1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  86 
  87 // Shared stub locations
  88 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  89 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  90 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  93 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 
 105 //----------------------------generate_stubs-----------------------------------
 106 void SharedRuntime::generate_stubs() {
 107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 113 
 114 #ifdef COMPILER2
 115   // Vectors are generated only by C2.
 116   if (is_wide_vector(MaxVectorSize)) {
 117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 118   }
 119 #endif // COMPILER2
 120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 122 
 123   generate_deopt_blob();
 124 
 125 #ifdef COMPILER2
 126   generate_uncommon_trap_blob();
 127 #endif // COMPILER2
 128 }
 129 
 130 #include <math.h>
 131 
 132 #ifndef USDT2
 133 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 134 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 135                       char*, int, char*, int, char*, int);
 136 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 137                       char*, int, char*, int, char*, int);
 138 #endif /* !USDT2 */
 139 
 140 // Implementation of SharedRuntime
 141 
 142 #ifndef PRODUCT
 143 // For statistics
 144 int SharedRuntime::_ic_miss_ctr = 0;
 145 int SharedRuntime::_wrong_method_ctr = 0;
 146 int SharedRuntime::_resolve_static_ctr = 0;
 147 int SharedRuntime::_resolve_virtual_ctr = 0;
 148 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 149 int SharedRuntime::_implicit_null_throws = 0;
 150 int SharedRuntime::_implicit_div0_throws = 0;
 151 int SharedRuntime::_throw_null_ctr = 0;
 152 
 153 int SharedRuntime::_nof_normal_calls = 0;
 154 int SharedRuntime::_nof_optimized_calls = 0;
 155 int SharedRuntime::_nof_inlined_calls = 0;
 156 int SharedRuntime::_nof_megamorphic_calls = 0;
 157 int SharedRuntime::_nof_static_calls = 0;
 158 int SharedRuntime::_nof_inlined_static_calls = 0;
 159 int SharedRuntime::_nof_interface_calls = 0;
 160 int SharedRuntime::_nof_optimized_interface_calls = 0;
 161 int SharedRuntime::_nof_inlined_interface_calls = 0;
 162 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 163 int SharedRuntime::_nof_removable_exceptions = 0;
 164 
 165 int SharedRuntime::_new_instance_ctr=0;
 166 int SharedRuntime::_new_array_ctr=0;
 167 int SharedRuntime::_multi1_ctr=0;
 168 int SharedRuntime::_multi2_ctr=0;
 169 int SharedRuntime::_multi3_ctr=0;
 170 int SharedRuntime::_multi4_ctr=0;
 171 int SharedRuntime::_multi5_ctr=0;
 172 int SharedRuntime::_mon_enter_stub_ctr=0;
 173 int SharedRuntime::_mon_exit_stub_ctr=0;
 174 int SharedRuntime::_mon_enter_ctr=0;
 175 int SharedRuntime::_mon_exit_ctr=0;
 176 int SharedRuntime::_partial_subtype_ctr=0;
 177 int SharedRuntime::_jbyte_array_copy_ctr=0;
 178 int SharedRuntime::_jshort_array_copy_ctr=0;
 179 int SharedRuntime::_jint_array_copy_ctr=0;
 180 int SharedRuntime::_jlong_array_copy_ctr=0;
 181 int SharedRuntime::_oop_array_copy_ctr=0;
 182 int SharedRuntime::_checkcast_array_copy_ctr=0;
 183 int SharedRuntime::_unsafe_array_copy_ctr=0;
 184 int SharedRuntime::_generic_array_copy_ctr=0;
 185 int SharedRuntime::_slow_array_copy_ctr=0;
 186 int SharedRuntime::_find_handler_ctr=0;
 187 int SharedRuntime::_rethrow_ctr=0;
 188 
 189 int     SharedRuntime::_ICmiss_index                    = 0;
 190 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 191 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 192 
 193 
 194 void SharedRuntime::trace_ic_miss(address at) {
 195   for (int i = 0; i < _ICmiss_index; i++) {
 196     if (_ICmiss_at[i] == at) {
 197       _ICmiss_count[i]++;
 198       return;
 199     }
 200   }
 201   int index = _ICmiss_index++;
 202   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 203   _ICmiss_at[index] = at;
 204   _ICmiss_count[index] = 1;
 205 }
 206 
 207 void SharedRuntime::print_ic_miss_histogram() {
 208   if (ICMissHistogram) {
 209     tty->print_cr ("IC Miss Histogram:");
 210     int tot_misses = 0;
 211     for (int i = 0; i < _ICmiss_index; i++) {
 212       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 213       tot_misses += _ICmiss_count[i];
 214     }
 215     tty->print_cr ("Total IC misses: %7d", tot_misses);
 216   }
 217 }
 218 #endif // PRODUCT
 219 
 220 #if INCLUDE_ALL_GCS
 221 
 222 // G1 write-barrier pre: executed before a pointer store.
 223 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 224   if (orig == NULL) {
 225     assert(false, "should be optimized out");
 226     return;
 227   }
 228   assert(orig->is_oop(true /* ignore mark word */), "Error");
 229   // store the original value that was in the field reference
 230   thread->satb_mark_queue().enqueue(orig);
 231 JRT_END
 232 
 233 // G1 write-barrier post: executed after a pointer store.
 234 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 235   thread->dirty_card_queue().enqueue(card_addr);
 236 JRT_END
 237 
 238 #endif // INCLUDE_ALL_GCS
 239 
 240 
 241 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 242   return x * y;
 243 JRT_END
 244 
 245 
 246 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 247   if (x == min_jlong && y == CONST64(-1)) {
 248     return x;
 249   } else {
 250     return x / y;
 251   }
 252 JRT_END
 253 
 254 
 255 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 256   if (x == min_jlong && y == CONST64(-1)) {
 257     return 0;
 258   } else {
 259     return x % y;
 260   }
 261 JRT_END
 262 
 263 
 264 const juint  float_sign_mask  = 0x7FFFFFFF;
 265 const juint  float_infinity   = 0x7F800000;
 266 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 267 const julong double_infinity  = CONST64(0x7FF0000000000000);
 268 
 269 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 270 #ifdef _WIN64
 271   // 64-bit Windows on amd64 returns the wrong values for
 272   // infinity operands.
 273   union { jfloat f; juint i; } xbits, ybits;
 274   xbits.f = x;
 275   ybits.f = y;
 276   // x Mod Infinity == x unless x is infinity
 277   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 278        ((ybits.i & float_sign_mask) == float_infinity) ) {
 279     return x;
 280   }
 281 #endif
 282   return ((jfloat)fmod((double)x,(double)y));
 283 JRT_END
 284 
 285 
 286 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 287 #ifdef _WIN64
 288   union { jdouble d; julong l; } xbits, ybits;
 289   xbits.d = x;
 290   ybits.d = y;
 291   // x Mod Infinity == x unless x is infinity
 292   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 293        ((ybits.l & double_sign_mask) == double_infinity) ) {
 294     return x;
 295   }
 296 #endif
 297   return ((jdouble)fmod((double)x,(double)y));
 298 JRT_END
 299 
 300 #ifdef __SOFTFP__
 301 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 302   return x + y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 306   return x - y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 310   return x * y;
 311 JRT_END
 312 
 313 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 314   return x / y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 318   return x + y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 322   return x - y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 326   return x * y;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 330   return x / y;
 331 JRT_END
 332 
 333 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 334   return (jfloat)x;
 335 JRT_END
 336 
 337 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 338   return (jdouble)x;
 339 JRT_END
 340 
 341 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 342   return (jdouble)x;
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 346   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 350   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 354   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 355 JRT_END
 356 
 357 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 358   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 359 JRT_END
 360 
 361 // Functions to return the opposite of the aeabi functions for nan.
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 367   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 375   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 383   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 391   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 392 JRT_END
 393 
 394 // Intrinsics make gcc generate code for these.
 395 float  SharedRuntime::fneg(float f)   {
 396   return -f;
 397 }
 398 
 399 double SharedRuntime::dneg(double f)  {
 400   return -f;
 401 }
 402 
 403 #endif // __SOFTFP__
 404 
 405 #if defined(__SOFTFP__) || defined(E500V2)
 406 // Intrinsics make gcc generate code for these.
 407 double SharedRuntime::dabs(double f)  {
 408   return (f <= (double)0.0) ? (double)0.0 - f : f;
 409 }
 410 
 411 #endif
 412 
 413 #if defined(__SOFTFP__) || defined(PPC32)
 414 double SharedRuntime::dsqrt(double f) {
 415   return sqrt(f);
 416 }
 417 #endif
 418 
 419 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jfloat) max_jint)
 423     return max_jint;
 424   if (x <= (jfloat) min_jint)
 425     return min_jint;
 426   return (jint) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jfloat) max_jlong)
 434     return max_jlong;
 435   if (x <= (jfloat) min_jlong)
 436     return min_jlong;
 437   return (jlong) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 442   if (g_isnan(x))
 443     return 0;
 444   if (x >= (jdouble) max_jint)
 445     return max_jint;
 446   if (x <= (jdouble) min_jint)
 447     return min_jint;
 448   return (jint) x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 453   if (g_isnan(x))
 454     return 0;
 455   if (x >= (jdouble) max_jlong)
 456     return max_jlong;
 457   if (x <= (jdouble) min_jlong)
 458     return min_jlong;
 459   return (jlong) x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 464   return (jfloat)x;
 465 JRT_END
 466 
 467 
 468 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 469   return (jfloat)x;
 470 JRT_END
 471 
 472 
 473 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 474   return (jdouble)x;
 475 JRT_END
 476 
 477 // Exception handling accross interpreter/compiler boundaries
 478 //
 479 // exception_handler_for_return_address(...) returns the continuation address.
 480 // The continuation address is the entry point of the exception handler of the
 481 // previous frame depending on the return address.
 482 
 483 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 484   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 485   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 486 
 487   // Reset method handle flag.
 488   thread->set_is_method_handle_return(false);
 489 
 490   // The fastest case first
 491   CodeBlob* blob = CodeCache::find_blob(return_address);
 492   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 493   if (nm != NULL) {
 494     // Set flag if return address is a method handle call site.
 495     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 496     // native nmethods don't have exception handlers
 497     assert(!nm->is_native_method(), "no exception handler");
 498     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 499     if (nm->is_deopt_pc(return_address)) {
 500       // If we come here because of a stack overflow, the stack may be
 501       // unguarded. Reguard the stack otherwise if we return to the
 502       // deopt blob and the stack bang causes a stack overflow we
 503       // crash.
