1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 protected:
  43 #ifdef ASSERT
  44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  45 #endif
  46   virtual uint size_of() const; // Size is bigger (ASSERT only)
  47 public:
  48   enum { Control,               // When is it safe to do this load?
  49          Memory,                // Chunk of memory is being loaded from
  50          Address,               // Actually address, derived from base
  51          ValueIn,               // Value to store
  52          OopStore               // Preceeding oop store, only in StoreCM
  53   };
  54   typedef enum { unordered = 0,
  55                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  56                  release        // Store has to release or be preceded by MemBarRelease.
  57   } MemOrd;
  58 protected:
  59   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  60     : Node(c0,c1,c2   ) {
  61     init_class_id(Class_Mem);
  62     debug_only(_adr_type=at; adr_type();)
  63   }
  64   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  65     : Node(c0,c1,c2,c3) {
  66     init_class_id(Class_Mem);
  67     debug_only(_adr_type=at; adr_type();)
  68   }
  69   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  70     : Node(c0,c1,c2,c3,c4) {
  71     init_class_id(Class_Mem);
  72     debug_only(_adr_type=at; adr_type();)
  73   }
  74 
  75 public:
  76   // Helpers for the optimizer.  Documented in memnode.cpp.
  77   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  78                                       Node* p2, AllocateNode* a2,
  79                                       PhaseTransform* phase);
  80   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  81 
  82   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  83   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  84   // This one should probably be a phase-specific function:
  85   static bool all_controls_dominate(Node* dom, Node* sub);
  86 
  87   // Find any cast-away of null-ness and keep its control.
  88   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
  89   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
  90 
  91   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  92 
  93   // Shared code for Ideal methods:
  94   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  95 
  96   // Helper function for adr_type() implementations.
  97   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  98 
  99   // Raw access function, to allow copying of adr_type efficiently in
 100   // product builds and retain the debug info for debug builds.
 101   const TypePtr *raw_adr_type() const {
 102 #ifdef ASSERT
 103     return _adr_type;
 104 #else
 105     return 0;
 106 #endif
 107   }
 108 
 109   // Map a load or store opcode to its corresponding store opcode.
 110   // (Return -1 if unknown.)
 111   virtual int store_Opcode() const { return -1; }
 112 
 113   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 114   virtual BasicType memory_type() const = 0;
 115   virtual int memory_size() const {
 116 #ifdef ASSERT
 117     return type2aelembytes(memory_type(), true);
 118 #else
 119     return type2aelembytes(memory_type());
 120 #endif
 121   }
 122 
 123   // Search through memory states which precede this node (load or store).
 124   // Look for an exact match for the address, with no intervening
 125   // aliased stores.
 126   Node* find_previous_store(PhaseTransform* phase);
 127 
 128   // Can this node (load or store) accurately see a stored value in
 129   // the given memory state?  (The state may or may not be in(Memory).)
 130   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 131 
 132 #ifndef PRODUCT
 133   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 134   virtual void dump_spec(outputStream *st) const;
 135 #endif
 136 };
 137 
 138 //------------------------------LoadNode---------------------------------------
 139 // Load value; requires Memory and Address
 140 class LoadNode : public MemNode {
 141 public:
 142   // Some loads (from unsafe) should be pinned: they don't depend only
 143   // on the dominating test.  The boolean field _depends_only_on_test
 144   // below records whether that node depends only on the dominating
 145   // test.
 146   // Methods used to build LoadNodes pass an argument of type enum
 147   // ControlDependency instead of a boolean because those methods
 148   // typically have multiple boolean parameters with default values:
 149   // passing the wrong boolean to one of these parameters by mistake
 150   // goes easily unnoticed. Using an enum, the compiler can check that
 151   // the type of a value and the type of the parameter match.
 152   enum ControlDependency {
 153     Pinned,
 154     DependsOnlyOnTest
 155   };
 156 private:
 157   // LoadNode::hash() doesn't take the _depends_only_on_test field
 158   // into account: If the graph already has a non-pinned LoadNode and
 159   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 160   // to replace the pinned LoadNode with the non-pinned LoadNode,
 161   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 162   // those inputs in the first place. If the graph already has a
 163   // pinned LoadNode and we add a non pinned LoadNode with the same
 164   // inputs, it's safe (but suboptimal) for GVN to replace the
 165   // non-pinned LoadNode by the pinned LoadNode.
 166   bool _depends_only_on_test;
 167 
 168   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 169   // loads that can be reordered, and such requiring acquire semantics to
 170   // adhere to the Java specification.  The required behaviour is stored in
 171   // this field.
 172   const MemOrd _mo;
 173 
 174 protected:
 175   virtual uint cmp(const Node &n) const;
 176   virtual uint size_of() const; // Size is bigger
 177   // Should LoadNode::Ideal() attempt to remove control edges?
 178   virtual bool can_remove_control() const;
 179   const Type* const _type;      // What kind of value is loaded?
 180 public:
 181 
 182   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 183     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
 184     init_class_id(Class_Load);
 185   }
 186   inline bool is_unordered() const { return !is_acquire(); }
 187   inline bool is_acquire() const {
 188     assert(_mo == unordered || _mo == acquire, "unexpected");
 189     return _mo == acquire;
 190   }
 191 
 192   // Polymorphic factory method:
 193    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 194                      const TypePtr* at, const Type *rt, BasicType bt,
 195                      MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 196 
 197   virtual uint hash()   const;  // Check the type
 198 
 199   // Handle algebraic identities here.  If we have an identity, return the Node
 200   // we are equivalent to.  We look for Load of a Store.
 201   virtual Node *Identity( PhaseTransform *phase );
 202 
 203   // If the load is from Field memory and the pointer is non-null, it might be possible to
 204   // zero out the control input.
 205   // If the offset is constant and the base is an object allocation,
 206   // try to hook me up to the exact initializing store.
 207   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 208 
 209   // Split instance field load through Phi.
 210   Node* split_through_phi(PhaseGVN *phase);
 211 
 212   // Recover original value from boxed values
 213   Node *eliminate_autobox(PhaseGVN *phase);
 214 
 215   // Compute a new Type for this node.  Basically we just do the pre-check,
 216   // then call the virtual add() to set the type.
 217   virtual const Type *Value( PhaseTransform *phase ) const;
 218 
 219   // Common methods for LoadKlass and LoadNKlass nodes.
