1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "utilities/decoder.hpp"
  65 #include "utilities/defaultStream.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/elfFile.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <pwd.h>
  91 # include <poll.h>
  92 # include <semaphore.h>
  93 # include <fcntl.h>
  94 # include <string.h>
  95 # include <syscall.h>
  96 # include <sys/sysinfo.h>
  97 # include <gnu/libc-version.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 # include <link.h>
 101 # include <stdint.h>
 102 # include <inttypes.h>
 103 # include <sys/ioctl.h>
 104 
 105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 106 
 107 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 108 // getrusage() is prepared to handle the associated failure.
 109 #ifndef RUSAGE_THREAD
 110 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 111 #endif
 112 
 113 #define MAX_PATH    (2 * K)
 114 
 115 #define MAX_SECS 100000000
 116 
 117 // for timer info max values which include all bits
 118 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 119 
 120 #define LARGEPAGES_BIT (1 << 6)
 121 ////////////////////////////////////////////////////////////////////////////////
 122 // global variables
 123 julong os::Linux::_physical_memory = 0;
 124 
 125 address   os::Linux::_initial_thread_stack_bottom = NULL;
 126 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 127 
 128 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 129 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 130 Mutex* os::Linux::_createThread_lock = NULL;
 131 pthread_t os::Linux::_main_thread;
 132 int os::Linux::_page_size = -1;
 133 const int os::Linux::_vm_default_page_size = (8 * K);
 134 bool os::Linux::_is_floating_stack = false;
 135 bool os::Linux::_is_NPTL = false;
 136 bool os::Linux::_supports_fast_thread_cpu_time = false;
 137 const char * os::Linux::_glibc_version = NULL;
 138 const char * os::Linux::_libpthread_version = NULL;
 139 pthread_condattr_t os::Linux::_condattr[1];
 140 
 141 static jlong initial_time_count=0;
 142 
 143 static int clock_tics_per_sec = 100;
 144 
 145 // For diagnostics to print a message once. see run_periodic_checks
 146 static sigset_t check_signal_done;
 147 static bool check_signals = true;
 148 
 149 static pid_t _initial_pid = 0;
 150 
 151 /* Signal number used to suspend/resume a thread */
 152 
 153 /* do not use any signal number less than SIGSEGV, see 4355769 */
 154 static int SR_signum = SIGUSR2;
 155 sigset_t SR_sigset;
 156 
 157 /* Used to protect dlsym() calls */
 158 static pthread_mutex_t dl_mutex;
 159 
 160 // Declarations
 161 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 162 
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 
 167 julong os::available_memory() {
 168   return Linux::available_memory();
 169 }
 170 
 171 julong os::Linux::available_memory() {
 172   // values in struct sysinfo are "unsigned long"
 173   struct sysinfo si;
 174   sysinfo(&si);
 175 
 176   return (julong)si.freeram * si.mem_unit;
 177 }
 178 
 179 julong os::physical_memory() {
 180   return Linux::physical_memory();
 181 }
 182 
 183 ////////////////////////////////////////////////////////////////////////////////
 184 // environment support
 185 
 186 bool os::getenv(const char* name, char* buf, int len) {
 187   const char* val = ::getenv(name);
 188   if (val != NULL && strlen(val) < (size_t)len) {
 189     strcpy(buf, val);
 190     return true;
 191   }
 192   if (len > 0) buf[0] = 0;  // return a null string
 193   return false;
 194 }
 195 
 196 
 197 // Return true if user is running as root.
 198 
 199 bool os::have_special_privileges() {
 200   static bool init = false;
 201   static bool privileges = false;
 202   if (!init) {
 203     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 204     init = true;
 205   }
 206   return privileges;
 207 }
 208 
 209 
 210 #ifndef SYS_gettid
 211 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 212   #ifdef __ia64__
 213     #define SYS_gettid 1105
 214   #else
 215     #ifdef __i386__
 216       #define SYS_gettid 224
 217     #else
 218       #ifdef __amd64__
 219         #define SYS_gettid 186
 220       #else
 221         #ifdef __sparc__
 222           #define SYS_gettid 143
 223         #else
 224           #error define gettid for the arch
 225         #endif
 226       #endif
 227     #endif
 228   #endif
 229 #endif
 230 
 231 // Cpu architecture string
 232 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 233 
 234 // pid_t gettid()
 235 //
 236 // Returns the kernel thread id of the currently running thread. Kernel
 237 // thread id is used to access /proc.
 238 //
 239 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 240 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 241 //
 242 pid_t os::Linux::gettid() {
 243   int rslt = syscall(SYS_gettid);
 244   if (rslt == -1) {
 245      // old kernel, no NPTL support
 246      return getpid();
 247   } else {
 248      return (pid_t)rslt;
 249   }
 250 }
 251 
 252 // Most versions of linux have a bug where the number of processors are
 253 // determined by looking at the /proc file system.  In a chroot environment,
 254 // the system call returns 1.  This causes the VM to act as if it is
 255 // a single processor and elide locking (see is_MP() call).
 256 static bool unsafe_chroot_detected = false;
 257 static const char *unstable_chroot_error = "/proc file system not found.\n"
 258                      "Java may be unstable running multithreaded in a chroot "
 259                      "environment on Linux when /proc filesystem is not mounted.";
 260 
 261 void os::Linux::initialize_system_info() {
 262   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 263   if (processor_count() == 1) {
 264     pid_t pid = os::Linux::gettid();
 265     char fname[32];
 266     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 267     FILE *fp = fopen(fname, "r");
 268     if (fp == NULL) {
 269       unsafe_chroot_detected = true;
 270     } else {
 271       fclose(fp);
 272     }
 273   }
 274   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 275   assert(processor_count() > 0, "linux error");
 276 }
 277 
 278 void os::init_system_properties_values() {
 279   // The next steps are taken in the product version:
 280   //
 281   // Obtain the JAVA_HOME value from the location of libjvm.so.
 282   // This library should be located at:
 283   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 284   //
 285   // If "/jre/lib/" appears at the right place in the path, then we
 286   // assume libjvm.so is installed in a JDK and we use this path.
 287   //
 288   // Otherwise exit with message: "Could not create the Java virtual machine."
 289   //
 290   // The following extra steps are taken in the debugging version:
 291   //
 292   // If "/jre/lib/" does NOT appear at the right place in the path
 293   // instead of exit check for $JAVA_HOME environment variable.
 294   //
 295   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 296   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 297   // it looks like libjvm.so is installed there
 298   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 299   //
 300   // Otherwise exit.
 301   //
 302   // Important note: if the location of libjvm.so changes this
 303   // code needs to be changed accordingly.
 304 
 305 // See ld(1):
 306 //      The linker uses the following search paths to locate required
 307 //      shared libraries:
 308 //        1: ...
 309 //        ...
 310 //        7: The default directories, normally /lib and /usr/lib.
 311 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 312 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 313 #else
 314 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 315 #endif
 316 
 317 // Base path of extensions installed on the system.
 318 #define SYS_EXT_DIR     "/usr/java/packages"
 319 #define EXTENSIONS_DIR  "/lib/ext"
 320 #define ENDORSED_DIR    "/lib/endorsed"
 321 
 322   // Buffer that fits several sprintfs.
 323   // Note that the space for the colon and the trailing null are provided
 324   // by the nulls included by the sizeof operator.
 325   const size_t bufsize =
 326     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 327          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 328          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 329   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 330 
 331   // sysclasspath, java_home, dll_dir
 332   {
 333     char *pslash;
 334     os::jvm_path(buf, bufsize);
 335 
 336     // Found the full path to libjvm.so.
 337     // Now cut the path to <java_home>/jre if we can.
 338     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 339     pslash = strrchr(buf, '/');
 340     if (pslash != NULL) {
 341       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 342     }
 343     Arguments::set_dll_dir(buf);
 344 
 345     if (pslash != NULL) {
 346       pslash = strrchr(buf, '/');
 347       if (pslash != NULL) {
 348         *pslash = '\0';          // Get rid of /<arch>.
 349         pslash = strrchr(buf, '/');
 350         if (pslash != NULL) {
 351           *pslash = '\0';        // Get rid of /lib.
 352         }
 353       }
 354     }
 355     Arguments::set_java_home(buf);
 356     set_boot_path('/', ':');
 357   }
 358 
 359   // Where to look for native libraries.
 360   //
 361   // Note: Due to a legacy implementation, most of the library path
 362   // is set in the launcher. This was to accomodate linking restrictions
 363   // on legacy Linux implementations (which are no longer supported).
 364   // Eventually, all the library path setting will be done here.
 365   //
 366   // However, to prevent the proliferation of improperly built native
 367   // libraries, the new path component /usr/java/packages is added here.
 368   // Eventually, all the library path setting will be done here.
 369   {
 370     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 371     // should always exist (until the legacy problem cited above is
 372     // addressed).
 373     const char *v = ::getenv("LD_LIBRARY_PATH");
 374     const char *v_colon = ":";
 375     if (v == NULL) { v = ""; v_colon = ""; }
 376     // That's +1 for the colon and +1 for the trailing '\0'.
 377     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 378                                                      strlen(v) + 1 +
 379                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 380                                                      mtInternal);
 381     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 382     Arguments::set_library_path(ld_library_path);
 383     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 384   }
 385 
 386   // Extensions directories.
 387   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 388   Arguments::set_ext_dirs(buf);
 389 
 390   // Endorsed standards default directory.
 391   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 392   Arguments::set_endorsed_dirs(buf);
 393 
 394   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 395 
 396 #undef DEFAULT_LIBPATH
 397 #undef SYS_EXT_DIR
 398 #undef EXTENSIONS_DIR
 399 #undef ENDORSED_DIR
 400 }
 401 
 402 ////////////////////////////////////////////////////////////////////////////////
 403 // breakpoint support
 404 
 405 void os::breakpoint() {
 406   BREAKPOINT;
 407 }
 408 
 409 extern "C" void breakpoint() {
 410   // use debugger to set breakpoint here
 411 }
 412 
 413 ////////////////////////////////////////////////////////////////////////////////
 414 // signal support
 415 
 416 debug_only(static bool signal_sets_initialized = false);
 417 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 418 
 419 bool os::Linux::is_sig_ignored(int sig) {
 420       struct sigaction oact;
 421       sigaction(sig, (struct sigaction*)NULL, &oact);
 422       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 423                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 424       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 425            return true;
 426       else
 427            return false;
 428 }
 429 
 430 void os::Linux::signal_sets_init() {
 431   // Should also have an assertion stating we are still single-threaded.
 432   assert(!signal_sets_initialized, "Already initialized");
 433   // Fill in signals that are necessarily unblocked for all threads in
 434   // the VM. Currently, we unblock the following signals:
 435   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 436   //                         by -Xrs (=ReduceSignalUsage));
 437   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 438   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 439   // the dispositions or masks wrt these signals.
 440   // Programs embedding the VM that want to use the above signals for their
 441   // own purposes must, at this time, use the "-Xrs" option to prevent
 442   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 443   // (See bug 4345157, and other related bugs).
 444   // In reality, though, unblocking these signals is really a nop, since
 445   // these signals are not blocked by default.
 446   sigemptyset(&unblocked_sigs);
 447   sigemptyset(&allowdebug_blocked_sigs);
 448   sigaddset(&unblocked_sigs, SIGILL);
 449   sigaddset(&unblocked_sigs, SIGSEGV);
 450   sigaddset(&unblocked_sigs, SIGBUS);
 451   sigaddset(&unblocked_sigs, SIGFPE);
 452 #if defined(PPC64)
 453   sigaddset(&unblocked_sigs, SIGTRAP);
 454 #endif
 455   sigaddset(&unblocked_sigs, SR_signum);
 456 
 457   if (!ReduceSignalUsage) {
 458    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 459       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 460       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 461    }
 462    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 463       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 464       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 465    }
 466    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 469    }
 470   }
 471   // Fill in signals that are blocked by all but the VM thread.
 472   sigemptyset(&vm_sigs);
 473   if (!ReduceSignalUsage)
 474     sigaddset(&vm_sigs, BREAK_SIGNAL);
 475   debug_only(signal_sets_initialized = true);
 476 
 477 }
 478 
 479 // These are signals that are unblocked while a thread is running Java.
 480 // (For some reason, they get blocked by default.)
 481 sigset_t* os::Linux::unblocked_signals() {
 482   assert(signal_sets_initialized, "Not initialized");
 483   return &unblocked_sigs;
 484 }
 485 
 486 // These are the signals that are blocked while a (non-VM) thread is
 487 // running Java. Only the VM thread handles these signals.
 488 sigset_t* os::Linux::vm_signals() {
 489   assert(signal_sets_initialized, "Not initialized");
 490   return &vm_sigs;
 491 }
 492 
 493 // These are signals that are blocked during cond_wait to allow debugger in
 494 sigset_t* os::Linux::allowdebug_blocked_signals() {
 495   assert(signal_sets_initialized, "Not initialized");
 496   return &allowdebug_blocked_sigs;
 497 }
 498 
 499 void os::Linux::hotspot_sigmask(Thread* thread) {
 500 
 501   //Save caller's signal mask before setting VM signal mask
 502   sigset_t caller_sigmask;
 503   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 504 
 505   OSThread* osthread = thread->osthread();
 506   osthread->set_caller_sigmask(caller_sigmask);
 507 
 508   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 509 
 510   if (!ReduceSignalUsage) {
 511     if (thread->is_VM_thread()) {
 512       // Only the VM thread handles BREAK_SIGNAL ...
 513       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 514     } else {
 515       // ... all other threads block BREAK_SIGNAL
 516       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 517     }
 518   }
 519 }
 520 
 521 //////////////////////////////////////////////////////////////////////////////
 522 // detecting pthread library
 523 
 524 void os::Linux::libpthread_init() {
 525   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 526   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 527   // generic name for earlier versions.
 528   // Define macros here so we can build HotSpot on old systems.
 529 # ifndef _CS_GNU_LIBC_VERSION
 530 # define _CS_GNU_LIBC_VERSION 2
 531 # endif
 532 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 533 # define _CS_GNU_LIBPTHREAD_VERSION 3
 534 # endif
 535 
 536   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 537   if (n > 0) {
 538      char *str = (char *)malloc(n, mtInternal);
 539      confstr(_CS_GNU_LIBC_VERSION, str, n);
 540      os::Linux::set_glibc_version(str);
 541   } else {
 542      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 543      static char _gnu_libc_version[32];
 544      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 545               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 546      os::Linux::set_glibc_version(_gnu_libc_version);
 547   }
 548 
 549   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 550   if (n > 0) {
 551      char *str = (char *)malloc(n, mtInternal);
 552      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 553      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 554      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 555      // is the case. LinuxThreads has a hard limit on max number of threads.
 556      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 557      // On the other hand, NPTL does not have such a limit, sysconf()
 558      // will return -1 and errno is not changed. Check if it is really NPTL.
 559      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 560          strstr(str, "NPTL") &&
 561          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 562        free(str);
 563        os::Linux::set_libpthread_version("linuxthreads");
 564      } else {
 565        os::Linux::set_libpthread_version(str);
 566      }
 567   } else {
 568     // glibc before 2.3.2 only has LinuxThreads.
 569     os::Linux::set_libpthread_version("linuxthreads");
 570   }
 571 
 572   if (strstr(libpthread_version(), "NPTL")) {
 573      os::Linux::set_is_NPTL();
 574   } else {
 575      os::Linux::set_is_LinuxThreads();
 576   }
 577 
 578   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 579   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 580   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 581      os::Linux::set_is_floating_stack();
 582   }
 583 }
 584 
 585 /////////////////////////////////////////////////////////////////////////////
 586 // thread stack
 587 
 588 // Force Linux kernel to expand current thread stack. If "bottom" is close
 589 // to the stack guard, caller should block all signals.
 590 //
 591 // MAP_GROWSDOWN:
 592 //   A special mmap() flag that is used to implement thread stacks. It tells
 593 //   kernel that the memory region should extend downwards when needed. This
 594 //   allows early versions of LinuxThreads to only mmap the first few pages
 595 //   when creating a new thread. Linux kernel will automatically expand thread
 596 //   stack as needed (on page faults).
 597 //
 598 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 599 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 600 //   region, it's hard to tell if the fault is due to a legitimate stack
 601 //   access or because of reading/writing non-exist memory (e.g. buffer
 602 //   overrun). As a rule, if the fault happens below current stack pointer,
 603 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 604 //   application (see Linux kernel fault.c).
 605 //
 606 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 607 //   stack overflow detection.
 608 //
 609 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 610 //   not use this flag. However, the stack of initial thread is not created
 611 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 612 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 613 //   and then attach the thread to JVM.
 614 //
 615 // To get around the problem and allow stack banging on Linux, we need to
 616 // manually expand thread stack after receiving the SIGSEGV.
 617 //
 618 // There are two ways to expand thread stack to address "bottom", we used
 619 // both of them in JVM before 1.5:
 620 //   1. adjust stack pointer first so that it is below "bottom", and then
 621 //      touch "bottom"
 622 //   2. mmap() the page in question
 623 //
 624 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 625 // if current sp is already near the lower end of page 101, and we need to
 626 // call mmap() to map page 100, it is possible that part of the mmap() frame
 627 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 628 // That will destroy the mmap() frame and cause VM to crash.
 629 //
 630 // The following code works by adjusting sp first, then accessing the "bottom"
 631 // page to force a page fault. Linux kernel will then automatically expand the
 632 // stack mapping.
 633 //
 634 // _expand_stack_to() assumes its frame size is less than page size, which
 635 // should always be true if the function is not inlined.
 636 
 637 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 638 #define NOINLINE
 639 #else
 640 #define NOINLINE __attribute__ ((noinline))
 641 #endif
 642 
 643 static void _expand_stack_to(address bottom) NOINLINE;
 644 
 645 static void _expand_stack_to(address bottom) {
 646   address sp;
 647   size_t size;
 648   volatile char *p;
 649 
 650   // Adjust bottom to point to the largest address within the same page, it
 651   // gives us a one-page buffer if alloca() allocates slightly more memory.
 652   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 653   bottom += os::Linux::page_size() - 1;
 654 
 655   // sp might be slightly above current stack pointer; if that's the case, we
 656   // will alloca() a little more space than necessary, which is OK. Don't use
 657   // os::current_stack_pointer(), as its result can be slightly below current
 658   // stack pointer, causing us to not alloca enough to reach "bottom".
 659   sp = (address)&sp;
 660 
 661   if (sp > bottom) {
 662     size = sp - bottom;
 663     p = (volatile char *)alloca(size);
 664     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 665     p[0] = '\0';
 666   }
 667 }
 668 
 669 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 670   assert(t!=NULL, "just checking");
 671   assert(t->osthread()->expanding_stack(), "expand should be set");
 672   assert(t->stack_base() != NULL, "stack_base was not initialized");
 673 
 674   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 675     sigset_t mask_all, old_sigset;
 676     sigfillset(&mask_all);
 677     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 678     _expand_stack_to(addr);
 679     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 680     return true;
 681   }
 682   return false;
 683 }
 684 
 685 //////////////////////////////////////////////////////////////////////////////
 686 // create new thread
 687 
 688 static address highest_vm_reserved_address();
 689 
 690 // check if it's safe to start a new thread
 691 static bool _thread_safety_check(Thread* thread) {
 692   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 693     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 694     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 695     //   allocated (MAP_FIXED) from high address space. Every thread stack
 696     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 697     //   it to other values if they rebuild LinuxThreads).
 698     //
 699     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 700     // the memory region has already been mmap'ed. That means if we have too
 701     // many threads and/or very large heap, eventually thread stack will
 702     // collide with heap.
 703     //
 704     // Here we try to prevent heap/stack collision by comparing current
 705     // stack bottom with the highest address that has been mmap'ed by JVM
 706     // plus a safety margin for memory maps created by native code.
 707     //
 708     // This feature can be disabled by setting ThreadSafetyMargin to 0
 709     //
 710     if (ThreadSafetyMargin > 0) {
 711       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 712 
 713       // not safe if our stack extends below the safety margin
 714       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 715     } else {
 716       return true;
 717     }
 718   } else {
 719     // Floating stack LinuxThreads or NPTL:
 720     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 721     //   there's not enough space left, pthread_create() will fail. If we come
 722     //   here, that means enough space has been reserved for stack.
 723     return true;
 724   }
 725 }
 726 
 727 // Thread start routine for all newly created threads
 728 static void *java_start(Thread *thread) {
 729   // Try to randomize the cache line index of hot stack frames.
 730   // This helps when threads of the same stack traces evict each other's
 731   // cache lines. The threads can be either from the same JVM instance, or
 732   // from different JVM instances. The benefit is especially true for
 733   // processors with hyperthreading technology.
 734   static int counter = 0;
 735   int pid = os::current_process_id();
 736   alloca(((pid ^ counter++) & 7) * 128);
 737 
 738   ThreadLocalStorage::set_thread(thread);
 739 
 740   OSThread* osthread = thread->osthread();
 741   Monitor* sync = osthread->startThread_lock();
 742 
 743   // non floating stack LinuxThreads needs extra check, see above
 744   if (!_thread_safety_check(thread)) {
 745     // notify parent thread
 746     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 747     osthread->set_state(ZOMBIE);
 748     sync->notify_all();
 749     return NULL;
 750   }
 751 
 752   // thread_id is kernel thread id (similar to Solaris LWP id)
 753   osthread->set_thread_id(os::Linux::gettid());
 754 
 755   if (UseNUMA) {
 756     int lgrp_id = os::numa_get_group_id();
 757     if (lgrp_id != -1) {
 758       thread->set_lgrp_id(lgrp_id);
 759     }
 760   }
 761   // initialize signal mask for this thread
 762   os::Linux::hotspot_sigmask(thread);
 763 
 764   // initialize floating point control register
 765   os::Linux::init_thread_fpu_state();
 766 
 767   // handshaking with parent thread
 768   {
 769     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 770 
 771     // notify parent thread
 772     osthread->set_state(INITIALIZED);
 773     sync->notify_all();
 774 
 775     // wait until os::start_thread()
 776     while (osthread->get_state() == INITIALIZED) {
 777       sync->wait(Mutex::_no_safepoint_check_flag);
 778     }
 779   }
 780 
 781   // call one more level start routine
 782   thread->run();
 783 
 784   return 0;
 785 }
 786 
 787 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 788   assert(thread->osthread() == NULL, "caller responsible");
 789 
 790   // Allocate the OSThread object
 791   OSThread* osthread = new OSThread(NULL, NULL);
 792   if (osthread == NULL) {
 793     return false;
 794   }
 795 
 796   // set the correct thread state
 797   osthread->set_thread_type(thr_type);
 798 
 799   // Initial state is ALLOCATED but not INITIALIZED
 800   osthread->set_state(ALLOCATED);
 801 
 802   thread->set_osthread(osthread);
 803 
 804   // init thread attributes
 805   pthread_attr_t attr;
 806   pthread_attr_init(&attr);
 807   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 808 
 809   // stack size
 810   if (os::Linux::supports_variable_stack_size()) {
 811     // calculate stack size if it's not specified by caller
 812     if (stack_size == 0) {
 813       stack_size = os::Linux::default_stack_size(thr_type);
 814 
 815       switch (thr_type) {
 816       case os::java_thread:
 817         // Java threads use ThreadStackSize which default value can be
 818         // changed with the flag -Xss
 819         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 820         stack_size = JavaThread::stack_size_at_create();
 821         break;
 822       case os::compiler_thread:
 823         if (CompilerThreadStackSize > 0) {
 824           stack_size = (size_t)(CompilerThreadStackSize * K);
 825           break;
 826         } // else fall through:
 827           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 828       case os::vm_thread:
 829       case os::pgc_thread:
 830       case os::cgc_thread:
 831       case os::watcher_thread:
 832         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 833         break;
 834       }
 835     }
 836 
 837     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 838     pthread_attr_setstacksize(&attr, stack_size);
 839   } else {
 840     // let pthread_create() pick the default value.