 504       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 505       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 506       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 507       return SharedRuntime::deopt_blob()->unpack_with_exception();
 508     } else {
 509       return nm->exception_begin();
 510     }
 511   }
 512 
 513   // Entry code
 514   if (StubRoutines::returns_to_call_stub(return_address)) {
 515     return StubRoutines::catch_exception_entry();
 516   }
 517   // Interpreted code
 518   if (Interpreter::contains(return_address)) {
 519     return Interpreter::rethrow_exception_entry();
 520   }
 521 
 522   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 523   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 524 
 525 #ifndef PRODUCT
 526   { ResourceMark rm;
 527     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 528     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 529     tty->print_cr("b) other problem");
 530   }
 531 #endif // PRODUCT
 532 
 533   ShouldNotReachHere();
 534   return NULL;
 535 }
 536 
 537 
 538 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 539   return raw_exception_handler_for_return_address(thread, return_address);
 540 JRT_END
 541 
 542 
 543 address SharedRuntime::get_poll_stub(address pc) {
 544   address stub;
 545   // Look up the code blob
 546   CodeBlob *cb = CodeCache::find_blob(pc);
 547 
 548   // Should be an nmethod
 549   guarantee(cb != NULL && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 550 
 551   // Look up the relocation information
 552   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 553     "safepoint polling: type must be poll" );
 554 
 555   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 556     "Only polling locations are used for safepoint");
 557 
 558   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 559   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 560   if (at_poll_return) {
 561     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 562            "polling page return stub not created yet");
 563     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 564   } else if (has_wide_vectors) {
 565     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 566            "polling page vectors safepoint stub not created yet");
 567     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 568   } else {
 569     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 570            "polling page safepoint stub not created yet");
 571     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 572   }
 573 #ifndef PRODUCT
 574   if( TraceSafepoint ) {
 575     char buf[256];
 576     jio_snprintf(buf, sizeof(buf),
 577                  "... found polling page %s exception at pc = "
 578                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 579                  at_poll_return ? "return" : "loop",
 580                  (intptr_t)pc, (intptr_t)stub);
 581     tty->print_raw_cr(buf);
 582   }
 583 #endif // PRODUCT
 584   return stub;
 585 }
 586 
 587 
 588 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 589   assert(caller.is_interpreted_frame(), "");
 590   int args_size = ArgumentSizeComputer(sig).size() + 1;
 591   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 592   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 593   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 594   return result;
 595 }
 596 
 597 
 598 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 599   if (JvmtiExport::can_post_on_exceptions()) {
 600     vframeStream vfst(thread, true);
 601     methodHandle method = methodHandle(thread, vfst.method());
 602     address bcp = method()->bcp_from(vfst.bci());
 603     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 604   }
 605   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 606 }
 607 
 608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 609   Handle h_exception = Exceptions::new_exception(thread, name, message);
 610   throw_and_post_jvmti_exception(thread, h_exception);
 611 }
 612 
 613 // The interpreter code to call this tracing function is only
 614 // called/generated when TraceRedefineClasses has the right bits
 615 // set. Since obsolete methods are never compiled, we don't have
 616 // to modify the compilers to generate calls to this function.
 617 //
 618 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 619     JavaThread* thread, Method* method))
 620   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 621 
 622   if (method->is_obsolete()) {
 623     // We are calling an obsolete method, but this is not necessarily
 624     // an error. Our method could have been redefined just after we
 625     // fetched the Method* from the constant pool.
 626 
 627     // RC_TRACE macro has an embedded ResourceMark
 628     RC_TRACE_WITH_THREAD(0x00001000, thread,
 629                          ("calling obsolete method '%s'",
 630                           method->name_and_sig_as_C_string()));
 631     if (RC_TRACE_ENABLED(0x00002000)) {
 632       // this option is provided to debug calls to obsolete methods
 633       guarantee(false, "faulting at call to an obsolete method.");
 634     }
 635   }
 636   return 0;
 637 JRT_END
 638 
 639 // ret_pc points into caller; we are returning caller's exception handler
 640 // for given exception
 641 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 642                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 643   assert(nm != NULL, "must exist");
 644   ResourceMark rm;
 645 
 646   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 647   // determine handler bci, if any
 648   EXCEPTION_MARK;
 649 
 650   int handler_bci = -1;
 651   int scope_depth = 0;
 652   if (!force_unwind) {
 653     int bci = sd->bci();
 654     bool recursive_exception = false;
 655     do {
 656       bool skip_scope_increment = false;
 657       // exception handler lookup
 658       KlassHandle ek (THREAD, exception->klass());
 659       methodHandle mh(THREAD, sd->method());
 660       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 661       if (HAS_PENDING_EXCEPTION) {
 662         recursive_exception = true;
 663         // We threw an exception while trying to find the exception handler.
 664         // Transfer the new exception to the exception handle which will
 665         // be set into thread local storage, and do another lookup for an
 666         // exception handler for this exception, this time starting at the
 667         // BCI of the exception handler which caused the exception to be
 668         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 669         // argument to ensure that the correct exception is thrown (4870175).
 670         recursive_exception_occurred = true;
 671         exception = Handle(THREAD, PENDING_EXCEPTION);
 672         CLEAR_PENDING_EXCEPTION;
 673         if (handler_bci >= 0) {
 674           bci = handler_bci;
 675           handler_bci = -1;
 676           skip_scope_increment = true;
 677         }
 678       }
 679       else {
 680         recursive_exception = false;
 681       }
 682       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 683         sd = sd->sender();
 684         if (sd != NULL) {
 685           bci = sd->bci();
 686         }
 687         ++scope_depth;
 688       }
 689     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 690   }
 691 
 692   // found handling method => lookup exception handler
 693   int catch_pco = ret_pc - nm->code_begin();
 694 
 695   ExceptionHandlerTable table(nm);
 696   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 697   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 698     // Allow abbreviated catch tables.  The idea is to allow a method
 699     // to materialize its exceptions without committing to the exact
 700     // routing of exceptions.  In particular this is needed for adding
 701     // a synthethic handler to unlock monitors when inlining
 702     // synchonized methods since the unlock path isn't represented in
 703     // the bytecodes.
 704     t = table.entry_for(catch_pco, -1, 0);
 705   }
 706 
 707 #ifdef COMPILER1
 708   if (t == NULL && nm->is_compiled_by_c1()) {
 709     assert(nm->unwind_handler_begin() != NULL, "");
 710     return nm->unwind_handler_begin();
 711   }
 712 #endif
 713 
 714   if (t == NULL) {
 715     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 716     tty->print_cr("   Exception:");
 717     exception->print();
 718     tty->cr();
 719     tty->print_cr(" Compiled exception table :");
 720     table.print();
 721     nm->print_code();
 722     guarantee(false, "missing exception handler");
 723     return NULL;
 724   }
 725 
 726   return nm->code_begin() + t->pco();
 727 }
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 730   // These errors occur only at call sites
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 735   // These errors occur only at call sites
 736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 737 JRT_END
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 744   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 748   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 749   // cache sites (when the callee activation is not yet set up) so we are at a call site
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 754   // We avoid using the normal exception construction in this case because
 755   // it performs an upcall to Java, and we're already out of stack space.
 756   Klass* k = SystemDictionary::StackOverflowError_klass();
 757   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 758   Handle exception (thread, exception_oop);
 759   if (StackTraceInThrowable) {
 760     java_lang_Throwable::fill_in_stack_trace(exception);
 761   }
 762   // Increment counter for hs_err file reporting
 763   Atomic::inc(&Exceptions::_stack_overflow_errors);
 764   throw_and_post_jvmti_exception(thread, exception);
 765 JRT_END
 766 
 767 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 768                                                            address pc,
 769                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 770 {
 771   address target_pc = NULL;
 772 
 773   if (Interpreter::contains(pc)) {
 774 #ifdef CC_INTERP
 775     // C++ interpreter doesn't throw implicit exceptions
 776     ShouldNotReachHere();
 777 #else
 778     switch (exception_kind) {
 779       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 780       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 781       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 782       default:                      ShouldNotReachHere();
 783     }
 784 #endif // !CC_INTERP
 785   } else {
 786     switch (exception_kind) {
 787       case STACK_OVERFLOW: {
 788         // Stack overflow only occurs upon frame setup; the callee is
 789         // going to be unwound. Dispatch to a shared runtime stub
 790         // which will cause the StackOverflowError to be fabricated
 791         // and processed.
 792         // Stack overflow should never occur during deoptimization:
 793         // the compiled method bangs the stack by as much as the
 794         // interpreter would need in case of a deoptimization. The
 795         // deoptimization blob and uncommon trap blob bang the stack
 796         // in a debug VM to verify the correctness of the compiled
 797         // method stack banging.
 798         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 799         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 800         return StubRoutines::throw_StackOverflowError_entry();
 801       }
 802 
 803       case IMPLICIT_NULL: {
 804         if (VtableStubs::contains(pc)) {
 805           // We haven't yet entered the callee frame. Fabricate an
 806           // exception and begin dispatching it in the caller. Since
 807           // the caller was at a call site, it's safe to destroy all
 808           // caller-saved registers, as these entry points do.
 809           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 810 
 811           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 812           if (vt_stub == NULL) return NULL;
 813 
 814           if (vt_stub->is_abstract_method_error(pc)) {
 815             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 816             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 817             return StubRoutines::throw_AbstractMethodError_entry();
 818           } else {
 819             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 820             return StubRoutines::throw_NullPointerException_at_call_entry();
 821           }
 822         } else {
 823           CodeBlob* cb = CodeCache::find_blob(pc);
 824 
 825           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 826           if (cb == NULL) return NULL;
 827 
 828           // Exception happened in CodeCache. Must be either:
 829           // 1. Inline-cache check in C2I handler blob,
 830           // 2. Inline-cache check in nmethod, or
 831           // 3. Implict null exception in nmethod
 832 
 833           if (!cb->is_nmethod()) {
 834             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 835             if (!is_in_blob) {
 836               cb->print();
 837               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 838             }
 839             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 840             // There is no handler here, so we will simply unwind.
 841             return StubRoutines::throw_NullPointerException_at_call_entry();
 842           }
 843 
 844           // Otherwise, it's an nmethod.  Consult its exception handlers.
 845           nmethod* nm = (nmethod*)cb;
 846           if (nm->inlinecache_check_contains(pc)) {
 847             // exception happened inside inline-cache check code
 848             // => the nmethod is not yet active (i.e., the frame
 849             // is not set up yet) => use return address pushed by
 850             // caller => don't push another return address
 851             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 852             return StubRoutines::throw_NullPointerException_at_call_entry();
 853           }
 854 
 855           if (nm->method()->is_method_handle_intrinsic()) {
 856             // exception happened inside MH dispatch code, similar to a vtable stub
 857             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 858             return StubRoutines::throw_NullPointerException_at_call_entry();
 859           }
 860 
 861 #ifndef PRODUCT
 862           _implicit_null_throws++;
 863 #endif
 864           target_pc = nm->continuation_for_implicit_exception(pc);
 865           // If there's an unexpected fault, target_pc might be NULL,
 866           // in which case we want to fall through into the normal
 867           // error handling code.
 868         }
 869 
 870         break; // fall through
 871       }
 872 
 873 
 874       case IMPLICIT_DIVIDE_BY_ZERO: {
 875         nmethod* nm = CodeCache::find_nmethod(pc);
 876         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 877 #ifndef PRODUCT
 878         _implicit_div0_throws++;
 879 #endif
 880         target_pc = nm->continuation_for_implicit_exception(pc);
 881         // If there's an unexpected fault, target_pc might be NULL,
 882         // in which case we want to fall through into the normal
 883         // error handling code.