 220   const Type *klass_value_common( PhaseTransform *phase ) const;
 221   Node *klass_identity_common( PhaseTransform *phase );
 222 
 223   virtual uint ideal_reg() const;
 224   virtual const Type *bottom_type() const;
 225   // Following method is copied from TypeNode:
 226   void set_type(const Type* t) {
 227     assert(t != NULL, "sanity");
 228     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 229     *(const Type**)&_type = t;   // cast away const-ness
 230     // If this node is in the hash table, make sure it doesn't need a rehash.
 231     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 232   }
 233   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 234 
 235   // Do not match memory edge
 236   virtual uint match_edge(uint idx) const;
 237 
 238   // Map a load opcode to its corresponding store opcode.
 239   virtual int store_Opcode() const = 0;
 240 
 241   // Check if the load's memory input is a Phi node with the same control.
 242   bool is_instance_field_load_with_local_phi(Node* ctrl);
 243 
 244 #ifndef PRODUCT
 245   virtual void dump_spec(outputStream *st) const;
 246 #endif
 247 #ifdef ASSERT
 248   // Helper function to allow a raw load without control edge for some cases
 249   static bool is_immutable_value(Node* adr);
 250 #endif
 251 protected:
 252   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 253                                      ciKlass* klass) const;
 254   // depends_only_on_test is almost always true, and needs to be almost always
 255   // true to enable key hoisting & commoning optimizations.  However, for the
 256   // special case of RawPtr loads from TLS top & end, and other loads performed by
 257   // GC barriers, the control edge carries the dependence preventing hoisting past
 258   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 259   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 260   // which produce results (new raw memory state) inside of loops preventing all
 261   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 262   // See comment in macro.cpp, around line 125 expand_allocate_common().
 263   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
 264 };
 265 
 266 //------------------------------LoadBNode--------------------------------------
 267 // Load a byte (8bits signed) from memory
 268 class LoadBNode : public LoadNode {
 269 public:
 270   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 271     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 272   virtual int Opcode() const;
 273   virtual uint ideal_reg() const { return Op_RegI; }
 274   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 275   virtual const Type *Value(PhaseTransform *phase) const;
 276   virtual int store_Opcode() const { return Op_StoreB; }
 277   virtual BasicType memory_type() const { return T_BYTE; }
 278 };
 279 
 280 //------------------------------LoadUBNode-------------------------------------
 281 // Load a unsigned byte (8bits unsigned) from memory
 282 class LoadUBNode : public LoadNode {
 283 public:
 284   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 285     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 286   virtual int Opcode() const;
 287   virtual uint ideal_reg() const { return Op_RegI; }
 288   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 289   virtual const Type *Value(PhaseTransform *phase) const;
 290   virtual int store_Opcode() const { return Op_StoreB; }
 291   virtual BasicType memory_type() const { return T_BYTE; }
 292 };
 293 
 294 //------------------------------LoadUSNode-------------------------------------
 295 // Load an unsigned short/char (16bits unsigned) from memory
 296 class LoadUSNode : public LoadNode {
 297 public:
 298   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 299     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 300   virtual int Opcode() const;
 301   virtual uint ideal_reg() const { return Op_RegI; }
 302   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 303   virtual const Type *Value(PhaseTransform *phase) const;
 304   virtual int store_Opcode() const { return Op_StoreC; }
 305   virtual BasicType memory_type() const { return T_CHAR; }
 306 };
 307 
 308 //------------------------------LoadSNode--------------------------------------
 309 // Load a short (16bits signed) from memory
 310 class LoadSNode : public LoadNode {
 311 public:
 312   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 313     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 314   virtual int Opcode() const;
 315   virtual uint ideal_reg() const { return Op_RegI; }
 316   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 317   virtual const Type *Value(PhaseTransform *phase) const;
 318   virtual int store_Opcode() const { return Op_StoreC; }
 319   virtual BasicType memory_type() const { return T_SHORT; }
 320 };
 321 
 322 //------------------------------LoadINode--------------------------------------
 323 // Load an integer from memory
 324 class LoadINode : public LoadNode {
 325 public:
 326   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 327     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 328   virtual int Opcode() const;
 329   virtual uint ideal_reg() const { return Op_RegI; }
 330   virtual int store_Opcode() const { return Op_StoreI; }
 331   virtual BasicType memory_type() const { return T_INT; }
 332 };
 333 
 334 //------------------------------LoadRangeNode----------------------------------
 335 // Load an array length from the array
 336 class LoadRangeNode : public LoadINode {
 337 public:
 338   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 339     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 340   virtual int Opcode() const;
 341   virtual const Type *Value( PhaseTransform *phase ) const;
 342   virtual Node *Identity( PhaseTransform *phase );
 343   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 344 };
 345 
 346 //------------------------------LoadLNode--------------------------------------
 347 // Load a long from memory
 348 class LoadLNode : public LoadNode {
 349   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 350   virtual uint cmp( const Node &n ) const {
 351     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 352       && LoadNode::cmp(n);
 353   }
 354   virtual uint size_of() const { return sizeof(*this); }
 355   const bool _require_atomic_access;  // is piecewise load forbidden?
 356 
 357 public:
 358   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 359             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 360     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 361   virtual int Opcode() const;
 362   virtual uint ideal_reg() const { return Op_RegL; }
 363   virtual int store_Opcode() const { return Op_StoreL; }
 364   virtual BasicType memory_type() const { return T_LONG; }
 365   bool require_atomic_access() const { return _require_atomic_access; }
 366   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 367                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 368 #ifndef PRODUCT
 369   virtual void dump_spec(outputStream *st) const {
 370     LoadNode::dump_spec(st);
 371     if (_require_atomic_access)  st->print(" Atomic!");
 372   }
 373 #endif
 374 };
 375 
 376 //------------------------------LoadL_unalignedNode----------------------------
 377 // Load a long from unaligned memory
 378 class LoadL_unalignedNode : public LoadLNode {
 379 public:
 380   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 381     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 382   virtual int Opcode() const;
 383 };
 384 
 385 //------------------------------LoadFNode--------------------------------------
 386 // Load a float (64 bits) from memory
 387 class LoadFNode : public LoadNode {
 388 public:
 389   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 390     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 391   virtual int Opcode() const;
 392   virtual uint ideal_reg() const { return Op_RegF; }
 393   virtual int store_Opcode() const { return Op_StoreF; }
 394   virtual BasicType memory_type() const { return T_FLOAT; }
 395 };
 396 
 397 //------------------------------LoadDNode--------------------------------------
 398 // Load a double (64 bits) from memory
 399 class LoadDNode : public LoadNode {
 400   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 401   virtual uint cmp( const Node &n ) const {
 402     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 403       && LoadNode::cmp(n);
 404   }
 405   virtual uint size_of() const { return sizeof(*this); }
 406   const bool _require_atomic_access;  // is piecewise load forbidden?
