1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 private:
  43   bool _unaligned_access; // Unaligned access from unsafe
  44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
  45 protected:
  46 #ifdef ASSERT
  47   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  48 #endif
  49   virtual uint size_of() const;
  50 public:
  51   enum { Control,               // When is it safe to do this load?
  52          Memory,                // Chunk of memory is being loaded from
  53          Address,               // Actually address, derived from base
  54          ValueIn,               // Value to store
  55          OopStore               // Preceeding oop store, only in StoreCM
  56   };
  57   typedef enum { unordered = 0,
  58                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  59                  release        // Store has to release or be preceded by MemBarRelease.
  60   } MemOrd;
  61 protected:
  62   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  63     : Node(c0,c1,c2   ), _unaligned_access(false), _mismatched_access(false) {
  64     init_class_id(Class_Mem);
  65     debug_only(_adr_type=at; adr_type();)
  66   }
  67   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  68     : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
  69     init_class_id(Class_Mem);
  70     debug_only(_adr_type=at; adr_type();)
  71   }
  72   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  73     : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
  74     init_class_id(Class_Mem);
  75     debug_only(_adr_type=at; adr_type();)
  76   }
  77 
  78 public:
  79   // Helpers for the optimizer.  Documented in memnode.cpp.
  80   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  81                                       Node* p2, AllocateNode* a2,
  82                                       PhaseTransform* phase);
  83   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  84 
  85   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  86   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  87   // This one should probably be a phase-specific function:
  88   static bool all_controls_dominate(Node* dom, Node* sub);
  89 
  90   // Find any cast-away of null-ness and keep its control.
  91   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
  92   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
  93 
  94   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  95 
  96   // Shared code for Ideal methods:
  97   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  98 
  99   // Helper function for adr_type() implementations.
 100   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
 101 
 102   // Raw access function, to allow copying of adr_type efficiently in
 103   // product builds and retain the debug info for debug builds.
 104   const TypePtr *raw_adr_type() const {
 105 #ifdef ASSERT
 106     return _adr_type;
 107 #else
 108     return 0;
 109 #endif
 110   }
 111 
 112   // Map a load or store opcode to its corresponding store opcode.
 113   // (Return -1 if unknown.)
 114   virtual int store_Opcode() const { return -1; }
 115 
 116   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 117   virtual BasicType memory_type() const = 0;
 118   virtual int memory_size() const {
 119 #ifdef ASSERT
 120     return type2aelembytes(memory_type(), true);
 121 #else
 122     return type2aelembytes(memory_type());
 123 #endif
 124   }
 125 
 126   // Search through memory states which precede this node (load or store).
 127   // Look for an exact match for the address, with no intervening
 128   // aliased stores.
 129   Node* find_previous_store(PhaseTransform* phase);
 130 
 131   // Can this node (load or store) accurately see a stored value in
 132   // the given memory state?  (The state may or may not be in(Memory).)
 133   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 134 
 135   void set_unaligned_access() { _unaligned_access = true; }
 136   bool is_unaligned_access() const { return _unaligned_access; }
 137   void set_mismatched_access() { _mismatched_access = true; }
 138   bool is_mismatched_access() const { return _mismatched_access; }
 139 
 140 #ifndef PRODUCT
 141   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 142   virtual void dump_spec(outputStream *st) const;
 143 #endif
 144 };
 145 
 146 //------------------------------LoadNode---------------------------------------
 147 // Load value; requires Memory and Address
 148 class LoadNode : public MemNode {
 149 public:
 150   // Some loads (from unsafe) should be pinned: they don't depend only
 151   // on the dominating test.  The boolean field _depends_only_on_test
 152   // below records whether that node depends only on the dominating
 153   // test.
 154   // Methods used to build LoadNodes pass an argument of type enum
 155   // ControlDependency instead of a boolean because those methods
 156   // typically have multiple boolean parameters with default values:
 157   // passing the wrong boolean to one of these parameters by mistake
 158   // goes easily unnoticed. Using an enum, the compiler can check that
 159   // the type of a value and the type of the parameter match.
 160   enum ControlDependency {
 161     Pinned,
 162     DependsOnlyOnTest
 163   };
 164 private:
 165   // LoadNode::hash() doesn't take the _depends_only_on_test field
 166   // into account: If the graph already has a non-pinned LoadNode and
 167   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 168   // to replace the pinned LoadNode with the non-pinned LoadNode,
 169   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 170   // those inputs in the first place. If the graph already has a
 171   // pinned LoadNode and we add a non pinned LoadNode with the same
 172   // inputs, it's safe (but suboptimal) for GVN to replace the
 173   // non-pinned LoadNode by the pinned LoadNode.
 174   bool _depends_only_on_test;
 175 
 176   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 177   // loads that can be reordered, and such requiring acquire semantics to
 178   // adhere to the Java specification.  The required behaviour is stored in
 179   // this field.
 180   const MemOrd _mo;
 181 
 182 protected:
 183   virtual uint cmp(const Node &n) const;
 184   virtual uint size_of() const; // Size is bigger
 185   // Should LoadNode::Ideal() attempt to remove control edges?
 186   virtual bool can_remove_control() const;
 187   const Type* const _type;      // What kind of value is loaded?
 188 public:
 189 
 190   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 191     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
 192     init_class_id(Class_Load);
 193   }
 194   inline bool is_unordered() const { return !is_acquire(); }
 195   inline bool is_acquire() const {
 196     assert(_mo == unordered || _mo == acquire, "unexpected");
 197     return _mo == acquire;
 198   }
 199 
 200   // Polymorphic factory method:
 201    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 202                      const TypePtr* at, const Type *rt, BasicType bt,
 203                      MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 204 
 205   virtual uint hash()   const;  // Check the type
 206 
 207   // Handle algebraic identities here.  If we have an identity, return the Node
 208   // we are equivalent to.  We look for Load of a Store.
 209   virtual Node *Identity( PhaseTransform *phase );
 210 
 211   // If the load is from Field memory and the pointer is non-null, it might be possible to
 212   // zero out the control input.
 213   // If the offset is constant and the base is an object allocation,
 214   // try to hook me up to the exact initializing store.
 215   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 216 
 217   // Split instance field load through Phi.
 218   Node* split_through_phi(PhaseGVN *phase);
 219 
 220   // Recover original value from boxed values
 221   Node *eliminate_autobox(PhaseGVN *phase);
 222 
 223   // Compute a new Type for this node.  Basically we just do the pre-check,
 224   // then call the virtual add() to set the type.