 841   }
 842 
 843   // glibc guard page
 844   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 845 
 846   ThreadState state;
 847 
 848   {
 849     // Serialize thread creation if we are running with fixed stack LinuxThreads
 850     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 851     if (lock) {
 852       os::Linux::createThread_lock()->lock_without_safepoint_check();
 853     }
 854 
 855     pthread_t tid;
 856     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 857 
 858     pthread_attr_destroy(&attr);
 859 
 860     if (ret != 0) {
 861       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 862         perror("pthread_create()");
 863       }
 864       // Need to clean up stuff we've allocated so far
 865       thread->set_osthread(NULL);
 866       delete osthread;
 867       if (lock) os::Linux::createThread_lock()->unlock();
 868       return false;
 869     }
 870 
 871     // Store pthread info into the OSThread
 872     osthread->set_pthread_id(tid);
 873 
 874     // Wait until child thread is either initialized or aborted
 875     {
 876       Monitor* sync_with_child = osthread->startThread_lock();
 877       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 878       while ((state = osthread->get_state()) == ALLOCATED) {
 879         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 880       }
 881     }
 882 
 883     if (lock) {
 884       os::Linux::createThread_lock()->unlock();
 885     }
 886   }
 887 
 888   // Aborted due to thread limit being reached
 889   if (state == ZOMBIE) {
 890       thread->set_osthread(NULL);
 891       delete osthread;
 892       return false;
 893   }
 894 
 895   // The thread is returned suspended (in state INITIALIZED),
 896   // and is started higher up in the call chain
 897   assert(state == INITIALIZED, "race condition");
 898   return true;
 899 }
 900 
 901 /////////////////////////////////////////////////////////////////////////////
 902 // attach existing thread
 903 
 904 // bootstrap the main thread
 905 bool os::create_main_thread(JavaThread* thread) {
 906   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 907   return create_attached_thread(thread);
 908 }
 909 
 910 bool os::create_attached_thread(JavaThread* thread) {
 911 #ifdef ASSERT
 912     thread->verify_not_published();
 913 #endif
 914 
 915   // Allocate the OSThread object
 916   OSThread* osthread = new OSThread(NULL, NULL);
 917 
 918   if (osthread == NULL) {
 919     return false;
 920   }
 921 
 922   // Store pthread info into the OSThread
 923   osthread->set_thread_id(os::Linux::gettid());
 924   osthread->set_pthread_id(::pthread_self());
 925 
 926   // initialize floating point control register
 927   os::Linux::init_thread_fpu_state();
 928 
 929   // Initial thread state is RUNNABLE
 930   osthread->set_state(RUNNABLE);
 931 
 932   thread->set_osthread(osthread);
 933 
 934   if (UseNUMA) {
 935     int lgrp_id = os::numa_get_group_id();
 936     if (lgrp_id != -1) {
 937       thread->set_lgrp_id(lgrp_id);
 938     }
 939   }
 940 
 941   if (os::Linux::is_initial_thread()) {
 942     // If current thread is initial thread, its stack is mapped on demand,
 943     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 944     // the entire stack region to avoid SEGV in stack banging.
 945     // It is also useful to get around the heap-stack-gap problem on SuSE
 946     // kernel (see 4821821 for details). We first expand stack to the top
 947     // of yellow zone, then enable stack yellow zone (order is significant,
 948     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 949     // is no gap between the last two virtual memory regions.
 950 
 951     JavaThread *jt = (JavaThread *)thread;
 952     address addr = jt->stack_yellow_zone_base();
 953     assert(addr != NULL, "initialization problem?");
 954     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 955 
 956     osthread->set_expanding_stack();
 957     os::Linux::manually_expand_stack(jt, addr);
 958     osthread->clear_expanding_stack();
 959   }
 960 
 961   // initialize signal mask for this thread
 962   // and save the caller's signal mask
 963   os::Linux::hotspot_sigmask(thread);
 964 
 965   return true;
 966 }
 967 
 968 void os::pd_start_thread(Thread* thread) {
 969   OSThread * osthread = thread->osthread();
 970   assert(osthread->get_state() != INITIALIZED, "just checking");
 971   Monitor* sync_with_child = osthread->startThread_lock();
 972   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 973   sync_with_child->notify();
 974 }
 975 
 976 // Free Linux resources related to the OSThread
 977 void os::free_thread(OSThread* osthread) {
 978   assert(osthread != NULL, "osthread not set");
 979 
 980   if (Thread::current()->osthread() == osthread) {
 981     // Restore caller's signal mask
 982     sigset_t sigmask = osthread->caller_sigmask();
 983     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 984    }
 985 
 986   delete osthread;
 987 }
 988 
 989 //////////////////////////////////////////////////////////////////////////////
 990 // thread local storage
 991 
 992 // Restore the thread pointer if the destructor is called. This is in case
 993 // someone from JNI code sets up a destructor with pthread_key_create to run
 994 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 995 // will hang or crash. When detachCurrentThread is called the key will be set
 996 // to null and we will not be called again. If detachCurrentThread is never
 997 // called we could loop forever depending on the pthread implementation.
 998 static void restore_thread_pointer(void* p) {
 999   Thread* thread = (Thread*) p;
1000   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1001 }
1002 
1003 int os::allocate_thread_local_storage() {
1004   pthread_key_t key;
1005   int rslt = pthread_key_create(&key, restore_thread_pointer);
1006   assert(rslt == 0, "cannot allocate thread local storage");
1007   return (int)key;
1008 }
1009 
1010 // Note: This is currently not used by VM, as we don't destroy TLS key
1011 // on VM exit.
1012 void os::free_thread_local_storage(int index) {
1013   int rslt = pthread_key_delete((pthread_key_t)index);
1014   assert(rslt == 0, "invalid index");
1015 }
1016 
1017 void os::thread_local_storage_at_put(int index, void* value) {
1018   int rslt = pthread_setspecific((pthread_key_t)index, value);
1019   assert(rslt == 0, "pthread_setspecific failed");
1020 }
1021 
1022 extern "C" Thread* get_thread() {
1023   return ThreadLocalStorage::thread();
1024 }
1025 
1026 //////////////////////////////////////////////////////////////////////////////
1027 // initial thread
1028 
1029 // Check if current thread is the initial thread, similar to Solaris thr_main.
1030 bool os::Linux::is_initial_thread(void) {
1031   char dummy;
1032   // If called before init complete, thread stack bottom will be null.
1033   // Can be called if fatal error occurs before initialization.
1034   if (initial_thread_stack_bottom() == NULL) return false;
1035   assert(initial_thread_stack_bottom() != NULL &&
1036          initial_thread_stack_size()   != 0,
1037          "os::init did not locate initial thread's stack region");
1038   if ((address)&dummy >= initial_thread_stack_bottom() &&
1039       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1040        return true;
1041   else return false;
1042 }
1043 
1044 // Find the virtual memory area that contains addr
1045 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1046   FILE *fp = fopen("/proc/self/maps", "r");
1047   if (fp) {
1048     address low, high;
1049     while (!feof(fp)) {
1050       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1051         if (low <= addr && addr < high) {
1052            if (vma_low)  *vma_low  = low;
1053            if (vma_high) *vma_high = high;
1054            fclose (fp);
1055            return true;
1056         }
1057       }
1058       for (;;) {
1059         int ch = fgetc(fp);
1060         if (ch == EOF || ch == (int)'\n') break;
1061       }
1062     }
1063     fclose(fp);
1064   }
1065   return false;
1066 }
1067 
1068 // Locate initial thread stack. This special handling of initial thread stack
1069 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1070 // bogus value for initial thread.
1071 void os::Linux::capture_initial_stack(size_t max_size) {
1072   // stack size is the easy part, get it from RLIMIT_STACK
1073   size_t stack_size;
1074   struct rlimit rlim;
1075   getrlimit(RLIMIT_STACK, &rlim);
1076   stack_size = rlim.rlim_cur;
1077 
1078   // 6308388: a bug in ld.so will relocate its own .data section to the
1079   //   lower end of primordial stack; reduce ulimit -s value a little bit
1080   //   so we won't install guard page on ld.so's data section.
1081   stack_size -= 2 * page_size();
1082 
1083   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1084   //   7.1, in both cases we will get 2G in return value.
1085   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1086   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1087   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1088   //   in case other parts in glibc still assumes 2M max stack size.
1089   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1090   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1091   if (stack_size > 2 * K * K IA64_ONLY(*2))
1092       stack_size = 2 * K * K IA64_ONLY(*2);
1093   // Try to figure out where the stack base (top) is. This is harder.
1094   //
1095   // When an application is started, glibc saves the initial stack pointer in
1096   // a global variable "__libc_stack_end", which is then used by system
1097   // libraries. __libc_stack_end should be pretty close to stack top. The
1098   // variable is available since the very early days. However, because it is
1099   // a private interface, it could disappear in the future.
1100   //
1101   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1102   // to __libc_stack_end, it is very close to stack top, but isn't the real
1103   // stack top. Note that /proc may not exist if VM is running as a chroot
1104   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1105   // /proc/<pid>/stat could change in the future (though unlikely).
1106   //
1107   // We try __libc_stack_end first. If that doesn't work, look for
1108   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1109   // as a hint, which should work well in most cases.
1110 
1111   uintptr_t stack_start;
1112 
1113   // try __libc_stack_end first
1114   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1115   if (p && *p) {
1116     stack_start = *p;
1117   } else {
1118     // see if we can get the start_stack field from /proc/self/stat
1119     FILE *fp;
1120     int pid;
1121     char state;
1122     int ppid;
1123     int pgrp;
1124     int session;
1125     int nr;
1126     int tpgrp;
1127     unsigned long flags;
1128     unsigned long minflt;
1129     unsigned long cminflt;
1130     unsigned long majflt;
1131     unsigned long cmajflt;
1132     unsigned long utime;
1133     unsigned long stime;
1134     long cutime;
1135     long cstime;
1136     long prio;
1137     long nice;
1138     long junk;
1139     long it_real;
1140     uintptr_t start;
1141     uintptr_t vsize;
1142     intptr_t rss;
1143     uintptr_t rsslim;
1144     uintptr_t scodes;
1145     uintptr_t ecode;
1146     int i;
1147 
1148     // Figure what the primordial thread stack base is. Code is inspired
1149     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1150     // followed by command name surrounded by parentheses, state, etc.
1151     char stat[2048];
1152     int statlen;
1153 
1154     fp = fopen("/proc/self/stat", "r");
1155     if (fp) {
1156       statlen = fread(stat, 1, 2047, fp);
1157       stat[statlen] = '\0';
1158       fclose(fp);
1159 
1160       // Skip pid and the command string. Note that we could be dealing with
1161       // weird command names, e.g. user could decide to rename java launcher
1162       // to "java 1.4.2 :)", then the stat file would look like
1163       //                1234 (java 1.4.2 :)) R ... ...
1164       // We don't really need to know the command string, just find the last
1165       // occurrence of ")" and then start parsing from there. See bug 4726580.
1166       char * s = strrchr(stat, ')');
1167 
1168       i = 0;
1169       if (s) {
1170         // Skip blank chars
1171         do s++; while (isspace(*s));
1172 
1173 #define _UFM UINTX_FORMAT
1174 #define _DFM INTX_FORMAT
1175 
1176         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1177         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1178         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1179              &state,          /* 3  %c  */
1180              &ppid,           /* 4  %d  */
1181              &pgrp,           /* 5  %d  */
1182              &session,        /* 6  %d  */
1183              &nr,             /* 7  %d  */
1184              &tpgrp,          /* 8  %d  */
1185              &flags,          /* 9  %lu  */
1186              &minflt,         /* 10 %lu  */
1187              &cminflt,        /* 11 %lu  */
1188              &majflt,         /* 12 %lu  */
1189              &cmajflt,        /* 13 %lu  */
1190              &utime,          /* 14 %lu  */
1191              &stime,          /* 15 %lu  */
1192              &cutime,         /* 16 %ld  */
1193              &cstime,         /* 17 %ld  */
1194              &prio,           /* 18 %ld  */
1195              &nice,           /* 19 %ld  */
1196              &junk,           /* 20 %ld  */
1197              &it_real,        /* 21 %ld  */
1198              &start,          /* 22 UINTX_FORMAT */
1199              &vsize,          /* 23 UINTX_FORMAT */
1200              &rss,            /* 24 INTX_FORMAT  */
1201              &rsslim,         /* 25 UINTX_FORMAT */
1202              &scodes,         /* 26 UINTX_FORMAT */
1203              &ecode,          /* 27 UINTX_FORMAT */
1204              &stack_start);   /* 28 UINTX_FORMAT */
1205       }
1206 
1207 #undef _UFM
1208 #undef _DFM
1209 
1210       if (i != 28 - 2) {
1211          assert(false, "Bad conversion from /proc/self/stat");
1212          // product mode - assume we are the initial thread, good luck in the
1213          // embedded case.
1214          warning("Can't detect initial thread stack location - bad conversion");
1215          stack_start = (uintptr_t) &rlim;
1216       }
1217     } else {
1218       // For some reason we can't open /proc/self/stat (for example, running on
1219       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1220       // most cases, so don't abort:
1221       warning("Can't detect initial thread stack location - no /proc/self/stat");
1222       stack_start = (uintptr_t) &rlim;
1223     }
1224   }
1225 
1226   // Now we have a pointer (stack_start) very close to the stack top, the
1227   // next thing to do is to figure out the exact location of stack top. We
1228   // can find out the virtual memory area that contains stack_start by
1229   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1230   // and its upper limit is the real stack top. (again, this would fail if
1231   // running inside chroot, because /proc may not exist.)
1232 
1233   uintptr_t stack_top;
1234   address low, high;
1235   if (find_vma((address)stack_start, &low, &high)) {
1236     // success, "high" is the true stack top. (ignore "low", because initial
1237     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1238     stack_top = (uintptr_t)high;
1239   } else {
1240     // failed, likely because /proc/self/maps does not exist
1241     warning("Can't detect initial thread stack location - find_vma failed");
1242     // best effort: stack_start is normally within a few pages below the real
1243     // stack top, use it as stack top, and reduce stack size so we won't put
1244     // guard page outside stack.
1245     stack_top = stack_start;
1246     stack_size -= 16 * page_size();
1247   }
1248 
1249   // stack_top could be partially down the page so align it
1250   stack_top = align_size_up(stack_top, page_size());
1251 
1252   if (max_size && stack_size > max_size) {
1253      _initial_thread_stack_size = max_size;
1254   } else {
1255      _initial_thread_stack_size = stack_size;
1256   }
1257 
1258   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1259   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1260 }
1261 
1262 ////////////////////////////////////////////////////////////////////////////////
1263 // time support
1264 
1265 // Time since start-up in seconds to a fine granularity.
1266 // Used by VMSelfDestructTimer and the MemProfiler.
1267 double os::elapsedTime() {
1268 
1269   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1270 }
1271 
1272 jlong os::elapsed_counter() {
1273   return javaTimeNanos() - initial_time_count;
1274 }
1275 
1276 jlong os::elapsed_frequency() {
1277   return NANOSECS_PER_SEC; // nanosecond resolution
1278 }
1279 
1280 bool os::supports_vtime() { return true; }
1281 bool os::enable_vtime()   { return false; }
1282 bool os::vtime_enabled()  { return false; }
1283 
1284 double os::elapsedVTime() {
1285   struct rusage usage;
1286   int retval = getrusage(RUSAGE_THREAD, &usage);
1287   if (retval == 0) {
1288     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1289   } else {
1290     // better than nothing, but not much
1291     return elapsedTime();
1292   }
1293 }
1294 
1295 jlong os::javaTimeMillis() {
1296   timeval time;
1297   int status = gettimeofday(&time, NULL);
1298   assert(status != -1, "linux error");
1299   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1300 }
1301 
1302 #ifndef CLOCK_MONOTONIC
1303 #define CLOCK_MONOTONIC (1)
1304 #endif
1305 
1306 void os::Linux::clock_init() {
1307   // we do dlopen's in this particular order due to bug in linux
1308   // dynamical loader (see 6348968) leading to crash on exit
1309   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1310   if (handle == NULL) {
1311     handle = dlopen("librt.so", RTLD_LAZY);
1312   }
1313 
1314   if (handle) {
1315     int (*clock_getres_func)(clockid_t, struct timespec*) =
1316            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1317     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1318            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1319     if (clock_getres_func && clock_gettime_func) {
1320       // See if monotonic clock is supported by the kernel. Note that some
1321       // early implementations simply return kernel jiffies (updated every
1322       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1323       // for nano time (though the monotonic property is still nice to have).
1324       // It's fixed in newer kernels, however clock_getres() still returns
1325       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1326       // resolution for now. Hopefully as people move to new kernels, this
1327       // won't be a problem.
1328       struct timespec res;
1329       struct timespec tp;
1330       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1331           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1332         // yes, monotonic clock is supported
1333         _clock_gettime = clock_gettime_func;
1334         return;
1335       } else {
1336         // close librt if there is no monotonic clock
1337         dlclose(handle);
1338       }
1339     }
1340   }
1341   warning("No monotonic clock was available - timed services may " \
1342           "be adversely affected if the time-of-day clock changes");
1343 }
1344 
1345 #ifndef SYS_clock_getres
1346 
1347 #if defined(IA32) || defined(AMD64)
1348 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1349 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1350 #else
1351 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1352 #define sys_clock_getres(x,y)  -1
1353 #endif
1354 
1355 #else
1356 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1357 #endif
1358 
1359 void os::Linux::fast_thread_clock_init() {
1360   if (!UseLinuxPosixThreadCPUClocks) {
1361     return;
1362   }
1363   clockid_t clockid;
1364   struct timespec tp;
1365   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1366       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1367 
1368   // Switch to using fast clocks for thread cpu time if
1369   // the sys_clock_getres() returns 0 error code.
1370   // Note, that some kernels may support the current thread
1371   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1372   // returned by the pthread_getcpuclockid().
1373   // If the fast Posix clocks are supported then the sys_clock_getres()
1374   // must return at least tp.tv_sec == 0 which means a resolution
1375   // better than 1 sec. This is extra check for reliability.
1376 
1377   if(pthread_getcpuclockid_func &&
1378      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1379      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1380 
1381     _supports_fast_thread_cpu_time = true;
1382     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1383   }
1384 }
1385 
1386 jlong os::javaTimeNanos() {
1387   if (Linux::supports_monotonic_clock()) {
1388     struct timespec tp;
1389     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1390     assert(status == 0, "gettime error");
1391     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1392     return result;
1393   } else {
1394     timeval time;
1395     int status = gettimeofday(&time, NULL);
1396     assert(status != -1, "linux error");
1397     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1398     return 1000 * usecs;
1399   }
1400 }
1401 
1402 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1403   if (Linux::supports_monotonic_clock()) {
1404     info_ptr->max_value = ALL_64_BITS;
1405 
1406     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1407     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1408     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1409   } else {
1410     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1411     info_ptr->max_value = ALL_64_BITS;
1412 
1413     // gettimeofday is a real time clock so it skips
1414     info_ptr->may_skip_backward = true;
1415     info_ptr->may_skip_forward = true;
1416   }
1417 
1418   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1419 }
1420 
1421 // Return the real, user, and system times in seconds from an
1422 // arbitrary fixed point in the past.
1423 bool os::getTimesSecs(double* process_real_time,
1424                       double* process_user_time,
1425                       double* process_system_time) {
1426   struct tms ticks;
1427   clock_t real_ticks = times(&ticks);
1428 
1429   if (real_ticks == (clock_t) (-1)) {
1430     return false;
1431   } else {
1432     double ticks_per_second = (double) clock_tics_per_sec;
1433     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1434     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1435     *process_real_time = ((double) real_ticks) / ticks_per_second;
1436 
1437     return true;
1438   }
1439 }
1440 
1441 
1442 char * os::local_time_string(char *buf, size_t buflen) {
1443   struct tm t;
1444   time_t long_time;
1445   time(&long_time);
1446   localtime_r(&long_time, &t);
1447   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1448                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1449                t.tm_hour, t.tm_min, t.tm_sec);
1450   return buf;
1451 }
1452 
1453 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1454   return localtime_r(clock, res);
1455 }
1456 
1457 ////////////////////////////////////////////////////////////////////////////////
1458 // runtime exit support
1459 
1460 // Note: os::shutdown() might be called very early during initialization, or
1461 // called from signal handler. Before adding something to os::shutdown(), make
1462 // sure it is async-safe and can handle partially initialized VM.
1463 void os::shutdown() {
1464 
1465   // allow PerfMemory to attempt cleanup of any persistent resources
1466   perfMemory_exit();
1467 
1468   // needs to remove object in file system
1469   AttachListener::abort();
1470 
1471   // flush buffered output, finish log files
1472   ostream_abort();
1473 
1474   // Check for abort hook
1475   abort_hook_t abort_hook = Arguments::abort_hook();
1476   if (abort_hook != NULL) {
1477     abort_hook();
1478   }
1479 
1480 }
1481 
1482 // Note: os::abort() might be called very early during initialization, or
1483 // called from signal handler. Before adding something to os::abort(), make
1484 // sure it is async-safe and can handle partially initialized VM.
1485 void os::abort(bool dump_core) {
1486   os::shutdown();
1487   if (dump_core) {
1488 #ifndef PRODUCT
1489     fdStream out(defaultStream::output_fd());
1490     out.print_raw("Current thread is ");
1491     char buf[16];
1492     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1493     out.print_raw_cr(buf);
1494     out.print_raw_cr("Dumping core ...");
1495 #endif
1496     ::abort(); // dump core
1497   }
1498 
1499   ::exit(1);
1500 }
1501 
1502 // Die immediately, no exit hook, no abort hook, no cleanup.
1503 void os::die() {
1504   // _exit() on LinuxThreads only kills current thread
1505   ::abort();
1506 }
1507 
1508 
1509 // This method is a copy of JDK's sysGetLastErrorString
1510 // from src/solaris/hpi/src/system_md.c
1511 
1512 size_t os::lasterror(char *buf, size_t len) {
1513 
1514   if (errno == 0)  return 0;
1515 
1516   const char *s = ::strerror(errno);
1517   size_t n = ::strlen(s);
1518   if (n >= len) {
1519     n = len - 1;
1520   }
1521   ::strncpy(buf, s, n);
1522   buf[n] = '\0';
1523   return n;
1524 }
1525 
1526 intx os::current_thread_id() { return (intx)pthread_self(); }
1527 int os::current_process_id() {
1528 
1529   // Under the old linux thread library, linux gives each thread
1530   // its own process id. Because of this each thread will return
1531   // a different pid if this method were to return the result
1532   // of getpid(2). Linux provides no api that returns the pid
1533   // of the launcher thread for the vm. This implementation
1534   // returns a unique pid, the pid of the launcher thread
1535   // that starts the vm 'process'.
1536 
1537   // Under the NPTL, getpid() returns the same pid as the
1538   // launcher thread rather than a unique pid per thread.
1539   // Use gettid() if you want the old pre NPTL behaviour.
1540 
1541   // if you are looking for the result of a call to getpid() that
1542   // returns a unique pid for the calling thread, then look at the
1543   // OSThread::thread_id() method in osThread_linux.hpp file
1544 
1545   return (int)(_initial_pid ? _initial_pid : getpid());
1546 }
1547 
1548 // DLL functions
1549 
1550 const char* os::dll_file_extension() { return ".so"; }
1551 
1552 // This must be hard coded because it's the system's temporary
1553 // directory not the java application's temp directory, ala java.io.tmpdir.
1554 const char* os::get_temp_directory() { return "/tmp"; }
1555 
1556 static bool file_exists(const char* filename) {
1557   struct stat statbuf;
1558   if (filename == NULL || strlen(filename) == 0) {
1559     return false;
1560   }
1561   return os::stat(filename, &statbuf) == 0;
1562 }
1563 
1564 bool os::dll_build_name(char* buffer, size_t buflen,
1565                         const char* pname, const char* fname) {
1566   bool retval = false;
1567   // Copied from libhpi
1568   const size_t pnamelen = pname ? strlen(pname) : 0;
1569 
1570   // Return error on buffer overflow.