 407 
 408 public:
 409   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 410             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 411     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 412   virtual int Opcode() const;
 413   virtual uint ideal_reg() const { return Op_RegD; }
 414   virtual int store_Opcode() const { return Op_StoreD; }
 415   virtual BasicType memory_type() const { return T_DOUBLE; }
 416   bool require_atomic_access() const { return _require_atomic_access; }
 417   static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 418                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 419 #ifndef PRODUCT
 420   virtual void dump_spec(outputStream *st) const {
 421     LoadNode::dump_spec(st);
 422     if (_require_atomic_access)  st->print(" Atomic!");
 423   }
 424 #endif
 425 };
 426 
 427 //------------------------------LoadD_unalignedNode----------------------------
 428 // Load a double from unaligned memory
 429 class LoadD_unalignedNode : public LoadDNode {
 430 public:
 431   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 432     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 433   virtual int Opcode() const;
 434 };
 435 
 436 //------------------------------LoadPNode--------------------------------------
 437 // Load a pointer from memory (either object or array)
 438 class LoadPNode : public LoadNode {
 439 public:
 440   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 441     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 442   virtual int Opcode() const;
 443   virtual uint ideal_reg() const { return Op_RegP; }
 444   virtual int store_Opcode() const { return Op_StoreP; }
 445   virtual BasicType memory_type() const { return T_ADDRESS; }
 446 };
 447 
 448 
 449 //------------------------------LoadNNode--------------------------------------
 450 // Load a narrow oop from memory (either object or array)
 451 class LoadNNode : public LoadNode {
 452 public:
 453   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 454     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 455   virtual int Opcode() const;
 456   virtual uint ideal_reg() const { return Op_RegN; }
 457   virtual int store_Opcode() const { return Op_StoreN; }
 458   virtual BasicType memory_type() const { return T_NARROWOOP; }
 459 };
 460 
 461 //------------------------------LoadKlassNode----------------------------------
 462 // Load a Klass from an object
 463 class LoadKlassNode : public LoadPNode {
 464 protected:
 465   // In most cases, LoadKlassNode does not have the control input set. If the control
 466   // input is set, it must not be removed (by LoadNode::Ideal()).
 467   virtual bool can_remove_control() const;
 468 public:
 469   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 470     : LoadPNode(c, mem, adr, at, tk, mo) {}
 471   virtual int Opcode() const;
 472   virtual const Type *Value( PhaseTransform *phase ) const;
 473   virtual Node *Identity( PhaseTransform *phase );
 474   virtual bool depends_only_on_test() const { return true; }
 475 
 476   // Polymorphic factory method:
 477   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 478                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 479 };
 480 
 481 //------------------------------LoadNKlassNode---------------------------------
 482 // Load a narrow Klass from an object.
 483 class LoadNKlassNode : public LoadNNode {
 484 public:
 485   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 486     : LoadNNode(c, mem, adr, at, tk, mo) {}
 487   virtual int Opcode() const;
 488   virtual uint ideal_reg() const { return Op_RegN; }
 489   virtual int store_Opcode() const { return Op_StoreNKlass; }
 490   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 491 
 492   virtual const Type *Value( PhaseTransform *phase ) const;
 493   virtual Node *Identity( PhaseTransform *phase );
 494   virtual bool depends_only_on_test() const { return true; }
 495 };
 496 
 497 
 498 //------------------------------StoreNode--------------------------------------
 499 // Store value; requires Store, Address and Value
 500 class StoreNode : public MemNode {
 501 private:
 502   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 503   // stores that can be reordered, and such requiring release semantics to
 504   // adhere to the Java specification.  The required behaviour is stored in
 505   // this field.
 506   const MemOrd _mo;
 507   // Needed for proper cloning.
 508   virtual uint size_of() const { return sizeof(*this); }
 509 protected:
 510   virtual uint cmp( const Node &n ) const;
 511   virtual bool depends_only_on_test() const { return false; }
 512 
 513   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 514   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 515 
 516 public:
 517   // We must ensure that stores of object references will be visible
 518   // only after the object's initialization. So the callers of this
 519   // procedure must indicate that the store requires `release'
 520   // semantics, if the stored value is an object reference that might
 521   // point to a new object and may become externally visible.
 522   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 523     : MemNode(c, mem, adr, at, val), _mo(mo) {
 524     init_class_id(Class_Store);
 525   }
 526   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 527     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 528     init_class_id(Class_Store);
 529   }
 530 
 531   inline bool is_unordered() const { return !is_release(); }
 532   inline bool is_release() const {
 533     assert((_mo == unordered || _mo == release), "unexpected");
 534     return _mo == release;
 535   }
 536 
 537   // Conservatively release stores of object references in order to
 538   // ensure visibility of object initialization.
 539   static inline MemOrd release_if_reference(const BasicType t) {
 540     const MemOrd mo = (t == T_ARRAY ||
 541                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 542                        t == T_OBJECT) ? release : unordered;
 543     return mo;
 544   }
 545 
 546   // Polymorphic factory method
 547   //
 548   // We must ensure that stores of object references will be visible
 549   // only after the object's initialization. So the callers of this
 550   // procedure must indicate that the store requires `release'
 551   // semantics, if the stored value is an object reference that might
 552   // point to a new object and may become externally visible.
 553   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 554                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 555 
 556   virtual uint hash() const;    // Check the type
 557 
 558   // If the store is to Field memory and the pointer is non-null, we can
 559   // zero out the control input.
 560   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 561 
 562   // Compute a new Type for this node.  Basically we just do the pre-check,
 563   // then call the virtual add() to set the type.
 564   virtual const Type *Value( PhaseTransform *phase ) const;
 565 
 566   // Check for identity function on memory (Load then Store at same address)
 567   virtual Node *Identity( PhaseTransform *phase );
 568 
 569   // Do not match memory edge
 570   virtual uint match_edge(uint idx) const;
 571 
 572   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 573 
 574   // Map a store opcode to its corresponding own opcode, trivially.
 575   virtual int store_Opcode() const { return Opcode(); }
 576 
 577   // have all possible loads of the value stored been optimized away?
