1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/regmask.hpp"
  41 
  42 // Portions of code courtesy of Clifford Click
  43 
  44 // Optimization - Graph Style
  45 
  46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  47 
  48 //=============================================================================
  49 uint MemNode::size_of() const { return sizeof(*this); }
  50 
  51 const TypePtr *MemNode::adr_type() const {
  52   Node* adr = in(Address);
  53   const TypePtr* cross_check = NULL;
  54   DEBUG_ONLY(cross_check = _adr_type);
  55   return calculate_adr_type(adr->bottom_type(), cross_check);
  56 }
  57 
  58 #ifndef PRODUCT
  59 void MemNode::dump_spec(outputStream *st) const {
  60   if (in(Address) == NULL)  return; // node is dead
  61 #ifndef ASSERT
  62   // fake the missing field
  63   const TypePtr* _adr_type = NULL;
  64   if (in(Address) != NULL)
  65     _adr_type = in(Address)->bottom_type()->isa_ptr();
  66 #endif
  67   dump_adr_type(this, _adr_type, st);
  68 
  69   Compile* C = Compile::current();
  70   if( C->alias_type(_adr_type)->is_volatile() )
  71     st->print(" Volatile!");
  72 }
  73 
  74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  75   st->print(" @");
  76   if (adr_type == NULL) {
  77     st->print("NULL");
  78   } else {
  79     adr_type->dump_on(st);
  80     Compile* C = Compile::current();
  81     Compile::AliasType* atp = NULL;
  82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  83     if (atp == NULL)
  84       st->print(", idx=?\?;");
  85     else if (atp->index() == Compile::AliasIdxBot)
  86       st->print(", idx=Bot;");
  87     else if (atp->index() == Compile::AliasIdxTop)
  88       st->print(", idx=Top;");
  89     else if (atp->index() == Compile::AliasIdxRaw)
  90       st->print(", idx=Raw;");
  91     else {
  92       ciField* field = atp->field();
  93       if (field) {
  94         st->print(", name=");
  95         field->print_name_on(st);
  96       }
  97       st->print(", idx=%d;", atp->index());
  98     }
  99   }
 100 }
 101 
 102 extern void print_alias_types();
 103 
 104 #endif
 105 
 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 107   assert((t_oop != NULL), "sanity");
 108   bool is_instance = t_oop->is_known_instance_field();
 109   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 110                              (load != NULL) && load->is_Load() &&
 111                              (phase->is_IterGVN() != NULL);
 112   if (!(is_instance || is_boxed_value_load))
 113     return mchain;  // don't try to optimize non-instance types
 114   uint instance_id = t_oop->instance_id();
 115   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 116   Node *prev = NULL;
 117   Node *result = mchain;
 118   while (prev != result) {
 119     prev = result;
 120     if (result == start_mem)
 121       break;  // hit one of our sentinels
 122     // skip over a call which does not affect this memory slice
 123     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 124       Node *proj_in = result->in(0);
 125       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 126         break;  // hit one of our sentinels
 127       } else if (proj_in->is_Call()) {
 128         CallNode *call = proj_in->as_Call();
 129         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 130           result = call->in(TypeFunc::Memory);
 131         }
 132       } else if (proj_in->is_Initialize()) {
 133         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 134         // Stop if this is the initialization for the object instance which
 135         // which contains this memory slice, otherwise skip over it.
 136         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 137           break;
 138         }
 139         if (is_instance) {
 140           result = proj_in->in(TypeFunc::Memory);
 141         } else if (is_boxed_value_load) {
 142           Node* klass = alloc->in(AllocateNode::KlassNode);
 143           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 144           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 145             result = proj_in->in(TypeFunc::Memory); // not related allocation
 146           }
 147         }
 148       } else if (proj_in->is_MemBar()) {
 149         result = proj_in->in(TypeFunc::Memory);
 150       } else {
 151         assert(false, "unexpected projection");
 152       }
 153     } else if (result->is_ClearArray()) {
 154       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 155         // Can not bypass initialization of the instance
 156         // we are looking for.
 157         break;
 158       }
 159       // Otherwise skip it (the call updated 'result' value).
 160     } else if (result->is_MergeMem()) {
 161       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 162     }
 163   }
 164   return result;
 165 }
 166 
 167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 168   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 169   if (t_oop == NULL)
 170     return mchain;  // don't try to optimize non-oop types
 171   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 172   bool is_instance = t_oop->is_known_instance_field();
 173   PhaseIterGVN *igvn = phase->is_IterGVN();
 174   if (is_instance && igvn != NULL  && result->is_Phi()) {
 175     PhiNode *mphi = result->as_Phi();
 176     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 177     const TypePtr *t = mphi->adr_type();
 178     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 179         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 180         t->is_oopptr()->cast_to_exactness(true)
 181          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 182          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 183       // clone the Phi with our address type
 184       result = mphi->split_out_instance(t_adr, igvn);
 185     } else {
 186       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 187     }
 188   }
 189   return result;
 190 }
 191 
 192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 193   uint alias_idx = phase->C->get_alias_index(tp);
 194   Node *mem = mmem;
 195 #ifdef ASSERT
 196   {
 197     // Check that current type is consistent with the alias index used during graph construction
 198     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 199     bool consistent =  adr_check == NULL || adr_check->empty() ||
 200                        phase->C->must_alias(adr_check, alias_idx );
 201     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 202     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 203                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 204         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 205         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 206           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 207           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 208       // don't assert if it is dead code.
 209       consistent = true;
 210     }
 211     if( !consistent ) {
 212       st->print("alias_idx==%d, adr_check==", alias_idx);
 213       if( adr_check == NULL ) {
 214         st->print("NULL");
 215       } else {
 216         adr_check->dump();
 217       }
 218       st->cr();
 219       print_alias_types();
 220       assert(consistent, "adr_check must match alias idx");
 221     }
 222   }
 223 #endif
 224   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 225   // means an array I have not precisely typed yet.  Do not do any
 226   // alias stuff with it any time soon.
 227   const TypeOopPtr *toop = tp->isa_oopptr();
 228   if( tp->base() != Type::AnyPtr &&
 229       !(toop &&
 230         toop->klass() != NULL &&
 231         toop->klass()->is_java_lang_Object() &&
 232         toop->offset() == Type::OffsetBot) ) {
 233     // compress paths and change unreachable cycles to TOP
 234     // If not, we can update the input infinitely along a MergeMem cycle
 235     // Equivalent code in PhiNode::Ideal
 236     Node* m  = phase->transform(mmem);
 237     // If transformed to a MergeMem, get the desired slice
 238     // Otherwise the returned node represents memory for every slice
 239     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 240     // Update input if it is progress over what we have now
 241   }
 242   return mem;
 243 }
 244 
 245 //--------------------------Ideal_common---------------------------------------
 246 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 247 // Unhook non-raw memories from complete (macro-expanded) initializations.
 248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 249   // If our control input is a dead region, kill all below the region
 250   Node *ctl = in(MemNode::Control);
 251   if (ctl && remove_dead_region(phase, can_reshape))
 252     return this;
 253   ctl = in(MemNode::Control);
 254   // Don't bother trying to transform a dead node
 255   if (ctl && ctl->is_top())  return NodeSentinel;
 256 
 257   PhaseIterGVN *igvn = phase->is_IterGVN();
 258   // Wait if control on the worklist.
 259   if (ctl && can_reshape && igvn != NULL) {
 260     Node* bol = NULL;
 261     Node* cmp = NULL;
 262     if (ctl->in(0)->is_If()) {
 263       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 264       bol = ctl->in(0)->in(1);
 265       if (bol->is_Bool())
 266         cmp = ctl->in(0)->in(1)->in(1);
 267     }
 268     if (igvn->_worklist.member(ctl) ||
 269         (bol != NULL && igvn->_worklist.member(bol)) ||
 270         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 271       // This control path may be dead.
 272       // Delay this memory node transformation until the control is processed.
 273       phase->is_IterGVN()->_worklist.push(this);
 274       return NodeSentinel; // caller will return NULL
 275     }
 276   }
 277   // Ignore if memory is dead, or self-loop
 278   Node *mem = in(MemNode::Memory);
 279   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 280   assert(mem != this, "dead loop in MemNode::Ideal");
 281 
 282   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 283     // This memory slice may be dead.
 284     // Delay this mem node transformation until the memory is processed.
 285     phase->is_IterGVN()->_worklist.push(this);
 286     return NodeSentinel; // caller will return NULL
 287   }
 288 
 289   Node *address = in(MemNode::Address);
 290   const Type *t_adr = phase->type(address);
 291   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 292 
 293   if (can_reshape && igvn != NULL &&
 294       (igvn->_worklist.member(address) ||
 295        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 296     // The address's base and type may change when the address is processed.
 297     // Delay this mem node transformation until the address is processed.
 298     phase->is_IterGVN()->_worklist.push(this);
 299     return NodeSentinel; // caller will return NULL
 300   }
 301 
 302   // Do NOT remove or optimize the next lines: ensure a new alias index
 303   // is allocated for an oop pointer type before Escape Analysis.
 304   // Note: C++ will not remove it since the call has side effect.
 305   if (t_adr->isa_oopptr()) {
 306     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 307   }
 308 
 309   Node* base = NULL;
 310   if (address->is_AddP()) {
 311     base = address->in(AddPNode::Base);
 312   }
 313   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 314       !t_adr->isa_rawptr()) {
 315     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 316     // Skip this node optimization if its address has TOP base.
 317     return NodeSentinel; // caller will return NULL
 318   }
 319 
 320   // Avoid independent memory operations
 321   Node* old_mem = mem;
 322 
 323   // The code which unhooks non-raw memories from complete (macro-expanded)
 324   // initializations was removed. After macro-expansion all stores catched
 325   // by Initialize node became raw stores and there is no information
 326   // which memory slices they modify. So it is unsafe to move any memory
 327   // operation above these stores. Also in most cases hooked non-raw memories
 328   // were already unhooked by using information from detect_ptr_independence()
 329   // and find_previous_store().
 330 
 331   if (mem->is_MergeMem()) {
 332     MergeMemNode* mmem = mem->as_MergeMem();
 333     const TypePtr *tp = t_adr->is_ptr();
 334 
 335     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 336   }
 337 
 338   if (mem != old_mem) {
 339     set_req(MemNode::Memory, mem);
 340     if (can_reshape && old_mem->outcnt() == 0) {
 341         igvn->_worklist.push(old_mem);
 342     }
 343     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 344     return this;
 345   }
 346 
 347   // let the subclass continue analyzing...
 348   return NULL;
 349 }
 350 
 351 // Helper function for proving some simple control dominations.
 352 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 353 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 354 // is not a constant (dominated by the method's StartNode).
 355 // Used by MemNode::find_previous_store to prove that the
 356 // control input of a memory operation predates (dominates)
 357 // an allocation it wants to look past.
 358 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 359   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 360     return false; // Conservative answer for dead code
 361 
 362   // Check 'dom'. Skip Proj and CatchProj nodes.
 363   dom = dom->find_exact_control(dom);
 364   if (dom == NULL || dom->is_top())
 365     return false; // Conservative answer for dead code
 366 
 367   if (dom == sub) {
 368     // For the case when, for example, 'sub' is Initialize and the original
 369     // 'dom' is Proj node of the 'sub'.
 370     return false;
 371   }
 372 
 373   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 374     return true;
 375 
 376   // 'dom' dominates 'sub' if its control edge and control edges
 377   // of all its inputs dominate or equal to sub's control edge.
 378 
 379   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 380   // Or Region for the check in LoadNode::Ideal();
 381   // 'sub' should have sub->in(0) != NULL.
 382   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 383          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 384 
 385   // Get control edge of 'sub'.
 386   Node* orig_sub = sub;
 387   sub = sub->find_exact_control(sub->in(0));
 388   if (sub == NULL || sub->is_top())
 389     return false; // Conservative answer for dead code
 390 
 391   assert(sub->is_CFG(), "expecting control");
 392 
 393   if (sub == dom)
 394     return true;
 395 
 396   if (sub->is_Start() || sub->is_Root())
 397     return false;
 398 
 399   {
 400     // Check all control edges of 'dom'.
 401 
 402     ResourceMark rm;
 403     Arena* arena = Thread::current()->resource_area();
 404     Node_List nlist(arena);
 405     Unique_Node_List dom_list(arena);
 406 
 407     dom_list.push(dom);
 408     bool only_dominating_controls = false;
 409 
 410     for (uint next = 0; next < dom_list.size(); next++) {
 411       Node* n = dom_list.at(next);
 412       if (n == orig_sub)
 413         return false; // One of dom's inputs dominated by sub.
 414       if (!n->is_CFG() && n->pinned()) {
 415         // Check only own control edge for pinned non-control nodes.
 416         n = n->find_exact_control(n->in(0));
 417         if (n == NULL || n->is_top())
 418           return false; // Conservative answer for dead code
 419         assert(n->is_CFG(), "expecting control");
 420         dom_list.push(n);
 421       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 422         only_dominating_controls = true;
 423       } else if (n->is_CFG()) {
 424         if (n->dominates(sub, nlist))
 425           only_dominating_controls = true;
 426         else
 427           return false;
 428       } else {
 429         // First, own control edge.
 430         Node* m = n->find_exact_control(n->in(0));
 431         if (m != NULL) {
 432           if (m->is_top())
 433             return false; // Conservative answer for dead code
 434           dom_list.push(m);
 435         }
 436         // Now, the rest of edges.
 437         uint cnt = n->req();
 438         for (uint i = 1; i < cnt; i++) {
 439           m = n->find_exact_control(n->in(i));
 440           if (m == NULL || m->is_top())
 441             continue;
 442           dom_list.push(m);
 443         }
 444       }
 445     }
 446     return only_dominating_controls;
 447   }
 448 }
 449 
 450 //---------------------detect_ptr_independence---------------------------------
 451 // Used by MemNode::find_previous_store to prove that two base
 452 // pointers are never equal.
 453 // The pointers are accompanied by their associated allocations,
 454 // if any, which have been previously discovered by the caller.
 455 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 456                                       Node* p2, AllocateNode* a2,
 457                                       PhaseTransform* phase) {
 458   // Attempt to prove that these two pointers cannot be aliased.
 459   // They may both manifestly be allocations, and they should differ.
 460   // Or, if they are not both allocations, they can be distinct constants.
 461   // Otherwise, one is an allocation and the other a pre-existing value.
 462   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 463     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 464   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 465     return (a1 != a2);
 466   } else if (a1 != NULL) {                  // one allocation a1
 467     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 468     return all_controls_dominate(p2, a1);
 469   } else { //(a2 != NULL)                   // one allocation a2
 470     return all_controls_dominate(p1, a2);
 471   }
 472   return false;
 473 }
 474 
 475 
 476 // The logic for reordering loads and stores uses four steps:
 477 // (a) Walk carefully past stores and initializations which we
 478 //     can prove are independent of this load.
 479 // (b) Observe that the next memory state makes an exact match
 480 //     with self (load or store), and locate the relevant store.
 481 // (c) Ensure that, if we were to wire self directly to the store,
 482 //     the optimizer would fold it up somehow.
 483 // (d) Do the rewiring, and return, depending on some other part of
 484 //     the optimizer to fold up the load.
 485 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 486 // specific to loads and stores, so they are handled by the callers.
 487 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 488 //
 489 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 490   Node*         ctrl   = in(MemNode::Control);
 491   Node*         adr    = in(MemNode::Address);
 492   intptr_t      offset = 0;
 493   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 494   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 495 
 496   if (offset == Type::OffsetBot)
 497     return NULL;            // cannot unalias unless there are precise offsets
 498 
 499   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 500 
 501   intptr_t size_in_bytes = memory_size();
 502 
 503   Node* mem = in(MemNode::Memory);   // start searching here...
 504 
 505   int cnt = 50;             // Cycle limiter
 506   for (;;) {                // While we can dance past unrelated stores...
 507     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 508 
 509     if (mem->is_Store()) {
 510       Node* st_adr = mem->in(MemNode::Address);
 511       intptr_t st_offset = 0;
 512       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 513       if (st_base == NULL)
 514         break;              // inscrutable pointer
 515       if (st_offset != offset && st_offset != Type::OffsetBot) {
 516         const int MAX_STORE = BytesPerLong;
 517         if (st_offset >= offset + size_in_bytes ||
 518             st_offset <= offset - MAX_STORE ||
 519             st_offset <= offset - mem->as_Store()->memory_size()) {
 520           // Success:  The offsets are provably independent.
 521           // (You may ask, why not just test st_offset != offset and be done?
 522           // The answer is that stores of different sizes can co-exist
 523           // in the same sequence of RawMem effects.  We sometimes initialize
 524           // a whole 'tile' of array elements with a single jint or jlong.)
 525           mem = mem->in(MemNode::Memory);
 526           continue;           // (a) advance through independent store memory
 527         }
 528       }
 529       if (st_base != base &&
 530           detect_ptr_independence(base, alloc,
 531                                   st_base,
 532                                   AllocateNode::Ideal_allocation(st_base, phase),
 533                                   phase)) {
 534         // Success:  The bases are provably independent.
 535         mem = mem->in(MemNode::Memory);
 536         continue;           // (a) advance through independent store memory
 537       }
 538 
 539       // (b) At this point, if the bases or offsets do not agree, we lose,
 540       // since we have not managed to prove 'this' and 'mem' independent.
 541       if (st_base == base && st_offset == offset) {
 542         return mem;         // let caller handle steps (c), (d)
 543       }
 544 
 545     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 546       InitializeNode* st_init = mem->in(0)->as_Initialize();
 547       AllocateNode*  st_alloc = st_init->allocation();
 548       if (st_alloc == NULL)
 549         break;              // something degenerated
 550       bool known_identical = false;
 551       bool known_independent = false;
 552       if (alloc == st_alloc)
 553         known_identical = true;
 554       else if (alloc != NULL)
 555         known_independent = true;
 556       else if (all_controls_dominate(this, st_alloc))
 557         known_independent = true;
 558 
 559       if (known_independent) {
 560         // The bases are provably independent: Either they are
 561         // manifestly distinct allocations, or else the control
 562         // of this load dominates the store's allocation.
 563         int alias_idx = phase->C->get_alias_index(adr_type());
 564         if (alias_idx == Compile::AliasIdxRaw) {
 565           mem = st_alloc->in(TypeFunc::Memory);
 566         } else {
 567           mem = st_init->memory(alias_idx);
 568         }
 569         continue;           // (a) advance through independent store memory
 570       }
 571 
 572       // (b) at this point, if we are not looking at a store initializing
 573       // the same allocation we are loading from, we lose.
 574       if (known_identical) {
 575         // From caller, can_see_stored_value will consult find_captured_store.
 576         return mem;         // let caller handle steps (c), (d)
 577       }
 578 
 579     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 580       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 581       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 582         CallNode *call = mem->in(0)->as_Call();
 583         if (!call->may_modify(addr_t, phase)) {
 584           mem = call->in(TypeFunc::Memory);
 585           continue;         // (a) advance through independent call memory
 586         }
 587       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 588         mem = mem->in(0)->in(TypeFunc::Memory);
 589         continue;           // (a) advance through independent MemBar memory
 590       } else if (mem->is_ClearArray()) {
 591         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 592           // (the call updated 'mem' value)
 593           continue;         // (a) advance through independent allocation memory
 594         } else {
 595           // Can not bypass initialization of the instance
 596           // we are looking for.
 597           return mem;
 598         }
 599       } else if (mem->is_MergeMem()) {
 600         int alias_idx = phase->C->get_alias_index(adr_type());
 601         mem = mem->as_MergeMem()->memory_at(alias_idx);
 602         continue;           // (a) advance through independent MergeMem memory
 603       }
 604     }
 605 
 606     // Unless there is an explicit 'continue', we must bail out here,
 607     // because 'mem' is an inscrutable memory state (e.g., a call).
 608     break;
 609   }
 610 
 611   return NULL;              // bail out
 612 }
 613 
 614 //----------------------calculate_adr_type-------------------------------------
 615 // Helper function.  Notices when the given type of address hits top or bottom.