1571   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1572     return retval;
1573   }
1574 
1575   if (pnamelen == 0) {
1576     snprintf(buffer, buflen, "lib%s.so", fname);
1577     retval = true;
1578   } else if (strchr(pname, *os::path_separator()) != NULL) {
1579     int n;
1580     char** pelements = split_path(pname, &n);
1581     if (pelements == NULL) {
1582       return false;
1583     }
1584     for (int i = 0 ; i < n ; i++) {
1585       // Really shouldn't be NULL, but check can't hurt
1586       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1587         continue; // skip the empty path values
1588       }
1589       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1590       if (file_exists(buffer)) {
1591         retval = true;
1592         break;
1593       }
1594     }
1595     // release the storage
1596     for (int i = 0 ; i < n ; i++) {
1597       if (pelements[i] != NULL) {
1598         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1599       }
1600     }
1601     if (pelements != NULL) {
1602       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1603     }
1604   } else {
1605     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1606     retval = true;
1607   }
1608   return retval;
1609 }
1610 
1611 // check if addr is inside libjvm.so
1612 bool os::address_is_in_vm(address addr) {
1613   static address libjvm_base_addr;
1614   Dl_info dlinfo;
1615 
1616   if (libjvm_base_addr == NULL) {
1617     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1618       libjvm_base_addr = (address)dlinfo.dli_fbase;
1619     }
1620     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1621   }
1622 
1623   if (dladdr((void *)addr, &dlinfo) != 0) {
1624     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1625   }
1626 
1627   return false;
1628 }
1629 
1630 bool os::dll_address_to_function_name(address addr, char *buf,
1631                                       int buflen, int *offset) {
1632   // buf is not optional, but offset is optional
1633   assert(buf != NULL, "sanity check");
1634 
1635   Dl_info dlinfo;
1636 
1637   if (dladdr((void*)addr, &dlinfo) != 0) {
1638     // see if we have a matching symbol
1639     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1640       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1641         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1642       }
1643       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1644       return true;
1645     }
1646     // no matching symbol so try for just file info
1647     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1648       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1649                           buf, buflen, offset, dlinfo.dli_fname)) {
1650         return true;
1651       }
1652     }
1653   }
1654 
1655   buf[0] = '\0';
1656   if (offset != NULL) *offset = -1;
1657   return false;
1658 }
1659 
1660 struct _address_to_library_name {
1661   address addr;          // input : memory address
1662   size_t  buflen;        //         size of fname
1663   char*   fname;         // output: library name
1664   address base;          //         library base addr
1665 };
1666 
1667 static int address_to_library_name_callback(struct dl_phdr_info *info,
1668                                             size_t size, void *data) {
1669   int i;
1670   bool found = false;
1671   address libbase = NULL;
1672   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1673 
1674   // iterate through all loadable segments
1675   for (i = 0; i < info->dlpi_phnum; i++) {
1676     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1677     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1678       // base address of a library is the lowest address of its loaded
1679       // segments.
1680       if (libbase == NULL || libbase > segbase) {
1681         libbase = segbase;
1682       }
1683       // see if 'addr' is within current segment
1684       if (segbase <= d->addr &&
1685           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1686         found = true;
1687       }
1688     }
1689   }
1690 
1691   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1692   // so dll_address_to_library_name() can fall through to use dladdr() which
1693   // can figure out executable name from argv[0].
1694   if (found && info->dlpi_name && info->dlpi_name[0]) {
1695     d->base = libbase;
1696     if (d->fname) {
1697       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1698     }
1699     return 1;
1700   }
1701   return 0;
1702 }
1703 
1704 bool os::dll_address_to_library_name(address addr, char* buf,
1705                                      int buflen, int* offset) {
1706   // buf is not optional, but offset is optional
1707   assert(buf != NULL, "sanity check");
1708 
1709   Dl_info dlinfo;
1710   struct _address_to_library_name data;
1711 
1712   // There is a bug in old glibc dladdr() implementation that it could resolve
1713   // to wrong library name if the .so file has a base address != NULL. Here
1714   // we iterate through the program headers of all loaded libraries to find
1715   // out which library 'addr' really belongs to. This workaround can be
1716   // removed once the minimum requirement for glibc is moved to 2.3.x.
1717   data.addr = addr;
1718   data.fname = buf;
1719   data.buflen = buflen;
1720   data.base = NULL;
1721   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1722 
1723   if (rslt) {
1724      // buf already contains library name
1725      if (offset) *offset = addr - data.base;
1726      return true;
1727   }
1728   if (dladdr((void*)addr, &dlinfo) != 0) {
1729     if (dlinfo.dli_fname != NULL) {
1730       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1731     }
1732     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1733       *offset = addr - (address)dlinfo.dli_fbase;
1734     }
1735     return true;
1736   }
1737 
1738   buf[0] = '\0';
1739   if (offset) *offset = -1;
1740   return false;
1741 }
1742 
1743   // Loads .dll/.so and
1744   // in case of error it checks if .dll/.so was built for the
1745   // same architecture as Hotspot is running on
1746 
1747 
1748 // Remember the stack's state. The Linux dynamic linker will change
1749 // the stack to 'executable' at most once, so we must safepoint only once.
1750 bool os::Linux::_stack_is_executable = false;
1751 
1752 // VM operation that loads a library.  This is necessary if stack protection
1753 // of the Java stacks can be lost during loading the library.  If we
1754 // do not stop the Java threads, they can stack overflow before the stacks
1755 // are protected again.
1756 class VM_LinuxDllLoad: public VM_Operation {
1757  private:
1758   const char *_filename;
1759   char *_ebuf;
1760   int _ebuflen;
1761   void *_lib;
1762  public:
1763   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1764     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1765   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1766   void doit() {
1767     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1768     os::Linux::_stack_is_executable = true;
1769   }
1770   void* loaded_library() { return _lib; }
1771 };
1772 
1773 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1774 {
1775   void * result = NULL;
1776   bool load_attempted = false;
1777 
1778   // Check whether the library to load might change execution rights
1779   // of the stack. If they are changed, the protection of the stack
1780   // guard pages will be lost. We need a safepoint to fix this.
1781   //
1782   // See Linux man page execstack(8) for more info.
1783   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1784     ElfFile ef(filename);
1785     if (!ef.specifies_noexecstack()) {
1786       if (!is_init_completed()) {
1787         os::Linux::_stack_is_executable = true;
1788         // This is OK - No Java threads have been created yet, and hence no
1789         // stack guard pages to fix.
1790         //
1791         // This should happen only when you are building JDK7 using a very
1792         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1793         //
1794         // Dynamic loader will make all stacks executable after
1795         // this function returns, and will not do that again.
1796         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1797       } else {
1798         warning("You have loaded library %s which might have disabled stack guard. "
1799                 "The VM will try to fix the stack guard now.\n"
1800                 "It's highly recommended that you fix the library with "
1801                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1802                 filename);
1803 
1804         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1805         JavaThread *jt = JavaThread::current();
1806         if (jt->thread_state() != _thread_in_native) {
1807           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1808           // that requires ExecStack. Cannot enter safe point. Let's give up.
1809           warning("Unable to fix stack guard. Giving up.");
1810         } else {
1811           if (!LoadExecStackDllInVMThread) {
1812             // This is for the case where the DLL has an static
1813             // constructor function that executes JNI code. We cannot
1814             // load such DLLs in the VMThread.
1815             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1816           }
1817 
1818           ThreadInVMfromNative tiv(jt);
1819           debug_only(VMNativeEntryWrapper vew;)
1820 
1821           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1822           VMThread::execute(&op);
1823           if (LoadExecStackDllInVMThread) {
1824             result = op.loaded_library();
1825           }
1826           load_attempted = true;
1827         }
1828       }
1829     }
1830   }
1831 
1832   if (!load_attempted) {
1833     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1834   }
1835 
1836   if (result != NULL) {
1837     // Successful loading
1838     return result;
1839   }
1840 
1841   Elf32_Ehdr elf_head;
1842   int diag_msg_max_length=ebuflen-strlen(ebuf);
1843   char* diag_msg_buf=ebuf+strlen(ebuf);
1844 
1845   if (diag_msg_max_length==0) {
1846     // No more space in ebuf for additional diagnostics message
1847     return NULL;
1848   }
1849 
1850 
1851   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1852 
1853   if (file_descriptor < 0) {
1854     // Can't open library, report dlerror() message
1855     return NULL;
1856   }
1857 
1858   bool failed_to_read_elf_head=
1859     (sizeof(elf_head)!=
1860         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1861 
1862   ::close(file_descriptor);
1863   if (failed_to_read_elf_head) {
1864     // file i/o error - report dlerror() msg
1865     return NULL;
1866   }
1867 
1868   typedef struct {
1869     Elf32_Half  code;         // Actual value as defined in elf.h
1870     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1871     char        elf_class;    // 32 or 64 bit
1872     char        endianess;    // MSB or LSB
1873     char*       name;         // String representation
1874   } arch_t;
1875 
1876   #ifndef EM_486
1877   #define EM_486          6               /* Intel 80486 */
1878   #endif
1879 
1880   static const arch_t arch_array[]={
1881     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1882     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1883     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1884     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1885     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1886     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1887     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1888     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1889 #if defined(VM_LITTLE_ENDIAN)
1890     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1891 #else
1892     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1893 #endif
1894     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1895     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1896     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1897     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1898     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1899     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1900     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1901   };
1902 
1903   #if  (defined IA32)
1904     static  Elf32_Half running_arch_code=EM_386;
1905   #elif   (defined AMD64)
1906     static  Elf32_Half running_arch_code=EM_X86_64;
1907   #elif  (defined IA64)
1908     static  Elf32_Half running_arch_code=EM_IA_64;
1909   #elif  (defined __sparc) && (defined _LP64)
1910     static  Elf32_Half running_arch_code=EM_SPARCV9;
1911   #elif  (defined __sparc) && (!defined _LP64)
1912     static  Elf32_Half running_arch_code=EM_SPARC;
1913   #elif  (defined __powerpc64__)
1914     static  Elf32_Half running_arch_code=EM_PPC64;
1915   #elif  (defined __powerpc__)
1916     static  Elf32_Half running_arch_code=EM_PPC;
1917   #elif  (defined ARM)
1918     static  Elf32_Half running_arch_code=EM_ARM;
1919   #elif  (defined S390)
1920     static  Elf32_Half running_arch_code=EM_S390;
1921   #elif  (defined ALPHA)
1922     static  Elf32_Half running_arch_code=EM_ALPHA;
1923   #elif  (defined MIPSEL)
1924     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1925   #elif  (defined PARISC)
1926     static  Elf32_Half running_arch_code=EM_PARISC;
1927   #elif  (defined MIPS)
1928     static  Elf32_Half running_arch_code=EM_MIPS;
1929   #elif  (defined M68K)
1930     static  Elf32_Half running_arch_code=EM_68K;
1931   #else
1932     #error Method os::dll_load requires that one of following is defined:\
1933          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1934   #endif
1935 
1936   // Identify compatability class for VM's architecture and library's architecture
1937   // Obtain string descriptions for architectures
1938 
1939   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1940   int running_arch_index=-1;
1941 
1942   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1943     if (running_arch_code == arch_array[i].code) {
1944       running_arch_index    = i;
1945     }
1946     if (lib_arch.code == arch_array[i].code) {
1947       lib_arch.compat_class = arch_array[i].compat_class;
1948       lib_arch.name         = arch_array[i].name;
1949     }
1950   }
1951 
1952   assert(running_arch_index != -1,
1953     "Didn't find running architecture code (running_arch_code) in arch_array");
1954   if (running_arch_index == -1) {
1955     // Even though running architecture detection failed
1956     // we may still continue with reporting dlerror() message
1957     return NULL;
1958   }
1959 
1960   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1961     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1962     return NULL;
1963   }
1964 
1965 #ifndef S390
1966   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1967     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1968     return NULL;
1969   }
1970 #endif // !S390
1971 
1972   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1973     if ( lib_arch.name!=NULL ) {
1974       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1975         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1976         lib_arch.name, arch_array[running_arch_index].name);
1977     } else {
1978       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1979       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1980         lib_arch.code,
1981         arch_array[running_arch_index].name);
1982     }
1983   }
1984 
1985   return NULL;
1986 }
1987 
1988 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
1989   void * result = ::dlopen(filename, RTLD_LAZY);
1990   if (result == NULL) {
1991     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1992     ebuf[ebuflen-1] = '\0';
1993   }
1994   return result;
1995 }
1996 
1997 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
1998   void * result = NULL;
1999   if (LoadExecStackDllInVMThread) {
2000     result = dlopen_helper(filename, ebuf, ebuflen);
2001   }
2002 
2003   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2004   // library that requires an executable stack, or which does not have this
2005   // stack attribute set, dlopen changes the stack attribute to executable. The
2006   // read protection of the guard pages gets lost.
2007   //
2008   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2009   // may have been queued at the same time.
2010 
2011   if (!_stack_is_executable) {
2012     JavaThread *jt = Threads::first();
2013 
2014     while (jt) {
2015       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2016           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2017         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2018                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2019           warning("Attempt to reguard stack yellow zone failed.");
2020         }
2021       }
2022       jt = jt->next();
2023     }
2024   }
2025 
2026   return result;
2027 }
2028 
2029 /*
2030  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2031  * chances are you might want to run the generated bits against glibc-2.0
2032  * libdl.so, so always use locking for any version of glibc.
2033  */
2034 void* os::dll_lookup(void* handle, const char* name) {
2035   pthread_mutex_lock(&dl_mutex);
2036   void* res = dlsym(handle, name);
2037   pthread_mutex_unlock(&dl_mutex);
2038   return res;
2039 }
2040 
2041 void* os::get_default_process_handle() {
2042   return (void*)::dlopen(NULL, RTLD_LAZY);
2043 }
2044 
2045 static bool _print_ascii_file(const char* filename, outputStream* st) {
2046   int fd = ::open(filename, O_RDONLY);
2047   if (fd == -1) {
2048      return false;
2049   }
2050 
2051   char buf[32];
2052   int bytes;
2053   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2054     st->print_raw(buf, bytes);
2055   }
2056 
2057   ::close(fd);
2058 
2059   return true;
2060 }
2061 
2062 void os::print_dll_info(outputStream *st) {
2063    st->print_cr("Dynamic libraries:");
2064 
2065    char fname[32];
2066    pid_t pid = os::Linux::gettid();
2067 
2068    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2069 
2070    if (!_print_ascii_file(fname, st)) {
2071      st->print("Can not get library information for pid = %d\n", pid);
2072    }
2073 }
2074 
2075 void os::print_os_info_brief(outputStream* st) {
2076   os::Linux::print_distro_info(st);
2077 
2078   os::Posix::print_uname_info(st);
2079 
2080   os::Linux::print_libversion_info(st);
2081 
2082 }
2083 
2084 void os::print_os_info(outputStream* st) {
2085   st->print("OS:");
2086 
2087   os::Linux::print_distro_info(st);
2088 
2089   os::Posix::print_uname_info(st);
2090 
2091   // Print warning if unsafe chroot environment detected
2092   if (unsafe_chroot_detected) {
2093     st->print("WARNING!! ");
2094     st->print_cr("%s", unstable_chroot_error);
2095   }
2096 
2097   os::Linux::print_libversion_info(st);
2098 
2099   os::Posix::print_rlimit_info(st);
2100 
2101   os::Posix::print_load_average(st);
2102 
2103   os::Linux::print_full_memory_info(st);
2104 }
2105 
2106 // Try to identify popular distros.
2107 // Most Linux distributions have a /etc/XXX-release file, which contains
2108 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2109 // file that also contains the OS version string. Some have more than one
2110 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2111 // /etc/redhat-release.), so the order is important.
2112 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2113 // their own specific XXX-release file as well as a redhat-release file.
2114 // Because of this the XXX-release file needs to be searched for before the
2115 // redhat-release file.
2116 // Since Red Hat has a lsb-release file that is not very descriptive the
2117 // search for redhat-release needs to be before lsb-release.
2118 // Since the lsb-release file is the new standard it needs to be searched
2119 // before the older style release files.
2120 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2121 // next to last resort.  The os-release file is a new standard that contains
2122 // distribution information and the system-release file seems to be an old
2123 // standard that has been replaced by the lsb-release and os-release files.
2124 // Searching for the debian_version file is the last resort.  It contains
2125 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2126 // "Debian " is printed before the contents of the debian_version file.
2127 void os::Linux::print_distro_info(outputStream* st) {
2128    if (!_print_ascii_file("/etc/oracle-release", st) &&
2129        !_print_ascii_file("/etc/mandriva-release", st) &&
2130        !_print_ascii_file("/etc/mandrake-release", st) &&
2131        !_print_ascii_file("/etc/sun-release", st) &&
2132        !_print_ascii_file("/etc/redhat-release", st) &&
2133        !_print_ascii_file("/etc/lsb-release", st) &&
2134        !_print_ascii_file("/etc/SuSE-release", st) &&
2135        !_print_ascii_file("/etc/turbolinux-release", st) &&
2136        !_print_ascii_file("/etc/gentoo-release", st) &&
2137        !_print_ascii_file("/etc/ltib-release", st) &&
2138        !_print_ascii_file("/etc/angstrom-version", st) &&
2139        !_print_ascii_file("/etc/system-release", st) &&
2140        !_print_ascii_file("/etc/os-release", st)) {
2141 
2142        if (file_exists("/etc/debian_version")) {
2143          st->print("Debian ");
2144          _print_ascii_file("/etc/debian_version", st);
2145        } else {
2146          st->print("Linux");
2147        }
2148    }
2149    st->cr();
2150 }
2151 
2152 void os::Linux::print_libversion_info(outputStream* st) {
2153   // libc, pthread
2154   st->print("libc:");
2155   st->print("%s ", os::Linux::glibc_version());
2156   st->print("%s ", os::Linux::libpthread_version());
2157   if (os::Linux::is_LinuxThreads()) {
2158      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2159   }
2160   st->cr();
2161 }
2162 
2163 void os::Linux::print_full_memory_info(outputStream* st) {
2164    st->print("\n/proc/meminfo:\n");
2165    _print_ascii_file("/proc/meminfo", st);
2166    st->cr();
2167 }
2168 
2169 void os::print_memory_info(outputStream* st) {
2170 
2171   st->print("Memory:");
2172   st->print(" %dk page", os::vm_page_size()>>10);
2173 
2174   // values in struct sysinfo are "unsigned long"
2175   struct sysinfo si;
2176   sysinfo(&si);
2177 
2178   st->print(", physical " UINT64_FORMAT "k",
2179             os::physical_memory() >> 10);
2180   st->print("(" UINT64_FORMAT "k free)",
2181             os::available_memory() >> 10);
2182   st->print(", swap " UINT64_FORMAT "k",
2183             ((jlong)si.totalswap * si.mem_unit) >> 10);
2184   st->print("(" UINT64_FORMAT "k free)",
2185             ((jlong)si.freeswap * si.mem_unit) >> 10);
2186   st->cr();
2187 }
2188 
2189 void os::pd_print_cpu_info(outputStream* st) {
2190   st->print("\n/proc/cpuinfo:\n");
2191   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2192     st->print("  <Not Available>");
2193   }
2194   st->cr();
2195 }
2196 
2197 void os::print_siginfo(outputStream* st, void* siginfo) {
2198   const siginfo_t* si = (const siginfo_t*)siginfo;
2199 
2200   os::Posix::print_siginfo_brief(st, si);
2201 #if INCLUDE_CDS
2202   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2203       UseSharedSpaces) {
2204     FileMapInfo* mapinfo = FileMapInfo::current_info();
2205     if (mapinfo->is_in_shared_space(si->si_addr)) {
2206       st->print("\n\nError accessing class data sharing archive."   \
2207                 " Mapped file inaccessible during execution, "      \
2208                 " possible disk/network problem.");
2209     }
2210   }
2211 #endif
2212   st->cr();
2213 }
2214 
2215 
2216 static void print_signal_handler(outputStream* st, int sig,
2217                                  char* buf, size_t buflen);
2218 
2219 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2220   st->print_cr("Signal Handlers:");
2221   print_signal_handler(st, SIGSEGV, buf, buflen);
2222   print_signal_handler(st, SIGBUS , buf, buflen);
2223   print_signal_handler(st, SIGFPE , buf, buflen);
2224   print_signal_handler(st, SIGPIPE, buf, buflen);
2225   print_signal_handler(st, SIGXFSZ, buf, buflen);
2226   print_signal_handler(st, SIGILL , buf, buflen);
2227   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2228   print_signal_handler(st, SR_signum, buf, buflen);
2229   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2230   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2231   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2232   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2233 #if defined(PPC64)
2234   print_signal_handler(st, SIGTRAP, buf, buflen);
2235 #endif
2236 }
2237 
2238 static char saved_jvm_path[MAXPATHLEN] = {0};
2239 
2240 // Find the full path to the current module, libjvm.so
2241 void os::jvm_path(char *buf, jint buflen) {
2242   // Error checking.
2243   if (buflen < MAXPATHLEN) {
2244     assert(false, "must use a large-enough buffer");
2245     buf[0] = '\0';
2246     return;
2247   }
2248   // Lazy resolve the path to current module.
2249   if (saved_jvm_path[0] != 0) {
2250     strcpy(buf, saved_jvm_path);
2251     return;
2252   }
2253 
2254   char dli_fname[MAXPATHLEN];
2255   bool ret = dll_address_to_library_name(
2256                 CAST_FROM_FN_PTR(address, os::jvm_path),
2257                 dli_fname, sizeof(dli_fname), NULL);
2258   assert(ret, "cannot locate libjvm");
2259   char *rp = NULL;
2260   if (ret && dli_fname[0] != '\0') {
2261     rp = realpath(dli_fname, buf);
2262   }
2263   if (rp == NULL)
2264     return;
2265 
2266   if (Arguments::created_by_gamma_launcher()) {
2267     // Support for the gamma launcher.  Typical value for buf is
2268     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2269     // the right place in the string, then assume we are installed in a JDK and
2270     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2271     // up the path so it looks like libjvm.so is installed there (append a
2272     // fake suffix hotspot/libjvm.so).
2273     const char *p = buf + strlen(buf) - 1;
2274     for (int count = 0; p > buf && count < 5; ++count) {
2275       for (--p; p > buf && *p != '/'; --p)
2276         /* empty */ ;
2277     }
2278 
2279     if (strncmp(p, "/jre/lib/", 9) != 0) {
2280       // Look for JAVA_HOME in the environment.
2281       char* java_home_var = ::getenv("JAVA_HOME");
2282       if (java_home_var != NULL && java_home_var[0] != 0) {
2283         char* jrelib_p;
2284         int len;
2285 
2286         // Check the current module name "libjvm.so".
2287         p = strrchr(buf, '/');
2288         assert(strstr(p, "/libjvm") == p, "invalid library name");
2289 
2290         rp = realpath(java_home_var, buf);
2291         if (rp == NULL)
2292           return;
2293 
2294         // determine if this is a legacy image or modules image
2295         // modules image doesn't have "jre" subdirectory
2296         len = strlen(buf);
2297         assert(len < buflen, "Ran out of buffer room");
2298         jrelib_p = buf + len;
2299         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2300         if (0 != access(buf, F_OK)) {
2301           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2302         }
2303 
2304         if (0 == access(buf, F_OK)) {
2305           // Use current module name "libjvm.so"
2306           len = strlen(buf);
2307           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2308         } else {
2309           // Go back to path of .so
2310           rp = realpath(dli_fname, buf);
2311           if (rp == NULL)
2312             return;
2313         }
2314       }
2315     }
2316   }
2317 
2318   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2319 }
2320 
2321 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2322   // no prefix required, not even "_"
2323 }
2324 
2325 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2326   // no suffix required
2327 }
2328 
2329 ////////////////////////////////////////////////////////////////////////////////
2330 // sun.misc.Signal support
2331 
2332 static volatile jint sigint_count = 0;
2333 
2334 static void
2335 UserHandler(int sig, void *siginfo, void *context) {
2336   // 4511530 - sem_post is serialized and handled by the manager thread. When
2337   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2338   // don't want to flood the manager thread with sem_post requests.