 225   virtual const Type *Value( PhaseTransform *phase ) const;
 226 
 227   // Common methods for LoadKlass and LoadNKlass nodes.
 228   const Type *klass_value_common( PhaseTransform *phase ) const;
 229   Node *klass_identity_common( PhaseTransform *phase );
 230 
 231   virtual uint ideal_reg() const;
 232   virtual const Type *bottom_type() const;
 233   // Following method is copied from TypeNode:
 234   void set_type(const Type* t) {
 235     assert(t != NULL, "sanity");
 236     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 237     *(const Type**)&_type = t;   // cast away const-ness
 238     // If this node is in the hash table, make sure it doesn't need a rehash.
 239     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 240   }
 241   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 242 
 243   // Do not match memory edge
 244   virtual uint match_edge(uint idx) const;
 245 
 246   // Map a load opcode to its corresponding store opcode.
 247   virtual int store_Opcode() const = 0;
 248 
 249   // Check if the load's memory input is a Phi node with the same control.
 250   bool is_instance_field_load_with_local_phi(Node* ctrl);
 251 
 252 #ifndef PRODUCT
 253   virtual void dump_spec(outputStream *st) const;
 254 #endif
 255 #ifdef ASSERT
 256   // Helper function to allow a raw load without control edge for some cases
 257   static bool is_immutable_value(Node* adr);
 258 #endif
 259 protected:
 260   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 261                                      ciKlass* klass) const;
 262   // depends_only_on_test is almost always true, and needs to be almost always
 263   // true to enable key hoisting & commoning optimizations.  However, for the
 264   // special case of RawPtr loads from TLS top & end, and other loads performed by
 265   // GC barriers, the control edge carries the dependence preventing hoisting past
 266   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 267   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 268   // which produce results (new raw memory state) inside of loops preventing all
 269   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 270   // See comment in macro.cpp, around line 125 expand_allocate_common().
 271   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
 272 };
 273 
 274 //------------------------------LoadBNode--------------------------------------
 275 // Load a byte (8bits signed) from memory
 276 class LoadBNode : public LoadNode {
 277 public:
 278   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 279     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 280   virtual int Opcode() const;
 281   virtual uint ideal_reg() const { return Op_RegI; }
 282   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 283   virtual const Type *Value(PhaseTransform *phase) const;
 284   virtual int store_Opcode() const { return Op_StoreB; }
 285   virtual BasicType memory_type() const { return T_BYTE; }
 286 };
 287 
 288 //------------------------------LoadUBNode-------------------------------------
 289 // Load a unsigned byte (8bits unsigned) from memory
 290 class LoadUBNode : public LoadNode {
 291 public:
 292   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 293     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 294   virtual int Opcode() const;
 295   virtual uint ideal_reg() const { return Op_RegI; }
 296   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 297   virtual const Type *Value(PhaseTransform *phase) const;
 298   virtual int store_Opcode() const { return Op_StoreB; }
 299   virtual BasicType memory_type() const { return T_BYTE; }
 300 };
 301 
 302 //------------------------------LoadUSNode-------------------------------------
 303 // Load an unsigned short/char (16bits unsigned) from memory
 304 class LoadUSNode : public LoadNode {
 305 public:
 306   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 307     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 308   virtual int Opcode() const;
 309   virtual uint ideal_reg() const { return Op_RegI; }
 310   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 311   virtual const Type *Value(PhaseTransform *phase) const;
 312   virtual int store_Opcode() const { return Op_StoreC; }
 313   virtual BasicType memory_type() const { return T_CHAR; }
 314 };
 315 
 316 //------------------------------LoadSNode--------------------------------------
 317 // Load a short (16bits signed) from memory
 318 class LoadSNode : public LoadNode {
 319 public:
 320   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 321     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 322   virtual int Opcode() const;
 323   virtual uint ideal_reg() const { return Op_RegI; }
 324   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 325   virtual const Type *Value(PhaseTransform *phase) const;
 326   virtual int store_Opcode() const { return Op_StoreC; }
 327   virtual BasicType memory_type() const { return T_SHORT; }
 328 };
 329 
 330 //------------------------------LoadINode--------------------------------------
 331 // Load an integer from memory
 332 class LoadINode : public LoadNode {
 333 public:
 334   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 335     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 336   virtual int Opcode() const;
 337   virtual uint ideal_reg() const { return Op_RegI; }
 338   virtual int store_Opcode() const { return Op_StoreI; }
 339   virtual BasicType memory_type() const { return T_INT; }
 340 };
 341 
 342 //------------------------------LoadRangeNode----------------------------------
 343 // Load an array length from the array
 344 class LoadRangeNode : public LoadINode {
 345 public:
 346   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 347     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 348   virtual int Opcode() const;
 349   virtual const Type *Value( PhaseTransform *phase ) const;
 350   virtual Node *Identity( PhaseTransform *phase );
 351   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 352 };
 353 
 354 //------------------------------LoadLNode--------------------------------------
 355 // Load a long from memory
 356 class LoadLNode : public LoadNode {
 357   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 358   virtual uint cmp( const Node &n ) const {
 359     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 360       && LoadNode::cmp(n);
 361   }
 362   virtual uint size_of() const { return sizeof(*this); }
 363   const bool _require_atomic_access;  // is piecewise load forbidden?
 364 
 365 public:
 366   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 367             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 368     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 369   virtual int Opcode() const;
 370   virtual uint ideal_reg() const { return Op_RegL; }
 371   virtual int store_Opcode() const { return Op_StoreL; }
 372   virtual BasicType memory_type() const { return T_LONG; }
 373   bool require_atomic_access() const { return _require_atomic_access; }
 374   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 375                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 376 #ifndef PRODUCT
 377   virtual void dump_spec(outputStream *st) const {
 378     LoadNode::dump_spec(st);
 379     if (_require_atomic_access)  st->print(" Atomic!");
 380   }
 381 #endif
 382 };
 383 
 384 //------------------------------LoadL_unalignedNode----------------------------
 385 // Load a long from unaligned memory
 386 class LoadL_unalignedNode : public LoadLNode {
 387 public:
 388   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 389     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 390   virtual int Opcode() const;
 391 };
 392 
 393 //------------------------------LoadFNode--------------------------------------
 394 // Load a float (64 bits) from memory
 395 class LoadFNode : public LoadNode {
 396 public:
 397   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 398     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 399   virtual int Opcode() const;
 400   virtual uint ideal_reg() const { return Op_RegF; }
 401   virtual int store_Opcode() const { return Op_StoreF; }
 402   virtual BasicType memory_type() const { return T_FLOAT; }
 403 };
 404 
 405 //------------------------------LoadDNode--------------------------------------
 406 // Load a double (64 bits) from memory
 407 class LoadDNode : public LoadNode {
 408   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 409   virtual uint cmp( const Node &n ) const {
 410     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 411       && LoadNode::cmp(n);
 412   }
 413   virtual uint size_of() const { return sizeof(*this); }
 414   const bool _require_atomic_access;  // is piecewise load forbidden?