 884         break; // fall through
 885       }
 886 
 887       default: ShouldNotReachHere();
 888     }
 889 
 890     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 891 
 892     // for AbortVMOnException flag
 893     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 894     if (exception_kind == IMPLICIT_NULL) {
 895       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 896     } else {
 897       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 898     }
 899     return target_pc;
 900   }
 901 
 902   ShouldNotReachHere();
 903   return NULL;
 904 }
 905 
 906 
 907 /**
 908  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 909  * installed in the native function entry of all native Java methods before
 910  * they get linked to their actual native methods.
 911  *
 912  * \note
 913  * This method actually never gets called!  The reason is because
 914  * the interpreter's native entries call NativeLookup::lookup() which
 915  * throws the exception when the lookup fails.  The exception is then
 916  * caught and forwarded on the return from NativeLookup::lookup() call
 917  * before the call to the native function.  This might change in the future.
 918  */
 919 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 920 {
 921   // We return a bad value here to make sure that the exception is
 922   // forwarded before we look at the return value.
 923   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 924 }
 925 JNI_END
 926 
 927 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 928   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 929 }
 930 
 931 
 932 #ifndef PRODUCT
 933 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 934   const frame f = thread->last_frame();
 935   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 936 #ifndef PRODUCT
 937   methodHandle mh(THREAD, f.interpreter_frame_method());
 938   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 939 #endif // !PRODUCT
 940   return preserve_this_value;
 941 JRT_END
 942 #endif // !PRODUCT
 943 
 944 
 945 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 946   os::yield_all(attempts);
 947 JRT_END
 948 
 949 
 950 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 951   assert(obj->is_oop(), "must be a valid oop");
 952   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 953   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 954 JRT_END
 955 
 956 
 957 jlong SharedRuntime::get_java_tid(Thread* thread) {
 958   if (thread != NULL) {
 959     if (thread->is_Java_thread()) {
 960       oop obj = ((JavaThread*)thread)->threadObj();
 961       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 962     }
 963   }
 964   return 0;
 965 }
 966 
 967 /**
 968  * This function ought to be a void function, but cannot be because
 969  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 970  * 6254741.  Once that is fixed we can remove the dummy return value.
 971  */
 972 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 973   return dtrace_object_alloc_base(Thread::current(), o, size);
 974 }
 975 
 976 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 977   assert(DTraceAllocProbes, "wrong call");
 978   Klass* klass = o->klass();
 979   Symbol* name = klass->name();
 980 #ifndef USDT2
 981   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 982                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 983 #else /* USDT2 */
 984   HOTSPOT_OBJECT_ALLOC(
 985                    get_java_tid(thread),
 986                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 987 #endif /* USDT2 */
 988   return 0;
 989 }
 990 
 991 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 992     JavaThread* thread, Method* method))
 993   assert(DTraceMethodProbes, "wrong call");
 994   Symbol* kname = method->klass_name();
 995   Symbol* name = method->name();
 996   Symbol* sig = method->signature();
 997 #ifndef USDT2
 998   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 999       kname->bytes(), kname->utf8_length(),
1000       name->bytes(), name->utf8_length(),
1001       sig->bytes(), sig->utf8_length());
1002 #else /* USDT2 */
1003   HOTSPOT_METHOD_ENTRY(
1004       get_java_tid(thread),
1005       (char *) kname->bytes(), kname->utf8_length(),
1006       (char *) name->bytes(), name->utf8_length(),
1007       (char *) sig->bytes(), sig->utf8_length());
1008 #endif /* USDT2 */
1009   return 0;
1010 JRT_END
1011 
1012 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1013     JavaThread* thread, Method* method))
1014   assert(DTraceMethodProbes, "wrong call");
1015   Symbol* kname = method->klass_name();
1016   Symbol* name = method->name();
1017   Symbol* sig = method->signature();
1018 #ifndef USDT2
1019   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1020       kname->bytes(), kname->utf8_length(),
1021       name->bytes(), name->utf8_length(),
1022       sig->bytes(), sig->utf8_length());
1023 #else /* USDT2 */
1024   HOTSPOT_METHOD_RETURN(
1025       get_java_tid(thread),
1026       (char *) kname->bytes(), kname->utf8_length(),
1027       (char *) name->bytes(), name->utf8_length(),
1028       (char *) sig->bytes(), sig->utf8_length());
1029 #endif /* USDT2 */
1030   return 0;
1031 JRT_END
1032 
1033 
1034 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1035 // for a call current in progress, i.e., arguments has been pushed on stack
1036 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1037 // vtable updates, etc.  Caller frame must be compiled.
1038 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1039   ResourceMark rm(THREAD);
1040 
1041   // last java frame on stack (which includes native call frames)
1042   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1043 
1044   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1045 }
1046 
1047 
1048 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1049 // for a call current in progress, i.e., arguments has been pushed on stack
1050 // but callee has not been invoked yet.  Caller frame must be compiled.
1051 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1052                                               vframeStream& vfst,
1053                                               Bytecodes::Code& bc,
1054                                               CallInfo& callinfo, TRAPS) {
1055   Handle receiver;
1056   Handle nullHandle;  //create a handy null handle for exception returns
1057 
1058   assert(!vfst.at_end(), "Java frame must exist");
1059 
1060   // Find caller and bci from vframe
1061   methodHandle caller(THREAD, vfst.method());
1062   int          bci   = vfst.bci();
1063 
1064   // Find bytecode
1065   Bytecode_invoke bytecode(caller, bci);
1066   bc = bytecode.invoke_code();
1067   int bytecode_index = bytecode.index();
1068 
1069   // Find receiver for non-static call
1070   if (bc != Bytecodes::_invokestatic &&
1071       bc != Bytecodes::_invokedynamic &&
1072       bc != Bytecodes::_invokehandle) {
1073     // This register map must be update since we need to find the receiver for
1074     // compiled frames. The receiver might be in a register.
1075     RegisterMap reg_map2(thread);
1076     frame stubFrame   = thread->last_frame();
1077     // Caller-frame is a compiled frame
1078     frame callerFrame = stubFrame.sender(&reg_map2);
1079 
1080     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1081     if (callee.is_null()) {
1082       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1083     }
1084     // Retrieve from a compiled argument list
1085     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1086 
1087     if (receiver.is_null()) {
1088       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1089     }
1090   }
1091 
1092   // Resolve method. This is parameterized by bytecode.
1093   constantPoolHandle constants(THREAD, caller->constants());
1094   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1095   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1096 
1097 #ifdef ASSERT
1098   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1099   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1100     assert(receiver.not_null(), "should have thrown exception");
1101     KlassHandle receiver_klass(THREAD, receiver->klass());
1102     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1103                             // klass is already loaded
1104     KlassHandle static_receiver_klass(THREAD, rk);
1105     // Method handle invokes might have been optimized to a direct call
1106     // so don't check for the receiver class.
1107     // FIXME this weakens the assert too much
1108     methodHandle callee = callinfo.selected_method();
1109     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1110            callee->is_method_handle_intrinsic() ||
1111            callee->is_compiled_lambda_form(),
1112            "actual receiver must be subclass of static receiver klass");
1113     if (receiver_klass->oop_is_instance()) {
1114       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1115         tty->print_cr("ERROR: Klass not yet initialized!!");
1116         receiver_klass()->print();
1117       }
1118       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1119     }
1120   }
1121 #endif
1122 
1123   return receiver;
1124 }
1125 
1126 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1127   ResourceMark rm(THREAD);
1128   // We need first to check if any Java activations (compiled, interpreted)
1129   // exist on the stack since last JavaCall.  If not, we need
1130   // to get the target method from the JavaCall wrapper.
1131   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1132   methodHandle callee_method;
1133   if (vfst.at_end()) {
1134     // No Java frames were found on stack since we did the JavaCall.
1135     // Hence the stack can only contain an entry_frame.  We need to
1136     // find the target method from the stub frame.
1137     RegisterMap reg_map(thread, false);
1138     frame fr = thread->last_frame();
1139     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1140     fr = fr.sender(&reg_map);
1141     assert(fr.is_entry_frame(), "must be");
1142     // fr is now pointing to the entry frame.
1143     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1144     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1145   } else {
1146     Bytecodes::Code bc;
1147     CallInfo callinfo;
1148     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1149     callee_method = callinfo.selected_method();
1150   }
1151   assert(callee_method()->is_method(), "must be");
1152   return callee_method;
1153 }
1154 
1155 // Resolves a call.
1156 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1157                                            bool is_virtual,
1158                                            bool is_optimized, TRAPS) {
1159   methodHandle callee_method;
1160   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1161   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1162     int retry_count = 0;
1163     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1164            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1165       // If has a pending exception then there is no need to re-try to
1166       // resolve this method.
1167       // If the method has been redefined, we need to try again.
1168       // Hack: we have no way to update the vtables of arrays, so don't
1169       // require that java.lang.Object has been updated.
1170 
1171       // It is very unlikely that method is redefined more than 100 times
1172       // in the middle of resolve. If it is looping here more than 100 times
1173       // means then there could be a bug here.
1174       guarantee((retry_count++ < 100),
1175                 "Could not resolve to latest version of redefined method");
1176       // method is redefined in the middle of resolve so re-try.
1177       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1178     }
1179   }
1180   return callee_method;
1181 }
1182 
1183 // Resolves a call.  The compilers generate code for calls that go here
1184 // and are patched with the real destination of the call.
1185 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1186                                            bool is_virtual,
1187                                            bool is_optimized, TRAPS) {
1188 
1189   ResourceMark rm(thread);
1190   RegisterMap cbl_map(thread, false);
1191   frame caller_frame = thread->last_frame().sender(&cbl_map);
1192 
1193   CodeBlob* caller_cb = caller_frame.cb();
1194   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1195   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1196 
1197   // make sure caller is not getting deoptimized
1198   // and removed before we are done with it.
1199   // CLEANUP - with lazy deopt shouldn't need this lock
1200   nmethodLocker caller_lock(caller_nm);
1201 
1202   // determine call info & receiver
1203   // note: a) receiver is NULL for static calls
1204   //       b) an exception is thrown if receiver is NULL for non-static calls
1205   CallInfo call_info;
1206   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1207   Handle receiver = find_callee_info(thread, invoke_code,
1208                                      call_info, CHECK_(methodHandle()));
1209   methodHandle callee_method = call_info.selected_method();
1210 
1211   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1212          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1213          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1214          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1215 
1216   assert(caller_nm->is_alive(), "It should be alive");
1217 
1218 #ifndef PRODUCT
1219   // tracing/debugging/statistics
1220   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1221                 (is_virtual) ? (&_resolve_virtual_ctr) :
1222                                (&_resolve_static_ctr);
1223   Atomic::inc(addr);
1224 
1225   if (TraceCallFixup) {
1226     ResourceMark rm(thread);
1227     tty->print("resolving %s%s (%s) call to",
1228       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1229       Bytecodes::name(invoke_code));
1230     callee_method->print_short_name(tty);
1231     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1232   }
1233 #endif
1234 
1235   // JSR 292 key invariant:
1236   // If the resolved method is a MethodHandle invoke target, the call
1237   // site must be a MethodHandle call site, because the lambda form might tail-call
1238   // leaving the stack in a state unknown to either caller or callee
1239   // TODO detune for now but we might need it again
1240 //  assert(!callee_method->is_compiled_lambda_form() ||
1241 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1242 
1243   // Compute entry points. This might require generation of C2I converter
1244   // frames, so we cannot be holding any locks here. Furthermore, the
1245   // computation of the entry points is independent of patching the call.  We
1246   // always return the entry-point, but we only patch the stub if the call has
1247   // not been deoptimized.  Return values: For a virtual call this is an
1248   // (cached_oop, destination address) pair. For a static call/optimized
1249   // virtual this is just a destination address.
