1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef __clang_major__
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  32 #include "gc_implementation/g1/concurrentMark.hpp"
  33 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  36 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  40 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/java.hpp"
  43 #include "runtime/mutexLocker.hpp"
  44 #include "utilities/debug.hpp"
  45 
  46 // Different defaults for different number of GC threads
  47 // They were chosen by running GCOld and SPECjbb on debris with different
  48 //   numbers of GC threads and choosing them based on the results
  49 
  50 // all the same
  51 static double rs_length_diff_defaults[] = {
  52   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  53 };
  54 
  55 static double cost_per_card_ms_defaults[] = {
  56   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  57 };
  58 
  59 // all the same
  60 static double young_cards_per_entry_ratio_defaults[] = {
  61   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  62 };
  63 
  64 static double cost_per_entry_ms_defaults[] = {
  65   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  66 };
  67 
  68 static double cost_per_byte_ms_defaults[] = {
  69   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  70 };
  71 
  72 // these should be pretty consistent
  73 static double constant_other_time_ms_defaults[] = {
  74   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  75 };
  76 
  77 
  78 static double young_other_cost_per_region_ms_defaults[] = {
  79   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  80 };
  81 
  82 static double non_young_other_cost_per_region_ms_defaults[] = {
  83   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  84 };
  85 
  86 G1CollectorPolicy::G1CollectorPolicy() :
  87   _parallel_gc_threads(ParallelGCThreads),
  88 
  89   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90   _stop_world_start(0.0),
  91 
  92   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  93   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  94 
  95   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _prev_collection_pause_end_ms(0.0),
  97   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 106   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _non_young_other_cost_per_region_ms_seq(
 108                                          new TruncatedSeq(TruncatedSeqLength)),
 109 
 110   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 111   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 112 
 113   _pause_time_target_ms((double) MaxGCPauseMillis),
 114 
 115   _gcs_are_young(true),
 116 
 117   _during_marking(false),
 118   _in_marking_window(false),
 119   _in_marking_window_im(false),
 120 
 121   _recent_prev_end_times_for_all_gcs_sec(
 122                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 123 
 124   _recent_avg_pause_time_ratio(0.0),
 125 
 126   _initiate_conc_mark_if_possible(false),
 127   _during_initial_mark_pause(false),
 128   _last_young_gc(false),
 129   _last_gc_was_young(false),
 130 
 131   _eden_used_bytes_before_gc(0),
 132   _survivor_used_bytes_before_gc(0),
 133   _heap_used_bytes_before_gc(0),
 134   _metaspace_used_bytes_before_gc(0),
 135   _eden_capacity_bytes_before_gc(0),
 136   _heap_capacity_bytes_before_gc(0),
 137 
 138   _eden_cset_region_length(0),
 139   _survivor_cset_region_length(0),
 140   _old_cset_region_length(0),
 141 
 142   _collection_set(NULL),
 143   _collection_set_bytes_used_before(0),
 144 
 145   // Incremental CSet attributes
 146   _inc_cset_build_state(Inactive),
 147   _inc_cset_head(NULL),
 148   _inc_cset_tail(NULL),
 149   _inc_cset_bytes_used_before(0),
 150   _inc_cset_max_finger(NULL),
 151   _inc_cset_recorded_rs_lengths(0),
 152   _inc_cset_recorded_rs_lengths_diffs(0),
 153   _inc_cset_predicted_elapsed_time_ms(0.0),
 154   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 155 
 156   // add here any more surv rate groups
 157   _recorded_survivor_regions(0),
 158   _recorded_survivor_head(NULL),
 159   _recorded_survivor_tail(NULL),
 160   _survivors_age_table(true),
 161 
 162   _gc_overhead_perc(0.0) {
 163 
 164   uintx confidence_perc = G1ConfidencePercent;
 165   // Put an artificial ceiling on this so that it's not set to a silly value.
 166   if (confidence_perc > 100) {
 167     confidence_perc = 100;
 168     warning("G1ConfidencePercent is set to a value that is too large, "
 169             "it's been updated to %u", confidence_perc);
 170   }
 171   // '_sigma' must be initialized before the SurvRateGroups below because they
 172   // indirecty access '_sigma' trough the 'this' pointer in their constructor.
 173   _sigma = (double) confidence_perc / 100.0;
 174 
 175   _short_lived_surv_rate_group =
 176     new SurvRateGroup(this, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 177   _survivor_surv_rate_group =
 178     new SurvRateGroup(this, "Survivor", G1YoungSurvRateNumRegionsSummary);
 179 
 180   // Set up the region size and associated fields. Given that the
 181   // policy is created before the heap, we have to set this up here,
 182   // so it's done as soon as possible.
 183 
 184   // It would have been natural to pass initial_heap_byte_size() and
 185   // max_heap_byte_size() to setup_heap_region_size() but those have
 186   // not been set up at this point since they should be aligned with
 187   // the region size. So, there is a circular dependency here. We base
 188   // the region size on the heap size, but the heap size should be
 189   // aligned with the region size. To get around this we use the
 190   // unaligned values for the heap.
 191   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 192   HeapRegionRemSet::setup_remset_size();
 193 
 194   G1ErgoVerbose::initialize();
 195   if (PrintAdaptiveSizePolicy) {
 196     // Currently, we only use a single switch for all the heuristics.
 197     G1ErgoVerbose::set_enabled(true);
 198     // Given that we don't currently have a verboseness level
 199     // parameter, we'll hardcode this to high. This can be easily
 200     // changed in the future.
 201     G1ErgoVerbose::set_level(ErgoHigh);
 202   } else {
 203     G1ErgoVerbose::set_enabled(false);
 204   }
 205 
 206   // Verify PLAB sizes
 207   const size_t region_size = HeapRegion::GrainWords;
 208   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 209     char buffer[128];
 210     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 211                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 212     vm_exit_during_initialization(buffer);
 213   }
 214 
 215   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 216   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 217 
 218   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
 219 
 220   int index = MIN2(_parallel_gc_threads - 1, 7);
 221 
 222   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 223   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 224   _young_cards_per_entry_ratio_seq->add(
 225                                   young_cards_per_entry_ratio_defaults[index]);
 226   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 227   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 228   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 229   _young_other_cost_per_region_ms_seq->add(
 230                                young_other_cost_per_region_ms_defaults[index]);
 231   _non_young_other_cost_per_region_ms_seq->add(
 232                            non_young_other_cost_per_region_ms_defaults[index]);
 233 
 234   // Below, we might need to calculate the pause time target based on
 235   // the pause interval. When we do so we are going to give G1 maximum
 236   // flexibility and allow it to do pauses when it needs to. So, we'll
 237   // arrange that the pause interval to be pause time target + 1 to
 238   // ensure that a) the pause time target is maximized with respect to
 239   // the pause interval and b) we maintain the invariant that pause
 240   // time target < pause interval. If the user does not want this
 241   // maximum flexibility, they will have to set the pause interval
 242   // explicitly.
 243 
 244   // First make sure that, if either parameter is set, its value is
 245   // reasonable.
 246   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 247     if (MaxGCPauseMillis < 1) {
 248       vm_exit_during_initialization("MaxGCPauseMillis should be "
 249                                     "greater than 0");
 250     }
 251   }
 252   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 253     if (GCPauseIntervalMillis < 1) {
 254       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 255                                     "greater than 0");
 256     }
 257   }
 258 
 259   // Then, if the pause time target parameter was not set, set it to
 260   // the default value.
 261   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 262     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 263       // The default pause time target in G1 is 200ms
 264       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 265     } else {
 266       // We do not allow the pause interval to be set without the
 267       // pause time target
 268       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 269                                     "without setting MaxGCPauseMillis");
 270     }
 271   }
 272 
 273   // Then, if the interval parameter was not set, set it according to
 274   // the pause time target (this will also deal with the case when the
 275   // pause time target is the default value).
 276   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 277     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 278   }
 279 
 280   // Finally, make sure that the two parameters are consistent.
 281   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 282     char buffer[256];
 283     jio_snprintf(buffer, 256,
 284                  "MaxGCPauseMillis (%u) should be less than "
 285                  "GCPauseIntervalMillis (%u)",
 286                  MaxGCPauseMillis, GCPauseIntervalMillis);
 287     vm_exit_during_initialization(buffer);
 288   }
 289 
 290   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 291   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 292   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 293 
 294   // start conservatively (around 50ms is about right)
 295   _concurrent_mark_remark_times_ms->add(0.05);
 296   _concurrent_mark_cleanup_times_ms->add(0.20);
 297   _tenuring_threshold = MaxTenuringThreshold;
 298   // _max_survivor_regions will be calculated by
 299   // update_young_list_target_length() during initialization.
 300   _max_survivor_regions = 0;
 301 
 302   assert(GCTimeRatio > 0,
 303          "we should have set it to a default value set_g1_gc_flags() "
 304          "if a user set it to 0");
 305   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 306 
 307   uintx reserve_perc = G1ReservePercent;
 308   // Put an artificial ceiling on this so that it's not set to a silly value.
 309   if (reserve_perc > 50) {
 310     reserve_perc = 50;
 311     warning("G1ReservePercent is set to a value that is too large, "
 312             "it's been updated to %u", reserve_perc);
 313   }
 314   _reserve_factor = (double) reserve_perc / 100.0;
 315   // This will be set when the heap is expanded
 316   // for the first time during initialization.