 415 
 416 public:
 417   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 418             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 419     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 420   virtual int Opcode() const;
 421   virtual uint ideal_reg() const { return Op_RegD; }
 422   virtual int store_Opcode() const { return Op_StoreD; }
 423   virtual BasicType memory_type() const { return T_DOUBLE; }
 424   bool require_atomic_access() const { return _require_atomic_access; }
 425   static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 426                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 427 #ifndef PRODUCT
 428   virtual void dump_spec(outputStream *st) const {
 429     LoadNode::dump_spec(st);
 430     if (_require_atomic_access)  st->print(" Atomic!");
 431   }
 432 #endif
 433 };
 434 
 435 //------------------------------LoadD_unalignedNode----------------------------
 436 // Load a double from unaligned memory
 437 class LoadD_unalignedNode : public LoadDNode {
 438 public:
 439   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 440     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 441   virtual int Opcode() const;
 442 };
 443 
 444 //------------------------------LoadPNode--------------------------------------
 445 // Load a pointer from memory (either object or array)
 446 class LoadPNode : public LoadNode {
 447 public:
 448   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 449     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 450   virtual int Opcode() const;
 451   virtual uint ideal_reg() const { return Op_RegP; }
 452   virtual int store_Opcode() const { return Op_StoreP; }
 453   virtual BasicType memory_type() const { return T_ADDRESS; }
 454 };
 455 
 456 
 457 //------------------------------LoadNNode--------------------------------------
 458 // Load a narrow oop from memory (either object or array)
 459 class LoadNNode : public LoadNode {
 460 public:
 461   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 462     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 463   virtual int Opcode() const;
 464   virtual uint ideal_reg() const { return Op_RegN; }
 465   virtual int store_Opcode() const { return Op_StoreN; }
 466   virtual BasicType memory_type() const { return T_NARROWOOP; }
 467 };
 468 
 469 //------------------------------LoadKlassNode----------------------------------
 470 // Load a Klass from an object
 471 class LoadKlassNode : public LoadPNode {
 472 protected:
 473   // In most cases, LoadKlassNode does not have the control input set. If the control
 474   // input is set, it must not be removed (by LoadNode::Ideal()).
 475   virtual bool can_remove_control() const;
 476 public:
 477   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 478     : LoadPNode(c, mem, adr, at, tk, mo) {}
 479   virtual int Opcode() const;
 480   virtual const Type *Value( PhaseTransform *phase ) const;
 481   virtual Node *Identity( PhaseTransform *phase );
 482   virtual bool depends_only_on_test() const { return true; }
 483 
 484   // Polymorphic factory method:
 485   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 486                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 487 };
 488 
 489 //------------------------------LoadNKlassNode---------------------------------
 490 // Load a narrow Klass from an object.
 491 class LoadNKlassNode : public LoadNNode {
 492 public:
 493   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 494     : LoadNNode(c, mem, adr, at, tk, mo) {}
 495   virtual int Opcode() const;
 496   virtual uint ideal_reg() const { return Op_RegN; }
 497   virtual int store_Opcode() const { return Op_StoreNKlass; }
 498   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 499 
 500   virtual const Type *Value( PhaseTransform *phase ) const;
 501   virtual Node *Identity( PhaseTransform *phase );
 502   virtual bool depends_only_on_test() const { return true; }
 503 };
 504 
 505 
 506 //------------------------------StoreNode--------------------------------------
 507 // Store value; requires Store, Address and Value
 508 class StoreNode : public MemNode {
 509 private:
 510   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 511   // stores that can be reordered, and such requiring release semantics to
 512   // adhere to the Java specification.  The required behaviour is stored in
 513   // this field.
 514   const MemOrd _mo;
 515   // Needed for proper cloning.
 516   virtual uint size_of() const { return sizeof(*this); }
 517 protected:
 518   virtual uint cmp( const Node &n ) const;
 519   virtual bool depends_only_on_test() const { return false; }
 520 
 521   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 522   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 523 
 524 public:
 525   // We must ensure that stores of object references will be visible
 526   // only after the object's initialization. So the callers of this
 527   // procedure must indicate that the store requires `release'
 528   // semantics, if the stored value is an object reference that might
 529   // point to a new object and may become externally visible.
 530   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 531     : MemNode(c, mem, adr, at, val), _mo(mo) {
 532     init_class_id(Class_Store);
 533   }
 534   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 535     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 536     init_class_id(Class_Store);
 537   }
 538 
 539   inline bool is_unordered() const { return !is_release(); }
 540   inline bool is_release() const {
 541     assert((_mo == unordered || _mo == release), "unexpected");
 542     return _mo == release;
 543   }
 544 
 545   // Conservatively release stores of object references in order to
 546   // ensure visibility of object initialization.
 547   static inline MemOrd release_if_reference(const BasicType t) {
 548     const MemOrd mo = (t == T_ARRAY ||
 549                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 550                        t == T_OBJECT) ? release : unordered;
 551     return mo;
 552   }
 553 
 554   // Polymorphic factory method
 555   //
 556   // We must ensure that stores of object references will be visible
 557   // only after the object's initialization. So the callers of this
 558   // procedure must indicate that the store requires `release'
 559   // semantics, if the stored value is an object reference that might
 560   // point to a new object and may become externally visible.
 561   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 562                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 563 
 564   virtual uint hash() const;    // Check the type
 565 
 566   // If the store is to Field memory and the pointer is non-null, we can
 567   // zero out the control input.
 568   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 569 
 570   // Compute a new Type for this node.  Basically we just do the pre-check,
 571   // then call the virtual add() to set the type.
 572   virtual const Type *Value( PhaseTransform *phase ) const;
 573 
 574   // Check for identity function on memory (Load then Store at same address)
 575   virtual Node *Identity( PhaseTransform *phase );
 576 
 577   // Do not match memory edge
 578   virtual uint match_edge(uint idx) const;
 579 
 580   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 581 
 582   // Map a store opcode to its corresponding own opcode, trivially.