 616 // Also, asserts a cross-check of the type against the expected address type.
 617 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 618   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 619   #ifdef PRODUCT
 620   cross_check = NULL;
 621   #else
 622   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 623   #endif
 624   const TypePtr* tp = t->isa_ptr();
 625   if (tp == NULL) {
 626     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 627     return TypePtr::BOTTOM;           // touches lots of memory
 628   } else {
 629     #ifdef ASSERT
 630     // %%%% [phh] We don't check the alias index if cross_check is
 631     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 632     if (cross_check != NULL &&
 633         cross_check != TypePtr::BOTTOM &&
 634         cross_check != TypeRawPtr::BOTTOM) {
 635       // Recheck the alias index, to see if it has changed (due to a bug).
 636       Compile* C = Compile::current();
 637       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 638              "must stay in the original alias category");
 639       // The type of the address must be contained in the adr_type,
 640       // disregarding "null"-ness.
 641       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 642       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 643       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 644              "real address must not escape from expected memory type");
 645     }
 646     #endif
 647     return tp;
 648   }
 649 }
 650 
 651 //------------------------adr_phi_is_loop_invariant----------------------------
 652 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 653 // loop is loop invariant. Make a quick traversal of Phi and associated
 654 // CastPP nodes, looking to see if they are a closed group within the loop.
 655 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 656   // The idea is that the phi-nest must boil down to only CastPP nodes
 657   // with the same data. This implies that any path into the loop already
 658   // includes such a CastPP, and so the original cast, whatever its input,
 659   // must be covered by an equivalent cast, with an earlier control input.
 660   ResourceMark rm;
 661 
 662   // The loop entry input of the phi should be the unique dominating
 663   // node for every Phi/CastPP in the loop.
 664   Unique_Node_List closure;
 665   closure.push(adr_phi->in(LoopNode::EntryControl));
 666 
 667   // Add the phi node and the cast to the worklist.
 668   Unique_Node_List worklist;
 669   worklist.push(adr_phi);
 670   if( cast != NULL ){
 671     if( !cast->is_ConstraintCast() ) return false;
 672     worklist.push(cast);
 673   }
 674 
 675   // Begin recursive walk of phi nodes.
 676   while( worklist.size() ){
 677     // Take a node off the worklist
 678     Node *n = worklist.pop();
 679     if( !closure.member(n) ){
 680       // Add it to the closure.
 681       closure.push(n);
 682       // Make a sanity check to ensure we don't waste too much time here.
 683       if( closure.size() > 20) return false;
 684       // This node is OK if:
 685       //  - it is a cast of an identical value
 686       //  - or it is a phi node (then we add its inputs to the worklist)
 687       // Otherwise, the node is not OK, and we presume the cast is not invariant
 688       if( n->is_ConstraintCast() ){
 689         worklist.push(n->in(1));
 690       } else if( n->is_Phi() ) {
 691         for( uint i = 1; i < n->req(); i++ ) {
 692           worklist.push(n->in(i));
 693         }
 694       } else {
 695         return false;
 696       }
 697     }
 698   }
 699 
 700   // Quit when the worklist is empty, and we've found no offending nodes.
 701   return true;
 702 }
 703 
 704 //------------------------------Ideal_DU_postCCP-------------------------------
 705 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 706 // going away in this pass and we need to make this memory op depend on the
 707 // gating null check.
 708 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 709   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 710 }
 711 
 712 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 713 // some sense; we get to keep around the knowledge that an oop is not-null
 714 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 715 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 716 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 717 // some of the more trivial cases in the optimizer.  Removing more useless
 718 // Phi's started allowing Loads to illegally float above null checks.  I gave
 719 // up on this approach.  CNC 10/20/2000
 720 // This static method may be called not from MemNode (EncodePNode calls it).
 721 // Only the control edge of the node 'n' might be updated.
 722 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 723   Node *skipped_cast = NULL;
 724   // Need a null check?  Regular static accesses do not because they are
 725   // from constant addresses.  Array ops are gated by the range check (which
 726   // always includes a NULL check).  Just check field ops.
 727   if( n->in(MemNode::Control) == NULL ) {
 728     // Scan upwards for the highest location we can place this memory op.
 729     while( true ) {
 730       switch( adr->Opcode() ) {
 731 
 732       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 733         adr = adr->in(AddPNode::Base);
 734         continue;
 735 
 736       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 737       case Op_DecodeNKlass:
 738         adr = adr->in(1);
 739         continue;
 740 
 741       case Op_EncodeP:
 742       case Op_EncodePKlass:
 743         // EncodeP node's control edge could be set by this method
 744         // when EncodeP node depends on CastPP node.
 745         //
 746         // Use its control edge for memory op because EncodeP may go away
 747         // later when it is folded with following or preceding DecodeN node.
 748         if (adr->in(0) == NULL) {
 749           // Keep looking for cast nodes.
 750           adr = adr->in(1);
 751           continue;
 752         }
 753         ccp->hash_delete(n);
 754         n->set_req(MemNode::Control, adr->in(0));
 755         ccp->hash_insert(n);
 756         return n;
 757 
 758       case Op_CastPP:
 759         // If the CastPP is useless, just peek on through it.
 760         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 761           // Remember the cast that we've peeked though. If we peek
 762           // through more than one, then we end up remembering the highest
 763           // one, that is, if in a loop, the one closest to the top.
 764           skipped_cast = adr;
 765           adr = adr->in(1);
 766           continue;
 767         }
 768         // CastPP is going away in this pass!  We need this memory op to be
 769         // control-dependent on the test that is guarding the CastPP.
 770         ccp->hash_delete(n);
 771         n->set_req(MemNode::Control, adr->in(0));
 772         ccp->hash_insert(n);
 773         return n;
 774 
 775       case Op_Phi:
 776         // Attempt to float above a Phi to some dominating point.
 777         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 778           // If we've already peeked through a Cast (which could have set the
 779           // control), we can't float above a Phi, because the skipped Cast
 780           // may not be loop invariant.
 781           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 782             adr = adr->in(1);
 783             continue;
 784           }
 785         }
 786 
 787         // Intentional fallthrough!
 788 
 789         // No obvious dominating point.  The mem op is pinned below the Phi
 790         // by the Phi itself.  If the Phi goes away (no true value is merged)
 791         // then the mem op can float, but not indefinitely.  It must be pinned
 792         // behind the controls leading to the Phi.
 793       case Op_CheckCastPP:
 794         // These usually stick around to change address type, however a
 795         // useless one can be elided and we still need to pick up a control edge
 796         if (adr->in(0) == NULL) {
 797           // This CheckCastPP node has NO control and is likely useless. But we
 798           // need check further up the ancestor chain for a control input to keep
 799           // the node in place. 4959717.
 800           skipped_cast = adr;
 801           adr = adr->in(1);
 802           continue;
 803         }
 804         ccp->hash_delete(n);
 805         n->set_req(MemNode::Control, adr->in(0));
 806         ccp->hash_insert(n);
 807         return n;
 808 
 809         // List of "safe" opcodes; those that implicitly block the memory
 810         // op below any null check.
 811       case Op_CastX2P:          // no null checks on native pointers
 812       case Op_Parm:             // 'this' pointer is not null
 813       case Op_LoadP:            // Loading from within a klass
 814       case Op_LoadN:            // Loading from within a klass
 815       case Op_LoadKlass:        // Loading from within a klass
 816       case Op_LoadNKlass:       // Loading from within a klass
 817       case Op_ConP:             // Loading from a klass
 818       case Op_ConN:             // Loading from a klass
 819       case Op_ConNKlass:        // Loading from a klass
 820       case Op_CreateEx:         // Sucking up the guts of an exception oop
 821       case Op_Con:              // Reading from TLS
 822       case Op_CMoveP:           // CMoveP is pinned
 823       case Op_CMoveN:           // CMoveN is pinned
 824         break;                  // No progress
 825 
 826       case Op_Proj:             // Direct call to an allocation routine
 827       case Op_SCMemProj:        // Memory state from store conditional ops
 828 #ifdef ASSERT
 829         {
 830           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 831           const Node* call = adr->in(0);
 832           if (call->is_CallJava()) {
 833             const CallJavaNode* call_java = call->as_CallJava();
 834             const TypeTuple *r = call_java->tf()->range();
 835             assert(r->cnt() > TypeFunc::Parms, "must return value");
 836             const Type* ret_type = r->field_at(TypeFunc::Parms);
 837             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 838             // We further presume that this is one of
 839             // new_instance_Java, new_array_Java, or
 840             // the like, but do not assert for this.
 841           } else if (call->is_Allocate()) {
 842             // similar case to new_instance_Java, etc.
 843           } else if (!call->is_CallLeaf()) {
 844             // Projections from fetch_oop (OSR) are allowed as well.
 845             ShouldNotReachHere();
 846           }
 847         }
 848 #endif
 849         break;
 850       default:
 851         ShouldNotReachHere();
 852       }
 853       break;
 854     }
 855   }
 856 
 857   return  NULL;               // No progress
 858 }
 859 
 860 
 861 //=============================================================================
 862 // Should LoadNode::Ideal() attempt to remove control edges?
 863 bool LoadNode::can_remove_control() const {
 864   return true;
 865 }
 866 uint LoadNode::size_of() const { return sizeof(*this); }
 867 uint LoadNode::cmp( const Node &n ) const
 868 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 869 const Type *LoadNode::bottom_type() const { return _type; }
 870 uint LoadNode::ideal_reg() const {
 871   return _type->ideal_reg();
 872 }
 873 
 874 #ifndef PRODUCT
 875 void LoadNode::dump_spec(outputStream *st) const {
 876   MemNode::dump_spec(st);
 877   if( !Verbose && !WizardMode ) {
 878     // standard dump does this in Verbose and WizardMode
 879     st->print(" #"); _type->dump_on(st);
 880   }
 881   if (!_depends_only_on_test) {
 882     st->print(" (does not depend only on test)");
 883   }
 884 }
 885 #endif
 886 
 887 #ifdef ASSERT
 888 //----------------------------is_immutable_value-------------------------------
 889 // Helper function to allow a raw load without control edge for some cases
 890 bool LoadNode::is_immutable_value(Node* adr) {
 891   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 892           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 893           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 894            in_bytes(JavaThread::osthread_offset())));
 895 }
 896 #endif
 897 
 898 //----------------------------LoadNode::make-----------------------------------
 899 // Polymorphic factory method:
 900 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo, ControlDependency control_dependency) {
 901   Compile* C = gvn.C;
 902 
 903   // sanity check the alias category against the created node type
 904   assert(!(adr_type->isa_oopptr() &&
 905            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 906          "use LoadKlassNode instead");
 907   assert(!(adr_type->isa_aryptr() &&
 908            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 909          "use LoadRangeNode instead");
 910   // Check control edge of raw loads
 911   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 912           // oop will be recorded in oop map if load crosses safepoint
 913           rt->isa_oopptr() || is_immutable_value(adr),
 914           "raw memory operations should have control edge");
 915   switch (bt) {
 916   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency);
 917   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency);
 918   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency);
 919   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency);
 920   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency);
 921   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency);
 922   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency);
 923   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency);
 924   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency);
 925   case T_OBJECT:
 926 #ifdef _LP64
 927     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 928       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency));
 929       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
 930     } else
 931 #endif
 932     {
 933       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 934       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo, control_dependency);
 935     }
 936   }
 937   ShouldNotReachHere();
 938   return (LoadNode*)NULL;
 939 }
 940 
 941 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, ControlDependency control_dependency) {
 942   bool require_atomic = true;
 943   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 944 }
 945 
 946 LoadDNode* LoadDNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo, ControlDependency control_dependency) {
 947   bool require_atomic = true;
 948   return new (C) LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 949 }
 950 
 951 
 952 
 953 //------------------------------hash-------------------------------------------
 954 uint LoadNode::hash() const {
 955   // unroll addition of interesting fields
 956   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 957 }
 958 
 959 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 960   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 961     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 962     bool is_stable_ary = FoldStableValues &&
 963                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 964                          tp->isa_aryptr()->is_stable();
 965 
 966     return (eliminate_boxing && non_volatile) || is_stable_ary;
 967   }
 968 
 969   return false;
 970 }
 971 
 972 //---------------------------can_see_stored_value------------------------------
 973 // This routine exists to make sure this set of tests is done the same
 974 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 975 // will change the graph shape in a way which makes memory alive twice at the
 976 // same time (uses the Oracle model of aliasing), then some
 977 // LoadXNode::Identity will fold things back to the equivalence-class model
 978 // of aliasing.
 979 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 980   Node* ld_adr = in(MemNode::Address);
 981   intptr_t ld_off = 0;
 982   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 983   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 984   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 985   // This is more general than load from boxing objects.
 986   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 987     uint alias_idx = atp->index();
 988     bool final = !atp->is_rewritable();
 989     Node* result = NULL;
 990     Node* current = st;
 991     // Skip through chains of MemBarNodes checking the MergeMems for
 992     // new states for the slice of this load.  Stop once any other
 993     // kind of node is encountered.  Loads from final memory can skip
 994     // through any kind of MemBar but normal loads shouldn't skip
 995     // through MemBarAcquire since the could allow them to move out of
 996     // a synchronized region.
 997     while (current->is_Proj()) {
 998       int opc = current->in(0)->Opcode();
 999       if ((final && (opc == Op_MemBarAcquire ||
1000                      opc == Op_MemBarAcquireLock ||
1001                      opc == Op_LoadFence)) ||
1002           opc == Op_MemBarRelease ||
1003           opc == Op_StoreFence ||
1004           opc == Op_MemBarReleaseLock ||
1005           opc == Op_MemBarCPUOrder) {
1006         Node* mem = current->in(0)->in(TypeFunc::Memory);
1007         if (mem->is_MergeMem()) {
1008           MergeMemNode* merge = mem->as_MergeMem();
1009           Node* new_st = merge->memory_at(alias_idx);
1010           if (new_st == merge->base_memory()) {
1011             // Keep searching
1012             current = new_st;
1013             continue;
1014           }
1015           // Save the new memory state for the slice and fall through
1016           // to exit.
1017           result = new_st;
1018         }
1019       }
1020       break;
1021     }
1022     if (result != NULL) {
1023       st = result;
1024     }
1025   }
1026 
1027   // Loop around twice in the case Load -> Initialize -> Store.
1028   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1029   for (int trip = 0; trip <= 1; trip++) {
1030 
1031     if (st->is_Store()) {
1032       Node* st_adr = st->in(MemNode::Address);
1033       if (!phase->eqv(st_adr, ld_adr)) {
1034         // Try harder before giving up...  Match raw and non-raw pointers.
1035         intptr_t st_off = 0;
1036         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1037         if (alloc == NULL)       return NULL;
1038         if (alloc != ld_alloc)   return NULL;
1039         if (ld_off != st_off)    return NULL;
1040         // At this point we have proven something like this setup:
1041         //  A = Allocate(...)
1042         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1043         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1044         // (Actually, we haven't yet proven the Q's are the same.)
1045         // In other words, we are loading from a casted version of
1046         // the same pointer-and-offset that we stored to.
1047         // Thus, we are able to replace L by V.
1048       }
1049       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1050       if (store_Opcode() != st->Opcode())
1051         return NULL;
1052       return st->in(MemNode::ValueIn);
1053     }
1054 
1055     // A load from a freshly-created object always returns zero.
1056     // (This can happen after LoadNode::Ideal resets the load's memory input
1057     // to find_captured_store, which returned InitializeNode::zero_memory.)
1058     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1059         (st->in(0) == ld_alloc) &&
1060         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1061       // return a zero value for the load's basic type
1062       // (This is one of the few places where a generic PhaseTransform
1063       // can create new nodes.  Think of it as lazily manifesting
1064       // virtually pre-existing constants.)
1065       return phase->zerocon(memory_type());
1066     }
1067 
1068     // A load from an initialization barrier can match a captured store.
1069     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1070       InitializeNode* init = st->in(0)->as_Initialize();
1071       AllocateNode* alloc = init->allocation();
1072       if ((alloc != NULL) && (alloc == ld_alloc)) {
1073         // examine a captured store value
1074         st = init->find_captured_store(ld_off, memory_size(), phase);
1075         if (st != NULL)
1076           continue;             // take one more trip around
1077       }
1078     }
1079 
1080     // Load boxed value from result of valueOf() call is input parameter.
1081     if (this->is_Load() && ld_adr->is_AddP() &&
1082         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1083       intptr_t ignore = 0;
1084       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1085       if (base != NULL && base->is_Proj() &&
1086           base->as_Proj()->_con == TypeFunc::Parms &&
1087           base->in(0)->is_CallStaticJava() &&
1088           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1089         return base->in(0)->in(TypeFunc::Parms);
1090       }
1091     }
1092 
1093     break;
1094   }
1095 
1096   return NULL;
1097 }
1098 
1099 //----------------------is_instance_field_load_with_local_phi------------------
1100 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1101   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1102       in(Address)->is_AddP() ) {
1103     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1104     // Only instances and boxed values.
1105     if( t_oop != NULL &&
1106         (t_oop->is_ptr_to_boxed_value() ||
1107          t_oop->is_known_instance_field()) &&
1108         t_oop->offset() != Type::OffsetBot &&
1109         t_oop->offset() != Type::OffsetTop) {
1110       return true;
1111     }
1112   }
1113   return false;
1114 }
1115 
1116 //------------------------------Identity---------------------------------------
1117 // Loads are identity if previous store is to same address
1118 Node *LoadNode::Identity( PhaseTransform *phase ) {
1119   // If the previous store-maker is the right kind of Store, and the store is
1120   // to the same address, then we are equal to the value stored.
1121   Node* mem = in(Memory);
1122   Node* value = can_see_stored_value(mem, phase);
1123   if( value ) {
1124     // byte, short & char stores truncate naturally.
1125     // A load has to load the truncated value which requires
1126     // some sort of masking operation and that requires an
1127     // Ideal call instead of an Identity call.
1128     if (memory_size() < BytesPerInt) {
1129       // If the input to the store does not fit with the load's result type,
1130       // it must be truncated via an Ideal call.
1131       if (!phase->type(value)->higher_equal(phase->type(this)))
1132         return this;
1133     }
1134     // (This works even when value is a Con, but LoadNode::Value
1135     // usually runs first, producing the singleton type of the Con.)
1136     return value;
1137   }
1138 
1139   // Search for an existing data phi which was generated before for the same
1140   // instance's field to avoid infinite generation of phis in a loop.
1141   Node *region = mem->in(0);
1142   if (is_instance_field_load_with_local_phi(region)) {
1143     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1144     int this_index  = phase->C->get_alias_index(addr_t);
1145     int this_offset = addr_t->offset();
1146     int this_iid    = addr_t->instance_id();
1147     if (!addr_t->is_known_instance() &&
1148          addr_t->is_ptr_to_boxed_value()) {
1149       // Use _idx of address base (could be Phi node) for boxed values.
1150       intptr_t   ignore = 0;
1151       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1152       this_iid = base->_idx;
1153     }
1154     const Type* this_type = bottom_type();
1155     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1156       Node* phi = region->fast_out(i);
1157       if (phi->is_Phi() && phi != mem &&
1158           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1159         return phi;
1160       }
1161     }
1162   }
1163 
1164   return this;
1165 }
1166 
1167 // We're loading from an object which has autobox behaviour.
1168 // If this object is result of a valueOf call we'll have a phi
1169 // merging a newly allocated object and a load from the cache.
1170 // We want to replace this load with the original incoming
1171 // argument to the valueOf call.
1172 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1173   assert(phase->C->eliminate_boxing(), "sanity");
1174   intptr_t ignore = 0;
1175   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1176   if ((base == NULL) || base->is_Phi()) {
1177     // Push the loads from the phi that comes from valueOf up
1178     // through it to allow elimination of the loads and the recovery
1179     // of the original value. It is done in split_through_phi().
1180     return NULL;
1181   } else if (base->is_Load() ||
1182              base->is_DecodeN() && base->in(1)->is_Load()) {
1183     // Eliminate the load of boxed value for integer types from the cache
1184     // array by deriving the value from the index into the array.