 317   _reserve_regions = 0;
 318 
 319   _collectionSetChooser = new CollectionSetChooser();
 320 }
 321 
 322 void G1CollectorPolicy::initialize_alignments() {
 323   _space_alignment = HeapRegion::GrainBytes;
 324   size_t card_table_alignment = GenRemSet::max_alignment_constraint();
 325   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 326   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 327 }
 328 
 329 void G1CollectorPolicy::initialize_flags() {
 330   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 331     FLAG_SET_ERGO(uintx, G1HeapRegionSize, HeapRegion::GrainBytes);
 332   }
 333 
 334   if (SurvivorRatio < 1) {
 335     vm_exit_during_initialization("Invalid survivor ratio specified");
 336   }
 337   CollectorPolicy::initialize_flags();
 338   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 339 }
 340 
 341 void G1CollectorPolicy::post_heap_initialize() {
 342   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 343   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 344   if (max_young_size != MaxNewSize) {
 345     FLAG_SET_ERGO(uintx, MaxNewSize, max_young_size);
 346   }
 347 }
 348 
 349 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 350         _min_desired_young_length(0), _max_desired_young_length(0) {
 351   if (FLAG_IS_CMDLINE(NewRatio)) {
 352     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 353       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 354     } else {
 355       _sizer_kind = SizerNewRatio;
 356       _adaptive_size = false;
 357       return;
 358     }
 359   }
 360 
 361   if (NewSize > MaxNewSize) {
 362     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 363       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 364               "A new max generation size of " SIZE_FORMAT "k will be used.",
 365               NewSize/K, MaxNewSize/K, NewSize/K);
 366     }
 367     MaxNewSize = NewSize;
 368   }
 369 
 370   if (FLAG_IS_CMDLINE(NewSize)) {
 371     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 372                                      1U);
 373     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 374       _max_desired_young_length =
 375                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 376                                   1U);
 377       _sizer_kind = SizerMaxAndNewSize;
 378       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 379     } else {
 380       _sizer_kind = SizerNewSizeOnly;
 381     }
 382   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 383     _max_desired_young_length =
 384                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 385                                   1U);
 386     _sizer_kind = SizerMaxNewSizeOnly;
 387   }
 388 }
 389 
 390 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 391   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 392   return MAX2(1U, default_value);
 393 }
 394 
 395 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 396   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 397   return MAX2(1U, default_value);
 398 }
 399 
 400 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 401   assert(number_of_heap_regions > 0, "Heap must be initialized");
 402 
 403   switch (_sizer_kind) {
 404     case SizerDefaults:
 405       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 406       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 407       break;
 408     case SizerNewSizeOnly:
 409       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 410       *max_young_length = MAX2(*min_young_length, *max_young_length);
 411       break;
 412     case SizerMaxNewSizeOnly:
 413       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 414       *min_young_length = MIN2(*min_young_length, *max_young_length);
 415       break;
 416     case SizerMaxAndNewSize:
 417       // Do nothing. Values set on the command line, don't update them at runtime.
 418       break;
 419     case SizerNewRatio:
 420       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 421       *max_young_length = *min_young_length;
 422       break;
 423     default:
 424       ShouldNotReachHere();
 425   }
 426 
 427   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 428 }
 429 
 430 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 431   // We need to pass the desired values because recalculation may not update these
 432   // values in some cases.
 433   uint temp = _min_desired_young_length;
 434   uint result = _max_desired_young_length;
 435   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 436   return result;
 437 }
 438 
 439 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 440   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 441           &_max_desired_young_length);
 442 }
 443 
 444 void G1CollectorPolicy::init() {
 445   // Set aside an initial future to_space.
 446   _g1 = G1CollectedHeap::heap();
 447 
 448   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 449 
 450   initialize_gc_policy_counters();
 451 
 452   if (adaptive_young_list_length()) {
 453     _young_list_fixed_length = 0;
 454   } else {
 455     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 456   }
 457   _free_regions_at_end_of_collection = _g1->num_free_regions();
 458   update_young_list_target_length();
 459 
 460   // We may immediately start allocating regions and placing them on the
 461   // collection set list. Initialize the per-collection set info
 462   start_incremental_cset_building();
 463 }
 464 
 465 // Create the jstat counters for the policy.
 466 void G1CollectorPolicy::initialize_gc_policy_counters() {
 467   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 468 }
 469 
 470 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 471                                          double base_time_ms,
 472                                          uint base_free_regions,
 473                                          double target_pause_time_ms) {
 474   if (young_length >= base_free_regions) {
 475     // end condition 1: not enough space for the young regions
 476     return false;
 477   }
 478 
 479   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 480   size_t bytes_to_copy =
 481                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 482   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 483   double young_other_time_ms = predict_young_other_time_ms(young_length);
 484   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 485   if (pause_time_ms > target_pause_time_ms) {
 486     // end condition 2: prediction is over the target pause time
 487     return false;
 488   }
 489 
 490   size_t free_bytes =
 491                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 492   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 493     // end condition 3: out-of-space (conservatively!)
 494     return false;
 495   }
 496 
 497   // success!
 498   return true;
 499 }
 500 
 501 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 502   // re-calculate the necessary reserve
 503   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 504   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 505   // smaller than 1.0) we'll get 1.
 506   _reserve_regions = (uint) ceil(reserve_regions_d);
 507 
 508   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 509 }
 510 
 511 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 512                                                        uint base_min_length) {
 513   uint desired_min_length = 0;
 514   if (adaptive_young_list_length()) {
 515     if (_alloc_rate_ms_seq->num() > 3) {
 516       double now_sec = os::elapsedTime();
 517       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 518       double alloc_rate_ms = predict_alloc_rate_ms();
 519       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 520     } else {
 521       // otherwise we don't have enough info to make the prediction
 522     }
 523   }
 524   desired_min_length += base_min_length;
 525   // make sure we don't go below any user-defined minimum bound
 526   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 527 }
 528 
 529 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 530   // Here, we might want to also take into account any additional
 531   // constraints (i.e., user-defined minimum bound). Currently, we
 532   // effectively don't set this bound.
 533   return _young_gen_sizer->max_desired_young_length();
 534 }
 535 
 536 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 537   if (rs_lengths == (size_t) -1) {
 538     // if it's set to the default value (-1), we should predict it;
 539     // otherwise, use the given value.
 540     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 541   }
 542 
 543   // Calculate the absolute and desired min bounds.
 544 
 545   // This is how many young regions we already have (currently: the survivors).
 546   uint base_min_length = recorded_survivor_regions();
 547   // This is the absolute minimum young length, which ensures that we
 548   // can allocate one eden region in the worst-case.
 549   uint absolute_min_length = base_min_length + 1;
 550   uint desired_min_length =
 551                      calculate_young_list_desired_min_length(base_min_length);
 552   if (desired_min_length < absolute_min_length) {
 553     desired_min_length = absolute_min_length;
 554   }
 555 
 556   // Calculate the absolute and desired max bounds.
 557 
 558   // We will try our best not to "eat" into the reserve.
 559   uint absolute_max_length = 0;
 560   if (_free_regions_at_end_of_collection > _reserve_regions) {
 561     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 562   }
 563   uint desired_max_length = calculate_young_list_desired_max_length();
 564   if (desired_max_length > absolute_max_length) {
 565     desired_max_length = absolute_max_length;
 566   }
 567 
 568   uint young_list_target_length = 0;
 569   if (adaptive_young_list_length()) {
 570     if (gcs_are_young()) {
 571       young_list_target_length =
 572                         calculate_young_list_target_length(rs_lengths,
 573                                                            base_min_length,
 574                                                            desired_min_length,
 575                                                            desired_max_length);
 576       _rs_lengths_prediction = rs_lengths;
 577     } else {
 578       // Don't calculate anything and let the code below bound it to
 579       // the desired_min_length, i.e., do the next GC as soon as
 580       // possible to maximize how many old regions we can add to it.
 581     }
 582   } else {
 583     // The user asked for a fixed young gen so we'll fix the young gen
 584     // whether the next GC is young or mixed.
 585     young_list_target_length = _young_list_fixed_length;
 586   }
 587 
 588   // Make sure we don't go over the desired max length, nor under the
 589   // desired min length. In case they clash, desired_min_length wins
 590   // which is why that test is second.
 591   if (young_list_target_length > desired_max_length) {
 592     young_list_target_length = desired_max_length;
 593   }
 594   if (young_list_target_length < desired_min_length) {
 595     young_list_target_length = desired_min_length;
 596   }
 597 
 598   assert(young_list_target_length > recorded_survivor_regions(),
 599          "we should be able to allocate at least one eden region");
 600   assert(young_list_target_length >= absolute_min_length, "post-condition");
 601   _young_list_target_length = young_list_target_length;
 602 
 603   update_max_gc_locker_expansion();
 604 }
 605 
 606 uint
 607 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 608                                                      uint base_min_length,
 609                                                      uint desired_min_length,
 610                                                      uint desired_max_length) {
 611   assert(adaptive_young_list_length(), "pre-condition");
 612   assert(gcs_are_young(), "only call this for young GCs");
 613 
 614   // In case some edge-condition makes the desired max length too small...
