");
1620       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1621     }
1622 
1623     int md2 = c;
1624     for (i = 0; i < c - 1; i++) {
1625       assert(i < pat->length(), "out of range");
1626       if (pat->char_at(o + i) == lastChar) {
1627         md2 = (c - 1) - i;
1628       }
1629     }
1630 
1631     result = string_indexOf(receiver, pat, o, cache, md2);
1632   }
1633   set_result(result);
1634   return true;
1635 }
1636 
1637 //--------------------------round_double_node--------------------------------
1638 // Round a double node if necessary.
1639 Node* LibraryCallKit::round_double_node(Node* n) {
1640   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1641     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1642   return n;
1643 }
1644 
1645 //------------------------------inline_math-----------------------------------
1646 // public static double Math.abs(double)
1647 // public static double Math.sqrt(double)
1648 // public static double Math.log(double)
1649 // public static double Math.log10(double)
1650 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1651   Node* arg = round_double_node(argument(0));
1652   Node* n = NULL;
1653   switch (id) {
1654   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1655   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1656   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1657   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1658   default:  fatal_unexpected_iid(id);  break;
1659   }
1660   set_result(_gvn.transform(n));
1661   return true;
1662 }
1663 
1664 //------------------------------inline_trig----------------------------------
1665 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1666 // argument reduction which will turn into a fast/slow diamond.
1667 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1668   Node* arg = round_double_node(argument(0));
1669   Node* n = NULL;
1670 
1671   switch (id) {
1672   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1673   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1674   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1675   default:  fatal_unexpected_iid(id);  break;
1676   }
1677   n = _gvn.transform(n);
1678 
1679   // Rounding required?  Check for argument reduction!
1680   if (Matcher::strict_fp_requires_explicit_rounding) {
1681     static const double     pi_4 =  0.7853981633974483;
1682     static const double neg_pi_4 = -0.7853981633974483;
1683     // pi/2 in 80-bit extended precision
1684     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1685     // -pi/2 in 80-bit extended precision
1686     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1687     // Cutoff value for using this argument reduction technique
1688     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1689     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1690 
1691     // Pseudocode for sin:
1692     // if (x <= Math.PI / 4.0) {
1693     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1694     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1695     // } else {
1696     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1697     // }
1698     // return StrictMath.sin(x);
1699 
1700     // Pseudocode for cos:
1701     // if (x <= Math.PI / 4.0) {
1702     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1703     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1704     // } else {
1705     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1706     // }
1707     // return StrictMath.cos(x);
1708 
1709     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1710     // requires a special machine instruction to load it.  Instead we'll try
1711     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1712     // probably do the math inside the SIN encoding.
1713 
1714     // Make the merge point
1715     RegionNode* r = new (C) RegionNode(3);
1716     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1717 
1718     // Flatten arg so we need only 1 test
1719     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1720     // Node for PI/4 constant
1721     Node *pi4 = makecon(TypeD::make(pi_4));
1722     // Check PI/4 : abs(arg)
1723     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1724     // Check: If PI/4 < abs(arg) then go slow
1725     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1726     // Branch either way
1727     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1728     set_control(opt_iff(r,iff));
1729 
1730     // Set fast path result
1731     phi->init_req(2, n);
1732 
1733     // Slow path - non-blocking leaf call
1734     Node* call = NULL;
1735     switch (id) {
1736     case vmIntrinsics::_dsin:
1737       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1738                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1739                                "Sin", NULL, arg, top());
1740       break;
1741     case vmIntrinsics::_dcos:
1742       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1743                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1744                                "Cos", NULL, arg, top());
1745       break;
1746     case vmIntrinsics::_dtan:
1747       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1748                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1749                                "Tan", NULL, arg, top());
1750       break;
1751     }
1752     assert(control()->in(0) == call, "");
1753     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1754     r->init_req(1, control());
1755     phi->init_req(1, slow_result);
1756 
1757     // Post-merge
1758     set_control(_gvn.transform(r));
1759     record_for_igvn(r);
1760     n = _gvn.transform(phi);
1761 
1762     C->set_has_split_ifs(true); // Has chance for split-if optimization
1763   }
1764   set_result(n);
1765   return true;
1766 }
1767 
1768 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1769   //-------------------
1770   //result=(result.isNaN())? funcAddr():result;
1771   // Check: If isNaN() by checking result!=result? then either trap
1772   // or go to runtime
1773   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1774   // Build the boolean node
1775   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1776 
1777   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1778     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1779       // The pow or exp intrinsic returned a NaN, which requires a call
1780       // to the runtime.  Recompile with the runtime call.
1781       uncommon_trap(Deoptimization::Reason_intrinsic,
1782                     Deoptimization::Action_make_not_entrant);
1783     }
1784     return result;
1785   } else {
1786     // If this inlining ever returned NaN in the past, we compile a call
1787     // to the runtime to properly handle corner cases
1788 
1789     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1790     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1791     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1792 
1793     if (!if_slow->is_top()) {
1794       RegionNode* result_region = new (C) RegionNode(3);
1795       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1796 
1797       result_region->init_req(1, if_fast);
1798       result_val->init_req(1, result);
1799 
1800       set_control(if_slow);
1801 
1802       const TypePtr* no_memory_effects = NULL;
1803       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1804                                    no_memory_effects,
1805                                    x, top(), y, y ? top() : NULL);
1806       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1807 #ifdef ASSERT
1808       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1809       assert(value_top == top(), "second value must be top");
1810 #endif
1811 
1812       result_region->init_req(2, control());
1813       result_val->init_req(2, value);
1814       set_control(_gvn.transform(result_region));
1815       return _gvn.transform(result_val);
1816     } else {
1817       return result;
1818     }
1819   }
1820 }
1821 
1822 //------------------------------inline_exp-------------------------------------
1823 // Inline exp instructions, if possible.  The Intel hardware only misses
1824 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1825 bool LibraryCallKit::inline_exp() {
1826   Node* arg = round_double_node(argument(0));
1827   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1828 
1829   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1830   set_result(n);
1831 
1832   C->set_has_split_ifs(true); // Has chance for split-if optimization
1833   return true;
1834 }
1835 
1836 //------------------------------inline_pow-------------------------------------
1837 // Inline power instructions, if possible.
1838 bool LibraryCallKit::inline_pow() {
1839   // Pseudocode for pow
1840   // if (y == 2) {
1841   //   return x * x;
1842   // } else {
1843   //   if (x <= 0.0) {
1844   //     long longy = (long)y;
1845   //     if ((double)longy == y) { // if y is long
1846   //       if (y + 1 == y) longy = 0; // huge number: even
1847   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1848   //     } else {
1849   //       result = NaN;
1850   //     }
1851   //   } else {
1852   //     result = DPow(x,y);
1853   //   }
1854   //   if (result != result)?  {
1855   //     result = uncommon_trap() or runtime_call();
1856   //   }
1857   //   return result;
1858   // }
1859 
1860   Node* x = round_double_node(argument(0));
1861   Node* y = round_double_node(argument(2));
1862 
1863   Node* result = NULL;
1864 
1865   Node*   const_two_node = makecon(TypeD::make(2.0));
1866   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
1867   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
1868   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1869   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
1870   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
1871 
1872   RegionNode* region_node = new (C) RegionNode(3);
1873   region_node->init_req(1, if_true);
1874 
1875   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
1876   // special case for x^y where y == 2, we can convert it to x * x
1877   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
1878 
1879   // set control to if_false since we will now process the false branch
1880   set_control(if_false);
1881 
1882   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1883     // Short form: skip the fancy tests and just check for NaN result.
1884     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1885   } else {
1886     // If this inlining ever returned NaN in the past, include all
1887     // checks + call to the runtime.
1888 
1889     // Set the merge point for If node with condition of (x <= 0.0)
1890     // There are four possible paths to region node and phi node
1891     RegionNode *r = new (C) RegionNode(4);
1892     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1893 
1894     // Build the first if node: if (x <= 0.0)
1895     // Node for 0 constant
1896     Node *zeronode = makecon(TypeD::ZERO);
1897     // Check x:0
1898     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1899     // Check: If (x<=0) then go complex path
1900     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1901     // Branch either way
1902     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1903     // Fast path taken; set region slot 3
1904     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1905     r->init_req(3,fast_taken); // Capture fast-control
1906 
1907     // Fast path not-taken, i.e. slow path
1908     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1909 
1910     // Set fast path result
1911     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1912     phi->init_req(3, fast_result);
1913 
1914     // Complex path
1915     // Build the second if node (if y is long)
1916     // Node for (long)y
1917     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1918     // Node for (double)((long) y)
1919     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1920     // Check (double)((long) y) : y
1921     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1922     // Check if (y isn't long) then go to slow path
1923 
1924     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1925     // Branch either way
1926     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1927     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1928 
1929     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1930 
1931     // Calculate DPow(abs(x), y)*(1 & (long)y)
1932     // Node for constant 1
1933     Node *conone = longcon(1);
1934     // 1& (long)y
1935     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1936 
1937     // A huge number is always even. Detect a huge number by checking
1938     // if y + 1 == y and set integer to be tested for parity to 0.
1939     // Required for corner case:
1940     // (long)9.223372036854776E18 = max_jlong
1941     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1942     // max_jlong is odd but 9.223372036854776E18 is even
1943     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1944     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1945     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1946     Node* correctedsign = NULL;
1947     if (ConditionalMoveLimit != 0) {
1948       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1949     } else {
1950       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1951       RegionNode *r = new (C) RegionNode(3);
1952       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1953       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1954       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1955       phi->init_req(1, signnode);
1956       phi->init_req(2, longcon(0));
1957       correctedsign = _gvn.transform(phi);
1958       ylong_path = _gvn.transform(r);
1959       record_for_igvn(r);
1960     }
1961 
1962     // zero node
1963     Node *conzero = longcon(0);
1964     // Check (1&(long)y)==0?
1965     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1966     // Check if (1&(long)y)!=0?, if so the result is negative
1967     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1968     // abs(x)
1969     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1970     // abs(x)^y
1971     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1972     // -abs(x)^y
1973     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1974     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1975     Node *signresult = NULL;
1976     if (ConditionalMoveLimit != 0) {
1977       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1978     } else {
1979       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1980       RegionNode *r = new (C) RegionNode(3);
1981       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1982       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1983       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1984       phi->init_req(1, absxpowy);
1985       phi->init_req(2, negabsxpowy);
1986       signresult = _gvn.transform(phi);
1987       ylong_path = _gvn.transform(r);
1988       record_for_igvn(r);
1989     }
1990     // Set complex path fast result
1991     r->init_req(2, ylong_path);
1992     phi->init_req(2, signresult);
1993 
1994     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1995     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1996     r->init_req(1,slow_path);
1997     phi->init_req(1,slow_result);
1998 
1999     // Post merge
2000     set_control(_gvn.transform(r));
2001     record_for_igvn(r);
2002     result = _gvn.transform(phi);
2003   }
2004 
2005   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
2006 
2007   // control from finish_pow_exp is now input to the region node
2008   region_node->set_req(2, control());
2009   // the result from finish_pow_exp is now input to the phi node
2010   phi_node->init_req(2, result);
2011   set_control(_gvn.transform(region_node));
2012   record_for_igvn(region_node);
2013   set_result(_gvn.transform(phi_node));
2014 
2015   C->set_has_split_ifs(true); // Has chance for split-if optimization
2016   return true;
2017 }
2018 
2019 //------------------------------runtime_math-----------------------------
2020 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
2021   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
2022          "must be (DD)D or (D)D type");
2023 
2024   // Inputs
2025   Node* a = round_double_node(argument(0));
2026   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
2027 
2028   const TypePtr* no_memory_effects = NULL;
2029   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
2030                                  no_memory_effects,
2031                                  a, top(), b, b ? top() : NULL);
2032   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
2033 #ifdef ASSERT
2034   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
2035   assert(value_top == top(), "second value must be top");
2036 #endif
2037 
2038   set_result(value);
2039   return true;
2040 }
2041 
2042 //------------------------------inline_math_native-----------------------------
2043 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2044 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2045   switch (id) {
2046     // These intrinsics are not properly supported on all hardware
2047   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2048     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2049   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2050     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2051   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2052     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2053 
2054   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2055     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2056   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2057     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2058 
2059     // These intrinsics are supported on all hardware
2060   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2061   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2062 
2063   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2064     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2065   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2066     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2067 #undef FN_PTR
2068 
2069    // These intrinsics are not yet correctly implemented
2070   case vmIntrinsics::_datan2:
2071     return false;
2072 
2073   default:
2074     fatal_unexpected_iid(id);
2075     return false;
2076   }
2077 }
2078 
2079 static bool is_simple_name(Node* n) {
2080   return (n->req() == 1         // constant
2081           || (n->is_Type() && n->as_Type()->type()->singleton())
2082           || n->is_Proj()       // parameter or return value
2083           || n->is_Phi()        // local of some sort
2084           );
2085 }
2086 
2087 //----------------------------inline_min_max-----------------------------------
2088 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2089   set_result(generate_min_max(id, argument(0), argument(1)));
2090   return true;
2091 }
2092 
2093 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2094   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
2095   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2096   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
2097   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
2098 
2099   {
2100     PreserveJVMState pjvms(this);
2101     PreserveReexecuteState preexecs(this);
2102     jvms()->set_should_reexecute(true);
2103 
2104     set_control(slow_path);
2105     set_i_o(i_o());
2106 
2107     uncommon_trap(Deoptimization::Reason_intrinsic,
2108                   Deoptimization::Action_none);
2109   }
2110 
2111   set_control(fast_path);
2112   set_result(math);
2113 }
2114 
2115 template <typename OverflowOp>
2116 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2117   typedef typename OverflowOp::MathOp MathOp;
2118 
2119   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2120   Node* operation = _gvn.transform( mathOp );
2121   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2122   inline_math_mathExact(operation, ofcheck);
2123   return true;
2124 }
2125 
2126 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2127   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2128 }
2129 
2130 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2131   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2132 }
2133 
2134 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2135   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2136 }
2137 
2138 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2139   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2140 }
2141 
2142 bool LibraryCallKit::inline_math_negateExactI() {
2143   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2144 }
2145 
2146 bool LibraryCallKit::inline_math_negateExactL() {
2147   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2148 }
2149 
2150 bool LibraryCallKit::inline_math_multiplyExactI() {
2151   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2152 }
2153 
2154 bool LibraryCallKit::inline_math_multiplyExactL() {
2155   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2156 }
2157 
2158 Node*
2159 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2160   // These are the candidate return value:
2161   Node* xvalue = x0;
2162   Node* yvalue = y0;
2163 
2164   if (xvalue == yvalue) {
2165     return xvalue;
2166   }
2167 
2168   bool want_max = (id == vmIntrinsics::_max);
2169 
2170   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2171   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2172   if (txvalue == NULL || tyvalue == NULL)  return top();
2173   // This is not really necessary, but it is consistent with a
2174   // hypothetical MaxINode::Value method:
2175   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2176 
2177   // %%% This folding logic should (ideally) be in a different place.
2178   // Some should be inside IfNode, and there to be a more reliable
2179   // transformation of ?: style patterns into cmoves.  We also want
2180   // more powerful optimizations around cmove and min/max.
2181 
2182   // Try to find a dominating comparison of these guys.
2183   // It can simplify the index computation for Arrays.copyOf
2184   // and similar uses of System.arraycopy.
2185   // First, compute the normalized version of CmpI(x, y).
2186   int   cmp_op = Op_CmpI;
2187   Node* xkey = xvalue;
2188   Node* ykey = yvalue;
2189   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2190   if (ideal_cmpxy->is_Cmp()) {
2191     // E.g., if we have CmpI(length - offset, count),
2192     // it might idealize to CmpI(length, count + offset)
2193     cmp_op = ideal_cmpxy->Opcode();
2194     xkey = ideal_cmpxy->in(1);
2195     ykey = ideal_cmpxy->in(2);
2196   }
2197 
2198   // Start by locating any relevant comparisons.
2199   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2200   Node* cmpxy = NULL;
2201   Node* cmpyx = NULL;
2202   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2203     Node* cmp = start_from->fast_out(k);
2204     if (cmp->outcnt() > 0 &&            // must have prior uses
2205         cmp->in(0) == NULL &&           // must be context-independent
2206         cmp->Opcode() == cmp_op) {      // right kind of compare
2207       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2208       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2209     }
2210   }
2211 
2212   const int NCMPS = 2;
2213   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2214   int cmpn;
2215   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2216     if (cmps[cmpn] != NULL)  break;     // find a result
2217   }
2218   if (cmpn < NCMPS) {
2219     // Look for a dominating test that tells us the min and max.
2220     int depth = 0;                // Limit search depth for speed
2221     Node* dom = control();
2222     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2223       if (++depth >= 100)  break;
2224       Node* ifproj = dom;
2225       if (!ifproj->is_Proj())  continue;
2226       Node* iff = ifproj->in(0);
2227       if (!iff->is_If())  continue;
2228       Node* bol = iff->in(1);
2229       if (!bol->is_Bool())  continue;
2230       Node* cmp = bol->in(1);
2231       if (cmp == NULL)  continue;
2232       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2233         if (cmps[cmpn] == cmp)  break;
2234       if (cmpn == NCMPS)  continue;
2235       BoolTest::mask btest = bol->as_Bool()->_test._test;
2236       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2237       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2238       // At this point, we know that 'x btest y' is true.
2239       switch (btest) {
2240       case BoolTest::eq:
2241         // They are proven equal, so we can collapse the min/max.
2242         // Either value is the answer.  Choose the simpler.
2243         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2244           return yvalue;
2245         return xvalue;
2246       case BoolTest::lt:          // x < y
2247       case BoolTest::le:          // x <= y
2248         return (want_max ? yvalue : xvalue);
2249       case BoolTest::gt:          // x > y
2250       case BoolTest::ge:          // x >= y
2251         return (want_max ? xvalue : yvalue);
2252       }
2253     }
2254   }
2255 
2256   // We failed to find a dominating test.
2257   // Let's pick a test that might GVN with prior tests.
2258   Node*          best_bol   = NULL;
2259   BoolTest::mask best_btest = BoolTest::illegal;
2260   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2261     Node* cmp = cmps[cmpn];
2262     if (cmp == NULL)  continue;
2263     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2264       Node* bol = cmp->fast_out(j);
2265       if (!bol->is_Bool())  continue;
2266       BoolTest::mask btest = bol->as_Bool()->_test._test;
2267       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2268       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2269       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2270         best_bol   = bol->as_Bool();
2271         best_btest = btest;
2272       }
2273     }
2274   }
2275 
2276   Node* answer_if_true  = NULL;
2277   Node* answer_if_false = NULL;
2278   switch (best_btest) {
2279   default:
2280     if (cmpxy == NULL)
2281       cmpxy = ideal_cmpxy;
2282     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2283     // and fall through:
2284   case BoolTest::lt:          // x < y
2285   case BoolTest::le:          // x <= y
2286     answer_if_true  = (want_max ? yvalue : xvalue);
2287     answer_if_false = (want_max ? xvalue : yvalue);
2288     break;
2289   case BoolTest::gt:          // x > y
2290   case BoolTest::ge:          // x >= y
2291     answer_if_true  = (want_max ? xvalue : yvalue);
2292     answer_if_false = (want_max ? yvalue : xvalue);
2293     break;
2294   }
2295 
2296   jint hi, lo;
2297   if (want_max) {
2298     // We can sharpen the minimum.
2299     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2300     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2301   } else {
2302     // We can sharpen the maximum.
2303     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2304     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2305   }
2306 
2307   // Use a flow-free graph structure, to avoid creating excess control edges
2308   // which could hinder other optimizations.
2309   // Since Math.min/max is often used with arraycopy, we want
2310   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2311   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2312                                answer_if_false, answer_if_true,
2313                                TypeInt::make(lo, hi, widen));
2314 
2315   return _gvn.transform(cmov);
2316 
2317   /*
2318   // This is not as desirable as it may seem, since Min and Max
2319   // nodes do not have a full set of optimizations.
2320   // And they would interfere, anyway, with 'if' optimizations
2321   // and with CMoveI canonical forms.
2322   switch (id) {
2323   case vmIntrinsics::_min:
2324     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2325   case vmIntrinsics::_max:
2326     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2327   default:
2328     ShouldNotReachHere();
2329   }
2330   */
2331 }
2332 
2333 inline int
2334 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2335   const TypePtr* base_type = TypePtr::NULL_PTR;
2336   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2337   if (base_type == NULL) {
2338     // Unknown type.
2339     return Type::AnyPtr;
2340   } else if (base_type == TypePtr::NULL_PTR) {
2341     // Since this is a NULL+long form, we have to switch to a rawptr.
2342     base   = _gvn.transform(new (C) CastX2PNode(offset));
2343     offset = MakeConX(0);
2344     return Type::RawPtr;
2345   } else if (base_type->base() == Type::RawPtr) {
2346     return Type::RawPtr;
2347   } else if (base_type->isa_oopptr()) {
2348     // Base is never null => always a heap address.
2349     if (base_type->ptr() == TypePtr::NotNull) {
2350       return Type::OopPtr;
2351     }
2352     // Offset is small => always a heap address.
2353     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2354     if (offset_type != NULL &&
2355         base_type->offset() == 0 &&     // (should always be?)
2356         offset_type->_lo >= 0 &&
2357         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2358       return Type::OopPtr;
2359     }
2360     // Otherwise, it might either be oop+off or NULL+addr.