1185     // Capture the offset of the load and then reverse the computation.
1186 
1187     // Get LoadN node which loads a boxing object from 'cache' array.
1188     if (base->is_DecodeN()) {
1189       base = base->in(1);
1190     }
1191     if (!base->in(Address)->is_AddP()) {
1192       return NULL; // Complex address
1193     }
1194     AddPNode* address = base->in(Address)->as_AddP();
1195     Node* cache_base = address->in(AddPNode::Base);
1196     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1197       // Get ConP node which is static 'cache' field.
1198       cache_base = cache_base->in(1);
1199     }
1200     if ((cache_base != NULL) && cache_base->is_Con()) {
1201       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1202       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1203         Node* elements[4];
1204         int shift = exact_log2(type2aelembytes(T_OBJECT));
1205         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1206         if ((count >  0) && elements[0]->is_Con() &&
1207             ((count == 1) ||
1208              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1209                              elements[1]->in(2) == phase->intcon(shift))) {
1210           ciObjArray* array = base_type->const_oop()->as_obj_array();
1211           // Fetch the box object cache[0] at the base of the array and get its value
1212           ciInstance* box = array->obj_at(0)->as_instance();
1213           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1214           assert(ik->is_box_klass(), "sanity");
1215           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1216           if (ik->nof_nonstatic_fields() == 1) {
1217             // This should be true nonstatic_field_at requires calling
1218             // nof_nonstatic_fields so check it anyway
1219             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1220             BasicType bt = c.basic_type();
1221             // Only integer types have boxing cache.
1222             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1223                    bt == T_BYTE    || bt == T_SHORT ||
1224                    bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1225             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1226             if (cache_low != (int)cache_low) {
1227               return NULL; // should not happen since cache is array indexed by value
1228             }
1229             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1230             if (offset != (int)offset) {
1231               return NULL; // should not happen since cache is array indexed by value
1232             }
1233            // Add up all the offsets making of the address of the load
1234             Node* result = elements[0];
1235             for (int i = 1; i < count; i++) {
1236               result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1237             }
1238             // Remove the constant offset from the address and then
1239             result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1240             // remove the scaling of the offset to recover the original index.
1241             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1242               // Peel the shift off directly but wrap it in a dummy node
1243               // since Ideal can't return existing nodes
1244               result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1245             } else if (result->is_Add() && result->in(2)->is_Con() &&
1246                        result->in(1)->Opcode() == Op_LShiftX &&
1247                        result->in(1)->in(2) == phase->intcon(shift)) {
1248               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1249               // but for boxing cache access we know that X<<Z will not overflow
1250               // (there is range check) so we do this optimizatrion by hand here.
1251               Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1252               result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1253             } else {
1254               result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1255             }
1256 #ifdef _LP64
1257             if (bt != T_LONG) {
1258               result = new (phase->C) ConvL2INode(phase->transform(result));
1259             }
1260 #else
1261             if (bt == T_LONG) {
1262               result = new (phase->C) ConvI2LNode(phase->transform(result));
1263             }
1264 #endif
1265             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1266             // Need to preserve unboxing load type if it is unsigned.
1267             switch(this->Opcode()) {
1268               case Op_LoadUB:
1269                 result = new (phase->C) AndINode(phase->transform(result), phase->intcon(0xFF));
1270                 break;
1271               case Op_LoadUS:
1272                 result = new (phase->C) AndINode(phase->transform(result), phase->intcon(0xFFFF));
1273                 break;
1274             }
1275             return result;
1276           }
1277         }
1278       }
1279     }
1280   }
1281   return NULL;
1282 }
1283 
1284 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1285   Node* region = phi->in(0);
1286   if (region == NULL) {
1287     return false; // Wait stable graph
1288   }
1289   uint cnt = phi->req();
1290   for (uint i = 1; i < cnt; i++) {
1291     Node* rc = region->in(i);
1292     if (rc == NULL || phase->type(rc) == Type::TOP)
1293       return false; // Wait stable graph
1294     Node* in = phi->in(i);
1295     if (in == NULL || phase->type(in) == Type::TOP)
1296       return false; // Wait stable graph
1297   }
1298   return true;
1299 }
1300 //------------------------------split_through_phi------------------------------
1301 // Split instance or boxed field load through Phi.
1302 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1303   Node* mem     = in(Memory);
1304   Node* address = in(Address);
1305   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1306 
1307   assert((t_oop != NULL) &&
1308          (t_oop->is_known_instance_field() ||
1309           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1310 
1311   Compile* C = phase->C;
1312   intptr_t ignore = 0;
1313   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1314   bool base_is_phi = (base != NULL) && base->is_Phi();
1315   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1316                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1317                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1318 
1319   if (!((mem->is_Phi() || base_is_phi) &&
1320         (load_boxed_values || t_oop->is_known_instance_field()))) {
1321     return NULL; // memory is not Phi
1322   }
1323 
1324   if (mem->is_Phi()) {
1325     if (!stable_phi(mem->as_Phi(), phase)) {
1326       return NULL; // Wait stable graph
1327     }
1328     uint cnt = mem->req();
1329     // Check for loop invariant memory.
1330     if (cnt == 3) {
1331       for (uint i = 1; i < cnt; i++) {
1332         Node* in = mem->in(i);
1333         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1334         if (m == mem) {
1335           set_req(Memory, mem->in(cnt - i));
1336           return this; // made change
1337         }
1338       }
1339     }
1340   }
1341   if (base_is_phi) {
1342     if (!stable_phi(base->as_Phi(), phase)) {
1343       return NULL; // Wait stable graph
1344     }
1345     uint cnt = base->req();
1346     // Check for loop invariant memory.
1347     if (cnt == 3) {
1348       for (uint i = 1; i < cnt; i++) {
1349         if (base->in(i) == base) {
1350           return NULL; // Wait stable graph
1351         }
1352       }
1353     }
1354   }
1355 
1356   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1357 
1358   // Split through Phi (see original code in loopopts.cpp).
1359   assert(C->have_alias_type(t_oop), "instance should have alias type");
1360 
1361   // Do nothing here if Identity will find a value
1362   // (to avoid infinite chain of value phis generation).
1363   if (!phase->eqv(this, this->Identity(phase)))
1364     return NULL;
1365 
1366   // Select Region to split through.
1367   Node* region;
1368   if (!base_is_phi) {
1369     assert(mem->is_Phi(), "sanity");
1370     region = mem->in(0);
1371     // Skip if the region dominates some control edge of the address.
1372     if (!MemNode::all_controls_dominate(address, region))
1373       return NULL;
1374   } else if (!mem->is_Phi()) {
1375     assert(base_is_phi, "sanity");
1376     region = base->in(0);
1377     // Skip if the region dominates some control edge of the memory.
1378     if (!MemNode::all_controls_dominate(mem, region))
1379       return NULL;
1380   } else if (base->in(0) != mem->in(0)) {
1381     assert(base_is_phi && mem->is_Phi(), "sanity");
1382     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1383       region = base->in(0);
1384     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1385       region = mem->in(0);
1386     } else {
1387       return NULL; // complex graph
1388     }
1389   } else {
1390     assert(base->in(0) == mem->in(0), "sanity");
1391     region = mem->in(0);
1392   }
1393 
1394   const Type* this_type = this->bottom_type();
1395   int this_index  = C->get_alias_index(t_oop);
1396   int this_offset = t_oop->offset();
1397   int this_iid    = t_oop->instance_id();
1398   if (!t_oop->is_known_instance() && load_boxed_values) {
1399     // Use _idx of address base for boxed values.
1400     this_iid = base->_idx;
1401   }
1402   PhaseIterGVN* igvn = phase->is_IterGVN();
1403   Node* phi = new (C) PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1404   for (uint i = 1; i < region->req(); i++) {
1405     Node* x;
1406     Node* the_clone = NULL;
1407     if (region->in(i) == C->top()) {
1408       x = C->top();      // Dead path?  Use a dead data op
1409     } else {
1410       x = this->clone();        // Else clone up the data op
1411       the_clone = x;            // Remember for possible deletion.
1412       // Alter data node to use pre-phi inputs
1413       if (this->in(0) == region) {
1414         x->set_req(0, region->in(i));
1415       } else {
1416         x->set_req(0, NULL);
1417       }
1418       if (mem->is_Phi() && (mem->in(0) == region)) {
1419         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1420       }
1421       if (address->is_Phi() && address->in(0) == region) {
1422         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1423       }
1424       if (base_is_phi && (base->in(0) == region)) {
1425         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1426         Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1427         x->set_req(Address, adr_x);
1428       }
1429     }
1430     // Check for a 'win' on some paths
1431     const Type *t = x->Value(igvn);
1432 
1433     bool singleton = t->singleton();
1434 
1435     // See comments in PhaseIdealLoop::split_thru_phi().
1436     if (singleton && t == Type::TOP) {
1437       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1438     }
1439 
1440     if (singleton) {
1441       x = igvn->makecon(t);
1442     } else {
1443       // We now call Identity to try to simplify the cloned node.
1444       // Note that some Identity methods call phase->type(this).
1445       // Make sure that the type array is big enough for
1446       // our new node, even though we may throw the node away.
1447       // (This tweaking with igvn only works because x is a new node.)
1448       igvn->set_type(x, t);
1449       // If x is a TypeNode, capture any more-precise type permanently into Node
1450       // otherwise it will be not updated during igvn->transform since
1451       // igvn->type(x) is set to x->Value() already.
1452       x->raise_bottom_type(t);
1453       Node *y = x->Identity(igvn);
1454       if (y != x) {
1455         x = y;
1456       } else {
1457         y = igvn->hash_find_insert(x);
1458         if (y) {
1459           x = y;
1460         } else {
1461           // Else x is a new node we are keeping
1462           // We do not need register_new_node_with_optimizer
1463           // because set_type has already been called.
1464           igvn->_worklist.push(x);
1465         }
1466       }
1467     }
1468     if (x != the_clone && the_clone != NULL) {
1469       igvn->remove_dead_node(the_clone);
1470     }
1471     phi->set_req(i, x);
1472   }
1473   // Record Phi
1474   igvn->register_new_node_with_optimizer(phi);
1475   return phi;
1476 }
1477 
1478 //------------------------------Ideal------------------------------------------
1479 // If the load is from Field memory and the pointer is non-null, it might be possible to
1480 // zero out the control input.
1481 // If the offset is constant and the base is an object allocation,
1482 // try to hook me up to the exact initializing store.
1483 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1484   Node* p = MemNode::Ideal_common(phase, can_reshape);
1485   if (p)  return (p == NodeSentinel) ? NULL : p;
1486 
1487   Node* ctrl    = in(MemNode::Control);
1488   Node* address = in(MemNode::Address);
1489 
1490   // Skip up past a SafePoint control.  Cannot do this for Stores because
1491   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1492   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1493       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1494     ctrl = ctrl->in(0);
1495     set_req(MemNode::Control,ctrl);
1496   }
1497 
1498   intptr_t ignore = 0;
1499   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1500   if (base != NULL
1501       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1502     // Check for useless control edge in some common special cases
1503     if (in(MemNode::Control) != NULL
1504         && can_remove_control()
1505         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1506         && all_controls_dominate(base, phase->C->start())) {
1507       // A method-invariant, non-null address (constant or 'this' argument).
1508       set_req(MemNode::Control, NULL);
1509     }
1510   }
1511 
1512   Node* mem = in(MemNode::Memory);
1513   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1514 
1515   if (can_reshape && (addr_t != NULL)) {
1516     // try to optimize our memory input
1517     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1518     if (opt_mem != mem) {
1519       set_req(MemNode::Memory, opt_mem);
1520       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1521       return this;
1522     }
1523     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1524     if ((t_oop != NULL) &&
1525         (t_oop->is_known_instance_field() ||
1526          t_oop->is_ptr_to_boxed_value())) {
1527       PhaseIterGVN *igvn = phase->is_IterGVN();
1528       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1529         // Delay this transformation until memory Phi is processed.
1530         phase->is_IterGVN()->_worklist.push(this);
1531         return NULL;
1532       }
1533       // Split instance field load through Phi.
1534       Node* result = split_through_phi(phase);
1535       if (result != NULL) return result;
1536 
1537       if (t_oop->is_ptr_to_boxed_value()) {
1538         Node* result = eliminate_autobox(phase);
1539         if (result != NULL) return result;
1540       }
1541     }
1542   }
1543 
1544   // Check for prior store with a different base or offset; make Load
1545   // independent.  Skip through any number of them.  Bail out if the stores
1546   // are in an endless dead cycle and report no progress.  This is a key
1547   // transform for Reflection.  However, if after skipping through the Stores
1548   // we can't then fold up against a prior store do NOT do the transform as
1549   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1550   // array memory alive twice: once for the hoisted Load and again after the
1551   // bypassed Store.  This situation only works if EVERYBODY who does
1552   // anti-dependence work knows how to bypass.  I.e. we need all
1553   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1554   // the alias index stuff.  So instead, peek through Stores and IFF we can
1555   // fold up, do so.
1556   Node* prev_mem = find_previous_store(phase);
1557   // Steps (a), (b):  Walk past independent stores to find an exact match.
1558   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1559     // (c) See if we can fold up on the spot, but don't fold up here.
1560     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1561     // just return a prior value, which is done by Identity calls.
1562     if (can_see_stored_value(prev_mem, phase)) {
1563       // Make ready for step (d):
1564       set_req(MemNode::Memory, prev_mem);
1565       return this;
1566     }
1567   }
1568 
1569   return NULL;                  // No further progress
1570 }
1571 
1572 // Helper to recognize certain Klass fields which are invariant across
1573 // some group of array types (e.g., int[] or all T[] where T < Object).
1574 const Type*
1575 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1576                                  ciKlass* klass) const {
1577   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1578     // The field is Klass::_modifier_flags.  Return its (constant) value.
1579     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1580     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1581     return TypeInt::make(klass->modifier_flags());
1582   }
1583   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1584     // The field is Klass::_access_flags.  Return its (constant) value.
1585     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1586     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1587     return TypeInt::make(klass->access_flags());
1588   }
1589   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1590     // The field is Klass::_layout_helper.  Return its constant value if known.
1591     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1592     return TypeInt::make(klass->layout_helper());
1593   }
1594 
1595   // No match.
1596   return NULL;
1597 }
1598 
1599 // Try to constant-fold a stable array element.
1600 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1601   assert(ary->const_oop(), "array should be constant");
1602   assert(ary->is_stable(), "array should be stable");
1603 
1604   // Decode the results of GraphKit::array_element_address.
1605   ciArray* aobj = ary->const_oop()->as_array();
1606   ciConstant con = aobj->element_value_by_offset(off);
1607 
1608   if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1609     const Type* con_type = Type::make_from_constant(con);
1610     if (con_type != NULL) {
1611       if (con_type->isa_aryptr()) {
1612         // Join with the array element type, in case it is also stable.
1613         int dim = ary->stable_dimension();
1614         con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1615       }
1616       if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1617         con_type = con_type->make_narrowoop();
1618       }
1619 #ifndef PRODUCT
1620       if (TraceIterativeGVN) {
1621         tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1622         con_type->dump(); tty->cr();
1623       }
1624 #endif //PRODUCT
1625       return con_type;
1626     }
1627   }
1628   return NULL;
1629 }
1630 
1631 //------------------------------Value-----------------------------------------
1632 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1633   // Either input is TOP ==> the result is TOP
1634   Node* mem = in(MemNode::Memory);
1635   const Type *t1 = phase->type(mem);
1636   if (t1 == Type::TOP)  return Type::TOP;
1637   Node* adr = in(MemNode::Address);
1638   const TypePtr* tp = phase->type(adr)->isa_ptr();
1639   if (tp == NULL || tp->empty())  return Type::TOP;
1640   int off = tp->offset();
1641   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1642   Compile* C = phase->C;
1643 
1644   // Try to guess loaded type from pointer type
1645   if (tp->isa_aryptr()) {
1646     const TypeAryPtr* ary = tp->is_aryptr();
1647     const Type* t = ary->elem();
1648 
1649     // Determine whether the reference is beyond the header or not, by comparing
1650     // the offset against the offset of the start of the array's data.
1651     // Different array types begin at slightly different offsets (12 vs. 16).
1652     // We choose T_BYTE as an example base type that is least restrictive
1653     // as to alignment, which will therefore produce the smallest
1654     // possible base offset.
1655     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1656     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1657 
1658     // Try to constant-fold a stable array element.
1659     if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
1660       // Make sure the reference is not into the header and the offset is constant
1661       if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1662         const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1663         if (con_type != NULL) {
1664           return con_type;
1665         }
1666       }
1667     }
1668 
1669     // Don't do this for integer types. There is only potential profit if
1670     // the element type t is lower than _type; that is, for int types, if _type is
1671     // more restrictive than t.  This only happens here if one is short and the other
1672     // char (both 16 bits), and in those cases we've made an intentional decision
1673     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1674     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1675     //
1676     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1677     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1678     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1679     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1680     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1681     // In fact, that could have been the original type of p1, and p1 could have
1682     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1683     // expression (LShiftL quux 3) independently optimized to the constant 8.
1684     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1685         && (_type->isa_vect() == NULL)
1686         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1687       // t might actually be lower than _type, if _type is a unique
1688       // concrete subclass of abstract class t.
1689       if (off_beyond_header) {  // is the offset beyond the header?
1690         const Type* jt = t->join_speculative(_type);
1691         // In any case, do not allow the join, per se, to empty out the type.
1692         if (jt->empty() && !t->empty()) {
1693           // This can happen if a interface-typed array narrows to a class type.
1694           jt = _type;
1695         }
1696 #ifdef ASSERT
1697         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1698           // The pointers in the autobox arrays are always non-null
1699           Node* base = adr->in(AddPNode::Base);
1700           if ((base != NULL) && base->is_DecodeN()) {
1701             // Get LoadN node which loads IntegerCache.cache field
1702             base = base->in(1);
1703           }
1704           if ((base != NULL) && base->is_Con()) {
1705             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1706             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1707               // It could be narrow oop
1708               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1709             }
1710           }
1711         }
1712 #endif
1713         return jt;
1714       }
1715     }
1716   } else if (tp->base() == Type::InstPtr) {
1717     ciEnv* env = C->env();
1718     const TypeInstPtr* tinst = tp->is_instptr();
1719     ciKlass* klass = tinst->klass();
1720     assert( off != Type::OffsetBot ||
1721             // arrays can be cast to Objects
1722             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1723             // unsafe field access may not have a constant offset
1724             C->has_unsafe_access(),
1725             "Field accesses must be precise" );
1726     // For oop loads, we expect the _type to be precise
1727     if (klass == env->String_klass() &&
1728         adr->is_AddP() && off != Type::OffsetBot) {
1729       // For constant Strings treat the final fields as compile time constants.
1730       Node* base = adr->in(AddPNode::Base);
1731       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1732       if (t != NULL && t->singleton()) {
1733         ciField* field = env->String_klass()->get_field_by_offset(off, false);
1734         if (field != NULL && field->is_final()) {
1735           ciObject* string = t->const_oop();
1736           ciConstant constant = string->as_instance()->field_value(field);
1737           if (constant.basic_type() == T_INT) {
1738             return TypeInt::make(constant.as_int());
1739           } else if (constant.basic_type() == T_ARRAY) {
1740             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1741               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1742             } else {
1743               return TypeOopPtr::make_from_constant(constant.as_object(), true);
1744             }
1745           }
1746         }
1747       }
1748     }
1749     // Optimizations for constant objects
1750     ciObject* const_oop = tinst->const_oop();
1751     if (const_oop != NULL) {
1752       // For constant Boxed value treat the target field as a compile time constant.
1753       if (tinst->is_ptr_to_boxed_value()) {
1754         return tinst->get_const_boxed_value();
1755       } else
1756       // For constant CallSites treat the target field as a compile time constant.