 615   if (desired_max_length <= desired_min_length) {
 616     return desired_min_length;
 617   }
 618 
 619   // We'll adjust min_young_length and max_young_length not to include
 620   // the already allocated young regions (i.e., so they reflect the
 621   // min and max eden regions we'll allocate). The base_min_length
 622   // will be reflected in the predictions by the
 623   // survivor_regions_evac_time prediction.
 624   assert(desired_min_length > base_min_length, "invariant");
 625   uint min_young_length = desired_min_length - base_min_length;
 626   assert(desired_max_length > base_min_length, "invariant");
 627   uint max_young_length = desired_max_length - base_min_length;
 628 
 629   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 630   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 631   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 632   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 633   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 634   double base_time_ms =
 635     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 636     survivor_regions_evac_time;
 637   uint available_free_regions = _free_regions_at_end_of_collection;
 638   uint base_free_regions = 0;
 639   if (available_free_regions > _reserve_regions) {
 640     base_free_regions = available_free_regions - _reserve_regions;
 641   }
 642 
 643   // Here, we will make sure that the shortest young length that
 644   // makes sense fits within the target pause time.
 645 
 646   if (predict_will_fit(min_young_length, base_time_ms,
 647                        base_free_regions, target_pause_time_ms)) {
 648     // The shortest young length will fit into the target pause time;
 649     // we'll now check whether the absolute maximum number of young
 650     // regions will fit in the target pause time. If not, we'll do
 651     // a binary search between min_young_length and max_young_length.
 652     if (predict_will_fit(max_young_length, base_time_ms,
 653                          base_free_regions, target_pause_time_ms)) {
 654       // The maximum young length will fit into the target pause time.
 655       // We are done so set min young length to the maximum length (as
 656       // the result is assumed to be returned in min_young_length).
 657       min_young_length = max_young_length;
 658     } else {
 659       // The maximum possible number of young regions will not fit within
 660       // the target pause time so we'll search for the optimal
 661       // length. The loop invariants are:
 662       //
 663       // min_young_length < max_young_length
 664       // min_young_length is known to fit into the target pause time
 665       // max_young_length is known not to fit into the target pause time
 666       //
 667       // Going into the loop we know the above hold as we've just
 668       // checked them. Every time around the loop we check whether
 669       // the middle value between min_young_length and
 670       // max_young_length fits into the target pause time. If it
 671       // does, it becomes the new min. If it doesn't, it becomes
 672       // the new max. This way we maintain the loop invariants.
 673 
 674       assert(min_young_length < max_young_length, "invariant");
 675       uint diff = (max_young_length - min_young_length) / 2;
 676       while (diff > 0) {
 677         uint young_length = min_young_length + diff;
 678         if (predict_will_fit(young_length, base_time_ms,
 679                              base_free_regions, target_pause_time_ms)) {
 680           min_young_length = young_length;
 681         } else {
 682           max_young_length = young_length;
 683         }
 684         assert(min_young_length <  max_young_length, "invariant");
 685         diff = (max_young_length - min_young_length) / 2;
 686       }
 687       // The results is min_young_length which, according to the
 688       // loop invariants, should fit within the target pause time.
 689 
 690       // These are the post-conditions of the binary search above:
 691       assert(min_young_length < max_young_length,
 692              "otherwise we should have discovered that max_young_length "
 693              "fits into the pause target and not done the binary search");
 694       assert(predict_will_fit(min_young_length, base_time_ms,
 695                               base_free_regions, target_pause_time_ms),
 696              "min_young_length, the result of the binary search, should "
 697              "fit into the pause target");
 698       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 699                                base_free_regions, target_pause_time_ms),
 700              "min_young_length, the result of the binary search, should be "
 701              "optimal, so no larger length should fit into the pause target");
 702     }
 703   } else {
 704     // Even the minimum length doesn't fit into the pause time
 705     // target, return it as the result nevertheless.
 706   }
 707   return base_min_length + min_young_length;
 708 }
 709 
 710 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 711   double survivor_regions_evac_time = 0.0;
 712   for (HeapRegion * r = _recorded_survivor_head;
 713        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 714        r = r->get_next_young_region()) {
 715     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 716   }
 717   return survivor_regions_evac_time;
 718 }
 719 
 720 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 721   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 722 
 723   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 724   if (rs_lengths > _rs_lengths_prediction) {
 725     // add 10% to avoid having to recalculate often
 726     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 727     update_young_list_target_length(rs_lengths_prediction);
 728   }
 729 }
 730 
 731 
 732 
 733 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 734                                                bool is_tlab,
 735                                                bool* gc_overhead_limit_was_exceeded) {
 736   guarantee(false, "Not using this policy feature yet.");
 737   return NULL;
 738 }
 739 
 740 // This method controls how a collector handles one or more
 741 // of its generations being fully allocated.
 742 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 743                                                        bool is_tlab) {
 744   guarantee(false, "Not using this policy feature yet.");
 745   return NULL;
 746 }
 747 
 748 
 749 #ifndef PRODUCT
 750 bool G1CollectorPolicy::verify_young_ages() {
 751   HeapRegion* head = _g1->young_list()->first_region();
 752   return
 753     verify_young_ages(head, _short_lived_surv_rate_group);
 754   // also call verify_young_ages on any additional surv rate groups
 755 }
 756 
 757 bool
 758 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 759                                      SurvRateGroup *surv_rate_group) {
 760   guarantee( surv_rate_group != NULL, "pre-condition" );
 761 
 762   const char* name = surv_rate_group->name();
 763   bool ret = true;
 764   int prev_age = -1;
 765 
 766   for (HeapRegion* curr = head;
 767        curr != NULL;
 768        curr = curr->get_next_young_region()) {
 769     SurvRateGroup* group = curr->surv_rate_group();
 770     if (group == NULL && !curr->is_survivor()) {
 771       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 772       ret = false;
 773     }
 774 
 775     if (surv_rate_group == group) {
 776       int age = curr->age_in_surv_rate_group();
 777 
 778       if (age < 0) {
 779         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 780         ret = false;
 781       }
 782 
 783       if (age <= prev_age) {
 784         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 785                                "(%d, %d)", name, age, prev_age);
 786         ret = false;
 787       }
 788       prev_age = age;
 789     }
 790   }
 791 
 792   return ret;
 793 }
 794 #endif // PRODUCT
 795 
 796 void G1CollectorPolicy::record_full_collection_start() {
 797   _full_collection_start_sec = os::elapsedTime();
 798   record_heap_size_info_at_start(true /* full */);
 799   // Release the future to-space so that it is available for compaction into.
 800   _g1->set_full_collection();
 801 }
 802 
 803 void G1CollectorPolicy::record_full_collection_end() {
 804   // Consider this like a collection pause for the purposes of allocation
 805   // since last pause.
 806   double end_sec = os::elapsedTime();
 807   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 808   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 809 
 810   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 811 
 812   update_recent_gc_times(end_sec, full_gc_time_ms);
 813 
 814   _g1->clear_full_collection();
 815 
 816   // "Nuke" the heuristics that control the young/mixed GC
 817   // transitions and make sure we start with young GCs after the Full GC.
 818   set_gcs_are_young(true);
 819   _last_young_gc = false;
 820   clear_initiate_conc_mark_if_possible();
 821   clear_during_initial_mark_pause();
 822   _in_marking_window = false;
 823   _in_marking_window_im = false;
 824 
 825   _short_lived_surv_rate_group->start_adding_regions();
 826   // also call this on any additional surv rate groups
 827 
 828   record_survivor_regions(0, NULL, NULL);
 829 
 830   _free_regions_at_end_of_collection = _g1->num_free_regions();
 831   // Reset survivors SurvRateGroup.
 832   _survivor_surv_rate_group->reset();
 833   update_young_list_target_length();
 834   _collectionSetChooser->clear();
 835 }
 836 
 837 void G1CollectorPolicy::record_stop_world_start() {
 838   _stop_world_start = os::elapsedTime();
 839 }
 840 
 841 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 842   // We only need to do this here as the policy will only be applied
 843   // to the GC we're about to start. so, no point is calculating this
 844   // every time we calculate / recalculate the target young length.