2361     return Type::AnyPtr;
2362   } else {
2363     // No information:
2364     return Type::AnyPtr;
2365   }
2366 }
2367 
2368 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2369   int kind = classify_unsafe_addr(base, offset);
2370   if (kind == Type::RawPtr) {
2371     return basic_plus_adr(top(), base, offset);
2372   } else {
2373     return basic_plus_adr(base, offset);
2374   }
2375 }
2376 
2377 //--------------------------inline_number_methods-----------------------------
2378 // inline int     Integer.numberOfLeadingZeros(int)
2379 // inline int        Long.numberOfLeadingZeros(long)
2380 //
2381 // inline int     Integer.numberOfTrailingZeros(int)
2382 // inline int        Long.numberOfTrailingZeros(long)
2383 //
2384 // inline int     Integer.bitCount(int)
2385 // inline int        Long.bitCount(long)
2386 //
2387 // inline char  Character.reverseBytes(char)
2388 // inline short     Short.reverseBytes(short)
2389 // inline int     Integer.reverseBytes(int)
2390 // inline long       Long.reverseBytes(long)
2391 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2392   Node* arg = argument(0);
2393   Node* n = NULL;
2394   switch (id) {
2395   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2396   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2397   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2398   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2399   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2400   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2401   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2402   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2403   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2404   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2405   default:  fatal_unexpected_iid(id);  break;
2406   }
2407   set_result(_gvn.transform(n));
2408   return true;
2409 }
2410 
2411 //----------------------------inline_unsafe_access----------------------------
2412 
2413 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2414 
2415 // Helper that guards and inserts a pre-barrier.
2416 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2417                                         Node* pre_val, bool need_mem_bar) {
2418   // We could be accessing the referent field of a reference object. If so, when G1
2419   // is enabled, we need to log the value in the referent field in an SATB buffer.
2420   // This routine performs some compile time filters and generates suitable
2421   // runtime filters that guard the pre-barrier code.
2422   // Also add memory barrier for non volatile load from the referent field
2423   // to prevent commoning of loads across safepoint.
2424   if (!UseG1GC && !need_mem_bar)
2425     return;
2426 
2427   // Some compile time checks.
2428 
2429   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2430   const TypeX* otype = offset->find_intptr_t_type();
2431   if (otype != NULL && otype->is_con() &&
2432       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2433     // Constant offset but not the reference_offset so just return
2434     return;
2435   }
2436 
2437   // We only need to generate the runtime guards for instances.
2438   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2439   if (btype != NULL) {
2440     if (btype->isa_aryptr()) {
2441       // Array type so nothing to do
2442       return;
2443     }
2444 
2445     const TypeInstPtr* itype = btype->isa_instptr();
2446     if (itype != NULL) {
2447       // Can the klass of base_oop be statically determined to be
2448       // _not_ a sub-class of Reference and _not_ Object?
2449       ciKlass* klass = itype->klass();
2450       if ( klass->is_loaded() &&
2451           !klass->is_subtype_of(env()->Reference_klass()) &&
2452           !env()->Object_klass()->is_subtype_of(klass)) {
2453         return;
2454       }
2455     }
2456   }
2457 
2458   // The compile time filters did not reject base_oop/offset so
2459   // we need to generate the following runtime filters
2460   //
2461   // if (offset == java_lang_ref_Reference::_reference_offset) {
2462   //   if (instance_of(base, java.lang.ref.Reference)) {
2463   //     pre_barrier(_, pre_val, ...);
2464   //   }
2465   // }
2466 
2467   float likely   = PROB_LIKELY(  0.999);
2468   float unlikely = PROB_UNLIKELY(0.999);
2469 
2470   IdealKit ideal(this);
2471 #define __ ideal.
2472 
2473   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2474 
2475   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2476       // Update graphKit memory and control from IdealKit.
2477       sync_kit(ideal);
2478 
2479       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2480       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2481 
2482       // Update IdealKit memory and control from graphKit.
2483       __ sync_kit(this);
2484 
2485       Node* one = __ ConI(1);
2486       // is_instof == 0 if base_oop == NULL
2487       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2488 
2489         // Update graphKit from IdeakKit.
2490         sync_kit(ideal);
2491 
2492         // Use the pre-barrier to record the value in the referent field
2493         pre_barrier(false /* do_load */,
2494                     __ ctrl(),
2495                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2496                     pre_val /* pre_val */,
2497                     T_OBJECT);
2498         if (need_mem_bar) {
2499           // Add memory barrier to prevent commoning reads from this field
2500           // across safepoint since GC can change its value.
2501           insert_mem_bar(Op_MemBarCPUOrder);
2502         }
2503         // Update IdealKit from graphKit.
2504         __ sync_kit(this);
2505 
2506       } __ end_if(); // _ref_type != ref_none
2507   } __ end_if(); // offset == referent_offset
2508 
2509   // Final sync IdealKit and GraphKit.
2510   final_sync(ideal);
2511 #undef __
2512 }
2513 
2514 
2515 // Interpret Unsafe.fieldOffset cookies correctly:
2516 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2517 
2518 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2519   // Attempt to infer a sharper value type from the offset and base type.
2520   ciKlass* sharpened_klass = NULL;
2521 
2522   // See if it is an instance field, with an object type.
2523   if (alias_type->field() != NULL) {
2524     assert(!is_native_ptr, "native pointer op cannot use a java address");
2525     if (alias_type->field()->type()->is_klass()) {
2526       sharpened_klass = alias_type->field()->type()->as_klass();
2527     }
2528   }
2529 
2530   // See if it is a narrow oop array.
2531   if (adr_type->isa_aryptr()) {
2532     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2533       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2534       if (elem_type != NULL) {
2535         sharpened_klass = elem_type->klass();
2536       }
2537     }
2538   }
2539 
2540   // The sharpened class might be unloaded if there is no class loader
2541   // contraint in place.
2542   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2543     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2544 
2545 #ifndef PRODUCT
2546     if (C->print_intrinsics() || C->print_inlining()) {
2547       tty->print("  from base type: ");  adr_type->dump();
2548       tty->print("  sharpened value: ");  tjp->dump();
2549     }
2550 #endif
2551     // Sharpen the value type.
2552     return tjp;
2553   }
2554   return NULL;
2555 }
2556 
2557 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool unaligned) {
2558   if (callee()->is_static())  return false;  // caller must have the capability!
2559   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 
2560 
2561 #ifndef PRODUCT
2562   {
2563     ResourceMark rm;
2564     // Check the signatures.
2565     ciSignature* sig = callee()->signature();
2566 #ifdef ASSERT
2567     if (!is_store) {
2568       // Object getObject(Object base, int/long offset), etc.
2569       BasicType rtype = sig->return_type()->basic_type();
2570       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2571           rtype = T_ADDRESS;  // it is really a C void*
2572       assert(rtype == type, "getter must return the expected value");
2573       if (!is_native_ptr) {
2574         assert(sig->count() == 2, "oop getter has 2 arguments");
2575         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2576         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2577       } else {
2578         assert(sig->count() == 1, "native getter has 1 argument");
2579         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2580       }
2581     } else {
2582       // void putObject(Object base, int/long offset, Object x), etc.
2583       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2584       if (!is_native_ptr) {
2585         assert(sig->count() == 3, "oop putter has 3 arguments");
2586         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2587         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2588       } else {
2589         assert(sig->count() == 2, "native putter has 2 arguments");
2590         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2591       }
2592       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2593       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2594         vtype = T_ADDRESS;  // it is really a C void*
2595       assert(vtype == type, "putter must accept the expected value");
2596     }
2597 #endif // ASSERT
2598  }
2599 #endif //PRODUCT
2600 
2601   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2602 
2603   Node* receiver = argument(0);  // type: oop
2604 
2605   // Build address expression.  See the code in inline_unsafe_prefetch.
2606   Node* adr;
2607   Node* heap_base_oop = top();
2608   Node* offset = top();
2609   Node* val;
2610 
2611   if (!is_native_ptr) {
2612     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2613     Node* base = argument(1);  // type: oop
2614     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2615     offset = argument(2);  // type: long
2616     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2617     // to be plain byte offsets, which are also the same as those accepted
2618     // by oopDesc::field_base.
2619     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2620            "fieldOffset must be byte-scaled");
2621     // 32-bit machines ignore the high half!
2622     offset = ConvL2X(offset);
2623     adr = make_unsafe_address(base, offset);
2624     heap_base_oop = base;
2625     val = is_store ? argument(4) : NULL;
2626   } else {
2627     Node* ptr = argument(1);  // type: long
2628     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2629     adr = make_unsafe_address(NULL, ptr);
2630     val = is_store ? argument(3) : NULL;
2631   }
2632 
2633   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2634 
2635   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2636   // there was not enough information to nail it down.
2637   Compile::AliasType* alias_type = C->alias_type(adr_type);
2638   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2639 
2640   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2641          alias_type->basic_type() != T_ILLEGAL, "field, array element or unknown");
2642   bool mismatched = false;
2643   BasicType bt = alias_type->basic_type();
2644   if (bt != T_ILLEGAL) {
2645     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2646       // Alias type doesn't differentiate between byte[] and boolean[]).
2647       // Use address type to get the element type.
2648       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2649     }
2650     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2651       // accessing an array field with getObject is not a mismatch
2652       bt = T_OBJECT;
2653     }
2654     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2655       // Don't intrinsify mismatched object accesses
2656       return false;
2657     }
2658     mismatched = (bt != type);
2659   }
2660 
2661   // First guess at the value type.
2662   const Type *value_type = Type::get_const_basic_type(type);
2663 
2664   // We will need memory barriers unless we can determine a unique
2665   // alias category for this reference.  (Note:  If for some reason
2666   // the barriers get omitted and the unsafe reference begins to "pollute"
2667   // the alias analysis of the rest of the graph, either Compile::can_alias
2668   // or Compile::must_alias will throw a diagnostic assert.)
2669   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2670 
2671   // If we are reading the value of the referent field of a Reference
2672   // object (either by using Unsafe directly or through reflection)
2673   // then, if G1 is enabled, we need to record the referent in an
2674   // SATB log buffer using the pre-barrier mechanism.
2675   // Also we need to add memory barrier to prevent commoning reads
2676   // from this field across safepoint since GC can change its value.
2677   bool need_read_barrier = !is_native_ptr && !is_store &&
2678                            offset != top() && heap_base_oop != top();
2679 
2680   if (!is_store && type == T_OBJECT) {
2681     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2682     if (tjp != NULL) {
2683       value_type = tjp;
2684     }
2685   }
2686 
2687   receiver = null_check(receiver);
2688   if (stopped()) {
2689     return true;
2690   }
2691   // Heap pointers get a null-check from the interpreter,
2692   // as a courtesy.  However, this is not guaranteed by Unsafe,
2693   // and it is not possible to fully distinguish unintended nulls
2694   // from intended ones in this API.
2695 
2696   if (is_volatile) {
2697     // We need to emit leading and trailing CPU membars (see below) in
2698     // addition to memory membars when is_volatile. This is a little
2699     // too strong, but avoids the need to insert per-alias-type
2700     // volatile membars (for stores; compare Parse::do_put_xxx), which
2701     // we cannot do effectively here because we probably only have a
2702     // rough approximation of type.
2703     need_mem_bar = true;
2704     // For Stores, place a memory ordering barrier now.
2705     if (is_store) {
2706       insert_mem_bar(Op_MemBarRelease);
2707     } else {
2708       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2709         insert_mem_bar(Op_MemBarVolatile);
2710       }
2711     }
2712   }
2713 
2714   // Memory barrier to prevent normal and 'unsafe' accesses from
2715   // bypassing each other.  Happens after null checks, so the
2716   // exception paths do not take memory state from the memory barrier,
2717   // so there's no problems making a strong assert about mixing users
2718   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2719   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2720   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2721 
2722   if (!is_store) {
2723     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2724     // To be valid, unsafe loads may depend on other conditions than
2725     // the one that guards them: pin the Load node
2726     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile, unaligned, mismatched);
2727     // load value
2728     switch (type) {
2729     case T_BOOLEAN:
2730     case T_CHAR:
2731     case T_BYTE:
2732     case T_SHORT:
2733     case T_INT:
2734     case T_LONG:
2735     case T_FLOAT:
2736     case T_DOUBLE:
2737       break;
2738     case T_OBJECT:
2739       if (need_read_barrier) {
2740         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2741       }
2742       break;
2743     case T_ADDRESS:
2744       // Cast to an int type.
2745       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2746       p = ConvX2UL(p);
2747       break;
2748     default:
2749       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2750       break;
2751     }
2752     // The load node has the control of the preceding MemBarCPUOrder.  All
2753     // following nodes will have the control of the MemBarCPUOrder inserted at
2754     // the end of this method.  So, pushing the load onto the stack at a later
2755     // point is fine.
2756     set_result(p);
2757   } else {
2758     // place effect of store into memory
2759     switch (type) {
2760     case T_DOUBLE:
2761       val = dstore_rounding(val);
2762       break;
2763     case T_ADDRESS:
2764       // Repackage the long as a pointer.
2765       val = ConvL2X(val);
2766       val = _gvn.transform(new (C) CastX2PNode(val));
2767       break;
2768     }
2769 
2770     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2771     if (type != T_OBJECT ) {
2772       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile, unaligned, mismatched);
2773     } else {
2774       // Possibly an oop being stored to Java heap or native memory
2775       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2776         // oop to Java heap.
2777         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2778       } else {
2779         // We can't tell at compile time if we are storing in the Java heap or outside
2780         // of it. So we need to emit code to conditionally do the proper type of
2781         // store.
2782 
2783         IdealKit ideal(this);
2784 #define __ ideal.
2785         // QQQ who knows what probability is here??
2786         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2787           // Sync IdealKit and graphKit.
2788           sync_kit(ideal);
2789           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2790           // Update IdealKit memory.
2791           __ sync_kit(this);
2792         } __ else_(); {
2793           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile, mismatched);
2794         } __ end_if();
2795         // Final sync IdealKit and GraphKit.
2796         final_sync(ideal);
2797 #undef __
2798       }
2799     }
2800   }
2801 
2802   if (is_volatile) {
2803     if (!is_store) {
2804       insert_mem_bar(Op_MemBarAcquire);
2805     } else {
2806       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2807         insert_mem_bar(Op_MemBarVolatile);
2808       }
2809     }
2810   }
2811 
2812   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2813 
2814   return true;
2815 }
2816 
2817 //----------------------------inline_unsafe_prefetch----------------------------
2818 
2819 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2820 #ifndef PRODUCT
2821   {
2822     ResourceMark rm;
2823     // Check the signatures.
2824     ciSignature* sig = callee()->signature();
2825 #ifdef ASSERT
2826     // Object getObject(Object base, int/long offset), etc.
2827     BasicType rtype = sig->return_type()->basic_type();
2828     if (!is_native_ptr) {
2829       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2830       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2831       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2832     } else {
2833       assert(sig->count() == 1, "native prefetch has 1 argument");
2834       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2835     }
2836 #endif // ASSERT
2837   }
2838 #endif // !PRODUCT
2839 
2840   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2841 
2842   const int idx = is_static ? 0 : 1;
2843   if (!is_static) {
2844     null_check_receiver();
2845     if (stopped()) {
2846       return true;
2847     }
2848   }
2849 
2850   // Build address expression.  See the code in inline_unsafe_access.
2851   Node *adr;
2852   if (!is_native_ptr) {
2853     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2854     Node* base   = argument(idx + 0);  // type: oop
2855     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2856     Node* offset = argument(idx + 1);  // type: long
2857     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2858     // to be plain byte offsets, which are also the same as those accepted
2859     // by oopDesc::field_base.
2860     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2861            "fieldOffset must be byte-scaled");
2862     // 32-bit machines ignore the high half!
2863     offset = ConvL2X(offset);
2864     adr = make_unsafe_address(base, offset);
2865   } else {
2866     Node* ptr = argument(idx + 0);  // type: long
2867     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2868     adr = make_unsafe_address(NULL, ptr);
2869   }
2870 
2871   // Generate the read or write prefetch
2872   Node *prefetch;
2873   if (is_store) {
2874     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2875   } else {
2876     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2877   }
2878   prefetch->init_req(0, control());
2879   set_i_o(_gvn.transform(prefetch));
2880 
2881   return true;
2882 }
2883 
2884 //----------------------------inline_unsafe_load_store----------------------------
2885 // This method serves a couple of different customers (depending on LoadStoreKind):
2886 //
2887 // LS_cmpxchg:
2888 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2889 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2890 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2891 //
2892 // LS_xadd:
2893 //   public int  getAndAddInt( Object o, long offset, int  delta)
2894 //   public long getAndAddLong(Object o, long offset, long delta)
2895 //
2896 // LS_xchg:
2897 //   int    getAndSet(Object o, long offset, int    newValue)
2898 //   long   getAndSet(Object o, long offset, long   newValue)
2899 //   Object getAndSet(Object o, long offset, Object newValue)
2900 //
2901 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2902   // This basic scheme here is the same as inline_unsafe_access, but
2903   // differs in enough details that combining them would make the code
2904   // overly confusing.  (This is a true fact! I originally combined
2905   // them, but even I was confused by it!) As much code/comments as
2906   // possible are retained from inline_unsafe_access though to make
2907   // the correspondences clearer. - dl
2908 
2909   if (callee()->is_static())  return false;  // caller must have the capability!
2910 
2911 #ifndef PRODUCT
2912   BasicType rtype;
2913   {
2914     ResourceMark rm;
2915     // Check the signatures.
2916     ciSignature* sig = callee()->signature();
2917     rtype = sig->return_type()->basic_type();
2918     if (kind == LS_xadd || kind == LS_xchg) {
2919       // Check the signatures.
2920 #ifdef ASSERT
2921       assert(rtype == type, "get and set must return the expected type");
2922       assert(sig->count() == 3, "get and set has 3 arguments");
2923       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2924       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2925       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2926 #endif // ASSERT
2927     } else if (kind == LS_cmpxchg) {
2928       // Check the signatures.
2929 #ifdef ASSERT
2930       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2931       assert(sig->count() == 4, "CAS has 4 arguments");
2932       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2933       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2934 #endif // ASSERT
2935     } else {
2936       ShouldNotReachHere();
2937     }
2938   }
2939 #endif //PRODUCT
2940 
2941   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2942 
2943   // Get arguments:
2944   Node* receiver = NULL;
2945   Node* base     = NULL;
2946   Node* offset   = NULL;
2947   Node* oldval   = NULL;
2948   Node* newval   = NULL;
2949   if (kind == LS_cmpxchg) {
2950     const bool two_slot_type = type2size[type] == 2;
2951     receiver = argument(0);  // type: oop
2952     base     = argument(1);  // type: oop
2953     offset   = argument(2);  // type: long
2954     oldval   = argument(4);  // type: oop, int, or long
2955     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2956   } else if (kind == LS_xadd || kind == LS_xchg){
2957     receiver = argument(0);  // type: oop
2958     base     = argument(1);  // type: oop
2959     offset   = argument(2);  // type: long
2960     oldval   = NULL;
2961     newval   = argument(4);  // type: oop, int, or long
2962   }
2963 
2964   // Null check receiver.
2965   receiver = null_check(receiver);
2966   if (stopped()) {
2967     return true;
2968   }
2969 
2970   // Build field offset expression.
2971   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2972   // to be plain byte offsets, which are also the same as those accepted
2973   // by oopDesc::field_base.
2974   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2975   // 32-bit machines ignore the high half of long offsets
2976   offset = ConvL2X(offset);
2977   Node* adr = make_unsafe_address(base, offset);
2978   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2979 
2980   Compile::AliasType* alias_type = C->alias_type(adr_type);
2981   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2982          alias_type->basic_type() != T_ILLEGAL, "field, array element or unknown");
2983   BasicType bt = alias_type->basic_type();
2984   if (bt != T_ILLEGAL &&
2985       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2986     // Don't intrinsify mismatched object accesses.
2987     return false;
2988   }
2989 
2990   // For CAS, unlike inline_unsafe_access, there seems no point in
2991   // trying to refine types. Just use the coarse types here.
2992   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2993   const Type *value_type = Type::get_const_basic_type(type);
2994 
2995   if (kind == LS_xchg && type == T_OBJECT) {
2996     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2997     if (tjp != NULL) {
2998       value_type = tjp;
2999     }
3000   }
3001 
3002   int alias_idx = C->get_alias_index(adr_type);
3003 
3004   // Memory-model-wise, a LoadStore acts like a little synchronized
3005   // block, so needs barriers on each side.  These don't translate
3006   // into actual barriers on most machines, but we still need rest of
3007   // compiler to respect ordering.
3008 
3009   insert_mem_bar(Op_MemBarRelease);
3010   insert_mem_bar(Op_MemBarCPUOrder);
3011 
3012   // 4984716: MemBars must be inserted before this
3013   //          memory node in order to avoid a false
3014   //          dependency which will confuse the scheduler.
3015   Node *mem = memory(alias_idx);
3016 
3017   // For now, we handle only those cases that actually exist: ints,
3018   // longs, and Object. Adding others should be straightforward.
3019   Node* load_store = NULL;
3020   switch(type) {
3021   case T_INT:
3022     if (kind == LS_xadd) {
3023       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
3024     } else if (kind == LS_xchg) {
3025       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
3026     } else if (kind == LS_cmpxchg) {
3027       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
3028     } else {
3029       ShouldNotReachHere();
3030     }
3031     break;
3032   case T_LONG:
3033     if (kind == LS_xadd) {
3034       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
3035     } else if (kind == LS_xchg) {
3036       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
3037     } else if (kind == LS_cmpxchg) {
3038       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
3039     } else {
3040       ShouldNotReachHere();
3041     }
3042     break;
3043   case T_OBJECT:
3044     // Transformation of a value which could be NULL pointer (CastPP #NULL)
3045     // could be delayed during Parse (for example, in adjust_map_after_if()).