 578   bool value_never_loaded(PhaseTransform *phase) const;
 579 };
 580 
 581 //------------------------------StoreBNode-------------------------------------
 582 // Store byte to memory
 583 class StoreBNode : public StoreNode {
 584 public:
 585   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 586     : StoreNode(c, mem, adr, at, val, mo) {}
 587   virtual int Opcode() const;
 588   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 589   virtual BasicType memory_type() const { return T_BYTE; }
 590 };
 591 
 592 //------------------------------StoreCNode-------------------------------------
 593 // Store char/short to memory
 594 class StoreCNode : public StoreNode {
 595 public:
 596   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 597     : StoreNode(c, mem, adr, at, val, mo) {}
 598   virtual int Opcode() const;
 599   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 600   virtual BasicType memory_type() const { return T_CHAR; }
 601 };
 602 
 603 //------------------------------StoreINode-------------------------------------
 604 // Store int to memory
 605 class StoreINode : public StoreNode {
 606 public:
 607   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 608     : StoreNode(c, mem, adr, at, val, mo) {}
 609   virtual int Opcode() const;
 610   virtual BasicType memory_type() const { return T_INT; }
 611 };
 612 
 613 //------------------------------StoreLNode-------------------------------------
 614 // Store long to memory
 615 class StoreLNode : public StoreNode {
 616   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 617   virtual uint cmp( const Node &n ) const {
 618     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 619       && StoreNode::cmp(n);
 620   }
 621   virtual uint size_of() const { return sizeof(*this); }
 622   const bool _require_atomic_access;  // is piecewise store forbidden?
 623 
 624 public:
 625   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 626     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 627   virtual int Opcode() const;
 628   virtual BasicType memory_type() const { return T_LONG; }
 629   bool require_atomic_access() const { return _require_atomic_access; }
 630   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 631 #ifndef PRODUCT
 632   virtual void dump_spec(outputStream *st) const {
 633     StoreNode::dump_spec(st);
 634     if (_require_atomic_access)  st->print(" Atomic!");
 635   }
 636 #endif
 637 };
 638 
 639 //------------------------------StoreFNode-------------------------------------
 640 // Store float to memory
 641 class StoreFNode : public StoreNode {
 642 public:
 643   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 644     : StoreNode(c, mem, adr, at, val, mo) {}
 645   virtual int Opcode() const;
 646   virtual BasicType memory_type() const { return T_FLOAT; }
 647 };
 648 
 649 //------------------------------StoreDNode-------------------------------------
 650 // Store double to memory
 651 class StoreDNode : public StoreNode {
 652   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 653   virtual uint cmp( const Node &n ) const {
 654     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 655       && StoreNode::cmp(n);
 656   }
 657   virtual uint size_of() const { return sizeof(*this); }
 658   const bool _require_atomic_access;  // is piecewise store forbidden?
 659 public:
 660   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 661              MemOrd mo, bool require_atomic_access = false)
 662     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 663   virtual int Opcode() const;
 664   virtual BasicType memory_type() const { return T_DOUBLE; }
 665   bool require_atomic_access() const { return _require_atomic_access; }
 666   static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 667 #ifndef PRODUCT
 668   virtual void dump_spec(outputStream *st) const {
 669     StoreNode::dump_spec(st);
 670     if (_require_atomic_access)  st->print(" Atomic!");
 671   }
 672 #endif
 673 
 674 };
 675 
 676 //------------------------------StorePNode-------------------------------------
 677 // Store pointer to memory
 678 class StorePNode : public StoreNode {
 679 public:
 680   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 681     : StoreNode(c, mem, adr, at, val, mo) {}
 682   virtual int Opcode() const;
 683   virtual BasicType memory_type() const { return T_ADDRESS; }
 684 };
 685 
 686 //------------------------------StoreNNode-------------------------------------
 687 // Store narrow oop to memory
 688 class StoreNNode : public StoreNode {
 689 public:
 690   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 691     : StoreNode(c, mem, adr, at, val, mo) {}
 692   virtual int Opcode() const;
 693   virtual BasicType memory_type() const { return T_NARROWOOP; }
 694 };
 695 
 696 //------------------------------StoreNKlassNode--------------------------------------
 697 // Store narrow klass to memory
 698 class StoreNKlassNode : public StoreNNode {
 699 public:
 700   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 701     : StoreNNode(c, mem, adr, at, val, mo) {}
 702   virtual int Opcode() const;
 703   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 704 };
 705 
 706 //------------------------------StoreCMNode-----------------------------------
 707 // Store card-mark byte to memory for CM
 708 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 709 // Preceeding equivalent StoreCMs may be eliminated.
 710 class StoreCMNode : public StoreNode {
 711  private:
 712   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 713   virtual uint cmp( const Node &n ) const {
 714     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 715       && StoreNode::cmp(n);
 716   }
 717   virtual uint size_of() const { return sizeof(*this); }
 718   int _oop_alias_idx;   // The alias_idx of OopStore
 719 
 720 public:
 721   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 722     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 723     _oop_alias_idx(oop_alias_idx) {
 724     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 725            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 726            "bad oop alias idx");
 727   }
 728   virtual int Opcode() const;
 729   virtual Node *Identity( PhaseTransform *phase );
 730   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 731   virtual const Type *Value( PhaseTransform *phase ) const;
 732   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 733   int oop_alias_idx() const { return _oop_alias_idx; }
 734 };
 735 
 736 //------------------------------LoadPLockedNode---------------------------------
 737 // Load-locked a pointer from memory (either object or array).
 738 // On Sparc & Intel this is implemented as a normal pointer load.
 739 // On PowerPC and friends it's a real load-locked.
 740 class LoadPLockedNode : public LoadPNode {
 741 public:
 742   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 743     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 744   virtual int Opcode() const;
 745   virtual int store_Opcode() const { return Op_StorePConditional; }
 746   virtual bool depends_only_on_test() const { return true; }
 747 };
 748 
 749 //------------------------------SCMemProjNode---------------------------------------
 750 // This class defines a projection of the memory  state of a store conditional node.
 751 // These nodes return a value, but also update memory.
 752 class SCMemProjNode : public ProjNode {
 753 public:
 754   enum {SCMEMPROJCON = (uint)-2};
 755   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 756   virtual int Opcode() const;
 757   virtual bool      is_CFG() const  { return false; }
 758   virtual const Type *bottom_type() const {return Type::MEMORY;}
 759   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
 760   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 761   virtual const Type *Value( PhaseTransform *phase ) const;
 762 #ifndef PRODUCT
 763   virtual void dump_spec(outputStream *st) const {};
 764 #endif
 765 };
 766 
 767 //------------------------------LoadStoreNode---------------------------
 768 // Note: is_Mem() method returns 'true' for this class.