 845   update_survivors_policy();
 846 
 847   assert(_g1->used() == _g1->recalculate_used(),
 848          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 849                  _g1->used(), _g1->recalculate_used()));
 850 
 851   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 852   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 853   _stop_world_start = 0.0;
 854 
 855   record_heap_size_info_at_start(false /* full */);
 856 
 857   phase_times()->record_cur_collection_start_sec(start_time_sec);
 858   _pending_cards = _g1->pending_card_num();
 859 
 860   _collection_set_bytes_used_before = 0;
 861   _bytes_copied_during_gc = 0;
 862 
 863   _last_gc_was_young = false;
 864 
 865   // do that for any other surv rate groups
 866   _short_lived_surv_rate_group->stop_adding_regions();
 867   _survivors_age_table.clear();
 868 
 869   assert( verify_young_ages(), "region age verification" );
 870 }
 871 
 872 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 873                                                    mark_init_elapsed_time_ms) {
 874   _during_marking = true;
 875   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 876   clear_during_initial_mark_pause();
 877   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 878 }
 879 
 880 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 881   _mark_remark_start_sec = os::elapsedTime();
 882   _during_marking = false;
 883 }
 884 
 885 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 886   double end_time_sec = os::elapsedTime();
 887   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 888   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 889   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 890   _prev_collection_pause_end_ms += elapsed_time_ms;
 891 
 892   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 893 }
 894 
 895 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 896   _mark_cleanup_start_sec = os::elapsedTime();
 897 }
 898 
 899 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 900   _last_young_gc = true;
 901   _in_marking_window = false;
 902 }
 903 
 904 void G1CollectorPolicy::record_concurrent_pause() {
 905   if (_stop_world_start > 0.0) {
 906     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 907     _trace_young_gen_time_data.record_yield_time(yield_ms);
 908   }
 909 }
 910 
 911 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 912   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 913     return false;
 914   }
 915 
 916   size_t marking_initiating_used_threshold =
 917     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 918   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 919   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 920 
 921   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 922     if (gcs_are_young() && !_last_young_gc) {
 923       ergo_verbose5(ErgoConcCycles,
 924         "request concurrent cycle initiation",
 925         ergo_format_reason("occupancy higher than threshold")
 926         ergo_format_byte("occupancy")
 927         ergo_format_byte("allocation request")
 928         ergo_format_byte_perc("threshold")
 929         ergo_format_str("source"),
 930         cur_used_bytes,
 931         alloc_byte_size,
 932         marking_initiating_used_threshold,
 933         (double) InitiatingHeapOccupancyPercent,
 934         source);
 935       return true;
 936     } else {
 937       ergo_verbose5(ErgoConcCycles,
 938         "do not request concurrent cycle initiation",
 939         ergo_format_reason("still doing mixed collections")
 940         ergo_format_byte("occupancy")
 941         ergo_format_byte("allocation request")
 942         ergo_format_byte_perc("threshold")
 943         ergo_format_str("source"),
 944         cur_used_bytes,
 945         alloc_byte_size,
 946         marking_initiating_used_threshold,
 947         (double) InitiatingHeapOccupancyPercent,
 948         source);
 949     }
 950   }
 951 
 952   return false;
 953 }
 954 
 955 // Anything below that is considered to be zero
 956 #define MIN_TIMER_GRANULARITY 0.0000001
 957 
 958 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 959   double end_time_sec = os::elapsedTime();
 960   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 961          "otherwise, the subtraction below does not make sense");
 962   size_t rs_size =
 963             _cur_collection_pause_used_regions_at_start - cset_region_length();
 964   size_t cur_used_bytes = _g1->used();
 965   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 966   bool last_pause_included_initial_mark = false;
 967   bool update_stats = !_g1->evacuation_failed();
 968 
 969 #ifndef PRODUCT
 970   if (G1YoungSurvRateVerbose) {
 971     gclog_or_tty->cr();
 972     _short_lived_surv_rate_group->print();
 973     // do that for any other surv rate groups too
 974   }
 975 #endif // PRODUCT
 976 
 977   last_pause_included_initial_mark = during_initial_mark_pause();
 978   if (last_pause_included_initial_mark) {
 979     record_concurrent_mark_init_end(0.0);
 980   } else if (need_to_start_conc_mark("end of GC")) {
 981     // Note: this might have already been set, if during the last
 982     // pause we decided to start a cycle but at the beginning of
 983     // this pause we decided to postpone it. That's OK.
 984     set_initiate_conc_mark_if_possible();
 985   }
 986 
 987   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 988                           end_time_sec, false);
 989 
 990   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 991   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 992 
 993   if (update_stats) {
 994     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
 995     // this is where we update the allocation rate of the application
 996     double app_time_ms =
 997       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 998     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 999       // This usually happens due to the timer not having the required
1000       // granularity. Some Linuxes are the usual culprits.
1001       // We'll just set it to something (arbitrarily) small.
1002       app_time_ms = 1.0;
1003     }
1004     // We maintain the invariant that all objects allocated by mutator
1005     // threads will be allocated out of eden regions. So, we can use
1006     // the eden region number allocated since the previous GC to
1007     // calculate the application's allocate rate. The only exception
1008     // to that is humongous objects that are allocated separately. But
1009     // given that humongous object allocations do not really affect
1010     // either the pause's duration nor when the next pause will take
1011     // place we can safely ignore them here.
1012     uint regions_allocated = eden_cset_region_length();
1013     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1014     _alloc_rate_ms_seq->add(alloc_rate_ms);
1015 
1016     double interval_ms =
1017       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1018     update_recent_gc_times(end_time_sec, pause_time_ms);
1019     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1020     if (recent_avg_pause_time_ratio() < 0.0 ||
1021         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1022 #ifndef PRODUCT
1023       // Dump info to allow post-facto debugging
1024       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1025       gclog_or_tty->print_cr("-------------------------------------------");
1026       gclog_or_tty->print_cr("Recent GC Times (ms):");
1027       _recent_gc_times_ms->dump();
1028       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1029       _recent_prev_end_times_for_all_gcs_sec->dump();
1030       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1031                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1032       // In debug mode, terminate the JVM if the user wants to debug at this point.
1033       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1034 #endif  // !PRODUCT
1035       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1036       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1037       if (_recent_avg_pause_time_ratio < 0.0) {
1038         _recent_avg_pause_time_ratio = 0.0;
1039       } else {
1040         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1041         _recent_avg_pause_time_ratio = 1.0;
1042       }
1043     }
1044   }
1045 
1046   bool new_in_marking_window = _in_marking_window;
1047   bool new_in_marking_window_im = false;
1048   if (last_pause_included_initial_mark) {
1049     new_in_marking_window = true;
1050     new_in_marking_window_im = true;
1051   }
1052 
1053   if (_last_young_gc) {
1054     // This is supposed to to be the "last young GC" before we start
1055     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1056 
1057     if (!last_pause_included_initial_mark) {
1058       if (next_gc_should_be_mixed("start mixed GCs",
1059                                   "do not start mixed GCs")) {
1060         set_gcs_are_young(false);
1061       }
1062     } else {
1063       ergo_verbose0(ErgoMixedGCs,
1064                     "do not start mixed GCs",
1065                     ergo_format_reason("concurrent cycle is about to start"));
1066     }
1067     _last_young_gc = false;
1068   }
1069 
1070   if (!_last_gc_was_young) {
1071     // This is a mixed GC. Here we decide whether to continue doing
1072     // mixed GCs or not.
1073 
1074     if (!next_gc_should_be_mixed("continue mixed GCs",
1075                                  "do not continue mixed GCs")) {
1076       set_gcs_are_young(true);
1077     }
1078   }
1079 
1080   _short_lived_surv_rate_group->start_adding_regions();
1081   // Do that for any other surv rate groups
1082 
1083   if (update_stats) {
1084     double cost_per_card_ms = 0.0;
1085     if (_pending_cards > 0) {
1086       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1087       _cost_per_card_ms_seq->add(cost_per_card_ms);
1088     }
1089 
1090     size_t cards_scanned = _g1->cards_scanned();
1091 
1092     double cost_per_entry_ms = 0.0;
1093     if (cards_scanned > 10) {
1094       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1095       if (_last_gc_was_young) {
1096         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1097       } else {
1098         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1099       }
1100     }
1101 
1102     if (_max_rs_lengths > 0) {
1103       double cards_per_entry_ratio =
1104         (double) cards_scanned / (double) _max_rs_lengths;
1105       if (_last_gc_was_young) {
1106         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1107       } else {
1108         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1109       }
1110     }
1111 
1112     // This is defensive. For a while _max_rs_lengths could get
1113     // smaller than _recorded_rs_lengths which was causing
1114     // rs_length_diff to get very large and mess up the RSet length
1115     // predictions. The reason was unsafe concurrent updates to the
1116     // _inc_cset_recorded_rs_lengths field which the code below guards
1117     // against (see CR 7118202). This bug has now been fixed (see CR
1118     // 7119027). However, I'm still worried that
1119     // _inc_cset_recorded_rs_lengths might still end up somewhat
1120     // inaccurate. The concurrent refinement thread calculates an
1121     // RSet's length concurrently with other CR threads updating it
1122     // which might cause it to calculate the length incorrectly (if,
1123     // say, it's in mid-coarsening). So I'll leave in the defensive
1124     // conditional below just in case.