1757       if (const_oop->is_call_site()) {
1758         ciCallSite* call_site = const_oop->as_call_site();
1759         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1760         if (field != NULL && field->is_call_site_target()) {
1761           ciMethodHandle* target = call_site->get_target();
1762           if (target != NULL) {  // just in case
1763             ciConstant constant(T_OBJECT, target);
1764             const Type* t;
1765             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1766               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1767             } else {
1768               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1769             }
1770             // Add a dependence for invalidation of the optimization.
1771             if (!call_site->is_constant_call_site()) {
1772               C->dependencies()->assert_call_site_target_value(call_site, target);
1773             }
1774             return t;
1775           }
1776         }
1777       }
1778     }
1779   } else if (tp->base() == Type::KlassPtr) {
1780     assert( off != Type::OffsetBot ||
1781             // arrays can be cast to Objects
1782             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1783             // also allow array-loading from the primary supertype
1784             // array during subtype checks
1785             Opcode() == Op_LoadKlass,
1786             "Field accesses must be precise" );
1787     // For klass/static loads, we expect the _type to be precise
1788   }
1789 
1790   const TypeKlassPtr *tkls = tp->isa_klassptr();
1791   if (tkls != NULL && !StressReflectiveCode) {
1792     ciKlass* klass = tkls->klass();
1793     if (klass->is_loaded() && tkls->klass_is_exact()) {
1794       // We are loading a field from a Klass metaobject whose identity
1795       // is known at compile time (the type is "exact" or "precise").
1796       // Check for fields we know are maintained as constants by the VM.
1797       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1798         // The field is Klass::_super_check_offset.  Return its (constant) value.
1799         // (Folds up type checking code.)
1800         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1801         return TypeInt::make(klass->super_check_offset());
1802       }
1803       // Compute index into primary_supers array
1804       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1805       // Check for overflowing; use unsigned compare to handle the negative case.
1806       if( depth < ciKlass::primary_super_limit() ) {
1807         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1808         // (Folds up type checking code.)
1809         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1810         ciKlass *ss = klass->super_of_depth(depth);
1811         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1812       }
1813       const Type* aift = load_array_final_field(tkls, klass);
1814       if (aift != NULL)  return aift;
1815       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1816           && klass->is_array_klass()) {
1817         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1818         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1819         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1820         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1821       }
1822       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1823         // The field is Klass::_java_mirror.  Return its (constant) value.
1824         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1825         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1826         return TypeInstPtr::make(klass->java_mirror());
1827       }
1828     }
1829 
1830     // We can still check if we are loading from the primary_supers array at a
1831     // shallow enough depth.  Even though the klass is not exact, entries less
1832     // than or equal to its super depth are correct.
1833     if (klass->is_loaded() ) {
1834       ciType *inner = klass;
1835       while( inner->is_obj_array_klass() )
1836         inner = inner->as_obj_array_klass()->base_element_type();
1837       if( inner->is_instance_klass() &&
1838           !inner->as_instance_klass()->flags().is_interface() ) {
1839         // Compute index into primary_supers array
1840         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1841         // Check for overflowing; use unsigned compare to handle the negative case.
1842         if( depth < ciKlass::primary_super_limit() &&
1843             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1844           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1845           // (Folds up type checking code.)
1846           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1847           ciKlass *ss = klass->super_of_depth(depth);
1848           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1849         }
1850       }
1851     }
1852 
1853     // If the type is enough to determine that the thing is not an array,
1854     // we can give the layout_helper a positive interval type.
1855     // This will help short-circuit some reflective code.
1856     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1857         && !klass->is_array_klass() // not directly typed as an array
1858         && !klass->is_interface()  // specifically not Serializable & Cloneable
1859         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1860         ) {
1861       // Note:  When interfaces are reliable, we can narrow the interface
1862       // test to (klass != Serializable && klass != Cloneable).
1863       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1864       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1865       // The key property of this type is that it folds up tests
1866       // for array-ness, since it proves that the layout_helper is positive.
1867       // Thus, a generic value like the basic object layout helper works fine.
1868       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1869     }
1870   }
1871 
1872   // If we are loading from a freshly-allocated object, produce a zero,
1873   // if the load is provably beyond the header of the object.
1874   // (Also allow a variable load from a fresh array to produce zero.)
1875   const TypeOopPtr *tinst = tp->isa_oopptr();
1876   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1877   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1878   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1879     Node* value = can_see_stored_value(mem,phase);
1880     if (value != NULL && value->is_Con()) {
1881       assert(value->bottom_type()->higher_equal(_type),"sanity");
1882       return value->bottom_type();
1883     }
1884   }
1885 
1886   if (is_instance) {
1887     // If we have an instance type and our memory input is the
1888     // programs's initial memory state, there is no matching store,
1889     // so just return a zero of the appropriate type
1890     Node *mem = in(MemNode::Memory);
1891     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1892       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1893       return Type::get_zero_type(_type->basic_type());
1894     }
1895   }
1896   return _type;
1897 }
1898 
1899 //------------------------------match_edge-------------------------------------
1900 // Do we Match on this edge index or not?  Match only the address.
1901 uint LoadNode::match_edge(uint idx) const {
1902   return idx == MemNode::Address;
1903 }
1904 
1905 //--------------------------LoadBNode::Ideal--------------------------------------
1906 //
1907 //  If the previous store is to the same address as this load,
1908 //  and the value stored was larger than a byte, replace this load
1909 //  with the value stored truncated to a byte.  If no truncation is
1910 //  needed, the replacement is done in LoadNode::Identity().
1911 //
1912 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1913   Node* mem = in(MemNode::Memory);
1914   Node* value = can_see_stored_value(mem,phase);
1915   if( value && !phase->type(value)->higher_equal( _type ) ) {
1916     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1917     return new (phase->C) RShiftINode(result, phase->intcon(24));
1918   }
1919   // Identity call will handle the case where truncation is not needed.
1920   return LoadNode::Ideal(phase, can_reshape);
1921 }
1922 
1923 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1924   Node* mem = in(MemNode::Memory);
1925   Node* value = can_see_stored_value(mem,phase);
1926   if (value != NULL && value->is_Con() &&
1927       !value->bottom_type()->higher_equal(_type)) {
1928     // If the input to the store does not fit with the load's result type,
1929     // it must be truncated. We can't delay until Ideal call since
1930     // a singleton Value is needed for split_thru_phi optimization.
1931     int con = value->get_int();
1932     return TypeInt::make((con << 24) >> 24);
1933   }
1934   return LoadNode::Value(phase);
1935 }
1936 
1937 //--------------------------LoadUBNode::Ideal-------------------------------------
1938 //
1939 //  If the previous store is to the same address as this load,
1940 //  and the value stored was larger than a byte, replace this load
1941 //  with the value stored truncated to a byte.  If no truncation is
1942 //  needed, the replacement is done in LoadNode::Identity().
1943 //
1944 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1945   Node* mem = in(MemNode::Memory);
1946   Node* value = can_see_stored_value(mem, phase);
1947   if (value && !phase->type(value)->higher_equal(_type))
1948     return new (phase->C) AndINode(value, phase->intcon(0xFF));
1949   // Identity call will handle the case where truncation is not needed.
1950   return LoadNode::Ideal(phase, can_reshape);
1951 }
1952 
1953 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1954   Node* mem = in(MemNode::Memory);
1955   Node* value = can_see_stored_value(mem,phase);
1956   if (value != NULL && value->is_Con() &&
1957       !value->bottom_type()->higher_equal(_type)) {
1958     // If the input to the store does not fit with the load's result type,
1959     // it must be truncated. We can't delay until Ideal call since
1960     // a singleton Value is needed for split_thru_phi optimization.
1961     int con = value->get_int();
1962     return TypeInt::make(con & 0xFF);
1963   }
1964   return LoadNode::Value(phase);
1965 }
1966 
1967 //--------------------------LoadUSNode::Ideal-------------------------------------
1968 //
1969 //  If the previous store is to the same address as this load,
1970 //  and the value stored was larger than a char, replace this load
1971 //  with the value stored truncated to a char.  If no truncation is
1972 //  needed, the replacement is done in LoadNode::Identity().
1973 //
1974 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1975   Node* mem = in(MemNode::Memory);
1976   Node* value = can_see_stored_value(mem,phase);
1977   if( value && !phase->type(value)->higher_equal( _type ) )
1978     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1979   // Identity call will handle the case where truncation is not needed.
1980   return LoadNode::Ideal(phase, can_reshape);
1981 }
1982 
1983 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1984   Node* mem = in(MemNode::Memory);
1985   Node* value = can_see_stored_value(mem,phase);
1986   if (value != NULL && value->is_Con() &&
1987       !value->bottom_type()->higher_equal(_type)) {
1988     // If the input to the store does not fit with the load's result type,
1989     // it must be truncated. We can't delay until Ideal call since
1990     // a singleton Value is needed for split_thru_phi optimization.
1991     int con = value->get_int();
1992     return TypeInt::make(con & 0xFFFF);
1993   }
1994   return LoadNode::Value(phase);
1995 }
1996 
1997 //--------------------------LoadSNode::Ideal--------------------------------------
1998 //
1999 //  If the previous store is to the same address as this load,
2000 //  and the value stored was larger than a short, replace this load
2001 //  with the value stored truncated to a short.  If no truncation is
2002 //  needed, the replacement is done in LoadNode::Identity().
2003 //
2004 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2005   Node* mem = in(MemNode::Memory);
2006   Node* value = can_see_stored_value(mem,phase);
2007   if( value && !phase->type(value)->higher_equal( _type ) ) {
2008     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
2009     return new (phase->C) RShiftINode(result, phase->intcon(16));
2010   }
2011   // Identity call will handle the case where truncation is not needed.
2012   return LoadNode::Ideal(phase, can_reshape);
2013 }
2014 
2015 const Type* LoadSNode::Value(PhaseTransform *phase) const {
2016   Node* mem = in(MemNode::Memory);
2017   Node* value = can_see_stored_value(mem,phase);
2018   if (value != NULL && value->is_Con() &&
2019       !value->bottom_type()->higher_equal(_type)) {
2020     // If the input to the store does not fit with the load's result type,
2021     // it must be truncated. We can't delay until Ideal call since
2022     // a singleton Value is needed for split_thru_phi optimization.
2023     int con = value->get_int();
2024     return TypeInt::make((con << 16) >> 16);
2025   }
2026   return LoadNode::Value(phase);
2027 }
2028 
2029 //=============================================================================
2030 //----------------------------LoadKlassNode::make------------------------------
2031 // Polymorphic factory method:
2032 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk) {
2033   Compile* C = gvn.C;
2034   // sanity check the alias category against the created node type
2035   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2036   assert(adr_type != NULL, "expecting TypeKlassPtr");
2037 #ifdef _LP64
2038   if (adr_type->is_ptr_to_narrowklass()) {
2039     assert(UseCompressedClassPointers, "no compressed klasses");
2040     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2041     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2042   }
2043 #endif
2044   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2045   return new (C) LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2046 }
2047 
2048 //------------------------------Value------------------------------------------
2049 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2050   return klass_value_common(phase);
2051 }
2052 
2053 // In most cases, LoadKlassNode does not have the control input set. If the control
2054 // input is set, it must not be removed (by LoadNode::Ideal()).
2055 bool LoadKlassNode::can_remove_control() const {
2056   return false;
2057 }
2058 
2059 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2060   // Either input is TOP ==> the result is TOP
2061   const Type *t1 = phase->type( in(MemNode::Memory) );
2062   if (t1 == Type::TOP)  return Type::TOP;
2063   Node *adr = in(MemNode::Address);
2064   const Type *t2 = phase->type( adr );
2065   if (t2 == Type::TOP)  return Type::TOP;
2066   const TypePtr *tp = t2->is_ptr();
2067   if (TypePtr::above_centerline(tp->ptr()) ||
2068       tp->ptr() == TypePtr::Null)  return Type::TOP;
2069 
2070   // Return a more precise klass, if possible
2071   const TypeInstPtr *tinst = tp->isa_instptr();
2072   if (tinst != NULL) {
2073     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2074     int offset = tinst->offset();
2075     if (ik == phase->C->env()->Class_klass()
2076         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2077             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2078       // We are loading a special hidden field from a Class mirror object,
2079       // the field which points to the VM's Klass metaobject.
2080       ciType* t = tinst->java_mirror_type();
2081       // java_mirror_type returns non-null for compile-time Class constants.
2082       if (t != NULL) {
2083         // constant oop => constant klass
2084         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2085           if (t->is_void()) {
2086             // We cannot create a void array.  Since void is a primitive type return null
2087             // klass.  Users of this result need to do a null check on the returned klass.
2088             return TypePtr::NULL_PTR;
2089           }
2090           return TypeKlassPtr::make(ciArrayKlass::make(t));
2091         }
2092         if (!t->is_klass()) {
2093           // a primitive Class (e.g., int.class) has NULL for a klass field
2094           return TypePtr::NULL_PTR;
2095         }
2096         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2097         return TypeKlassPtr::make(t->as_klass());
2098       }
2099       // non-constant mirror, so we can't tell what's going on
2100     }
2101     if( !ik->is_loaded() )
2102       return _type;             // Bail out if not loaded
2103     if (offset == oopDesc::klass_offset_in_bytes()) {
2104       if (tinst->klass_is_exact()) {
2105         return TypeKlassPtr::make(ik);
2106       }
2107       // See if we can become precise: no subklasses and no interface
2108       // (Note:  We need to support verified interfaces.)
2109       if (!ik->is_interface() && !ik->has_subklass()) {
2110         //assert(!UseExactTypes, "this code should be useless with exact types");
2111         // Add a dependence; if any subclass added we need to recompile
2112         if (!ik->is_final()) {
2113           // %%% should use stronger assert_unique_concrete_subtype instead
2114           phase->C->dependencies()->assert_leaf_type(ik);
2115         }
2116         // Return precise klass
2117         return TypeKlassPtr::make(ik);
2118       }
2119 
2120       // Return root of possible klass
2121       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2122     }
2123   }
2124 
2125   // Check for loading klass from an array
2126   const TypeAryPtr *tary = tp->isa_aryptr();
2127   if( tary != NULL ) {
2128     ciKlass *tary_klass = tary->klass();
2129     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2130         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2131       if (tary->klass_is_exact()) {
2132         return TypeKlassPtr::make(tary_klass);
2133       }
2134       ciArrayKlass *ak = tary->klass()->as_array_klass();
2135       // If the klass is an object array, we defer the question to the
2136       // array component klass.
2137       if( ak->is_obj_array_klass() ) {
2138         assert( ak->is_loaded(), "" );
2139         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2140         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2141           ciInstanceKlass* ik = base_k->as_instance_klass();
2142           // See if we can become precise: no subklasses and no interface
2143           if (!ik->is_interface() && !ik->has_subklass()) {
2144             //assert(!UseExactTypes, "this code should be useless with exact types");
2145             // Add a dependence; if any subclass added we need to recompile
2146             if (!ik->is_final()) {
2147               phase->C->dependencies()->assert_leaf_type(ik);
2148             }
2149             // Return precise array klass
2150             return TypeKlassPtr::make(ak);
2151           }
2152         }
2153         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2154       } else {                  // Found a type-array?
2155         //assert(!UseExactTypes, "this code should be useless with exact types");
2156         assert( ak->is_type_array_klass(), "" );
2157         return TypeKlassPtr::make(ak); // These are always precise
2158       }
2159     }
2160   }
2161 
2162   // Check for loading klass from an array klass
2163   const TypeKlassPtr *tkls = tp->isa_klassptr();
2164   if (tkls != NULL && !StressReflectiveCode) {
2165     ciKlass* klass = tkls->klass();
2166     if( !klass->is_loaded() )
2167       return _type;             // Bail out if not loaded
2168     if( klass->is_obj_array_klass() &&
2169         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2170       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2171       // // Always returning precise element type is incorrect,
2172       // // e.g., element type could be object and array may contain strings
2173       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2174 
2175       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2176       // according to the element type's subclassing.
2177       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2178     }
2179     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2180         tkls->offset() == in_bytes(Klass::super_offset())) {
2181       ciKlass* sup = klass->as_instance_klass()->super();
2182       // The field is Klass::_super.  Return its (constant) value.
2183       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2184       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2185     }
2186   }
2187 
2188   // Bailout case
2189   return LoadNode::Value(phase);
2190 }
2191 
2192 //------------------------------Identity---------------------------------------
2193 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2194 // Also feed through the klass in Allocate(...klass...)._klass.
2195 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2196   return klass_identity_common(phase);
2197 }
2198 
2199 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2200   Node* x = LoadNode::Identity(phase);
2201   if (x != this)  return x;
2202 
2203   // Take apart the address into an oop and and offset.
2204   // Return 'this' if we cannot.
2205   Node*    adr    = in(MemNode::Address);
2206   intptr_t offset = 0;
2207   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2208   if (base == NULL)     return this;
2209   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2210   if (toop == NULL)     return this;
2211 
2212   // We can fetch the klass directly through an AllocateNode.
2213   // This works even if the klass is not constant (clone or newArray).
2214   if (offset == oopDesc::klass_offset_in_bytes()) {
2215     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2216     if (allocated_klass != NULL) {
2217       return allocated_klass;
2218     }
2219   }
2220 
2221   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2222   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2223   // See inline_native_Class_query for occurrences of these patterns.
2224   // Java Example:  x.getClass().isAssignableFrom(y)
2225   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2226   //
2227   // This improves reflective code, often making the Class
2228   // mirror go completely dead.  (Current exception:  Class
2229   // mirrors may appear in debug info, but we could clean them out by
2230   // introducing a new debug info operator for Klass*.java_mirror).
2231   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2232       && (offset == java_lang_Class::klass_offset_in_bytes() ||
2233           offset == java_lang_Class::array_klass_offset_in_bytes())) {
2234     // We are loading a special hidden field from a Class mirror,
2235     // the field which points to its Klass or ArrayKlass metaobject.
2236     if (base->is_Load()) {
2237       Node* adr2 = base->in(MemNode::Address);
2238       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2239       if (tkls != NULL && !tkls->empty()
2240           && (tkls->klass()->is_instance_klass() ||
2241               tkls->klass()->is_array_klass())
2242           && adr2->is_AddP()
2243           ) {
2244         int mirror_field = in_bytes(Klass::java_mirror_offset());
2245         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2246           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2247         }
2248         if (tkls->offset() == mirror_field) {
2249           return adr2->in(AddPNode::Base);
2250         }
2251       }
2252     }
2253   }
2254 
2255   return this;
2256 }
2257 
2258 
2259 //------------------------------Value------------------------------------------
2260 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2261   const Type *t = klass_value_common(phase);
2262   if (t == Type::TOP)
2263     return t;
2264 
2265   return t->make_narrowklass();
2266 }
2267 
2268 //------------------------------Identity---------------------------------------
2269 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2270 // Also feed through the klass in Allocate(...klass...)._klass.
2271 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2272   Node *x = klass_identity_common(phase);
2273 
2274   const Type *t = phase->type( x );
2275   if( t == Type::TOP ) return x;
2276   if( t->isa_narrowklass()) return x;
2277   assert (!t->isa_narrowoop(), "no narrow oop here");
2278 
2279   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2280 }
2281 
2282 //------------------------------Value-----------------------------------------
2283 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2284   // Either input is TOP ==> the result is TOP
2285   const Type *t1 = phase->type( in(MemNode::Memory) );
2286   if( t1 == Type::TOP ) return Type::TOP;
2287   Node *adr = in(MemNode::Address);
2288   const Type *t2 = phase->type( adr );
2289   if( t2 == Type::TOP ) return Type::TOP;
2290   const TypePtr *tp = t2->is_ptr();
2291   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2292   const TypeAryPtr *tap = tp->isa_aryptr();
2293   if( !tap ) return _type;
2294   return tap->size();
2295 }
2296 
2297 //-------------------------------Ideal---------------------------------------
2298 // Feed through the length in AllocateArray(...length...)._length.
2299 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2300   Node* p = MemNode::Ideal_common(phase, can_reshape);
2301   if (p)  return (p == NodeSentinel) ? NULL : p;
2302 
2303   // Take apart the address into an oop and and offset.