 769 class LoadStoreNode : public Node {
 770 private:
 771   const Type* const _type;      // What kind of value is loaded?
 772   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 773   virtual uint size_of() const; // Size is bigger
 774 public:
 775   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 776   virtual bool depends_only_on_test() const { return false; }
 777   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 778 
 779   virtual const Type *bottom_type() const { return _type; }
 780   virtual uint ideal_reg() const;
 781   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 782 
 783   bool result_not_used() const;
 784 };
 785 
 786 class LoadStoreConditionalNode : public LoadStoreNode {
 787 public:
 788   enum {
 789     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 790   };
 791   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 792 };
 793 
 794 //------------------------------StorePConditionalNode---------------------------
 795 // Conditionally store pointer to memory, if no change since prior
 796 // load-locked.  Sets flags for success or failure of the store.
 797 class StorePConditionalNode : public LoadStoreConditionalNode {
 798 public:
 799   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 800   virtual int Opcode() const;
 801   // Produces flags
 802   virtual uint ideal_reg() const { return Op_RegFlags; }
 803 };
 804 
 805 //------------------------------StoreIConditionalNode---------------------------
 806 // Conditionally store int to memory, if no change since prior
 807 // load-locked.  Sets flags for success or failure of the store.
 808 class StoreIConditionalNode : public LoadStoreConditionalNode {
 809 public:
 810   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 811   virtual int Opcode() const;
 812   // Produces flags
 813   virtual uint ideal_reg() const { return Op_RegFlags; }
 814 };
 815 
 816 //------------------------------StoreLConditionalNode---------------------------
 817 // Conditionally store long to memory, if no change since prior
 818 // load-locked.  Sets flags for success or failure of the store.
 819 class StoreLConditionalNode : public LoadStoreConditionalNode {
 820 public:
 821   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 822   virtual int Opcode() const;
 823   // Produces flags
 824   virtual uint ideal_reg() const { return Op_RegFlags; }
 825 };
 826 
 827 
 828 //------------------------------CompareAndSwapLNode---------------------------
 829 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 830 public:
 831   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 832   virtual int Opcode() const;
 833 };
 834 
 835 
 836 //------------------------------CompareAndSwapINode---------------------------
 837 class CompareAndSwapINode : public LoadStoreConditionalNode {
 838 public:
 839   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 840   virtual int Opcode() const;
 841 };
 842 
 843 
 844 //------------------------------CompareAndSwapPNode---------------------------
 845 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 846 public:
 847   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 848   virtual int Opcode() const;
 849 };
 850 
 851 //------------------------------CompareAndSwapNNode---------------------------
 852 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 853 public:
 854   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 855   virtual int Opcode() const;
 856 };
 857 
 858 //------------------------------GetAndAddINode---------------------------
 859 class GetAndAddINode : public LoadStoreNode {
 860 public:
 861   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 862   virtual int Opcode() const;
 863 };
 864 
 865 //------------------------------GetAndAddLNode---------------------------
 866 class GetAndAddLNode : public LoadStoreNode {
 867 public:
 868   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 869   virtual int Opcode() const;
 870 };
 871 
 872 
 873 //------------------------------GetAndSetINode---------------------------
 874 class GetAndSetINode : public LoadStoreNode {
 875 public:
 876   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 877   virtual int Opcode() const;
 878 };
 879 
 880 //------------------------------GetAndSetINode---------------------------
 881 class GetAndSetLNode : public LoadStoreNode {
 882 public:
 883   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 884   virtual int Opcode() const;
 885 };
 886 
 887 //------------------------------GetAndSetPNode---------------------------
 888 class GetAndSetPNode : public LoadStoreNode {
 889 public:
 890   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 891   virtual int Opcode() const;
 892 };
 893 
 894 //------------------------------GetAndSetNNode---------------------------
 895 class GetAndSetNNode : public LoadStoreNode {
 896 public:
 897   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 898   virtual int Opcode() const;
 899 };
 900 
 901 //------------------------------ClearArray-------------------------------------
 902 class ClearArrayNode: public Node {
 903 public:
 904   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 905     : Node(ctrl,arymem,word_cnt,base) {
 906     init_class_id(Class_ClearArray);
 907   }
 908   virtual int         Opcode() const;
 909   virtual const Type *bottom_type() const { return Type::MEMORY; }
 910   // ClearArray modifies array elements, and so affects only the
 911   // array memory addressed by the bottom_type of its base address.
 912   virtual const class TypePtr *adr_type() const;
 913   virtual Node *Identity( PhaseTransform *phase );
 914   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 915   virtual uint match_edge(uint idx) const;
 916 
 917   // Clear the given area of an object or array.
 918   // The start offset must always be aligned mod BytesPerInt.
 919   // The end offset must always be aligned mod BytesPerLong.
 920   // Return the new memory.
 921   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 922                             intptr_t start_offset,
 923                             intptr_t end_offset,
 924                             PhaseGVN* phase);
 925   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 926                             intptr_t start_offset,
 927                             Node* end_offset,
 928                             PhaseGVN* phase);
 929   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 930                             Node* start_offset,
 931                             Node* end_offset,
 932                             PhaseGVN* phase);
 933   // Return allocation input memory edge if it is different instance
 934   // or itself if it is the one we are looking for.
 935   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 936 };
 937 
 938 //------------------------------StrIntrinsic-------------------------------
 939 // Base class for Ideal nodes used in String instrinsic code.