2339   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2340       return;
2341 
2342   // Ctrl-C is pressed during error reporting, likely because the error
2343   // handler fails to abort. Let VM die immediately.
2344   if (sig == SIGINT && is_error_reported()) {
2345      os::die();
2346   }
2347 
2348   os::signal_notify(sig);
2349 }
2350 
2351 void* os::user_handler() {
2352   return CAST_FROM_FN_PTR(void*, UserHandler);
2353 }
2354 
2355 class Semaphore : public StackObj {
2356   public:
2357     Semaphore();
2358     ~Semaphore();
2359     void signal();
2360     void wait();
2361     bool trywait();
2362     bool timedwait(unsigned int sec, int nsec);
2363   private:
2364     sem_t _semaphore;
2365 };
2366 
2367 Semaphore::Semaphore() {
2368   sem_init(&_semaphore, 0, 0);
2369 }
2370 
2371 Semaphore::~Semaphore() {
2372   sem_destroy(&_semaphore);
2373 }
2374 
2375 void Semaphore::signal() {
2376   sem_post(&_semaphore);
2377 }
2378 
2379 void Semaphore::wait() {
2380   sem_wait(&_semaphore);
2381 }
2382 
2383 bool Semaphore::trywait() {
2384   return sem_trywait(&_semaphore) == 0;
2385 }
2386 
2387 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2388 
2389   struct timespec ts;
2390   // Semaphore's are always associated with CLOCK_REALTIME
2391   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2392   // see unpackTime for discussion on overflow checking
2393   if (sec >= MAX_SECS) {
2394     ts.tv_sec += MAX_SECS;
2395     ts.tv_nsec = 0;
2396   } else {
2397     ts.tv_sec += sec;
2398     ts.tv_nsec += nsec;
2399     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2400       ts.tv_nsec -= NANOSECS_PER_SEC;
2401       ++ts.tv_sec; // note: this must be <= max_secs
2402     }
2403   }
2404 
2405   while (1) {
2406     int result = sem_timedwait(&_semaphore, &ts);
2407     if (result == 0) {
2408       return true;
2409     } else if (errno == EINTR) {
2410       continue;
2411     } else if (errno == ETIMEDOUT) {
2412       return false;
2413     } else {
2414       return false;
2415     }
2416   }
2417 }
2418 
2419 extern "C" {
2420   typedef void (*sa_handler_t)(int);
2421   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2422 }
2423 
2424 void* os::signal(int signal_number, void* handler) {
2425   struct sigaction sigAct, oldSigAct;
2426 
2427   sigfillset(&(sigAct.sa_mask));
2428   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2429   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2430 
2431   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2432     // -1 means registration failed
2433     return (void *)-1;
2434   }
2435 
2436   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2437 }
2438 
2439 void os::signal_raise(int signal_number) {
2440   ::raise(signal_number);
2441 }
2442 
2443 /*
2444  * The following code is moved from os.cpp for making this
2445  * code platform specific, which it is by its very nature.
2446  */
2447 
2448 // Will be modified when max signal is changed to be dynamic
2449 int os::sigexitnum_pd() {
2450   return NSIG;
2451 }
2452 
2453 // a counter for each possible signal value
2454 static volatile jint pending_signals[NSIG+1] = { 0 };
2455 
2456 // Linux(POSIX) specific hand shaking semaphore.
2457 static sem_t sig_sem;
2458 static Semaphore sr_semaphore;
2459 
2460 void os::signal_init_pd() {
2461   // Initialize signal structures
2462   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2463 
2464   // Initialize signal semaphore
2465   ::sem_init(&sig_sem, 0, 0);
2466 }
2467 
2468 void os::signal_notify(int sig) {
2469   Atomic::inc(&pending_signals[sig]);
2470   ::sem_post(&sig_sem);
2471 }
2472 
2473 static int check_pending_signals(bool wait) {
2474   Atomic::store(0, &sigint_count);
2475   for (;;) {
2476     for (int i = 0; i < NSIG + 1; i++) {
2477       jint n = pending_signals[i];
2478       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2479         return i;
2480       }
2481     }
2482     if (!wait) {
2483       return -1;
2484     }
2485     JavaThread *thread = JavaThread::current();
2486     ThreadBlockInVM tbivm(thread);
2487 
2488     bool threadIsSuspended;
2489     do {
2490       thread->set_suspend_equivalent();
2491       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2492       ::sem_wait(&sig_sem);
2493 
2494       // were we externally suspended while we were waiting?
2495       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2496       if (threadIsSuspended) {
2497         //
2498         // The semaphore has been incremented, but while we were waiting
2499         // another thread suspended us. We don't want to continue running
2500         // while suspended because that would surprise the thread that
2501         // suspended us.
2502         //
2503         ::sem_post(&sig_sem);
2504 
2505         thread->java_suspend_self();
2506       }
2507     } while (threadIsSuspended);
2508   }
2509 }
2510 
2511 int os::signal_lookup() {
2512   return check_pending_signals(false);
2513 }
2514 
2515 int os::signal_wait() {
2516   return check_pending_signals(true);
2517 }
2518 
2519 ////////////////////////////////////////////////////////////////////////////////
2520 // Virtual Memory
2521 
2522 int os::vm_page_size() {
2523   // Seems redundant as all get out
2524   assert(os::Linux::page_size() != -1, "must call os::init");
2525   return os::Linux::page_size();
2526 }
2527 
2528 // Solaris allocates memory by pages.
2529 int os::vm_allocation_granularity() {
2530   assert(os::Linux::page_size() != -1, "must call os::init");
2531   return os::Linux::page_size();
2532 }
2533 
2534 // Rationale behind this function:
2535 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2536 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2537 //  samples for JITted code. Here we create private executable mapping over the code cache
2538 //  and then we can use standard (well, almost, as mapping can change) way to provide
2539 //  info for the reporting script by storing timestamp and location of symbol
2540 void linux_wrap_code(char* base, size_t size) {
2541   static volatile jint cnt = 0;
2542 
2543   if (!UseOprofile) {
2544     return;
2545   }
2546 
2547   char buf[PATH_MAX+1];
2548   int num = Atomic::add(1, &cnt);
2549 
2550   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2551            os::get_temp_directory(), os::current_process_id(), num);
2552   unlink(buf);
2553 
2554   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2555 
2556   if (fd != -1) {
2557     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2558     if (rv != (off_t)-1) {
2559       if (::write(fd, "", 1) == 1) {
2560         mmap(base, size,
2561              PROT_READ|PROT_WRITE|PROT_EXEC,
2562              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2563       }
2564     }
2565     ::close(fd);
2566     unlink(buf);
2567   }
2568 }
2569 
2570 static bool recoverable_mmap_error(int err) {
2571   // See if the error is one we can let the caller handle. This
2572   // list of errno values comes from JBS-6843484. I can't find a
2573   // Linux man page that documents this specific set of errno
2574   // values so while this list currently matches Solaris, it may
2575   // change as we gain experience with this failure mode.
2576   switch (err) {
2577   case EBADF:
2578   case EINVAL:
2579   case ENOTSUP:
2580     // let the caller deal with these errors
2581     return true;
2582 
2583   default:
2584     // Any remaining errors on this OS can cause our reserved mapping
2585     // to be lost. That can cause confusion where different data
2586     // structures think they have the same memory mapped. The worst
2587     // scenario is if both the VM and a library think they have the
2588     // same memory mapped.
2589     return false;
2590   }
2591 }
2592 
2593 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2594                                     int err) {
2595   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2596           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2597           strerror(err), err);
2598 }
2599 
2600 static void warn_fail_commit_memory(char* addr, size_t size,
2601                                     size_t alignment_hint, bool exec,
2602                                     int err) {
2603   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2604           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2605           alignment_hint, exec, strerror(err), err);
2606 }
2607 
2608 // NOTE: Linux kernel does not really reserve the pages for us.
2609 //       All it does is to check if there are enough free pages
2610 //       left at the time of mmap(). This could be a potential
2611 //       problem.
2612 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2613   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2614   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2615                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2616   if (res != (uintptr_t) MAP_FAILED) {
2617     if (UseNUMAInterleaving) {
2618       numa_make_global(addr, size);
2619     }
2620     return 0;
2621   }
2622 
2623   int err = errno;  // save errno from mmap() call above
2624 
2625   if (!recoverable_mmap_error(err)) {
2626     warn_fail_commit_memory(addr, size, exec, err);
2627     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2628   }
2629 
2630   return err;
2631 }
2632 
2633 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2634   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2635 }
2636 
2637 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2638                                   const char* mesg) {
2639   assert(mesg != NULL, "mesg must be specified");
2640   int err = os::Linux::commit_memory_impl(addr, size, exec);
2641   if (err != 0) {
2642     // the caller wants all commit errors to exit with the specified mesg:
2643     warn_fail_commit_memory(addr, size, exec, err);
2644     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2645   }
2646 }
2647 
2648 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2649 #ifndef MAP_HUGETLB
2650 #define MAP_HUGETLB 0x40000
2651 #endif
2652 
2653 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2654 #ifndef MADV_HUGEPAGE
2655 #define MADV_HUGEPAGE 14
2656 #endif
2657 
2658 int os::Linux::commit_memory_impl(char* addr, size_t size,
2659                                   size_t alignment_hint, bool exec) {
2660   int err = os::Linux::commit_memory_impl(addr, size, exec);
2661   if (err == 0) {
2662     realign_memory(addr, size, alignment_hint);
2663   }
2664   return err;
2665 }
2666 
2667 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2668                           bool exec) {
2669   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2670 }
2671 
2672 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2673                                   size_t alignment_hint, bool exec,
2674                                   const char* mesg) {
2675   assert(mesg != NULL, "mesg must be specified");
2676   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2677   if (err != 0) {
2678     // the caller wants all commit errors to exit with the specified mesg:
2679     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2680     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2681   }
2682 }
2683 
2684 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2685   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2686     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2687     // be supported or the memory may already be backed by huge pages.
2688     ::madvise(addr, bytes, MADV_HUGEPAGE);
2689   }
2690 }
2691 
2692 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2693   // This method works by doing an mmap over an existing mmaping and effectively discarding
2694   // the existing pages. However it won't work for SHM-based large pages that cannot be
2695   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2696   // small pages on top of the SHM segment. This method always works for small pages, so we
2697   // allow that in any case.
2698   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2699     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2700   }
2701 }
2702 
2703 void os::numa_make_global(char *addr, size_t bytes) {
2704   Linux::numa_interleave_memory(addr, bytes);
2705 }
2706 
2707 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2708 // bind policy to MPOL_PREFERRED for the current thread.
2709 #define USE_MPOL_PREFERRED 0
2710 
2711 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2712   // To make NUMA and large pages more robust when both enabled, we need to ease
2713   // the requirements on where the memory should be allocated. MPOL_BIND is the
2714   // default policy and it will force memory to be allocated on the specified
2715   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2716   // the specified node, but will not force it. Using this policy will prevent
2717   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2718   // free large pages.
2719   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2720   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2721 }
2722 
2723 bool os::numa_topology_changed()   { return false; }
2724 
2725 size_t os::numa_get_groups_num() {
2726   int max_node = Linux::numa_max_node();
2727   return max_node > 0 ? max_node + 1 : 1;
2728 }
2729 
2730 int os::numa_get_group_id() {
2731   int cpu_id = Linux::sched_getcpu();
2732   if (cpu_id != -1) {
2733     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2734     if (lgrp_id != -1) {
2735       return lgrp_id;
2736     }
2737   }
2738   return 0;
2739 }
2740 
2741 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2742   for (size_t i = 0; i < size; i++) {
2743     ids[i] = i;
2744   }
2745   return size;
2746 }
2747 
2748 bool os::get_page_info(char *start, page_info* info) {
2749   return false;
2750 }
2751 
2752 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2753   return end;
2754 }
2755 
2756 
2757 int os::Linux::sched_getcpu_syscall(void) {
2758   unsigned int cpu = 0;
2759   int retval = -1;
2760 
2761 #if defined(IA32)
2762 # ifndef SYS_getcpu
2763 # define SYS_getcpu 318
2764 # endif
2765   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2766 #elif defined(AMD64)
2767 // Unfortunately we have to bring all these macros here from vsyscall.h
2768 // to be able to compile on old linuxes.
2769 # define __NR_vgetcpu 2
2770 # define VSYSCALL_START (-10UL << 20)
2771 # define VSYSCALL_SIZE 1024
2772 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2773   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2774   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2775   retval = vgetcpu(&cpu, NULL, NULL);
2776 #endif
2777 
2778   return (retval == -1) ? retval : cpu;
2779 }
2780 
2781 // Something to do with the numa-aware allocator needs these symbols
2782 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2783 extern "C" JNIEXPORT void numa_error(char *where) { }
2784 extern "C" JNIEXPORT int fork1() { return fork(); }
2785 
2786 
2787 // If we are running with libnuma version > 2, then we should
2788 // be trying to use symbols with versions 1.1
2789 // If we are running with earlier version, which did not have symbol versions,
2790 // we should use the base version.
2791 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2792   void *f = dlvsym(handle, name, "libnuma_1.1");
2793   if (f == NULL) {
2794     f = dlsym(handle, name);
2795   }
2796   return f;
2797 }
2798 
2799 bool os::Linux::libnuma_init() {
2800   // sched_getcpu() should be in libc.
2801   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2802                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2803 
2804   // If it's not, try a direct syscall.
2805   if (sched_getcpu() == -1)
2806     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2807 
2808   if (sched_getcpu() != -1) { // Does it work?
2809     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2810     if (handle != NULL) {
2811       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2812                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2813       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2814                                        libnuma_dlsym(handle, "numa_max_node")));
2815       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2816                                         libnuma_dlsym(handle, "numa_available")));
2817       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2818                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2819       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2820                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2821       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2822                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2823 
2824 
2825       if (numa_available() != -1) {
2826         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2827         // Create a cpu -> node mapping
2828         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2829         rebuild_cpu_to_node_map();
2830         return true;
2831       }
2832     }
2833   }
2834   return false;
2835 }
2836 
2837 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2838 // The table is later used in get_node_by_cpu().
2839 void os::Linux::rebuild_cpu_to_node_map() {
2840   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2841                               // in libnuma (possible values are starting from 16,
2842                               // and continuing up with every other power of 2, but less
2843                               // than the maximum number of CPUs supported by kernel), and
2844                               // is a subject to change (in libnuma version 2 the requirements
2845                               // are more reasonable) we'll just hardcode the number they use
2846                               // in the library.
2847   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2848 
2849   size_t cpu_num = os::active_processor_count();
2850   size_t cpu_map_size = NCPUS / BitsPerCLong;
2851   size_t cpu_map_valid_size =
2852     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2853 
2854   cpu_to_node()->clear();
2855   cpu_to_node()->at_grow(cpu_num - 1);
2856   size_t node_num = numa_get_groups_num();
2857 
2858   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2859   for (size_t i = 0; i < node_num; i++) {
2860     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2861       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2862         if (cpu_map[j] != 0) {
2863           for (size_t k = 0; k < BitsPerCLong; k++) {
2864             if (cpu_map[j] & (1UL << k)) {
2865               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2866             }
2867           }
2868         }
2869       }
2870     }
2871   }
2872   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2873 }
2874 
2875 int os::Linux::get_node_by_cpu(int cpu_id) {
2876   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2877     return cpu_to_node()->at(cpu_id);
2878   }
2879   return -1;
2880 }
2881 
2882 GrowableArray<int>* os::Linux::_cpu_to_node;
2883 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2884 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2885 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2886 os::Linux::numa_available_func_t os::Linux::_numa_available;
2887 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2888 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2889 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2890 unsigned long* os::Linux::_numa_all_nodes;
2891 
2892 bool os::pd_uncommit_memory(char* addr, size_t size) {
2893   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2894                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2895   return res  != (uintptr_t) MAP_FAILED;
2896 }
2897 
2898 static
2899 address get_stack_commited_bottom(address bottom, size_t size) {
2900   address nbot = bottom;
2901   address ntop = bottom + size;
2902 
2903   size_t page_sz = os::vm_page_size();
2904   unsigned pages = size / page_sz;
2905 
2906   unsigned char vec[1];
2907   unsigned imin = 1, imax = pages + 1, imid;
2908   int mincore_return_value = 0;
2909 
2910   assert(imin <= imax, "Unexpected page size");
2911 
2912   while (imin < imax) {
2913     imid = (imax + imin) / 2;
2914     nbot = ntop - (imid * page_sz);
2915 
2916     // Use a trick with mincore to check whether the page is mapped or not.
2917     // mincore sets vec to 1 if page resides in memory and to 0 if page
2918     // is swapped output but if page we are asking for is unmapped
2919     // it returns -1,ENOMEM
2920     mincore_return_value = mincore(nbot, page_sz, vec);
2921 
2922     if (mincore_return_value == -1) {
2923       // Page is not mapped go up
2924       // to find first mapped page
2925       if (errno != EAGAIN) {
2926         assert(errno == ENOMEM, "Unexpected mincore errno");
2927         imax = imid;
2928       }
2929     } else {
2930       // Page is mapped go down
2931       // to find first not mapped page
2932       imin = imid + 1;
2933     }
2934   }
2935 
2936   nbot = nbot + page_sz;
2937 
2938   // Adjust stack bottom one page up if last checked page is not mapped
2939   if (mincore_return_value == -1) {
2940     nbot = nbot + page_sz;
2941   }
2942 
2943   return nbot;
2944 }
2945 
2946 
2947 // Linux uses a growable mapping for the stack, and if the mapping for
2948 // the stack guard pages is not removed when we detach a thread the
2949 // stack cannot grow beyond the pages where the stack guard was
2950 // mapped.  If at some point later in the process the stack expands to
2951 // that point, the Linux kernel cannot expand the stack any further
2952 // because the guard pages are in the way, and a segfault occurs.
2953 //
2954 // However, it's essential not to split the stack region by unmapping
2955 // a region (leaving a hole) that's already part of the stack mapping,
2956 // so if the stack mapping has already grown beyond the guard pages at
2957 // the time we create them, we have to truncate the stack mapping.
2958 // So, we need to know the extent of the stack mapping when
2959 // create_stack_guard_pages() is called.
2960 
2961 // We only need this for stacks that are growable: at the time of
2962 // writing thread stacks don't use growable mappings (i.e. those
2963 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2964 // only applies to the main thread.
2965 
2966 // If the (growable) stack mapping already extends beyond the point
2967 // where we're going to put our guard pages, truncate the mapping at
2968 // that point by munmap()ping it.  This ensures that when we later
2969 // munmap() the guard pages we don't leave a hole in the stack
2970 // mapping. This only affects the main/initial thread
2971 
2972 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2973 
2974   if (os::Linux::is_initial_thread()) {
2975     // As we manually grow stack up to bottom inside create_attached_thread(),
2976     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2977     // we don't need to do anything special.
2978     // Check it first, before calling heavy function.
2979     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2980     unsigned char vec[1];
2981 
2982     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2983       // Fallback to slow path on all errors, including EAGAIN
2984       stack_extent = (uintptr_t) get_stack_commited_bottom(
2985                                     os::Linux::initial_thread_stack_bottom(),
2986                                     (size_t)addr - stack_extent);
2987     }
2988 
2989     if (stack_extent < (uintptr_t)addr) {
2990       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2991     }
2992   }
2993 
2994   return os::commit_memory(addr, size, !ExecMem);
2995 }
2996 
2997 // If this is a growable mapping, remove the guard pages entirely by
2998 // munmap()ping them.  If not, just call uncommit_memory(). This only
2999 // affects the main/initial thread, but guard against future OS changes
3000 // It's safe to always unmap guard pages for initial thread because we
3001 // always place it right after end of the mapped region
3002 
3003 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3004   uintptr_t stack_extent, stack_base;
3005 
3006   if (os::Linux::is_initial_thread()) {
3007     return ::munmap(addr, size) == 0;
3008   }
3009 
3010   return os::uncommit_memory(addr, size);
3011 }
3012 
3013 static address _highest_vm_reserved_address = NULL;
3014 
3015 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3016 // at 'requested_addr'. If there are existing memory mappings at the same
3017 // location, however, they will be overwritten. If 'fixed' is false,
3018 // 'requested_addr' is only treated as a hint, the return value may or
3019 // may not start from the requested address. Unlike Linux mmap(), this
3020 // function returns NULL to indicate failure.
3021 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3022   char * addr;
3023   int flags;
3024 
3025   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3026   if (fixed) {
3027     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3028     flags |= MAP_FIXED;
3029   }
3030 
3031   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3032   // touch an uncommitted page. Otherwise, the read/write might
3033   // succeed if we have enough swap space to back the physical page.
3034   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3035                        flags, -1, 0);
3036 
3037   if (addr != MAP_FAILED) {
3038     // anon_mmap() should only get called during VM initialization,
3039     // don't need lock (actually we can skip locking even it can be called
3040     // from multiple threads, because _highest_vm_reserved_address is just a
3041     // hint about the upper limit of non-stack memory regions.)
3042     if ((address)addr + bytes > _highest_vm_reserved_address) {
3043       _highest_vm_reserved_address = (address)addr + bytes;
3044     }
3045   }
3046 
3047   return addr == MAP_FAILED ? NULL : addr;
3048 }
3049 
3050 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3051 //   (req_addr != NULL) or with a given alignment.
3052 //  - bytes shall be a multiple of alignment.
3053 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3054 //  - alignment sets the alignment at which memory shall be allocated.
3055 //     It must be a multiple of allocation granularity.
3056 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3057 //  req_addr or NULL.
3058 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3059 
3060   size_t extra_size = bytes;
3061   if (req_addr == NULL && alignment > 0) {
3062     extra_size += alignment;
3063   }
3064 
3065   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3066     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3067     -1, 0);
3068   if (start == MAP_FAILED) {
3069     start = NULL;
3070   } else {
3071     if (req_addr != NULL) {
3072       if (start != req_addr) {
3073         ::munmap(start, extra_size);
3074         start = NULL;
3075       }
3076     } else {
3077       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3078       char* const end_aligned = start_aligned + bytes;
3079       char* const end = start + extra_size;
3080       if (start_aligned > start) {
3081         ::munmap(start, start_aligned - start);
3082       }
3083       if (end_aligned < end) {
3084         ::munmap(end_aligned, end - end_aligned);
3085       }
3086       start = start_aligned;
3087     }
3088   }
3089   return start;
3090 }
3091 
3092 // Don't update _highest_vm_reserved_address, because there might be memory
3093 // regions above addr + size. If so, releasing a memory region only creates
3094 // a hole in the address space, it doesn't help prevent heap-stack collision.
3095 //
3096 static int anon_munmap(char * addr, size_t size) {
3097   return ::munmap(addr, size) == 0;
3098 }
3099 
3100 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3101                          size_t alignment_hint) {
3102   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3103 }
3104 
3105 bool os::pd_release_memory(char* addr, size_t size) {
3106   return anon_munmap(addr, size);
3107 }
3108 
3109 static address highest_vm_reserved_address() {
3110   return _highest_vm_reserved_address;
3111 }
3112 
3113 static bool linux_mprotect(char* addr, size_t size, int prot) {
3114   // Linux wants the mprotect address argument to be page aligned.
3115   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3116 
3117   // According to SUSv3, mprotect() should only be used with mappings
3118   // established by mmap(), and mmap() always maps whole pages. Unaligned
3119   // 'addr' likely indicates problem in the VM (e.g. trying to change
3120   // protection of malloc'ed or statically allocated memory). Check the
3121   // caller if you hit this assert.
3122   assert(addr == bottom, "sanity check");
3123 
3124   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3125   return ::mprotect(bottom, size, prot) == 0;
3126 }
3127 
3128 // Set protections specified
3129 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3130                         bool is_committed) {
3131   unsigned int p = 0;
3132   switch (prot) {
3133   case MEM_PROT_NONE: p = PROT_NONE; break;
3134   case MEM_PROT_READ: p = PROT_READ; break;
3135   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3136   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3137   default:
3138     ShouldNotReachHere();
3139   }
3140   // is_committed is unused.