 583   virtual int store_Opcode() const { return Opcode(); }
 584 
 585   // have all possible loads of the value stored been optimized away?
 586   bool value_never_loaded(PhaseTransform *phase) const;
 587 };
 588 
 589 //------------------------------StoreBNode-------------------------------------
 590 // Store byte to memory
 591 class StoreBNode : public StoreNode {
 592 public:
 593   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 594     : StoreNode(c, mem, adr, at, val, mo) {}
 595   virtual int Opcode() const;
 596   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 597   virtual BasicType memory_type() const { return T_BYTE; }
 598 };
 599 
 600 //------------------------------StoreCNode-------------------------------------
 601 // Store char/short to memory
 602 class StoreCNode : public StoreNode {
 603 public:
 604   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 605     : StoreNode(c, mem, adr, at, val, mo) {}
 606   virtual int Opcode() const;
 607   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 608   virtual BasicType memory_type() const { return T_CHAR; }
 609 };
 610 
 611 //------------------------------StoreINode-------------------------------------
 612 // Store int to memory
 613 class StoreINode : public StoreNode {
 614 public:
 615   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 616     : StoreNode(c, mem, adr, at, val, mo) {}
 617   virtual int Opcode() const;
 618   virtual BasicType memory_type() const { return T_INT; }
 619 };
 620 
 621 //------------------------------StoreLNode-------------------------------------
 622 // Store long to memory
 623 class StoreLNode : public StoreNode {
 624   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 625   virtual uint cmp( const Node &n ) const {
 626     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 627       && StoreNode::cmp(n);
 628   }
 629   virtual uint size_of() const { return sizeof(*this); }
 630   const bool _require_atomic_access;  // is piecewise store forbidden?
 631 
 632 public:
 633   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 634     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 635   virtual int Opcode() const;
 636   virtual BasicType memory_type() const { return T_LONG; }
 637   bool require_atomic_access() const { return _require_atomic_access; }
 638   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 639 #ifndef PRODUCT
 640   virtual void dump_spec(outputStream *st) const {
 641     StoreNode::dump_spec(st);
 642     if (_require_atomic_access)  st->print(" Atomic!");
 643   }
 644 #endif
 645 };
 646 
 647 //------------------------------StoreFNode-------------------------------------
 648 // Store float to memory
 649 class StoreFNode : public StoreNode {
 650 public:
 651   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 652     : StoreNode(c, mem, adr, at, val, mo) {}
 653   virtual int Opcode() const;
 654   virtual BasicType memory_type() const { return T_FLOAT; }
 655 };
 656 
 657 //------------------------------StoreDNode-------------------------------------
 658 // Store double to memory
 659 class StoreDNode : public StoreNode {
 660   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 661   virtual uint cmp( const Node &n ) const {
 662     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 663       && StoreNode::cmp(n);
 664   }
 665   virtual uint size_of() const { return sizeof(*this); }
 666   const bool _require_atomic_access;  // is piecewise store forbidden?
 667 public:
 668   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 669              MemOrd mo, bool require_atomic_access = false)
 670     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 671   virtual int Opcode() const;
 672   virtual BasicType memory_type() const { return T_DOUBLE; }
 673   bool require_atomic_access() const { return _require_atomic_access; }
 674   static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 675 #ifndef PRODUCT
 676   virtual void dump_spec(outputStream *st) const {
 677     StoreNode::dump_spec(st);
 678     if (_require_atomic_access)  st->print(" Atomic!");
 679   }
 680 #endif
 681 
 682 };
 683 
 684 //------------------------------StorePNode-------------------------------------
 685 // Store pointer to memory
 686 class StorePNode : public StoreNode {
 687 public:
 688   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 689     : StoreNode(c, mem, adr, at, val, mo) {}
 690   virtual int Opcode() const;
 691   virtual BasicType memory_type() const { return T_ADDRESS; }
 692 };
 693 
 694 //------------------------------StoreNNode-------------------------------------
 695 // Store narrow oop to memory
 696 class StoreNNode : public StoreNode {
 697 public:
 698   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 699     : StoreNode(c, mem, adr, at, val, mo) {}
 700   virtual int Opcode() const;
 701   virtual BasicType memory_type() const { return T_NARROWOOP; }
 702 };
 703 
 704 //------------------------------StoreNKlassNode--------------------------------------
 705 // Store narrow klass to memory
 706 class StoreNKlassNode : public StoreNNode {
 707 public:
 708   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 709     : StoreNNode(c, mem, adr, at, val, mo) {}
 710   virtual int Opcode() const;
 711   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 712 };
 713 
 714 //------------------------------StoreCMNode-----------------------------------
 715 // Store card-mark byte to memory for CM
 716 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 717 // Preceeding equivalent StoreCMs may be eliminated.
 718 class StoreCMNode : public StoreNode {
 719  private:
 720   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 721   virtual uint cmp( const Node &n ) const {
 722     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 723       && StoreNode::cmp(n);
 724   }
 725   virtual uint size_of() const { return sizeof(*this); }
 726   int _oop_alias_idx;   // The alias_idx of OopStore
 727 
 728 public:
 729   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 730     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 731     _oop_alias_idx(oop_alias_idx) {
 732     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 733            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 734            "bad oop alias idx");
 735   }
 736   virtual int Opcode() const;
 737   virtual Node *Identity( PhaseTransform *phase );
 738   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 739   virtual const Type *Value( PhaseTransform *phase ) const;
 740   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 741   int oop_alias_idx() const { return _oop_alias_idx; }
 742 };
 743 
 744 //------------------------------LoadPLockedNode---------------------------------
 745 // Load-locked a pointer from memory (either object or array).
 746 // On Sparc & Intel this is implemented as a normal pointer load.
 747 // On PowerPC and friends it's a real load-locked.
 748 class LoadPLockedNode : public LoadPNode {
 749 public:
 750   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 751     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 752   virtual int Opcode() const;
 753   virtual int store_Opcode() const { return Op_StorePConditional; }
 754   virtual bool depends_only_on_test() const { return true; }
 755 };
 756 
 757 //------------------------------SCMemProjNode---------------------------------------
 758 // This class defines a projection of the memory  state of a store conditional node.
 759 // These nodes return a value, but also update memory.