 940 class StrIntrinsicNode: public Node {
 941 public:
 942   StrIntrinsicNode(Node* control, Node* char_array_mem,
 943                    Node* s1, Node* c1, Node* s2, Node* c2):
 944     Node(control, char_array_mem, s1, c1, s2, c2) {
 945   }
 946 
 947   StrIntrinsicNode(Node* control, Node* char_array_mem,
 948                    Node* s1, Node* s2, Node* c):
 949     Node(control, char_array_mem, s1, s2, c) {
 950   }
 951 
 952   StrIntrinsicNode(Node* control, Node* char_array_mem,
 953                    Node* s1, Node* s2):
 954     Node(control, char_array_mem, s1, s2) {
 955   }
 956 
 957   virtual bool depends_only_on_test() const { return false; }
 958   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
 959   virtual uint match_edge(uint idx) const;
 960   virtual uint ideal_reg() const { return Op_RegI; }
 961   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 962   virtual const Type *Value(PhaseTransform *phase) const;
 963 };
 964 
 965 //------------------------------StrComp-------------------------------------
 966 class StrCompNode: public StrIntrinsicNode {
 967 public:
 968   StrCompNode(Node* control, Node* char_array_mem,
 969               Node* s1, Node* c1, Node* s2, Node* c2):
 970     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 971   virtual int Opcode() const;
 972   virtual const Type* bottom_type() const { return TypeInt::INT; }
 973 };
 974 
 975 //------------------------------StrEquals-------------------------------------
 976 class StrEqualsNode: public StrIntrinsicNode {
 977 public:
 978   StrEqualsNode(Node* control, Node* char_array_mem,
 979                 Node* s1, Node* s2, Node* c):
 980     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
 981   virtual int Opcode() const;
 982   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 983 };
 984 
 985 //------------------------------StrIndexOf-------------------------------------
 986 class StrIndexOfNode: public StrIntrinsicNode {
 987 public:
 988   StrIndexOfNode(Node* control, Node* char_array_mem,
 989               Node* s1, Node* c1, Node* s2, Node* c2):
 990     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 991   virtual int Opcode() const;
 992   virtual const Type* bottom_type() const { return TypeInt::INT; }
 993 };
 994 
 995 //------------------------------AryEq---------------------------------------
 996 class AryEqNode: public StrIntrinsicNode {
 997 public:
 998   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
 999     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
1000   virtual int Opcode() const;
1001   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
1002 };
1003 
1004 
1005 //------------------------------EncodeISOArray--------------------------------
1006 // encode char[] to byte[] in ISO_8859_1
1007 class EncodeISOArrayNode: public Node {
1008 public:
1009   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
1010   virtual int Opcode() const;
1011   virtual bool depends_only_on_test() const { return false; }
1012   virtual const Type* bottom_type() const { return TypeInt::INT; }
1013   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
1014   virtual uint match_edge(uint idx) const;
1015   virtual uint ideal_reg() const { return Op_RegI; }
1016   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1017   virtual const Type *Value(PhaseTransform *phase) const;
1018 };
1019 
1020 //------------------------------MemBar-----------------------------------------
1021 // There are different flavors of Memory Barriers to match the Java Memory
1022 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
1023 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1024 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1025 // preceding ref can be moved to after them.  We insert a MemBar-Release
1026 // before a FastUnlock or volatile-store.  All volatiles need to be
1027 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1028 // separate it from any following volatile-load.
1029 class MemBarNode: public MultiNode {
1030   virtual uint hash() const ;                  // { return NO_HASH; }
1031   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1032 
1033   virtual uint size_of() const { return sizeof(*this); }
1034   // Memory type this node is serializing.  Usually either rawptr or bottom.
1035   const TypePtr* _adr_type;
1036 
1037 public:
1038   enum {
1039     Precedent = TypeFunc::Parms  // optional edge to force precedence
1040   };
1041   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1042   virtual int Opcode() const = 0;
1043   virtual const class TypePtr *adr_type() const { return _adr_type; }
1044   virtual const Type *Value( PhaseTransform *phase ) const;
1045   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1046   virtual uint match_edge(uint idx) const { return 0; }
1047   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1048   virtual Node *match( const ProjNode *proj, const Matcher *m );
1049   // Factory method.  Builds a wide or narrow membar.
1050   // Optional 'precedent' becomes an extra edge if not null.
1051   static MemBarNode* make(Compile* C, int opcode,
1052                           int alias_idx = Compile::AliasIdxBot,
1053                           Node* precedent = NULL);
1054 };
1055 
1056 // "Acquire" - no following ref can move before (but earlier refs can
1057 // follow, like an early Load stalled in cache).  Requires multi-cpu
1058 // visibility.  Inserted after a volatile load.
1059 class MemBarAcquireNode: public MemBarNode {
1060 public:
1061   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1062     : MemBarNode(C, alias_idx, precedent) {}
1063   virtual int Opcode() const;
1064 };
1065 
1066 // "Acquire" - no following ref can move before (but earlier refs can
1067 // follow, like an early Load stalled in cache).  Requires multi-cpu
1068 // visibility.  Inserted independ of any load, as required
1069 // for intrinsic sun.misc.Unsafe.loadFence().
1070 class LoadFenceNode: public MemBarNode {
1071 public:
1072   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1073     : MemBarNode(C, alias_idx, precedent) {}
1074   virtual int Opcode() const;
1075 };
1076 
1077 // "Release" - no earlier ref can move after (but later refs can move
1078 // up, like a speculative pipelined cache-hitting Load).  Requires
1079 // multi-cpu visibility.  Inserted before a volatile store.
1080 class MemBarReleaseNode: public MemBarNode {
1081 public:
1082   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1083     : MemBarNode(C, alias_idx, precedent) {}
1084   virtual int Opcode() const;
1085 };
1086 
1087 // "Release" - no earlier ref can move after (but later refs can move
1088 // up, like a speculative pipelined cache-hitting Load).  Requires
1089 // multi-cpu visibility.  Inserted independent of any store, as required
1090 // for intrinsic sun.misc.Unsafe.storeFence().
1091 class StoreFenceNode: public MemBarNode {
1092 public:
1093   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1094     : MemBarNode(C, alias_idx, precedent) {}
1095   virtual int Opcode() const;
1096 };
1097 
1098 // "Acquire" - no following ref can move before (but earlier refs can
1099 // follow, like an early Load stalled in cache).  Requires multi-cpu
1100 // visibility.  Inserted after a FastLock.
1101 class MemBarAcquireLockNode: public MemBarNode {
1102 public:
1103   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1104     : MemBarNode(C, alias_idx, precedent) {}
1105   virtual int Opcode() const;
1106 };
1107 
1108 // "Release" - no earlier ref can move after (but later refs can move
1109 // up, like a speculative pipelined cache-hitting Load).  Requires
1110 // multi-cpu visibility.  Inserted before a FastUnLock.
1111 class MemBarReleaseLockNode: public MemBarNode {
1112 public:
1113   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1114     : MemBarNode(C, alias_idx, precedent) {}
1115   virtual int Opcode() const;
1116 };
1117 
1118 class MemBarStoreStoreNode: public MemBarNode {
1119 public:
1120   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1121     : MemBarNode(C, alias_idx, precedent) {
1122     init_class_id(Class_MemBarStoreStore);
1123   }
1124   virtual int Opcode() const;
1125 };
1126 
1127 // Ordering between a volatile store and a following volatile load.