1250 
1251   StaticCallInfo static_call_info;
1252   CompiledICInfo virtual_call_info;
1253 
1254   // Make sure the callee nmethod does not get deoptimized and removed before
1255   // we are done patching the code.
1256   nmethod* callee_nm = callee_method->code();
1257   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1258     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1259     callee_nm = NULL;
1260   }
1261   nmethodLocker nl_callee(callee_nm);
1262 #ifdef ASSERT
1263   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1264 #endif
1265 
1266   if (is_virtual) {
1267     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1268     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1269     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1270     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1271                      is_optimized, static_bound, virtual_call_info,
1272                      CHECK_(methodHandle()));
1273   } else {
1274     // static call
1275     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1276   }
1277 
1278   // grab lock, check for deoptimization and potentially patch caller
1279   {
1280     MutexLocker ml_patch(CompiledIC_lock);
1281 
1282     // Lock blocks for safepoint during which both nmethods can change state.
1283 
1284     // Now that we are ready to patch if the Method* was redefined then
1285     // don't update call site and let the caller retry.
1286     // Don't update call site if callee nmethod was unloaded or deoptimized.
1287     // Don't update call site if callee nmethod was replaced by an other nmethod
1288     // which may happen when multiply alive nmethod (tiered compilation)
1289     // will be supported.
1290     if (!callee_method->is_old() &&
1291         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1292 #ifdef ASSERT
1293       // We must not try to patch to jump to an already unloaded method.
1294       if (dest_entry_point != 0) {
1295         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1296         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1297                "should not call unloaded nmethod");
1298       }
1299 #endif
1300       if (is_virtual) {
1301         nmethod* nm = callee_nm;
1302         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1303         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1304         if (inline_cache->is_clean()) {
1305           inline_cache->set_to_monomorphic(virtual_call_info);
1306         }
1307       } else {
1308         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1309         if (ssc->is_clean()) ssc->set(static_call_info);
1310       }
1311     }
1312 
1313   } // unlock CompiledIC_lock
1314 
1315   return callee_method;
1316 }
1317 
1318 
1319 // Inline caches exist only in compiled code
1320 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1321 #ifdef ASSERT
1322   RegisterMap reg_map(thread, false);
1323   frame stub_frame = thread->last_frame();
1324   assert(stub_frame.is_runtime_frame(), "sanity check");
1325   frame caller_frame = stub_frame.sender(&reg_map);
1326   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1327 #endif /* ASSERT */
1328 
1329   methodHandle callee_method;
1330   JRT_BLOCK
1331     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1332     // Return Method* through TLS
1333     thread->set_vm_result_2(callee_method());
1334   JRT_BLOCK_END
1335   // return compiled code entry point after potential safepoints
1336   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1337   return callee_method->verified_code_entry();
1338 JRT_END
1339 
1340 
1341 // Handle call site that has been made non-entrant
1342 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1343   // 6243940 We might end up in here if the callee is deoptimized
1344   // as we race to call it.  We don't want to take a safepoint if
1345   // the caller was interpreted because the caller frame will look
1346   // interpreted to the stack walkers and arguments are now
1347   // "compiled" so it is much better to make this transition
1348   // invisible to the stack walking code. The i2c path will
1349   // place the callee method in the callee_target. It is stashed
1350   // there because if we try and find the callee by normal means a
1351   // safepoint is possible and have trouble gc'ing the compiled args.
1352   RegisterMap reg_map(thread, false);
1353   frame stub_frame = thread->last_frame();
1354   assert(stub_frame.is_runtime_frame(), "sanity check");
1355   frame caller_frame = stub_frame.sender(&reg_map);
1356 
1357   if (caller_frame.is_interpreted_frame() ||
1358       caller_frame.is_entry_frame()) {
1359     Method* callee = thread->callee_target();
1360     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1361     thread->set_vm_result_2(callee);
1362     thread->set_callee_target(NULL);
1363     return callee->get_c2i_entry();
1364   }
1365 
1366   // Must be compiled to compiled path which is safe to stackwalk
1367   methodHandle callee_method;
1368   JRT_BLOCK
1369     // Force resolving of caller (if we called from compiled frame)
1370     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1371     thread->set_vm_result_2(callee_method());
1372   JRT_BLOCK_END
1373   // return compiled code entry point after potential safepoints
1374   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1375   return callee_method->verified_code_entry();
1376 JRT_END
1377 
1378 // Handle abstract method call
1379 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1380   return StubRoutines::throw_AbstractMethodError_entry();
1381 JRT_END
1382 
1383 
1384 // resolve a static call and patch code
1385 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1386   methodHandle callee_method;
1387   JRT_BLOCK
1388     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1389     thread->set_vm_result_2(callee_method());
1390   JRT_BLOCK_END
1391   // return compiled code entry point after potential safepoints
1392   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1393   return callee_method->verified_code_entry();
1394 JRT_END
1395 
1396 
1397 // resolve virtual call and update inline cache to monomorphic
1398 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1399   methodHandle callee_method;
1400   JRT_BLOCK
1401     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1402     thread->set_vm_result_2(callee_method());
1403   JRT_BLOCK_END
1404   // return compiled code entry point after potential safepoints
1405   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1406   return callee_method->verified_code_entry();
1407 JRT_END
1408 
1409 
1410 // Resolve a virtual call that can be statically bound (e.g., always
1411 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1412 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1413   methodHandle callee_method;
1414   JRT_BLOCK
1415     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1416     thread->set_vm_result_2(callee_method());
1417   JRT_BLOCK_END
1418   // return compiled code entry point after potential safepoints
1419   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1420   return callee_method->verified_code_entry();
1421 JRT_END
1422 
1423 
1424 
1425 
1426 
1427 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1428   ResourceMark rm(thread);
1429   CallInfo call_info;
1430   Bytecodes::Code bc;
1431 
1432   // receiver is NULL for static calls. An exception is thrown for NULL
1433   // receivers for non-static calls
1434   Handle receiver = find_callee_info(thread, bc, call_info,
1435                                      CHECK_(methodHandle()));
1436   // Compiler1 can produce virtual call sites that can actually be statically bound
1437   // If we fell thru to below we would think that the site was going megamorphic
1438   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1439   // we'd try and do a vtable dispatch however methods that can be statically bound
1440   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1441   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1442   // plain ic_miss) and the site will be converted to an optimized virtual call site
1443   // never to miss again. I don't believe C2 will produce code like this but if it
1444   // did this would still be the correct thing to do for it too, hence no ifdef.
1445   //
1446   if (call_info.resolved_method()->can_be_statically_bound()) {
1447     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1448     if (TraceCallFixup) {
1449       RegisterMap reg_map(thread, false);
1450       frame caller_frame = thread->last_frame().sender(&reg_map);
1451       ResourceMark rm(thread);
1452       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1453       callee_method->print_short_name(tty);
1454       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1455       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1456     }
1457     return callee_method;
1458   }
1459 
1460   methodHandle callee_method = call_info.selected_method();
1461 
1462   bool should_be_mono = false;
1463 
1464 #ifndef PRODUCT
1465   Atomic::inc(&_ic_miss_ctr);
1466 
1467   // Statistics & Tracing
1468   if (TraceCallFixup) {
1469     ResourceMark rm(thread);
1470     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1471     callee_method->print_short_name(tty);
1472     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1473   }
1474 
1475   if (ICMissHistogram) {
1476     MutexLocker m(VMStatistic_lock);
1477     RegisterMap reg_map(thread, false);
1478     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1479     // produce statistics under the lock
1480     trace_ic_miss(f.pc());
1481   }
1482 #endif
1483 
1484   // install an event collector so that when a vtable stub is created the
1485   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1486   // event can't be posted when the stub is created as locks are held
1487   // - instead the event will be deferred until the event collector goes
1488   // out of scope.
1489   JvmtiDynamicCodeEventCollector event_collector;
1490 
1491   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1492   { MutexLocker ml_patch (CompiledIC_lock);
1493     RegisterMap reg_map(thread, false);
1494     frame caller_frame = thread->last_frame().sender(&reg_map);
1495     CodeBlob* cb = caller_frame.cb();
1496     if (cb->is_nmethod()) {
1497       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1498       bool should_be_mono = false;
1499       if (inline_cache->is_optimized()) {
1500         if (TraceCallFixup) {
1501           ResourceMark rm(thread);
1502           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1503           callee_method->print_short_name(tty);
1504           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1505         }
1506         should_be_mono = true;
1507       } else if (inline_cache->is_icholder_call()) {
1508         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1509         if ( ic_oop != NULL) {
1510 
1511           if (receiver()->klass() == ic_oop->holder_klass()) {
1512             // This isn't a real miss. We must have seen that compiled code
1513             // is now available and we want the call site converted to a
1514             // monomorphic compiled call site.
1515             // We can't assert for callee_method->code() != NULL because it
1516             // could have been deoptimized in the meantime
1517             if (TraceCallFixup) {
1518               ResourceMark rm(thread);
1519               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1520               callee_method->print_short_name(tty);
1521               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1522             }
1523             should_be_mono = true;
1524           }
1525         }
1526       }
1527 
1528       if (should_be_mono) {
1529 
1530         // We have a path that was monomorphic but was going interpreted
1531         // and now we have (or had) a compiled entry. We correct the IC
1532         // by using a new icBuffer.
1533         CompiledICInfo info;
1534         KlassHandle receiver_klass(THREAD, receiver()->klass());
1535         inline_cache->compute_monomorphic_entry(callee_method,
1536                                                 receiver_klass,
1537                                                 inline_cache->is_optimized(),
1538                                                 false,
1539                                                 info, CHECK_(methodHandle()));
1540         inline_cache->set_to_monomorphic(info);
1541       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1542         // Potential change to megamorphic
1543         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1544         if (!successful) {
1545           inline_cache->set_to_clean();
1546         }
1547       } else {
1548         // Either clean or megamorphic
1549       }
1550     }
1551   } // Release CompiledIC_lock
1552 
1553   return callee_method;
1554 }
1555 
1556 //
1557 // Resets a call-site in compiled code so it will get resolved again.
1558 // This routines handles both virtual call sites, optimized virtual call
1559 // sites, and static call sites. Typically used to change a call sites
1560 // destination from compiled to interpreted.
1561 //
1562 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1563   ResourceMark rm(thread);
1564   RegisterMap reg_map(thread, false);
1565   frame stub_frame = thread->last_frame();
1566   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1567   frame caller = stub_frame.sender(&reg_map);
1568 
1569   // Do nothing if the frame isn't a live compiled frame.
1570   // nmethod could be deoptimized by the time we get here
1571   // so no update to the caller is needed.