 760 class SCMemProjNode : public ProjNode {
 761 public:
 762   enum {SCMEMPROJCON = (uint)-2};
 763   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 764   virtual int Opcode() const;
 765   virtual bool      is_CFG() const  { return false; }
 766   virtual const Type *bottom_type() const {return Type::MEMORY;}
 767   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
 768   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 769   virtual const Type *Value( PhaseTransform *phase ) const;
 770 #ifndef PRODUCT
 771   virtual void dump_spec(outputStream *st) const {};
 772 #endif
 773 };
 774 
 775 //------------------------------LoadStoreNode---------------------------
 776 // Note: is_Mem() method returns 'true' for this class.
 777 class LoadStoreNode : public Node {
 778 private:
 779   const Type* const _type;      // What kind of value is loaded?
 780   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 781   virtual uint size_of() const; // Size is bigger
 782 public:
 783   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 784   virtual bool depends_only_on_test() const { return false; }
 785   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 786 
 787   virtual const Type *bottom_type() const { return _type; }
 788   virtual uint ideal_reg() const;
 789   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 790 
 791   bool result_not_used() const;
 792 };
 793 
 794 class LoadStoreConditionalNode : public LoadStoreNode {
 795 public:
 796   enum {
 797     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 798   };
 799   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 800 };
 801 
 802 //------------------------------StorePConditionalNode---------------------------
 803 // Conditionally store pointer to memory, if no change since prior
 804 // load-locked.  Sets flags for success or failure of the store.
 805 class StorePConditionalNode : public LoadStoreConditionalNode {
 806 public:
 807   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 808   virtual int Opcode() const;
 809   // Produces flags
 810   virtual uint ideal_reg() const { return Op_RegFlags; }
 811 };
 812 
 813 //------------------------------StoreIConditionalNode---------------------------
 814 // Conditionally store int to memory, if no change since prior
 815 // load-locked.  Sets flags for success or failure of the store.
 816 class StoreIConditionalNode : public LoadStoreConditionalNode {
 817 public:
 818   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 819   virtual int Opcode() const;
 820   // Produces flags
 821   virtual uint ideal_reg() const { return Op_RegFlags; }
 822 };
 823 
 824 //------------------------------StoreLConditionalNode---------------------------
 825 // Conditionally store long to memory, if no change since prior
 826 // load-locked.  Sets flags for success or failure of the store.
 827 class StoreLConditionalNode : public LoadStoreConditionalNode {
 828 public:
 829   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 830   virtual int Opcode() const;
 831   // Produces flags
 832   virtual uint ideal_reg() const { return Op_RegFlags; }
 833 };
 834 
 835 
 836 //------------------------------CompareAndSwapLNode---------------------------
 837 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 838 public:
 839   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 840   virtual int Opcode() const;
 841 };
 842 
 843 
 844 //------------------------------CompareAndSwapINode---------------------------
 845 class CompareAndSwapINode : public LoadStoreConditionalNode {
 846 public:
 847   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 848   virtual int Opcode() const;
 849 };
 850 
 851 
 852 //------------------------------CompareAndSwapPNode---------------------------
 853 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 854 public:
 855   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 856   virtual int Opcode() const;
 857 };
 858 
 859 //------------------------------CompareAndSwapNNode---------------------------
 860 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 861 public:
 862   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 863   virtual int Opcode() const;
 864 };
 865 
 866 //------------------------------GetAndAddINode---------------------------
 867 class GetAndAddINode : public LoadStoreNode {
 868 public:
 869   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 870   virtual int Opcode() const;
 871 };
 872 
 873 //------------------------------GetAndAddLNode---------------------------
 874 class GetAndAddLNode : public LoadStoreNode {
 875 public:
 876   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 877   virtual int Opcode() const;
 878 };
 879 
 880 
 881 //------------------------------GetAndSetINode---------------------------
 882 class GetAndSetINode : public LoadStoreNode {
 883 public:
 884   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 885   virtual int Opcode() const;
 886 };
 887 
 888 //------------------------------GetAndSetINode---------------------------
 889 class GetAndSetLNode : public LoadStoreNode {
 890 public:
 891   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 892   virtual int Opcode() const;
 893 };
 894 
 895 //------------------------------GetAndSetPNode---------------------------
 896 class GetAndSetPNode : public LoadStoreNode {
 897 public:
 898   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 899   virtual int Opcode() const;
 900 };
 901 
 902 //------------------------------GetAndSetNNode---------------------------
 903 class GetAndSetNNode : public LoadStoreNode {
 904 public:
 905   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 906   virtual int Opcode() const;
 907 };
 908 
 909 //------------------------------ClearArray-------------------------------------
 910 class ClearArrayNode: public Node {
 911 public:
 912   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 913     : Node(ctrl,arymem,word_cnt,base) {
 914     init_class_id(Class_ClearArray);
 915   }
 916   virtual int         Opcode() const;
 917   virtual const Type *bottom_type() const { return Type::MEMORY; }
 918   // ClearArray modifies array elements, and so affects only the
 919   // array memory addressed by the bottom_type of its base address.
 920   virtual const class TypePtr *adr_type() const;
 921   virtual Node *Identity( PhaseTransform *phase );
 922   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 923   virtual uint match_edge(uint idx) const;
 924 
 925   // Clear the given area of an object or array.
 926   // The start offset must always be aligned mod BytesPerInt.
 927   // The end offset must always be aligned mod BytesPerLong.
 928   // Return the new memory.
 929   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 930                             intptr_t start_offset,
 931                             intptr_t end_offset,
 932                             PhaseGVN* phase);
 933   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 934                             intptr_t start_offset,
 935                             Node* end_offset,
 936                             PhaseGVN* phase);
 937   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 938                             Node* start_offset,
 939                             Node* end_offset,
 940                             PhaseGVN* phase);
 941   // Return allocation input memory edge if it is different instance
 942   // or itself if it is the one we are looking for.
 943   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 944 };
 945 
 946 //------------------------------StrIntrinsic-------------------------------
 947 // Base class for Ideal nodes used in String instrinsic code.