2304   // Return 'this' if we cannot.
2305   Node*    adr    = in(MemNode::Address);
2306   intptr_t offset = 0;
2307   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2308   if (base == NULL)     return NULL;
2309   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2310   if (tary == NULL)     return NULL;
2311 
2312   // We can fetch the length directly through an AllocateArrayNode.
2313   // This works even if the length is not constant (clone or newArray).
2314   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2315     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2316     if (alloc != NULL) {
2317       Node* allocated_length = alloc->Ideal_length();
2318       Node* len = alloc->make_ideal_length(tary, phase);
2319       if (allocated_length != len) {
2320         // New CastII improves on this.
2321         return len;
2322       }
2323     }
2324   }
2325 
2326   return NULL;
2327 }
2328 
2329 //------------------------------Identity---------------------------------------
2330 // Feed through the length in AllocateArray(...length...)._length.
2331 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2332   Node* x = LoadINode::Identity(phase);
2333   if (x != this)  return x;
2334 
2335   // Take apart the address into an oop and and offset.
2336   // Return 'this' if we cannot.
2337   Node*    adr    = in(MemNode::Address);
2338   intptr_t offset = 0;
2339   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2340   if (base == NULL)     return this;
2341   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2342   if (tary == NULL)     return this;
2343 
2344   // We can fetch the length directly through an AllocateArrayNode.
2345   // This works even if the length is not constant (clone or newArray).
2346   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2347     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2348     if (alloc != NULL) {
2349       Node* allocated_length = alloc->Ideal_length();
2350       // Do not allow make_ideal_length to allocate a CastII node.
2351       Node* len = alloc->make_ideal_length(tary, phase, false);
2352       if (allocated_length == len) {
2353         // Return allocated_length only if it would not be improved by a CastII.
2354         return allocated_length;
2355       }
2356     }
2357   }
2358 
2359   return this;
2360 
2361 }
2362 
2363 //=============================================================================
2364 //---------------------------StoreNode::make-----------------------------------
2365 // Polymorphic factory method:
2366 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2367   assert((mo == unordered || mo == release), "unexpected");
2368   Compile* C = gvn.C;
2369   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2370          ctl != NULL, "raw memory operations should have control edge");
2371 
2372   switch (bt) {
2373   case T_BOOLEAN: val = gvn.transform(new (C) AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2374   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val, mo);
2375   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val, mo);
2376   case T_CHAR:
2377   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val, mo);
2378   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo);
2379   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val, mo);
2380   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo);
2381   case T_METADATA:
2382   case T_ADDRESS:
2383   case T_OBJECT:
2384 #ifdef _LP64
2385     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2386       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2387       return new (C) StoreNNode(ctl, mem, adr, adr_type, val, mo);
2388     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2389                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2390                 adr->bottom_type()->isa_rawptr())) {
2391       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2392       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2393     }
2394 #endif
2395     {
2396       return new (C) StorePNode(ctl, mem, adr, adr_type, val, mo);
2397     }
2398   }
2399   ShouldNotReachHere();
2400   return (StoreNode*)NULL;
2401 }
2402 
2403 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2404   bool require_atomic = true;
2405   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2406 }
2407 
2408 StoreDNode* StoreDNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2409   bool require_atomic = true;
2410   return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2411 }
2412 
2413 
2414 //--------------------------bottom_type----------------------------------------
2415 const Type *StoreNode::bottom_type() const {
2416   return Type::MEMORY;
2417 }
2418 
2419 //------------------------------hash-------------------------------------------
2420 uint StoreNode::hash() const {
2421   // unroll addition of interesting fields
2422   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2423 
2424   // Since they are not commoned, do not hash them:
2425   return NO_HASH;
2426 }
2427 
2428 //------------------------------Ideal------------------------------------------
2429 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2430 // When a store immediately follows a relevant allocation/initialization,
2431 // try to capture it into the initialization, or hoist it above.
2432 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2433   Node* p = MemNode::Ideal_common(phase, can_reshape);
2434   if (p)  return (p == NodeSentinel) ? NULL : p;
2435 
2436   Node* mem     = in(MemNode::Memory);
2437   Node* address = in(MemNode::Address);
2438 
2439   // Back-to-back stores to same address?  Fold em up.  Generally
2440   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2441   // since they must follow each StoreP operation.  Redundant StoreCMs
2442   // are eliminated just before matching in final_graph_reshape.
2443   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2444       mem->Opcode() != Op_StoreCM) {
2445     // Looking at a dead closed cycle of memory?
2446     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2447 
2448     assert(Opcode() == mem->Opcode() ||
2449            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2450            "no mismatched stores, except on raw memory");
2451 
2452     if (mem->outcnt() == 1 &&           // check for intervening uses
2453         mem->as_Store()->memory_size() <= this->memory_size()) {
2454       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2455       // For example, 'mem' might be the final state at a conditional return.
2456       // Or, 'mem' might be used by some node which is live at the same time
2457       // 'this' is live, which might be unschedulable.  So, require exactly
2458       // ONE user, the 'this' store, until such time as we clone 'mem' for
2459       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2460       if (can_reshape) {  // (%%% is this an anachronism?)
2461         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2462                   phase->is_IterGVN());
2463       } else {
2464         // It's OK to do this in the parser, since DU info is always accurate,
2465         // and the parser always refers to nodes via SafePointNode maps.
2466         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2467       }
2468       return this;
2469     }
2470   }
2471 
2472   // Capture an unaliased, unconditional, simple store into an initializer.
2473   // Or, if it is independent of the allocation, hoist it above the allocation.
2474   if (ReduceFieldZeroing && /*can_reshape &&*/
2475       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2476     InitializeNode* init = mem->in(0)->as_Initialize();
2477     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2478     if (offset > 0) {
2479       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2480       // If the InitializeNode captured me, it made a raw copy of me,
2481       // and I need to disappear.
2482       if (moved != NULL) {
2483         // %%% hack to ensure that Ideal returns a new node:
2484         mem = MergeMemNode::make(phase->C, mem);
2485         return mem;             // fold me away
2486       }
2487     }
2488   }
2489 
2490   return NULL;                  // No further progress
2491 }
2492 
2493 //------------------------------Value-----------------------------------------
2494 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2495   // Either input is TOP ==> the result is TOP
2496   const Type *t1 = phase->type( in(MemNode::Memory) );
2497   if( t1 == Type::TOP ) return Type::TOP;
2498   const Type *t2 = phase->type( in(MemNode::Address) );
2499   if( t2 == Type::TOP ) return Type::TOP;
2500   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2501   if( t3 == Type::TOP ) return Type::TOP;
2502   return Type::MEMORY;
2503 }
2504 
2505 //------------------------------Identity---------------------------------------
2506 // Remove redundant stores:
2507 //   Store(m, p, Load(m, p)) changes to m.
2508 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2509 Node *StoreNode::Identity( PhaseTransform *phase ) {
2510   Node* mem = in(MemNode::Memory);
2511   Node* adr = in(MemNode::Address);
2512   Node* val = in(MemNode::ValueIn);
2513 
2514   // Load then Store?  Then the Store is useless
2515   if (val->is_Load() &&
2516       val->in(MemNode::Address)->eqv_uncast(adr) &&
2517       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2518       val->as_Load()->store_Opcode() == Opcode()) {
2519     return mem;
2520   }
2521 
2522   // Two stores in a row of the same value?
2523   if (mem->is_Store() &&
2524       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2525       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2526       mem->Opcode() == Opcode()) {
2527     return mem;
2528   }
2529 
2530   // Store of zero anywhere into a freshly-allocated object?
2531   // Then the store is useless.
2532   // (It must already have been captured by the InitializeNode.)
2533   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2534     // a newly allocated object is already all-zeroes everywhere
2535     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2536       return mem;
2537     }
2538 
2539     // the store may also apply to zero-bits in an earlier object
2540     Node* prev_mem = find_previous_store(phase);
2541     // Steps (a), (b):  Walk past independent stores to find an exact match.
2542     if (prev_mem != NULL) {
2543       Node* prev_val = can_see_stored_value(prev_mem, phase);
2544       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2545         // prev_val and val might differ by a cast; it would be good
2546         // to keep the more informative of the two.
2547         return mem;
2548       }
2549     }
2550   }
2551 
2552   return this;
2553 }
2554 
2555 //------------------------------match_edge-------------------------------------
2556 // Do we Match on this edge index or not?  Match only memory & value
2557 uint StoreNode::match_edge(uint idx) const {
2558   return idx == MemNode::Address || idx == MemNode::ValueIn;
2559 }
2560 
2561 //------------------------------cmp--------------------------------------------
2562 // Do not common stores up together.  They generally have to be split
2563 // back up anyways, so do not bother.
2564 uint StoreNode::cmp( const Node &n ) const {
2565   return (&n == this);          // Always fail except on self
2566 }
2567 
2568 //------------------------------Ideal_masked_input-----------------------------
2569 // Check for a useless mask before a partial-word store
2570 // (StoreB ... (AndI valIn conIa) )
2571 // If (conIa & mask == mask) this simplifies to
2572 // (StoreB ... (valIn) )
2573 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2574   Node *val = in(MemNode::ValueIn);
2575   if( val->Opcode() == Op_AndI ) {
2576     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2577     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2578       set_req(MemNode::ValueIn, val->in(1));
2579       return this;
2580     }
2581   }
2582   return NULL;
2583 }
2584 
2585 
2586 //------------------------------Ideal_sign_extended_input----------------------
2587 // Check for useless sign-extension before a partial-word store
2588 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2589 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2590 // (StoreB ... (valIn) )
2591 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2592   Node *val = in(MemNode::ValueIn);
2593   if( val->Opcode() == Op_RShiftI ) {
2594     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2595     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2596       Node *shl = val->in(1);
2597       if( shl->Opcode() == Op_LShiftI ) {
2598         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2599         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2600           set_req(MemNode::ValueIn, shl->in(1));
2601           return this;
2602         }
2603       }
2604     }
2605   }
2606   return NULL;
2607 }
2608 
2609 //------------------------------value_never_loaded-----------------------------------
2610 // Determine whether there are any possible loads of the value stored.
2611 // For simplicity, we actually check if there are any loads from the
2612 // address stored to, not just for loads of the value stored by this node.
2613 //
2614 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2615   Node *adr = in(Address);
2616   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2617   if (adr_oop == NULL)
2618     return false;
2619   if (!adr_oop->is_known_instance_field())
2620     return false; // if not a distinct instance, there may be aliases of the address
2621   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2622     Node *use = adr->fast_out(i);
2623     int opc = use->Opcode();
2624     if (use->is_Load() || use->is_LoadStore()) {
2625       return false;
2626     }
2627   }
2628   return true;
2629 }
2630 
2631 //=============================================================================
2632 //------------------------------Ideal------------------------------------------
2633 // If the store is from an AND mask that leaves the low bits untouched, then
2634 // we can skip the AND operation.  If the store is from a sign-extension
2635 // (a left shift, then right shift) we can skip both.
2636 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2637   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2638   if( progress != NULL ) return progress;
2639 
2640   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2641   if( progress != NULL ) return progress;
2642 
2643   // Finally check the default case
2644   return StoreNode::Ideal(phase, can_reshape);
2645 }
2646 
2647 //=============================================================================
2648 //------------------------------Ideal------------------------------------------
2649 // If the store is from an AND mask that leaves the low bits untouched, then
2650 // we can skip the AND operation
2651 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2652   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2653   if( progress != NULL ) return progress;
2654 
2655   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2656   if( progress != NULL ) return progress;
2657 
2658   // Finally check the default case
2659   return StoreNode::Ideal(phase, can_reshape);
2660 }
2661 
2662 //=============================================================================
2663 //------------------------------Identity---------------------------------------
2664 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2665   // No need to card mark when storing a null ptr
2666   Node* my_store = in(MemNode::OopStore);
2667   if (my_store->is_Store()) {
2668     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2669     if( t1 == TypePtr::NULL_PTR ) {
2670       return in(MemNode::Memory);
2671     }
2672   }
2673   return this;
2674 }
2675 
2676 //=============================================================================
2677 //------------------------------Ideal---------------------------------------
2678 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2679   Node* progress = StoreNode::Ideal(phase, can_reshape);
2680   if (progress != NULL) return progress;
2681 
2682   Node* my_store = in(MemNode::OopStore);
2683   if (my_store->is_MergeMem()) {
2684     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2685     set_req(MemNode::OopStore, mem);
2686     return this;
2687   }
2688 
2689   return NULL;
2690 }
2691 
2692 //------------------------------Value-----------------------------------------
2693 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2694   // Either input is TOP ==> the result is TOP
2695   const Type *t = phase->type( in(MemNode::Memory) );
2696   if( t == Type::TOP ) return Type::TOP;
2697   t = phase->type( in(MemNode::Address) );
2698   if( t == Type::TOP ) return Type::TOP;
2699   t = phase->type( in(MemNode::ValueIn) );
2700   if( t == Type::TOP ) return Type::TOP;
2701   // If extra input is TOP ==> the result is TOP
2702   t = phase->type( in(MemNode::OopStore) );
2703   if( t == Type::TOP ) return Type::TOP;
2704 
2705   return StoreNode::Value( phase );
2706 }
2707 
2708 
2709 //=============================================================================
2710 //----------------------------------SCMemProjNode------------------------------
2711 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2712 {
2713   return bottom_type();
2714 }
2715 
2716 //=============================================================================
2717 //----------------------------------LoadStoreNode------------------------------
2718 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2719   : Node(required),
2720     _type(rt),
2721     _adr_type(at)
2722 {
2723   init_req(MemNode::Control, c  );
2724   init_req(MemNode::Memory , mem);
2725   init_req(MemNode::Address, adr);
2726   init_req(MemNode::ValueIn, val);
2727   init_class_id(Class_LoadStore);
2728 }
2729 
2730 uint LoadStoreNode::ideal_reg() const {
2731   return _type->ideal_reg();
2732 }
2733 
2734 bool LoadStoreNode::result_not_used() const {
2735   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2736     Node *x = fast_out(i);
2737     if (x->Opcode() == Op_SCMemProj) continue;
2738     return false;
2739   }
2740   return true;
2741 }
2742 
2743 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2744 
2745 //=============================================================================
2746 //----------------------------------LoadStoreConditionalNode--------------------
2747 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2748   init_req(ExpectedIn, ex );
2749 }
2750 
2751 //=============================================================================
2752 //-------------------------------adr_type--------------------------------------
2753 // Do we Match on this edge index or not?  Do not match memory
2754 const TypePtr* ClearArrayNode::adr_type() const {
2755   Node *adr = in(3);
2756   return MemNode::calculate_adr_type(adr->bottom_type());
2757 }
2758 
2759 //------------------------------match_edge-------------------------------------
2760 // Do we Match on this edge index or not?  Do not match memory
2761 uint ClearArrayNode::match_edge(uint idx) const {
2762   return idx > 1;
2763 }
2764 
2765 //------------------------------Identity---------------------------------------
2766 // Clearing a zero length array does nothing
2767 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2768   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2769 }
2770 
2771 //------------------------------Idealize---------------------------------------
2772 // Clearing a short array is faster with stores
2773 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2774   const int unit = BytesPerLong;
2775   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2776   if (!t)  return NULL;
2777   if (!t->is_con())  return NULL;
2778   intptr_t raw_count = t->get_con();
2779   intptr_t size = raw_count;
2780   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2781   // Clearing nothing uses the Identity call.
2782   // Negative clears are possible on dead ClearArrays
2783   // (see jck test stmt114.stmt11402.val).
2784   if (size <= 0 || size % unit != 0)  return NULL;
2785   intptr_t count = size / unit;
2786   // Length too long; use fast hardware clear
2787   if (size > Matcher::init_array_short_size)  return NULL;
2788   Node *mem = in(1);
2789   if( phase->type(mem)==Type::TOP ) return NULL;
2790   Node *adr = in(3);
2791   const Type* at = phase->type(adr);
2792   if( at==Type::TOP ) return NULL;
2793   const TypePtr* atp = at->isa_ptr();
2794   // adjust atp to be the correct array element address type
2795   if (atp == NULL)  atp = TypePtr::BOTTOM;
2796   else              atp = atp->add_offset(Type::OffsetBot);
2797   // Get base for derived pointer purposes
2798   if( adr->Opcode() != Op_AddP ) Unimplemented();
2799   Node *base = adr->in(1);
2800 
2801   Node *zero = phase->makecon(TypeLong::ZERO);
2802   Node *off  = phase->MakeConX(BytesPerLong);
2803   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2804   count--;
2805   while( count-- ) {
2806     mem = phase->transform(mem);
2807     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2808     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2809   }
2810   return mem;
2811 }
2812 
2813 //----------------------------step_through----------------------------------
2814 // Return allocation input memory edge if it is different instance
2815 // or itself if it is the one we are looking for.
2816 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2817   Node* n = *np;
2818   assert(n->is_ClearArray(), "sanity");
2819   intptr_t offset;
2820   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2821   // This method is called only before Allocate nodes are expanded during
2822   // macro nodes expansion. Before that ClearArray nodes are only generated
2823   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2824   assert(alloc != NULL, "should have allocation");
2825   if (alloc->_idx == instance_id) {
2826     // Can not bypass initialization of the instance we are looking for.
2827     return false;
2828   }
2829   // Otherwise skip it.
2830   InitializeNode* init = alloc->initialization();
2831   if (init != NULL)
2832     *np = init->in(TypeFunc::Memory);
2833   else
2834     *np = alloc->in(TypeFunc::Memory);
2835   return true;
2836 }
2837 
2838 //----------------------------clear_memory-------------------------------------
2839 // Generate code to initialize object storage to zero.
2840 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2841                                    intptr_t start_offset,
2842                                    Node* end_offset,
2843                                    PhaseGVN* phase) {
2844   Compile* C = phase->C;
2845   intptr_t offset = start_offset;
2846 
2847   int unit = BytesPerLong;
2848   if ((offset % unit) != 0) {
2849     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2850     adr = phase->transform(adr);
2851     const TypePtr* atp = TypeRawPtr::BOTTOM;
2852     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2853     mem = phase->transform(mem);
2854     offset += BytesPerInt;
2855   }
2856   assert((offset % unit) == 0, "");
2857 
2858   // Initialize the remaining stuff, if any, with a ClearArray.
2859   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2860 }
2861 
2862 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2863                                    Node* start_offset,
2864                                    Node* end_offset,
2865                                    PhaseGVN* phase) {
2866   if (start_offset == end_offset) {
2867     // nothing to do
2868     return mem;
2869   }
2870 
2871   Compile* C = phase->C;
2872   int unit = BytesPerLong;
2873   Node* zbase = start_offset;
2874   Node* zend  = end_offset;
2875 
2876   // Scale to the unit required by the CPU:
2877   if (!Matcher::init_array_count_is_in_bytes) {
2878     Node* shift = phase->intcon(exact_log2(unit));
2879     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2880     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2881   }
2882 
2883   // Bulk clear double-words
2884   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2885   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2886   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2887   return phase->transform(mem);
2888 }
2889 
2890 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2891                                    intptr_t start_offset,
2892                                    intptr_t end_offset,
2893                                    PhaseGVN* phase) {
2894   if (start_offset == end_offset) {
2895     // nothing to do
2896     return mem;
2897   }
2898 
2899   Compile* C = phase->C;
2900   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2901   intptr_t done_offset = end_offset;
2902   if ((done_offset % BytesPerLong) != 0) {
2903     done_offset -= BytesPerInt;
2904   }
2905   if (done_offset > start_offset) {
2906     mem = clear_memory(ctl, mem, dest,
2907                        start_offset, phase->MakeConX(done_offset), phase);
2908   }
2909   if (done_offset < end_offset) { // emit the final 32-bit store
2910     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2911     adr = phase->transform(adr);
2912     const TypePtr* atp = TypeRawPtr::BOTTOM;
2913     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2914     mem = phase->transform(mem);
2915     done_offset += BytesPerInt;
2916   }
2917   assert(done_offset == end_offset, "");
2918   return mem;
2919 }
2920 
2921 //=============================================================================
2922 // Do not match memory edge.