1572 
1573   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1574 
1575     address pc = caller.pc();
1576 
1577     // Default call_addr is the location of the "basic" call.
1578     // Determine the address of the call we a reresolving. With
1579     // Inline Caches we will always find a recognizable call.
1580     // With Inline Caches disabled we may or may not find a
1581     // recognizable call. We will always find a call for static
1582     // calls and for optimized virtual calls. For vanilla virtual
1583     // calls it depends on the state of the UseInlineCaches switch.
1584     //
1585     // With Inline Caches disabled we can get here for a virtual call
1586     // for two reasons:
1587     //   1 - calling an abstract method. The vtable for abstract methods
1588     //       will run us thru handle_wrong_method and we will eventually
1589     //       end up in the interpreter to throw the ame.
1590     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1591     //       call and between the time we fetch the entry address and
1592     //       we jump to it the target gets deoptimized. Similar to 1
1593     //       we will wind up in the interprter (thru a c2i with c2).
1594     //
1595     address call_addr = NULL;
1596     {
1597       // Get call instruction under lock because another thread may be
1598       // busy patching it.
1599       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1600       // Location of call instruction
1601       if (NativeCall::is_call_before(pc)) {
1602         NativeCall *ncall = nativeCall_before(pc);
1603         call_addr = ncall->instruction_address();
1604       }
1605     }
1606 
1607     // Check for static or virtual call
1608     bool is_static_call = false;
1609     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1610     // Make sure nmethod doesn't get deoptimized and removed until
1611     // this is done with it.
1612     // CLEANUP - with lazy deopt shouldn't need this lock
1613     nmethodLocker nmlock(caller_nm);
1614 
1615     if (call_addr != NULL) {
1616       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1617       int ret = iter.next(); // Get item
1618       if (ret) {
1619         assert(iter.addr() == call_addr, "must find call");
1620         if (iter.type() == relocInfo::static_call_type) {
1621           is_static_call = true;
1622         } else {
1623           assert(iter.type() == relocInfo::virtual_call_type ||
1624                  iter.type() == relocInfo::opt_virtual_call_type
1625                 , "unexpected relocInfo. type");
1626         }
1627       } else {
1628         assert(!UseInlineCaches, "relocation info. must exist for this address");
1629       }
1630 
1631       // Cleaning the inline cache will force a new resolve. This is more robust
1632       // than directly setting it to the new destination, since resolving of calls
1633       // is always done through the same code path. (experience shows that it
1634       // leads to very hard to track down bugs, if an inline cache gets updated
1635       // to a wrong method). It should not be performance critical, since the
1636       // resolve is only done once.
1637 
1638       MutexLocker ml(CompiledIC_lock);
1639       if (is_static_call) {
1640         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1641         ssc->set_to_clean();
1642       } else {
1643         // compiled, dispatched call (which used to call an interpreted method)
1644         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1645         inline_cache->set_to_clean();
1646       }
1647     }
1648 
1649   }
1650 
1651   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1652 
1653 
1654 #ifndef PRODUCT
1655   Atomic::inc(&_wrong_method_ctr);
1656 
1657   if (TraceCallFixup) {
1658     ResourceMark rm(thread);
1659     tty->print("handle_wrong_method reresolving call to");
1660     callee_method->print_short_name(tty);
1661     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1662   }
1663 #endif
1664 
1665   return callee_method;
1666 }
1667 
1668 #ifdef ASSERT
1669 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1670                                                                 const BasicType* sig_bt,
1671                                                                 const VMRegPair* regs) {
1672   ResourceMark rm;
1673   const int total_args_passed = method->size_of_parameters();
1674   const VMRegPair*    regs_with_member_name = regs;
1675         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1676 
1677   const int member_arg_pos = total_args_passed - 1;
1678   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1679   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1680 
1681   const bool is_outgoing = method->is_method_handle_intrinsic();
1682   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1683 
1684   for (int i = 0; i < member_arg_pos; i++) {
1685     VMReg a =    regs_with_member_name[i].first();
1686     VMReg b = regs_without_member_name[i].first();
1687     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1688   }
1689   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1690 }
1691 #endif
1692 
1693 // ---------------------------------------------------------------------------
1694 // We are calling the interpreter via a c2i. Normally this would mean that
1695 // we were called by a compiled method. However we could have lost a race
1696 // where we went int -> i2c -> c2i and so the caller could in fact be
1697 // interpreted. If the caller is compiled we attempt to patch the caller
1698 // so he no longer calls into the interpreter.
1699 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1700   Method* moop(method);
1701 
1702   address entry_point = moop->from_compiled_entry();
1703 
1704   // It's possible that deoptimization can occur at a call site which hasn't
1705   // been resolved yet, in which case this function will be called from
1706   // an nmethod that has been patched for deopt and we can ignore the
1707   // request for a fixup.
1708   // Also it is possible that we lost a race in that from_compiled_entry
1709   // is now back to the i2c in that case we don't need to patch and if
1710   // we did we'd leap into space because the callsite needs to use
1711   // "to interpreter" stub in order to load up the Method*. Don't
1712   // ask me how I know this...
1713 
1714   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1715   if (cb == NULL || !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1716     return;
1717   }
1718 
1719   // The check above makes sure this is a nmethod.
1720   nmethod* nm = cb->as_nmethod_or_null();
1721   assert(nm, "must be");
1722 
1723   // Get the return PC for the passed caller PC.
1724   address return_pc = caller_pc + frame::pc_return_offset;
1725 
1726   // There is a benign race here. We could be attempting to patch to a compiled
1727   // entry point at the same time the callee is being deoptimized. If that is
1728   // the case then entry_point may in fact point to a c2i and we'd patch the
1729   // call site with the same old data. clear_code will set code() to NULL
1730   // at the end of it. If we happen to see that NULL then we can skip trying
1731   // to patch. If we hit the window where the callee has a c2i in the
1732   // from_compiled_entry and the NULL isn't present yet then we lose the race
1733   // and patch the code with the same old data. Asi es la vida.
1734 
1735   if (moop->code() == NULL) return;
1736 
1737   if (nm->is_in_use()) {
1738 
1739     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1740     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1741     if (NativeCall::is_call_before(return_pc)) {
1742       NativeCall *call = nativeCall_before(return_pc);
1743       //
1744       // bug 6281185. We might get here after resolving a call site to a vanilla
1745       // virtual call. Because the resolvee uses the verified entry it may then
1746       // see compiled code and attempt to patch the site by calling us. This would
1747       // then incorrectly convert the call site to optimized and its downhill from
1748       // there. If you're lucky you'll get the assert in the bugid, if not you've
1749       // just made a call site that could be megamorphic into a monomorphic site
1750       // for the rest of its life! Just another racing bug in the life of
1751       // fixup_callers_callsite ...
1752       //
1753       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1754       iter.next();
1755       assert(iter.has_current(), "must have a reloc at java call site");
1756       relocInfo::relocType typ = iter.reloc()->type();
1757       if ( typ != relocInfo::static_call_type &&
1758            typ != relocInfo::opt_virtual_call_type &&
1759            typ != relocInfo::static_stub_type) {
1760         return;
1761       }
1762       address destination = call->destination();
1763       if (destination != entry_point) {
1764         CodeBlob* callee = CodeCache::find_blob(destination);
1765         // callee == cb seems weird. It means calling interpreter thru stub.
1766         if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1767           // static call or optimized virtual
1768           if (TraceCallFixup) {
1769             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1770             moop->print_short_name(tty);
1771             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1772           }
1773           call->set_destination_mt_safe(entry_point);
1774         } else {
1775           if (TraceCallFixup) {
1776             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1777             moop->print_short_name(tty);
1778             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1779           }
1780           // assert is too strong could also be resolve destinations.
1781           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1782         }
1783       } else {
1784           if (TraceCallFixup) {
1785             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1786             moop->print_short_name(tty);
1787             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1788           }
1789       }
1790     }
1791   }
1792 IRT_END
1793 
1794 
1795 // same as JVM_Arraycopy, but called directly from compiled code
1796 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1797                                                 oopDesc* dest, jint dest_pos,
1798                                                 jint length,
1799                                                 JavaThread* thread)) {
1800 #ifndef PRODUCT
1801   _slow_array_copy_ctr++;
1802 #endif
1803   // Check if we have null pointers
1804   if (src == NULL || dest == NULL) {
1805     THROW(vmSymbols::java_lang_NullPointerException());
1806   }
1807   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1808   // even though the copy_array API also performs dynamic checks to ensure
1809   // that src and dest are truly arrays (and are conformable).
1810   // The copy_array mechanism is awkward and could be removed, but
1811   // the compilers don't call this function except as a last resort,
1812   // so it probably doesn't matter.
1813   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1814                                         (arrayOopDesc*)dest, dest_pos,
1815                                         length, thread);
1816 }
1817 JRT_END
1818 
1819 char* SharedRuntime::generate_class_cast_message(
1820     JavaThread* thread, const char* objName) {
1821 
1822   // Get target class name from the checkcast instruction
1823   vframeStream vfst(thread, true);
1824   assert(!vfst.at_end(), "Java frame must exist");
1825   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1826   Klass* targetKlass = vfst.method()->constants()->klass_at(
1827     cc.index(), thread);
1828   return generate_class_cast_message(objName, targetKlass->external_name());
1829 }
1830 
1831 char* SharedRuntime::generate_class_cast_message(
1832     const char* objName, const char* targetKlassName, const char* desc) {
1833   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1834 
1835   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1836   if (NULL == message) {
1837     // Shouldn't happen, but don't cause even more problems if it does
1838     message = const_cast<char*>(objName);
1839   } else {
1840     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1841   }
1842   return message;
1843 }
1844 
1845 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1846   (void) JavaThread::current()->reguard_stack();
1847 JRT_END
1848 
1849 
1850 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1851 #ifndef PRODUCT
1852 int SharedRuntime::_monitor_enter_ctr=0;
1853 #endif
1854 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1855   oop obj(_obj);
1856 #ifndef PRODUCT
1857   _monitor_enter_ctr++;             // monitor enter slow
1858 #endif
1859   if (PrintBiasedLockingStatistics) {
1860     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1861   }
1862   Handle h_obj(THREAD, obj);
1863   if (UseBiasedLocking) {
1864     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1865     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1866   } else {
1867     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1868   }
1869   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1870 JRT_END
1871 
1872 #ifndef PRODUCT
1873 int SharedRuntime::_monitor_exit_ctr=0;
1874 #endif
1875 // Handles the uncommon cases of monitor unlocking in compiled code
1876 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1877    oop obj(_obj);
1878 #ifndef PRODUCT
1879   _monitor_exit_ctr++;              // monitor exit slow
1880 #endif
1881   Thread* THREAD = JavaThread::current();
1882   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1883   // testing was unable to ever fire the assert that guarded it so I have removed it.
1884   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1885 #undef MIGHT_HAVE_PENDING
1886 #ifdef MIGHT_HAVE_PENDING
1887   // Save and restore any pending_exception around the exception mark.
1888   // While the slow_exit must not throw an exception, we could come into
1889   // this routine with one set.