3046     // Execute transformation here to avoid barrier generation in such case.
3047     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3048       newval = _gvn.makecon(TypePtr::NULL_PTR);
3049 
3050     // Reference stores need a store barrier.
3051     if (kind == LS_xchg) {
3052       // If pre-barrier must execute before the oop store, old value will require do_load here.
3053       if (!can_move_pre_barrier()) {
3054         pre_barrier(true /* do_load*/,
3055                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
3056                     NULL /* pre_val*/,
3057                     T_OBJECT);
3058       } // Else move pre_barrier to use load_store value, see below.
3059     } else if (kind == LS_cmpxchg) {
3060       // Same as for newval above:
3061       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3062         oldval = _gvn.makecon(TypePtr::NULL_PTR);
3063       }
3064       // The only known value which might get overwritten is oldval.
3065       pre_barrier(false /* do_load */,
3066                   control(), NULL, NULL, max_juint, NULL, NULL,
3067                   oldval /* pre_val */,
3068                   T_OBJECT);
3069     } else {
3070       ShouldNotReachHere();
3071     }
3072 
3073 #ifdef _LP64
3074     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3075       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3076       if (kind == LS_xchg) {
3077         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
3078                                                            newval_enc, adr_type, value_type->make_narrowoop()));
3079       } else {
3080         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3081         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3082         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
3083                                                                 newval_enc, oldval_enc));
3084       }
3085     } else
3086 #endif
3087     {
3088       if (kind == LS_xchg) {
3089         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3090       } else {
3091         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3092         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3093       }
3094     }
3095     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3096     break;
3097   default:
3098     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3099     break;
3100   }
3101 
3102   // SCMemProjNodes represent the memory state of a LoadStore. Their
3103   // main role is to prevent LoadStore nodes from being optimized away
3104   // when their results aren't used.
3105   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3106   set_memory(proj, alias_idx);
3107 
3108   if (type == T_OBJECT && kind == LS_xchg) {
3109 #ifdef _LP64
3110     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3111       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3112     }
3113 #endif
3114     if (can_move_pre_barrier()) {
3115       // Don't need to load pre_val. The old value is returned by load_store.
3116       // The pre_barrier can execute after the xchg as long as no safepoint
3117       // gets inserted between them.
3118       pre_barrier(false /* do_load */,
3119                   control(), NULL, NULL, max_juint, NULL, NULL,
3120                   load_store /* pre_val */,
3121                   T_OBJECT);
3122     }
3123   }
3124 
3125   // Add the trailing membar surrounding the access
3126   insert_mem_bar(Op_MemBarCPUOrder);
3127   insert_mem_bar(Op_MemBarAcquire);
3128 
3129   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3130   set_result(load_store);
3131   return true;
3132 }
3133 
3134 //----------------------------inline_unsafe_ordered_store----------------------
3135 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3136 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3137 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3138 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3139   // This is another variant of inline_unsafe_access, differing in
3140   // that it always issues store-store ("release") barrier and ensures
3141   // store-atomicity (which only matters for "long").
3142 
3143   if (callee()->is_static())  return false;  // caller must have the capability!
3144 
3145 #ifndef PRODUCT
3146   {
3147     ResourceMark rm;
3148     // Check the signatures.
3149     ciSignature* sig = callee()->signature();
3150 #ifdef ASSERT
3151     BasicType rtype = sig->return_type()->basic_type();
3152     assert(rtype == T_VOID, "must return void");
3153     assert(sig->count() == 3, "has 3 arguments");
3154     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3155     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3156 #endif // ASSERT
3157   }
3158 #endif //PRODUCT
3159 
3160   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3161 
3162   // Get arguments:
3163   Node* receiver = argument(0);  // type: oop
3164   Node* base     = argument(1);  // type: oop
3165   Node* offset   = argument(2);  // type: long
3166   Node* val      = argument(4);  // type: oop, int, or long
3167 
3168   // Null check receiver.
3169   receiver = null_check(receiver);
3170   if (stopped()) {
3171     return true;
3172   }
3173 
3174   // Build field offset expression.
3175   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3176   // 32-bit machines ignore the high half of long offsets
3177   offset = ConvL2X(offset);
3178   Node* adr = make_unsafe_address(base, offset);
3179   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3180   const Type *value_type = Type::get_const_basic_type(type);
3181   Compile::AliasType* alias_type = C->alias_type(adr_type);
3182 
3183   insert_mem_bar(Op_MemBarRelease);
3184   insert_mem_bar(Op_MemBarCPUOrder);
3185   // Ensure that the store is atomic for longs:
3186   const bool require_atomic_access = true;
3187   Node* store;
3188   if (type == T_OBJECT) // reference stores need a store barrier.
3189     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3190   else {
3191     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3192   }
3193   insert_mem_bar(Op_MemBarCPUOrder);
3194   return true;
3195 }
3196 
3197 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3198   // Regardless of form, don't allow previous ld/st to move down,
3199   // then issue acquire, release, or volatile mem_bar.
3200   insert_mem_bar(Op_MemBarCPUOrder);
3201   switch(id) {
3202     case vmIntrinsics::_loadFence:
3203       insert_mem_bar(Op_LoadFence);
3204       return true;
3205     case vmIntrinsics::_storeFence:
3206       insert_mem_bar(Op_StoreFence);
3207       return true;
3208     case vmIntrinsics::_fullFence:
3209       insert_mem_bar(Op_MemBarVolatile);
3210       return true;
3211     default:
3212       fatal_unexpected_iid(id);
3213       return false;
3214   }
3215 }
3216 
3217 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3218   if (!kls->is_Con()) {
3219     return true;
3220   }
3221   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3222   if (klsptr == NULL) {
3223     return true;
3224   }
3225   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3226   // don't need a guard for a klass that is already initialized
3227   return !ik->is_initialized();
3228 }
3229 
3230 //----------------------------inline_unsafe_allocate---------------------------
3231 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3232 bool LibraryCallKit::inline_unsafe_allocate() {
3233   if (callee()->is_static())  return false;  // caller must have the capability!
3234 
3235   null_check_receiver();  // null-check, then ignore
3236   Node* cls = null_check(argument(1));
3237   if (stopped())  return true;
3238 
3239   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3240   kls = null_check(kls);
3241   if (stopped())  return true;  // argument was like int.class
3242 
3243   Node* test = NULL;
3244   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3245     // Note:  The argument might still be an illegal value like
3246     // Serializable.class or Object[].class.   The runtime will handle it.
3247     // But we must make an explicit check for initialization.
3248     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3249     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3250     // can generate code to load it as unsigned byte.
3251     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3252     Node* bits = intcon(InstanceKlass::fully_initialized);
3253     test = _gvn.transform(new (C) SubINode(inst, bits));
3254     // The 'test' is non-zero if we need to take a slow path.
3255   }
3256 
3257   Node* obj = new_instance(kls, test);
3258   set_result(obj);
3259   return true;
3260 }
3261 
3262 #ifdef TRACE_HAVE_INTRINSICS
3263 /*
3264  * oop -> myklass
3265  * myklass->trace_id |= USED
3266  * return myklass->trace_id & ~0x3
3267  */
3268 bool LibraryCallKit::inline_native_classID() {
3269   null_check_receiver();  // null-check, then ignore
3270   Node* cls = null_check(argument(1), T_OBJECT);
3271   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3272   kls = null_check(kls, T_OBJECT);
3273   ByteSize offset = TRACE_ID_OFFSET;
3274   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3275   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3276   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3277   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3278   Node* clsused = longcon(0x01l); // set the class bit
3279   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3280 
3281   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3282   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3283   set_result(andl);
3284   return true;
3285 }
3286 
3287 bool LibraryCallKit::inline_native_threadID() {
3288   Node* tls_ptr = NULL;
3289   Node* cur_thr = generate_current_thread(tls_ptr);
3290   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3291   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3292   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3293 
3294   Node* threadid = NULL;
3295   size_t thread_id_size = OSThread::thread_id_size();
3296   if (thread_id_size == (size_t) BytesPerLong) {
3297     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3298   } else if (thread_id_size == (size_t) BytesPerInt) {
3299     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3300   } else {
3301     ShouldNotReachHere();
3302   }
3303   set_result(threadid);
3304   return true;
3305 }
3306 #endif
3307 
3308 //------------------------inline_native_time_funcs--------------
3309 // inline code for System.currentTimeMillis() and System.nanoTime()
3310 // these have the same type and signature
3311 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3312   const TypeFunc* tf = OptoRuntime::void_long_Type();
3313   const TypePtr* no_memory_effects = NULL;
3314   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3315   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3316 #ifdef ASSERT
3317   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3318   assert(value_top == top(), "second value must be top");
3319 #endif
3320   set_result(value);
3321   return true;
3322 }
3323 
3324 //------------------------inline_native_currentThread------------------
3325 bool LibraryCallKit::inline_native_currentThread() {
3326   Node* junk = NULL;
3327   set_result(generate_current_thread(junk));
3328   return true;
3329 }
3330 
3331 //------------------------inline_native_isInterrupted------------------
3332 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3333 bool LibraryCallKit::inline_native_isInterrupted() {
3334   // Add a fast path to t.isInterrupted(clear_int):
3335   //   (t == Thread.current() &&
3336   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3337   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3338   // So, in the common case that the interrupt bit is false,
3339   // we avoid making a call into the VM.  Even if the interrupt bit
3340   // is true, if the clear_int argument is false, we avoid the VM call.
3341   // However, if the receiver is not currentThread, we must call the VM,
3342   // because there must be some locking done around the operation.
3343 
3344   // We only go to the fast case code if we pass two guards.
3345   // Paths which do not pass are accumulated in the slow_region.
3346 
3347   enum {
3348     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3349     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3350     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3351     PATH_LIMIT
3352   };
3353 
3354   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3355   // out of the function.
3356   insert_mem_bar(Op_MemBarCPUOrder);
3357 
3358   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3359   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3360 
3361   RegionNode* slow_region = new (C) RegionNode(1);
3362   record_for_igvn(slow_region);
3363 
3364   // (a) Receiving thread must be the current thread.
3365   Node* rec_thr = argument(0);
3366   Node* tls_ptr = NULL;
3367   Node* cur_thr = generate_current_thread(tls_ptr);
3368   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3369   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3370 
3371   generate_slow_guard(bol_thr, slow_region);
3372 
3373   // (b) Interrupt bit on TLS must be false.
3374   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3375   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3376   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3377 
3378   // Set the control input on the field _interrupted read to prevent it floating up.
3379   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3380   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3381   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3382 
3383   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3384 
3385   // First fast path:  if (!TLS._interrupted) return false;
3386   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3387   result_rgn->init_req(no_int_result_path, false_bit);
3388   result_val->init_req(no_int_result_path, intcon(0));
3389 
3390   // drop through to next case
3391   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3392 
3393 #ifndef TARGET_OS_FAMILY_windows
3394   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3395   Node* clr_arg = argument(1);
3396   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3397   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3398   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3399 
3400   // Second fast path:  ... else if (!clear_int) return true;
3401   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3402   result_rgn->init_req(no_clear_result_path, false_arg);
3403   result_val->init_req(no_clear_result_path, intcon(1));
3404 
3405   // drop through to next case
3406   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3407 #else
3408   // To return true on Windows you must read the _interrupted field
3409   // and check the the event state i.e. take the slow path.
3410 #endif // TARGET_OS_FAMILY_windows
3411 
3412   // (d) Otherwise, go to the slow path.
3413   slow_region->add_req(control());
3414   set_control( _gvn.transform(slow_region));
3415 
3416   if (stopped()) {
3417     // There is no slow path.
3418     result_rgn->init_req(slow_result_path, top());
3419     result_val->init_req(slow_result_path, top());
3420   } else {
3421     // non-virtual because it is a private non-static
3422     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3423 
3424     Node* slow_val = set_results_for_java_call(slow_call);
3425     // this->control() comes from set_results_for_java_call
3426 
3427     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3428     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3429 
3430     // These two phis are pre-filled with copies of of the fast IO and Memory
3431     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3432     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3433 
3434     result_rgn->init_req(slow_result_path, control());
3435     result_io ->init_req(slow_result_path, i_o());
3436     result_mem->init_req(slow_result_path, reset_memory());
3437     result_val->init_req(slow_result_path, slow_val);
3438 
3439     set_all_memory(_gvn.transform(result_mem));
3440     set_i_o(       _gvn.transform(result_io));
3441   }
3442 
3443   C->set_has_split_ifs(true); // Has chance for split-if optimization
3444   set_result(result_rgn, result_val);
3445   return true;
3446 }
3447 
3448 //---------------------------load_mirror_from_klass----------------------------
3449 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3450 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3451   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3452   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3453 }
3454 
3455 //-----------------------load_klass_from_mirror_common-------------------------
3456 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3457 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3458 // and branch to the given path on the region.
3459 // If never_see_null, take an uncommon trap on null, so we can optimistically
3460 // compile for the non-null case.
3461 // If the region is NULL, force never_see_null = true.
3462 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3463                                                     bool never_see_null,
3464                                                     RegionNode* region,
3465                                                     int null_path,
3466                                                     int offset) {
3467   if (region == NULL)  never_see_null = true;
3468   Node* p = basic_plus_adr(mirror, offset);
3469   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3470   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3471   Node* null_ctl = top();
3472   kls = null_check_oop(kls, &null_ctl, never_see_null);
3473   if (region != NULL) {
3474     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3475     region->init_req(null_path, null_ctl);
3476   } else {
3477     assert(null_ctl == top(), "no loose ends");
3478   }
3479   return kls;
3480 }
3481 
3482 //--------------------(inline_native_Class_query helpers)---------------------
3483 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3484 // Fall through if (mods & mask) == bits, take the guard otherwise.
3485 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3486   // Branch around if the given klass has the given modifier bit set.
3487   // Like generate_guard, adds a new path onto the region.
3488   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3489   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3490   Node* mask = intcon(modifier_mask);
3491   Node* bits = intcon(modifier_bits);
3492   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3493   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3494   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3495   return generate_fair_guard(bol, region);
3496 }
3497 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3498   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3499 }
3500 
3501 //-------------------------inline_native_Class_query-------------------
3502 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3503   const Type* return_type = TypeInt::BOOL;
3504   Node* prim_return_value = top();  // what happens if it's a primitive class?
3505   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3506   bool expect_prim = false;     // most of these guys expect to work on refs
3507 
3508   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3509 
3510   Node* mirror = argument(0);
3511   Node* obj    = top();
3512 
3513   switch (id) {
3514   case vmIntrinsics::_isInstance:
3515     // nothing is an instance of a primitive type
3516     prim_return_value = intcon(0);
3517     obj = argument(1);
3518     break;
3519   case vmIntrinsics::_getModifiers:
3520     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3521     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3522     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3523     break;
3524   case vmIntrinsics::_isInterface:
3525     prim_return_value = intcon(0);
3526     break;
3527   case vmIntrinsics::_isArray:
3528     prim_return_value = intcon(0);
3529     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3530     break;
3531   case vmIntrinsics::_isPrimitive:
3532     prim_return_value = intcon(1);
3533     expect_prim = true;  // obviously
3534     break;
3535   case vmIntrinsics::_getSuperclass:
3536     prim_return_value = null();
3537     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3538     break;
3539   case vmIntrinsics::_getComponentType:
3540     prim_return_value = null();
3541     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3542     break;
3543   case vmIntrinsics::_getClassAccessFlags:
3544     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3545     return_type = TypeInt::INT;  // not bool!  6297094
3546     break;
3547   default:
3548     fatal_unexpected_iid(id);
3549     break;
3550   }
3551 
3552   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3553   if (mirror_con == NULL)  return false;  // cannot happen?
3554 
3555 #ifndef PRODUCT
3556   if (C->print_intrinsics() || C->print_inlining()) {
3557     ciType* k = mirror_con->java_mirror_type();
3558     if (k) {
3559       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3560       k->print_name();
3561       tty->cr();
3562     }
3563   }
3564 #endif
3565 
3566   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3567   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3568   record_for_igvn(region);
3569   PhiNode* phi = new (C) PhiNode(region, return_type);
3570 
3571   // The mirror will never be null of Reflection.getClassAccessFlags, however
3572   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3573   // if it is. See bug 4774291.
3574 
3575   // For Reflection.getClassAccessFlags(), the null check occurs in
3576   // the wrong place; see inline_unsafe_access(), above, for a similar
3577   // situation.
3578   mirror = null_check(mirror);
3579   // If mirror or obj is dead, only null-path is taken.
3580   if (stopped())  return true;
3581 
3582   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3583 
3584   // Now load the mirror's klass metaobject, and null-check it.
3585   // Side-effects region with the control path if the klass is null.
3586   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3587   // If kls is null, we have a primitive mirror.
3588   phi->init_req(_prim_path, prim_return_value);
3589   if (stopped()) { set_result(region, phi); return true; }
3590   bool safe_for_replace = (region->in(_prim_path) == top());
3591 
3592   Node* p;  // handy temp
3593   Node* null_ctl;
3594 
3595   // Now that we have the non-null klass, we can perform the real query.
3596   // For constant classes, the query will constant-fold in LoadNode::Value.
3597   Node* query_value = top();
3598   switch (id) {
3599   case vmIntrinsics::_isInstance:
3600     // nothing is an instance of a primitive type
3601     query_value = gen_instanceof(obj, kls, safe_for_replace);
3602     break;
3603 
3604   case vmIntrinsics::_getModifiers:
3605     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3606     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3607     break;
3608 
3609   case vmIntrinsics::_isInterface:
3610     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3611     if (generate_interface_guard(kls, region) != NULL)
3612       // A guard was added.  If the guard is taken, it was an interface.
3613       phi->add_req(intcon(1));
3614     // If we fall through, it's a plain class.
3615     query_value = intcon(0);
3616     break;
3617 
3618   case vmIntrinsics::_isArray:
3619     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3620     if (generate_array_guard(kls, region) != NULL)
3621       // A guard was added.  If the guard is taken, it was an array.
3622       phi->add_req(intcon(1));
3623     // If we fall through, it's a plain class.
3624     query_value = intcon(0);
3625     break;
3626 
3627   case vmIntrinsics::_isPrimitive:
3628     query_value = intcon(0); // "normal" path produces false
3629     break;
3630 
3631   case vmIntrinsics::_getSuperclass:
3632     // The rules here are somewhat unfortunate, but we can still do better
3633     // with random logic than with a JNI call.
3634     // Interfaces store null or Object as _super, but must report null.
3635     // Arrays store an intermediate super as _super, but must report Object.
3636     // Other types can report the actual _super.
3637     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3638     if (generate_interface_guard(kls, region) != NULL)
3639       // A guard was added.  If the guard is taken, it was an interface.
3640       phi->add_req(null());
3641     if (generate_array_guard(kls, region) != NULL)
3642       // A guard was added.  If the guard is taken, it was an array.
3643       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3644     // If we fall through, it's a plain class.  Get its _super.
3645     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3646     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3647     null_ctl = top();
3648     kls = null_check_oop(kls, &null_ctl);
3649     if (null_ctl != top()) {
3650       // If the guard is taken, Object.superClass is null (both klass and mirror).
3651       region->add_req(null_ctl);
3652       phi   ->add_req(null());
3653     }
3654     if (!stopped()) {
3655       query_value = load_mirror_from_klass(kls);
3656     }
3657     break;
3658 
3659   case vmIntrinsics::_getComponentType:
3660     if (generate_array_guard(kls, region) != NULL) {
3661       // Be sure to pin the oop load to the guard edge just created:
3662       Node* is_array_ctrl = region->in(region->req()-1);
3663       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3664       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3665       phi->add_req(cmo);
3666     }
3667     query_value = null();  // non-array case is null
3668     break;
3669 
3670   case vmIntrinsics::_getClassAccessFlags:
3671     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3672     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3673     break;
3674 
3675   default:
3676     fatal_unexpected_iid(id);
3677     break;
3678   }
3679 
3680   // Fall-through is the normal case of a query to a real class.
3681   phi->init_req(1, query_value);
3682   region->init_req(1, control());
3683 
3684   C->set_has_split_ifs(true); // Has chance for split-if optimization
3685   set_result(region, phi);
3686   return true;
3687 }
3688 
3689 //--------------------------inline_native_subtype_check------------------------
3690 // This intrinsic takes the JNI calls out of the heart of
3691 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3692 bool LibraryCallKit::inline_native_subtype_check() {
3693   // Pull both arguments off the stack.
3694   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3695   args[0] = argument(0);
3696   args[1] = argument(1);
3697   Node* klasses[2];             // corresponding Klasses: superk, subk
3698   klasses[0] = klasses[1] = top();
3699 
3700   enum {
3701     // A full decision tree on {superc is prim, subc is prim}:
3702     _prim_0_path = 1,           // {P,N} => false
3703                                 // {P,P} & superc!=subc => false
3704     _prim_same_path,            // {P,P} & superc==subc => true
3705     _prim_1_path,               // {N,P} => false
3706     _ref_subtype_path,          // {N,N} & subtype check wins => true
3707     _both_ref_path,             // {N,N} & subtype check loses => false
3708     PATH_LIMIT
3709   };
3710 
3711   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3712   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3713   record_for_igvn(region);
3714 
3715   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3716   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3717   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3718 
3719   // First null-check both mirrors and load each mirror's klass metaobject.