1128 // Requires multi-CPU visibility?
1129 class MemBarVolatileNode: public MemBarNode {
1130 public:
1131   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1132     : MemBarNode(C, alias_idx, precedent) {}
1133   virtual int Opcode() const;
1134 };
1135 
1136 // Ordering within the same CPU.  Used to order unsafe memory references
1137 // inside the compiler when we lack alias info.  Not needed "outside" the
1138 // compiler because the CPU does all the ordering for us.
1139 class MemBarCPUOrderNode: public MemBarNode {
1140 public:
1141   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1142     : MemBarNode(C, alias_idx, precedent) {}
1143   virtual int Opcode() const;
1144   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1145 };
1146 
1147 // Isolation of object setup after an AllocateNode and before next safepoint.
1148 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1149 class InitializeNode: public MemBarNode {
1150   friend class AllocateNode;
1151 
1152   enum {
1153     Incomplete    = 0,
1154     Complete      = 1,
1155     WithArraycopy = 2
1156   };
1157   int _is_complete;
1158 
1159   bool _does_not_escape;
1160 
1161 public:
1162   enum {
1163     Control    = TypeFunc::Control,
1164     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1165     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1166     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1167   };
1168 
1169   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1170   virtual int Opcode() const;
1171   virtual uint size_of() const { return sizeof(*this); }
1172   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1173   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1174 
1175   // Manage incoming memory edges via a MergeMem on in(Memory):
1176   Node* memory(uint alias_idx);
1177 
1178   // The raw memory edge coming directly from the Allocation.
1179   // The contents of this memory are *always* all-zero-bits.
1180   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1181 
1182   // Return the corresponding allocation for this initialization (or null if none).
1183   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1184   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1185   AllocateNode* allocation();
1186 
1187   // Anything other than zeroing in this init?
1188   bool is_non_zero();
1189 
1190   // An InitializeNode must completed before macro expansion is done.
1191   // Completion requires that the AllocateNode must be followed by
1192   // initialization of the new memory to zero, then to any initializers.
1193   bool is_complete() { return _is_complete != Incomplete; }
1194   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1195 
1196   // Mark complete.  (Must not yet be complete.)
1197   void set_complete(PhaseGVN* phase);
1198   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1199 
1200   bool does_not_escape() { return _does_not_escape; }
1201   void set_does_not_escape() { _does_not_escape = true; }
1202 
1203 #ifdef ASSERT
1204   // ensure all non-degenerate stores are ordered and non-overlapping
1205   bool stores_are_sane(PhaseTransform* phase);
1206 #endif //ASSERT
1207 
1208   // See if this store can be captured; return offset where it initializes.
1209   // Return 0 if the store cannot be moved (any sort of problem).
1210   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1211 
1212   // Capture another store; reformat it to write my internal raw memory.
1213   // Return the captured copy, else NULL if there is some sort of problem.
1214   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1215 
1216   // Find captured store which corresponds to the range [start..start+size).
1217   // Return my own memory projection (meaning the initial zero bits)
1218   // if there is no such store.  Return NULL if there is a problem.
1219   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1220 
1221   // Called when the associated AllocateNode is expanded into CFG.
1222   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1223                         intptr_t header_size, Node* size_in_bytes,
1224                         PhaseGVN* phase);
1225 
1226  private:
1227   void remove_extra_zeroes();
1228 
1229   // Find out where a captured store should be placed (or already is placed).
1230   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1231                                      PhaseTransform* phase);
1232 
1233   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1234 
1235   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1236 
1237   bool detect_init_independence(Node* n, int& count);
1238 
1239   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1240                                PhaseGVN* phase);
1241 
1242   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1243 };
1244 
1245 //------------------------------MergeMem---------------------------------------
1246 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1247 class MergeMemNode: public Node {
1248   virtual uint hash() const ;                  // { return NO_HASH; }
1249   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1250   friend class MergeMemStream;
1251   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1252 
1253 public:
1254   // If the input is a whole memory state, clone it with all its slices intact.
1255   // Otherwise, make a new memory state with just that base memory input.
1256   // In either case, the result is a newly created MergeMem.
1257   static MergeMemNode* make(Compile* C, Node* base_memory);
1258 
1259   virtual int Opcode() const;
1260   virtual Node *Identity( PhaseTransform *phase );
1261   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1262   virtual uint ideal_reg() const { return NotAMachineReg; }
1263   virtual uint match_edge(uint idx) const { return 0; }
1264   virtual const RegMask &out_RegMask() const;
1265   virtual const Type *bottom_type() const { return Type::MEMORY; }
1266   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1267   // sparse accessors
1268   // Fetch the previously stored "set_memory_at", or else the base memory.
1269   // (Caller should clone it if it is a phi-nest.)
1270   Node* memory_at(uint alias_idx) const;
1271   // set the memory, regardless of its previous value
1272   void set_memory_at(uint alias_idx, Node* n);
1273   // the "base" is the memory that provides the non-finite support
1274   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1275   // warning: setting the base can implicitly set any of the other slices too
1276   void set_base_memory(Node* def);
1277   // sentinel value which denotes a copy of the base memory:
1278   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1279   static Node* make_empty_memory(); // where the sentinel comes from
1280   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1281   // hook for the iterator, to perform any necessary setup
1282   void iteration_setup(const MergeMemNode* other = NULL);
1283   // push sentinels until I am at least as long as the other (semantic no-op)
1284   void grow_to_match(const MergeMemNode* other);
1285   bool verify_sparse() const PRODUCT_RETURN0;
1286 #ifndef PRODUCT
1287   virtual void dump_spec(outputStream *st) const;
1288 #endif
1289 };
1290 
1291 class MergeMemStream : public StackObj {
1292  private:
1293   MergeMemNode*       _mm;
1294   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1295   Node*               _mm_base;  // loop-invariant base memory of _mm
1296   int                 _idx;
1297   int                 _cnt;
1298   Node*               _mem;
1299   Node*               _mem2;
1300   int                 _cnt2;
1301 
1302   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1303     // subsume_node will break sparseness at times, whenever a memory slice
1304     // folds down to a copy of the base ("fat") memory.  In such a case,
1305     // the raw edge will update to base, although it should be top.
1306     // This iterator will recognize either top or base_memory as an
1307     // "empty" slice.  See is_empty, is_empty2, and next below.
1308     //
1309     // The sparseness property is repaired in MergeMemNode::Ideal.