3141   return linux_mprotect(addr, bytes, p);
3142 }
3143 
3144 bool os::guard_memory(char* addr, size_t size) {
3145   return linux_mprotect(addr, size, PROT_NONE);
3146 }
3147 
3148 bool os::unguard_memory(char* addr, size_t size) {
3149   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3150 }
3151 
3152 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3153   bool result = false;
3154   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3155                  MAP_ANONYMOUS|MAP_PRIVATE,
3156                  -1, 0);
3157   if (p != MAP_FAILED) {
3158     void *aligned_p = align_ptr_up(p, page_size);
3159 
3160     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3161 
3162     munmap(p, page_size * 2);
3163   }
3164 
3165   if (warn && !result) {
3166     warning("TransparentHugePages is not supported by the operating system.");
3167   }
3168 
3169   return result;
3170 }
3171 
3172 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3173   bool result = false;
3174   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3175                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3176                  -1, 0);
3177 
3178   if (p != MAP_FAILED) {
3179     // We don't know if this really is a huge page or not.
3180     FILE *fp = fopen("/proc/self/maps", "r");
3181     if (fp) {
3182       while (!feof(fp)) {
3183         char chars[257];
3184         long x = 0;
3185         if (fgets(chars, sizeof(chars), fp)) {
3186           if (sscanf(chars, "%lx-%*x", &x) == 1
3187               && x == (long)p) {
3188             if (strstr (chars, "hugepage")) {
3189               result = true;
3190               break;
3191             }
3192           }
3193         }
3194       }
3195       fclose(fp);
3196     }
3197     munmap(p, page_size);
3198   }
3199 
3200   if (warn && !result) {
3201     warning("HugeTLBFS is not supported by the operating system.");
3202   }
3203 
3204   return result;
3205 }
3206 
3207 /*
3208 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3209 *
3210 * From the coredump_filter documentation:
3211 *
3212 * - (bit 0) anonymous private memory
3213 * - (bit 1) anonymous shared memory
3214 * - (bit 2) file-backed private memory
3215 * - (bit 3) file-backed shared memory
3216 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3217 *           effective only if the bit 2 is cleared)
3218 * - (bit 5) hugetlb private memory
3219 * - (bit 6) hugetlb shared memory
3220 */
3221 static void set_coredump_filter(void) {
3222   FILE *f;
3223   long cdm;
3224 
3225   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3226     return;
3227   }
3228 
3229   if (fscanf(f, "%lx", &cdm) != 1) {
3230     fclose(f);
3231     return;
3232   }
3233 
3234   rewind(f);
3235 
3236   if ((cdm & LARGEPAGES_BIT) == 0) {
3237     cdm |= LARGEPAGES_BIT;
3238     fprintf(f, "%#lx", cdm);
3239   }
3240 
3241   fclose(f);
3242 }
3243 
3244 // Large page support
3245 
3246 static size_t _large_page_size = 0;
3247 
3248 size_t os::Linux::find_large_page_size() {
3249   size_t large_page_size = 0;
3250 
3251   // large_page_size on Linux is used to round up heap size. x86 uses either
3252   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3253   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3254   // page as large as 256M.
3255   //
3256   // Here we try to figure out page size by parsing /proc/meminfo and looking
3257   // for a line with the following format:
3258   //    Hugepagesize:     2048 kB
3259   //
3260   // If we can't determine the value (e.g. /proc is not mounted, or the text
3261   // format has been changed), we'll use the largest page size supported by
3262   // the processor.
3263 
3264 #ifndef ZERO
3265   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3266                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3267 #endif // ZERO
3268 
3269   FILE *fp = fopen("/proc/meminfo", "r");
3270   if (fp) {
3271     while (!feof(fp)) {
3272       int x = 0;
3273       char buf[16];
3274       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3275         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3276           large_page_size = x * K;
3277           break;
3278         }
3279       } else {
3280         // skip to next line
3281         for (;;) {
3282           int ch = fgetc(fp);
3283           if (ch == EOF || ch == (int)'\n') break;
3284         }
3285       }
3286     }
3287     fclose(fp);
3288   }
3289 
3290   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3291     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3292         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3293         proper_unit_for_byte_size(large_page_size));
3294   }
3295 
3296   return large_page_size;
3297 }
3298 
3299 size_t os::Linux::setup_large_page_size() {
3300   _large_page_size = Linux::find_large_page_size();
3301   const size_t default_page_size = (size_t)Linux::page_size();
3302   if (_large_page_size > default_page_size) {
3303     _page_sizes[0] = _large_page_size;
3304     _page_sizes[1] = default_page_size;
3305     _page_sizes[2] = 0;
3306   }
3307 
3308   return _large_page_size;
3309 }
3310 
3311 bool os::Linux::setup_large_page_type(size_t page_size) {
3312   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3313       FLAG_IS_DEFAULT(UseSHM) &&
3314       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3315 
3316     // The type of large pages has not been specified by the user.
3317 
3318     // Try UseHugeTLBFS and then UseSHM.
3319     UseHugeTLBFS = UseSHM = true;
3320 
3321     // Don't try UseTransparentHugePages since there are known
3322     // performance issues with it turned on. This might change in the future.
3323     UseTransparentHugePages = false;
3324   }
3325 
3326   if (UseTransparentHugePages) {
3327     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3328     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3329       UseHugeTLBFS = false;
3330       UseSHM = false;
3331       return true;
3332     }
3333     UseTransparentHugePages = false;
3334   }
3335 
3336   if (UseHugeTLBFS) {
3337     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3338     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3339       UseSHM = false;
3340       return true;
3341     }
3342     UseHugeTLBFS = false;
3343   }
3344 
3345   return UseSHM;
3346 }
3347 
3348 void os::large_page_init() {
3349   if (!UseLargePages &&
3350       !UseTransparentHugePages &&
3351       !UseHugeTLBFS &&
3352       !UseSHM) {
3353     // Not using large pages.
3354     return;
3355   }
3356 
3357   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3358     // The user explicitly turned off large pages.
3359     // Ignore the rest of the large pages flags.
3360     UseTransparentHugePages = false;
3361     UseHugeTLBFS = false;
3362     UseSHM = false;
3363     return;
3364   }
3365 
3366   size_t large_page_size = Linux::setup_large_page_size();
3367   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3368 
3369   set_coredump_filter();
3370 }
3371 
3372 #ifndef SHM_HUGETLB
3373 #define SHM_HUGETLB 04000
3374 #endif
3375 
3376 #define shm_warning_format(format, ...)              \
3377   do {                                               \
3378     if (UseLargePages &&                             \
3379         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3380          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3381          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3382       warning(format, __VA_ARGS__);                  \
3383     }                                                \
3384   } while (0)
3385 
3386 #define shm_warning(str) shm_warning_format("%s", str)
3387 
3388 #define shm_warning_with_errno(str)                \
3389   do {                                             \
3390     int err = errno;                               \
3391     shm_warning_format(str " (error = %d)", err);  \
3392   } while (0)
3393 
3394 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3395   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3396 
3397   if (!is_size_aligned(alignment, SHMLBA)) {
3398     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3399     return NULL;
3400   }
3401 
3402   // To ensure that we get 'alignment' aligned memory from shmat,
3403   // we pre-reserve aligned virtual memory and then attach to that.
3404 
3405   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3406   if (pre_reserved_addr == NULL) {
3407     // Couldn't pre-reserve aligned memory.
3408     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3409     return NULL;
3410   }
3411 
3412   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3413   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3414 
3415   if ((intptr_t)addr == -1) {
3416     int err = errno;
3417     shm_warning_with_errno("Failed to attach shared memory.");
3418 
3419     assert(err != EACCES, "Unexpected error");
3420     assert(err != EIDRM,  "Unexpected error");
3421     assert(err != EINVAL, "Unexpected error");
3422 
3423     // Since we don't know if the kernel unmapped the pre-reserved memory area
3424     // we can't unmap it, since that would potentially unmap memory that was
3425     // mapped from other threads.
3426     return NULL;
3427   }
3428 
3429   return addr;
3430 }
3431 
3432 static char* shmat_at_address(int shmid, char* req_addr) {
3433   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3434     assert(false, "Requested address needs to be SHMLBA aligned");
3435     return NULL;
3436   }
3437 
3438   char* addr = (char*)shmat(shmid, req_addr, 0);
3439 
3440   if ((intptr_t)addr == -1) {
3441     shm_warning_with_errno("Failed to attach shared memory.");
3442     return NULL;
3443   }
3444 
3445   return addr;
3446 }
3447 
3448 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3449   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3450   if (req_addr != NULL) {
3451     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3452     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3453     return shmat_at_address(shmid, req_addr);
3454   }
3455 
3456   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3457   // return large page size aligned memory addresses when req_addr == NULL.
3458   // However, if the alignment is larger than the large page size, we have
3459   // to manually ensure that the memory returned is 'alignment' aligned.
3460   if (alignment > os::large_page_size()) {
3461     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3462     return shmat_with_alignment(shmid, bytes, alignment);
3463   } else {
3464     return shmat_at_address(shmid, NULL);
3465   }
3466 }
3467 
3468 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3469   // "exec" is passed in but not used.  Creating the shared image for
3470   // the code cache doesn't have an SHM_X executable permission to check.
3471   assert(UseLargePages && UseSHM, "only for SHM large pages");
3472   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3473   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3474 
3475   if (!is_size_aligned(bytes, os::large_page_size())) {
3476     return NULL; // Fallback to small pages.
3477   }
3478 
3479   // Create a large shared memory region to attach to based on size.
3480   // Currently, size is the total size of the heap.
3481   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3482   if (shmid == -1) {
3483     // Possible reasons for shmget failure:
3484     // 1. shmmax is too small for Java heap.
3485     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3486     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3487     // 2. not enough large page memory.
3488     //    > check available large pages: cat /proc/meminfo
3489     //    > increase amount of large pages:
3490     //          echo new_value > /proc/sys/vm/nr_hugepages
3491     //      Note 1: different Linux may use different name for this property,
3492     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3493     //      Note 2: it's possible there's enough physical memory available but
3494     //            they are so fragmented after a long run that they can't
3495     //            coalesce into large pages. Try to reserve large pages when
3496     //            the system is still "fresh".
3497     shm_warning_with_errno("Failed to reserve shared memory.");
3498     return NULL;
3499   }
3500 
3501   // Attach to the region.
3502   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3503 
3504   // Remove shmid. If shmat() is successful, the actual shared memory segment
3505   // will be deleted when it's detached by shmdt() or when the process
3506   // terminates. If shmat() is not successful this will remove the shared
3507   // segment immediately.
3508   shmctl(shmid, IPC_RMID, NULL);
3509 
3510   return addr;
3511 }
3512 
3513 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3514   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3515 
3516   bool warn_on_failure = UseLargePages &&
3517       (!FLAG_IS_DEFAULT(UseLargePages) ||
3518        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3519        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3520 
3521   if (warn_on_failure) {
3522     char msg[128];
3523     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3524         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3525     warning("%s", msg);
3526   }
3527 }
3528 
3529 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3530   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3531   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3532   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3533 
3534   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3535   char* addr = (char*)::mmap(req_addr, bytes, prot,
3536                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3537                              -1, 0);
3538 
3539   if (addr == MAP_FAILED) {
3540     warn_on_large_pages_failure(req_addr, bytes, errno);
3541     return NULL;
3542   }
3543 
3544   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3545 
3546   return addr;
3547 }
3548 
3549 // Reserve memory using mmap(MAP_HUGETLB).
3550 //  - bytes shall be a multiple of alignment.
3551 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3552 //  - alignment sets the alignment at which memory shall be allocated.
3553 //     It must be a multiple of allocation granularity.
3554 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3555 //  req_addr or NULL.
3556 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3557   size_t large_page_size = os::large_page_size();
3558   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3559 
3560   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3561   assert(is_size_aligned(bytes, alignment), "Must be");
3562 
3563   // First reserve - but not commit - the address range in small pages.
3564   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3565 
3566   if (start == NULL) {
3567     return NULL;
3568   }
3569 
3570   assert(is_ptr_aligned(start, alignment), "Must be");
3571 
3572   char* end = start + bytes;
3573 
3574   // Find the regions of the allocated chunk that can be promoted to large pages.
3575   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3576   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3577 
3578   size_t lp_bytes = lp_end - lp_start;
3579 
3580   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3581 
3582   if (lp_bytes == 0) {
3583     // The mapped region doesn't even span the start and the end of a large page.
3584     // Fall back to allocate a non-special area.
3585     ::munmap(start, end - start);
3586     return NULL;
3587   }
3588 
3589   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3590 
3591   void* result;
3592 
3593   // Commit small-paged leading area.
3594   if (start != lp_start) {
3595     result = ::mmap(start, lp_start - start, prot,
3596                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3597                     -1, 0);
3598     if (result == MAP_FAILED) {
3599       ::munmap(lp_start, end - lp_start);
3600       return NULL;
3601     }
3602   }
3603 
3604   // Commit large-paged area.
3605   result = ::mmap(lp_start, lp_bytes, prot,
3606                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3607                   -1, 0);
3608   if (result == MAP_FAILED) {
3609     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3610     // If the mmap above fails, the large pages region will be unmapped and we
3611     // have regions before and after with small pages. Release these regions.
3612     //
3613     // |  mapped  |  unmapped  |  mapped  |
3614     // ^          ^            ^          ^
3615     // start      lp_start     lp_end     end
3616     //
3617     ::munmap(start, lp_start - start);
3618     ::munmap(lp_end, end - lp_end);
3619     return NULL;
3620   }
3621 
3622   // Commit small-paged trailing area.
3623   if (lp_end != end) {
3624       result = ::mmap(lp_end, end - lp_end, prot,
3625                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3626                       -1, 0);
3627     if (result == MAP_FAILED) {
3628       ::munmap(start, lp_end - start);
3629       return NULL;
3630     }
3631   }
3632 
3633   return start;
3634 }
3635 
3636 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3637   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3638   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3639   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3640   assert(is_power_of_2(os::large_page_size()), "Must be");
3641   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3642 
3643   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3644     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3645   } else {
3646     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3647   }
3648 }
3649 
3650 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3651   assert(UseLargePages, "only for large pages");
3652 
3653   char* addr;
3654   if (UseSHM) {
3655     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3656   } else {
3657     assert(UseHugeTLBFS, "must be");
3658     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3659   }
3660 
3661   if (addr != NULL) {
3662     if (UseNUMAInterleaving) {
3663       numa_make_global(addr, bytes);
3664     }
3665 
3666     // The memory is committed
3667     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3668   }
3669 
3670   return addr;
3671 }
3672 
3673 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3674   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3675   return shmdt(base) == 0;
3676 }
3677 
3678 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3679   return pd_release_memory(base, bytes);
3680 }
3681 
3682 bool os::release_memory_special(char* base, size_t bytes) {
3683   bool res;
3684   if (MemTracker::tracking_level() > NMT_minimal) {
3685     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3686     res = os::Linux::release_memory_special_impl(base, bytes);
3687     if (res) {
3688       tkr.record((address)base, bytes);
3689     }
3690 
3691   } else {
3692     res = os::Linux::release_memory_special_impl(base, bytes);
3693   }
3694   return res;
3695 }
3696 
3697 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3698   assert(UseLargePages, "only for large pages");
3699   bool res;
3700 
3701   if (UseSHM) {
3702     res = os::Linux::release_memory_special_shm(base, bytes);
3703   } else {
3704     assert(UseHugeTLBFS, "must be");
3705     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3706   }
3707   return res;
3708 }
3709 
3710 size_t os::large_page_size() {
3711   return _large_page_size;
3712 }
3713 
3714 // With SysV SHM the entire memory region must be allocated as shared
3715 // memory.
3716 // HugeTLBFS allows application to commit large page memory on demand.
3717 // However, when committing memory with HugeTLBFS fails, the region
3718 // that was supposed to be committed will lose the old reservation
3719 // and allow other threads to steal that memory region. Because of this
3720 // behavior we can't commit HugeTLBFS memory.
3721 bool os::can_commit_large_page_memory() {
3722   return UseTransparentHugePages;
3723 }
3724 
3725 bool os::can_execute_large_page_memory() {
3726   return UseTransparentHugePages || UseHugeTLBFS;
3727 }
3728 
3729 // Reserve memory at an arbitrary address, only if that area is
3730 // available (and not reserved for something else).
3731 
3732 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3733   const int max_tries = 10;
3734   char* base[max_tries];
3735   size_t size[max_tries];
3736   const size_t gap = 0x000000;
3737 
3738   // Assert only that the size is a multiple of the page size, since
3739   // that's all that mmap requires, and since that's all we really know
3740   // about at this low abstraction level.  If we need higher alignment,
3741   // we can either pass an alignment to this method or verify alignment
3742   // in one of the methods further up the call chain.  See bug 5044738.
3743   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3744 
3745   // Repeatedly allocate blocks until the block is allocated at the
3746   // right spot. Give up after max_tries. Note that reserve_memory() will
3747   // automatically update _highest_vm_reserved_address if the call is
3748   // successful. The variable tracks the highest memory address every reserved
3749   // by JVM. It is used to detect heap-stack collision if running with
3750   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3751   // space than needed, it could confuse the collision detecting code. To
3752   // solve the problem, save current _highest_vm_reserved_address and
3753   // calculate the correct value before return.
3754   address old_highest = _highest_vm_reserved_address;
3755 
3756   // Linux mmap allows caller to pass an address as hint; give it a try first,
3757   // if kernel honors the hint then we can return immediately.
3758   char * addr = anon_mmap(requested_addr, bytes, false);
3759   if (addr == requested_addr) {
3760      return requested_addr;
3761   }
3762 
3763   if (addr != NULL) {
3764      // mmap() is successful but it fails to reserve at the requested address
3765      anon_munmap(addr, bytes);
3766   }
3767 
3768   int i;
3769   for (i = 0; i < max_tries; ++i) {
3770     base[i] = reserve_memory(bytes);
3771 
3772     if (base[i] != NULL) {
3773       // Is this the block we wanted?
3774       if (base[i] == requested_addr) {
3775         size[i] = bytes;
3776         break;
3777       }
3778 
3779       // Does this overlap the block we wanted? Give back the overlapped
3780       // parts and try again.
3781 
3782       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3783       if (top_overlap >= 0 && top_overlap < bytes) {
3784         unmap_memory(base[i], top_overlap);
3785         base[i] += top_overlap;
3786         size[i] = bytes - top_overlap;
3787       } else {
3788         size_t bottom_overlap = base[i] + bytes - requested_addr;
3789         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3790           unmap_memory(requested_addr, bottom_overlap);
3791           size[i] = bytes - bottom_overlap;
3792         } else {
3793           size[i] = bytes;
3794         }
3795       }
3796     }
3797   }
3798 
3799   // Give back the unused reserved pieces.
3800 
3801   for (int j = 0; j < i; ++j) {
3802     if (base[j] != NULL) {
3803       unmap_memory(base[j], size[j]);
3804     }
3805   }
3806 
3807   if (i < max_tries) {
3808     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3809     return requested_addr;
3810   } else {
3811     _highest_vm_reserved_address = old_highest;
3812     return NULL;
3813   }
3814 }
3815 
3816 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3817   return ::read(fd, buf, nBytes);
3818 }
3819 
3820 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3821 // Solaris uses poll(), linux uses park().
3822 // Poll() is likely a better choice, assuming that Thread.interrupt()
3823 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3824 // SIGSEGV, see 4355769.
3825 
3826 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3827   assert(thread == Thread::current(),  "thread consistency check");
3828 
3829   ParkEvent * const slp = thread->_SleepEvent ;
3830   slp->reset() ;
3831   OrderAccess::fence() ;
3832 
3833   if (interruptible) {
3834     jlong prevtime = javaTimeNanos();
3835 
3836     for (;;) {
3837       if (os::is_interrupted(thread, true)) {
3838         return OS_INTRPT;
3839       }
3840 
3841       jlong newtime = javaTimeNanos();
3842 
3843       if (newtime - prevtime < 0) {
3844         // time moving backwards, should only happen if no monotonic clock
3845         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3846         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3847       } else {
3848         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3849       }
3850 
3851       if(millis <= 0) {
3852         return OS_OK;
3853       }
3854 
3855       prevtime = newtime;
3856 
3857       {
3858         assert(thread->is_Java_thread(), "sanity check");
3859         JavaThread *jt = (JavaThread *) thread;
3860         ThreadBlockInVM tbivm(jt);
3861         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3862 
3863         jt->set_suspend_equivalent();
3864         // cleared by handle_special_suspend_equivalent_condition() or
3865         // java_suspend_self() via check_and_wait_while_suspended()
3866 
3867         slp->park(millis);
3868 
3869         // were we externally suspended while we were waiting?
3870         jt->check_and_wait_while_suspended();
3871       }
3872     }
3873   } else {
3874     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3875     jlong prevtime = javaTimeNanos();
3876 
3877     for (;;) {
3878       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3879       // the 1st iteration ...
3880       jlong newtime = javaTimeNanos();
3881 
3882       if (newtime - prevtime < 0) {
3883         // time moving backwards, should only happen if no monotonic clock
3884         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3885         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3886       } else {
3887         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3888       }
3889 
3890       if(millis <= 0) break ;
3891 
3892       prevtime = newtime;
3893       slp->park(millis);
3894     }
3895     return OS_OK ;
3896   }
3897 }
3898 
3899 //
3900 // Short sleep, direct OS call.
3901 //
3902 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3903 // sched_yield(2) will actually give up the CPU:
3904 //
3905 //   * Alone on this pariticular CPU, keeps running.
3906 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3907 //     (pre 2.6.39).
3908 //
3909 // So calling this with 0 is an alternative.
3910 //
3911 void os::naked_short_sleep(jlong ms) {
3912   struct timespec req;
3913 
3914   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3915   req.tv_sec = 0;
3916   if (ms > 0) {
3917     req.tv_nsec = (ms % 1000) * 1000000;
3918   }
3919   else {
3920     req.tv_nsec = 1;
3921   }
3922 
3923   nanosleep(&req, NULL);
3924 
3925   return;
3926 }
3927 
3928 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3929 void os::infinite_sleep() {
3930   while (true) {    // sleep forever ...
3931     ::sleep(100);   // ... 100 seconds at a time
3932   }
3933 }
3934 
3935 // Used to convert frequent JVM_Yield() to nops
3936 bool os::dont_yield() {
3937   return DontYieldALot;
3938 }
3939 
3940 void os::yield() {
3941   sched_yield();
3942 }
3943 
3944 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3945 
3946 void os::yield_all(int attempts) {
3947   // Yields to all threads, including threads with lower priorities
3948   // Threads on Linux are all with same priority. The Solaris style
3949   // os::yield_all() with nanosleep(1ms) is not necessary.
3950   sched_yield();
3951 }
3952 
3953 // Called from the tight loops to possibly influence time-sharing heuristics
3954 void os::loop_breaker(int attempts) {
3955   os::yield_all(attempts);
3956 }
3957 
3958 ////////////////////////////////////////////////////////////////////////////////
3959 // thread priority support
3960 
3961 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3962 // only supports dynamic priority, static priority must be zero. For real-time
3963 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3964 // However, for large multi-threaded applications, SCHED_RR is not only slower
3965 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3966 // of 5 runs - Sep 2005).