3720   int which_arg;
3721   for (which_arg = 0; which_arg <= 1; which_arg++) {
3722     Node* arg = args[which_arg];
3723     arg = null_check(arg);
3724     if (stopped())  break;
3725     args[which_arg] = arg;
3726 
3727     Node* p = basic_plus_adr(arg, class_klass_offset);
3728     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3729     klasses[which_arg] = _gvn.transform(kls);
3730   }
3731 
3732   // Having loaded both klasses, test each for null.
3733   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3734   for (which_arg = 0; which_arg <= 1; which_arg++) {
3735     Node* kls = klasses[which_arg];
3736     Node* null_ctl = top();
3737     kls = null_check_oop(kls, &null_ctl, never_see_null);
3738     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3739     region->init_req(prim_path, null_ctl);
3740     if (stopped())  break;
3741     klasses[which_arg] = kls;
3742   }
3743 
3744   if (!stopped()) {
3745     // now we have two reference types, in klasses[0..1]
3746     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3747     Node* superk = klasses[0];  // the receiver
3748     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3749     // now we have a successful reference subtype check
3750     region->set_req(_ref_subtype_path, control());
3751   }
3752 
3753   // If both operands are primitive (both klasses null), then
3754   // we must return true when they are identical primitives.
3755   // It is convenient to test this after the first null klass check.
3756   set_control(region->in(_prim_0_path)); // go back to first null check
3757   if (!stopped()) {
3758     // Since superc is primitive, make a guard for the superc==subc case.
3759     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3760     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3761     generate_guard(bol_eq, region, PROB_FAIR);
3762     if (region->req() == PATH_LIMIT+1) {
3763       // A guard was added.  If the added guard is taken, superc==subc.
3764       region->swap_edges(PATH_LIMIT, _prim_same_path);
3765       region->del_req(PATH_LIMIT);
3766     }
3767     region->set_req(_prim_0_path, control()); // Not equal after all.
3768   }
3769 
3770   // these are the only paths that produce 'true':
3771   phi->set_req(_prim_same_path,   intcon(1));
3772   phi->set_req(_ref_subtype_path, intcon(1));
3773 
3774   // pull together the cases:
3775   assert(region->req() == PATH_LIMIT, "sane region");
3776   for (uint i = 1; i < region->req(); i++) {
3777     Node* ctl = region->in(i);
3778     if (ctl == NULL || ctl == top()) {
3779       region->set_req(i, top());
3780       phi   ->set_req(i, top());
3781     } else if (phi->in(i) == NULL) {
3782       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3783     }
3784   }
3785 
3786   set_control(_gvn.transform(region));
3787   set_result(_gvn.transform(phi));
3788   return true;
3789 }
3790 
3791 //---------------------generate_array_guard_common------------------------
3792 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3793                                                   bool obj_array, bool not_array) {
3794   // If obj_array/non_array==false/false:
3795   // Branch around if the given klass is in fact an array (either obj or prim).
3796   // If obj_array/non_array==false/true:
3797   // Branch around if the given klass is not an array klass of any kind.
3798   // If obj_array/non_array==true/true:
3799   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3800   // If obj_array/non_array==true/false:
3801   // Branch around if the kls is an oop array (Object[] or subtype)
3802   //
3803   // Like generate_guard, adds a new path onto the region.
3804   jint  layout_con = 0;
3805   Node* layout_val = get_layout_helper(kls, layout_con);
3806   if (layout_val == NULL) {
3807     bool query = (obj_array
3808                   ? Klass::layout_helper_is_objArray(layout_con)
3809                   : Klass::layout_helper_is_array(layout_con));
3810     if (query == not_array) {
3811       return NULL;                       // never a branch
3812     } else {                             // always a branch
3813       Node* always_branch = control();
3814       if (region != NULL)
3815         region->add_req(always_branch);
3816       set_control(top());
3817       return always_branch;
3818     }
3819   }
3820   // Now test the correct condition.
3821   jint  nval = (obj_array
3822                 ? ((jint)Klass::_lh_array_tag_type_value
3823                    <<    Klass::_lh_array_tag_shift)
3824                 : Klass::_lh_neutral_value);
3825   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3826   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3827   // invert the test if we are looking for a non-array
3828   if (not_array)  btest = BoolTest(btest).negate();
3829   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3830   return generate_fair_guard(bol, region);
3831 }
3832 
3833 
3834 //-----------------------inline_native_newArray--------------------------
3835 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3836 bool LibraryCallKit::inline_native_newArray() {
3837   Node* mirror    = argument(0);
3838   Node* count_val = argument(1);
3839 
3840   mirror = null_check(mirror);
3841   // If mirror or obj is dead, only null-path is taken.
3842   if (stopped())  return true;
3843 
3844   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3845   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3846   PhiNode*    result_val = new(C) PhiNode(result_reg,
3847                                           TypeInstPtr::NOTNULL);
3848   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3849   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3850                                           TypePtr::BOTTOM);
3851 
3852   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3853   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3854                                                   result_reg, _slow_path);
3855   Node* normal_ctl   = control();
3856   Node* no_array_ctl = result_reg->in(_slow_path);
3857 
3858   // Generate code for the slow case.  We make a call to newArray().
3859   set_control(no_array_ctl);
3860   if (!stopped()) {
3861     // Either the input type is void.class, or else the
3862     // array klass has not yet been cached.  Either the
3863     // ensuing call will throw an exception, or else it
3864     // will cache the array klass for next time.
3865     PreserveJVMState pjvms(this);
3866     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3867     Node* slow_result = set_results_for_java_call(slow_call);
3868     // this->control() comes from set_results_for_java_call
3869     result_reg->set_req(_slow_path, control());
3870     result_val->set_req(_slow_path, slow_result);
3871     result_io ->set_req(_slow_path, i_o());
3872     result_mem->set_req(_slow_path, reset_memory());
3873   }
3874 
3875   set_control(normal_ctl);
3876   if (!stopped()) {
3877     // Normal case:  The array type has been cached in the java.lang.Class.
3878     // The following call works fine even if the array type is polymorphic.
3879     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3880     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3881     result_reg->init_req(_normal_path, control());
3882     result_val->init_req(_normal_path, obj);
3883     result_io ->init_req(_normal_path, i_o());
3884     result_mem->init_req(_normal_path, reset_memory());
3885   }
3886 
3887   // Return the combined state.
3888   set_i_o(        _gvn.transform(result_io)  );
3889   set_all_memory( _gvn.transform(result_mem));
3890 
3891   C->set_has_split_ifs(true); // Has chance for split-if optimization
3892   set_result(result_reg, result_val);
3893   return true;
3894 }
3895 
3896 //----------------------inline_native_getLength--------------------------
3897 // public static native int java.lang.reflect.Array.getLength(Object array);
3898 bool LibraryCallKit::inline_native_getLength() {
3899   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3900 
3901   Node* array = null_check(argument(0));
3902   // If array is dead, only null-path is taken.
3903   if (stopped())  return true;
3904 
3905   // Deoptimize if it is a non-array.
3906   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3907 
3908   if (non_array != NULL) {
3909     PreserveJVMState pjvms(this);
3910     set_control(non_array);
3911     uncommon_trap(Deoptimization::Reason_intrinsic,
3912                   Deoptimization::Action_maybe_recompile);
3913   }
3914 
3915   // If control is dead, only non-array-path is taken.
3916   if (stopped())  return true;
3917 
3918   // The works fine even if the array type is polymorphic.
3919   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3920   Node* result = load_array_length(array);
3921 
3922   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3923   set_result(result);
3924   return true;
3925 }
3926 
3927 //------------------------inline_array_copyOf----------------------------
3928 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3929 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3930 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3931   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3932 
3933   // Get the arguments.
3934   Node* original          = argument(0);
3935   Node* start             = is_copyOfRange? argument(1): intcon(0);
3936   Node* end               = is_copyOfRange? argument(2): argument(1);
3937   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3938 
3939   Node* newcopy = NULL;
3940 
3941   // Set the original stack and the reexecute bit for the interpreter to reexecute
3942   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3943   { PreserveReexecuteState preexecs(this);
3944     jvms()->set_should_reexecute(true);
3945 
3946     array_type_mirror = null_check(array_type_mirror);
3947     original          = null_check(original);
3948 
3949     // Check if a null path was taken unconditionally.
3950     if (stopped())  return true;
3951 
3952     Node* orig_length = load_array_length(original);
3953 
3954     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3955     klass_node = null_check(klass_node);
3956 
3957     RegionNode* bailout = new (C) RegionNode(1);
3958     record_for_igvn(bailout);
3959 
3960     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3961     // Bail out if that is so.
3962     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3963     if (not_objArray != NULL) {
3964       // Improve the klass node's type from the new optimistic assumption:
3965       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3966       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3967       Node* cast = new (C) CastPPNode(klass_node, akls);
3968       cast->init_req(0, control());
3969       klass_node = _gvn.transform(cast);
3970     }
3971 
3972     // Bail out if either start or end is negative.
3973     generate_negative_guard(start, bailout, &start);
3974     generate_negative_guard(end,   bailout, &end);
3975 
3976     Node* length = end;
3977     if (_gvn.type(start) != TypeInt::ZERO) {
3978       length = _gvn.transform(new (C) SubINode(end, start));
3979     }
3980 
3981     // Bail out if length is negative.
3982     // Without this the new_array would throw
3983     // NegativeArraySizeException but IllegalArgumentException is what
3984     // should be thrown
3985     generate_negative_guard(length, bailout, &length);
3986 
3987     if (bailout->req() > 1) {
3988       PreserveJVMState pjvms(this);
3989       set_control(_gvn.transform(bailout));
3990       uncommon_trap(Deoptimization::Reason_intrinsic,
3991                     Deoptimization::Action_maybe_recompile);
3992     }
3993 
3994     if (!stopped()) {
3995       // How many elements will we copy from the original?
3996       // The answer is MinI(orig_length - start, length).
3997       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3998       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3999 
4000       newcopy = new_array(klass_node, length, 0);  // no argments to push
4001 
4002       // Generate a direct call to the right arraycopy function(s).
4003       // We know the copy is disjoint but we might not know if the
4004       // oop stores need checking.
4005       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4006       // This will fail a store-check if x contains any non-nulls.
4007       bool disjoint_bases = true;
4008       // if start > orig_length then the length of the copy may be
4009       // negative.
4010       bool length_never_negative = !is_copyOfRange;
4011       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4012                          original, start, newcopy, intcon(0), moved,
4013                          disjoint_bases, length_never_negative);
4014     }
4015   } // original reexecute is set back here
4016 
4017   C->set_has_split_ifs(true); // Has chance for split-if optimization
4018   if (!stopped()) {
4019     set_result(newcopy);
4020   }
4021   return true;
4022 }
4023 
4024 
4025 //----------------------generate_virtual_guard---------------------------
4026 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4027 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4028                                              RegionNode* slow_region) {
4029   ciMethod* method = callee();
4030   int vtable_index = method->vtable_index();
4031   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4032          err_msg_res("bad index %d", vtable_index));
4033   // Get the Method* out of the appropriate vtable entry.
4034   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4035                      vtable_index*vtableEntry::size()) * wordSize +
4036                      vtableEntry::method_offset_in_bytes();
4037   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4038   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4039 
4040   // Compare the target method with the expected method (e.g., Object.hashCode).
4041   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4042 
4043   Node* native_call = makecon(native_call_addr);
4044   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
4045   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
4046 
4047   return generate_slow_guard(test_native, slow_region);
4048 }
4049 
4050 //-----------------------generate_method_call----------------------------
4051 // Use generate_method_call to make a slow-call to the real
4052 // method if the fast path fails.  An alternative would be to
4053 // use a stub like OptoRuntime::slow_arraycopy_Java.
4054 // This only works for expanding the current library call,
4055 // not another intrinsic.  (E.g., don't use this for making an
4056 // arraycopy call inside of the copyOf intrinsic.)
4057 CallJavaNode*
4058 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4059   // When compiling the intrinsic method itself, do not use this technique.
4060   guarantee(callee() != C->method(), "cannot make slow-call to self");
4061 
4062   ciMethod* method = callee();
4063   // ensure the JVMS we have will be correct for this call
4064   guarantee(method_id == method->intrinsic_id(), "must match");
4065 
4066   const TypeFunc* tf = TypeFunc::make(method);
4067   CallJavaNode* slow_call;
4068   if (is_static) {
4069     assert(!is_virtual, "");
4070     slow_call = new(C) CallStaticJavaNode(C, tf,
4071                            SharedRuntime::get_resolve_static_call_stub(),
4072                            method, bci());
4073   } else if (is_virtual) {
4074     null_check_receiver();
4075     int vtable_index = Method::invalid_vtable_index;
4076     if (UseInlineCaches) {
4077       // Suppress the vtable call
4078     } else {
4079       // hashCode and clone are not a miranda methods,
4080       // so the vtable index is fixed.
4081       // No need to use the linkResolver to get it.
4082        vtable_index = method->vtable_index();
4083        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4084               err_msg_res("bad index %d", vtable_index));
4085     }
4086     slow_call = new(C) CallDynamicJavaNode(tf,
4087                           SharedRuntime::get_resolve_virtual_call_stub(),
4088                           method, vtable_index, bci());
4089   } else {  // neither virtual nor static:  opt_virtual
4090     null_check_receiver();
4091     slow_call = new(C) CallStaticJavaNode(C, tf,
4092                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4093                                 method, bci());
4094     slow_call->set_optimized_virtual(true);
4095   }
4096   set_arguments_for_java_call(slow_call);
4097   set_edges_for_java_call(slow_call);
4098   return slow_call;
4099 }
4100 
4101 
4102 /**
4103  * Build special case code for calls to hashCode on an object. This call may
4104  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4105  * slightly different code.
4106  */
4107 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4108   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4109   assert(!(is_virtual && is_static), "either virtual, special, or static");
4110 
4111   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4112 
4113   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4114   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
4115   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4116   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4117   Node* obj = NULL;
4118   if (!is_static) {
4119     // Check for hashing null object
4120     obj = null_check_receiver();
4121     if (stopped())  return true;        // unconditionally null
4122     result_reg->init_req(_null_path, top());
4123     result_val->init_req(_null_path, top());
4124   } else {
4125     // Do a null check, and return zero if null.
4126     // System.identityHashCode(null) == 0
4127     obj = argument(0);
4128     Node* null_ctl = top();
4129     obj = null_check_oop(obj, &null_ctl);
4130     result_reg->init_req(_null_path, null_ctl);
4131     result_val->init_req(_null_path, _gvn.intcon(0));
4132   }
4133 
4134   // Unconditionally null?  Then return right away.
4135   if (stopped()) {
4136     set_control( result_reg->in(_null_path));
4137     if (!stopped())
4138       set_result(result_val->in(_null_path));
4139     return true;
4140   }
4141 
4142   // We only go to the fast case code if we pass a number of guards.  The
4143   // paths which do not pass are accumulated in the slow_region.
4144   RegionNode* slow_region = new (C) RegionNode(1);
4145   record_for_igvn(slow_region);
4146 
4147   // If this is a virtual call, we generate a funny guard.  We pull out
4148   // the vtable entry corresponding to hashCode() from the target object.
4149   // If the target method which we are calling happens to be the native
4150   // Object hashCode() method, we pass the guard.  We do not need this
4151   // guard for non-virtual calls -- the caller is known to be the native
4152   // Object hashCode().
4153   if (is_virtual) {
4154     // After null check, get the object's klass.
4155     Node* obj_klass = load_object_klass(obj);
4156     generate_virtual_guard(obj_klass, slow_region);
4157   }
4158 
4159   // Get the header out of the object, use LoadMarkNode when available
4160   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4161   // The control of the load must be NULL. Otherwise, the load can move before
4162   // the null check after castPP removal.
4163   Node* no_ctrl = NULL;
4164   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4165 
4166   // Test the header to see if it is unlocked.
4167   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4168   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4169   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4170   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4171   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4172 
4173   generate_slow_guard(test_unlocked, slow_region);
4174 
4175   // Get the hash value and check to see that it has been properly assigned.
4176   // We depend on hash_mask being at most 32 bits and avoid the use of
4177   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4178   // vm: see markOop.hpp.
4179   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4180   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4181   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4182   // This hack lets the hash bits live anywhere in the mark object now, as long
4183   // as the shift drops the relevant bits into the low 32 bits.  Note that
4184   // Java spec says that HashCode is an int so there's no point in capturing
4185   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4186   hshifted_header      = ConvX2I(hshifted_header);
4187   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4188 
4189   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4190   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4191   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4192 
4193   generate_slow_guard(test_assigned, slow_region);
4194 
4195   Node* init_mem = reset_memory();
4196   // fill in the rest of the null path:
4197   result_io ->init_req(_null_path, i_o());
4198   result_mem->init_req(_null_path, init_mem);
4199 
4200   result_val->init_req(_fast_path, hash_val);
4201   result_reg->init_req(_fast_path, control());
4202   result_io ->init_req(_fast_path, i_o());
4203   result_mem->init_req(_fast_path, init_mem);
4204 
4205   // Generate code for the slow case.  We make a call to hashCode().
4206   set_control(_gvn.transform(slow_region));
4207   if (!stopped()) {
4208     // No need for PreserveJVMState, because we're using up the present state.
4209     set_all_memory(init_mem);
4210     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4211     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4212     Node* slow_result = set_results_for_java_call(slow_call);
4213     // this->control() comes from set_results_for_java_call
4214     result_reg->init_req(_slow_path, control());
4215     result_val->init_req(_slow_path, slow_result);
4216     result_io  ->set_req(_slow_path, i_o());
4217     result_mem ->set_req(_slow_path, reset_memory());
4218   }
4219 
4220   // Return the combined state.
4221   set_i_o(        _gvn.transform(result_io)  );
4222   set_all_memory( _gvn.transform(result_mem));
4223 
4224   set_result(result_reg, result_val);
4225   return true;
4226 }
4227 
4228 //---------------------------inline_native_getClass----------------------------
4229 // public final native Class<?> java.lang.Object.getClass();
4230 //
4231 // Build special case code for calls to getClass on an object.
4232 bool LibraryCallKit::inline_native_getClass() {
4233   Node* obj = null_check_receiver();
4234   if (stopped())  return true;
4235   set_result(load_mirror_from_klass(load_object_klass(obj)));
4236   return true;
4237 }
4238 
4239 //-----------------inline_native_Reflection_getCallerClass---------------------
4240 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4241 //
4242 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4243 //
4244 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4245 // in that it must skip particular security frames and checks for
4246 // caller sensitive methods.
4247 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4248 #ifndef PRODUCT
4249   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4250     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4251   }
4252 #endif
4253 
4254   if (!jvms()->has_method()) {
4255 #ifndef PRODUCT
4256     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4257       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4258     }
4259 #endif
4260     return false;
4261   }
4262 
4263   // Walk back up the JVM state to find the caller at the required
4264   // depth.
4265   JVMState* caller_jvms = jvms();
4266 
4267   // Cf. JVM_GetCallerClass
4268   // NOTE: Start the loop at depth 1 because the current JVM state does
4269   // not include the Reflection.getCallerClass() frame.
4270   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4271     ciMethod* m = caller_jvms->method();
4272     switch (n) {
4273     case 0:
4274       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4275       break;
4276     case 1:
4277       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4278       if (!m->caller_sensitive()) {
4279 #ifndef PRODUCT
4280         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4281           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4282         }
4283 #endif
4284         return false;  // bail-out; let JVM_GetCallerClass do the work
4285       }
4286       break;
4287     default:
4288       if (!m->is_ignored_by_security_stack_walk()) {
4289         // We have reached the desired frame; return the holder class.
4290         // Acquire method holder as java.lang.Class and push as constant.
4291         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4292         ciInstance* caller_mirror = caller_klass->java_mirror();
4293         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4294 
4295 #ifndef PRODUCT
4296         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4297           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4298           tty->print_cr("  JVM state at this point:");
4299           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4300             ciMethod* m = jvms()->of_depth(i)->method();
4301             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4302           }
4303         }
4304 #endif
4305         return true;
4306       }
4307       break;
4308     }
4309   }
4310 
4311 #ifndef PRODUCT
4312   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4313     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4314     tty->print_cr("  JVM state at this point:");
4315     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4316       ciMethod* m = jvms()->of_depth(i)->method();
4317       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4318     }
4319   }
4320 #endif
4321 
4322   return false;  // bail-out; let JVM_GetCallerClass do the work
4323 }
4324 
4325 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4326   Node* arg = argument(0);
4327   Node* result = NULL;
4328 
4329   switch (id) {
4330   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4331   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4332   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4333   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4334 
4335   case vmIntrinsics::_doubleToLongBits: {
4336     // two paths (plus control) merge in a wood
4337     RegionNode *r = new (C) RegionNode(3);
4338     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4339 
4340     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4341     // Build the boolean node
4342     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4343 
4344     // Branch either way.
4345     // NaN case is less traveled, which makes all the difference.
4346     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4347     Node *opt_isnan = _gvn.transform(ifisnan);
4348     assert( opt_isnan->is_If(), "Expect an IfNode");
4349     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4350     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4351 
4352     set_control(iftrue);
4353 
4354     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4355     Node *slow_result = longcon(nan_bits); // return NaN
4356     phi->init_req(1, _gvn.transform( slow_result ));
4357     r->init_req(1, iftrue);
4358 
4359     // Else fall through
4360     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4361     set_control(iffalse);
4362 
4363     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4364     r->init_req(2, iffalse);
4365 
4366     // Post merge
4367     set_control(_gvn.transform(r));
4368     record_for_igvn(r);
4369 
4370     C->set_has_split_ifs(true); // Has chance for split-if optimization
4371     result = phi;
4372     assert(result->bottom_type()->isa_long(), "must be");
4373     break;
4374   }
4375 
4376   case vmIntrinsics::_floatToIntBits: {
4377     // two paths (plus control) merge in a wood
4378     RegionNode *r = new (C) RegionNode(3);
4379     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4380 
4381     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4382     // Build the boolean node
4383     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4384 
4385     // Branch either way.