 948 class StrIntrinsicNode: public Node {
 949 public:
 950   StrIntrinsicNode(Node* control, Node* char_array_mem,
 951                    Node* s1, Node* c1, Node* s2, Node* c2):
 952     Node(control, char_array_mem, s1, c1, s2, c2) {
 953   }
 954 
 955   StrIntrinsicNode(Node* control, Node* char_array_mem,
 956                    Node* s1, Node* s2, Node* c):
 957     Node(control, char_array_mem, s1, s2, c) {
 958   }
 959 
 960   StrIntrinsicNode(Node* control, Node* char_array_mem,
 961                    Node* s1, Node* s2):
 962     Node(control, char_array_mem, s1, s2) {
 963   }
 964 
 965   virtual bool depends_only_on_test() const { return false; }
 966   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
 967   virtual uint match_edge(uint idx) const;
 968   virtual uint ideal_reg() const { return Op_RegI; }
 969   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 970   virtual const Type *Value(PhaseTransform *phase) const;
 971 };
 972 
 973 //------------------------------StrComp-------------------------------------
 974 class StrCompNode: public StrIntrinsicNode {
 975 public:
 976   StrCompNode(Node* control, Node* char_array_mem,
 977               Node* s1, Node* c1, Node* s2, Node* c2):
 978     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 979   virtual int Opcode() const;
 980   virtual const Type* bottom_type() const { return TypeInt::INT; }
 981 };
 982 
 983 //------------------------------StrEquals-------------------------------------
 984 class StrEqualsNode: public StrIntrinsicNode {
 985 public:
 986   StrEqualsNode(Node* control, Node* char_array_mem,
 987                 Node* s1, Node* s2, Node* c):
 988     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
 989   virtual int Opcode() const;
 990   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 991 };
 992 
 993 //------------------------------StrIndexOf-------------------------------------
 994 class StrIndexOfNode: public StrIntrinsicNode {
 995 public:
 996   StrIndexOfNode(Node* control, Node* char_array_mem,
 997               Node* s1, Node* c1, Node* s2, Node* c2):
 998     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 999   virtual int Opcode() const;
1000   virtual const Type* bottom_type() const { return TypeInt::INT; }
1001 };
1002 
1003 //------------------------------AryEq---------------------------------------
1004 class AryEqNode: public StrIntrinsicNode {
1005 public:
1006   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
1007     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
1008   virtual int Opcode() const;
1009   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
1010 };
1011 
1012 
1013 //------------------------------EncodeISOArray--------------------------------
1014 // encode char[] to byte[] in ISO_8859_1
1015 class EncodeISOArrayNode: public Node {
1016 public:
1017   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
1018   virtual int Opcode() const;
1019   virtual bool depends_only_on_test() const { return false; }
1020   virtual const Type* bottom_type() const { return TypeInt::INT; }
1021   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
1022   virtual uint match_edge(uint idx) const;
1023   virtual uint ideal_reg() const { return Op_RegI; }
1024   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1025   virtual const Type *Value(PhaseTransform *phase) const;
1026 };
1027 
1028 //------------------------------MemBar-----------------------------------------
1029 // There are different flavors of Memory Barriers to match the Java Memory
1030 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
1031 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1032 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1033 // preceding ref can be moved to after them.  We insert a MemBar-Release
1034 // before a FastUnlock or volatile-store.  All volatiles need to be
1035 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1036 // separate it from any following volatile-load.
1037 class MemBarNode: public MultiNode {
1038   virtual uint hash() const ;                  // { return NO_HASH; }
1039   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1040 
1041   virtual uint size_of() const { return sizeof(*this); }
1042   // Memory type this node is serializing.  Usually either rawptr or bottom.
1043   const TypePtr* _adr_type;
1044 
1045 public:
1046   enum {
1047     Precedent = TypeFunc::Parms  // optional edge to force precedence
1048   };
1049   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1050   virtual int Opcode() const = 0;
1051   virtual const class TypePtr *adr_type() const { return _adr_type; }
1052   virtual const Type *Value( PhaseTransform *phase ) const;
1053   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1054   virtual uint match_edge(uint idx) const { return 0; }
1055   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1056   virtual Node *match( const ProjNode *proj, const Matcher *m );
1057   // Factory method.  Builds a wide or narrow membar.
1058   // Optional 'precedent' becomes an extra edge if not null.
1059   static MemBarNode* make(Compile* C, int opcode,
1060                           int alias_idx = Compile::AliasIdxBot,
1061                           Node* precedent = NULL);
1062 };
1063 
1064 // "Acquire" - no following ref can move before (but earlier refs can
1065 // follow, like an early Load stalled in cache).  Requires multi-cpu
1066 // visibility.  Inserted after a volatile load.
1067 class MemBarAcquireNode: public MemBarNode {
1068 public:
1069   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1070     : MemBarNode(C, alias_idx, precedent) {}
1071   virtual int Opcode() const;
1072 };
1073 
1074 // "Acquire" - no following ref can move before (but earlier refs can
1075 // follow, like an early Load stalled in cache).  Requires multi-cpu
1076 // visibility.  Inserted independ of any load, as required
1077 // for intrinsic sun.misc.Unsafe.loadFence().
1078 class LoadFenceNode: public MemBarNode {
1079 public:
1080   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1081     : MemBarNode(C, alias_idx, precedent) {}
1082   virtual int Opcode() const;
1083 };
1084 
1085 // "Release" - no earlier ref can move after (but later refs can move
1086 // up, like a speculative pipelined cache-hitting Load).  Requires
1087 // multi-cpu visibility.  Inserted before a volatile store.
1088 class MemBarReleaseNode: public MemBarNode {
1089 public:
1090   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1091     : MemBarNode(C, alias_idx, precedent) {}
1092   virtual int Opcode() const;
1093 };
1094 
1095 // "Release" - no earlier ref can move after (but later refs can move
1096 // up, like a speculative pipelined cache-hitting Load).  Requires
1097 // multi-cpu visibility.  Inserted independent of any store, as required
1098 // for intrinsic sun.misc.Unsafe.storeFence().
1099 class StoreFenceNode: public MemBarNode {
1100 public:
1101   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1102     : MemBarNode(C, alias_idx, precedent) {}
1103   virtual int Opcode() const;
1104 };
1105 
1106 // "Acquire" - no following ref can move before (but earlier refs can
1107 // follow, like an early Load stalled in cache).  Requires multi-cpu
1108 // visibility.  Inserted after a FastLock.
1109 class MemBarAcquireLockNode: public MemBarNode {
1110 public:
1111   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1112     : MemBarNode(C, alias_idx, precedent) {}
1113   virtual int Opcode() const;
1114 };
1115 
1116 // "Release" - no earlier ref can move after (but later refs can move
1117 // up, like a speculative pipelined cache-hitting Load).  Requires
1118 // multi-cpu visibility.  Inserted before a FastUnLock.
1119 class MemBarReleaseLockNode: public MemBarNode {
1120 public:
1121   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1122     : MemBarNode(C, alias_idx, precedent) {}
1123   virtual int Opcode() const;
1124 };
1125 
1126 class MemBarStoreStoreNode: public MemBarNode {
1127 public:
1128   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1129     : MemBarNode(C, alias_idx, precedent) {
1130     init_class_id(Class_MemBarStoreStore);
1131   }
1132   virtual int Opcode() const;
1133 };
1134 
1135 // Ordering between a volatile store and a following volatile load.