1890   oop pending_excep = NULL;
1891   const char* pending_file;
1892   int pending_line;
1893   if (HAS_PENDING_EXCEPTION) {
1894     pending_excep = PENDING_EXCEPTION;
1895     pending_file  = THREAD->exception_file();
1896     pending_line  = THREAD->exception_line();
1897     CLEAR_PENDING_EXCEPTION;
1898   }
1899 #endif /* MIGHT_HAVE_PENDING */
1900 
1901   {
1902     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1903     EXCEPTION_MARK;
1904     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1905   }
1906 
1907 #ifdef MIGHT_HAVE_PENDING
1908   if (pending_excep != NULL) {
1909     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1910   }
1911 #endif /* MIGHT_HAVE_PENDING */
1912 JRT_END
1913 
1914 #ifndef PRODUCT
1915 
1916 void SharedRuntime::print_statistics() {
1917   ttyLocker ttyl;
1918   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1919 
1920   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1921   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1922   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1923 
1924   SharedRuntime::print_ic_miss_histogram();
1925 
1926   if (CountRemovableExceptions) {
1927     if (_nof_removable_exceptions > 0) {
1928       Unimplemented(); // this counter is not yet incremented
1929       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1930     }
1931   }
1932 
1933   // Dump the JRT_ENTRY counters
1934   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1935   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1936   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1937   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1938   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1939   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1940   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1941 
1942   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1943   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1944   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1945   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1946   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1947 
1948   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1949   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1950   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1951   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1952   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1953   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1954   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1955   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1956   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1957   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1958   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1959   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1960   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1961   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1962   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1963   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1964 
1965   AdapterHandlerLibrary::print_statistics();
1966 
1967   if (xtty != NULL)  xtty->tail("statistics");
1968 }
1969 
1970 inline double percent(int x, int y) {
1971   return 100.0 * x / MAX2(y, 1);
1972 }
1973 
1974 class MethodArityHistogram {
1975  public:
1976   enum { MAX_ARITY = 256 };
1977  private:
1978   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1979   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1980   static int _max_arity;                      // max. arity seen
1981   static int _max_size;                       // max. arg size seen
1982 
1983   static void add_method_to_histogram(nmethod* nm) {
1984     Method* m = nm->method();
1985     ArgumentCount args(m->signature());
1986     int arity   = args.size() + (m->is_static() ? 0 : 1);
1987     int argsize = m->size_of_parameters();
1988     arity   = MIN2(arity, MAX_ARITY-1);
1989     argsize = MIN2(argsize, MAX_ARITY-1);
1990     int count = nm->method()->compiled_invocation_count();
1991     _arity_histogram[arity]  += count;
1992     _size_histogram[argsize] += count;
1993     _max_arity = MAX2(_max_arity, arity);
1994     _max_size  = MAX2(_max_size, argsize);
1995   }
1996 
1997   void print_histogram_helper(int n, int* histo, const char* name) {
1998     const int N = MIN2(5, n);
1999     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2000     double sum = 0;
2001     double weighted_sum = 0;
2002     int i;
2003     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2004     double rest = sum;
2005     double percent = sum / 100;
2006     for (i = 0; i <= N; i++) {
2007       rest -= histo[i];
2008       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2009     }
2010     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2011     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2012   }
2013 
2014   void print_histogram() {
2015     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2016     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2017     tty->print_cr("\nSame for parameter size (in words):");
2018     print_histogram_helper(_max_size, _size_histogram, "size");
2019     tty->cr();
2020   }
2021 
2022  public:
2023   MethodArityHistogram() {
2024     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2025     _max_arity = _max_size = 0;
2026     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2027     CodeCache::nmethods_do(add_method_to_histogram);
2028     print_histogram();
2029   }
2030 };
2031 
2032 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2033 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2034 int MethodArityHistogram::_max_arity;
2035 int MethodArityHistogram::_max_size;
2036 
2037 void SharedRuntime::print_call_statistics(int comp_total) {
2038   tty->print_cr("Calls from compiled code:");
2039   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2040   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2041   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2042   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2043   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2044   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2045   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2046   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2047   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2048   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2049   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2050   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2051   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2052   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2053   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2054   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2055   tty->cr();
2056   tty->print_cr("Note 1: counter updates are not MT-safe.");
2057   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2058   tty->print_cr("        %% in nested categories are relative to their category");
2059   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2060   tty->cr();
2061 
2062   MethodArityHistogram h;
2063 }
2064 #endif
2065 
2066 
2067 // A simple wrapper class around the calling convention information
2068 // that allows sharing of adapters for the same calling convention.
2069 class AdapterFingerPrint : public CHeapObj<mtCode> {
2070  private:
2071   enum {
2072     _basic_type_bits = 4,
2073     _basic_type_mask = right_n_bits(_basic_type_bits),
2074     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2075     _compact_int_count = 3
2076   };
2077   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2078   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2079 
2080   union {
2081     int  _compact[_compact_int_count];
2082     int* _fingerprint;
2083   } _value;
2084   int _length; // A negative length indicates the fingerprint is in the compact form,
2085                // Otherwise _value._fingerprint is the array.
2086 
2087   // Remap BasicTypes that are handled equivalently by the adapters.
2088   // These are correct for the current system but someday it might be
2089   // necessary to make this mapping platform dependent.
2090   static int adapter_encoding(BasicType in) {
2091     switch(in) {
2092       case T_BOOLEAN:
2093       case T_BYTE:
2094       case T_SHORT:
2095       case T_CHAR:
2096         // There are all promoted to T_INT in the calling convention
2097         return T_INT;
2098 
2099       case T_OBJECT:
2100       case T_ARRAY:
2101         // In other words, we assume that any register good enough for
2102         // an int or long is good enough for a managed pointer.
2103 #ifdef _LP64
2104         return T_LONG;
2105 #else
2106         return T_INT;
2107 #endif
2108 
2109       case T_INT:
2110       case T_LONG:
2111       case T_FLOAT:
2112       case T_DOUBLE:
2113       case T_VOID:
2114         return in;
2115 
2116       default:
2117         ShouldNotReachHere();
2118         return T_CONFLICT;
2119     }
2120   }
2121 
2122  public:
2123   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2124     // The fingerprint is based on the BasicType signature encoded
2125     // into an array of ints with eight entries per int.
2126     int* ptr;
2127     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2128     if (len <= _compact_int_count) {
2129       assert(_compact_int_count == 3, "else change next line");
2130       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2131       // Storing the signature encoded as signed chars hits about 98%
2132       // of the time.
2133       _length = -len;
2134       ptr = _value._compact;
2135     } else {
2136       _length = len;
2137       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2138       ptr = _value._fingerprint;
2139     }
2140 
2141     // Now pack the BasicTypes with 8 per int
2142     int sig_index = 0;
2143     for (int index = 0; index < len; index++) {
2144       int value = 0;
2145       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2146         int bt = ((sig_index < total_args_passed)
2147                   ? adapter_encoding(sig_bt[sig_index++])
2148                   : 0);
2149         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2150         value = (value << _basic_type_bits) | bt;
2151       }
2152       ptr[index] = value;
2153     }
2154   }
2155 
2156   ~AdapterFingerPrint() {
2157     if (_length > 0) {
2158       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2159     }
2160   }
2161 
2162   int value(int index) {
2163     if (_length < 0) {
2164       return _value._compact[index];
2165     }
2166     return _value._fingerprint[index];
2167   }
2168   int length() {
2169     if (_length < 0) return -_length;
2170     return _length;
2171   }
2172 
2173   bool is_compact() {
2174     return _length <= 0;
2175   }
2176 
2177   unsigned int compute_hash() {
2178     int hash = 0;
2179     for (int i = 0; i < length(); i++) {
2180       int v = value(i);
2181       hash = (hash << 8) ^ v ^ (hash >> 5);
2182     }
2183     return (unsigned int)hash;
2184   }
2185 
2186   const char* as_string() {
2187     stringStream st;
2188     st.print("0x");
2189     for (int i = 0; i < length(); i++) {
2190       st.print("%08x", value(i));
2191     }
2192     return st.as_string();
2193   }
2194 
2195   bool equals(AdapterFingerPrint* other) {
2196     if (other->_length != _length) {
2197       return false;
2198     }
2199     if (_length < 0) {
2200       assert(_compact_int_count == 3, "else change next line");
2201       return _value._compact[0] == other->_value._compact[0] &&
2202              _value._compact[1] == other->_value._compact[1] &&
2203              _value._compact[2] == other->_value._compact[2];
2204     } else {
2205       for (int i = 0; i < _length; i++) {
2206         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2207           return false;
2208         }
2209       }
2210     }
2211     return true;
2212   }
2213 };
2214 
2215 
2216 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2217 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2218   friend class AdapterHandlerTableIterator;
2219 
2220  private:
2221 
2222 #ifndef PRODUCT
2223   static int _lookups; // number of calls to lookup
2224   static int _buckets; // number of buckets checked
2225   static int _equals;  // number of buckets checked with matching hash
2226   static int _hits;    // number of successful lookups
2227   static int _compact; // number of equals calls with compact signature
2228 #endif
2229 
2230   AdapterHandlerEntry* bucket(int i) {
2231     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2232   }
2233 
2234  public:
2235   AdapterHandlerTable()
2236     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2237 
2238   // Create a new entry suitable for insertion in the table
2239   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2240     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2241     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2242     return entry;
2243   }
2244 
2245   // Insert an entry into the table
2246   void add(AdapterHandlerEntry* entry) {
2247     int index = hash_to_index(entry->hash());
2248     add_entry(index, entry);
2249   }
2250 
2251   void free_entry(AdapterHandlerEntry* entry) {
2252     entry->deallocate();
2253     BasicHashtable<mtCode>::free_entry(entry);
2254   }
2255 
2256   // Find a entry with the same fingerprint if it exists
2257   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2258     NOT_PRODUCT(_lookups++);
2259     AdapterFingerPrint fp(total_args_passed, sig_bt);
2260     unsigned int hash = fp.compute_hash();
2261     int index = hash_to_index(hash);
2262     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2263       NOT_PRODUCT(_buckets++);
2264       if (e->hash() == hash) {
2265         NOT_PRODUCT(_equals++);
2266         if (fp.equals(e->fingerprint())) {
2267 #ifndef PRODUCT
2268           if (fp.is_compact()) _compact++;
2269           _hits++;
2270 #endif
2271           return e;
2272         }
2273       }
2274     }
2275     return NULL;
2276   }
2277 
2278 #ifndef PRODUCT
2279   void print_statistics() {
2280     ResourceMark rm;
2281     int longest = 0;
2282     int empty = 0;
2283     int total = 0;
2284     int nonempty = 0;
2285     for (int index = 0; index < table_size(); index++) {
2286       int count = 0;
2287       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2288         count++;
2289       }
2290       if (count != 0) nonempty++;
2291       if (count == 0) empty++;
2292       if (count > longest) longest = count;
2293       total += count;
2294     }
2295     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2296                   empty, longest, total, total / (double)nonempty);
2297     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2298                   _lookups, _buckets, _equals, _hits, _compact);
2299   }
2300 #endif
2301 };
2302 
2303 
2304 #ifndef PRODUCT
2305 
2306 int AdapterHandlerTable::_lookups;
2307 int AdapterHandlerTable::_buckets;
2308 int AdapterHandlerTable::_equals;
2309 int AdapterHandlerTable::_hits;
2310 int AdapterHandlerTable::_compact;
2311 
2312 #endif
2313 
2314 class AdapterHandlerTableIterator : public StackObj {
2315  private:
2316   AdapterHandlerTable* _table;
2317   int _index;
2318   AdapterHandlerEntry* _current;
2319 
2320   void scan() {
2321     while (_index < _table->table_size()) {
2322       AdapterHandlerEntry* a = _table->bucket(_index);
2323       _index++;
2324       if (a != NULL) {
2325         _current = a;
2326         return;
2327       }
2328     }
2329   }
2330 
2331  public:
2332   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2333     scan();
2334   }
2335   bool has_next() {
2336     return _current != NULL;
2337   }
2338   AdapterHandlerEntry* next() {
2339     if (_current != NULL) {
2340       AdapterHandlerEntry* result = _current;
2341       _current = _current->next();
2342       if (_current == NULL) scan();
2343       return result;
2344     } else {
2345       return NULL;
2346     }
2347   }
2348 };
2349 
2350 
2351 // ---------------------------------------------------------------------------
2352 // Implementation of AdapterHandlerLibrary
2353 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2354 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2355 const int AdapterHandlerLibrary_size = 16*K;
2356 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2357 
2358 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2359   // Should be called only when AdapterHandlerLibrary_lock is active.