4386     // NaN case is less traveled, which makes all the difference.
4387     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4388     Node *opt_isnan = _gvn.transform(ifisnan);
4389     assert( opt_isnan->is_If(), "Expect an IfNode");
4390     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4391     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4392 
4393     set_control(iftrue);
4394 
4395     static const jint nan_bits = 0x7fc00000;
4396     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4397     phi->init_req(1, _gvn.transform( slow_result ));
4398     r->init_req(1, iftrue);
4399 
4400     // Else fall through
4401     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4402     set_control(iffalse);
4403 
4404     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4405     r->init_req(2, iffalse);
4406 
4407     // Post merge
4408     set_control(_gvn.transform(r));
4409     record_for_igvn(r);
4410 
4411     C->set_has_split_ifs(true); // Has chance for split-if optimization
4412     result = phi;
4413     assert(result->bottom_type()->isa_int(), "must be");
4414     break;
4415   }
4416 
4417   default:
4418     fatal_unexpected_iid(id);
4419     break;
4420   }
4421   set_result(_gvn.transform(result));
4422   return true;
4423 }
4424 
4425 #ifdef _LP64
4426 #define XTOP ,top() /*additional argument*/
4427 #else  //_LP64
4428 #define XTOP        /*no additional argument*/
4429 #endif //_LP64
4430 
4431 //----------------------inline_unsafe_copyMemory-------------------------
4432 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4433 bool LibraryCallKit::inline_unsafe_copyMemory() {
4434   if (callee()->is_static())  return false;  // caller must have the capability!
4435   null_check_receiver();  // null-check receiver
4436   if (stopped())  return true;
4437 
4438   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4439 
4440   Node* src_ptr =         argument(1);   // type: oop
4441   Node* src_off = ConvL2X(argument(2));  // type: long
4442   Node* dst_ptr =         argument(4);   // type: oop
4443   Node* dst_off = ConvL2X(argument(5));  // type: long
4444   Node* size    = ConvL2X(argument(7));  // type: long
4445 
4446   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4447          "fieldOffset must be byte-scaled");
4448 
4449   Node* src = make_unsafe_address(src_ptr, src_off);
4450   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4451 
4452   // Conservatively insert a memory barrier on all memory slices.
4453   // Do not let writes of the copy source or destination float below the copy.
4454   insert_mem_bar(Op_MemBarCPUOrder);
4455 
4456   // Call it.  Note that the length argument is not scaled.
4457   make_runtime_call(RC_LEAF|RC_NO_FP,
4458                     OptoRuntime::fast_arraycopy_Type(),
4459                     StubRoutines::unsafe_arraycopy(),
4460                     "unsafe_arraycopy",
4461                     TypeRawPtr::BOTTOM,
4462                     src, dst, size XTOP);
4463 
4464   // Do not let reads of the copy destination float above the copy.
4465   insert_mem_bar(Op_MemBarCPUOrder);
4466 
4467   return true;
4468 }
4469 
4470 //------------------------clone_coping-----------------------------------
4471 // Helper function for inline_native_clone.
4472 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4473   assert(obj_size != NULL, "");
4474   Node* raw_obj = alloc_obj->in(1);
4475   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4476 
4477   AllocateNode* alloc = NULL;
4478   if (ReduceBulkZeroing) {
4479     // We will be completely responsible for initializing this object -
4480     // mark Initialize node as complete.
4481     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4482     // The object was just allocated - there should be no any stores!
4483     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4484     // Mark as complete_with_arraycopy so that on AllocateNode
4485     // expansion, we know this AllocateNode is initialized by an array
4486     // copy and a StoreStore barrier exists after the array copy.
4487     alloc->initialization()->set_complete_with_arraycopy();
4488   }
4489 
4490   // Copy the fastest available way.
4491   // TODO: generate fields copies for small objects instead.
4492   Node* src  = obj;
4493   Node* dest = alloc_obj;
4494   Node* size = _gvn.transform(obj_size);
4495 
4496   // Exclude the header but include array length to copy by 8 bytes words.
4497   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4498   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4499                             instanceOopDesc::base_offset_in_bytes();
4500   // base_off:
4501   // 8  - 32-bit VM
4502   // 12 - 64-bit VM, compressed klass
4503   // 16 - 64-bit VM, normal klass
4504   if (base_off % BytesPerLong != 0) {
4505     assert(UseCompressedClassPointers, "");
4506     if (is_array) {
4507       // Exclude length to copy by 8 bytes words.
4508       base_off += sizeof(int);
4509     } else {
4510       // Include klass to copy by 8 bytes words.
4511       base_off = instanceOopDesc::klass_offset_in_bytes();
4512     }
4513     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4514   }
4515   src  = basic_plus_adr(src,  base_off);
4516   dest = basic_plus_adr(dest, base_off);
4517 
4518   // Compute the length also, if needed:
4519   Node* countx = size;
4520   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4521   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4522 
4523   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4524   bool disjoint_bases = true;
4525   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4526                                src, NULL, dest, NULL, countx,
4527                                /*dest_uninitialized*/true);
4528 
4529   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4530   if (card_mark) {
4531     assert(!is_array, "");
4532     // Put in store barrier for any and all oops we are sticking
4533     // into this object.  (We could avoid this if we could prove
4534     // that the object type contains no oop fields at all.)
4535     Node* no_particular_value = NULL;
4536     Node* no_particular_field = NULL;
4537     int raw_adr_idx = Compile::AliasIdxRaw;
4538     post_barrier(control(),
4539                  memory(raw_adr_type),
4540                  alloc_obj,
4541                  no_particular_field,
4542                  raw_adr_idx,
4543                  no_particular_value,
4544                  T_OBJECT,
4545                  false);
4546   }
4547 
4548   // Do not let reads from the cloned object float above the arraycopy.
4549   if (alloc != NULL) {
4550     // Do not let stores that initialize this object be reordered with
4551     // a subsequent store that would make this object accessible by
4552     // other threads.
4553     // Record what AllocateNode this StoreStore protects so that
4554     // escape analysis can go from the MemBarStoreStoreNode to the
4555     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4556     // based on the escape status of the AllocateNode.
4557     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4558   } else {
4559     insert_mem_bar(Op_MemBarCPUOrder);
4560   }
4561 }
4562 
4563 //------------------------inline_native_clone----------------------------
4564 // protected native Object java.lang.Object.clone();
4565 //
4566 // Here are the simple edge cases:
4567 //  null receiver => normal trap
4568 //  virtual and clone was overridden => slow path to out-of-line clone
4569 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4570 //
4571 // The general case has two steps, allocation and copying.
4572 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4573 //
4574 // Copying also has two cases, oop arrays and everything else.
4575 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4576 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4577 //
4578 // These steps fold up nicely if and when the cloned object's klass
4579 // can be sharply typed as an object array, a type array, or an instance.
4580 //
4581 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4582   PhiNode* result_val;
4583 
4584   // Set the reexecute bit for the interpreter to reexecute
4585   // the bytecode that invokes Object.clone if deoptimization happens.
4586   { PreserveReexecuteState preexecs(this);
4587     jvms()->set_should_reexecute(true);
4588 
4589     Node* obj = null_check_receiver();
4590     if (stopped())  return true;
4591 
4592     Node* obj_klass = load_object_klass(obj);
4593     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4594     const TypeOopPtr*   toop   = ((tklass != NULL)
4595                                 ? tklass->as_instance_type()
4596                                 : TypeInstPtr::NOTNULL);
4597 
4598     // Conservatively insert a memory barrier on all memory slices.
4599     // Do not let writes into the original float below the clone.
4600     insert_mem_bar(Op_MemBarCPUOrder);
4601 
4602     // paths into result_reg:
4603     enum {
4604       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4605       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4606       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4607       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4608       PATH_LIMIT
4609     };
4610     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4611     result_val             = new(C) PhiNode(result_reg,
4612                                             TypeInstPtr::NOTNULL);
4613     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4614     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4615                                             TypePtr::BOTTOM);
4616     record_for_igvn(result_reg);
4617 
4618     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4619     int raw_adr_idx = Compile::AliasIdxRaw;
4620 
4621     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4622     if (array_ctl != NULL) {
4623       // It's an array.
4624       PreserveJVMState pjvms(this);
4625       set_control(array_ctl);
4626       Node* obj_length = load_array_length(obj);
4627       Node* obj_size  = NULL;
4628       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4629 
4630       if (!use_ReduceInitialCardMarks()) {
4631         // If it is an oop array, it requires very special treatment,
4632         // because card marking is required on each card of the array.
4633         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4634         if (is_obja != NULL) {
4635           PreserveJVMState pjvms2(this);
4636           set_control(is_obja);
4637           // Generate a direct call to the right arraycopy function(s).
4638           bool disjoint_bases = true;
4639           bool length_never_negative = true;
4640           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4641                              obj, intcon(0), alloc_obj, intcon(0),
4642                              obj_length,
4643                              disjoint_bases, length_never_negative);
4644           result_reg->init_req(_objArray_path, control());
4645           result_val->init_req(_objArray_path, alloc_obj);
4646           result_i_o ->set_req(_objArray_path, i_o());
4647           result_mem ->set_req(_objArray_path, reset_memory());
4648         }
4649       }
4650       // Otherwise, there are no card marks to worry about.
4651       // (We can dispense with card marks if we know the allocation
4652       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4653       //  causes the non-eden paths to take compensating steps to
4654       //  simulate a fresh allocation, so that no further
4655       //  card marks are required in compiled code to initialize
4656       //  the object.)
4657 
4658       if (!stopped()) {
4659         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4660 
4661         // Present the results of the copy.
4662         result_reg->init_req(_array_path, control());
4663         result_val->init_req(_array_path, alloc_obj);
4664         result_i_o ->set_req(_array_path, i_o());
4665         result_mem ->set_req(_array_path, reset_memory());
4666       }
4667     }
4668 
4669     // We only go to the instance fast case code if we pass a number of guards.
4670     // The paths which do not pass are accumulated in the slow_region.
4671     RegionNode* slow_region = new (C) RegionNode(1);
4672     record_for_igvn(slow_region);
4673     if (!stopped()) {
4674       // It's an instance (we did array above).  Make the slow-path tests.
4675       // If this is a virtual call, we generate a funny guard.  We grab
4676       // the vtable entry corresponding to clone() from the target object.
4677       // If the target method which we are calling happens to be the
4678       // Object clone() method, we pass the guard.  We do not need this
4679       // guard for non-virtual calls; the caller is known to be the native
4680       // Object clone().
4681       if (is_virtual) {
4682         generate_virtual_guard(obj_klass, slow_region);
4683       }
4684 
4685       // The object must be cloneable and must not have a finalizer.
4686       // Both of these conditions may be checked in a single test.
4687       // We could optimize the cloneable test further, but we don't care.
4688       generate_access_flags_guard(obj_klass,
4689                                   // Test both conditions:
4690                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4691                                   // Must be cloneable but not finalizer:
4692                                   JVM_ACC_IS_CLONEABLE,
4693                                   slow_region);
4694     }
4695 
4696     if (!stopped()) {
4697       // It's an instance, and it passed the slow-path tests.
4698       PreserveJVMState pjvms(this);
4699       Node* obj_size  = NULL;
4700       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4701       // is reexecuted if deoptimization occurs and there could be problems when merging
4702       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4703       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4704 
4705       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4706 
4707       // Present the results of the slow call.
4708       result_reg->init_req(_instance_path, control());
4709       result_val->init_req(_instance_path, alloc_obj);
4710       result_i_o ->set_req(_instance_path, i_o());
4711       result_mem ->set_req(_instance_path, reset_memory());
4712     }
4713 
4714     // Generate code for the slow case.  We make a call to clone().
4715     set_control(_gvn.transform(slow_region));
4716     if (!stopped()) {
4717       PreserveJVMState pjvms(this);
4718       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4719       Node* slow_result = set_results_for_java_call(slow_call);
4720       // this->control() comes from set_results_for_java_call
4721       result_reg->init_req(_slow_path, control());
4722       result_val->init_req(_slow_path, slow_result);
4723       result_i_o ->set_req(_slow_path, i_o());
4724       result_mem ->set_req(_slow_path, reset_memory());
4725     }
4726 
4727     // Return the combined state.
4728     set_control(    _gvn.transform(result_reg));
4729     set_i_o(        _gvn.transform(result_i_o));
4730     set_all_memory( _gvn.transform(result_mem));
4731   } // original reexecute is set back here
4732 
4733   set_result(_gvn.transform(result_val));
4734   return true;
4735 }
4736 
4737 //------------------------------basictype2arraycopy----------------------------
4738 address LibraryCallKit::basictype2arraycopy(BasicType t,
4739                                             Node* src_offset,
4740                                             Node* dest_offset,
4741                                             bool disjoint_bases,
4742                                             const char* &name,
4743                                             bool dest_uninitialized) {
4744   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4745   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4746 
4747   bool aligned = false;
4748   bool disjoint = disjoint_bases;
4749 
4750   // if the offsets are the same, we can treat the memory regions as
4751   // disjoint, because either the memory regions are in different arrays,
4752   // or they are identical (which we can treat as disjoint.)  We can also
4753   // treat a copy with a destination index  less that the source index
4754   // as disjoint since a low->high copy will work correctly in this case.
4755   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4756       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4757     // both indices are constants
4758     int s_offs = src_offset_inttype->get_con();
4759     int d_offs = dest_offset_inttype->get_con();
4760     int element_size = type2aelembytes(t);
4761     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4762               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4763     if (s_offs >= d_offs)  disjoint = true;
4764   } else if (src_offset == dest_offset && src_offset != NULL) {
4765     // This can occur if the offsets are identical non-constants.
4766     disjoint = true;
4767   }
4768 
4769   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4770 }
4771 
4772 
4773 //------------------------------inline_arraycopy-----------------------
4774 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4775 //                                                      Object dest, int destPos,
4776 //                                                      int length);
4777 bool LibraryCallKit::inline_arraycopy() {
4778   // Get the arguments.
4779   Node* src         = argument(0);  // type: oop
4780   Node* src_offset  = argument(1);  // type: int
4781   Node* dest        = argument(2);  // type: oop
4782   Node* dest_offset = argument(3);  // type: int
4783   Node* length      = argument(4);  // type: int
4784 
4785   // Compile time checks.  If any of these checks cannot be verified at compile time,
4786   // we do not make a fast path for this call.  Instead, we let the call remain as it
4787   // is.  The checks we choose to mandate at compile time are:
4788   //
4789   // (1) src and dest are arrays.
4790   const Type* src_type  = src->Value(&_gvn);
4791   const Type* dest_type = dest->Value(&_gvn);
4792   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4793   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4794 
4795   // Do we have the type of src?
4796   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4797   // Do we have the type of dest?
4798   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4799   // Is the type for src from speculation?
4800   bool src_spec = false;
4801   // Is the type for dest from speculation?
4802   bool dest_spec = false;
4803 
4804   if (!has_src || !has_dest) {
4805     // We don't have sufficient type information, let's see if
4806     // speculative types can help. We need to have types for both src
4807     // and dest so that it pays off.
4808 
4809     // Do we already have or could we have type information for src
4810     bool could_have_src = has_src;
4811     // Do we already have or could we have type information for dest
4812     bool could_have_dest = has_dest;
4813 
4814     ciKlass* src_k = NULL;
4815     if (!has_src) {
4816       src_k = src_type->speculative_type();
4817       if (src_k != NULL && src_k->is_array_klass()) {
4818         could_have_src = true;
4819       }
4820     }
4821 
4822     ciKlass* dest_k = NULL;
4823     if (!has_dest) {
4824       dest_k = dest_type->speculative_type();
4825       if (dest_k != NULL && dest_k->is_array_klass()) {
4826         could_have_dest = true;
4827       }
4828     }
4829 
4830     if (could_have_src && could_have_dest) {
4831       // This is going to pay off so emit the required guards
4832       if (!has_src) {
4833         src = maybe_cast_profiled_obj(src, src_k);
4834         src_type  = _gvn.type(src);
4835         top_src  = src_type->isa_aryptr();
4836         has_src = (top_src != NULL && top_src->klass() != NULL);
4837         src_spec = true;
4838       }
4839       if (!has_dest) {
4840         dest = maybe_cast_profiled_obj(dest, dest_k);
4841         dest_type  = _gvn.type(dest);
4842         top_dest  = dest_type->isa_aryptr();
4843         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4844         dest_spec = true;
4845       }
4846     }
4847   }
4848 
4849   if (!has_src || !has_dest) {
4850     // Conservatively insert a memory barrier on all memory slices.
4851     // Do not let writes into the source float below the arraycopy.
4852     insert_mem_bar(Op_MemBarCPUOrder);
4853 
4854     // Call StubRoutines::generic_arraycopy stub.
4855     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4856                        src, src_offset, dest, dest_offset, length);
4857 
4858     // Do not let reads from the destination float above the arraycopy.
4859     // Since we cannot type the arrays, we don't know which slices
4860     // might be affected.  We could restrict this barrier only to those
4861     // memory slices which pertain to array elements--but don't bother.
4862     if (!InsertMemBarAfterArraycopy)
4863       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4864       insert_mem_bar(Op_MemBarCPUOrder);
4865     return true;
4866   }
4867 
4868   // (2) src and dest arrays must have elements of the same BasicType
4869   // Figure out the size and type of the elements we will be copying.
4870   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4871   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4872   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4873   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4874 
4875   if (src_elem != dest_elem || dest_elem == T_VOID) {
4876     // The component types are not the same or are not recognized.  Punt.
4877     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4878     generate_slow_arraycopy(TypePtr::BOTTOM,
4879                             src, src_offset, dest, dest_offset, length,
4880                             /*dest_uninitialized*/false);
4881     return true;
4882   }
4883 
4884   if (src_elem == T_OBJECT) {
4885     // If both arrays are object arrays then having the exact types
4886     // for both will remove the need for a subtype check at runtime
4887     // before the call and may make it possible to pick a faster copy
4888     // routine (without a subtype check on every element)
4889     // Do we have the exact type of src?
4890     bool could_have_src = src_spec;
4891     // Do we have the exact type of dest?
4892     bool could_have_dest = dest_spec;
4893     ciKlass* src_k = top_src->klass();
4894     ciKlass* dest_k = top_dest->klass();
4895     if (!src_spec) {
4896       src_k = src_type->speculative_type();
4897       if (src_k != NULL && src_k->is_array_klass()) {
4898           could_have_src = true;
4899       }
4900     }
4901     if (!dest_spec) {
4902       dest_k = dest_type->speculative_type();
4903       if (dest_k != NULL && dest_k->is_array_klass()) {
4904         could_have_dest = true;
4905       }
4906     }
4907     if (could_have_src && could_have_dest) {
4908       // If we can have both exact types, emit the missing guards
4909       if (could_have_src && !src_spec) {
4910         src = maybe_cast_profiled_obj(src, src_k);
4911       }
4912       if (could_have_dest && !dest_spec) {
4913         dest = maybe_cast_profiled_obj(dest, dest_k);
4914       }
4915     }
4916   }
4917 
4918   //---------------------------------------------------------------------------
4919   // We will make a fast path for this call to arraycopy.
4920 
4921   // We have the following tests left to perform:
4922   //
4923   // (3) src and dest must not be null.
4924   // (4) src_offset must not be negative.
4925   // (5) dest_offset must not be negative.
4926   // (6) length must not be negative.
4927   // (7) src_offset + length must not exceed length of src.
4928   // (8) dest_offset + length must not exceed length of dest.
4929   // (9) each element of an oop array must be assignable
4930 
4931   RegionNode* slow_region = new (C) RegionNode(1);
4932   record_for_igvn(slow_region);
4933 
4934   // (3) operands must not be null
4935   // We currently perform our null checks with the null_check routine.
4936   // This means that the null exceptions will be reported in the caller
4937   // rather than (correctly) reported inside of the native arraycopy call.
4938   // This should be corrected, given time.  We do our null check with the
4939   // stack pointer restored.
4940   src  = null_check(src,  T_ARRAY);
4941   dest = null_check(dest, T_ARRAY);
4942 
4943   // (4) src_offset must not be negative.
4944   generate_negative_guard(src_offset, slow_region);
4945 
4946   // (5) dest_offset must not be negative.
4947   generate_negative_guard(dest_offset, slow_region);
4948 
4949   // (6) length must not be negative (moved to generate_arraycopy()).
4950   // generate_negative_guard(length, slow_region);
4951 
4952   // (7) src_offset + length must not exceed length of src.
4953   generate_limit_guard(src_offset, length,
4954                        load_array_length(src),
4955                        slow_region);
4956 
4957   // (8) dest_offset + length must not exceed length of dest.
4958   generate_limit_guard(dest_offset, length,
4959                        load_array_length(dest),
4960                        slow_region);
4961 
4962   // (9) each element of an oop array must be assignable
4963   // The generate_arraycopy subroutine checks this.
4964 
4965   // This is where the memory effects are placed:
4966   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4967   generate_arraycopy(adr_type, dest_elem,
4968                      src, src_offset, dest, dest_offset, length,
4969                      false, false, slow_region);
4970 
4971   return true;
4972 }
4973 
4974 //-----------------------------generate_arraycopy----------------------
4975 // Generate an optimized call to arraycopy.
4976 // Caller must guard against non-arrays.
4977 // Caller must determine a common array basic-type for both arrays.