2923 uint StrIntrinsicNode::match_edge(uint idx) const {
2924   return idx == 2 || idx == 3;
2925 }
2926 
2927 //------------------------------Ideal------------------------------------------
2928 // Return a node which is more "ideal" than the current node.  Strip out
2929 // control copies
2930 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2931   if (remove_dead_region(phase, can_reshape)) return this;
2932   // Don't bother trying to transform a dead node
2933   if (in(0) && in(0)->is_top())  return NULL;
2934 
2935   if (can_reshape) {
2936     Node* mem = phase->transform(in(MemNode::Memory));
2937     // If transformed to a MergeMem, get the desired slice
2938     uint alias_idx = phase->C->get_alias_index(adr_type());
2939     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2940     if (mem != in(MemNode::Memory)) {
2941       set_req(MemNode::Memory, mem);
2942       return this;
2943     }
2944   }
2945   return NULL;
2946 }
2947 
2948 //------------------------------Value------------------------------------------
2949 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2950   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2951   return bottom_type();
2952 }
2953 
2954 //=============================================================================
2955 //------------------------------match_edge-------------------------------------
2956 // Do not match memory edge
2957 uint EncodeISOArrayNode::match_edge(uint idx) const {
2958   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
2959 }
2960 
2961 //------------------------------Ideal------------------------------------------
2962 // Return a node which is more "ideal" than the current node.  Strip out
2963 // control copies
2964 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2965   return remove_dead_region(phase, can_reshape) ? this : NULL;
2966 }
2967 
2968 //------------------------------Value------------------------------------------
2969 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
2970   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2971   return bottom_type();
2972 }
2973 
2974 //=============================================================================
2975 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2976   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2977     _adr_type(C->get_adr_type(alias_idx))
2978 {
2979   init_class_id(Class_MemBar);
2980   Node* top = C->top();
2981   init_req(TypeFunc::I_O,top);
2982   init_req(TypeFunc::FramePtr,top);
2983   init_req(TypeFunc::ReturnAdr,top);
2984   if (precedent != NULL)
2985     init_req(TypeFunc::Parms, precedent);
2986 }
2987 
2988 //------------------------------cmp--------------------------------------------
2989 uint MemBarNode::hash() const { return NO_HASH; }
2990 uint MemBarNode::cmp( const Node &n ) const {
2991   return (&n == this);          // Always fail except on self
2992 }
2993 
2994 //------------------------------make-------------------------------------------
2995 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2996   switch (opcode) {
2997   case Op_MemBarAcquire:     return new(C) MemBarAcquireNode(C, atp, pn);
2998   case Op_LoadFence:         return new(C) LoadFenceNode(C, atp, pn);
2999   case Op_MemBarRelease:     return new(C) MemBarReleaseNode(C, atp, pn);
3000   case Op_StoreFence:        return new(C) StoreFenceNode(C, atp, pn);
3001   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
3002   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
3003   case Op_MemBarVolatile:    return new(C) MemBarVolatileNode(C, atp, pn);
3004   case Op_MemBarCPUOrder:    return new(C) MemBarCPUOrderNode(C, atp, pn);
3005   case Op_Initialize:        return new(C) InitializeNode(C, atp, pn);
3006   case Op_MemBarStoreStore:  return new(C) MemBarStoreStoreNode(C, atp, pn);
3007   default: ShouldNotReachHere(); return NULL;
3008   }
3009 }
3010 
3011 //------------------------------Ideal------------------------------------------
3012 // Return a node which is more "ideal" than the current node.  Strip out
3013 // control copies
3014 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3015   if (remove_dead_region(phase, can_reshape)) return this;
3016   // Don't bother trying to transform a dead node
3017   if (in(0) && in(0)->is_top()) {
3018     return NULL;
3019   }
3020 
3021   // Eliminate volatile MemBars for scalar replaced objects.
3022   if (can_reshape && req() == (Precedent+1)) {
3023     bool eliminate = false;
3024     int opc = Opcode();
3025     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3026       // Volatile field loads and stores.
3027       Node* my_mem = in(MemBarNode::Precedent);
3028       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3029       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3030         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3031         // replace this Precedent (decodeN) with the Load instead.
3032         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3033           Node* load_node = my_mem->in(1);
3034           set_req(MemBarNode::Precedent, load_node);
3035           phase->is_IterGVN()->_worklist.push(my_mem);
3036           my_mem = load_node;
3037         } else {
3038           assert(my_mem->unique_out() == this, "sanity");
3039           del_req(Precedent);
3040           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3041           my_mem = NULL;
3042         }
3043       }
3044       if (my_mem != NULL && my_mem->is_Mem()) {
3045         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3046         // Check for scalar replaced object reference.
3047         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3048             t_oop->offset() != Type::OffsetBot &&
3049             t_oop->offset() != Type::OffsetTop) {
3050           eliminate = true;
3051         }
3052       }
3053     } else if (opc == Op_MemBarRelease) {
3054       // Final field stores.
3055       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3056       if ((alloc != NULL) && alloc->is_Allocate() &&
3057           alloc->as_Allocate()->_is_non_escaping) {
3058         // The allocated object does not escape.
3059         eliminate = true;
3060       }
3061     }
3062     if (eliminate) {
3063       // Replace MemBar projections by its inputs.
3064       PhaseIterGVN* igvn = phase->is_IterGVN();
3065       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3066       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3067       // Must return either the original node (now dead) or a new node
3068       // (Do not return a top here, since that would break the uniqueness of top.)
3069       return new (phase->C) ConINode(TypeInt::ZERO);
3070     }
3071   }
3072   return NULL;
3073 }
3074 
3075 //------------------------------Value------------------------------------------
3076 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
3077   if( !in(0) ) return Type::TOP;
3078   if( phase->type(in(0)) == Type::TOP )
3079     return Type::TOP;
3080   return TypeTuple::MEMBAR;
3081 }
3082 
3083 //------------------------------match------------------------------------------
3084 // Construct projections for memory.
3085 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3086   switch (proj->_con) {
3087   case TypeFunc::Control:
3088   case TypeFunc::Memory:
3089     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3090   }
3091   ShouldNotReachHere();
3092   return NULL;
3093 }
3094 
3095 //===========================InitializeNode====================================
3096 // SUMMARY:
3097 // This node acts as a memory barrier on raw memory, after some raw stores.
3098 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3099 // The Initialize can 'capture' suitably constrained stores as raw inits.
3100 // It can coalesce related raw stores into larger units (called 'tiles').
3101 // It can avoid zeroing new storage for memory units which have raw inits.
3102 // At macro-expansion, it is marked 'complete', and does not optimize further.
3103 //
3104 // EXAMPLE:
3105 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3106 //   ctl = incoming control; mem* = incoming memory
3107 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3108 // First allocate uninitialized memory and fill in the header:
3109 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3110 //   ctl := alloc.Control; mem* := alloc.Memory*
3111 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3112 // Then initialize to zero the non-header parts of the raw memory block:
3113 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3114 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3115 // After the initialize node executes, the object is ready for service:
3116 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3117 // Suppose its body is immediately initialized as {1,2}:
3118 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3119 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3120 //   mem.SLICE(#short[*]) := store2
3121 //
3122 // DETAILS:
3123 // An InitializeNode collects and isolates object initialization after
3124 // an AllocateNode and before the next possible safepoint.  As a
3125 // memory barrier (MemBarNode), it keeps critical stores from drifting
3126 // down past any safepoint or any publication of the allocation.
3127 // Before this barrier, a newly-allocated object may have uninitialized bits.
3128 // After this barrier, it may be treated as a real oop, and GC is allowed.
3129 //
3130 // The semantics of the InitializeNode include an implicit zeroing of
3131 // the new object from object header to the end of the object.
3132 // (The object header and end are determined by the AllocateNode.)
3133 //
3134 // Certain stores may be added as direct inputs to the InitializeNode.
3135 // These stores must update raw memory, and they must be to addresses
3136 // derived from the raw address produced by AllocateNode, and with
3137 // a constant offset.  They must be ordered by increasing offset.
3138 // The first one is at in(RawStores), the last at in(req()-1).
3139 // Unlike most memory operations, they are not linked in a chain,
3140 // but are displayed in parallel as users of the rawmem output of
3141 // the allocation.
3142 //
3143 // (See comments in InitializeNode::capture_store, which continue
3144 // the example given above.)
3145 //
3146 // When the associated Allocate is macro-expanded, the InitializeNode
3147 // may be rewritten to optimize collected stores.  A ClearArrayNode
3148 // may also be created at that point to represent any required zeroing.
3149 // The InitializeNode is then marked 'complete', prohibiting further
3150 // capturing of nearby memory operations.
3151 //
3152 // During macro-expansion, all captured initializations which store
3153 // constant values of 32 bits or smaller are coalesced (if advantageous)
3154 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3155 // initialized in fewer memory operations.  Memory words which are
3156 // covered by neither tiles nor non-constant stores are pre-zeroed
3157 // by explicit stores of zero.  (The code shape happens to do all
3158 // zeroing first, then all other stores, with both sequences occurring
3159 // in order of ascending offsets.)
3160 //
3161 // Alternatively, code may be inserted between an AllocateNode and its
3162 // InitializeNode, to perform arbitrary initialization of the new object.
3163 // E.g., the object copying intrinsics insert complex data transfers here.
3164 // The initialization must then be marked as 'complete' disable the
3165 // built-in zeroing semantics and the collection of initializing stores.
3166 //
3167 // While an InitializeNode is incomplete, reads from the memory state
3168 // produced by it are optimizable if they match the control edge and
3169 // new oop address associated with the allocation/initialization.
3170 // They return a stored value (if the offset matches) or else zero.
3171 // A write to the memory state, if it matches control and address,
3172 // and if it is to a constant offset, may be 'captured' by the
3173 // InitializeNode.  It is cloned as a raw memory operation and rewired
3174 // inside the initialization, to the raw oop produced by the allocation.
3175 // Operations on addresses which are provably distinct (e.g., to
3176 // other AllocateNodes) are allowed to bypass the initialization.
3177 //
3178 // The effect of all this is to consolidate object initialization
3179 // (both arrays and non-arrays, both piecewise and bulk) into a
3180 // single location, where it can be optimized as a unit.
3181 //
3182 // Only stores with an offset less than TrackedInitializationLimit words
3183 // will be considered for capture by an InitializeNode.  This puts a
3184 // reasonable limit on the complexity of optimized initializations.
3185 
3186 //---------------------------InitializeNode------------------------------------
3187 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3188   : _is_complete(Incomplete), _does_not_escape(false),
3189     MemBarNode(C, adr_type, rawoop)
3190 {
3191   init_class_id(Class_Initialize);
3192 
3193   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3194   assert(in(RawAddress) == rawoop, "proper init");
3195   // Note:  allocation() can be NULL, for secondary initialization barriers
3196 }
3197 
3198 // Since this node is not matched, it will be processed by the
3199 // register allocator.  Declare that there are no constraints
3200 // on the allocation of the RawAddress edge.
3201 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3202   // This edge should be set to top, by the set_complete.  But be conservative.
3203   if (idx == InitializeNode::RawAddress)
3204     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3205   return RegMask::Empty;
3206 }
3207 
3208 Node* InitializeNode::memory(uint alias_idx) {
3209   Node* mem = in(Memory);
3210   if (mem->is_MergeMem()) {
3211     return mem->as_MergeMem()->memory_at(alias_idx);
3212   } else {
3213     // incoming raw memory is not split
3214     return mem;
3215   }
3216 }
3217 
3218 bool InitializeNode::is_non_zero() {
3219   if (is_complete())  return false;
3220   remove_extra_zeroes();
3221   return (req() > RawStores);
3222 }
3223 
3224 void InitializeNode::set_complete(PhaseGVN* phase) {
3225   assert(!is_complete(), "caller responsibility");
3226   _is_complete = Complete;
3227 
3228   // After this node is complete, it contains a bunch of
3229   // raw-memory initializations.  There is no need for
3230   // it to have anything to do with non-raw memory effects.
3231   // Therefore, tell all non-raw users to re-optimize themselves,
3232   // after skipping the memory effects of this initialization.
3233   PhaseIterGVN* igvn = phase->is_IterGVN();
3234   if (igvn)  igvn->add_users_to_worklist(this);
3235 }
3236 
3237 // convenience function
3238 // return false if the init contains any stores already
3239 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3240   InitializeNode* init = initialization();
3241   if (init == NULL || init->is_complete())  return false;
3242   init->remove_extra_zeroes();
3243   // for now, if this allocation has already collected any inits, bail:
3244   if (init->is_non_zero())  return false;
3245   init->set_complete(phase);
3246   return true;
3247 }
3248 
3249 void InitializeNode::remove_extra_zeroes() {
3250   if (req() == RawStores)  return;
3251   Node* zmem = zero_memory();
3252   uint fill = RawStores;
3253   for (uint i = fill; i < req(); i++) {
3254     Node* n = in(i);
3255     if (n->is_top() || n == zmem)  continue;  // skip
3256     if (fill < i)  set_req(fill, n);          // compact
3257     ++fill;
3258   }
3259   // delete any empty spaces created:
3260   while (fill < req()) {
3261     del_req(fill);
3262   }
3263 }
3264 
3265 // Helper for remembering which stores go with which offsets.
3266 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3267   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3268   intptr_t offset = -1;
3269   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3270                                                phase, offset);
3271   if (base == NULL)     return -1;  // something is dead,
3272   if (offset < 0)       return -1;  //        dead, dead
3273   return offset;
3274 }
3275 
3276 // Helper for proving that an initialization expression is
3277 // "simple enough" to be folded into an object initialization.
3278 // Attempts to prove that a store's initial value 'n' can be captured
3279 // within the initialization without creating a vicious cycle, such as:
3280 //     { Foo p = new Foo(); p.next = p; }
3281 // True for constants and parameters and small combinations thereof.
3282 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3283   if (n == NULL)      return true;   // (can this really happen?)
3284   if (n->is_Proj())   n = n->in(0);
3285   if (n == this)      return false;  // found a cycle
3286   if (n->is_Con())    return true;
3287   if (n->is_Start())  return true;   // params, etc., are OK
3288   if (n->is_Root())   return true;   // even better
3289 
3290   Node* ctl = n->in(0);
3291   if (ctl != NULL && !ctl->is_top()) {
3292     if (ctl->is_Proj())  ctl = ctl->in(0);
3293     if (ctl == this)  return false;
3294 
3295     // If we already know that the enclosing memory op is pinned right after
3296     // the init, then any control flow that the store has picked up
3297     // must have preceded the init, or else be equal to the init.
3298     // Even after loop optimizations (which might change control edges)
3299     // a store is never pinned *before* the availability of its inputs.
3300     if (!MemNode::all_controls_dominate(n, this))
3301       return false;                  // failed to prove a good control
3302   }
3303 
3304   // Check data edges for possible dependencies on 'this'.
3305   if ((count += 1) > 20)  return false;  // complexity limit
3306   for (uint i = 1; i < n->req(); i++) {
3307     Node* m = n->in(i);
3308     if (m == NULL || m == n || m->is_top())  continue;
3309     uint first_i = n->find_edge(m);
3310     if (i != first_i)  continue;  // process duplicate edge just once
3311     if (!detect_init_independence(m, count)) {
3312       return false;
3313     }
3314   }
3315 
3316   return true;
3317 }
3318 
3319 // Here are all the checks a Store must pass before it can be moved into
3320 // an initialization.  Returns zero if a check fails.
3321 // On success, returns the (constant) offset to which the store applies,
3322 // within the initialized memory.
3323 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3324   const int FAIL = 0;
3325   if (st->req() != MemNode::ValueIn + 1)
3326     return FAIL;                // an inscrutable StoreNode (card mark?)
3327   Node* ctl = st->in(MemNode::Control);
3328   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3329     return FAIL;                // must be unconditional after the initialization
3330   Node* mem = st->in(MemNode::Memory);
3331   if (!(mem->is_Proj() && mem->in(0) == this))
3332     return FAIL;                // must not be preceded by other stores
3333   Node* adr = st->in(MemNode::Address);
3334   intptr_t offset;
3335   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3336   if (alloc == NULL)
3337     return FAIL;                // inscrutable address
3338   if (alloc != allocation())
3339     return FAIL;                // wrong allocation!  (store needs to float up)
3340   Node* val = st->in(MemNode::ValueIn);
3341   int complexity_count = 0;
3342   if (!detect_init_independence(val, complexity_count))
3343     return FAIL;                // stored value must be 'simple enough'
3344 
3345   // The Store can be captured only if nothing after the allocation
3346   // and before the Store is using the memory location that the store
3347   // overwrites.
3348   bool failed = false;
3349   // If is_complete_with_arraycopy() is true the shape of the graph is
3350   // well defined and is safe so no need for extra checks.
3351   if (!is_complete_with_arraycopy()) {
3352     // We are going to look at each use of the memory state following
3353     // the allocation to make sure nothing reads the memory that the
3354     // Store writes.
3355     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3356     int alias_idx = phase->C->get_alias_index(t_adr);
3357     ResourceMark rm;
3358     Unique_Node_List mems;
3359     mems.push(mem);
3360     Node* unique_merge = NULL;
3361     for (uint next = 0; next < mems.size(); ++next) {
3362       Node *m  = mems.at(next);
3363       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3364         Node *n = m->fast_out(j);
3365         if (n->outcnt() == 0) {
3366           continue;
3367         }
3368         if (n == st) {
3369           continue;
3370         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3371           // If the control of this use is different from the control
3372           // of the Store which is right after the InitializeNode then
3373           // this node cannot be between the InitializeNode and the
3374           // Store.
3375           continue;
3376         } else if (n->is_MergeMem()) {
3377           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3378             // We can hit a MergeMemNode (that will likely go away
3379             // later) that is a direct use of the memory state
3380             // following the InitializeNode on the same slice as the
3381             // store node that we'd like to capture. We need to check
3382             // the uses of the MergeMemNode.
3383             mems.push(n);
3384           }
3385         } else if (n->is_Mem()) {
3386           Node* other_adr = n->in(MemNode::Address);
3387           if (other_adr == adr) {
3388             failed = true;
3389             break;
3390           } else {
3391             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3392             if (other_t_adr != NULL) {
3393               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3394               if (other_alias_idx == alias_idx) {
3395                 // A load from the same memory slice as the store right
3396                 // after the InitializeNode. We check the control of the
3397                 // object/array that is loaded from. If it's the same as
3398                 // the store control then we cannot capture the store.
3399                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3400                 Node* base = other_adr;
3401                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3402                 base = base->in(AddPNode::Base);
3403                 if (base != NULL) {
3404                   base = base->uncast();
3405                   if (base->is_Proj() && base->in(0) == alloc) {
3406                     failed = true;
3407                     break;
3408                   }
3409                 }
3410               }
3411             }
3412           }
3413         } else {
3414           failed = true;
3415           break;
3416         }
3417       }
3418     }
3419   }
3420   if (failed) {
3421     if (!can_reshape) {
3422       // We decided we couldn't capture the store during parsing. We
3423       // should try again during the next IGVN once the graph is
3424       // cleaner.
3425       phase->C->record_for_igvn(st);
3426     }
3427     return FAIL;
3428   }
3429 
3430   return offset;                // success
3431 }
3432 
3433 // Find the captured store in(i) which corresponds to the range
3434 // [start..start+size) in the initialized object.
3435 // If there is one, return its index i.  If there isn't, return the
3436 // negative of the index where it should be inserted.
3437 // Return 0 if the queried range overlaps an initialization boundary
3438 // or if dead code is encountered.
3439 // If size_in_bytes is zero, do not bother with overlap checks.