1136 // Requires multi-CPU visibility?
1137 class MemBarVolatileNode: public MemBarNode {
1138 public:
1139   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1140     : MemBarNode(C, alias_idx, precedent) {}
1141   virtual int Opcode() const;
1142 };
1143 
1144 // Ordering within the same CPU.  Used to order unsafe memory references
1145 // inside the compiler when we lack alias info.  Not needed "outside" the
1146 // compiler because the CPU does all the ordering for us.
1147 class MemBarCPUOrderNode: public MemBarNode {
1148 public:
1149   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1150     : MemBarNode(C, alias_idx, precedent) {}
1151   virtual int Opcode() const;
1152   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1153 };
1154 
1155 // Isolation of object setup after an AllocateNode and before next safepoint.
1156 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1157 class InitializeNode: public MemBarNode {
1158   friend class AllocateNode;
1159 
1160   enum {
1161     Incomplete    = 0,
1162     Complete      = 1,
1163     WithArraycopy = 2
1164   };
1165   int _is_complete;
1166 
1167   bool _does_not_escape;
1168 
1169 public:
1170   enum {
1171     Control    = TypeFunc::Control,
1172     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1173     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1174     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1175   };
1176 
1177   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1178   virtual int Opcode() const;
1179   virtual uint size_of() const { return sizeof(*this); }
1180   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1181   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1182 
1183   // Manage incoming memory edges via a MergeMem on in(Memory):
1184   Node* memory(uint alias_idx);
1185 
1186   // The raw memory edge coming directly from the Allocation.
1187   // The contents of this memory are *always* all-zero-bits.
1188   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1189 
1190   // Return the corresponding allocation for this initialization (or null if none).
1191   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1192   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1193   AllocateNode* allocation();
1194 
1195   // Anything other than zeroing in this init?
1196   bool is_non_zero();
1197 
1198   // An InitializeNode must completed before macro expansion is done.
1199   // Completion requires that the AllocateNode must be followed by
1200   // initialization of the new memory to zero, then to any initializers.
1201   bool is_complete() { return _is_complete != Incomplete; }
1202   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1203 
1204   // Mark complete.  (Must not yet be complete.)
1205   void set_complete(PhaseGVN* phase);
1206   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1207 
1208   bool does_not_escape() { return _does_not_escape; }
1209   void set_does_not_escape() { _does_not_escape = true; }
1210 
1211 #ifdef ASSERT
1212   // ensure all non-degenerate stores are ordered and non-overlapping
1213   bool stores_are_sane(PhaseTransform* phase);
1214 #endif //ASSERT
1215 
1216   // See if this store can be captured; return offset where it initializes.
1217   // Return 0 if the store cannot be moved (any sort of problem).
1218   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1219 
1220   // Capture another store; reformat it to write my internal raw memory.
1221   // Return the captured copy, else NULL if there is some sort of problem.
1222   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1223 
1224   // Find captured store which corresponds to the range [start..start+size).
1225   // Return my own memory projection (meaning the initial zero bits)
1226   // if there is no such store.  Return NULL if there is a problem.
1227   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1228 
1229   // Called when the associated AllocateNode is expanded into CFG.
1230   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1231                         intptr_t header_size, Node* size_in_bytes,
1232                         PhaseGVN* phase);
1233 
1234  private:
1235   void remove_extra_zeroes();
1236 
1237   // Find out where a captured store should be placed (or already is placed).
1238   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1239                                      PhaseTransform* phase);
1240 
1241   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1242 
1243   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1244 
1245   bool detect_init_independence(Node* n, int& count);
1246 
1247   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1248                                PhaseGVN* phase);
1249 
1250   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1251 };
1252 
1253 //------------------------------MergeMem---------------------------------------
1254 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1255 class MergeMemNode: public Node {
1256   virtual uint hash() const ;                  // { return NO_HASH; }
1257   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1258   friend class MergeMemStream;
1259   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1260 
1261 public:
1262   // If the input is a whole memory state, clone it with all its slices intact.
1263   // Otherwise, make a new memory state with just that base memory input.
1264   // In either case, the result is a newly created MergeMem.
1265   static MergeMemNode* make(Compile* C, Node* base_memory);
1266 
1267   virtual int Opcode() const;
1268   virtual Node *Identity( PhaseTransform *phase );
1269   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1270   virtual uint ideal_reg() const { return NotAMachineReg; }
1271   virtual uint match_edge(uint idx) const { return 0; }
1272   virtual const RegMask &out_RegMask() const;
1273   virtual const Type *bottom_type() const { return Type::MEMORY; }
1274   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1275   // sparse accessors
1276   // Fetch the previously stored "set_memory_at", or else the base memory.
1277   // (Caller should clone it if it is a phi-nest.)
1278   Node* memory_at(uint alias_idx) const;
1279   // set the memory, regardless of its previous value
1280   void set_memory_at(uint alias_idx, Node* n);
1281   // the "base" is the memory that provides the non-finite support
1282   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1283   // warning: setting the base can implicitly set any of the other slices too
1284   void set_base_memory(Node* def);
1285   // sentinel value which denotes a copy of the base memory:
1286   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1287   static Node* make_empty_memory(); // where the sentinel comes from
1288   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1289   // hook for the iterator, to perform any necessary setup
1290   void iteration_setup(const MergeMemNode* other = NULL);
1291   // push sentinels until I am at least as long as the other (semantic no-op)
1292   void grow_to_match(const MergeMemNode* other);
1293   bool verify_sparse() const PRODUCT_RETURN0;
1294 #ifndef PRODUCT
1295   virtual void dump_spec(outputStream *st) const;
1296 #endif
1297 };
1298 
1299 class MergeMemStream : public StackObj {
1300  private:
1301   MergeMemNode*       _mm;
1302   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1303   Node*               _mm_base;  // loop-invariant base memory of _mm
1304   int                 _idx;
1305   int                 _cnt;
1306   Node*               _mem;
1307   Node*               _mem2;
1308   int                 _cnt2;
1309 
1310   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1311     // subsume_node will break sparseness at times, whenever a memory slice
1312     // folds down to a copy of the base ("fat") memory.  In such a case,
1313     // the raw edge will update to base, although it should be top.
1314     // This iterator will recognize either top or base_memory as an
1315     // "empty" slice.  See is_empty, is_empty2, and next below.