3967 //
3968 // The following code actually changes the niceness of kernel-thread/LWP. It
3969 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3970 // not the entire user process, and user level threads are 1:1 mapped to kernel
3971 // threads. It has always been the case, but could change in the future. For
3972 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3973 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3974 
3975 int os::java_to_os_priority[CriticalPriority + 1] = {
3976   19,              // 0 Entry should never be used
3977 
3978    4,              // 1 MinPriority
3979    3,              // 2
3980    2,              // 3
3981 
3982    1,              // 4
3983    0,              // 5 NormPriority
3984   -1,              // 6
3985 
3986   -2,              // 7
3987   -3,              // 8
3988   -4,              // 9 NearMaxPriority
3989 
3990   -5,              // 10 MaxPriority
3991 
3992   -5               // 11 CriticalPriority
3993 };
3994 
3995 static int prio_init() {
3996   if (ThreadPriorityPolicy == 1) {
3997     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3998     // if effective uid is not root. Perhaps, a more elegant way of doing
3999     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4000     if (geteuid() != 0) {
4001       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4002         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4003       }
4004       ThreadPriorityPolicy = 0;
4005     }
4006   }
4007   if (UseCriticalJavaThreadPriority) {
4008     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4009   }
4010   return 0;
4011 }
4012 
4013 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4014   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
4015 
4016   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4017   return (ret == 0) ? OS_OK : OS_ERR;
4018 }
4019 
4020 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4021   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
4022     *priority_ptr = java_to_os_priority[NormPriority];
4023     return OS_OK;
4024   }
4025 
4026   errno = 0;
4027   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4028   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4029 }
4030 
4031 // Hint to the underlying OS that a task switch would not be good.
4032 // Void return because it's a hint and can fail.
4033 void os::hint_no_preempt() {}
4034 
4035 ////////////////////////////////////////////////////////////////////////////////
4036 // suspend/resume support
4037 
4038 //  the low-level signal-based suspend/resume support is a remnant from the
4039 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4040 //  within hotspot. Now there is a single use-case for this:
4041 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4042 //      that runs in the watcher thread.
4043 //  The remaining code is greatly simplified from the more general suspension
4044 //  code that used to be used.
4045 //
4046 //  The protocol is quite simple:
4047 //  - suspend:
4048 //      - sends a signal to the target thread
4049 //      - polls the suspend state of the osthread using a yield loop
4050 //      - target thread signal handler (SR_handler) sets suspend state
4051 //        and blocks in sigsuspend until continued
4052 //  - resume:
4053 //      - sets target osthread state to continue
4054 //      - sends signal to end the sigsuspend loop in the SR_handler
4055 //
4056 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4057 //
4058 
4059 static void resume_clear_context(OSThread *osthread) {
4060   osthread->set_ucontext(NULL);
4061   osthread->set_siginfo(NULL);
4062 }
4063 
4064 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4065   osthread->set_ucontext(context);
4066   osthread->set_siginfo(siginfo);
4067 }
4068 
4069 //
4070 // Handler function invoked when a thread's execution is suspended or
4071 // resumed. We have to be careful that only async-safe functions are
4072 // called here (Note: most pthread functions are not async safe and
4073 // should be avoided.)
4074 //
4075 // Note: sigwait() is a more natural fit than sigsuspend() from an
4076 // interface point of view, but sigwait() prevents the signal hander
4077 // from being run. libpthread would get very confused by not having
4078 // its signal handlers run and prevents sigwait()'s use with the
4079 // mutex granting granting signal.
4080 //
4081 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4082 //
4083 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4084   // Save and restore errno to avoid confusing native code with EINTR
4085   // after sigsuspend.
4086   int old_errno = errno;
4087 
4088   Thread* thread = Thread::current();
4089   OSThread* osthread = thread->osthread();
4090   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4091 
4092   os::SuspendResume::State current = osthread->sr.state();
4093   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4094     suspend_save_context(osthread, siginfo, context);
4095 
4096     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4097     os::SuspendResume::State state = osthread->sr.suspended();
4098     if (state == os::SuspendResume::SR_SUSPENDED) {
4099       sigset_t suspend_set;  // signals for sigsuspend()
4100 
4101       // get current set of blocked signals and unblock resume signal
4102       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4103       sigdelset(&suspend_set, SR_signum);
4104 
4105       sr_semaphore.signal();
4106       // wait here until we are resumed
4107       while (1) {
4108         sigsuspend(&suspend_set);
4109 
4110         os::SuspendResume::State result = osthread->sr.running();
4111         if (result == os::SuspendResume::SR_RUNNING) {
4112           sr_semaphore.signal();
4113           break;
4114         }
4115       }
4116 
4117     } else if (state == os::SuspendResume::SR_RUNNING) {
4118       // request was cancelled, continue
4119     } else {
4120       ShouldNotReachHere();
4121     }
4122 
4123     resume_clear_context(osthread);
4124   } else if (current == os::SuspendResume::SR_RUNNING) {
4125     // request was cancelled, continue
4126   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4127     // ignore
4128   } else {
4129     // ignore
4130   }
4131 
4132   errno = old_errno;
4133 }
4134 
4135 
4136 static int SR_initialize() {
4137   struct sigaction act;
4138   char *s;
4139   /* Get signal number to use for suspend/resume */
4140   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4141     int sig = ::strtol(s, 0, 10);
4142     if (sig > 0 || sig < _NSIG) {
4143         SR_signum = sig;
4144     }
4145   }
4146 
4147   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4148         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4149 
4150   sigemptyset(&SR_sigset);
4151   sigaddset(&SR_sigset, SR_signum);
4152 
4153   /* Set up signal handler for suspend/resume */
4154   act.sa_flags = SA_RESTART|SA_SIGINFO;
4155   act.sa_handler = (void (*)(int)) SR_handler;
4156 
4157   // SR_signum is blocked by default.
4158   // 4528190 - We also need to block pthread restart signal (32 on all
4159   // supported Linux platforms). Note that LinuxThreads need to block
4160   // this signal for all threads to work properly. So we don't have
4161   // to use hard-coded signal number when setting up the mask.
4162   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4163 
4164   if (sigaction(SR_signum, &act, 0) == -1) {
4165     return -1;
4166   }
4167 
4168   // Save signal flag
4169   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4170   return 0;
4171 }
4172 
4173 static int sr_notify(OSThread* osthread) {
4174   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4175   assert_status(status == 0, status, "pthread_kill");
4176   return status;
4177 }
4178 
4179 // "Randomly" selected value for how long we want to spin
4180 // before bailing out on suspending a thread, also how often
4181 // we send a signal to a thread we want to resume
4182 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4183 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4184 
4185 // returns true on success and false on error - really an error is fatal
4186 // but this seems the normal response to library errors
4187 static bool do_suspend(OSThread* osthread) {
4188   assert(osthread->sr.is_running(), "thread should be running");
4189   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4190 
4191   // mark as suspended and send signal
4192   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4193     // failed to switch, state wasn't running?
4194     ShouldNotReachHere();
4195     return false;
4196   }
4197 
4198   if (sr_notify(osthread) != 0) {
4199     ShouldNotReachHere();
4200   }
4201 
4202   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4203   while (true) {
4204     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4205       break;
4206     } else {
4207       // timeout
4208       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4209       if (cancelled == os::SuspendResume::SR_RUNNING) {
4210         return false;
4211       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4212         // make sure that we consume the signal on the semaphore as well
4213         sr_semaphore.wait();
4214         break;
4215       } else {
4216         ShouldNotReachHere();
4217         return false;
4218       }
4219     }
4220   }
4221 
4222   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4223   return true;
4224 }
4225 
4226 static void do_resume(OSThread* osthread) {
4227   assert(osthread->sr.is_suspended(), "thread should be suspended");
4228   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4229 
4230   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4231     // failed to switch to WAKEUP_REQUEST
4232     ShouldNotReachHere();
4233     return;
4234   }
4235 
4236   while (true) {
4237     if (sr_notify(osthread) == 0) {
4238       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4239         if (osthread->sr.is_running()) {
4240           return;
4241         }
4242       }
4243     } else {
4244       ShouldNotReachHere();
4245     }
4246   }
4247 
4248   guarantee(osthread->sr.is_running(), "Must be running!");
4249 }
4250 
4251 ////////////////////////////////////////////////////////////////////////////////
4252 // interrupt support
4253 
4254 void os::interrupt(Thread* thread) {
4255   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4256     "possibility of dangling Thread pointer");
4257 
4258   OSThread* osthread = thread->osthread();
4259 
4260   if (!osthread->interrupted()) {
4261     osthread->set_interrupted(true);
4262     // More than one thread can get here with the same value of osthread,
4263     // resulting in multiple notifications.  We do, however, want the store
4264     // to interrupted() to be visible to other threads before we execute unpark().
4265     OrderAccess::fence();
4266     ParkEvent * const slp = thread->_SleepEvent ;
4267     if (slp != NULL) slp->unpark() ;
4268   }
4269 
4270   // For JSR166. Unpark even if interrupt status already was set
4271   if (thread->is_Java_thread())
4272     ((JavaThread*)thread)->parker()->unpark();
4273 
4274   ParkEvent * ev = thread->_ParkEvent ;
4275   if (ev != NULL) ev->unpark() ;
4276 
4277 }
4278 
4279 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4280   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4281     "possibility of dangling Thread pointer");
4282 
4283   OSThread* osthread = thread->osthread();
4284 
4285   bool interrupted = osthread->interrupted();
4286 
4287   if (interrupted && clear_interrupted) {
4288     osthread->set_interrupted(false);
4289     // consider thread->_SleepEvent->reset() ... optional optimization
4290   }
4291 
4292   return interrupted;
4293 }
4294 
4295 ///////////////////////////////////////////////////////////////////////////////////
4296 // signal handling (except suspend/resume)
4297 
4298 // This routine may be used by user applications as a "hook" to catch signals.
4299 // The user-defined signal handler must pass unrecognized signals to this
4300 // routine, and if it returns true (non-zero), then the signal handler must
4301 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4302 // routine will never retun false (zero), but instead will execute a VM panic
4303 // routine kill the process.
4304 //
4305 // If this routine returns false, it is OK to call it again.  This allows
4306 // the user-defined signal handler to perform checks either before or after
4307 // the VM performs its own checks.  Naturally, the user code would be making
4308 // a serious error if it tried to handle an exception (such as a null check
4309 // or breakpoint) that the VM was generating for its own correct operation.
4310 //
4311 // This routine may recognize any of the following kinds of signals:
4312 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4313 // It should be consulted by handlers for any of those signals.
4314 //
4315 // The caller of this routine must pass in the three arguments supplied
4316 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4317 // field of the structure passed to sigaction().  This routine assumes that
4318 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4319 //
4320 // Note that the VM will print warnings if it detects conflicting signal
4321 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4322 //
4323 extern "C" JNIEXPORT int
4324 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4325                         void* ucontext, int abort_if_unrecognized);
4326 
4327 void signalHandler(int sig, siginfo_t* info, void* uc) {
4328   assert(info != NULL && uc != NULL, "it must be old kernel");
4329   int orig_errno = errno;  // Preserve errno value over signal handler.
4330   JVM_handle_linux_signal(sig, info, uc, true);
4331   errno = orig_errno;
4332 }
4333 
4334 
4335 // This boolean allows users to forward their own non-matching signals
4336 // to JVM_handle_linux_signal, harmlessly.
4337 bool os::Linux::signal_handlers_are_installed = false;
4338 
4339 // For signal-chaining
4340 struct sigaction os::Linux::sigact[MAXSIGNUM];
4341 unsigned int os::Linux::sigs = 0;
4342 bool os::Linux::libjsig_is_loaded = false;
4343 typedef struct sigaction *(*get_signal_t)(int);
4344 get_signal_t os::Linux::get_signal_action = NULL;
4345 
4346 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4347   struct sigaction *actp = NULL;
4348 
4349   if (libjsig_is_loaded) {
4350     // Retrieve the old signal handler from libjsig
4351     actp = (*get_signal_action)(sig);
4352   }
4353   if (actp == NULL) {
4354     // Retrieve the preinstalled signal handler from jvm
4355     actp = get_preinstalled_handler(sig);
4356   }
4357 
4358   return actp;
4359 }
4360 
4361 static bool call_chained_handler(struct sigaction *actp, int sig,
4362                                  siginfo_t *siginfo, void *context) {
4363   // Call the old signal handler
4364   if (actp->sa_handler == SIG_DFL) {
4365     // It's more reasonable to let jvm treat it as an unexpected exception
4366     // instead of taking the default action.
4367     return false;
4368   } else if (actp->sa_handler != SIG_IGN) {
4369     if ((actp->sa_flags & SA_NODEFER) == 0) {
4370       // automaticlly block the signal
4371       sigaddset(&(actp->sa_mask), sig);
4372     }
4373 
4374     sa_handler_t hand = NULL;
4375     sa_sigaction_t sa = NULL;
4376     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4377     // retrieve the chained handler
4378     if (siginfo_flag_set) {
4379       sa = actp->sa_sigaction;
4380     } else {
4381       hand = actp->sa_handler;
4382     }
4383 
4384     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4385       actp->sa_handler = SIG_DFL;
4386     }
4387 
4388     // try to honor the signal mask
4389     sigset_t oset;
4390     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4391 
4392     // call into the chained handler
4393     if (siginfo_flag_set) {
4394       (*sa)(sig, siginfo, context);
4395     } else {
4396       (*hand)(sig);
4397     }
4398 
4399     // restore the signal mask
4400     pthread_sigmask(SIG_SETMASK, &oset, 0);
4401   }
4402   // Tell jvm's signal handler the signal is taken care of.
4403   return true;
4404 }
4405 
4406 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4407   bool chained = false;
4408   // signal-chaining
4409   if (UseSignalChaining) {
4410     struct sigaction *actp = get_chained_signal_action(sig);
4411     if (actp != NULL) {
4412       chained = call_chained_handler(actp, sig, siginfo, context);
4413     }
4414   }
4415   return chained;
4416 }
4417 
4418 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4419   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4420     return &sigact[sig];
4421   }
4422   return NULL;
4423 }
4424 
4425 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4426   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4427   sigact[sig] = oldAct;
4428   sigs |= (unsigned int)1 << sig;
4429 }
4430 
4431 // for diagnostic
4432 int os::Linux::sigflags[MAXSIGNUM];
4433 
4434 int os::Linux::get_our_sigflags(int sig) {
4435   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4436   return sigflags[sig];
4437 }
4438 
4439 void os::Linux::set_our_sigflags(int sig, int flags) {
4440   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4441   sigflags[sig] = flags;
4442 }
4443 
4444 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4445   // Check for overwrite.
4446   struct sigaction oldAct;
4447   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4448 
4449   void* oldhand = oldAct.sa_sigaction
4450                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4451                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4452   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4453       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4454       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4455     if (AllowUserSignalHandlers || !set_installed) {
4456       // Do not overwrite; user takes responsibility to forward to us.
4457       return;
4458     } else if (UseSignalChaining) {
4459       // save the old handler in jvm
4460       save_preinstalled_handler(sig, oldAct);
4461       // libjsig also interposes the sigaction() call below and saves the
4462       // old sigaction on it own.
4463     } else {
4464       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4465                     "%#lx for signal %d.", (long)oldhand, sig));
4466     }
4467   }
4468 
4469   struct sigaction sigAct;
4470   sigfillset(&(sigAct.sa_mask));
4471   sigAct.sa_handler = SIG_DFL;
4472   if (!set_installed) {
4473     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4474   } else {
4475     sigAct.sa_sigaction = signalHandler;
4476     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4477   }
4478   // Save flags, which are set by ours
4479   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4480   sigflags[sig] = sigAct.sa_flags;
4481 
4482   int ret = sigaction(sig, &sigAct, &oldAct);
4483   assert(ret == 0, "check");
4484 
4485   void* oldhand2  = oldAct.sa_sigaction
4486                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4487                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4488   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4489 }
4490 
4491 // install signal handlers for signals that HotSpot needs to
4492 // handle in order to support Java-level exception handling.
4493 
4494 void os::Linux::install_signal_handlers() {
4495   if (!signal_handlers_are_installed) {
4496     signal_handlers_are_installed = true;
4497 
4498     // signal-chaining
4499     typedef void (*signal_setting_t)();
4500     signal_setting_t begin_signal_setting = NULL;
4501     signal_setting_t end_signal_setting = NULL;
4502     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4503                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4504     if (begin_signal_setting != NULL) {
4505       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4506                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4507       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4508                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4509       libjsig_is_loaded = true;
4510       assert(UseSignalChaining, "should enable signal-chaining");
4511     }
4512     if (libjsig_is_loaded) {
4513       // Tell libjsig jvm is setting signal handlers
4514       (*begin_signal_setting)();
4515     }
4516 
4517     set_signal_handler(SIGSEGV, true);
4518     set_signal_handler(SIGPIPE, true);
4519     set_signal_handler(SIGBUS, true);
4520     set_signal_handler(SIGILL, true);
4521     set_signal_handler(SIGFPE, true);
4522 #if defined(PPC64)
4523     set_signal_handler(SIGTRAP, true);
4524 #endif
4525     set_signal_handler(SIGXFSZ, true);
4526 
4527     if (libjsig_is_loaded) {
4528       // Tell libjsig jvm finishes setting signal handlers
4529       (*end_signal_setting)();
4530     }
4531 
4532     // We don't activate signal checker if libjsig is in place, we trust ourselves
4533     // and if UserSignalHandler is installed all bets are off.
4534     // Log that signal checking is off only if -verbose:jni is specified.
4535     if (CheckJNICalls) {
4536       if (libjsig_is_loaded) {
4537         if (PrintJNIResolving) {
4538           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4539         }
4540         check_signals = false;
4541       }
4542       if (AllowUserSignalHandlers) {
4543         if (PrintJNIResolving) {
4544           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4545         }
4546         check_signals = false;
4547       }
4548     }
4549   }
4550 }
4551 
4552 // This is the fastest way to get thread cpu time on Linux.
4553 // Returns cpu time (user+sys) for any thread, not only for current.
4554 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4555 // It might work on 2.6.10+ with a special kernel/glibc patch.
4556 // For reference, please, see IEEE Std 1003.1-2004:
4557 //   http://www.unix.org/single_unix_specification
4558 
4559 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4560   struct timespec tp;
4561   int rc = os::Linux::clock_gettime(clockid, &tp);
4562   assert(rc == 0, "clock_gettime is expected to return 0 code");
4563 
4564   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4565 }
4566 
4567 /////
4568 // glibc on Linux platform uses non-documented flag
4569 // to indicate, that some special sort of signal
4570 // trampoline is used.
4571 // We will never set this flag, and we should
4572 // ignore this flag in our diagnostic
4573 #ifdef SIGNIFICANT_SIGNAL_MASK
4574 #undef SIGNIFICANT_SIGNAL_MASK
4575 #endif
4576 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4577 
4578 static const char* get_signal_handler_name(address handler,
4579                                            char* buf, int buflen) {
4580   int offset = 0;
4581   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4582   if (found) {
4583     // skip directory names
4584     const char *p1, *p2;
4585     p1 = buf;
4586     size_t len = strlen(os::file_separator());
4587     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4588     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4589   } else {
4590     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4591   }
4592   return buf;
4593 }
4594 
4595 static void print_signal_handler(outputStream* st, int sig,
4596                                  char* buf, size_t buflen) {
4597   struct sigaction sa;
4598 
4599   sigaction(sig, NULL, &sa);
4600 
4601   // See comment for SIGNIFICANT_SIGNAL_MASK define
4602   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4603 
4604   st->print("%s: ", os::exception_name(sig, buf, buflen));
4605 
4606   address handler = (sa.sa_flags & SA_SIGINFO)
4607     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4608     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4609 
4610   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4611     st->print("SIG_DFL");
4612   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4613     st->print("SIG_IGN");
4614   } else {
4615     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4616   }
4617 
4618   st->print(", sa_mask[0]=");
4619   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4620 
4621   address rh = VMError::get_resetted_sighandler(sig);
4622   // May be, handler was resetted by VMError?
4623   if(rh != NULL) {
4624     handler = rh;
4625     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4626   }
4627 
4628   st->print(", sa_flags=");
4629   os::Posix::print_sa_flags(st, sa.sa_flags);
4630 
4631   // Check: is it our handler?
4632   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4633      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4634     // It is our signal handler
4635     // check for flags, reset system-used one!
4636     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4637       st->print(
4638                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4639                 os::Linux::get_our_sigflags(sig));
4640     }
4641   }
4642   st->cr();
4643 }
4644 
4645 
4646 #define DO_SIGNAL_CHECK(sig) \
4647   if (!sigismember(&check_signal_done, sig)) \
4648     os::Linux::check_signal_handler(sig)
4649 
4650 // This method is a periodic task to check for misbehaving JNI applications
4651 // under CheckJNI, we can add any periodic checks here
4652 
4653 void os::run_periodic_checks() {
4654 
4655   if (check_signals == false) return;
4656 
4657   // SEGV and BUS if overridden could potentially prevent
4658   // generation of hs*.log in the event of a crash, debugging
4659   // such a case can be very challenging, so we absolutely
4660   // check the following for a good measure:
4661   DO_SIGNAL_CHECK(SIGSEGV);
4662   DO_SIGNAL_CHECK(SIGILL);
4663   DO_SIGNAL_CHECK(SIGFPE);
4664   DO_SIGNAL_CHECK(SIGBUS);
4665   DO_SIGNAL_CHECK(SIGPIPE);
4666   DO_SIGNAL_CHECK(SIGXFSZ);
4667 #if defined(PPC64)
4668   DO_SIGNAL_CHECK(SIGTRAP);
4669 #endif
4670 
4671   // ReduceSignalUsage allows the user to override these handlers
4672   // see comments at the very top and jvm_solaris.h
4673   if (!ReduceSignalUsage) {
4674     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4675     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4676     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4677     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4678   }
4679 
4680   DO_SIGNAL_CHECK(SR_signum);
4681   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4682 }
4683 
4684 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4685 
4686 static os_sigaction_t os_sigaction = NULL;
4687 
4688 void os::Linux::check_signal_handler(int sig) {
4689   char buf[O_BUFLEN];
4690   address jvmHandler = NULL;
4691 
4692 
4693   struct sigaction act;
4694   if (os_sigaction == NULL) {
4695     // only trust the default sigaction, in case it has been interposed
4696     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4697     if (os_sigaction == NULL) return;
4698   }
4699 
4700   os_sigaction(sig, (struct sigaction*)NULL, &act);
4701 
4702 
4703   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4704 
4705   address thisHandler = (act.sa_flags & SA_SIGINFO)
4706     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4707     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4708 
4709 
4710   switch(sig) {
4711   case SIGSEGV:
4712   case SIGBUS:
4713   case SIGFPE:
4714   case SIGPIPE:
4715   case SIGILL:
4716   case SIGXFSZ:
4717     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4718     break;
4719 
4720   case SHUTDOWN1_SIGNAL:
4721   case SHUTDOWN2_SIGNAL:
4722   case SHUTDOWN3_SIGNAL:
4723   case BREAK_SIGNAL:
4724     jvmHandler = (address)user_handler();
4725     break;
4726 
4727   case INTERRUPT_SIGNAL:
4728     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4729     break;
4730 
4731   default:
4732     if (sig == SR_signum) {
4733       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4734     } else {
4735       return;
4736     }
4737     break;
4738   }
4739 
4740   if (thisHandler != jvmHandler) {
4741     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4742     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4743     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4744     // No need to check this sig any longer
4745     sigaddset(&check_signal_done, sig);
4746     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4747     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4748       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4749                     exception_name(sig, buf, O_BUFLEN));
4750     }
4751   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4752     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4753     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4754     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4755     // No need to check this sig any longer
4756     sigaddset(&check_signal_done, sig);
4757   }
4758 
4759   // Dump all the signal
4760   if (sigismember(&check_signal_done, sig)) {
4761     print_signal_handlers(tty, buf, O_BUFLEN);
4762   }
4763 }
4764 
4765 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4766 
4767 extern bool signal_name(int signo, char* buf, size_t len);
4768 
4769 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4770   if (0 < exception_code && exception_code <= SIGRTMAX) {
4771     // signal
4772     if (!signal_name(exception_code, buf, size)) {
4773       jio_snprintf(buf, size, "SIG%d", exception_code);
4774     }
4775     return buf;
4776   } else {
4777     return NULL;
4778   }
4779 }
4780 
4781 // this is called _before_ the most of global arguments have been parsed
4782 void os::init(void) {
4783   char dummy;   /* used to get a guess on initial stack address */
4784 //  first_hrtime = gethrtime();
4785 
4786   // With LinuxThreads the JavaMain thread pid (primordial thread)
4787   // is different than the pid of the java launcher thread.