1125     size_t rs_length_diff = 0;
1126     if (_max_rs_lengths > _recorded_rs_lengths) {
1127       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1128     }
1129     _rs_length_diff_seq->add((double) rs_length_diff);
1130 
1131     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1132     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1133     double cost_per_byte_ms = 0.0;
1134 
1135     if (copied_bytes > 0) {
1136       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1137       if (_in_marking_window) {
1138         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1139       } else {
1140         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1141       }
1142     }
1143 
1144     double all_other_time_ms = pause_time_ms -
1145       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1146       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1147 
1148     double young_other_time_ms = 0.0;
1149     if (young_cset_region_length() > 0) {
1150       young_other_time_ms =
1151         phase_times()->young_cset_choice_time_ms() +
1152         phase_times()->young_free_cset_time_ms();
1153       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1154                                           (double) young_cset_region_length());
1155     }
1156     double non_young_other_time_ms = 0.0;
1157     if (old_cset_region_length() > 0) {
1158       non_young_other_time_ms =
1159         phase_times()->non_young_cset_choice_time_ms() +
1160         phase_times()->non_young_free_cset_time_ms();
1161 
1162       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1163                                             (double) old_cset_region_length());
1164     }
1165 
1166     double constant_other_time_ms = all_other_time_ms -
1167       (young_other_time_ms + non_young_other_time_ms);
1168     _constant_other_time_ms_seq->add(constant_other_time_ms);
1169 
1170     double survival_ratio = 0.0;
1171     if (_collection_set_bytes_used_before > 0) {
1172       survival_ratio = (double) _bytes_copied_during_gc /
1173                                    (double) _collection_set_bytes_used_before;
1174     }
1175 
1176     _pending_cards_seq->add((double) _pending_cards);
1177     _rs_lengths_seq->add((double) _max_rs_lengths);
1178   }
1179 
1180   _in_marking_window = new_in_marking_window;
1181   _in_marking_window_im = new_in_marking_window_im;
1182   _free_regions_at_end_of_collection = _g1->num_free_regions();
1183   update_young_list_target_length();
1184 
1185   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1186   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1187   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1188                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1189 
1190   _collectionSetChooser->verify();
1191 }
1192 
1193 #define EXT_SIZE_FORMAT "%.1f%s"
1194 #define EXT_SIZE_PARAMS(bytes)                                  \
1195   byte_size_in_proper_unit((double)(bytes)),                    \
1196   proper_unit_for_byte_size((bytes))
1197 
1198 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1199   YoungList* young_list = _g1->young_list();
1200   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1201   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1202   _heap_capacity_bytes_before_gc = _g1->capacity();
1203   _heap_used_bytes_before_gc = _g1->used();
1204   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1205 
1206   _eden_capacity_bytes_before_gc =
1207          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1208 
1209   if (full) {
1210     _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1211   }
1212 }
1213 
1214 void G1CollectorPolicy::print_heap_transition() {
1215   _g1->print_size_transition(gclog_or_tty,
1216                              _heap_used_bytes_before_gc,
1217                              _g1->used(),
1218                              _g1->capacity());
1219 }
1220 
1221 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1222   YoungList* young_list = _g1->young_list();
1223 
1224   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1225   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1226   size_t heap_used_bytes_after_gc = _g1->used();
1227 
1228   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1229   size_t eden_capacity_bytes_after_gc =
1230     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1231 
1232   gclog_or_tty->print(
1233     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1234     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1235     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1236     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1237     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1238     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1239     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1240     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1241     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1242     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1243     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1244     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1245     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1246     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1247 
1248   if (full) {
1249     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1250   }
1251 
1252   gclog_or_tty->cr();
1253 }
1254 
1255 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1256                                                      double update_rs_processed_buffers,
1257                                                      double goal_ms) {
1258   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1259   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1260 
1261   if (G1UseAdaptiveConcRefinement) {
1262     const int k_gy = 3, k_gr = 6;
1263     const double inc_k = 1.1, dec_k = 0.9;
1264 
1265     int g = cg1r->green_zone();
1266     if (update_rs_time > goal_ms) {
1267       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1268     } else {
1269       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1270         g = (int)MAX2(g * inc_k, g + 1.0);
1271       }
1272     }
1273     // Change the refinement threads params
1274     cg1r->set_green_zone(g);
1275     cg1r->set_yellow_zone(g * k_gy);
1276     cg1r->set_red_zone(g * k_gr);
1277     cg1r->reinitialize_threads();
1278 
1279     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1280     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1281                                     cg1r->yellow_zone());
1282     // Change the barrier params
1283     dcqs.set_process_completed_threshold(processing_threshold);
1284     dcqs.set_max_completed_queue(cg1r->red_zone());
1285   }
1286 
1287   int curr_queue_size = dcqs.completed_buffers_num();
1288   if (curr_queue_size >= cg1r->yellow_zone()) {
1289     dcqs.set_completed_queue_padding(curr_queue_size);
1290   } else {
1291     dcqs.set_completed_queue_padding(0);
1292   }
1293   dcqs.notify_if_necessary();
1294 }
1295 
1296 double
1297 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1298                                                 size_t scanned_cards) {
1299   return
1300     predict_rs_update_time_ms(pending_cards) +
1301     predict_rs_scan_time_ms(scanned_cards) +
1302     predict_constant_other_time_ms();
1303 }
1304 
1305 double
1306 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1307   size_t rs_length = predict_rs_length_diff();
1308   size_t card_num;
1309   if (gcs_are_young()) {
1310     card_num = predict_young_card_num(rs_length);
1311   } else {
1312     card_num = predict_non_young_card_num(rs_length);
1313   }
1314   return predict_base_elapsed_time_ms(pending_cards, card_num);
1315 }
1316 
1317 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1318   size_t bytes_to_copy;
1319   if (hr->is_marked())
1320     bytes_to_copy = hr->max_live_bytes();
1321   else {
1322     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1323     int age = hr->age_in_surv_rate_group();
1324     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1325     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1326   }
1327   return bytes_to_copy;
1328 }
1329 
1330 double
1331 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1332                                                   bool for_young_gc) {
1333   size_t rs_length = hr->rem_set()->occupied();
1334   size_t card_num;
1335 
1336   // Predicting the number of cards is based on which type of GC
1337   // we're predicting for.
1338   if (for_young_gc) {
1339     card_num = predict_young_card_num(rs_length);
1340   } else {
1341     card_num = predict_non_young_card_num(rs_length);
1342   }
1343   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1344 
1345   double region_elapsed_time_ms =
1346     predict_rs_scan_time_ms(card_num) +
1347     predict_object_copy_time_ms(bytes_to_copy);
1348 
1349   // The prediction of the "other" time for this region is based
1350   // upon the region type and NOT the GC type.
1351   if (hr->is_young()) {
1352     region_elapsed_time_ms += predict_young_other_time_ms(1);
1353   } else {
1354     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1355   }
1356   return region_elapsed_time_ms;
1357 }
1358 
1359 void
1360 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1361                                             uint survivor_cset_region_length) {
1362   _eden_cset_region_length     = eden_cset_region_length;
1363   _survivor_cset_region_length = survivor_cset_region_length;
1364   _old_cset_region_length      = 0;
1365 }
1366 
1367 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1368   _recorded_rs_lengths = rs_lengths;
1369 }
1370 
1371 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1372                                                double elapsed_ms) {
1373   _recent_gc_times_ms->add(elapsed_ms);
1374   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1375   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1376 }
1377 
1378 size_t G1CollectorPolicy::expansion_amount() {
1379   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1380   double threshold = _gc_overhead_perc;
1381   if (recent_gc_overhead > threshold) {
1382     // We will double the existing space, or take
1383     // G1ExpandByPercentOfAvailable % of the available expansion
1384     // space, whichever is smaller, bounded below by a minimum
1385     // expansion (unless that's all that's left.)
1386     const size_t min_expand_bytes = 1*M;
1387     size_t reserved_bytes = _g1->max_capacity();
1388     size_t committed_bytes = _g1->capacity();
1389     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1390     size_t expand_bytes;
1391     size_t expand_bytes_via_pct =
1392       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1393     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1394     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1395     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1396 
1397     ergo_verbose5(ErgoHeapSizing,
1398                   "attempt heap expansion",
1399                   ergo_format_reason("recent GC overhead higher than "
1400                                      "threshold after GC")
1401                   ergo_format_perc("recent GC overhead")
1402                   ergo_format_perc("threshold")
1403                   ergo_format_byte("uncommitted")
1404                   ergo_format_byte_perc("calculated expansion amount"),
1405                   recent_gc_overhead, threshold,
1406                   uncommitted_bytes,
1407                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1408 
1409     return expand_bytes;
1410   } else {
1411     return 0;
1412   }
1413 }
1414 
1415 void G1CollectorPolicy::print_tracing_info() const {
1416   _trace_young_gen_time_data.print();
1417   _trace_old_gen_time_data.print();
1418 }
1419 
1420 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1421 #ifndef PRODUCT
1422   _short_lived_surv_rate_group->print_surv_rate_summary();
1423   // add this call for any other surv rate groups
1424 #endif // PRODUCT
1425 }
1426 
1427 bool G1CollectorPolicy::is_young_list_full() {
1428   uint young_list_length = _g1->young_list()->length();
1429   uint young_list_target_length = _young_list_target_length;
1430   return young_list_length >= young_list_target_length;
1431 }
1432 
1433 bool G1CollectorPolicy::can_expand_young_list() {
1434   uint young_list_length = _g1->young_list()->length();
1435   uint young_list_max_length = _young_list_max_length;
1436   return young_list_length < young_list_max_length;
1437 }
1438 
1439 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1440   uint expansion_region_num = 0;
1441   if (GCLockerEdenExpansionPercent > 0) {
1442     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1443     double expansion_region_num_d = perc * (double) _young_list_target_length;
1444     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1445     // less than 1.0) we'll get 1.
1446     expansion_region_num = (uint) ceil(expansion_region_num_d);
1447   } else {
1448     assert(expansion_region_num == 0, "sanity");
1449   }
1450   _young_list_max_length = _young_list_target_length + expansion_region_num;
1451   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1452 }
1453 
1454 // Calculates survivor space parameters.