3440 int InitializeNode::captured_store_insertion_point(intptr_t start,
3441                                                    int size_in_bytes,
3442                                                    PhaseTransform* phase) {
3443   const int FAIL = 0, MAX_STORE = BytesPerLong;
3444 
3445   if (is_complete())
3446     return FAIL;                // arraycopy got here first; punt
3447 
3448   assert(allocation() != NULL, "must be present");
3449 
3450   // no negatives, no header fields:
3451   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3452 
3453   // after a certain size, we bail out on tracking all the stores:
3454   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3455   if (start >= ti_limit)  return FAIL;
3456 
3457   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3458     if (i >= limit)  return -(int)i; // not found; here is where to put it
3459 
3460     Node*    st     = in(i);
3461     intptr_t st_off = get_store_offset(st, phase);
3462     if (st_off < 0) {
3463       if (st != zero_memory()) {
3464         return FAIL;            // bail out if there is dead garbage
3465       }
3466     } else if (st_off > start) {
3467       // ...we are done, since stores are ordered
3468       if (st_off < start + size_in_bytes) {
3469         return FAIL;            // the next store overlaps
3470       }
3471       return -(int)i;           // not found; here is where to put it
3472     } else if (st_off < start) {
3473       if (size_in_bytes != 0 &&
3474           start < st_off + MAX_STORE &&
3475           start < st_off + st->as_Store()->memory_size()) {
3476         return FAIL;            // the previous store overlaps
3477       }
3478     } else {
3479       if (size_in_bytes != 0 &&
3480           st->as_Store()->memory_size() != size_in_bytes) {
3481         return FAIL;            // mismatched store size
3482       }
3483       return i;
3484     }
3485 
3486     ++i;
3487   }
3488 }
3489 
3490 // Look for a captured store which initializes at the offset 'start'
3491 // with the given size.  If there is no such store, and no other
3492 // initialization interferes, then return zero_memory (the memory
3493 // projection of the AllocateNode).
3494 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3495                                           PhaseTransform* phase) {
3496   assert(stores_are_sane(phase), "");
3497   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3498   if (i == 0) {
3499     return NULL;                // something is dead
3500   } else if (i < 0) {
3501     return zero_memory();       // just primordial zero bits here
3502   } else {
3503     Node* st = in(i);           // here is the store at this position
3504     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3505     return st;
3506   }
3507 }
3508 
3509 // Create, as a raw pointer, an address within my new object at 'offset'.
3510 Node* InitializeNode::make_raw_address(intptr_t offset,
3511                                        PhaseTransform* phase) {
3512   Node* addr = in(RawAddress);
3513   if (offset != 0) {
3514     Compile* C = phase->C;
3515     addr = phase->transform( new (C) AddPNode(C->top(), addr,
3516                                                  phase->MakeConX(offset)) );
3517   }
3518   return addr;
3519 }
3520 
3521 // Clone the given store, converting it into a raw store
3522 // initializing a field or element of my new object.
3523 // Caller is responsible for retiring the original store,
3524 // with subsume_node or the like.
3525 //
3526 // From the example above InitializeNode::InitializeNode,
3527 // here are the old stores to be captured:
3528 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3529 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3530 //
3531 // Here is the changed code; note the extra edges on init:
3532 //   alloc = (Allocate ...)
3533 //   rawoop = alloc.RawAddress
3534 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3535 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3536 //   init = (Initialize alloc.Control alloc.Memory rawoop
3537 //                      rawstore1 rawstore2)
3538 //
3539 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3540                                     PhaseTransform* phase, bool can_reshape) {
3541   assert(stores_are_sane(phase), "");
3542 
3543   if (start < 0)  return NULL;
3544   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3545 
3546   Compile* C = phase->C;
3547   int size_in_bytes = st->memory_size();
3548   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3549   if (i == 0)  return NULL;     // bail out
3550   Node* prev_mem = NULL;        // raw memory for the captured store
3551   if (i > 0) {
3552     prev_mem = in(i);           // there is a pre-existing store under this one
3553     set_req(i, C->top());       // temporarily disconnect it
3554     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3555   } else {
3556     i = -i;                     // no pre-existing store
3557     prev_mem = zero_memory();   // a slice of the newly allocated object
3558     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3559       set_req(--i, C->top());   // reuse this edge; it has been folded away
3560     else
3561       ins_req(i, C->top());     // build a new edge
3562   }
3563   Node* new_st = st->clone();
3564   new_st->set_req(MemNode::Control, in(Control));
3565   new_st->set_req(MemNode::Memory,  prev_mem);
3566   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3567   new_st = phase->transform(new_st);
3568 
3569   // At this point, new_st might have swallowed a pre-existing store
3570   // at the same offset, or perhaps new_st might have disappeared,
3571   // if it redundantly stored the same value (or zero to fresh memory).
3572 
3573   // In any case, wire it in:
3574   set_req(i, new_st);
3575 
3576   // The caller may now kill the old guy.
3577   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3578   assert(check_st == new_st || check_st == NULL, "must be findable");
3579   assert(!is_complete(), "");
3580   return new_st;
3581 }
3582 
3583 static bool store_constant(jlong* tiles, int num_tiles,
3584                            intptr_t st_off, int st_size,
3585                            jlong con) {
3586   if ((st_off & (st_size-1)) != 0)
3587     return false;               // strange store offset (assume size==2**N)
3588   address addr = (address)tiles + st_off;
3589   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3590   switch (st_size) {
3591   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3592   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3593   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3594   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3595   default: return false;        // strange store size (detect size!=2**N here)
3596   }
3597   return true;                  // return success to caller
3598 }
3599 
3600 // Coalesce subword constants into int constants and possibly
3601 // into long constants.  The goal, if the CPU permits,
3602 // is to initialize the object with a small number of 64-bit tiles.
3603 // Also, convert floating-point constants to bit patterns.
3604 // Non-constants are not relevant to this pass.
3605 //
3606 // In terms of the running example on InitializeNode::InitializeNode
3607 // and InitializeNode::capture_store, here is the transformation
3608 // of rawstore1 and rawstore2 into rawstore12:
3609 //   alloc = (Allocate ...)
3610 //   rawoop = alloc.RawAddress
3611 //   tile12 = 0x00010002
3612 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3613 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3614 //
3615 void
3616 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3617                                         Node* size_in_bytes,
3618                                         PhaseGVN* phase) {
3619   Compile* C = phase->C;
3620 
3621   assert(stores_are_sane(phase), "");
3622   // Note:  After this pass, they are not completely sane,
3623   // since there may be some overlaps.
3624 
3625   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3626 
3627   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3628   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3629   size_limit = MIN2(size_limit, ti_limit);
3630   size_limit = align_size_up(size_limit, BytesPerLong);
3631   int num_tiles = size_limit / BytesPerLong;
3632 
3633   // allocate space for the tile map:
3634   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3635   jlong  tiles_buf[small_len];
3636   Node*  nodes_buf[small_len];
3637   jlong  inits_buf[small_len];
3638   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3639                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3640   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3641                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3642   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3643                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3644   // tiles: exact bitwise model of all primitive constants
3645   // nodes: last constant-storing node subsumed into the tiles model
3646   // inits: which bytes (in each tile) are touched by any initializations
3647 
3648   //// Pass A: Fill in the tile model with any relevant stores.
3649 
3650   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3651   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3652   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3653   Node* zmem = zero_memory(); // initially zero memory state
3654   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3655     Node* st = in(i);
3656     intptr_t st_off = get_store_offset(st, phase);
3657 
3658     // Figure out the store's offset and constant value:
3659     if (st_off < header_size)             continue; //skip (ignore header)
3660     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3661     int st_size = st->as_Store()->memory_size();
3662     if (st_off + st_size > size_limit)    break;
3663 
3664     // Record which bytes are touched, whether by constant or not.
3665     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3666       continue;                 // skip (strange store size)
3667 
3668     const Type* val = phase->type(st->in(MemNode::ValueIn));
3669     if (!val->singleton())                continue; //skip (non-con store)
3670     BasicType type = val->basic_type();
3671 
3672     jlong con = 0;
3673     switch (type) {
3674     case T_INT:    con = val->is_int()->get_con();  break;
3675     case T_LONG:   con = val->is_long()->get_con(); break;
3676     case T_FLOAT:  con = jint_cast(val->getf());    break;
3677     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3678     default:                              continue; //skip (odd store type)
3679     }
3680 
3681     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3682         st->Opcode() == Op_StoreL) {
3683       continue;                 // This StoreL is already optimal.
3684     }
3685 
3686     // Store down the constant.
3687     store_constant(tiles, num_tiles, st_off, st_size, con);
3688 
3689     intptr_t j = st_off >> LogBytesPerLong;
3690 
3691     if (type == T_INT && st_size == BytesPerInt
3692         && (st_off & BytesPerInt) == BytesPerInt) {
3693       jlong lcon = tiles[j];
3694       if (!Matcher::isSimpleConstant64(lcon) &&
3695           st->Opcode() == Op_StoreI) {
3696         // This StoreI is already optimal by itself.
3697         jint* intcon = (jint*) &tiles[j];
3698         intcon[1] = 0;  // undo the store_constant()
3699 
3700         // If the previous store is also optimal by itself, back up and
3701         // undo the action of the previous loop iteration... if we can.
3702         // But if we can't, just let the previous half take care of itself.
3703         st = nodes[j];
3704         st_off -= BytesPerInt;
3705         con = intcon[0];
3706         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3707           assert(st_off >= header_size, "still ignoring header");
3708           assert(get_store_offset(st, phase) == st_off, "must be");
3709           assert(in(i-1) == zmem, "must be");
3710           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3711           assert(con == tcon->is_int()->get_con(), "must be");
3712           // Undo the effects of the previous loop trip, which swallowed st:
3713           intcon[0] = 0;        // undo store_constant()
3714           set_req(i-1, st);     // undo set_req(i, zmem)
3715           nodes[j] = NULL;      // undo nodes[j] = st
3716           --old_subword;        // undo ++old_subword
3717         }
3718         continue;               // This StoreI is already optimal.
3719       }
3720     }
3721 
3722     // This store is not needed.
3723     set_req(i, zmem);
3724     nodes[j] = st;              // record for the moment
3725     if (st_size < BytesPerLong) // something has changed
3726           ++old_subword;        // includes int/float, but who's counting...
3727     else  ++old_long;
3728   }
3729 
3730   if ((old_subword + old_long) == 0)
3731     return;                     // nothing more to do
3732 
3733   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3734   // Be sure to insert them before overlapping non-constant stores.
3735   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3736   for (int j = 0; j < num_tiles; j++) {
3737     jlong con  = tiles[j];
3738     jlong init = inits[j];
3739     if (con == 0)  continue;
3740     jint con0,  con1;           // split the constant, address-wise
3741     jint init0, init1;          // split the init map, address-wise
3742     { union { jlong con; jint intcon[2]; } u;
3743       u.con = con;
3744       con0  = u.intcon[0];
3745       con1  = u.intcon[1];
3746       u.con = init;
3747       init0 = u.intcon[0];
3748       init1 = u.intcon[1];
3749     }
3750 
3751     Node* old = nodes[j];
3752     assert(old != NULL, "need the prior store");
3753     intptr_t offset = (j * BytesPerLong);
3754 
3755     bool split = !Matcher::isSimpleConstant64(con);
3756 
3757     if (offset < header_size) {
3758       assert(offset + BytesPerInt >= header_size, "second int counts");
3759       assert(*(jint*)&tiles[j] == 0, "junk in header");
3760       split = true;             // only the second word counts
3761       // Example:  int a[] = { 42 ... }
3762     } else if (con0 == 0 && init0 == -1) {
3763       split = true;             // first word is covered by full inits
3764       // Example:  int a[] = { ... foo(), 42 ... }
3765     } else if (con1 == 0 && init1 == -1) {
3766       split = true;             // second word is covered by full inits
3767       // Example:  int a[] = { ... 42, foo() ... }
3768     }
3769 
3770     // Here's a case where init0 is neither 0 nor -1:
3771     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3772     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3773     // In this case the tile is not split; it is (jlong)42.
3774     // The big tile is stored down, and then the foo() value is inserted.
3775     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3776 
3777     Node* ctl = old->in(MemNode::Control);
3778     Node* adr = make_raw_address(offset, phase);
3779     const TypePtr* atp = TypeRawPtr::BOTTOM;
3780 
3781     // One or two coalesced stores to plop down.
3782     Node*    st[2];
3783     intptr_t off[2];
3784     int  nst = 0;
3785     if (!split) {
3786       ++new_long;
3787       off[nst] = offset;
3788       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3789                                   phase->longcon(con), T_LONG, MemNode::unordered);
3790     } else {
3791       // Omit either if it is a zero.
3792       if (con0 != 0) {
3793         ++new_int;
3794         off[nst]  = offset;
3795         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3796                                     phase->intcon(con0), T_INT, MemNode::unordered);
3797       }
3798       if (con1 != 0) {
3799         ++new_int;
3800         offset += BytesPerInt;
3801         adr = make_raw_address(offset, phase);
3802         off[nst]  = offset;
3803         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3804                                     phase->intcon(con1), T_INT, MemNode::unordered);
3805       }
3806     }
3807 
3808     // Insert second store first, then the first before the second.
3809     // Insert each one just before any overlapping non-constant stores.
3810     while (nst > 0) {
3811       Node* st1 = st[--nst];
3812       C->copy_node_notes_to(st1, old);
3813       st1 = phase->transform(st1);
3814       offset = off[nst];
3815       assert(offset >= header_size, "do not smash header");
3816       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3817       guarantee(ins_idx != 0, "must re-insert constant store");
3818       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3819       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3820         set_req(--ins_idx, st1);
3821       else
3822         ins_req(ins_idx, st1);
3823     }
3824   }
3825 
3826   if (PrintCompilation && WizardMode)
3827     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3828                   old_subword, old_long, new_int, new_long);
3829   if (C->log() != NULL)
3830     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3831                    old_subword, old_long, new_int, new_long);
3832 
3833   // Clean up any remaining occurrences of zmem:
3834   remove_extra_zeroes();
3835 }
3836 
3837 // Explore forward from in(start) to find the first fully initialized
3838 // word, and return its offset.  Skip groups of subword stores which
3839 // together initialize full words.  If in(start) is itself part of a
3840 // fully initialized word, return the offset of in(start).  If there
3841 // are no following full-word stores, or if something is fishy, return
3842 // a negative value.
3843 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3844   int       int_map = 0;
3845   intptr_t  int_map_off = 0;
3846   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3847 
3848   for (uint i = start, limit = req(); i < limit; i++) {
3849     Node* st = in(i);
3850 
3851     intptr_t st_off = get_store_offset(st, phase);
3852     if (st_off < 0)  break;  // return conservative answer
3853 
3854     int st_size = st->as_Store()->memory_size();
3855     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3856       return st_off;            // we found a complete word init
3857     }
3858 
3859     // update the map:
3860 
3861     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3862     if (this_int_off != int_map_off) {
3863       // reset the map:
3864       int_map = 0;
3865       int_map_off = this_int_off;
3866     }
3867 
3868     int subword_off = st_off - this_int_off;
3869     int_map |= right_n_bits(st_size) << subword_off;
3870     if ((int_map & FULL_MAP) == FULL_MAP) {
3871       return this_int_off;      // we found a complete word init
3872     }
3873 
3874     // Did this store hit or cross the word boundary?
3875     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3876     if (next_int_off == this_int_off + BytesPerInt) {
3877       // We passed the current int, without fully initializing it.
3878       int_map_off = next_int_off;
3879       int_map >>= BytesPerInt;
3880     } else if (next_int_off > this_int_off + BytesPerInt) {
3881       // We passed the current and next int.
3882       return this_int_off + BytesPerInt;
3883     }
3884   }
3885 
3886   return -1;
3887 }
3888 
3889 
3890 // Called when the associated AllocateNode is expanded into CFG.
3891 // At this point, we may perform additional optimizations.
3892 // Linearize the stores by ascending offset, to make memory
3893 // activity as coherent as possible.
3894 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3895                                       intptr_t header_size,
3896                                       Node* size_in_bytes,
3897                                       PhaseGVN* phase) {
3898   assert(!is_complete(), "not already complete");
3899   assert(stores_are_sane(phase), "");
3900   assert(allocation() != NULL, "must be present");
3901 
3902   remove_extra_zeroes();
3903 
3904   if (ReduceFieldZeroing || ReduceBulkZeroing)
3905     // reduce instruction count for common initialization patterns
3906     coalesce_subword_stores(header_size, size_in_bytes, phase);
3907 
3908   Node* zmem = zero_memory();   // initially zero memory state
3909   Node* inits = zmem;           // accumulating a linearized chain of inits
3910   #ifdef ASSERT
3911   intptr_t first_offset = allocation()->minimum_header_size();
3912   intptr_t last_init_off = first_offset;  // previous init offset
3913   intptr_t last_init_end = first_offset;  // previous init offset+size
3914   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3915   #endif
3916   intptr_t zeroes_done = header_size;
3917 
3918   bool do_zeroing = true;       // we might give up if inits are very sparse
3919   int  big_init_gaps = 0;       // how many large gaps have we seen?
3920 
3921   if (ZeroTLAB)  do_zeroing = false;
3922   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3923 
3924   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3925     Node* st = in(i);
3926     intptr_t st_off = get_store_offset(st, phase);
3927     if (st_off < 0)
3928       break;                    // unknown junk in the inits
3929     if (st->in(MemNode::Memory) != zmem)
3930       break;                    // complicated store chains somehow in list
3931 
3932     int st_size = st->as_Store()->memory_size();
3933     intptr_t next_init_off = st_off + st_size;
3934 
3935     if (do_zeroing && zeroes_done < next_init_off) {
3936       // See if this store needs a zero before it or under it.
3937       intptr_t zeroes_needed = st_off;
3938 
3939       if (st_size < BytesPerInt) {
3940         // Look for subword stores which only partially initialize words.
3941         // If we find some, we must lay down some word-level zeroes first,
3942         // underneath the subword stores.
3943         //
3944         // Examples:
3945         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3946         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3947         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3948         //
3949         // Note:  coalesce_subword_stores may have already done this,
3950         // if it was prompted by constant non-zero subword initializers.
3951         // But this case can still arise with non-constant stores.
3952 
3953         intptr_t next_full_store = find_next_fullword_store(i, phase);
3954 
3955         // In the examples above:
3956         //   in(i)          p   q   r   s     x   y     z
3957         //   st_off        12  13  14  15    12  13    14
3958         //   st_size        1   1   1   1     1   1     1
3959         //   next_full_s.  12  16  16  16    16  16    16
3960         //   z's_done      12  16  16  16    12  16    12
3961         //   z's_needed    12  16  16  16    16  16    16
3962         //   zsize          0   0   0   0     4   0     4
3963         if (next_full_store < 0) {
3964           // Conservative tack:  Zero to end of current word.
3965           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3966         } else {
3967           // Zero to beginning of next fully initialized word.
3968           // Or, don't zero at all, if we are already in that word.
3969           assert(next_full_store >= zeroes_needed, "must go forward");
3970           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3971           zeroes_needed = next_full_store;
3972         }
3973       }
3974 
3975       if (zeroes_needed > zeroes_done) {
3976         intptr_t zsize = zeroes_needed - zeroes_done;
3977         // Do some incremental zeroing on rawmem, in parallel with inits.
3978         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3979         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3980                                               zeroes_done, zeroes_needed,
3981                                               phase);
3982         zeroes_done = zeroes_needed;
3983         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3984           do_zeroing = false;   // leave the hole, next time
3985       }
3986     }
3987 
3988     // Collect the store and move on:
3989     st->set_req(MemNode::Memory, inits);
3990     inits = st;                 // put it on the linearized chain
3991     set_req(i, zmem);           // unhook from previous position
3992 
3993     if (zeroes_done == st_off)
3994       zeroes_done = next_init_off;
3995 
3996     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3997 
3998     #ifdef ASSERT
3999     // Various order invariants.  Weaker than stores_are_sane because
4000     // a large constant tile can be filled in by smaller non-constant stores.