4788   // So, on Linux, the launcher thread pid is passed to the VM
4789   // via the sun.java.launcher.pid property.
4790   // Use this property instead of getpid() if it was correctly passed.
4791   // See bug 6351349.
4792   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4793 
4794   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4795 
4796   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4797 
4798   init_random(1234567);
4799 
4800   ThreadCritical::initialize();
4801 
4802   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4803   if (Linux::page_size() == -1) {
4804     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4805                   strerror(errno)));
4806   }
4807   init_page_sizes((size_t) Linux::page_size());
4808 
4809   Linux::initialize_system_info();
4810 
4811   // main_thread points to the aboriginal thread
4812   Linux::_main_thread = pthread_self();
4813 
4814   Linux::clock_init();
4815   initial_time_count = javaTimeNanos();
4816 
4817   // pthread_condattr initialization for monotonic clock
4818   int status;
4819   pthread_condattr_t* _condattr = os::Linux::condAttr();
4820   if ((status = pthread_condattr_init(_condattr)) != 0) {
4821     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4822   }
4823   // Only set the clock if CLOCK_MONOTONIC is available
4824   if (Linux::supports_monotonic_clock()) {
4825     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4826       if (status == EINVAL) {
4827         warning("Unable to use monotonic clock with relative timed-waits" \
4828                 " - changes to the time-of-day clock may have adverse affects");
4829       } else {
4830         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4831       }
4832     }
4833   }
4834   // else it defaults to CLOCK_REALTIME
4835 
4836   pthread_mutex_init(&dl_mutex, NULL);
4837 
4838   // If the pagesize of the VM is greater than 8K determine the appropriate
4839   // number of initial guard pages.  The user can change this with the
4840   // command line arguments, if needed.
4841   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4842     StackYellowPages = 1;
4843     StackRedPages = 1;
4844     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4845   }
4846 }
4847 
4848 // To install functions for atexit system call
4849 extern "C" {
4850   static void perfMemory_exit_helper() {
4851     perfMemory_exit();
4852   }
4853 }
4854 
4855 // this is called _after_ the global arguments have been parsed
4856 jint os::init_2(void)
4857 {
4858   Linux::fast_thread_clock_init();
4859 
4860   // Allocate a single page and mark it as readable for safepoint polling
4861   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4862   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4863 
4864   os::set_polling_page( polling_page );
4865 
4866 #ifndef PRODUCT
4867   if(Verbose && PrintMiscellaneous)
4868     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4869 #endif
4870 
4871   if (!UseMembar) {
4872     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4873     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4874     os::set_memory_serialize_page( mem_serialize_page );
4875 
4876 #ifndef PRODUCT
4877     if(Verbose && PrintMiscellaneous)
4878       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4879 #endif
4880   }
4881 
4882   // initialize suspend/resume support - must do this before signal_sets_init()
4883   if (SR_initialize() != 0) {
4884     perror("SR_initialize failed");
4885     return JNI_ERR;
4886   }
4887 
4888   Linux::signal_sets_init();
4889   Linux::install_signal_handlers();
4890 
4891   // Check minimum allowable stack size for thread creation and to initialize
4892   // the java system classes, including StackOverflowError - depends on page
4893   // size.  Add a page for compiler2 recursion in main thread.
4894   // Add in 2*BytesPerWord times page size to account for VM stack during
4895   // class initialization depending on 32 or 64 bit VM.
4896   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4897             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4898                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4899 
4900   size_t threadStackSizeInBytes = ThreadStackSize * K;
4901   if (threadStackSizeInBytes != 0 &&
4902       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4903         tty->print_cr("\nThe stack size specified is too small, "
4904                       "Specify at least %dk",
4905                       os::Linux::min_stack_allowed/ K);
4906         return JNI_ERR;
4907   }
4908 
4909   // Make the stack size a multiple of the page size so that
4910   // the yellow/red zones can be guarded.
4911   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4912         vm_page_size()));
4913 
4914   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4915 
4916 #if defined(IA32)
4917   workaround_expand_exec_shield_cs_limit();
4918 #endif
4919 
4920   Linux::libpthread_init();
4921   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4922      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4923           Linux::glibc_version(), Linux::libpthread_version(),
4924           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4925   }
4926 
4927   if (UseNUMA) {
4928     if (!Linux::libnuma_init()) {
4929       UseNUMA = false;
4930     } else {
4931       if ((Linux::numa_max_node() < 1)) {
4932         // There's only one node(they start from 0), disable NUMA.
4933         UseNUMA = false;
4934       }
4935     }
4936     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4937     // we can make the adaptive lgrp chunk resizing work. If the user specified
4938     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4939     // disable adaptive resizing.
4940     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4941       if (FLAG_IS_DEFAULT(UseNUMA)) {
4942         UseNUMA = false;
4943       } else {
4944         if (FLAG_IS_DEFAULT(UseLargePages) &&
4945             FLAG_IS_DEFAULT(UseSHM) &&
4946             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4947           UseLargePages = false;
4948         } else {
4949           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4950           UseAdaptiveSizePolicy = false;
4951           UseAdaptiveNUMAChunkSizing = false;
4952         }
4953       }
4954     }
4955     if (!UseNUMA && ForceNUMA) {
4956       UseNUMA = true;
4957     }
4958   }
4959 
4960   if (MaxFDLimit) {
4961     // set the number of file descriptors to max. print out error
4962     // if getrlimit/setrlimit fails but continue regardless.
4963     struct rlimit nbr_files;
4964     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4965     if (status != 0) {
4966       if (PrintMiscellaneous && (Verbose || WizardMode))
4967         perror("os::init_2 getrlimit failed");
4968     } else {
4969       nbr_files.rlim_cur = nbr_files.rlim_max;
4970       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4971       if (status != 0) {
4972         if (PrintMiscellaneous && (Verbose || WizardMode))
4973           perror("os::init_2 setrlimit failed");
4974       }
4975     }
4976   }
4977 
4978   // Initialize lock used to serialize thread creation (see os::create_thread)
4979   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4980 
4981   // at-exit methods are called in the reverse order of their registration.
4982   // atexit functions are called on return from main or as a result of a
4983   // call to exit(3C). There can be only 32 of these functions registered
4984   // and atexit() does not set errno.
4985 
4986   if (PerfAllowAtExitRegistration) {
4987     // only register atexit functions if PerfAllowAtExitRegistration is set.
4988     // atexit functions can be delayed until process exit time, which
4989     // can be problematic for embedded VM situations. Embedded VMs should
4990     // call DestroyJavaVM() to assure that VM resources are released.
4991 
4992     // note: perfMemory_exit_helper atexit function may be removed in
4993     // the future if the appropriate cleanup code can be added to the
4994     // VM_Exit VMOperation's doit method.
4995     if (atexit(perfMemory_exit_helper) != 0) {
4996       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4997     }
4998   }
4999 
5000   // initialize thread priority policy
5001   prio_init();
5002 
5003   return JNI_OK;
5004 }
5005 
5006 // Mark the polling page as unreadable
5007 void os::make_polling_page_unreadable(void) {
5008   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
5009     fatal("Could not disable polling page");
5010 };
5011 
5012 // Mark the polling page as readable
5013 void os::make_polling_page_readable(void) {
5014   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5015     fatal("Could not enable polling page");
5016   }
5017 };
5018 
5019 int os::active_processor_count() {
5020   // Linux doesn't yet have a (official) notion of processor sets,
5021   // so just return the number of online processors.
5022   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5023   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
5024   return online_cpus;
5025 }
5026 
5027 void os::set_native_thread_name(const char *name) {
5028   // Not yet implemented.
5029   return;
5030 }
5031 
5032 bool os::distribute_processes(uint length, uint* distribution) {
5033   // Not yet implemented.
5034   return false;
5035 }
5036 
5037 bool os::bind_to_processor(uint processor_id) {
5038   // Not yet implemented.
5039   return false;
5040 }
5041 
5042 ///
5043 
5044 void os::SuspendedThreadTask::internal_do_task() {
5045   if (do_suspend(_thread->osthread())) {
5046     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5047     do_task(context);
5048     do_resume(_thread->osthread());
5049   }
5050 }
5051 
5052 class PcFetcher : public os::SuspendedThreadTask {
5053 public:
5054   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5055   ExtendedPC result();
5056 protected:
5057   void do_task(const os::SuspendedThreadTaskContext& context);
5058 private:
5059   ExtendedPC _epc;
5060 };
5061 
5062 ExtendedPC PcFetcher::result() {
5063   guarantee(is_done(), "task is not done yet.");
5064   return _epc;
5065 }
5066 
5067 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5068   Thread* thread = context.thread();
5069   OSThread* osthread = thread->osthread();
5070   if (osthread->ucontext() != NULL) {
5071     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5072   } else {
5073     // NULL context is unexpected, double-check this is the VMThread
5074     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5075   }
5076 }
5077 
5078 // Suspends the target using the signal mechanism and then grabs the PC before
5079 // resuming the target. Used by the flat-profiler only
5080 ExtendedPC os::get_thread_pc(Thread* thread) {
5081   // Make sure that it is called by the watcher for the VMThread
5082   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5083   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5084 
5085   PcFetcher fetcher(thread);
5086   fetcher.run();
5087   return fetcher.result();
5088 }
5089 
5090 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5091 {
5092    if (is_NPTL()) {
5093       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5094    } else {
5095       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5096       // word back to default 64bit precision if condvar is signaled. Java
5097       // wants 53bit precision.  Save and restore current value.
5098       int fpu = get_fpu_control_word();
5099       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5100       set_fpu_control_word(fpu);
5101       return status;
5102    }
5103 }
5104 
5105 ////////////////////////////////////////////////////////////////////////////////
5106 // debug support
5107 
5108 bool os::find(address addr, outputStream* st) {
5109   Dl_info dlinfo;
5110   memset(&dlinfo, 0, sizeof(dlinfo));
5111   if (dladdr(addr, &dlinfo) != 0) {
5112     st->print(PTR_FORMAT ": ", addr);
5113     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5114       st->print("%s+%#x", dlinfo.dli_sname,
5115                  addr - (intptr_t)dlinfo.dli_saddr);
5116     } else if (dlinfo.dli_fbase != NULL) {
5117       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5118     } else {
5119       st->print("<absolute address>");
5120     }
5121     if (dlinfo.dli_fname != NULL) {
5122       st->print(" in %s", dlinfo.dli_fname);
5123     }
5124     if (dlinfo.dli_fbase != NULL) {
5125       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5126     }
5127     st->cr();
5128 
5129     if (Verbose) {
5130       // decode some bytes around the PC
5131       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5132       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5133       address       lowest = (address) dlinfo.dli_sname;
5134       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5135       if (begin < lowest)  begin = lowest;
5136       Dl_info dlinfo2;
5137       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5138           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5139         end = (address) dlinfo2.dli_saddr;
5140       Disassembler::decode(begin, end, st);
5141     }
5142     return true;
5143   }
5144   return false;
5145 }
5146 
5147 ////////////////////////////////////////////////////////////////////////////////
5148 // misc
5149 
5150 // This does not do anything on Linux. This is basically a hook for being
5151 // able to use structured exception handling (thread-local exception filters)
5152 // on, e.g., Win32.
5153 void
5154 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5155                          JavaCallArguments* args, Thread* thread) {
5156   f(value, method, args, thread);
5157 }
5158 
5159 void os::print_statistics() {
5160 }
5161 
5162 int os::message_box(const char* title, const char* message) {
5163   int i;
5164   fdStream err(defaultStream::error_fd());
5165   for (i = 0; i < 78; i++) err.print_raw("=");
5166   err.cr();
5167   err.print_raw_cr(title);
5168   for (i = 0; i < 78; i++) err.print_raw("-");
5169   err.cr();
5170   err.print_raw_cr(message);
5171   for (i = 0; i < 78; i++) err.print_raw("=");
5172   err.cr();
5173 
5174   char buf[16];
5175   // Prevent process from exiting upon "read error" without consuming all CPU
5176   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5177 
5178   return buf[0] == 'y' || buf[0] == 'Y';
5179 }
5180 
5181 int os::stat(const char *path, struct stat *sbuf) {
5182   char pathbuf[MAX_PATH];
5183   if (strlen(path) > MAX_PATH - 1) {
5184     errno = ENAMETOOLONG;
5185     return -1;
5186   }
5187   os::native_path(strcpy(pathbuf, path));
5188   return ::stat(pathbuf, sbuf);
5189 }
5190 
5191 bool os::check_heap(bool force) {
5192   return true;
5193 }
5194 
5195 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5196   return ::vsnprintf(buf, count, format, args);
5197 }
5198 
5199 // Is a (classpath) directory empty?
5200 bool os::dir_is_empty(const char* path) {
5201   DIR *dir = NULL;
5202   struct dirent *ptr;
5203 
5204   dir = opendir(path);
5205   if (dir == NULL) return true;
5206 
5207   /* Scan the directory */
5208   bool result = true;
5209   char buf[sizeof(struct dirent) + MAX_PATH];
5210   while (result && (ptr = ::readdir(dir)) != NULL) {
5211     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5212       result = false;
5213     }
5214   }
5215   closedir(dir);
5216   return result;
5217 }
5218 
5219 // This code originates from JDK's sysOpen and open64_w
5220 // from src/solaris/hpi/src/system_md.c
5221 
5222 #ifndef O_DELETE
5223 #define O_DELETE 0x10000
5224 #endif
5225 
5226 // Open a file. Unlink the file immediately after open returns
5227 // if the specified oflag has the O_DELETE flag set.
5228 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5229 
5230 int os::open(const char *path, int oflag, int mode) {
5231 
5232   if (strlen(path) > MAX_PATH - 1) {
5233     errno = ENAMETOOLONG;
5234     return -1;
5235   }
5236   int fd;
5237   int o_delete = (oflag & O_DELETE);
5238   oflag = oflag & ~O_DELETE;
5239 
5240   fd = ::open64(path, oflag, mode);
5241   if (fd == -1) return -1;
5242 
5243   //If the open succeeded, the file might still be a directory
5244   {
5245     struct stat64 buf64;
5246     int ret = ::fstat64(fd, &buf64);
5247     int st_mode = buf64.st_mode;
5248 
5249     if (ret != -1) {
5250       if ((st_mode & S_IFMT) == S_IFDIR) {
5251         errno = EISDIR;
5252         ::close(fd);
5253         return -1;
5254       }
5255     } else {
5256       ::close(fd);
5257       return -1;
5258     }
5259   }
5260 
5261     /*
5262      * All file descriptors that are opened in the JVM and not
5263      * specifically destined for a subprocess should have the
5264      * close-on-exec flag set.  If we don't set it, then careless 3rd
5265      * party native code might fork and exec without closing all
5266      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5267      * UNIXProcess.c), and this in turn might:
5268      *
5269      * - cause end-of-file to fail to be detected on some file
5270      *   descriptors, resulting in mysterious hangs, or
5271      *
5272      * - might cause an fopen in the subprocess to fail on a system
5273      *   suffering from bug 1085341.
5274      *
5275      * (Yes, the default setting of the close-on-exec flag is a Unix
5276      * design flaw)
5277      *
5278      * See:
5279      * 1085341: 32-bit stdio routines should support file descriptors >255
5280      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5281      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5282      */
5283 #ifdef FD_CLOEXEC
5284     {
5285         int flags = ::fcntl(fd, F_GETFD);
5286         if (flags != -1)
5287             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5288     }
5289 #endif
5290 
5291   if (o_delete != 0) {
5292     ::unlink(path);
5293   }
5294   return fd;
5295 }
5296 
5297 
5298 // create binary file, rewriting existing file if required
5299 int os::create_binary_file(const char* path, bool rewrite_existing) {
5300   int oflags = O_WRONLY | O_CREAT;
5301   if (!rewrite_existing) {
5302     oflags |= O_EXCL;
5303   }
5304   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5305 }
5306 
5307 // return current position of file pointer
5308 jlong os::current_file_offset(int fd) {
5309   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5310 }
5311 
5312 // move file pointer to the specified offset
5313 jlong os::seek_to_file_offset(int fd, jlong offset) {
5314   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5315 }
5316 
5317 // This code originates from JDK's sysAvailable
5318 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5319 
5320 int os::available(int fd, jlong *bytes) {
5321   jlong cur, end;
5322   int mode;
5323   struct stat64 buf64;
5324 
5325   if (::fstat64(fd, &buf64) >= 0) {
5326     mode = buf64.st_mode;
5327     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5328       /*
5329       * XXX: is the following call interruptible? If so, this might
5330       * need to go through the INTERRUPT_IO() wrapper as for other
5331       * blocking, interruptible calls in this file.
5332       */
5333       int n;
5334       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5335         *bytes = n;
5336         return 1;
5337       }
5338     }
5339   }
5340   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5341     return 0;
5342   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5343     return 0;
5344   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5345     return 0;
5346   }
5347   *bytes = end - cur;
5348   return 1;
5349 }
5350 
5351 int os::socket_available(int fd, jint *pbytes) {
5352   // Linux doc says EINTR not returned, unlike Solaris
5353   int ret = ::ioctl(fd, FIONREAD, pbytes);
5354 
5355   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5356   // is expected to return 0 on failure and 1 on success to the jdk.
5357   return (ret < 0) ? 0 : 1;
5358 }
5359 
5360 // Map a block of memory.
5361 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5362                      char *addr, size_t bytes, bool read_only,
5363                      bool allow_exec) {
5364   int prot;
5365   int flags = MAP_PRIVATE;
5366 
5367   if (read_only) {
5368     prot = PROT_READ;
5369   } else {
5370     prot = PROT_READ | PROT_WRITE;
5371   }
5372 
5373   if (allow_exec) {
5374     prot |= PROT_EXEC;
5375   }
5376 
5377   if (addr != NULL) {
5378     flags |= MAP_FIXED;
5379   }
5380 
5381   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5382                                      fd, file_offset);
5383   if (mapped_address == MAP_FAILED) {
5384     return NULL;
5385   }
5386   return mapped_address;
5387 }
5388 
5389 
5390 // Remap a block of memory.
5391 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5392                        char *addr, size_t bytes, bool read_only,
5393                        bool allow_exec) {
5394   // same as map_memory() on this OS
5395   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5396                         allow_exec);
5397 }
5398 
5399 
5400 // Unmap a block of memory.
5401 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5402   return munmap(addr, bytes) == 0;
5403 }
5404 
5405 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5406 
5407 static clockid_t thread_cpu_clockid(Thread* thread) {
5408   pthread_t tid = thread->osthread()->pthread_id();
5409   clockid_t clockid;
5410 
5411   // Get thread clockid
5412   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5413   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5414   return clockid;
5415 }
5416 
5417 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5418 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5419 // of a thread.
5420 //
5421 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5422 // the fast estimate available on the platform.
5423 
5424 jlong os::current_thread_cpu_time() {
5425   if (os::Linux::supports_fast_thread_cpu_time()) {
5426     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5427   } else {
5428     // return user + sys since the cost is the same
5429     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5430   }
5431 }
5432 
5433 jlong os::thread_cpu_time(Thread* thread) {
5434   // consistent with what current_thread_cpu_time() returns
5435   if (os::Linux::supports_fast_thread_cpu_time()) {
5436     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5437   } else {
5438     return slow_thread_cpu_time(thread, true /* user + sys */);
5439   }
5440 }
5441 
5442 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5443   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5444     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5445   } else {
5446     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5447   }
5448 }
5449 
5450 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5451   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5452     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5453   } else {
5454     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5455   }
5456 }
5457 
5458 //
5459 //  -1 on error.
5460 //
5461 
5462 PRAGMA_DIAG_PUSH
5463 PRAGMA_FORMAT_NONLITERAL_IGNORED
5464 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5465   static bool proc_task_unchecked = true;
5466   static const char *proc_stat_path = "/proc/%d/stat";
5467   pid_t  tid = thread->osthread()->thread_id();
5468   char *s;
5469   char stat[2048];
5470   int statlen;
5471   char proc_name[64];
5472   int count;
5473   long sys_time, user_time;
5474   char cdummy;
5475   int idummy;
5476   long ldummy;
5477   FILE *fp;
5478 
5479   // The /proc/<tid>/stat aggregates per-process usage on
5480   // new Linux kernels 2.6+ where NPTL is supported.
5481   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5482   // See bug 6328462.
5483   // There possibly can be cases where there is no directory
5484   // /proc/self/task, so we check its availability.
5485   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5486     // This is executed only once
5487     proc_task_unchecked = false;
5488     fp = fopen("/proc/self/task", "r");
5489     if (fp != NULL) {
5490       proc_stat_path = "/proc/self/task/%d/stat";
5491       fclose(fp);
5492     }
5493   }
5494 
5495   sprintf(proc_name, proc_stat_path, tid);
5496   fp = fopen(proc_name, "r");
5497   if ( fp == NULL ) return -1;
5498   statlen = fread(stat, 1, 2047, fp);
5499   stat[statlen] = '\0';
5500   fclose(fp);
5501 
5502   // Skip pid and the command string. Note that we could be dealing with
5503   // weird command names, e.g. user could decide to rename java launcher
5504   // to "java 1.4.2 :)", then the stat file would look like
5505   //                1234 (java 1.4.2 :)) R ... ...
5506   // We don't really need to know the command string, just find the last
5507   // occurrence of ")" and then start parsing from there. See bug 4726580.
5508   s = strrchr(stat, ')');
5509   if (s == NULL ) return -1;
5510 
5511   // Skip blank chars
5512   do s++; while (isspace(*s));
5513 
5514   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5515                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5516                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5517                  &user_time, &sys_time);
5518   if ( count != 13 ) return -1;
5519   if (user_sys_cpu_time) {
5520     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5521   } else {
5522     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5523   }
5524 }
5525 PRAGMA_DIAG_POP
5526 
5527 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5528   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5529   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5530   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5531   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5532 }
5533 
5534 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5535   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5536   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5537   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5538   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5539 }
5540 
5541 bool os::is_thread_cpu_time_supported() {
5542   return true;
5543 }
5544 
5545 // System loadavg support.  Returns -1 if load average cannot be obtained.
5546 // Linux doesn't yet have a (official) notion of processor sets,
5547 // so just return the system wide load average.
5548 int os::loadavg(double loadavg[], int nelem) {
5549   return ::getloadavg(loadavg, nelem);
5550 }
5551 
5552 void os::pause() {
5553   char filename[MAX_PATH];
5554   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5555     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5556   } else {
5557     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5558   }
5559 
5560   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5561   if (fd != -1) {
5562     struct stat buf;
5563     ::close(fd);
5564     while (::stat(filename, &buf) == 0) {
5565       (void)::poll(NULL, 0, 100);
5566     }
5567   } else {
5568     jio_fprintf(stderr,
5569       "Could not open pause file '%s', continuing immediately.\n", filename);
5570   }
5571 }
5572 
5573 
5574 // Refer to the comments in os_solaris.cpp park-unpark.
5575 //
5576 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5577 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5578 // For specifics regarding the bug see GLIBC BUGID 261237 :
5579 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5580 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5581 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5582 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5583 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5584 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5585 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5586 // of libpthread avoids the problem, but isn't practical.
5587 //
5588 // Possible remedies:
5589 //
5590 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5591 //      This is palliative and probabilistic, however.  If the thread is preempted
5592 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5593 //      than the minimum period may have passed, and the abstime may be stale (in the
5594 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5595 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5596 //
5597 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5598 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5599 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5600 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5601 //      thread.
5602 //
5603 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5604 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5605 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5606 //      This also works well.  In fact it avoids kernel-level scalability impediments
5607 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5608 //      timers in a graceful fashion.
5609 //
5610 // 4.   When the abstime value is in the past it appears that control returns
5611 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5612 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5613 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5614 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5615 //      It may be possible to avoid reinitialization by checking the return
5616 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5617 //      condvar we must establish the invariant that cond_signal() is only called
5618 //      within critical sections protected by the adjunct mutex.  This prevents
5619 //      cond_signal() from "seeing" a condvar that's in the midst of being
5620 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5621 //      desirable signal-after-unlock optimization that avoids futile context switching.