1310     // As long as access to a MergeMem goes through this iterator
1311     // or the memory_at accessor, flaws in the sparseness will
1312     // never be observed.
1313     //
1314     // Also, iteration_setup repairs sparseness.
1315     assert(mm->verify_sparse(), "please, no dups of base");
1316     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1317 
1318     _mm  = mm;
1319     _mm_base = mm->base_memory();
1320     _mm2 = mm2;
1321     _cnt = mm->req();
1322     _idx = Compile::AliasIdxBot-1; // start at the base memory
1323     _mem = NULL;
1324     _mem2 = NULL;
1325   }
1326 
1327 #ifdef ASSERT
1328   Node* check_memory() const {
1329     if (at_base_memory())
1330       return _mm->base_memory();
1331     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1332       return _mm->memory_at(_idx);
1333     else
1334       return _mm_base;
1335   }
1336   Node* check_memory2() const {
1337     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1338   }
1339 #endif
1340 
1341   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1342   void assert_synch() const {
1343     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1344            "no side-effects except through the stream");
1345   }
1346 
1347  public:
1348 
1349   // expected usages:
1350   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1351   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1352 
1353   // iterate over one merge
1354   MergeMemStream(MergeMemNode* mm) {
1355     mm->iteration_setup();
1356     init(mm);
1357     debug_only(_cnt2 = 999);
1358   }
1359   // iterate in parallel over two merges
1360   // only iterates through non-empty elements of mm2
1361   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1362     assert(mm2, "second argument must be a MergeMem also");
1363     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1364     mm->iteration_setup(mm2);
1365     init(mm, mm2);
1366     _cnt2 = mm2->req();
1367   }
1368 #ifdef ASSERT
1369   ~MergeMemStream() {
1370     assert_synch();
1371   }
1372 #endif
1373 
1374   MergeMemNode* all_memory() const {
1375     return _mm;
1376   }
1377   Node* base_memory() const {
1378     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1379     return _mm_base;
1380   }
1381   const MergeMemNode* all_memory2() const {
1382     assert(_mm2 != NULL, "");
1383     return _mm2;
1384   }
1385   bool at_base_memory() const {
1386     return _idx == Compile::AliasIdxBot;
1387   }
1388   int alias_idx() const {
1389     assert(_mem, "must call next 1st");
1390     return _idx;
1391   }
1392 
1393   const TypePtr* adr_type() const {
1394     return Compile::current()->get_adr_type(alias_idx());
1395   }
1396 
1397   const TypePtr* adr_type(Compile* C) const {
1398     return C->get_adr_type(alias_idx());
1399   }
1400   bool is_empty() const {
1401     assert(_mem, "must call next 1st");
1402     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1403     return _mem->is_top();
1404   }
1405   bool is_empty2() const {
1406     assert(_mem2, "must call next 1st");
1407     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1408     return _mem2->is_top();
1409   }
1410   Node* memory() const {
1411     assert(!is_empty(), "must not be empty");
1412     assert_synch();
1413     return _mem;
1414   }
1415   // get the current memory, regardless of empty or non-empty status
1416   Node* force_memory() const {
1417     assert(!is_empty() || !at_base_memory(), "");
1418     // Use _mm_base to defend against updates to _mem->base_memory().
1419     Node *mem = _mem->is_top() ? _mm_base : _mem;
1420     assert(mem == check_memory(), "");
1421     return mem;
1422   }
1423   Node* memory2() const {
1424     assert(_mem2 == check_memory2(), "");
1425     return _mem2;
1426   }
1427   void set_memory(Node* mem) {
1428     if (at_base_memory()) {
1429       // Note that this does not change the invariant _mm_base.
1430       _mm->set_base_memory(mem);
1431     } else {
1432       _mm->set_memory_at(_idx, mem);
1433     }
1434     _mem = mem;
1435     assert_synch();
1436   }
1437 
1438   // Recover from a side effect to the MergeMemNode.
1439   void set_memory() {
1440     _mem = _mm->in(_idx);
1441   }
1442 
1443   bool next()  { return next(false); }
1444   bool next2() { return next(true); }
1445 
1446   bool next_non_empty()  { return next_non_empty(false); }
1447   bool next_non_empty2() { return next_non_empty(true); }
1448   // next_non_empty2 can yield states where is_empty() is true
1449 
1450  private:
1451   // find the next item, which might be empty
1452   bool next(bool have_mm2) {
1453     assert((_mm2 != NULL) == have_mm2, "use other next");
1454     assert_synch();
1455     if (++_idx < _cnt) {
1456       // Note:  This iterator allows _mm to be non-sparse.
1457       // It behaves the same whether _mem is top or base_memory.
1458       _mem = _mm->in(_idx);
1459       if (have_mm2)
1460         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1461       return true;
1462     }
1463     return false;
1464   }
1465 
1466   // find the next non-empty item
1467   bool next_non_empty(bool have_mm2) {
1468     while (next(have_mm2)) {
1469       if (!is_empty()) {
1470         // make sure _mem2 is filled in sensibly
1471         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1472         return true;
1473       } else if (have_mm2 && !is_empty2()) {
1474         return true;   // is_empty() == true
1475       }
1476     }
1477     return false;
1478   }
1479 };
1480 
1481 //------------------------------Prefetch---------------------------------------
1482 
1483 // Non-faulting prefetch load.  Prefetch for many reads.
1484 class PrefetchReadNode : public Node {
1485 public:
1486   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1487   virtual int Opcode() const;
1488   virtual uint ideal_reg() const { return NotAMachineReg; }
1489   virtual uint match_edge(uint idx) const { return idx==2; }
1490   virtual const Type *bottom_type() const { return Type::ABIO; }
1491 };
1492 
1493 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
1494 class PrefetchWriteNode : public Node {
1495 public:
1496   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1497   virtual int Opcode() const;
1498   virtual uint ideal_reg() const { return NotAMachineReg; }
1499   virtual uint match_edge(uint idx) const { return idx==2; }
1500   virtual const Type *bottom_type() const { return Type::ABIO; }
1501 };
1502 
1503 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1504 class PrefetchAllocationNode : public Node {
1505 public:
1506   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1507   virtual int Opcode() const;
1508   virtual uint ideal_reg() const { return NotAMachineReg; }
1509   virtual uint match_edge(uint idx) const { return idx==2; }
1510   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1511 };
1512 
1513 #endif // SHARE_VM_OPTO_MEMNODE_HPP