1455 void G1CollectorPolicy::update_survivors_policy() {
1456   double max_survivor_regions_d =
1457                  (double) _young_list_target_length / (double) SurvivorRatio;
1458   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1459   // smaller than 1.0) we'll get 1.
1460   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1461 
1462   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1463         HeapRegion::GrainWords * _max_survivor_regions);
1464 }
1465 
1466 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1467                                                      GCCause::Cause gc_cause) {
1468   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1469   if (!during_cycle) {
1470     ergo_verbose1(ErgoConcCycles,
1471                   "request concurrent cycle initiation",
1472                   ergo_format_reason("requested by GC cause")
1473                   ergo_format_str("GC cause"),
1474                   GCCause::to_string(gc_cause));
1475     set_initiate_conc_mark_if_possible();
1476     return true;
1477   } else {
1478     ergo_verbose1(ErgoConcCycles,
1479                   "do not request concurrent cycle initiation",
1480                   ergo_format_reason("concurrent cycle already in progress")
1481                   ergo_format_str("GC cause"),
1482                   GCCause::to_string(gc_cause));
1483     return false;
1484   }
1485 }
1486 
1487 void
1488 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1489   // We are about to decide on whether this pause will be an
1490   // initial-mark pause.
1491 
1492   // First, during_initial_mark_pause() should not be already set. We
1493   // will set it here if we have to. However, it should be cleared by
1494   // the end of the pause (it's only set for the duration of an
1495   // initial-mark pause).
1496   assert(!during_initial_mark_pause(), "pre-condition");
1497 
1498   if (initiate_conc_mark_if_possible()) {
1499     // We had noticed on a previous pause that the heap occupancy has
1500     // gone over the initiating threshold and we should start a
1501     // concurrent marking cycle. So we might initiate one.
1502 
1503     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1504     if (!during_cycle) {
1505       // The concurrent marking thread is not "during a cycle", i.e.,
1506       // it has completed the last one. So we can go ahead and
1507       // initiate a new cycle.
1508 
1509       set_during_initial_mark_pause();
1510       // We do not allow mixed GCs during marking.
1511       if (!gcs_are_young()) {
1512         set_gcs_are_young(true);
1513         ergo_verbose0(ErgoMixedGCs,
1514                       "end mixed GCs",
1515                       ergo_format_reason("concurrent cycle is about to start"));
1516       }
1517 
1518       // And we can now clear initiate_conc_mark_if_possible() as
1519       // we've already acted on it.
1520       clear_initiate_conc_mark_if_possible();
1521 
1522       ergo_verbose0(ErgoConcCycles,
1523                   "initiate concurrent cycle",
1524                   ergo_format_reason("concurrent cycle initiation requested"));
1525     } else {
1526       // The concurrent marking thread is still finishing up the
1527       // previous cycle. If we start one right now the two cycles
1528       // overlap. In particular, the concurrent marking thread might
1529       // be in the process of clearing the next marking bitmap (which
1530       // we will use for the next cycle if we start one). Starting a
1531       // cycle now will be bad given that parts of the marking
1532       // information might get cleared by the marking thread. And we
1533       // cannot wait for the marking thread to finish the cycle as it
1534       // periodically yields while clearing the next marking bitmap
1535       // and, if it's in a yield point, it's waiting for us to
1536       // finish. So, at this point we will not start a cycle and we'll
1537       // let the concurrent marking thread complete the last one.
1538       ergo_verbose0(ErgoConcCycles,
1539                     "do not initiate concurrent cycle",
1540                     ergo_format_reason("concurrent cycle already in progress"));
1541     }
1542   }
1543 }
1544 
1545 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1546   G1CollectedHeap* _g1h;
1547   CSetChooserParUpdater _cset_updater;
1548 
1549 public:
1550   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1551                            uint chunk_size) :
1552     _g1h(G1CollectedHeap::heap()),
1553     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1554 
1555   bool doHeapRegion(HeapRegion* r) {
1556     // Do we have any marking information for this region?
1557     if (r->is_marked()) {
1558       // We will skip any region that's currently used as an old GC
1559       // alloc region (we should not consider those for collection
1560       // before we fill them up).
1561       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1562         _cset_updater.add_region(r);
1563       }
1564     }
1565     return false;
1566   }
1567 };
1568 
1569 class ParKnownGarbageTask: public AbstractGangTask {
1570   CollectionSetChooser* _hrSorted;
1571   uint _chunk_size;
1572   G1CollectedHeap* _g1;
1573   HeapRegionClaimer _hrclaimer;
1574 
1575 public:
1576   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1577       AbstractGangTask("ParKnownGarbageTask"),
1578       _hrSorted(hrSorted), _chunk_size(chunk_size),
1579       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1580 
1581   void work(uint worker_id) {
1582     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1583     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1584   }
1585 };
1586 
1587 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) {
1588   assert(n_workers > 0, "Active gc workers should be greater than 0");
1589   const uint overpartition_factor = 4;
1590   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1591   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1592 }
1593 
1594 void
1595 G1CollectorPolicy::record_concurrent_mark_cleanup_end(uint n_workers) {
1596   _collectionSetChooser->clear();
1597 
1598   uint n_regions = _g1->num_regions();
1599   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1600   _collectionSetChooser->prepare_for_par_region_addition(n_regions, chunk_size);
1601   ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
1602   _g1->workers()->run_task(&par_known_garbage_task);
1603 
1604   _collectionSetChooser->sort_regions();
1605 
1606   double end_sec = os::elapsedTime();
1607   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1608   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1609   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1610   _prev_collection_pause_end_ms += elapsed_time_ms;
1611   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1612 }
1613 
1614 // Add the heap region at the head of the non-incremental collection set
1615 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1616   assert(_inc_cset_build_state == Active, "Precondition");
1617   assert(hr->is_old(), "the region should be old");
1618 
1619   assert(!hr->in_collection_set(), "should not already be in the CSet");
1620   hr->set_in_collection_set(true);
1621   hr->set_next_in_collection_set(_collection_set);
1622   _collection_set = hr;
1623   _collection_set_bytes_used_before += hr->used();
1624   _g1->register_old_region_with_in_cset_fast_test(hr);
1625   size_t rs_length = hr->rem_set()->occupied();
1626   _recorded_rs_lengths += rs_length;
1627   _old_cset_region_length += 1;
1628 }
1629 
1630 // Initialize the per-collection-set information
1631 void G1CollectorPolicy::start_incremental_cset_building() {
1632   assert(_inc_cset_build_state == Inactive, "Precondition");
1633 
1634   _inc_cset_head = NULL;
1635   _inc_cset_tail = NULL;
1636   _inc_cset_bytes_used_before = 0;
1637 
1638   _inc_cset_max_finger = 0;
1639   _inc_cset_recorded_rs_lengths = 0;
1640   _inc_cset_recorded_rs_lengths_diffs = 0;
1641   _inc_cset_predicted_elapsed_time_ms = 0.0;
1642   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1643   _inc_cset_build_state = Active;
1644 }
1645 
1646 void G1CollectorPolicy::finalize_incremental_cset_building() {
1647   assert(_inc_cset_build_state == Active, "Precondition");
1648   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1649 
1650   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1651   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1652   // that adds a new region to the CSet. Further updates by the
1653   // concurrent refinement thread that samples the young RSet lengths
1654   // are accumulated in the *_diffs fields. Here we add the diffs to
1655   // the "main" fields.
1656 
1657   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1658     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1659   } else {
1660     // This is defensive. The diff should in theory be always positive
1661     // as RSets can only grow between GCs. However, given that we
1662     // sample their size concurrently with other threads updating them
1663     // it's possible that we might get the wrong size back, which
1664     // could make the calculations somewhat inaccurate.
1665     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1666     if (_inc_cset_recorded_rs_lengths >= diffs) {
1667       _inc_cset_recorded_rs_lengths -= diffs;
1668     } else {
1669       _inc_cset_recorded_rs_lengths = 0;
1670     }
1671   }
1672   _inc_cset_predicted_elapsed_time_ms +=
1673                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1674 
1675   _inc_cset_recorded_rs_lengths_diffs = 0;
1676   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1677 }
1678 
1679 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1680   // This routine is used when:
1681   // * adding survivor regions to the incremental cset at the end of an
1682   //   evacuation pause,
1683   // * adding the current allocation region to the incremental cset
1684   //   when it is retired, and
1685   // * updating existing policy information for a region in the
1686   //   incremental cset via young list RSet sampling.
1687   // Therefore this routine may be called at a safepoint by the
1688   // VM thread, or in-between safepoints by mutator threads (when
1689   // retiring the current allocation region) or a concurrent
1690   // refine thread (RSet sampling).
1691 
1692   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1693   size_t used_bytes = hr->used();
1694   _inc_cset_recorded_rs_lengths += rs_length;
1695   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1696   _inc_cset_bytes_used_before += used_bytes;
1697 
1698   // Cache the values we have added to the aggregated information
1699   // in the heap region in case we have to remove this region from
1700   // the incremental collection set, or it is updated by the
1701   // rset sampling code
1702   hr->set_recorded_rs_length(rs_length);
1703   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1704 }
1705 
1706 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1707                                                      size_t new_rs_length) {
1708   // Update the CSet information that is dependent on the new RS length
1709   assert(hr->is_young(), "Precondition");
1710   assert(!SafepointSynchronize::is_at_safepoint(),
1711                                                "should not be at a safepoint");
1712 
1713   // We could have updated _inc_cset_recorded_rs_lengths and
1714   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1715   // that atomically, as this code is executed by a concurrent
1716   // refinement thread, potentially concurrently with a mutator thread
1717   // allocating a new region and also updating the same fields. To
1718   // avoid the atomic operations we accumulate these updates on two
1719   // separate fields (*_diffs) and we'll just add them to the "main"
1720   // fields at the start of a GC.