4978 // Caller must validate offsets against array bounds.
4979 // The slow_region has already collected guard failure paths
4980 // (such as out of bounds length or non-conformable array types).
4981 // The generated code has this shape, in general:
4982 //
4983 //     if (length == 0)  return   // via zero_path
4984 //     slowval = -1
4985 //     if (types unknown) {
4986 //       slowval = call generic copy loop
4987 //       if (slowval == 0)  return  // via checked_path
4988 //     } else if (indexes in bounds) {
4989 //       if ((is object array) && !(array type check)) {
4990 //         slowval = call checked copy loop
4991 //         if (slowval == 0)  return  // via checked_path
4992 //       } else {
4993 //         call bulk copy loop
4994 //         return  // via fast_path
4995 //       }
4996 //     }
4997 //     // adjust params for remaining work:
4998 //     if (slowval != -1) {
4999 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
5000 //     }
5001 //   slow_region:
5002 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
5003 //     return  // via slow_call_path
5004 //
5005 // This routine is used from several intrinsics:  System.arraycopy,
5006 // Object.clone (the array subcase), and Arrays.copyOf[Range].
5007 //
5008 void
5009 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
5010                                    BasicType basic_elem_type,
5011                                    Node* src,  Node* src_offset,
5012                                    Node* dest, Node* dest_offset,
5013                                    Node* copy_length,
5014                                    bool disjoint_bases,
5015                                    bool length_never_negative,
5016                                    RegionNode* slow_region) {
5017 
5018   if (slow_region == NULL) {
5019     slow_region = new(C) RegionNode(1);
5020     record_for_igvn(slow_region);
5021   }
5022 
5023   Node* original_dest      = dest;
5024   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
5025   bool  dest_uninitialized = false;
5026 
5027   // See if this is the initialization of a newly-allocated array.
5028   // If so, we will take responsibility here for initializing it to zero.
5029   // (Note:  Because tightly_coupled_allocation performs checks on the
5030   // out-edges of the dest, we need to avoid making derived pointers
5031   // from it until we have checked its uses.)
5032   if (ReduceBulkZeroing
5033       && !ZeroTLAB              // pointless if already zeroed
5034       && basic_elem_type != T_CONFLICT // avoid corner case
5035       && !src->eqv_uncast(dest)
5036       && ((alloc = tightly_coupled_allocation(dest, slow_region))
5037           != NULL)
5038       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
5039       && alloc->maybe_set_complete(&_gvn)) {
5040     // "You break it, you buy it."
5041     InitializeNode* init = alloc->initialization();
5042     assert(init->is_complete(), "we just did this");
5043     init->set_complete_with_arraycopy();
5044     assert(dest->is_CheckCastPP(), "sanity");
5045     assert(dest->in(0)->in(0) == init, "dest pinned");
5046     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
5047     // From this point on, every exit path is responsible for
5048     // initializing any non-copied parts of the object to zero.
5049     // Also, if this flag is set we make sure that arraycopy interacts properly
5050     // with G1, eliding pre-barriers. See CR 6627983.
5051     dest_uninitialized = true;
5052   } else {
5053     // No zeroing elimination here.
5054     alloc             = NULL;
5055     //original_dest   = dest;
5056     //dest_uninitialized = false;
5057   }
5058 
5059   // Results are placed here:
5060   enum { fast_path        = 1,  // normal void-returning assembly stub
5061          checked_path     = 2,  // special assembly stub with cleanup
5062          slow_call_path   = 3,  // something went wrong; call the VM
5063          zero_path        = 4,  // bypass when length of copy is zero
5064          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
5065          PATH_LIMIT       = 6
5066   };
5067   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
5068   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
5069   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
5070   record_for_igvn(result_region);
5071   _gvn.set_type_bottom(result_i_o);
5072   _gvn.set_type_bottom(result_memory);
5073   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
5074 
5075   // The slow_control path:
5076   Node* slow_control;
5077   Node* slow_i_o = i_o();
5078   Node* slow_mem = memory(adr_type);
5079   debug_only(slow_control = (Node*) badAddress);
5080 
5081   // Checked control path:
5082   Node* checked_control = top();
5083   Node* checked_mem     = NULL;
5084   Node* checked_i_o     = NULL;
5085   Node* checked_value   = NULL;
5086 
5087   if (basic_elem_type == T_CONFLICT) {
5088     assert(!dest_uninitialized, "");
5089     Node* cv = generate_generic_arraycopy(adr_type,
5090                                           src, src_offset, dest, dest_offset,
5091                                           copy_length, dest_uninitialized);
5092     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5093     checked_control = control();
5094     checked_i_o     = i_o();
5095     checked_mem     = memory(adr_type);
5096     checked_value   = cv;
5097     set_control(top());         // no fast path
5098   }
5099 
5100   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5101   if (not_pos != NULL) {
5102     PreserveJVMState pjvms(this);
5103     set_control(not_pos);
5104 
5105     // (6) length must not be negative.
5106     if (!length_never_negative) {
5107       generate_negative_guard(copy_length, slow_region);
5108     }
5109 
5110     // copy_length is 0.
5111     if (!stopped() && dest_uninitialized) {
5112       Node* dest_length = alloc->in(AllocateNode::ALength);
5113       if (copy_length->eqv_uncast(dest_length)
5114           || _gvn.find_int_con(dest_length, 1) <= 0) {
5115         // There is no zeroing to do. No need for a secondary raw memory barrier.
5116       } else {
5117         // Clear the whole thing since there are no source elements to copy.
5118         generate_clear_array(adr_type, dest, basic_elem_type,
5119                              intcon(0), NULL,
5120                              alloc->in(AllocateNode::AllocSize));
5121         // Use a secondary InitializeNode as raw memory barrier.
5122         // Currently it is needed only on this path since other
5123         // paths have stub or runtime calls as raw memory barriers.
5124         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5125                                                        Compile::AliasIdxRaw,
5126                                                        top())->as_Initialize();
5127         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5128       }
5129     }
5130 
5131     // Present the results of the fast call.
5132     result_region->init_req(zero_path, control());
5133     result_i_o   ->init_req(zero_path, i_o());
5134     result_memory->init_req(zero_path, memory(adr_type));
5135   }
5136 
5137   if (!stopped() && dest_uninitialized) {
5138     // We have to initialize the *uncopied* part of the array to zero.
5139     // The copy destination is the slice dest[off..off+len].  The other slices
5140     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5141     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5142     Node* dest_length = alloc->in(AllocateNode::ALength);
5143     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5144                                                           copy_length));
5145 
5146     // If there is a head section that needs zeroing, do it now.
5147     if (find_int_con(dest_offset, -1) != 0) {
5148       generate_clear_array(adr_type, dest, basic_elem_type,
5149                            intcon(0), dest_offset,
5150                            NULL);
5151     }
5152 
5153     // Next, perform a dynamic check on the tail length.
5154     // It is often zero, and we can win big if we prove this.
5155     // There are two wins:  Avoid generating the ClearArray
5156     // with its attendant messy index arithmetic, and upgrade
5157     // the copy to a more hardware-friendly word size of 64 bits.
5158     Node* tail_ctl = NULL;
5159     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5160       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5161       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5162       tail_ctl = generate_slow_guard(bol_lt, NULL);
5163       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5164     }
5165 
5166     // At this point, let's assume there is no tail.
5167     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5168       // There is no tail.  Try an upgrade to a 64-bit copy.
5169       bool didit = false;
5170       { PreserveJVMState pjvms(this);
5171         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5172                                          src, src_offset, dest, dest_offset,
5173                                          dest_size, dest_uninitialized);
5174         if (didit) {
5175           // Present the results of the block-copying fast call.
5176           result_region->init_req(bcopy_path, control());
5177           result_i_o   ->init_req(bcopy_path, i_o());
5178           result_memory->init_req(bcopy_path, memory(adr_type));
5179         }
5180       }
5181       if (didit)
5182         set_control(top());     // no regular fast path
5183     }
5184 
5185     // Clear the tail, if any.
5186     if (tail_ctl != NULL) {
5187       Node* notail_ctl = stopped() ? NULL : control();
5188       set_control(tail_ctl);
5189       if (notail_ctl == NULL) {
5190         generate_clear_array(adr_type, dest, basic_elem_type,
5191                              dest_tail, NULL,
5192                              dest_size);
5193       } else {
5194         // Make a local merge.
5195         Node* done_ctl = new(C) RegionNode(3);
5196         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5197         done_ctl->init_req(1, notail_ctl);
5198         done_mem->init_req(1, memory(adr_type));
5199         generate_clear_array(adr_type, dest, basic_elem_type,
5200                              dest_tail, NULL,
5201                              dest_size);
5202         done_ctl->init_req(2, control());
5203         done_mem->init_req(2, memory(adr_type));
5204         set_control( _gvn.transform(done_ctl));
5205         set_memory(  _gvn.transform(done_mem), adr_type );
5206       }
5207     }
5208   }
5209 
5210   BasicType copy_type = basic_elem_type;
5211   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5212   if (!stopped() && copy_type == T_OBJECT) {
5213     // If src and dest have compatible element types, we can copy bits.
5214     // Types S[] and D[] are compatible if D is a supertype of S.
5215     //
5216     // If they are not, we will use checked_oop_disjoint_arraycopy,
5217     // which performs a fast optimistic per-oop check, and backs off
5218     // further to JVM_ArrayCopy on the first per-oop check that fails.
5219     // (Actually, we don't move raw bits only; the GC requires card marks.)
5220 
5221     // Get the Klass* for both src and dest
5222     Node* src_klass  = load_object_klass(src);
5223     Node* dest_klass = load_object_klass(dest);
5224 
5225     // Generate the subtype check.
5226     // This might fold up statically, or then again it might not.
5227     //
5228     // Non-static example:  Copying List<String>.elements to a new String[].
5229     // The backing store for a List<String> is always an Object[],
5230     // but its elements are always type String, if the generic types
5231     // are correct at the source level.
5232     //
5233     // Test S[] against D[], not S against D, because (probably)
5234     // the secondary supertype cache is less busy for S[] than S.
5235     // This usually only matters when D is an interface.
5236     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5237     // Plug failing path into checked_oop_disjoint_arraycopy
5238     if (not_subtype_ctrl != top()) {
5239       PreserveJVMState pjvms(this);
5240       set_control(not_subtype_ctrl);
5241       // (At this point we can assume disjoint_bases, since types differ.)
5242       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5243       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5244       Node* n1 = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5245       Node* dest_elem_klass = _gvn.transform(n1);
5246       Node* cv = generate_checkcast_arraycopy(adr_type,
5247                                               dest_elem_klass,
5248                                               src, src_offset, dest, dest_offset,
5249                                               ConvI2X(copy_length), dest_uninitialized);
5250       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5251       checked_control = control();
5252       checked_i_o     = i_o();
5253       checked_mem     = memory(adr_type);
5254       checked_value   = cv;
5255     }
5256     // At this point we know we do not need type checks on oop stores.
5257 
5258     // Let's see if we need card marks:
5259     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5260       // If we do not need card marks, copy using the jint or jlong stub.
5261       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5262       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5263              "sizes agree");
5264     }
5265   }
5266 
5267   if (!stopped()) {
5268     // Generate the fast path, if possible.
5269     PreserveJVMState pjvms(this);
5270     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5271                                  src, src_offset, dest, dest_offset,
5272                                  ConvI2X(copy_length), dest_uninitialized);
5273 
5274     // Present the results of the fast call.
5275     result_region->init_req(fast_path, control());
5276     result_i_o   ->init_req(fast_path, i_o());
5277     result_memory->init_req(fast_path, memory(adr_type));
5278   }
5279 
5280   // Here are all the slow paths up to this point, in one bundle:
5281   slow_control = top();
5282   if (slow_region != NULL)
5283     slow_control = _gvn.transform(slow_region);
5284   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5285 
5286   set_control(checked_control);
5287   if (!stopped()) {
5288     // Clean up after the checked call.
5289     // The returned value is either 0 or -1^K,
5290     // where K = number of partially transferred array elements.
5291     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5292     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5293     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5294 
5295     // If it is 0, we are done, so transfer to the end.
5296     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5297     result_region->init_req(checked_path, checks_done);
5298     result_i_o   ->init_req(checked_path, checked_i_o);
5299     result_memory->init_req(checked_path, checked_mem);
5300 
5301     // If it is not zero, merge into the slow call.
5302     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5303     RegionNode* slow_reg2 = new(C) RegionNode(3);
5304     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5305     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5306     record_for_igvn(slow_reg2);
5307     slow_reg2  ->init_req(1, slow_control);
5308     slow_i_o2  ->init_req(1, slow_i_o);
5309     slow_mem2  ->init_req(1, slow_mem);
5310     slow_reg2  ->init_req(2, control());
5311     slow_i_o2  ->init_req(2, checked_i_o);
5312     slow_mem2  ->init_req(2, checked_mem);
5313 
5314     slow_control = _gvn.transform(slow_reg2);
5315     slow_i_o     = _gvn.transform(slow_i_o2);
5316     slow_mem     = _gvn.transform(slow_mem2);
5317 
5318     if (alloc != NULL) {
5319       // We'll restart from the very beginning, after zeroing the whole thing.
5320       // This can cause double writes, but that's OK since dest is brand new.
5321       // So we ignore the low 31 bits of the value returned from the stub.
5322     } else {
5323       // We must continue the copy exactly where it failed, or else
5324       // another thread might see the wrong number of writes to dest.
5325       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5326       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5327       slow_offset->init_req(1, intcon(0));
5328       slow_offset->init_req(2, checked_offset);
5329       slow_offset  = _gvn.transform(slow_offset);
5330 
5331       // Adjust the arguments by the conditionally incoming offset.
5332       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5333       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5334       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5335 
5336       // Tweak the node variables to adjust the code produced below:
5337       src_offset  = src_off_plus;
5338       dest_offset = dest_off_plus;
5339       copy_length = length_minus;
5340     }
5341   }
5342 
5343   set_control(slow_control);
5344   if (!stopped()) {
5345     // Generate the slow path, if needed.
5346     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5347 
5348     set_memory(slow_mem, adr_type);
5349     set_i_o(slow_i_o);
5350 
5351     if (dest_uninitialized) {
5352       generate_clear_array(adr_type, dest, basic_elem_type,
5353                            intcon(0), NULL,
5354                            alloc->in(AllocateNode::AllocSize));
5355     }
5356 
5357     generate_slow_arraycopy(adr_type,
5358                             src, src_offset, dest, dest_offset,
5359                             copy_length, /*dest_uninitialized*/false);
5360 
5361     result_region->init_req(slow_call_path, control());
5362     result_i_o   ->init_req(slow_call_path, i_o());
5363     result_memory->init_req(slow_call_path, memory(adr_type));
5364   }
5365 
5366   // Remove unused edges.
5367   for (uint i = 1; i < result_region->req(); i++) {
5368     if (result_region->in(i) == NULL)
5369       result_region->init_req(i, top());
5370   }
5371 
5372   // Finished; return the combined state.
5373   set_control( _gvn.transform(result_region));
5374   set_i_o(     _gvn.transform(result_i_o)    );
5375   set_memory(  _gvn.transform(result_memory), adr_type );
5376 
5377   // The memory edges above are precise in order to model effects around
5378   // array copies accurately to allow value numbering of field loads around
5379   // arraycopy.  Such field loads, both before and after, are common in Java
5380   // collections and similar classes involving header/array data structures.
5381   //
5382   // But with low number of register or when some registers are used or killed
5383   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5384   // The next memory barrier is added to avoid it. If the arraycopy can be
5385   // optimized away (which it can, sometimes) then we can manually remove
5386   // the membar also.
5387   //
5388   // Do not let reads from the cloned object float above the arraycopy.
5389   if (alloc != NULL) {
5390     // Do not let stores that initialize this object be reordered with
5391     // a subsequent store that would make this object accessible by
5392     // other threads.
5393     // Record what AllocateNode this StoreStore protects so that
5394     // escape analysis can go from the MemBarStoreStoreNode to the
5395     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5396     // based on the escape status of the AllocateNode.
5397     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5398   } else if (InsertMemBarAfterArraycopy)
5399     insert_mem_bar(Op_MemBarCPUOrder);
5400 }
5401 
5402 
5403 // Helper function which determines if an arraycopy immediately follows
5404 // an allocation, with no intervening tests or other escapes for the object.
5405 AllocateArrayNode*
5406 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5407                                            RegionNode* slow_region) {
5408   if (stopped())             return NULL;  // no fast path
5409   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5410 
5411   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5412   if (alloc == NULL)  return NULL;
5413 
5414   Node* rawmem = memory(Compile::AliasIdxRaw);
5415   // Is the allocation's memory state untouched?
5416   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5417     // Bail out if there have been raw-memory effects since the allocation.
5418     // (Example:  There might have been a call or safepoint.)
5419     return NULL;
5420   }
5421   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5422   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5423     return NULL;
5424   }
5425 
5426   // There must be no unexpected observers of this allocation.
5427   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5428     Node* obs = ptr->fast_out(i);
5429     if (obs != this->map()) {
5430       return NULL;
5431     }
5432   }
5433 
5434   // This arraycopy must unconditionally follow the allocation of the ptr.
5435   Node* alloc_ctl = ptr->in(0);
5436   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5437 
5438   Node* ctl = control();
5439   while (ctl != alloc_ctl) {
5440     // There may be guards which feed into the slow_region.
5441     // Any other control flow means that we might not get a chance
5442     // to finish initializing the allocated object.
5443     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5444       IfNode* iff = ctl->in(0)->as_If();
5445       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5446       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5447       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5448         ctl = iff->in(0);       // This test feeds the known slow_region.
5449         continue;
5450       }
5451       // One more try:  Various low-level checks bottom out in
5452       // uncommon traps.  If the debug-info of the trap omits
5453       // any reference to the allocation, as we've already
5454       // observed, then there can be no objection to the trap.
5455       bool found_trap = false;
5456       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5457         Node* obs = not_ctl->fast_out(j);
5458         if (obs->in(0) == not_ctl && obs->is_Call() &&
5459             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5460           found_trap = true; break;
5461         }
5462       }
5463       if (found_trap) {
5464         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5465         continue;
5466       }
5467     }
5468     return NULL;
5469   }
5470 
5471   // If we get this far, we have an allocation which immediately
5472   // precedes the arraycopy, and we can take over zeroing the new object.
5473   // The arraycopy will finish the initialization, and provide
5474   // a new control state to which we will anchor the destination pointer.
5475 
5476   return alloc;
5477 }
5478 
5479 // Helper for initialization of arrays, creating a ClearArray.
5480 // It writes zero bits in [start..end), within the body of an array object.
5481 // The memory effects are all chained onto the 'adr_type' alias category.
5482 //
5483 // Since the object is otherwise uninitialized, we are free
5484 // to put a little "slop" around the edges of the cleared area,
5485 // as long as it does not go back into the array's header,
5486 // or beyond the array end within the heap.
5487 //
5488 // The lower edge can be rounded down to the nearest jint and the
5489 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5490 //
5491 // Arguments:
5492 //   adr_type           memory slice where writes are generated
5493 //   dest               oop of the destination array
5494 //   basic_elem_type    element type of the destination
5495 //   slice_idx          array index of first element to store
5496 //   slice_len          number of elements to store (or NULL)
5497 //   dest_size          total size in bytes of the array object
5498 //
5499 // Exactly one of slice_len or dest_size must be non-NULL.
5500 // If dest_size is non-NULL, zeroing extends to the end of the object.
5501 // If slice_len is non-NULL, the slice_idx value must be a constant.
5502 void
5503 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5504                                      Node* dest,
5505                                      BasicType basic_elem_type,
5506                                      Node* slice_idx,
5507                                      Node* slice_len,
5508                                      Node* dest_size) {
5509   // one or the other but not both of slice_len and dest_size:
5510   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5511   if (slice_len == NULL)  slice_len = top();
5512   if (dest_size == NULL)  dest_size = top();
5513 
5514   // operate on this memory slice:
5515   Node* mem = memory(adr_type); // memory slice to operate on
5516 
5517   // scaling and rounding of indexes:
5518   int scale = exact_log2(type2aelembytes(basic_elem_type));
5519   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5520   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5521   int bump_bit  = (-1 << scale) & BytesPerInt;
5522 
5523   // determine constant starts and ends
5524   const intptr_t BIG_NEG = -128;
5525   assert(BIG_NEG + 2*abase < 0, "neg enough");
5526   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5527   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5528   if (slice_len_con == 0) {
5529     return;                     // nothing to do here
5530   }
5531   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5532   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5533   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5534     assert(end_con < 0, "not two cons");
5535     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5536                        BytesPerLong);
5537   }
5538 
5539   if (start_con >= 0 && end_con >= 0) {
5540     // Constant start and end.  Simple.
5541     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5542                                        start_con, end_con, &_gvn);
5543   } else if (start_con >= 0 && dest_size != top()) {
5544     // Constant start, pre-rounded end after the tail of the array.
5545     Node* end = dest_size;
5546     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5547                                        start_con, end, &_gvn);
5548   } else if (start_con >= 0 && slice_len != top()) {
5549     // Constant start, non-constant end.  End needs rounding up.
5550     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5551     intptr_t end_base  = abase + (slice_idx_con << scale);
5552     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5553     Node*    end       = ConvI2X(slice_len);
5554     if (scale != 0)
5555       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5556     end_base += end_round;
5557     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5558     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5559     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5560                                        start_con, end, &_gvn);
5561   } else if (start_con < 0 && dest_size != top()) {
5562     // Non-constant start, pre-rounded end after the tail of the array.
5563     // This is almost certainly a "round-to-end" operation.