4001     assert(st_off >= last_init_off, "inits do not reverse");
4002     last_init_off = st_off;
4003     const Type* val = NULL;
4004     if (st_size >= BytesPerInt &&
4005         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4006         (int)val->basic_type() < (int)T_OBJECT) {
4007       assert(st_off >= last_tile_end, "tiles do not overlap");
4008       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4009       last_tile_end = MAX2(last_tile_end, next_init_off);
4010     } else {
4011       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
4012       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4013       assert(st_off      >= last_init_end, "inits do not overlap");
4014       last_init_end = next_init_off;  // it's a non-tile
4015     }
4016     #endif //ASSERT
4017   }
4018 
4019   remove_extra_zeroes();        // clear out all the zmems left over
4020   add_req(inits);
4021 
4022   if (!ZeroTLAB) {
4023     // If anything remains to be zeroed, zero it all now.
4024     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
4025     // if it is the last unused 4 bytes of an instance, forget about it
4026     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4027     if (zeroes_done + BytesPerLong >= size_limit) {
4028       assert(allocation() != NULL, "");
4029       if (allocation()->Opcode() == Op_Allocate) {
4030         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
4031         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4032         if (zeroes_done == k->layout_helper())
4033           zeroes_done = size_limit;
4034       }
4035     }
4036     if (zeroes_done < size_limit) {
4037       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4038                                             zeroes_done, size_in_bytes, phase);
4039     }
4040   }
4041 
4042   set_complete(phase);
4043   return rawmem;
4044 }
4045 
4046 
4047 #ifdef ASSERT
4048 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4049   if (is_complete())
4050     return true;                // stores could be anything at this point
4051   assert(allocation() != NULL, "must be present");
4052   intptr_t last_off = allocation()->minimum_header_size();
4053   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4054     Node* st = in(i);
4055     intptr_t st_off = get_store_offset(st, phase);
4056     if (st_off < 0)  continue;  // ignore dead garbage
4057     if (last_off > st_off) {
4058       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4059       this->dump(2);
4060       assert(false, "ascending store offsets");
4061       return false;
4062     }
4063     last_off = st_off + st->as_Store()->memory_size();
4064   }
4065   return true;
4066 }
4067 #endif //ASSERT
4068 
4069 
4070 
4071 
4072 //============================MergeMemNode=====================================
4073 //
4074 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4075 // contributing store or call operations.  Each contributor provides the memory
4076 // state for a particular "alias type" (see Compile::alias_type).  For example,
4077 // if a MergeMem has an input X for alias category #6, then any memory reference
4078 // to alias category #6 may use X as its memory state input, as an exact equivalent
4079 // to using the MergeMem as a whole.
4080 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4081 //
4082 // (Here, the <N> notation gives the index of the relevant adr_type.)
4083 //
4084 // In one special case (and more cases in the future), alias categories overlap.
4085 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4086 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4087 // it is exactly equivalent to that state W:
4088 //   MergeMem(<Bot>: W) <==> W
4089 //
4090 // Usually, the merge has more than one input.  In that case, where inputs
4091 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4092 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4093 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4094 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4095 //
4096 // A merge can take a "wide" memory state as one of its narrow inputs.
4097 // This simply means that the merge observes out only the relevant parts of
4098 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4099 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4100 //
4101 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4102 // and that memory slices "leak through":
4103 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4104 //
4105 // But, in such a cascade, repeated memory slices can "block the leak":
4106 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4107 //
4108 // In the last example, Y is not part of the combined memory state of the
4109 // outermost MergeMem.  The system must, of course, prevent unschedulable
4110 // memory states from arising, so you can be sure that the state Y is somehow
4111 // a precursor to state Y'.
4112 //
4113 //
4114 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4115 // of each MergeMemNode array are exactly the numerical alias indexes, including
4116 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4117 // Compile::alias_type (and kin) produce and manage these indexes.
4118 //
4119 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4120 // (Note that this provides quick access to the top node inside MergeMem methods,
4121 // without the need to reach out via TLS to Compile::current.)
4122 //
4123 // As a consequence of what was just described, a MergeMem that represents a full
4124 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4125 // containing all alias categories.
4126 //
4127 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4128 //
4129 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4130 // a memory state for the alias type <N>, or else the top node, meaning that
4131 // there is no particular input for that alias type.  Note that the length of
4132 // a MergeMem is variable, and may be extended at any time to accommodate new
4133 // memory states at larger alias indexes.  When merges grow, they are of course
4134 // filled with "top" in the unused in() positions.
4135 //
4136 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4137 // (Top was chosen because it works smoothly with passes like GCM.)
4138 //
4139 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4140 // the type of random VM bits like TLS references.)  Since it is always the
4141 // first non-Bot memory slice, some low-level loops use it to initialize an
4142 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4143 //
4144 //
4145 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4146 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4147 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4148 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4149 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4150 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4151 //
4152 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4153 // really that different from the other memory inputs.  An abbreviation called
4154 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4155 //
4156 //
4157 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4158 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4159 // that "emerges though" the base memory will be marked as excluding the alias types
4160 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4161 //
4162 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4163 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4164 //
4165 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4166 // (It is currently unimplemented.)  As you can see, the resulting merge is
4167 // actually a disjoint union of memory states, rather than an overlay.
4168 //
4169 
4170 //------------------------------MergeMemNode-----------------------------------
4171 Node* MergeMemNode::make_empty_memory() {
4172   Node* empty_memory = (Node*) Compile::current()->top();
4173   assert(empty_memory->is_top(), "correct sentinel identity");
4174   return empty_memory;
4175 }
4176 
4177 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4178   init_class_id(Class_MergeMem);
4179   // all inputs are nullified in Node::Node(int)
4180   // set_input(0, NULL);  // no control input
4181 
4182   // Initialize the edges uniformly to top, for starters.
4183   Node* empty_mem = make_empty_memory();
4184   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4185     init_req(i,empty_mem);
4186   }
4187   assert(empty_memory() == empty_mem, "");
4188 
4189   if( new_base != NULL && new_base->is_MergeMem() ) {
4190     MergeMemNode* mdef = new_base->as_MergeMem();
4191     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4192     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4193       mms.set_memory(mms.memory2());
4194     }
4195     assert(base_memory() == mdef->base_memory(), "");
4196   } else {
4197     set_base_memory(new_base);
4198   }
4199 }
4200 
4201 // Make a new, untransformed MergeMem with the same base as 'mem'.
4202 // If mem is itself a MergeMem, populate the result with the same edges.
4203 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4204   return new(C) MergeMemNode(mem);
4205 }
4206 
4207 //------------------------------cmp--------------------------------------------
4208 uint MergeMemNode::hash() const { return NO_HASH; }
4209 uint MergeMemNode::cmp( const Node &n ) const {
4210   return (&n == this);          // Always fail except on self
4211 }
4212 
4213 //------------------------------Identity---------------------------------------
4214 Node* MergeMemNode::Identity(PhaseTransform *phase) {
4215   // Identity if this merge point does not record any interesting memory
4216   // disambiguations.
4217   Node* base_mem = base_memory();
4218   Node* empty_mem = empty_memory();
4219   if (base_mem != empty_mem) {  // Memory path is not dead?
4220     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4221       Node* mem = in(i);
4222       if (mem != empty_mem && mem != base_mem) {
4223         return this;            // Many memory splits; no change
4224       }
4225     }
4226   }
4227   return base_mem;              // No memory splits; ID on the one true input
4228 }
4229 
4230 //------------------------------Ideal------------------------------------------
4231 // This method is invoked recursively on chains of MergeMem nodes
4232 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4233   // Remove chain'd MergeMems
4234   //
4235   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4236   // relative to the "in(Bot)".  Since we are patching both at the same time,
4237   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4238   // but rewrite each "in(i)" relative to the new "in(Bot)".
4239   Node *progress = NULL;
4240 
4241 
4242   Node* old_base = base_memory();
4243   Node* empty_mem = empty_memory();
4244   if (old_base == empty_mem)
4245     return NULL; // Dead memory path.
4246 
4247   MergeMemNode* old_mbase;
4248   if (old_base != NULL && old_base->is_MergeMem())
4249     old_mbase = old_base->as_MergeMem();
4250   else
4251     old_mbase = NULL;
4252   Node* new_base = old_base;
4253 
4254   // simplify stacked MergeMems in base memory
4255   if (old_mbase)  new_base = old_mbase->base_memory();
4256 
4257   // the base memory might contribute new slices beyond my req()
4258   if (old_mbase)  grow_to_match(old_mbase);
4259 
4260   // Look carefully at the base node if it is a phi.
4261   PhiNode* phi_base;
4262   if (new_base != NULL && new_base->is_Phi())
4263     phi_base = new_base->as_Phi();
4264   else
4265     phi_base = NULL;
4266 
4267   Node*    phi_reg = NULL;
4268   uint     phi_len = (uint)-1;
4269   if (phi_base != NULL && !phi_base->is_copy()) {
4270     // do not examine phi if degraded to a copy
4271     phi_reg = phi_base->region();
4272     phi_len = phi_base->req();
4273     // see if the phi is unfinished
4274     for (uint i = 1; i < phi_len; i++) {
4275       if (phi_base->in(i) == NULL) {
4276         // incomplete phi; do not look at it yet!
4277         phi_reg = NULL;
4278         phi_len = (uint)-1;
4279         break;
4280       }
4281     }
4282   }
4283 
4284   // Note:  We do not call verify_sparse on entry, because inputs
4285   // can normalize to the base_memory via subsume_node or similar
4286   // mechanisms.  This method repairs that damage.
4287 
4288   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4289 
4290   // Look at each slice.
4291   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4292     Node* old_in = in(i);
4293     // calculate the old memory value
4294     Node* old_mem = old_in;
4295     if (old_mem == empty_mem)  old_mem = old_base;
4296     assert(old_mem == memory_at(i), "");
4297 
4298     // maybe update (reslice) the old memory value
4299 
4300     // simplify stacked MergeMems
4301     Node* new_mem = old_mem;
4302     MergeMemNode* old_mmem;
4303     if (old_mem != NULL && old_mem->is_MergeMem())
4304       old_mmem = old_mem->as_MergeMem();
4305     else
4306       old_mmem = NULL;
4307     if (old_mmem == this) {
4308       // This can happen if loops break up and safepoints disappear.
4309       // A merge of BotPtr (default) with a RawPtr memory derived from a
4310       // safepoint can be rewritten to a merge of the same BotPtr with
4311       // the BotPtr phi coming into the loop.  If that phi disappears
4312       // also, we can end up with a self-loop of the mergemem.
4313       // In general, if loops degenerate and memory effects disappear,
4314       // a mergemem can be left looking at itself.  This simply means
4315       // that the mergemem's default should be used, since there is
4316       // no longer any apparent effect on this slice.
4317       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4318       //       from start.  Update the input to TOP.
4319       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4320     }
4321     else if (old_mmem != NULL) {
4322       new_mem = old_mmem->memory_at(i);
4323     }
4324     // else preceding memory was not a MergeMem
4325 
4326     // replace equivalent phis (unfortunately, they do not GVN together)
4327     if (new_mem != NULL && new_mem != new_base &&
4328         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4329       if (new_mem->is_Phi()) {
4330         PhiNode* phi_mem = new_mem->as_Phi();
4331         for (uint i = 1; i < phi_len; i++) {
4332           if (phi_base->in(i) != phi_mem->in(i)) {
4333             phi_mem = NULL;
4334             break;
4335           }
4336         }
4337         if (phi_mem != NULL) {
4338           // equivalent phi nodes; revert to the def
4339           new_mem = new_base;
4340         }
4341       }
4342     }
4343 
4344     // maybe store down a new value
4345     Node* new_in = new_mem;
4346     if (new_in == new_base)  new_in = empty_mem;
4347 
4348     if (new_in != old_in) {
4349       // Warning:  Do not combine this "if" with the previous "if"
4350       // A memory slice might have be be rewritten even if it is semantically
4351       // unchanged, if the base_memory value has changed.
4352       set_req(i, new_in);
4353       progress = this;          // Report progress
4354     }
4355   }
4356 
4357   if (new_base != old_base) {
4358     set_req(Compile::AliasIdxBot, new_base);
4359     // Don't use set_base_memory(new_base), because we need to update du.
4360     assert(base_memory() == new_base, "");
4361     progress = this;
4362   }
4363 
4364   if( base_memory() == this ) {
4365     // a self cycle indicates this memory path is dead
4366     set_req(Compile::AliasIdxBot, empty_mem);
4367   }
4368 
4369   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4370   // Recursion must occur after the self cycle check above
4371   if( base_memory()->is_MergeMem() ) {
4372     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4373     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4374     if( m != NULL && (m->is_top() ||
4375         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4376       // propagate rollup of dead cycle to self
4377       set_req(Compile::AliasIdxBot, empty_mem);
4378     }
4379   }
4380 
4381   if( base_memory() == empty_mem ) {
4382     progress = this;
4383     // Cut inputs during Parse phase only.
4384     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4385     if( !can_reshape ) {
4386       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4387         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4388       }
4389     }
4390   }
4391 
4392   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4393     // Check if PhiNode::Ideal's "Split phis through memory merges"
4394     // transform should be attempted. Look for this->phi->this cycle.
4395     uint merge_width = req();
4396     if (merge_width > Compile::AliasIdxRaw) {
4397       PhiNode* phi = base_memory()->as_Phi();
4398       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4399         if (phi->in(i) == this) {
4400           phase->is_IterGVN()->_worklist.push(phi);
4401           break;
4402         }
4403       }
4404     }
4405   }
4406 
4407   assert(progress || verify_sparse(), "please, no dups of base");
4408   return progress;
4409 }
4410 
4411 //-------------------------set_base_memory-------------------------------------
4412 void MergeMemNode::set_base_memory(Node *new_base) {
4413   Node* empty_mem = empty_memory();
4414   set_req(Compile::AliasIdxBot, new_base);
4415   assert(memory_at(req()) == new_base, "must set default memory");
4416   // Clear out other occurrences of new_base:
4417   if (new_base != empty_mem) {
4418     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4419       if (in(i) == new_base)  set_req(i, empty_mem);
4420     }
4421   }
4422 }
4423 
4424 //------------------------------out_RegMask------------------------------------
4425 const RegMask &MergeMemNode::out_RegMask() const {
4426   return RegMask::Empty;
4427 }
4428 
4429 //------------------------------dump_spec--------------------------------------
4430 #ifndef PRODUCT
4431 void MergeMemNode::dump_spec(outputStream *st) const {
4432   st->print(" {");
4433   Node* base_mem = base_memory();
4434   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4435     Node* mem = memory_at(i);
4436     if (mem == base_mem) { st->print(" -"); continue; }
4437     st->print( " N%d:", mem->_idx );
4438     Compile::current()->get_adr_type(i)->dump_on(st);
4439   }
4440   st->print(" }");
4441 }
4442 #endif // !PRODUCT
4443 
4444 
4445 #ifdef ASSERT
4446 static bool might_be_same(Node* a, Node* b) {
4447   if (a == b)  return true;
4448   if (!(a->is_Phi() || b->is_Phi()))  return false;
4449   // phis shift around during optimization
4450   return true;  // pretty stupid...
4451 }
4452 
4453 // verify a narrow slice (either incoming or outgoing)
4454 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4455   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4456   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4457   if (Node::in_dump())      return;  // muzzle asserts when printing
4458   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4459   assert(n != NULL, "");
4460   // Elide intervening MergeMem's
4461   while (n->is_MergeMem()) {
4462     n = n->as_MergeMem()->memory_at(alias_idx);
4463   }
4464   Compile* C = Compile::current();
4465   const TypePtr* n_adr_type = n->adr_type();
4466   if (n == m->empty_memory()) {
4467     // Implicit copy of base_memory()
4468   } else if (n_adr_type != TypePtr::BOTTOM) {
4469     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4470     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4471   } else {
4472     // A few places like make_runtime_call "know" that VM calls are narrow,
4473     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4474     bool expected_wide_mem = false;
4475     if (n == m->base_memory()) {
4476       expected_wide_mem = true;
4477     } else if (alias_idx == Compile::AliasIdxRaw ||
4478                n == m->memory_at(Compile::AliasIdxRaw)) {
4479       expected_wide_mem = true;
4480     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4481       // memory can "leak through" calls on channels that
4482       // are write-once.  Allow this also.
4483       expected_wide_mem = true;
4484     }
4485     assert(expected_wide_mem, "expected narrow slice replacement");
4486   }
4487 }
4488 #else // !ASSERT
4489 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4490 #endif
4491 
4492 
4493 //-----------------------------memory_at---------------------------------------
4494 Node* MergeMemNode::memory_at(uint alias_idx) const {
4495   assert(alias_idx >= Compile::AliasIdxRaw ||
4496          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4497          "must avoid base_memory and AliasIdxTop");
4498 
4499   // Otherwise, it is a narrow slice.
4500   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4501   Compile *C = Compile::current();
4502   if (is_empty_memory(n)) {
4503     // the array is sparse; empty slots are the "top" node
4504     n = base_memory();
4505     assert(Node::in_dump()
4506            || n == NULL || n->bottom_type() == Type::TOP
4507            || n->adr_type() == NULL // address is TOP
4508            || n->adr_type() == TypePtr::BOTTOM
4509            || n->adr_type() == TypeRawPtr::BOTTOM
4510            || Compile::current()->AliasLevel() == 0,
4511            "must be a wide memory");
4512     // AliasLevel == 0 if we are organizing the memory states manually.
4513     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4514   } else {
4515     // make sure the stored slice is sane
4516     #ifdef ASSERT
4517     if (is_error_reported() || Node::in_dump()) {
4518     } else if (might_be_same(n, base_memory())) {
4519       // Give it a pass:  It is a mostly harmless repetition of the base.
4520       // This can arise normally from node subsumption during optimization.
4521     } else {
4522       verify_memory_slice(this, alias_idx, n);
4523     }
4524     #endif
4525   }
4526   return n;
4527 }
4528 
4529 //---------------------------set_memory_at-------------------------------------
4530 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4531   verify_memory_slice(this, alias_idx, n);
4532   Node* empty_mem = empty_memory();
4533   if (n == base_memory())  n = empty_mem;  // collapse default
4534   uint need_req = alias_idx+1;
4535   if (req() < need_req) {
4536     if (n == empty_mem)  return;  // already the default, so do not grow me
4537     // grow the sparse array
4538     do {
4539       add_req(empty_mem);
4540     } while (req() < need_req);
4541   }
4542   set_req( alias_idx, n );
4543 }
4544 
4545 
4546 
4547 //--------------------------iteration_setup------------------------------------
4548 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4549   if (other != NULL) {
4550     grow_to_match(other);
4551     // invariant:  the finite support of mm2 is within mm->req()
4552     #ifdef ASSERT
4553     for (uint i = req(); i < other->req(); i++) {
4554       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4555     }
4556     #endif
4557   }
4558   // Replace spurious copies of base_memory by top.
4559   Node* base_mem = base_memory();
4560   if (base_mem != NULL && !base_mem->is_top()) {
4561     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4562       if (in(i) == base_mem)
4563         set_req(i, empty_memory());
4564     }
4565   }
4566 }
4567 
4568 //---------------------------grow_to_match-------------------------------------
4569 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4570   Node* empty_mem = empty_memory();
4571   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4572   // look for the finite support of the other memory
4573   for (uint i = other->req(); --i >= req(); ) {
4574     if (other->in(i) != empty_mem) {
4575       uint new_len = i+1;
4576       while (req() < new_len)  add_req(empty_mem);
4577       break;
4578     }
4579   }
4580 }
4581 
4582 //---------------------------verify_sparse-------------------------------------
4583 #ifndef PRODUCT
4584 bool MergeMemNode::verify_sparse() const {
4585   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4586   Node* base_mem = base_memory();
4587   // The following can happen in degenerate cases, since empty==top.
4588   if (is_empty_memory(base_mem))  return true;
4589   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4590     assert(in(i) != NULL, "sane slice");
4591     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4592   }
4593   return true;
4594 }
4595 
4596 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4597   Node* n;
4598   n = mm->in(idx);
4599   if (mem == n)  return true;  // might be empty_memory()
4600   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4601   if (mem == n)  return true;
4602   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4603     if (mem == n)  return true;
4604     if (n == NULL)  break;
4605   }
4606   return false;
4607 }
4608 #endif // !PRODUCT