1721 
1722   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1723   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1724   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1725 
1726   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1727   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1728   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1729   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1730 
1731   hr->set_recorded_rs_length(new_rs_length);
1732   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1733 }
1734 
1735 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1736   assert(hr->is_young(), "invariant");
1737   assert(hr->young_index_in_cset() > -1, "should have already been set");
1738   assert(_inc_cset_build_state == Active, "Precondition");
1739 
1740   // We need to clear and set the cached recorded/cached collection set
1741   // information in the heap region here (before the region gets added
1742   // to the collection set). An individual heap region's cached values
1743   // are calculated, aggregated with the policy collection set info,
1744   // and cached in the heap region here (initially) and (subsequently)
1745   // by the Young List sampling code.
1746 
1747   size_t rs_length = hr->rem_set()->occupied();
1748   add_to_incremental_cset_info(hr, rs_length);
1749 
1750   HeapWord* hr_end = hr->end();
1751   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1752 
1753   assert(!hr->in_collection_set(), "invariant");
1754   hr->set_in_collection_set(true);
1755   assert( hr->next_in_collection_set() == NULL, "invariant");
1756 
1757   _g1->register_young_region_with_in_cset_fast_test(hr);
1758 }
1759 
1760 // Add the region at the RHS of the incremental cset
1761 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1762   // We should only ever be appending survivors at the end of a pause
1763   assert(hr->is_survivor(), "Logic");
1764 
1765   // Do the 'common' stuff
1766   add_region_to_incremental_cset_common(hr);
1767 
1768   // Now add the region at the right hand side
1769   if (_inc_cset_tail == NULL) {
1770     assert(_inc_cset_head == NULL, "invariant");
1771     _inc_cset_head = hr;
1772   } else {
1773     _inc_cset_tail->set_next_in_collection_set(hr);
1774   }
1775   _inc_cset_tail = hr;
1776 }
1777 
1778 // Add the region to the LHS of the incremental cset
1779 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1780   // Survivors should be added to the RHS at the end of a pause
1781   assert(hr->is_eden(), "Logic");
1782 
1783   // Do the 'common' stuff
1784   add_region_to_incremental_cset_common(hr);
1785 
1786   // Add the region at the left hand side
1787   hr->set_next_in_collection_set(_inc_cset_head);
1788   if (_inc_cset_head == NULL) {
1789     assert(_inc_cset_tail == NULL, "Invariant");
1790     _inc_cset_tail = hr;
1791   }
1792   _inc_cset_head = hr;
1793 }
1794 
1795 #ifndef PRODUCT
1796 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1797   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1798 
1799   st->print_cr("\nCollection_set:");
1800   HeapRegion* csr = list_head;
1801   while (csr != NULL) {
1802     HeapRegion* next = csr->next_in_collection_set();
1803     assert(csr->in_collection_set(), "bad CS");
1804     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1805                  HR_FORMAT_PARAMS(csr),
1806                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1807                  csr->age_in_surv_rate_group_cond());
1808     csr = next;
1809   }
1810 }
1811 #endif // !PRODUCT
1812 
1813 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1814   // Returns the given amount of reclaimable bytes (that represents
1815   // the amount of reclaimable space still to be collected) as a
1816   // percentage of the current heap capacity.
1817   size_t capacity_bytes = _g1->capacity();
1818   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1819 }
1820 
1821 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1822                                                 const char* false_action_str) {
1823   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1824   if (cset_chooser->is_empty()) {
1825     ergo_verbose0(ErgoMixedGCs,
1826                   false_action_str,
1827                   ergo_format_reason("candidate old regions not available"));
1828     return false;
1829   }
1830 
1831   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1832   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1833   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1834   double threshold = (double) G1HeapWastePercent;
1835   if (reclaimable_perc <= threshold) {
1836     ergo_verbose4(ErgoMixedGCs,
1837               false_action_str,
1838               ergo_format_reason("reclaimable percentage not over threshold")
1839               ergo_format_region("candidate old regions")
1840               ergo_format_byte_perc("reclaimable")
1841               ergo_format_perc("threshold"),
1842               cset_chooser->remaining_regions(),
1843               reclaimable_bytes,
1844               reclaimable_perc, threshold);
1845     return false;
1846   }
1847 
1848   ergo_verbose4(ErgoMixedGCs,
1849                 true_action_str,
1850                 ergo_format_reason("candidate old regions available")
1851                 ergo_format_region("candidate old regions")
1852                 ergo_format_byte_perc("reclaimable")
1853                 ergo_format_perc("threshold"),
1854                 cset_chooser->remaining_regions(),
1855                 reclaimable_bytes,
1856                 reclaimable_perc, threshold);
1857   return true;
1858 }
1859 
1860 uint G1CollectorPolicy::calc_min_old_cset_length() {
1861   // The min old CSet region bound is based on the maximum desired
1862   // number of mixed GCs after a cycle. I.e., even if some old regions
1863   // look expensive, we should add them to the CSet anyway to make
1864   // sure we go through the available old regions in no more than the
1865   // maximum desired number of mixed GCs.
1866   //
1867   // The calculation is based on the number of marked regions we added
1868   // to the CSet chooser in the first place, not how many remain, so
1869   // that the result is the same during all mixed GCs that follow a cycle.
1870 
1871   const size_t region_num = (size_t) _collectionSetChooser->length();
1872   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1873   size_t result = region_num / gc_num;
1874   // emulate ceiling
1875   if (result * gc_num < region_num) {
1876     result += 1;
1877   }
1878   return (uint) result;
1879 }
1880 
1881 uint G1CollectorPolicy::calc_max_old_cset_length() {
1882   // The max old CSet region bound is based on the threshold expressed
1883   // as a percentage of the heap size. I.e., it should bound the
1884   // number of old regions added to the CSet irrespective of how many
1885   // of them are available.
1886 
1887   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1888   const size_t region_num = g1h->num_regions();
1889   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1890   size_t result = region_num * perc / 100;
1891   // emulate ceiling
1892   if (100 * result < region_num * perc) {
1893     result += 1;
1894   }
1895   return (uint) result;
1896 }
1897 
1898 
1899 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1900   double young_start_time_sec = os::elapsedTime();
1901 
1902   YoungList* young_list = _g1->young_list();
1903   finalize_incremental_cset_building();
1904 
1905   guarantee(target_pause_time_ms > 0.0,
1906             err_msg("target_pause_time_ms = %1.6lf should be positive",
1907                     target_pause_time_ms));
1908   guarantee(_collection_set == NULL, "Precondition");
1909 
1910   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1911   double predicted_pause_time_ms = base_time_ms;
1912   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1913 
1914   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1915                 "start choosing CSet",
1916                 ergo_format_size("_pending_cards")
1917                 ergo_format_ms("predicted base time")
1918                 ergo_format_ms("remaining time")
1919                 ergo_format_ms("target pause time"),
1920                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1921 
1922   _last_gc_was_young = gcs_are_young() ? true : false;
1923 
1924   if (_last_gc_was_young) {
1925     _trace_young_gen_time_data.increment_young_collection_count();
1926   } else {
1927     _trace_young_gen_time_data.increment_mixed_collection_count();
1928   }
1929 
1930   // The young list is laid with the survivor regions from the previous
1931   // pause are appended to the RHS of the young list, i.e.
1932   //   [Newly Young Regions ++ Survivors from last pause].
1933 
1934   uint survivor_region_length = young_list->survivor_length();
1935   uint eden_region_length = young_list->length() - survivor_region_length;
1936   init_cset_region_lengths(eden_region_length, survivor_region_length);
1937 
1938   HeapRegion* hr = young_list->first_survivor_region();
1939   while (hr != NULL) {
1940     assert(hr->is_survivor(), "badly formed young list");
1941     // There is a convention that all the young regions in the CSet
1942     // are tagged as "eden", so we do this for the survivors here. We
1943     // use the special set_eden_pre_gc() as it doesn't check that the
1944     // region is free (which is not the case here).
1945     hr->set_eden_pre_gc();
1946     hr = hr->get_next_young_region();
1947   }
1948 
1949   // Clear the fields that point to the survivor list - they are all young now.
1950   young_list->clear_survivors();
1951 
1952   _collection_set = _inc_cset_head;
1953   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1954   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1955   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1956 
1957   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1958                 "add young regions to CSet",
1959                 ergo_format_region("eden")
1960                 ergo_format_region("survivors")
1961                 ergo_format_ms("predicted young region time"),
1962                 eden_region_length, survivor_region_length,
1963                 _inc_cset_predicted_elapsed_time_ms);
1964 
1965   // The number of recorded young regions is the incremental
1966   // collection set's current size
1967   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1968 
1969   double young_end_time_sec = os::elapsedTime();
1970   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1971 
1972   // Set the start of the non-young choice time.