5564     Node* start = slice_idx;
5565     start = ConvI2X(start);
5566     if (scale != 0)
5567       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5568     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5569     if ((bump_bit | clear_low) != 0) {
5570       int to_clear = (bump_bit | clear_low);
5571       // Align up mod 8, then store a jint zero unconditionally
5572       // just before the mod-8 boundary.
5573       if (((abase + bump_bit) & ~to_clear) - bump_bit
5574           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5575         bump_bit = 0;
5576         assert((abase & to_clear) == 0, "array base must be long-aligned");
5577       } else {
5578         // Bump 'start' up to (or past) the next jint boundary:
5579         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5580         assert((abase & clear_low) == 0, "array base must be int-aligned");
5581       }
5582       // Round bumped 'start' down to jlong boundary in body of array.
5583       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5584       if (bump_bit != 0) {
5585         // Store a zero to the immediately preceding jint:
5586         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5587         Node* p1 = basic_plus_adr(dest, x1);
5588         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5589         mem = _gvn.transform(mem);
5590       }
5591     }
5592     Node* end = dest_size; // pre-rounded
5593     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5594                                        start, end, &_gvn);
5595   } else {
5596     // Non-constant start, unrounded non-constant end.
5597     // (Nobody zeroes a random midsection of an array using this routine.)
5598     ShouldNotReachHere();       // fix caller
5599   }
5600 
5601   // Done.
5602   set_memory(mem, adr_type);
5603 }
5604 
5605 
5606 bool
5607 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5608                                          BasicType basic_elem_type,
5609                                          AllocateNode* alloc,
5610                                          Node* src,  Node* src_offset,
5611                                          Node* dest, Node* dest_offset,
5612                                          Node* dest_size, bool dest_uninitialized) {
5613   // See if there is an advantage from block transfer.
5614   int scale = exact_log2(type2aelembytes(basic_elem_type));
5615   if (scale >= LogBytesPerLong)
5616     return false;               // it is already a block transfer
5617 
5618   // Look at the alignment of the starting offsets.
5619   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5620 
5621   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5622   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5623   if (src_off_con < 0 || dest_off_con < 0)
5624     // At present, we can only understand constants.
5625     return false;
5626 
5627   intptr_t src_off  = abase + (src_off_con  << scale);
5628   intptr_t dest_off = abase + (dest_off_con << scale);
5629 
5630   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5631     // Non-aligned; too bad.
5632     // One more chance:  Pick off an initial 32-bit word.
5633     // This is a common case, since abase can be odd mod 8.
5634     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5635         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5636       Node* sptr = basic_plus_adr(src,  src_off);
5637       Node* dptr = basic_plus_adr(dest, dest_off);
5638       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5639       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5640       src_off += BytesPerInt;
5641       dest_off += BytesPerInt;
5642     } else {
5643       return false;
5644     }
5645   }
5646   assert(src_off % BytesPerLong == 0, "");
5647   assert(dest_off % BytesPerLong == 0, "");
5648 
5649   // Do this copy by giant steps.
5650   Node* sptr  = basic_plus_adr(src,  src_off);
5651   Node* dptr  = basic_plus_adr(dest, dest_off);
5652   Node* countx = dest_size;
5653   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5654   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5655 
5656   bool disjoint_bases = true;   // since alloc != NULL
5657   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5658                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5659 
5660   return true;
5661 }
5662 
5663 
5664 // Helper function; generates code for the slow case.
5665 // We make a call to a runtime method which emulates the native method,
5666 // but without the native wrapper overhead.
5667 void
5668 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5669                                         Node* src,  Node* src_offset,
5670                                         Node* dest, Node* dest_offset,
5671                                         Node* copy_length, bool dest_uninitialized) {
5672   assert(!dest_uninitialized, "Invariant");
5673   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5674                                  OptoRuntime::slow_arraycopy_Type(),
5675                                  OptoRuntime::slow_arraycopy_Java(),
5676                                  "slow_arraycopy", adr_type,
5677                                  src, src_offset, dest, dest_offset,
5678                                  copy_length);
5679 
5680   // Handle exceptions thrown by this fellow:
5681   make_slow_call_ex(call, env()->Throwable_klass(), false);
5682 }
5683 
5684 // Helper function; generates code for cases requiring runtime checks.
5685 Node*
5686 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5687                                              Node* dest_elem_klass,
5688                                              Node* src,  Node* src_offset,
5689                                              Node* dest, Node* dest_offset,
5690                                              Node* copy_length, bool dest_uninitialized) {
5691   if (stopped())  return NULL;
5692 
5693   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5694   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5695     return NULL;
5696   }
5697 
5698   // Pick out the parameters required to perform a store-check
5699   // for the target array.  This is an optimistic check.  It will
5700   // look in each non-null element's class, at the desired klass's
5701   // super_check_offset, for the desired klass.
5702   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5703   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5704   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5705   Node* check_offset = ConvI2X(_gvn.transform(n3));
5706   Node* check_value  = dest_elem_klass;
5707 
5708   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5709   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5710 
5711   // (We know the arrays are never conjoint, because their types differ.)
5712   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5713                                  OptoRuntime::checkcast_arraycopy_Type(),
5714                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5715                                  // five arguments, of which two are
5716                                  // intptr_t (jlong in LP64)
5717                                  src_start, dest_start,
5718                                  copy_length XTOP,
5719                                  check_offset XTOP,
5720                                  check_value);
5721 
5722   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5723 }
5724 
5725 
5726 // Helper function; generates code for cases requiring runtime checks.
5727 Node*
5728 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5729                                            Node* src,  Node* src_offset,
5730                                            Node* dest, Node* dest_offset,
5731                                            Node* copy_length, bool dest_uninitialized) {
5732   assert(!dest_uninitialized, "Invariant");
5733   if (stopped())  return NULL;
5734   address copyfunc_addr = StubRoutines::generic_arraycopy();
5735   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5736     return NULL;
5737   }
5738 
5739   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5740                     OptoRuntime::generic_arraycopy_Type(),
5741                     copyfunc_addr, "generic_arraycopy", adr_type,
5742                     src, src_offset, dest, dest_offset, copy_length);
5743 
5744   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5745 }
5746 
5747 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5748 void
5749 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5750                                              BasicType basic_elem_type,
5751                                              bool disjoint_bases,
5752                                              Node* src,  Node* src_offset,
5753                                              Node* dest, Node* dest_offset,
5754                                              Node* copy_length, bool dest_uninitialized) {
5755   if (stopped())  return;               // nothing to do
5756 
5757   Node* src_start  = src;
5758   Node* dest_start = dest;
5759   if (src_offset != NULL || dest_offset != NULL) {
5760     assert(src_offset != NULL && dest_offset != NULL, "");
5761     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5762     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5763   }
5764 
5765   // Figure out which arraycopy runtime method to call.
5766   const char* copyfunc_name = "arraycopy";
5767   address     copyfunc_addr =
5768       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5769                           disjoint_bases, copyfunc_name, dest_uninitialized);
5770 
5771   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5772   make_runtime_call(RC_LEAF|RC_NO_FP,
5773                     OptoRuntime::fast_arraycopy_Type(),
5774                     copyfunc_addr, copyfunc_name, adr_type,
5775                     src_start, dest_start, copy_length XTOP);
5776 }
5777 
5778 //-------------inline_encodeISOArray-----------------------------------
5779 // encode char[] to byte[] in ISO_8859_1
5780 bool LibraryCallKit::inline_encodeISOArray() {
5781   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5782   // no receiver since it is static method
5783   Node *src         = argument(0);
5784   Node *src_offset  = argument(1);
5785   Node *dst         = argument(2);
5786   Node *dst_offset  = argument(3);
5787   Node *length      = argument(4);
5788 
5789   const Type* src_type = src->Value(&_gvn);
5790   const Type* dst_type = dst->Value(&_gvn);
5791   const TypeAryPtr* top_src = src_type->isa_aryptr();
5792   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5793   if (top_src  == NULL || top_src->klass()  == NULL ||
5794       top_dest == NULL || top_dest->klass() == NULL) {
5795     // failed array check
5796     return false;
5797   }
5798 
5799   // Figure out the size and type of the elements we will be copying.
5800   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5801   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5802   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5803     return false;
5804   }
5805   Node* src_start = array_element_address(src, src_offset, src_elem);
5806   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5807   // 'src_start' points to src array + scaled offset
5808   // 'dst_start' points to dst array + scaled offset
5809 
5810   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5811   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5812   enc = _gvn.transform(enc);
5813   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5814   set_memory(res_mem, mtype);
5815   set_result(enc);
5816   return true;
5817 }
5818 
5819 //-------------inline_multiplyToLen-----------------------------------
5820 bool LibraryCallKit::inline_multiplyToLen() {
5821   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5822 
5823   address stubAddr = StubRoutines::multiplyToLen();
5824   if (stubAddr == NULL) {
5825     return false; // Intrinsic's stub is not implemented on this platform
5826   }
5827   const char* stubName = "multiplyToLen";
5828 
5829   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5830 
5831   // no receiver because it is a static method
5832   Node* x    = argument(0);
5833   Node* xlen = argument(1);
5834   Node* y    = argument(2);
5835   Node* ylen = argument(3);
5836   Node* z    = argument(4);
5837 
5838   const Type* x_type = x->Value(&_gvn);
5839   const Type* y_type = y->Value(&_gvn);
5840   const TypeAryPtr* top_x = x_type->isa_aryptr();
5841   const TypeAryPtr* top_y = y_type->isa_aryptr();
5842   if (top_x  == NULL || top_x->klass()  == NULL ||
5843       top_y == NULL || top_y->klass() == NULL) {
5844     // failed array check
5845     return false;
5846   }
5847 
5848   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5849   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5850   if (x_elem != T_INT || y_elem != T_INT) {
5851     return false;
5852   }
5853 
5854   // Set the original stack and the reexecute bit for the interpreter to reexecute
5855   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5856   // on the return from z array allocation in runtime.
5857   { PreserveReexecuteState preexecs(this);
5858     jvms()->set_should_reexecute(true);
5859 
5860     Node* x_start = array_element_address(x, intcon(0), x_elem);
5861     Node* y_start = array_element_address(y, intcon(0), y_elem);
5862     // 'x_start' points to x array + scaled xlen
5863     // 'y_start' points to y array + scaled ylen
5864 
5865     // Allocate the result array
5866     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
5867     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5868     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5869 
5870     IdealKit ideal(this);
5871 
5872 #define __ ideal.
5873      Node* one = __ ConI(1);
5874      Node* zero = __ ConI(0);
5875      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5876      __ set(need_alloc, zero);
5877      __ set(z_alloc, z);
5878      __ if_then(z, BoolTest::eq, null()); {
5879        __ increment (need_alloc, one);
5880      } __ else_(); {
5881        // Update graphKit memory and control from IdealKit.
5882        sync_kit(ideal);
5883        Node* zlen_arg = load_array_length(z);
5884        // Update IdealKit memory and control from graphKit.
5885        __ sync_kit(this);
5886        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5887          __ increment (need_alloc, one);
5888        } __ end_if();
5889      } __ end_if();
5890 
5891      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5892        // Update graphKit memory and control from IdealKit.
5893        sync_kit(ideal);
5894        Node * narr = new_array(klass_node, zlen, 1);
5895        // Update IdealKit memory and control from graphKit.
5896        __ sync_kit(this);
5897        __ set(z_alloc, narr);
5898      } __ end_if();
5899 
5900      sync_kit(ideal);
5901      z = __ value(z_alloc);
5902      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5903      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5904      // Final sync IdealKit and GraphKit.
5905      final_sync(ideal);
5906 #undef __
5907 
5908     Node* z_start = array_element_address(z, intcon(0), T_INT);
5909 
5910     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5911                                    OptoRuntime::multiplyToLen_Type(),
5912                                    stubAddr, stubName, TypePtr::BOTTOM,
5913                                    x_start, xlen, y_start, ylen, z_start, zlen);
5914   } // original reexecute is set back here
5915 
5916   C->set_has_split_ifs(true); // Has chance for split-if optimization
5917   set_result(z);
5918   return true;
5919 }
5920 
5921 //-------------inline_squareToLen------------------------------------
5922 bool LibraryCallKit::inline_squareToLen() {
5923   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
5924 
5925   address stubAddr = StubRoutines::squareToLen();
5926   if (stubAddr == NULL) {
5927     return false; // Intrinsic's stub is not implemented on this platform
5928   }
5929   const char* stubName = "squareToLen";
5930 
5931   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5932 
5933   Node* x    = argument(0);
5934   Node* len  = argument(1);
5935   Node* z    = argument(2);
5936   Node* zlen = argument(3);
5937 
5938   const Type* x_type = x->Value(&_gvn);
5939   const Type* z_type = z->Value(&_gvn);
5940   const TypeAryPtr* top_x = x_type->isa_aryptr();
5941   const TypeAryPtr* top_z = z_type->isa_aryptr();
5942   if (top_x  == NULL || top_x->klass()  == NULL ||
5943       top_z  == NULL || top_z->klass()  == NULL) {
5944     // failed array check
5945     return false;
5946   }
5947 
5948   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5949   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5950   if (x_elem != T_INT || z_elem != T_INT) {
5951     return false;
5952   }
5953 
5954 
5955   Node* x_start = array_element_address(x, intcon(0), x_elem);
5956   Node* z_start = array_element_address(z, intcon(0), z_elem);
5957 
5958   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5959                                   OptoRuntime::squareToLen_Type(),
5960                                   stubAddr, stubName, TypePtr::BOTTOM,
5961                                   x_start, len, z_start, zlen);
5962 
5963   set_result(z);
5964   return true;
5965 }
5966 
5967 //-------------inline_mulAdd------------------------------------------
5968 bool LibraryCallKit::inline_mulAdd() {
5969   assert(UseMulAddIntrinsic, "not implementated on this platform");
5970 
5971   address stubAddr = StubRoutines::mulAdd();
5972   if (stubAddr == NULL) {
5973     return false; // Intrinsic's stub is not implemented on this platform
5974   }
5975   const char* stubName = "mulAdd";
5976 
5977   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5978 
5979   Node* out      = argument(0);
5980   Node* in       = argument(1);
5981   Node* offset   = argument(2);
5982   Node* len      = argument(3);
5983   Node* k        = argument(4);
5984 
5985   const Type* out_type = out->Value(&_gvn);
5986   const Type* in_type = in->Value(&_gvn);
5987   const TypeAryPtr* top_out = out_type->isa_aryptr();
5988   const TypeAryPtr* top_in = in_type->isa_aryptr();
5989   if (top_out  == NULL || top_out->klass()  == NULL ||
5990       top_in == NULL || top_in->klass() == NULL) {
5991     // failed array check
5992     return false;
5993   }
5994 
5995   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5996   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5997   if (out_elem != T_INT || in_elem != T_INT) {
5998     return false;
5999   }
6000 
6001   Node* outlen = load_array_length(out);
6002   Node* new_offset = _gvn.transform(new (C) SubINode(outlen, offset));
6003   Node* out_start = array_element_address(out, intcon(0), out_elem);
6004   Node* in_start = array_element_address(in, intcon(0), in_elem);
6005 
6006   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6007                                   OptoRuntime::mulAdd_Type(),
6008                                   stubAddr, stubName, TypePtr::BOTTOM,
6009                                   out_start,in_start, new_offset, len, k);
6010   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6011   set_result(result);
6012   return true;
6013 }
6014 
6015 //-------------inline_montgomeryMultiply-----------------------------------
6016 bool LibraryCallKit::inline_montgomeryMultiply() {
6017   address stubAddr = StubRoutines::montgomeryMultiply();
6018   if (stubAddr == NULL) {
6019     return false; // Intrinsic's stub is not implemented on this platform
6020   }
6021 
6022   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6023   const char* stubName = "montgomery_square";
6024 
6025   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6026 
6027   Node* a    = argument(0);
6028   Node* b    = argument(1);
6029   Node* n    = argument(2);
6030   Node* len  = argument(3);
6031   Node* inv  = argument(4);
6032   Node* m    = argument(6);
6033 
6034   const Type* a_type = a->Value(&_gvn);
6035   const TypeAryPtr* top_a = a_type->isa_aryptr();
6036   const Type* b_type = b->Value(&_gvn);
6037   const TypeAryPtr* top_b = b_type->isa_aryptr();
6038   const Type* n_type = a->Value(&_gvn);
6039   const TypeAryPtr* top_n = n_type->isa_aryptr();
6040   const Type* m_type = a->Value(&_gvn);
6041   const TypeAryPtr* top_m = m_type->isa_aryptr();
6042   if (top_a  == NULL || top_a->klass()  == NULL ||
6043       top_b == NULL || top_b->klass()  == NULL ||
6044       top_n == NULL || top_n->klass()  == NULL ||
6045       top_m == NULL || top_m->klass()  == NULL) {
6046     // failed array check
6047     return false;
6048   }
6049 
6050   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6051   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6052   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6053   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6054   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6055     return false;
6056   }
6057 
6058   // Make the call
6059   {
6060     Node* a_start = array_element_address(a, intcon(0), a_elem);
6061     Node* b_start = array_element_address(b, intcon(0), b_elem);
6062     Node* n_start = array_element_address(n, intcon(0), n_elem);
6063     Node* m_start = array_element_address(m, intcon(0), m_elem);
6064 
6065     Node* call = make_runtime_call(RC_LEAF,
6066                                    OptoRuntime::montgomeryMultiply_Type(),
6067                                    stubAddr, stubName, TypePtr::BOTTOM,
6068                                    a_start, b_start, n_start, len, inv, top(),
6069                                    m_start);
6070     set_result(m);
6071   }
6072 
6073   return true;
6074 }
6075 
6076 bool LibraryCallKit::inline_montgomerySquare() {
6077   address stubAddr = StubRoutines::montgomerySquare();
6078   if (stubAddr == NULL) {
6079     return false; // Intrinsic's stub is not implemented on this platform
6080   }
6081 
6082   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6083   const char* stubName = "montgomery_square";
6084 
6085   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6086 
6087   Node* a    = argument(0);
6088   Node* n    = argument(1);
6089   Node* len  = argument(2);
6090   Node* inv  = argument(3);
6091   Node* m    = argument(5);
6092 
6093   const Type* a_type = a->Value(&_gvn);
6094   const TypeAryPtr* top_a = a_type->isa_aryptr();
6095   const Type* n_type = a->Value(&_gvn);
6096   const TypeAryPtr* top_n = n_type->isa_aryptr();
6097   const Type* m_type = a->Value(&_gvn);
6098   const TypeAryPtr* top_m = m_type->isa_aryptr();
6099   if (top_a  == NULL || top_a->klass()  == NULL ||
6100       top_n == NULL || top_n->klass()  == NULL ||
6101       top_m == NULL || top_m->klass()  == NULL) {
6102     // failed array check
6103     return false;
6104   }
6105 
6106   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6107   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6108   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6109   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6110     return false;
6111   }
6112 
6113   // Make the call
6114   {
6115     Node* a_start = array_element_address(a, intcon(0), a_elem);
6116     Node* n_start = array_element_address(n, intcon(0), n_elem);
6117     Node* m_start = array_element_address(m, intcon(0), m_elem);
6118 
6119     Node* call = make_runtime_call(RC_LEAF,
6120                                    OptoRuntime::montgomerySquare_Type(),
6121                                    stubAddr, stubName, TypePtr::BOTTOM,
6122                                    a_start, n_start, len, inv, top(),
6123                                    m_start);
6124     set_result(m);
6125   }
6126 
6127   return true;
6128 }
6129 
6130 
6131 /**
6132  * Calculate CRC32 for byte.
6133  * int java.util.zip.CRC32.update(int crc, int b)
6134  */
6135 bool LibraryCallKit::inline_updateCRC32() {
6136   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6137   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6138   // no receiver since it is static method
6139   Node* crc  = argument(0); // type: int
6140   Node* b    = argument(1); // type: int
6141 
6142   /*
6143    *    int c = ~ crc;
6144    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6145    *    b = b ^ (c >>> 8);
6146    *    crc = ~b;
6147    */
6148 
6149   Node* M1 = intcon(-1);
6150   crc = _gvn.transform(new (C) XorINode(crc, M1));
6151   Node* result = _gvn.transform(new (C) XorINode(crc, b));
6152   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
6153 
6154   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6155   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
6156   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6157   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6158 
6159   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
6160   result = _gvn.transform(new (C) XorINode(crc, result));
6161   result = _gvn.transform(new (C) XorINode(result, M1));
6162   set_result(result);
6163   return true;
6164 }
6165 
6166 /**
6167  * Calculate CRC32 for byte[] array.
6168  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6169  */
6170 bool LibraryCallKit::inline_updateBytesCRC32() {
6171   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6172   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6173   // no receiver since it is static method
6174   Node* crc     = argument(0); // type: int
6175   Node* src     = argument(1); // type: oop
6176   Node* offset  = argument(2); // type: int
6177   Node* length  = argument(3); // type: int
6178 
6179   const Type* src_type = src->Value(&_gvn);
6180   const TypeAryPtr* top_src = src_type->isa_aryptr();
6181   if (top_src  == NULL || top_src->klass()  == NULL) {
6182     // failed array check
6183     return false;
6184   }
6185 
6186   // Figure out the size and type of the elements we will be copying.
6187   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6188   if (src_elem != T_BYTE) {
6189     return false;
6190   }
6191 
6192   // 'src_start' points to src array + scaled offset
6193   Node* src_start = array_element_address(src, offset, src_elem);
6194 
6195   // We assume that range check is done by caller.
6196   // TODO: generate range check (offset+length < src.length) in debug VM.