2360   if (_buffer == NULL) // Initialize lazily
2361       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2362   return _buffer;
2363 }
2364 
2365 void AdapterHandlerLibrary::initialize() {
2366   if (_adapters != NULL) return;
2367   _adapters = new AdapterHandlerTable();
2368 
2369   // Create a special handler for abstract methods.  Abstract methods
2370   // are never compiled so an i2c entry is somewhat meaningless, but
2371   // throw AbstractMethodError just in case.
2372   // Pass wrong_method_abstract for the c2i transitions to return
2373   // AbstractMethodError for invalid invocations.
2374   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2375   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2376                                                               StubRoutines::throw_AbstractMethodError_entry(),
2377                                                               wrong_method_abstract, wrong_method_abstract);
2378 }
2379 
2380 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2381                                                       address i2c_entry,
2382                                                       address c2i_entry,
2383                                                       address c2i_unverified_entry) {
2384   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2385 }
2386 
2387 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2388   // Use customized signature handler.  Need to lock around updates to
2389   // the AdapterHandlerTable (it is not safe for concurrent readers
2390   // and a single writer: this could be fixed if it becomes a
2391   // problem).
2392 
2393   // Get the address of the ic_miss handlers before we grab the
2394   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2395   // was caused by the initialization of the stubs happening
2396   // while we held the lock and then notifying jvmti while
2397   // holding it. This just forces the initialization to be a little
2398   // earlier.
2399   address ic_miss = SharedRuntime::get_ic_miss_stub();
2400   assert(ic_miss != NULL, "must have handler");
2401 
2402   ResourceMark rm;
2403 
2404   NOT_PRODUCT(int insts_size);
2405   AdapterBlob* new_adapter = NULL;
2406   AdapterHandlerEntry* entry = NULL;
2407   AdapterFingerPrint* fingerprint = NULL;
2408   {
2409     MutexLocker mu(AdapterHandlerLibrary_lock);
2410     // make sure data structure is initialized
2411     initialize();
2412 
2413     if (method->is_abstract()) {
2414       return _abstract_method_handler;
2415     }
2416 
2417     // Fill in the signature array, for the calling-convention call.
2418     int total_args_passed = method->size_of_parameters(); // All args on stack
2419 
2420     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2421     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2422     int i = 0;
2423     if (!method->is_static())  // Pass in receiver first
2424       sig_bt[i++] = T_OBJECT;
2425     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2426       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2427       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2428         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2429     }
2430     assert(i == total_args_passed, "");
2431 
2432     // Lookup method signature's fingerprint
2433     entry = _adapters->lookup(total_args_passed, sig_bt);
2434 
2435 #ifdef ASSERT
2436     AdapterHandlerEntry* shared_entry = NULL;
2437     // Start adapter sharing verification only after the VM is booted.
2438     if (VerifyAdapterSharing && (entry != NULL)) {
2439       shared_entry = entry;
2440       entry = NULL;
2441     }
2442 #endif
2443 
2444     if (entry != NULL) {
2445       return entry;
2446     }
2447 
2448     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2449     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2450 
2451     // Make a C heap allocated version of the fingerprint to store in the adapter
2452     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2453 
2454     // StubRoutines::code2() is initialized after this function can be called. As a result,
2455     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2456     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2457     // stub that ensure that an I2C stub is called from an interpreter frame.
2458     bool contains_all_checks = StubRoutines::code2() != NULL;
2459 
2460     // Create I2C & C2I handlers
2461     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2462     if (buf != NULL) {
2463       CodeBuffer buffer(buf);
2464       short buffer_locs[20];
2465       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2466                                              sizeof(buffer_locs)/sizeof(relocInfo));
2467 
2468       MacroAssembler _masm(&buffer);
2469       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2470                                                      total_args_passed,
2471                                                      comp_args_on_stack,
2472                                                      sig_bt,
2473                                                      regs,
2474                                                      fingerprint);
2475 #ifdef ASSERT
2476       if (VerifyAdapterSharing) {
2477         if (shared_entry != NULL) {
2478           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2479           // Release the one just created and return the original
2480           _adapters->free_entry(entry);
2481           return shared_entry;
2482         } else  {
2483           entry->save_code(buf->code_begin(), buffer.insts_size());
2484         }
2485       }
2486 #endif
2487 
2488       new_adapter = AdapterBlob::create(&buffer);
2489       NOT_PRODUCT(insts_size = buffer.insts_size());
2490     }
2491     if (new_adapter == NULL) {
2492       // CodeCache is full, disable compilation
2493       // Ought to log this but compile log is only per compile thread
2494       // and we're some non descript Java thread.
2495       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2496       CompileBroker::handle_full_code_cache();
2497       return NULL; // Out of CodeCache space
2498     }
2499     entry->relocate(new_adapter->content_begin());
2500 #ifndef PRODUCT
2501     // debugging suppport
2502     if (PrintAdapterHandlers || PrintStubCode) {
2503       ttyLocker ttyl;
2504       entry->print_adapter_on(tty);
2505       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2506                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2507                     method->signature()->as_C_string(), insts_size);
2508       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2509       if (Verbose || PrintStubCode) {
2510         address first_pc = entry->base_address();
2511         if (first_pc != NULL) {
2512           Disassembler::decode(first_pc, first_pc + insts_size);
2513           tty->cr();
2514         }
2515       }
2516     }
2517 #endif
2518     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2519     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2520     if (contains_all_checks || !VerifyAdapterCalls) {
2521       _adapters->add(entry);
2522     }
2523   }
2524   // Outside of the lock
2525   if (new_adapter != NULL) {
2526     char blob_id[256];
2527     jio_snprintf(blob_id,
2528                  sizeof(blob_id),
2529                  "%s(%s)@" PTR_FORMAT,
2530                  new_adapter->name(),
2531                  fingerprint->as_string(),
2532                  new_adapter->content_begin());
2533     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2534 
2535     if (JvmtiExport::should_post_dynamic_code_generated()) {
2536       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2537     }
2538   }
2539   return entry;
2540 }
2541 
2542 address AdapterHandlerEntry::base_address() {
2543   address base = _i2c_entry;
2544   if (base == NULL)  base = _c2i_entry;
2545   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2546   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2547   return base;
2548 }
2549 
2550 void AdapterHandlerEntry::relocate(address new_base) {
2551   address old_base = base_address();
2552   assert(old_base != NULL, "");
2553   ptrdiff_t delta = new_base - old_base;
2554   if (_i2c_entry != NULL)
2555     _i2c_entry += delta;
2556   if (_c2i_entry != NULL)
2557     _c2i_entry += delta;
2558   if (_c2i_unverified_entry != NULL)
2559     _c2i_unverified_entry += delta;
2560   assert(base_address() == new_base, "");
2561 }
2562 
2563 
2564 void AdapterHandlerEntry::deallocate() {
2565   delete _fingerprint;
2566 #ifdef ASSERT
2567   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2568 #endif
2569 }
2570 
2571 
2572 #ifdef ASSERT
2573 // Capture the code before relocation so that it can be compared
2574 // against other versions.  If the code is captured after relocation
2575 // then relative instructions won't be equivalent.
2576 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2577   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2578   _saved_code_length = length;
2579   memcpy(_saved_code, buffer, length);
2580 }
2581 
2582 
2583 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2584   if (length != _saved_code_length) {
2585     return false;
2586   }
2587 
2588   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2589 }
2590 #endif
2591 
2592 
2593 /**
2594  * Create a native wrapper for this native method.  The wrapper converts the
2595  * Java-compiled calling convention to the native convention, handles
2596  * arguments, and transitions to native.  On return from the native we transition
2597  * back to java blocking if a safepoint is in progress.
2598  */
2599 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2600   ResourceMark rm;
2601   nmethod* nm = NULL;
2602 
2603   assert(method->is_native(), "must be native");
2604   assert(method->is_method_handle_intrinsic() ||
2605          method->has_native_function(), "must have something valid to call!");
2606 
2607   {
2608     // Perform the work while holding the lock, but perform any printing outside the lock
2609     MutexLocker mu(AdapterHandlerLibrary_lock);
2610     // See if somebody beat us to it
2611     nm = method->code();
2612     if (nm != NULL) {
2613       return;
2614     }
2615 
2616     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2617     assert(compile_id > 0, "Must generate native wrapper");
2618 
2619 
2620     ResourceMark rm;
2621     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2622     if (buf != NULL) {
2623       CodeBuffer buffer(buf);
2624       double locs_buf[20];
2625       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2626       MacroAssembler _masm(&buffer);
2627 
2628       // Fill in the signature array, for the calling-convention call.
2629       const int total_args_passed = method->size_of_parameters();
2630 
2631       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2632       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2633       int i=0;
2634       if( !method->is_static() )  // Pass in receiver first
2635         sig_bt[i++] = T_OBJECT;
2636       SignatureStream ss(method->signature());
2637       for( ; !ss.at_return_type(); ss.next()) {
2638         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2639         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2640           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2641       }
2642       assert(i == total_args_passed, "");
2643       BasicType ret_type = ss.type();
2644 
2645       // Now get the compiled-Java layout as input (or output) arguments.
2646       // NOTE: Stubs for compiled entry points of method handle intrinsics
2647       // are just trampolines so the argument registers must be outgoing ones.
2648       const bool is_outgoing = method->is_method_handle_intrinsic();
2649       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2650 
2651       // Generate the compiled-to-native wrapper code
2652       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2653 
2654       if (nm != NULL) {
2655         method->set_code(method, nm);
2656       }
2657     }
2658   } // Unlock AdapterHandlerLibrary_lock
2659 
2660 
2661   // Install the generated code.