1316     //
1317     // The sparseness property is repaired in MergeMemNode::Ideal.
1318     // As long as access to a MergeMem goes through this iterator
1319     // or the memory_at accessor, flaws in the sparseness will
1320     // never be observed.
1321     //
1322     // Also, iteration_setup repairs sparseness.
1323     assert(mm->verify_sparse(), "please, no dups of base");
1324     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1325 
1326     _mm  = mm;
1327     _mm_base = mm->base_memory();
1328     _mm2 = mm2;
1329     _cnt = mm->req();
1330     _idx = Compile::AliasIdxBot-1; // start at the base memory
1331     _mem = NULL;
1332     _mem2 = NULL;
1333   }
1334 
1335 #ifdef ASSERT
1336   Node* check_memory() const {
1337     if (at_base_memory())
1338       return _mm->base_memory();
1339     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1340       return _mm->memory_at(_idx);
1341     else
1342       return _mm_base;
1343   }
1344   Node* check_memory2() const {
1345     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1346   }
1347 #endif
1348 
1349   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1350   void assert_synch() const {
1351     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1352            "no side-effects except through the stream");
1353   }
1354 
1355  public:
1356 
1357   // expected usages:
1358   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1359   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1360 
1361   // iterate over one merge
1362   MergeMemStream(MergeMemNode* mm) {
1363     mm->iteration_setup();
1364     init(mm);
1365     debug_only(_cnt2 = 999);
1366   }
1367   // iterate in parallel over two merges
1368   // only iterates through non-empty elements of mm2
1369   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1370     assert(mm2, "second argument must be a MergeMem also");
1371     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1372     mm->iteration_setup(mm2);
1373     init(mm, mm2);
1374     _cnt2 = mm2->req();
1375   }
1376 #ifdef ASSERT
1377   ~MergeMemStream() {
1378     assert_synch();
1379   }
1380 #endif
1381 
1382   MergeMemNode* all_memory() const {
1383     return _mm;
1384   }
1385   Node* base_memory() const {
1386     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1387     return _mm_base;
1388   }
1389   const MergeMemNode* all_memory2() const {
1390     assert(_mm2 != NULL, "");
1391     return _mm2;
1392   }
1393   bool at_base_memory() const {
1394     return _idx == Compile::AliasIdxBot;
1395   }
1396   int alias_idx() const {
1397     assert(_mem, "must call next 1st");
1398     return _idx;
1399   }
1400 
1401   const TypePtr* adr_type() const {
1402     return Compile::current()->get_adr_type(alias_idx());
1403   }
1404 
1405   const TypePtr* adr_type(Compile* C) const {
1406     return C->get_adr_type(alias_idx());
1407   }
1408   bool is_empty() const {
1409     assert(_mem, "must call next 1st");
1410     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1411     return _mem->is_top();
1412   }
1413   bool is_empty2() const {
1414     assert(_mem2, "must call next 1st");
1415     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1416     return _mem2->is_top();
1417   }
1418   Node* memory() const {
1419     assert(!is_empty(), "must not be empty");
1420     assert_synch();
1421     return _mem;
1422   }
1423   // get the current memory, regardless of empty or non-empty status
1424   Node* force_memory() const {
1425     assert(!is_empty() || !at_base_memory(), "");
1426     // Use _mm_base to defend against updates to _mem->base_memory().
1427     Node *mem = _mem->is_top() ? _mm_base : _mem;
1428     assert(mem == check_memory(), "");
1429     return mem;
1430   }
1431   Node* memory2() const {
1432     assert(_mem2 == check_memory2(), "");
1433     return _mem2;
1434   }
1435   void set_memory(Node* mem) {
1436     if (at_base_memory()) {
1437       // Note that this does not change the invariant _mm_base.
1438       _mm->set_base_memory(mem);
1439     } else {
1440       _mm->set_memory_at(_idx, mem);
1441     }
1442     _mem = mem;
1443     assert_synch();
1444   }
1445 
1446   // Recover from a side effect to the MergeMemNode.
1447   void set_memory() {
1448     _mem = _mm->in(_idx);
1449   }
1450 
1451   bool next()  { return next(false); }
1452   bool next2() { return next(true); }
1453 
1454   bool next_non_empty()  { return next_non_empty(false); }
1455   bool next_non_empty2() { return next_non_empty(true); }
1456   // next_non_empty2 can yield states where is_empty() is true
1457 
1458  private:
1459   // find the next item, which might be empty
1460   bool next(bool have_mm2) {
1461     assert((_mm2 != NULL) == have_mm2, "use other next");
1462     assert_synch();
1463     if (++_idx < _cnt) {
1464       // Note:  This iterator allows _mm to be non-sparse.
1465       // It behaves the same whether _mem is top or base_memory.
1466       _mem = _mm->in(_idx);
1467       if (have_mm2)
1468         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1469       return true;
1470     }
1471     return false;
1472   }
1473 
1474   // find the next non-empty item
1475   bool next_non_empty(bool have_mm2) {
1476     while (next(have_mm2)) {
1477       if (!is_empty()) {
1478         // make sure _mem2 is filled in sensibly
1479         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1480         return true;
1481       } else if (have_mm2 && !is_empty2()) {
1482         return true;   // is_empty() == true
1483       }
1484     }
1485     return false;
1486   }
1487 };
1488 
1489 //------------------------------Prefetch---------------------------------------
1490 
1491 // Non-faulting prefetch load.  Prefetch for many reads.
1492 class PrefetchReadNode : public Node {
1493 public:
1494   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1495   virtual int Opcode() const;
1496   virtual uint ideal_reg() const { return NotAMachineReg; }
1497   virtual uint match_edge(uint idx) const { return idx==2; }
1498   virtual const Type *bottom_type() const { return Type::ABIO; }
1499 };
1500 
1501 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
1502 class PrefetchWriteNode : public Node {
1503 public:
1504   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1505   virtual int Opcode() const;
1506   virtual uint ideal_reg() const { return NotAMachineReg; }
1507   virtual uint match_edge(uint idx) const { return idx==2; }
1508   virtual const Type *bottom_type() const { return Type::ABIO; }
1509 };
1510 
1511 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1512 class PrefetchAllocationNode : public Node {
1513 public:
1514   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1515   virtual int Opcode() const;
1516   virtual uint ideal_reg() const { return NotAMachineReg; }
1517   virtual uint match_edge(uint idx) const { return idx==2; }
1518   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1519 };
1520 
1521 #endif // SHARE_VM_OPTO_MEMNODE_HPP