5622 //
5623 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5624 //      structure when a condvar is used or initialized.  cond_destroy()  would
5625 //      release the helper structure.  Our reinitialize-after-timedwait fix
5626 //      put excessive stress on malloc/free and locks protecting the c-heap.
5627 //
5628 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5629 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5630 // and only enabling the work-around for vulnerable environments.
5631 
5632 // utility to compute the abstime argument to timedwait:
5633 // millis is the relative timeout time
5634 // abstime will be the absolute timeout time
5635 // TODO: replace compute_abstime() with unpackTime()
5636 
5637 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5638   if (millis < 0)  millis = 0;
5639 
5640   jlong seconds = millis / 1000;
5641   millis %= 1000;
5642   if (seconds > 50000000) { // see man cond_timedwait(3T)
5643     seconds = 50000000;
5644   }
5645 
5646   if (os::Linux::supports_monotonic_clock()) {
5647     struct timespec now;
5648     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5649     assert_status(status == 0, status, "clock_gettime");
5650     abstime->tv_sec = now.tv_sec  + seconds;
5651     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5652     if (nanos >= NANOSECS_PER_SEC) {
5653       abstime->tv_sec += 1;
5654       nanos -= NANOSECS_PER_SEC;
5655     }
5656     abstime->tv_nsec = nanos;
5657   } else {
5658     struct timeval now;
5659     int status = gettimeofday(&now, NULL);
5660     assert(status == 0, "gettimeofday");
5661     abstime->tv_sec = now.tv_sec  + seconds;
5662     long usec = now.tv_usec + millis * 1000;
5663     if (usec >= 1000000) {
5664       abstime->tv_sec += 1;
5665       usec -= 1000000;
5666     }
5667     abstime->tv_nsec = usec * 1000;
5668   }
5669   return abstime;
5670 }
5671 
5672 
5673 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5674 // Conceptually TryPark() should be equivalent to park(0).
5675 
5676 int os::PlatformEvent::TryPark() {
5677   for (;;) {
5678     const int v = _Event ;
5679     guarantee ((v == 0) || (v == 1), "invariant") ;
5680     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5681   }
5682 }
5683 
5684 void os::PlatformEvent::park() {       // AKA "down()"
5685   // Invariant: Only the thread associated with the Event/PlatformEvent
5686   // may call park().
5687   // TODO: assert that _Assoc != NULL or _Assoc == Self
5688   int v ;
5689   for (;;) {
5690       v = _Event ;
5691       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5692   }
5693   guarantee (v >= 0, "invariant") ;
5694   if (v == 0) {
5695      // Do this the hard way by blocking ...
5696      int status = pthread_mutex_lock(_mutex);
5697      assert_status(status == 0, status, "mutex_lock");
5698      guarantee (_nParked == 0, "invariant") ;
5699      ++ _nParked ;
5700      while (_Event < 0) {
5701         status = pthread_cond_wait(_cond, _mutex);
5702         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5703         // Treat this the same as if the wait was interrupted
5704         if (status == ETIME) { status = EINTR; }
5705         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5706      }
5707      -- _nParked ;
5708 
5709     _Event = 0 ;
5710      status = pthread_mutex_unlock(_mutex);
5711      assert_status(status == 0, status, "mutex_unlock");
5712     // Paranoia to ensure our locked and lock-free paths interact
5713     // correctly with each other.
5714     OrderAccess::fence();
5715   }
5716   guarantee (_Event >= 0, "invariant") ;
5717 }
5718 
5719 int os::PlatformEvent::park(jlong millis) {
5720   guarantee (_nParked == 0, "invariant") ;
5721 
5722   int v ;
5723   for (;;) {
5724       v = _Event ;
5725       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5726   }
5727   guarantee (v >= 0, "invariant") ;
5728   if (v != 0) return OS_OK ;
5729 
5730   // We do this the hard way, by blocking the thread.
5731   // Consider enforcing a minimum timeout value.
5732   struct timespec abst;
5733   compute_abstime(&abst, millis);
5734 
5735   int ret = OS_TIMEOUT;
5736   int status = pthread_mutex_lock(_mutex);
5737   assert_status(status == 0, status, "mutex_lock");
5738   guarantee (_nParked == 0, "invariant") ;
5739   ++_nParked ;
5740 
5741   // Object.wait(timo) will return because of
5742   // (a) notification
5743   // (b) timeout
5744   // (c) thread.interrupt
5745   //
5746   // Thread.interrupt and object.notify{All} both call Event::set.
5747   // That is, we treat thread.interrupt as a special case of notification.
5748   // The underlying Solaris implementation, cond_timedwait, admits
5749   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5750   // JVM from making those visible to Java code.  As such, we must
5751   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5752   //
5753   // TODO: properly differentiate simultaneous notify+interrupt.
5754   // In that case, we should propagate the notify to another waiter.
5755 
5756   while (_Event < 0) {
5757     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5758     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5759       pthread_cond_destroy (_cond);
5760       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5761     }
5762     assert_status(status == 0 || status == EINTR ||
5763                   status == ETIME || status == ETIMEDOUT,
5764                   status, "cond_timedwait");
5765     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5766     if (status == ETIME || status == ETIMEDOUT) break ;
5767     // We consume and ignore EINTR and spurious wakeups.
5768   }
5769   --_nParked ;
5770   if (_Event >= 0) {
5771      ret = OS_OK;
5772   }
5773   _Event = 0 ;
5774   status = pthread_mutex_unlock(_mutex);
5775   assert_status(status == 0, status, "mutex_unlock");
5776   assert (_nParked == 0, "invariant") ;
5777   // Paranoia to ensure our locked and lock-free paths interact
5778   // correctly with each other.
5779   OrderAccess::fence();
5780   return ret;
5781 }
5782 
5783 void os::PlatformEvent::unpark() {
5784   // Transitions for _Event:
5785   //    0 :=> 1
5786   //    1 :=> 1
5787   //   -1 :=> either 0 or 1; must signal target thread
5788   //          That is, we can safely transition _Event from -1 to either
5789   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5790   //          unpark() calls.
5791   // See also: "Semaphores in Plan 9" by Mullender & Cox
5792   //
5793   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5794   // that it will take two back-to-back park() calls for the owning
5795   // thread to block. This has the benefit of forcing a spurious return
5796   // from the first park() call after an unpark() call which will help
5797   // shake out uses of park() and unpark() without condition variables.
5798 
5799   if (Atomic::xchg(1, &_Event) >= 0) return;
5800 
5801   // Wait for the thread associated with the event to vacate
5802   int status = pthread_mutex_lock(_mutex);
5803   assert_status(status == 0, status, "mutex_lock");
5804   int AnyWaiters = _nParked;
5805   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5806   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5807     AnyWaiters = 0;
5808     pthread_cond_signal(_cond);
5809   }
5810   status = pthread_mutex_unlock(_mutex);
5811   assert_status(status == 0, status, "mutex_unlock");
5812   if (AnyWaiters != 0) {
5813     status = pthread_cond_signal(_cond);
5814     assert_status(status == 0, status, "cond_signal");
5815   }
5816 
5817   // Note that we signal() _after dropping the lock for "immortal" Events.
5818   // This is safe and avoids a common class of  futile wakeups.  In rare
5819   // circumstances this can cause a thread to return prematurely from
5820   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5821   // simply re-test the condition and re-park itself.
5822 }
5823 
5824 
5825 // JSR166
5826 // -------------------------------------------------------
5827 
5828 /*
5829  * The solaris and linux implementations of park/unpark are fairly
5830  * conservative for now, but can be improved. They currently use a
5831  * mutex/condvar pair, plus a a count.
5832  * Park decrements count if > 0, else does a condvar wait.  Unpark
5833  * sets count to 1 and signals condvar.  Only one thread ever waits
5834  * on the condvar. Contention seen when trying to park implies that someone
5835  * is unparking you, so don't wait. And spurious returns are fine, so there
5836  * is no need to track notifications.
5837  */
5838 
5839 /*
5840  * This code is common to linux and solaris and will be moved to a
5841  * common place in dolphin.
5842  *
5843  * The passed in time value is either a relative time in nanoseconds
5844  * or an absolute time in milliseconds. Either way it has to be unpacked
5845  * into suitable seconds and nanoseconds components and stored in the
5846  * given timespec structure.
5847  * Given time is a 64-bit value and the time_t used in the timespec is only
5848  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5849  * overflow if times way in the future are given. Further on Solaris versions
5850  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5851  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5852  * As it will be 28 years before "now + 100000000" will overflow we can
5853  * ignore overflow and just impose a hard-limit on seconds using the value
5854  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5855  * years from "now".
5856  */
5857 
5858 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5859   assert (time > 0, "convertTime");
5860   time_t max_secs = 0;
5861 
5862   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5863     struct timeval now;
5864     int status = gettimeofday(&now, NULL);
5865     assert(status == 0, "gettimeofday");
5866 
5867     max_secs = now.tv_sec + MAX_SECS;
5868 
5869     if (isAbsolute) {
5870       jlong secs = time / 1000;
5871       if (secs > max_secs) {
5872         absTime->tv_sec = max_secs;
5873       } else {
5874         absTime->tv_sec = secs;
5875       }
5876       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5877     } else {
5878       jlong secs = time / NANOSECS_PER_SEC;
5879       if (secs >= MAX_SECS) {
5880         absTime->tv_sec = max_secs;
5881         absTime->tv_nsec = 0;
5882       } else {
5883         absTime->tv_sec = now.tv_sec + secs;
5884         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5885         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5886           absTime->tv_nsec -= NANOSECS_PER_SEC;
5887           ++absTime->tv_sec; // note: this must be <= max_secs
5888         }
5889       }
5890     }
5891   } else {
5892     // must be relative using monotonic clock
5893     struct timespec now;
5894     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5895     assert_status(status == 0, status, "clock_gettime");
5896     max_secs = now.tv_sec + MAX_SECS;
5897     jlong secs = time / NANOSECS_PER_SEC;
5898     if (secs >= MAX_SECS) {
5899       absTime->tv_sec = max_secs;
5900       absTime->tv_nsec = 0;
5901     } else {
5902       absTime->tv_sec = now.tv_sec + secs;
5903       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5904       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5905         absTime->tv_nsec -= NANOSECS_PER_SEC;
5906         ++absTime->tv_sec; // note: this must be <= max_secs
5907       }
5908     }
5909   }
5910   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5911   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5912   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5913   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5914 }
5915 
5916 void Parker::park(bool isAbsolute, jlong time) {
5917   // Ideally we'd do something useful while spinning, such
5918   // as calling unpackTime().
5919 
5920   // Optional fast-path check:
5921   // Return immediately if a permit is available.
5922   // We depend on Atomic::xchg() having full barrier semantics
5923   // since we are doing a lock-free update to _counter.
5924   if (Atomic::xchg(0, &_counter) > 0) return;
5925 
5926   Thread* thread = Thread::current();
5927   assert(thread->is_Java_thread(), "Must be JavaThread");
5928   JavaThread *jt = (JavaThread *)thread;
5929 
5930   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5931   // Check interrupt before trying to wait
5932   if (Thread::is_interrupted(thread, false)) {
5933     return;
5934   }
5935 
5936   // Next, demultiplex/decode time arguments
5937   timespec absTime;
5938   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5939     return;
5940   }
5941   if (time > 0) {
5942     unpackTime(&absTime, isAbsolute, time);
5943   }
5944 
5945 
5946   // Enter safepoint region
5947   // Beware of deadlocks such as 6317397.
5948   // The per-thread Parker:: mutex is a classic leaf-lock.
5949   // In particular a thread must never block on the Threads_lock while
5950   // holding the Parker:: mutex.  If safepoints are pending both the
5951   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5952   ThreadBlockInVM tbivm(jt);
5953 
5954   // Don't wait if cannot get lock since interference arises from
5955   // unblocking.  Also. check interrupt before trying wait
5956   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5957     return;
5958   }
5959 
5960   int status ;
5961   if (_counter > 0)  { // no wait needed
5962     _counter = 0;
5963     status = pthread_mutex_unlock(_mutex);
5964     assert (status == 0, "invariant") ;
5965     // Paranoia to ensure our locked and lock-free paths interact
5966     // correctly with each other and Java-level accesses.
5967     OrderAccess::fence();
5968     return;
5969   }
5970 
5971 #ifdef ASSERT
5972   // Don't catch signals while blocked; let the running threads have the signals.
5973   // (This allows a debugger to break into the running thread.)
5974   sigset_t oldsigs;
5975   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5976   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5977 #endif
5978 
5979   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5980   jt->set_suspend_equivalent();
5981   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5982 
5983   assert(_cur_index == -1, "invariant");
5984   if (time == 0) {
5985     _cur_index = REL_INDEX; // arbitrary choice when not timed
5986     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5987   } else {
5988     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5989     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5990     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5991       pthread_cond_destroy (&_cond[_cur_index]) ;
5992       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5993     }
5994   }
5995   _cur_index = -1;
5996   assert_status(status == 0 || status == EINTR ||
5997                 status == ETIME || status == ETIMEDOUT,
5998                 status, "cond_timedwait");
5999 
6000 #ifdef ASSERT
6001   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
6002 #endif
6003 
6004   _counter = 0 ;
6005   status = pthread_mutex_unlock(_mutex) ;
6006   assert_status(status == 0, status, "invariant") ;
6007   // Paranoia to ensure our locked and lock-free paths interact
6008   // correctly with each other and Java-level accesses.
6009   OrderAccess::fence();
6010 
6011   // If externally suspended while waiting, re-suspend
6012   if (jt->handle_special_suspend_equivalent_condition()) {
6013     jt->java_suspend_self();
6014   }
6015 }
6016 
6017 void Parker::unpark() {
6018   int s, status ;
6019   status = pthread_mutex_lock(_mutex);
6020   assert (status == 0, "invariant") ;
6021   s = _counter;
6022   _counter = 1;
6023   if (s < 1) {
6024     // thread might be parked
6025     if (_cur_index != -1) {
6026       // thread is definitely parked
6027       if (WorkAroundNPTLTimedWaitHang) {
6028         status = pthread_cond_signal (&_cond[_cur_index]);
6029         assert (status == 0, "invariant");
6030         status = pthread_mutex_unlock(_mutex);
6031         assert (status == 0, "invariant");
6032       } else {
6033         // must capture correct index before unlocking
6034         int index = _cur_index;
6035         status = pthread_mutex_unlock(_mutex);
6036         assert (status == 0, "invariant");
6037         status = pthread_cond_signal (&_cond[index]);
6038         assert (status == 0, "invariant");
6039       }
6040     } else {
6041       pthread_mutex_unlock(_mutex);
6042       assert (status == 0, "invariant") ;
6043     }
6044   } else {
6045     pthread_mutex_unlock(_mutex);
6046     assert (status == 0, "invariant") ;
6047   }
6048 }
6049 
6050 
6051 extern char** environ;
6052 
6053 // Run the specified command in a separate process. Return its exit value,
6054 // or -1 on failure (e.g. can't fork a new process).
6055 // Unlike system(), this function can be called from signal handler. It
6056 // doesn't block SIGINT et al.
6057 int os::fork_and_exec(char* cmd) {
6058   const char * argv[4] = {"sh", "-c", cmd, NULL};
6059 
6060   pid_t pid = fork();
6061 
6062   if (pid < 0) {
6063     // fork failed
6064     return -1;
6065 
6066   } else if (pid == 0) {
6067     // child process
6068 
6069     execve("/bin/sh", (char* const*)argv, environ);
6070 
6071     // execve failed
6072     _exit(-1);
6073 
6074   } else  {
6075     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6076     // care about the actual exit code, for now.
6077 
6078     int status;
6079 
6080     // Wait for the child process to exit.  This returns immediately if
6081     // the child has already exited. */
6082     while (waitpid(pid, &status, 0) < 0) {
6083         switch (errno) {
6084         case ECHILD: return 0;
6085         case EINTR: break;
6086         default: return -1;
6087         }
6088     }
6089 
6090     if (WIFEXITED(status)) {
6091        // The child exited normally; get its exit code.
6092        return WEXITSTATUS(status);
6093     } else if (WIFSIGNALED(status)) {
6094        // The child exited because of a signal
6095        // The best value to return is 0x80 + signal number,
6096        // because that is what all Unix shells do, and because
6097        // it allows callers to distinguish between process exit and
6098        // process death by signal.
6099        return 0x80 + WTERMSIG(status);
6100     } else {
6101        // Unknown exit code; pass it through
6102        return status;
6103     }
6104   }
6105 }
6106 
6107 // is_headless_jre()
6108 //
6109 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6110 // in order to report if we are running in a headless jre
6111 //
6112 // Since JDK8 xawt/libmawt.so was moved into the same directory
6113 // as libawt.so, and renamed libawt_xawt.so
6114 //
6115 bool os::is_headless_jre() {
6116     struct stat statbuf;
6117     char buf[MAXPATHLEN];
6118     char libmawtpath[MAXPATHLEN];
6119     const char *xawtstr  = "/xawt/libmawt.so";
6120     const char *new_xawtstr = "/libawt_xawt.so";
6121     char *p;
6122 
6123     // Get path to libjvm.so
6124     os::jvm_path(buf, sizeof(buf));
6125 
6126     // Get rid of libjvm.so
6127     p = strrchr(buf, '/');
6128     if (p == NULL) return false;
6129     else *p = '\0';
6130 
6131     // Get rid of client or server
6132     p = strrchr(buf, '/');
6133     if (p == NULL) return false;
6134     else *p = '\0';
6135 
6136     // check xawt/libmawt.so
6137     strcpy(libmawtpath, buf);
6138     strcat(libmawtpath, xawtstr);
6139     if (::stat(libmawtpath, &statbuf) == 0) return false;
6140 
6141     // check libawt_xawt.so
6142     strcpy(libmawtpath, buf);
6143     strcat(libmawtpath, new_xawtstr);
6144     if (::stat(libmawtpath, &statbuf) == 0) return false;
6145 
6146     return true;
6147 }
6148 
6149 // Get the default path to the core file
6150 // Returns the length of the string
6151 int os::get_core_path(char* buffer, size_t bufferSize) {
6152   const char* p = get_current_directory(buffer, bufferSize);
6153 
6154   if (p == NULL) {
6155     assert(p != NULL, "failed to get current directory");
6156     return 0;
6157   }
6158 
6159   return strlen(buffer);
6160 }
6161 
6162 /////////////// Unit tests ///////////////
6163 
6164 #ifndef PRODUCT
6165 
6166 #define test_log(...) \
6167   do {\
6168     if (VerboseInternalVMTests) { \
6169       tty->print_cr(__VA_ARGS__); \
6170       tty->flush(); \
6171     }\
6172   } while (false)
6173 
6174 class TestReserveMemorySpecial : AllStatic {
6175  public:
6176   static void small_page_write(void* addr, size_t size) {
6177     size_t page_size = os::vm_page_size();
6178 
6179     char* end = (char*)addr + size;
6180     for (char* p = (char*)addr; p < end; p += page_size) {
6181       *p = 1;
6182     }
6183   }
6184 
6185   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6186     if (!UseHugeTLBFS) {
6187       return;
6188     }
6189 
6190     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6191 
6192     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6193 
6194     if (addr != NULL) {
6195       small_page_write(addr, size);
6196 
6197       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6198     }
6199   }
6200 
6201   static void test_reserve_memory_special_huge_tlbfs_only() {
6202     if (!UseHugeTLBFS) {
6203       return;
6204     }
6205 
6206     size_t lp = os::large_page_size();
6207 
6208     for (size_t size = lp; size <= lp * 10; size += lp) {
6209       test_reserve_memory_special_huge_tlbfs_only(size);
6210     }
6211   }
6212 
6213   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6214     size_t lp = os::large_page_size();
6215     size_t ag = os::vm_allocation_granularity();
6216 
6217     // sizes to test
6218     const size_t sizes[] = {
6219       lp, lp + ag, lp + lp / 2, lp * 2,
6220       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6221       lp * 10, lp * 10 + lp / 2
6222     };
6223     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6224 
6225     // For each size/alignment combination, we test three scenarios:
6226     // 1) with req_addr == NULL
6227     // 2) with a non-null req_addr at which we expect to successfully allocate
6228     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6229     //    expect the allocation to either fail or to ignore req_addr
6230 
6231     // Pre-allocate two areas; they shall be as large as the largest allocation
6232     //  and aligned to the largest alignment we will be testing.
6233     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6234     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6235       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6236       -1, 0);
6237     assert(mapping1 != MAP_FAILED, "should work");
6238 
6239     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6240       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6241       -1, 0);
6242     assert(mapping2 != MAP_FAILED, "should work");
6243 
6244     // Unmap the first mapping, but leave the second mapping intact: the first
6245     // mapping will serve as a value for a "good" req_addr (case 2). The second
6246     // mapping, still intact, as "bad" req_addr (case 3).
6247     ::munmap(mapping1, mapping_size);
6248 
6249     // Case 1
6250     test_log("%s, req_addr NULL:", __FUNCTION__);
6251     test_log("size            align           result");
6252 
6253     for (int i = 0; i < num_sizes; i++) {
6254       const size_t size = sizes[i];
6255       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6256         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6257         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6258             size, alignment, p, (p != NULL ? "" : "(failed)"));
6259         if (p != NULL) {
6260           assert(is_ptr_aligned(p, alignment), "must be");
6261           small_page_write(p, size);
6262           os::Linux::release_memory_special_huge_tlbfs(p, size);
6263         }
6264       }
6265     }
6266 
6267     // Case 2
6268     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6269     test_log("size            align           req_addr         result");
6270 
6271     for (int i = 0; i < num_sizes; i++) {
6272       const size_t size = sizes[i];
6273       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6274         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6275         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6276         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6277             size, alignment, req_addr, p,
6278             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6279         if (p != NULL) {
6280           assert(p == req_addr, "must be");
6281           small_page_write(p, size);
6282           os::Linux::release_memory_special_huge_tlbfs(p, size);
6283         }
6284       }
6285     }
6286 
6287     // Case 3
6288     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6289     test_log("size            align           req_addr         result");
6290 
6291     for (int i = 0; i < num_sizes; i++) {
6292       const size_t size = sizes[i];
6293       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6294         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6295         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6296         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6297             size, alignment, req_addr, p,
6298             ((p != NULL ? "" : "(failed)")));
6299         // as the area around req_addr contains already existing mappings, the API should always
6300         // return NULL (as per contract, it cannot return another address)
6301         assert(p == NULL, "must be");
6302       }
6303     }
6304 
6305     ::munmap(mapping2, mapping_size);
6306 
6307   }
6308 
6309   static void test_reserve_memory_special_huge_tlbfs() {
6310     if (!UseHugeTLBFS) {
6311       return;
6312     }
6313 
6314     test_reserve_memory_special_huge_tlbfs_only();
6315     test_reserve_memory_special_huge_tlbfs_mixed();
6316   }
6317 
6318   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6319     if (!UseSHM) {
6320       return;
6321     }
6322 
6323     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6324 
6325     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6326 
6327     if (addr != NULL) {
6328       assert(is_ptr_aligned(addr, alignment), "Check");
6329       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6330 
6331       small_page_write(addr, size);
6332 
6333       os::Linux::release_memory_special_shm(addr, size);
6334     }
6335   }
6336 
6337   static void test_reserve_memory_special_shm() {
6338     size_t lp = os::large_page_size();
6339     size_t ag = os::vm_allocation_granularity();
6340 
6341     for (size_t size = ag; size < lp * 3; size += ag) {
6342       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6343         test_reserve_memory_special_shm(size, alignment);
6344       }
6345     }
6346   }
6347 
6348   static void test() {
6349     test_reserve_memory_special_huge_tlbfs();
6350     test_reserve_memory_special_shm();
6351   }
6352 };
6353 
6354 void TestReserveMemorySpecial_test() {
6355   TestReserveMemorySpecial::test();
6356 }
6357 
6358 #endif