1973   double non_young_start_time_sec = young_end_time_sec;
1974 
1975   if (!gcs_are_young()) {
1976     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1977     cset_chooser->verify();
1978     const uint min_old_cset_length = calc_min_old_cset_length();
1979     const uint max_old_cset_length = calc_max_old_cset_length();
1980 
1981     uint expensive_region_num = 0;
1982     bool check_time_remaining = adaptive_young_list_length();
1983 
1984     HeapRegion* hr = cset_chooser->peek();
1985     while (hr != NULL) {
1986       if (old_cset_region_length() >= max_old_cset_length) {
1987         // Added maximum number of old regions to the CSet.
1988         ergo_verbose2(ErgoCSetConstruction,
1989                       "finish adding old regions to CSet",
1990                       ergo_format_reason("old CSet region num reached max")
1991                       ergo_format_region("old")
1992                       ergo_format_region("max"),
1993                       old_cset_region_length(), max_old_cset_length);
1994         break;
1995       }
1996 
1997 
1998       // Stop adding regions if the remaining reclaimable space is
1999       // not above G1HeapWastePercent.
2000       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2001       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2002       double threshold = (double) G1HeapWastePercent;
2003       if (reclaimable_perc <= threshold) {
2004         // We've added enough old regions that the amount of uncollected
2005         // reclaimable space is at or below the waste threshold. Stop
2006         // adding old regions to the CSet.
2007         ergo_verbose5(ErgoCSetConstruction,
2008                       "finish adding old regions to CSet",
2009                       ergo_format_reason("reclaimable percentage not over threshold")
2010                       ergo_format_region("old")
2011                       ergo_format_region("max")
2012                       ergo_format_byte_perc("reclaimable")
2013                       ergo_format_perc("threshold"),
2014                       old_cset_region_length(),
2015                       max_old_cset_length,
2016                       reclaimable_bytes,
2017                       reclaimable_perc, threshold);
2018         break;
2019       }
2020 
2021       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2022       if (check_time_remaining) {
2023         if (predicted_time_ms > time_remaining_ms) {
2024           // Too expensive for the current CSet.
2025 
2026           if (old_cset_region_length() >= min_old_cset_length) {
2027             // We have added the minimum number of old regions to the CSet,
2028             // we are done with this CSet.
2029             ergo_verbose4(ErgoCSetConstruction,
2030                           "finish adding old regions to CSet",
2031                           ergo_format_reason("predicted time is too high")
2032                           ergo_format_ms("predicted time")
2033                           ergo_format_ms("remaining time")
2034                           ergo_format_region("old")
2035                           ergo_format_region("min"),
2036                           predicted_time_ms, time_remaining_ms,
2037                           old_cset_region_length(), min_old_cset_length);
2038             break;
2039           }
2040 
2041           // We'll add it anyway given that we haven't reached the
2042           // minimum number of old regions.
2043           expensive_region_num += 1;
2044         }
2045       } else {
2046         if (old_cset_region_length() >= min_old_cset_length) {
2047           // In the non-auto-tuning case, we'll finish adding regions
2048           // to the CSet if we reach the minimum.
2049           ergo_verbose2(ErgoCSetConstruction,
2050                         "finish adding old regions to CSet",
2051                         ergo_format_reason("old CSet region num reached min")
2052                         ergo_format_region("old")
2053                         ergo_format_region("min"),
2054                         old_cset_region_length(), min_old_cset_length);
2055           break;
2056         }
2057       }
2058 
2059       // We will add this region to the CSet.
2060       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2061       predicted_pause_time_ms += predicted_time_ms;
2062       cset_chooser->remove_and_move_to_next(hr);
2063       _g1->old_set_remove(hr);
2064       add_old_region_to_cset(hr);
2065 
2066       hr = cset_chooser->peek();
2067     }
2068     if (hr == NULL) {
2069       ergo_verbose0(ErgoCSetConstruction,
2070                     "finish adding old regions to CSet",
2071                     ergo_format_reason("candidate old regions not available"));
2072     }
2073 
2074     if (expensive_region_num > 0) {
2075       // We print the information once here at the end, predicated on
2076       // whether we added any apparently expensive regions or not, to
2077       // avoid generating output per region.
2078       ergo_verbose4(ErgoCSetConstruction,
2079                     "added expensive regions to CSet",
2080                     ergo_format_reason("old CSet region num not reached min")
2081                     ergo_format_region("old")
2082                     ergo_format_region("expensive")
2083                     ergo_format_region("min")
2084                     ergo_format_ms("remaining time"),
2085                     old_cset_region_length(),
2086                     expensive_region_num,
2087                     min_old_cset_length,
2088                     time_remaining_ms);
2089     }
2090 
2091     cset_chooser->verify();
2092   }
2093 
2094   stop_incremental_cset_building();
2095 
2096   ergo_verbose5(ErgoCSetConstruction,
2097                 "finish choosing CSet",
2098                 ergo_format_region("eden")
2099                 ergo_format_region("survivors")
2100                 ergo_format_region("old")
2101                 ergo_format_ms("predicted pause time")
2102                 ergo_format_ms("target pause time"),
2103                 eden_region_length, survivor_region_length,
2104                 old_cset_region_length(),
2105                 predicted_pause_time_ms, target_pause_time_ms);
2106 
2107   double non_young_end_time_sec = os::elapsedTime();
2108   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2109   evacuation_info.set_collectionset_regions(cset_region_length());
2110 }
2111 
2112 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2113   if(TraceYoungGenTime) {
2114     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2115   }
2116 }
2117 
2118 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2119   if(TraceYoungGenTime) {
2120     _all_yield_times_ms.add(yield_time_ms);
2121   }
2122 }
2123 
2124 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2125   if(TraceYoungGenTime) {
2126     _total.add(pause_time_ms);
2127     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2128     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2129     _parallel.add(phase_times->cur_collection_par_time_ms());
2130     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2131     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2132     _update_rs.add(phase_times->average_last_update_rs_time());
2133     _scan_rs.add(phase_times->average_last_scan_rs_time());
2134     _obj_copy.add(phase_times->average_last_obj_copy_time());
2135     _termination.add(phase_times->average_last_termination_time());
2136 
2137     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2138       phase_times->average_last_satb_filtering_times_ms() +
2139       phase_times->average_last_update_rs_time() +
2140       phase_times->average_last_scan_rs_time() +
2141       phase_times->average_last_obj_copy_time() +
2142       + phase_times->average_last_termination_time();
2143 
2144     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2145     _parallel_other.add(parallel_other_time);
2146     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2147   }
2148 }
2149 
2150 void TraceYoungGenTimeData::increment_young_collection_count() {
2151   if(TraceYoungGenTime) {
2152     ++_young_pause_num;
2153   }
2154 }
2155 
2156 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2157   if(TraceYoungGenTime) {
2158     ++_mixed_pause_num;
2159   }
2160 }
2161 
2162 void TraceYoungGenTimeData::print_summary(const char* str,
2163                                           const NumberSeq* seq) const {
2164   double sum = seq->sum();
2165   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2166                 str, sum / 1000.0, seq->avg());
2167 }
2168 
2169 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2170                                              const NumberSeq* seq) const {
2171   print_summary(str, seq);
2172   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2173                 "(num", seq->num(), seq->sd(), seq->maximum());
2174 }
2175 
2176 void TraceYoungGenTimeData::print() const {
2177   if (!TraceYoungGenTime) {
2178     return;
2179   }
2180 
2181   gclog_or_tty->print_cr("ALL PAUSES");
2182   print_summary_sd("   Total", &_total);
2183   gclog_or_tty->cr();
2184   gclog_or_tty->cr();
2185   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2186   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2187   gclog_or_tty->cr();
2188 
2189   gclog_or_tty->print_cr("EVACUATION PAUSES");
2190 
2191   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2192     gclog_or_tty->print_cr("none");
2193   } else {
2194     print_summary_sd("   Evacuation Pauses", &_total);
2195     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2196     print_summary("      Parallel Time", &_parallel);
2197     print_summary("         Ext Root Scanning", &_ext_root_scan);
2198     print_summary("         SATB Filtering", &_satb_filtering);
2199     print_summary("         Update RS", &_update_rs);
2200     print_summary("         Scan RS", &_scan_rs);
2201     print_summary("         Object Copy", &_obj_copy);
2202     print_summary("         Termination", &_termination);
2203     print_summary("         Parallel Other", &_parallel_other);
2204     print_summary("      Clear CT", &_clear_ct);
2205     print_summary("      Other", &_other);
2206   }
2207   gclog_or_tty->cr();
2208 
2209   gclog_or_tty->print_cr("MISC");
2210   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2211   print_summary_sd("   Yields", &_all_yield_times_ms);
2212 }
2213 
2214 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2215   if (TraceOldGenTime) {
2216     _all_full_gc_times.add(full_gc_time_ms);
2217   }
2218 }
2219 
2220 void TraceOldGenTimeData::print() const {
2221   if (!TraceOldGenTime) {
2222     return;
2223   }
2224 
2225   if (_all_full_gc_times.num() > 0) {
2226     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2227       _all_full_gc_times.num(),
2228       _all_full_gc_times.sum() / 1000.0);
2229     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2230     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2231       _all_full_gc_times.sd(),
2232       _all_full_gc_times.maximum());
2233   }
2234 }