6197 
6198   // Call the stub.
6199   address stubAddr = StubRoutines::updateBytesCRC32();
6200   const char *stubName = "updateBytesCRC32";
6201 
6202   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6203                                  stubAddr, stubName, TypePtr::BOTTOM,
6204                                  crc, src_start, length);
6205   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6206   set_result(result);
6207   return true;
6208 }
6209 
6210 /**
6211  * Calculate CRC32 for ByteBuffer.
6212  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6213  */
6214 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6215   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6216   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6217   // no receiver since it is static method
6218   Node* crc     = argument(0); // type: int
6219   Node* src     = argument(1); // type: long
6220   Node* offset  = argument(3); // type: int
6221   Node* length  = argument(4); // type: int
6222 
6223   src = ConvL2X(src);  // adjust Java long to machine word
6224   Node* base = _gvn.transform(new (C) CastX2PNode(src));
6225   offset = ConvI2X(offset);
6226 
6227   // 'src_start' points to src array + scaled offset
6228   Node* src_start = basic_plus_adr(top(), base, offset);
6229 
6230   // Call the stub.
6231   address stubAddr = StubRoutines::updateBytesCRC32();
6232   const char *stubName = "updateBytesCRC32";
6233 
6234   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6235                                  stubAddr, stubName, TypePtr::BOTTOM,
6236                                  crc, src_start, length);
6237   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6238   set_result(result);
6239   return true;
6240 }
6241 
6242 //----------------------------inline_reference_get----------------------------
6243 // public T java.lang.ref.Reference.get();
6244 bool LibraryCallKit::inline_reference_get() {
6245   const int referent_offset = java_lang_ref_Reference::referent_offset;
6246   guarantee(referent_offset > 0, "should have already been set");
6247 
6248   // Get the argument:
6249   Node* reference_obj = null_check_receiver();
6250   if (stopped()) return true;
6251 
6252   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6253 
6254   ciInstanceKlass* klass = env()->Object_klass();
6255   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6256 
6257   Node* no_ctrl = NULL;
6258   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6259 
6260   // Use the pre-barrier to record the value in the referent field
6261   pre_barrier(false /* do_load */,
6262               control(),
6263               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6264               result /* pre_val */,
6265               T_OBJECT);
6266 
6267   // Add memory barrier to prevent commoning reads from this field
6268   // across safepoint since GC can change its value.
6269   insert_mem_bar(Op_MemBarCPUOrder);
6270 
6271   set_result(result);
6272   return true;
6273 }
6274 
6275 
6276 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6277                                               bool is_exact=true, bool is_static=false) {
6278 
6279   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6280   assert(tinst != NULL, "obj is null");
6281   assert(tinst->klass()->is_loaded(), "obj is not loaded");
6282   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6283 
6284   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
6285                                                                           ciSymbol::make(fieldTypeString),
6286                                                                           is_static);
6287   if (field == NULL) return (Node *) NULL;
6288   assert (field != NULL, "undefined field");
6289 
6290   // Next code  copied from Parse::do_get_xxx():
6291 
6292   // Compute address and memory type.
6293   int offset  = field->offset_in_bytes();
6294   bool is_vol = field->is_volatile();
6295   ciType* field_klass = field->type();
6296   assert(field_klass->is_loaded(), "should be loaded");
6297   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6298   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6299   BasicType bt = field->layout_type();
6300 
6301   // Build the resultant type of the load
6302   const Type *type;
6303   if (bt == T_OBJECT) {
6304     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6305   } else {
6306     type = Type::get_const_basic_type(bt);
6307   }
6308 
6309   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6310     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6311   }
6312   // Build the load.
6313   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6314   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6315   // If reference is volatile, prevent following memory ops from
6316   // floating up past the volatile read.  Also prevents commoning
6317   // another volatile read.
6318   if (is_vol) {
6319     // Memory barrier includes bogus read of value to force load BEFORE membar
6320     insert_mem_bar(Op_MemBarAcquire, loadedField);
6321   }
6322   return loadedField;
6323 }
6324 
6325 
6326 //------------------------------inline_aescrypt_Block-----------------------
6327 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6328   address stubAddr = NULL;
6329   const char *stubName;
6330   assert(UseAES, "need AES instruction support");
6331 
6332   switch(id) {
6333   case vmIntrinsics::_aescrypt_encryptBlock:
6334     stubAddr = StubRoutines::aescrypt_encryptBlock();
6335     stubName = "aescrypt_encryptBlock";
6336     break;
6337   case vmIntrinsics::_aescrypt_decryptBlock:
6338     stubAddr = StubRoutines::aescrypt_decryptBlock();
6339     stubName = "aescrypt_decryptBlock";
6340     break;
6341   }
6342   if (stubAddr == NULL) return false;
6343 
6344   Node* aescrypt_object = argument(0);
6345   Node* src             = argument(1);
6346   Node* src_offset      = argument(2);
6347   Node* dest            = argument(3);
6348   Node* dest_offset     = argument(4);
6349 
6350   // (1) src and dest are arrays.
6351   const Type* src_type = src->Value(&_gvn);
6352   const Type* dest_type = dest->Value(&_gvn);
6353   const TypeAryPtr* top_src = src_type->isa_aryptr();
6354   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6355   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6356 
6357   // for the quick and dirty code we will skip all the checks.
6358   // we are just trying to get the call to be generated.
6359   Node* src_start  = src;
6360   Node* dest_start = dest;
6361   if (src_offset != NULL || dest_offset != NULL) {
6362     assert(src_offset != NULL && dest_offset != NULL, "");
6363     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6364     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6365   }
6366 
6367   // now need to get the start of its expanded key array
6368   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6369   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6370   if (k_start == NULL) return false;
6371 
6372   if (Matcher::pass_original_key_for_aes()) {
6373     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6374     // compatibility issues between Java key expansion and SPARC crypto instructions
6375     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6376     if (original_k_start == NULL) return false;
6377 
6378     // Call the stub.
6379     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6380                       stubAddr, stubName, TypePtr::BOTTOM,
6381                       src_start, dest_start, k_start, original_k_start);
6382   } else {
6383     // Call the stub.
6384     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6385                       stubAddr, stubName, TypePtr::BOTTOM,
6386                       src_start, dest_start, k_start);
6387   }
6388 
6389   return true;
6390 }
6391 
6392 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6393 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6394   address stubAddr = NULL;
6395   const char *stubName = NULL;
6396 
6397   assert(UseAES, "need AES instruction support");
6398 
6399   switch(id) {
6400   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6401     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6402     stubName = "cipherBlockChaining_encryptAESCrypt";
6403     break;
6404   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6405     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6406     stubName = "cipherBlockChaining_decryptAESCrypt";
6407     break;
6408   }
6409   if (stubAddr == NULL) return false;
6410 
6411   Node* cipherBlockChaining_object = argument(0);
6412   Node* src                        = argument(1);
6413   Node* src_offset                 = argument(2);
6414   Node* len                        = argument(3);
6415   Node* dest                       = argument(4);
6416   Node* dest_offset                = argument(5);
6417 
6418   // (1) src and dest are arrays.
6419   const Type* src_type = src->Value(&_gvn);
6420   const Type* dest_type = dest->Value(&_gvn);
6421   const TypeAryPtr* top_src = src_type->isa_aryptr();
6422   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6423   assert (top_src  != NULL && top_src->klass()  != NULL
6424           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6425 
6426   // checks are the responsibility of the caller
6427   Node* src_start  = src;
6428   Node* dest_start = dest;
6429   if (src_offset != NULL || dest_offset != NULL) {
6430     assert(src_offset != NULL && dest_offset != NULL, "");
6431     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6432     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6433   }
6434 
6435   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6436   // (because of the predicated logic executed earlier).
6437   // so we cast it here safely.
6438   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6439 
6440   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6441   if (embeddedCipherObj == NULL) return false;
6442 
6443   // cast it to what we know it will be at runtime
6444   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6445   assert(tinst != NULL, "CBC obj is null");
6446   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6447   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6448   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6449 
6450   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6451   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6452   const TypeOopPtr* xtype = aklass->as_instance_type();
6453   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6454   aescrypt_object = _gvn.transform(aescrypt_object);
6455 
6456   // we need to get the start of the aescrypt_object's expanded key array
6457   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6458   if (k_start == NULL) return false;
6459 
6460   // similarly, get the start address of the r vector
6461   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6462   if (objRvec == NULL) return false;
6463   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6464 
6465   Node* cbcCrypt;
6466   if (Matcher::pass_original_key_for_aes()) {
6467     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6468     // compatibility issues between Java key expansion and SPARC crypto instructions
6469     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6470     if (original_k_start == NULL) return false;
6471 
6472     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6473     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6474                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6475                                  stubAddr, stubName, TypePtr::BOTTOM,
6476                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6477   } else {
6478     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6479     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6480                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6481                                  stubAddr, stubName, TypePtr::BOTTOM,
6482                                  src_start, dest_start, k_start, r_start, len);
6483   }
6484 
6485   // return cipher length (int)
6486   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6487   set_result(retvalue);
6488   return true;
6489 }
6490 
6491 //------------------------------get_key_start_from_aescrypt_object-----------------------
6492 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6493 #ifdef PPC64
6494   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6495   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6496   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6497   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6498   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6499   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6500   if (objSessionK == NULL) {
6501     return (Node *) NULL;
6502   }
6503   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6504 #else
6505   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6506 #endif // PPC64
6507   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6508   if (objAESCryptKey == NULL) return (Node *) NULL;
6509 
6510   // now have the array, need to get the start address of the K array
6511   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6512   return k_start;
6513 }
6514 
6515 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6516 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6517   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6518   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6519   if (objAESCryptKey == NULL) return (Node *) NULL;
6520 
6521   // now have the array, need to get the start address of the lastKey array
6522   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6523   return original_k_start;
6524 }
6525 
6526 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6527 // Return node representing slow path of predicate check.
6528 // the pseudo code we want to emulate with this predicate is:
6529 // for encryption:
6530 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6531 // for decryption:
6532 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6533 //    note cipher==plain is more conservative than the original java code but that's OK
6534 //
6535 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6536   // The receiver was checked for NULL already.
6537   Node* objCBC = argument(0);
6538 
6539   // Load embeddedCipher field of CipherBlockChaining object.
6540   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6541 
6542   // get AESCrypt klass for instanceOf check
6543   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6544   // will have same classloader as CipherBlockChaining object
6545   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6546   assert(tinst != NULL, "CBCobj is null");
6547   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6548 
6549   // we want to do an instanceof comparison against the AESCrypt class
6550   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6551   if (!klass_AESCrypt->is_loaded()) {
6552     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6553     Node* ctrl = control();
6554     set_control(top()); // no regular fast path
6555     return ctrl;
6556   }
6557   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6558 
6559   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6560   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6561   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6562 
6563   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6564 
6565   // for encryption, we are done
6566   if (!decrypting)
6567     return instof_false;  // even if it is NULL
6568 
6569   // for decryption, we need to add a further check to avoid
6570   // taking the intrinsic path when cipher and plain are the same
6571   // see the original java code for why.
6572   RegionNode* region = new(C) RegionNode(3);
6573   region->init_req(1, instof_false);
6574   Node* src = argument(1);
6575   Node* dest = argument(4);
6576   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6577   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6578   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6579   region->init_req(2, src_dest_conjoint);
6580 
6581   record_for_igvn(region);
6582   return _gvn.transform(region);
6583 }
6584 
6585 //------------------------------inline_sha_implCompress-----------------------
6586 //
6587 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6588 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6589 //
6590 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6591 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6592 //
6593 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6594 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6595 //
6596 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6597   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6598 
6599   Node* sha_obj = argument(0);
6600   Node* src     = argument(1); // type oop
6601   Node* ofs     = argument(2); // type int
6602 
6603   const Type* src_type = src->Value(&_gvn);
6604   const TypeAryPtr* top_src = src_type->isa_aryptr();
6605   if (top_src  == NULL || top_src->klass()  == NULL) {
6606     // failed array check
6607     return false;
6608   }
6609   // Figure out the size and type of the elements we will be copying.
6610   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6611   if (src_elem != T_BYTE) {
6612     return false;
6613   }
6614   // 'src_start' points to src array + offset
6615   Node* src_start = array_element_address(src, ofs, src_elem);
6616   Node* state = NULL;
6617   address stubAddr;
6618   const char *stubName;
6619 
6620   switch(id) {
6621   case vmIntrinsics::_sha_implCompress:
6622     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6623     state = get_state_from_sha_object(sha_obj);
6624     stubAddr = StubRoutines::sha1_implCompress();
6625     stubName = "sha1_implCompress";
6626     break;
6627   case vmIntrinsics::_sha2_implCompress:
6628     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6629     state = get_state_from_sha_object(sha_obj);
6630     stubAddr = StubRoutines::sha256_implCompress();
6631     stubName = "sha256_implCompress";
6632     break;
6633   case vmIntrinsics::_sha5_implCompress:
6634     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6635     state = get_state_from_sha5_object(sha_obj);
6636     stubAddr = StubRoutines::sha512_implCompress();
6637     stubName = "sha512_implCompress";
6638     break;
6639   default:
6640     fatal_unexpected_iid(id);
6641     return false;
6642   }
6643   if (state == NULL) return false;
6644 
6645   // Call the stub.
6646   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6647                                  stubAddr, stubName, TypePtr::BOTTOM,
6648                                  src_start, state);
6649 
6650   return true;
6651 }
6652 
6653 //------------------------------inline_digestBase_implCompressMB-----------------------
6654 //
6655 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6656 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6657 //
6658 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6659   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6660          "need SHA1/SHA256/SHA512 instruction support");
6661   assert((uint)predicate < 3, "sanity");
6662   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6663 
6664   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6665   Node* src            = argument(1); // byte[] array
6666   Node* ofs            = argument(2); // type int
6667   Node* limit          = argument(3); // type int
6668 
6669   const Type* src_type = src->Value(&_gvn);
6670   const TypeAryPtr* top_src = src_type->isa_aryptr();
6671   if (top_src  == NULL || top_src->klass()  == NULL) {
6672     // failed array check
6673     return false;
6674   }
6675   // Figure out the size and type of the elements we will be copying.
6676   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6677   if (src_elem != T_BYTE) {
6678     return false;
6679   }
6680   // 'src_start' points to src array + offset
6681   Node* src_start = array_element_address(src, ofs, src_elem);
6682 
6683   const char* klass_SHA_name = NULL;
6684   const char* stub_name = NULL;
6685   address     stub_addr = NULL;
6686   bool        long_state = false;
6687 
6688   switch (predicate) {
6689   case 0:
6690     if (UseSHA1Intrinsics) {
6691       klass_SHA_name = "sun/security/provider/SHA";
6692       stub_name = "sha1_implCompressMB";
6693       stub_addr = StubRoutines::sha1_implCompressMB();
6694     }
6695     break;
6696   case 1:
6697     if (UseSHA256Intrinsics) {
6698       klass_SHA_name = "sun/security/provider/SHA2";
6699       stub_name = "sha256_implCompressMB";
6700       stub_addr = StubRoutines::sha256_implCompressMB();
6701     }
6702     break;
6703   case 2:
6704     if (UseSHA512Intrinsics) {
6705       klass_SHA_name = "sun/security/provider/SHA5";
6706       stub_name = "sha512_implCompressMB";
6707       stub_addr = StubRoutines::sha512_implCompressMB();
6708       long_state = true;
6709     }
6710     break;
6711   default:
6712     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6713   }
6714   if (klass_SHA_name != NULL) {
6715     // get DigestBase klass to lookup for SHA klass
6716     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6717     assert(tinst != NULL, "digestBase_obj is not instance???");
6718     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6719 
6720     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6721     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6722     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6723     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6724   }
6725   return false;
6726 }
6727 //------------------------------inline_sha_implCompressMB-----------------------
6728 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6729                                                bool long_state, address stubAddr, const char *stubName,
6730                                                Node* src_start, Node* ofs, Node* limit) {
6731   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6732   const TypeOopPtr* xtype = aklass->as_instance_type();
6733   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
6734   sha_obj = _gvn.transform(sha_obj);
6735 
6736   Node* state;
6737   if (long_state) {
6738     state = get_state_from_sha5_object(sha_obj);
6739   } else {
6740     state = get_state_from_sha_object(sha_obj);
6741   }
6742   if (state == NULL) return false;
6743 
6744   // Call the stub.
6745   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6746                                  OptoRuntime::digestBase_implCompressMB_Type(),
6747                                  stubAddr, stubName, TypePtr::BOTTOM,
6748                                  src_start, state, ofs, limit);
6749   // return ofs (int)
6750   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6751   set_result(result);
6752 
6753   return true;
6754 }
6755 
6756 //------------------------------get_state_from_sha_object-----------------------
6757 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6758   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6759   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6760   if (sha_state == NULL) return (Node *) NULL;
6761 
6762   // now have the array, need to get the start address of the state array
6763   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6764   return state;
6765 }
6766 
6767 //------------------------------get_state_from_sha5_object-----------------------
6768 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6769   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6770   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6771   if (sha_state == NULL) return (Node *) NULL;
6772 
6773   // now have the array, need to get the start address of the state array
6774   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6775   return state;
6776 }
6777 
6778 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6779 // Return node representing slow path of predicate check.
6780 // the pseudo code we want to emulate with this predicate is:
6781 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6782 //
6783 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6784   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6785          "need SHA1/SHA256/SHA512 instruction support");
6786   assert((uint)predicate < 3, "sanity");
6787 
6788   // The receiver was checked for NULL already.
6789   Node* digestBaseObj = argument(0);
6790 
6791   // get DigestBase klass for instanceOf check
6792   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6793   assert(tinst != NULL, "digestBaseObj is null");
6794   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6795 
6796   const char* klass_SHA_name = NULL;
6797   switch (predicate) {
6798   case 0:
6799     if (UseSHA1Intrinsics) {
6800       // we want to do an instanceof comparison against the SHA class
6801       klass_SHA_name = "sun/security/provider/SHA";
6802     }
6803     break;
6804   case 1:
6805     if (UseSHA256Intrinsics) {
6806       // we want to do an instanceof comparison against the SHA2 class
6807       klass_SHA_name = "sun/security/provider/SHA2";
6808     }
6809     break;
6810   case 2:
6811     if (UseSHA512Intrinsics) {
6812       // we want to do an instanceof comparison against the SHA5 class
6813       klass_SHA_name = "sun/security/provider/SHA5";
6814     }
6815     break;
6816   default:
6817     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6818   }
6819 
6820   ciKlass* klass_SHA = NULL;
6821   if (klass_SHA_name != NULL) {
6822     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6823   }
6824   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6825     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6826     Node* ctrl = control();
6827     set_control(top()); // no intrinsic path
6828     return ctrl;
6829   }
6830   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6831 
6832   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6833   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
6834   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6835   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6836 
6837   return instof_false;  // even if it is NULL
6838 }
6839 
6840 bool LibraryCallKit::inline_profileBoolean() {
6841   Node* counts = argument(1);
6842   const TypeAryPtr* ary = NULL;
6843   ciArray* aobj = NULL;
6844   if (counts->is_Con()
6845       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6846       && (aobj = ary->const_oop()->as_array()) != NULL
6847       && (aobj->length() == 2)) {
6848     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6849     jint false_cnt = aobj->element_value(0).as_int();
6850     jint  true_cnt = aobj->element_value(1).as_int();
6851 
6852     if (C->log() != NULL) {
6853       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6854                      false_cnt, true_cnt);
6855     }
6856 
6857     if (false_cnt + true_cnt == 0) {
6858       // According to profile, never executed.
6859       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6860                           Deoptimization::Action_reinterpret);
6861       return true;
6862     }
6863 
6864     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6865     // is a number of each value occurrences.
6866     Node* result = argument(0);
6867     if (false_cnt == 0 || true_cnt == 0) {
6868       // According to profile, one value has been never seen.
6869       int expected_val = (false_cnt == 0) ? 1 : 0;
6870 
6871       Node* cmp  = _gvn.transform(new (C) CmpINode(result, intcon(expected_val)));
6872       Node* test = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
6873 
6874       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6875       Node* fast_path = _gvn.transform(new (C) IfTrueNode(check));
6876       Node* slow_path = _gvn.transform(new (C) IfFalseNode(check));
6877 
6878       { // Slow path: uncommon trap for never seen value and then reexecute
6879         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6880         // the value has been seen at least once.
6881         PreserveJVMState pjvms(this);
6882         PreserveReexecuteState preexecs(this);
6883         jvms()->set_should_reexecute(true);
6884 
6885         set_control(slow_path);
6886         set_i_o(i_o());
6887 
6888         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6889                             Deoptimization::Action_reinterpret);
6890       }
6891       // The guard for never seen value enables sharpening of the result and
6892       // returning a constant. It allows to eliminate branches on the same value
6893       // later on.
6894       set_control(fast_path);
6895       result = intcon(expected_val);
6896     }
6897     // Stop profiling.
6898     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6899     // By replacing method body with profile data (represented as ProfileBooleanNode
6900     // on IR level) we effectively disable profiling.
6901     // It enables full speed execution once optimized code is generated.
6902     Node* profile = _gvn.transform(new (C) ProfileBooleanNode(result, false_cnt, true_cnt));
6903     C->record_for_igvn(profile);
6904     set_result(profile);
6905     return true;
6906   } else {
6907     // Continue profiling.
6908     // Profile data isn't available at the moment. So, execute method's bytecode version.
6909     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6910     // is compiled and counters aren't available since corresponding MethodHandle
6911     // isn't a compile-time constant.
6912     return false;
6913   }
6914 }