2662   if (nm != NULL) {
2663     if (PrintCompilation) {
2664       ttyLocker ttyl;
2665       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2666     }
2667     nm->post_compiled_method_load_event();
2668   } else {
2669     // CodeCache is full, disable compilation
2670     CompileBroker::handle_full_code_cache();
2671   }
2672 }
2673 
2674 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2675   assert(thread == JavaThread::current(), "must be");
2676   // The code is about to enter a JNI lazy critical native method and
2677   // _needs_gc is true, so if this thread is already in a critical
2678   // section then just return, otherwise this thread should block
2679   // until needs_gc has been cleared.
2680   if (thread->in_critical()) {
2681     return;
2682   }
2683   // Lock and unlock a critical section to give the system a chance to block
2684   GC_locker::lock_critical(thread);
2685   GC_locker::unlock_critical(thread);
2686 JRT_END
2687 
2688 #ifdef HAVE_DTRACE_H
2689 /**
2690  * Create a dtrace nmethod for this method.  The wrapper converts the
2691  * Java-compiled calling convention to the native convention, makes a dummy call
2692  * (actually nops for the size of the call instruction, which become a trap if
2693  * probe is enabled), and finally returns to the caller. Since this all looks like a
2694  * leaf, no thread transition is needed.
2695  */
2696 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2697   ResourceMark rm;
2698   nmethod* nm = NULL;
2699 
2700   if (PrintCompilation) {
2701     ttyLocker ttyl;
2702     tty->print("---   n  ");
2703     method->print_short_name(tty);
2704     if (method->is_static()) {
2705       tty->print(" (static)");
2706     }
2707     tty->cr();
2708   }
2709 
2710   {
2711     // perform the work while holding the lock, but perform any printing
2712     // outside the lock
2713     MutexLocker mu(AdapterHandlerLibrary_lock);
2714     // See if somebody beat us to it
2715     nm = method->code();
2716     if (nm) {
2717       return nm;
2718     }
2719 
2720     ResourceMark rm;
2721 
2722     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2723     if (buf != NULL) {
2724       CodeBuffer buffer(buf);
2725       // Need a few relocation entries
2726       double locs_buf[20];
2727       buffer.insts()->initialize_shared_locs(
2728         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2729       MacroAssembler _masm(&buffer);
2730 
2731       // Generate the compiled-to-native wrapper code
2732       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2733     }
2734   }
2735   return nm;
2736 }
2737 
2738 // the dtrace method needs to convert java lang string to utf8 string.
2739 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2740   typeArrayOop jlsValue  = java_lang_String::value(src);
2741   int          jlsOffset = java_lang_String::offset(src);
2742   int          jlsLen    = java_lang_String::length(src);
2743   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2744                                            jlsValue->char_at_addr(jlsOffset);
2745   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2746   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2747 }
2748 #endif // ndef HAVE_DTRACE_H
2749 
2750 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2751   int argcnt = in_args_count;
2752   if (CCallingConventionRequiresIntsAsLongs) {
2753     for (int in = 0; in < in_args_count; in++) {
2754       BasicType bt = in_sig_bt[in];
2755       switch (bt) {
2756         case T_BOOLEAN:
2757         case T_CHAR:
2758         case T_BYTE:
2759         case T_SHORT:
2760         case T_INT:
2761           argcnt++;
2762           break;
2763         default:
2764           break;
2765       }
2766     }
2767   } else {
2768     assert(0, "This should not be needed on this platform");
2769   }
2770 
2771   return argcnt;
2772 }
2773 
2774 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2775                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2776   if (CCallingConventionRequiresIntsAsLongs) {
2777     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2778     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2779 
2780     int argcnt = 0;
2781     for (int in = 0; in < in_args_count; in++, argcnt++) {
2782       BasicType bt  = in_sig_bt[in];
2783       VMRegPair reg = in_regs[in];
2784       switch (bt) {
2785         case T_BOOLEAN:
2786         case T_CHAR:
2787         case T_BYTE:
2788         case T_SHORT:
2789         case T_INT:
2790           // Convert (bt) to (T_LONG,bt).
2791           new_in_sig_bt[argcnt  ] = T_LONG;
2792           new_in_sig_bt[argcnt+1] = bt;
2793           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2794           new_in_regs[argcnt  ].set2(reg.first());
2795           new_in_regs[argcnt+1].set_bad();
2796           argcnt++;
2797           break;
2798         default:
2799           // No conversion needed.
2800           new_in_sig_bt[argcnt] = bt;
2801           new_in_regs[argcnt]   = reg;
2802           break;
2803       }
2804     }
2805     assert(argcnt == i2l_argcnt, "must match");
2806 
2807     in_regs = new_in_regs;
2808     in_sig_bt = new_in_sig_bt;
2809     in_args_count = i2l_argcnt;
2810   } else {
2811     assert(0, "This should not be needed on this platform");
2812   }
2813 }
2814 
2815 // -------------------------------------------------------------------------
2816 // Java-Java calling convention
2817 // (what you use when Java calls Java)
2818 
2819 //------------------------------name_for_receiver----------------------------------
2820 // For a given signature, return the VMReg for parameter 0.
2821 VMReg SharedRuntime::name_for_receiver() {
2822   VMRegPair regs;
2823   BasicType sig_bt = T_OBJECT;
2824   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2825   // Return argument 0 register.  In the LP64 build pointers
2826   // take 2 registers, but the VM wants only the 'main' name.
2827   return regs.first();
2828 }
2829 
2830 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2831   // This method is returning a data structure allocating as a
2832   // ResourceObject, so do not put any ResourceMarks in here.
2833   char *s = sig->as_C_string();
2834   int len = (int)strlen(s);
2835   s++; len--;                   // Skip opening paren
2836 
2837   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2838   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2839   int cnt = 0;
2840   if (has_receiver) {
2841     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2842   }
2843 
2844   while( *s != ')' ) {          // Find closing right paren
2845     switch( *s++ ) {            // Switch on signature character
2846     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2847     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2848     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2849     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2850     case 'I': sig_bt[cnt++] = T_INT;     break;
2851     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2852     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2853     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2854     case 'V': sig_bt[cnt++] = T_VOID;    break;
2855     case 'L':                   // Oop
2856       while( *s++ != ';'  ) ;   // Skip signature
2857       sig_bt[cnt++] = T_OBJECT;
2858       break;
2859     case '[': {                 // Array
2860       do {                      // Skip optional size
2861         while( *s >= '0' && *s <= '9' ) s++;
2862       } while( *s++ == '[' );   // Nested arrays?
2863       // Skip element type
2864       if( s[-1] == 'L' )
2865         while( *s++ != ';'  ) ; // Skip signature
2866       sig_bt[cnt++] = T_ARRAY;
2867       break;
2868     }
2869     default : ShouldNotReachHere();
2870     }
2871   }
2872 
2873   if (has_appendix) {
2874     sig_bt[cnt++] = T_OBJECT;
2875   }
2876 
2877   assert( cnt < 256, "grow table size" );
2878 
2879   int comp_args_on_stack;
2880   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2881 
2882   // the calling convention doesn't count out_preserve_stack_slots so
2883   // we must add that in to get "true" stack offsets.
2884 
2885   if (comp_args_on_stack) {
2886     for (int i = 0; i < cnt; i++) {
2887       VMReg reg1 = regs[i].first();
2888       if( reg1->is_stack()) {
2889         // Yuck
2890         reg1 = reg1->bias(out_preserve_stack_slots());
2891       }
2892       VMReg reg2 = regs[i].second();
2893       if( reg2->is_stack()) {
2894         // Yuck
2895         reg2 = reg2->bias(out_preserve_stack_slots());
2896       }
2897       regs[i].set_pair(reg2, reg1);
2898     }
2899   }
2900 
2901   // results
2902   *arg_size = cnt;
2903   return regs;
2904 }
2905 
2906 // OSR Migration Code
2907 //
2908 // This code is used convert interpreter frames into compiled frames.  It is
2909 // called from very start of a compiled OSR nmethod.  A temp array is
2910 // allocated to hold the interesting bits of the interpreter frame.  All
2911 // active locks are inflated to allow them to move.  The displaced headers and
2912 // active interpeter locals are copied into the temp buffer.  Then we return
2913 // back to the compiled code.  The compiled code then pops the current
2914 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2915 // copies the interpreter locals and displaced headers where it wants.
2916 // Finally it calls back to free the temp buffer.
2917 //
2918 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2919 
2920 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2921 
2922   //
2923   // This code is dependent on the memory layout of the interpreter local
2924   // array and the monitors. On all of our platforms the layout is identical
2925   // so this code is shared. If some platform lays the their arrays out
2926   // differently then this code could move to platform specific code or
2927   // the code here could be modified to copy items one at a time using
2928   // frame accessor methods and be platform independent.
2929 
2930   frame fr = thread->last_frame();
2931   assert( fr.is_interpreted_frame(), "" );
2932   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2933 
2934   // Figure out how many monitors are active.
2935   int active_monitor_count = 0;
2936   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2937        kptr < fr.interpreter_frame_monitor_begin();
2938        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2939     if( kptr->obj() != NULL ) active_monitor_count++;
2940   }
2941 
2942   // QQQ we could place number of active monitors in the array so that compiled code
2943   // could double check it.
2944 
2945   Method* moop = fr.interpreter_frame_method();
2946   int max_locals = moop->max_locals();
2947   // Allocate temp buffer, 1 word per local & 2 per active monitor
2948   int buf_size_words = max_locals + active_monitor_count*2;
2949   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2950 
2951   // Copy the locals.  Order is preserved so that loading of longs works.
2952   // Since there's no GC I can copy the oops blindly.
2953   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2954   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2955                        (HeapWord*)&buf[0],
2956                        max_locals);
2957 
2958   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2959   int i = max_locals;
2960   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2961        kptr2 < fr.interpreter_frame_monitor_begin();
2962        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2963     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2964       BasicLock *lock = kptr2->lock();
2965       // Inflate so the displaced header becomes position-independent
2966       if (lock->displaced_header()->is_unlocked())
2967         ObjectSynchronizer::inflate_helper(kptr2->obj());
2968       // Now the displaced header is free to move
2969       buf[i++] = (intptr_t)lock->displaced_header();
2970       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2971     }
2972   }
2973   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2974 
2975   return buf;
2976 JRT_END
2977 
2978 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2979   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2980 JRT_END
2981 
2982 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2983   AdapterHandlerTableIterator iter(_adapters);
2984   while (iter.has_next()) {
2985     AdapterHandlerEntry* a = iter.next();
2986     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2987   }
2988   return false;
2989 }
2990 
2991 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2992   AdapterHandlerTableIterator iter(_adapters);
2993   while (iter.has_next()) {
2994     AdapterHandlerEntry* a = iter.next();
2995     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2996       st->print("Adapter for signature: ");
2997       a->print_adapter_on(tty);
2998       return;
2999     }
3000   }
3001   assert(false, "Should have found handler");
3002 }
3003 
3004 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3005   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3006                (intptr_t) this, fingerprint()->as_string(),
3007                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
3008 
3009 }
3010 
3011 #ifndef PRODUCT
3012 
3013 void AdapterHandlerLibrary::print_statistics() {
3014   _adapters->print_statistics();
3015 }
3016 
3017 #endif /* PRODUCT */