1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <sys/types.h>
  76 # include <sys/mman.h>
  77 # include <sys/stat.h>
  78 # include <sys/select.h>
  79 # include <pthread.h>
  80 # include <signal.h>
  81 # include <errno.h>
  82 # include <dlfcn.h>
  83 # include <stdio.h>
  84 # include <unistd.h>
  85 # include <sys/resource.h>
  86 # include <pthread.h>
  87 # include <sys/stat.h>
  88 # include <sys/time.h>
  89 # include <sys/times.h>
  90 # include <sys/utsname.h>
  91 # include <sys/socket.h>
  92 # include <sys/wait.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <syscall.h>
  99 # include <sys/sysinfo.h>
 100 # include <gnu/libc-version.h>
 101 # include <sys/ipc.h>
 102 # include <sys/shm.h>
 103 # include <link.h>
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 
 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 109 
 110 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 #define MAX_PATH    (2 * K)
 117 
 118 #define MAX_SECS 100000000
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 #define LARGEPAGES_BIT (1 << 6)
 124 ////////////////////////////////////////////////////////////////////////////////
 125 // global variables
 126 julong os::Linux::_physical_memory = 0;
 127 
 128 address   os::Linux::_initial_thread_stack_bottom = NULL;
 129 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 130 
 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 133 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 134 Mutex* os::Linux::_createThread_lock = NULL;
 135 pthread_t os::Linux::_main_thread;
 136 int os::Linux::_page_size = -1;
 137 const int os::Linux::_vm_default_page_size = (8 * K);
 138 bool os::Linux::_is_floating_stack = false;
 139 bool os::Linux::_is_NPTL = false;
 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
 141 const char * os::Linux::_glibc_version = NULL;
 142 const char * os::Linux::_libpthread_version = NULL;
 143 pthread_condattr_t os::Linux::_condattr[1];
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 // Used to protect dlsym() calls
 162 static pthread_mutex_t dl_mutex;
 163 
 164 // Declarations
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 // utility functions
 168 
 169 static int SR_initialize();
 170 
 171 julong os::available_memory() {
 172   return Linux::available_memory();
 173 }
 174 
 175 julong os::Linux::available_memory() {
 176   // values in struct sysinfo are "unsigned long"
 177   struct sysinfo si;
 178   sysinfo(&si);
 179 
 180   return (julong)si.freeram * si.mem_unit;
 181 }
 182 
 183 julong os::physical_memory() {
 184   return Linux::physical_memory();
 185 }
 186 
 187 ////////////////////////////////////////////////////////////////////////////////
 188 // environment support
 189 
 190 bool os::getenv(const char* name, char* buf, int len) {
 191   const char* val = ::getenv(name);
 192   if (val != NULL && strlen(val) < (size_t)len) {
 193     strcpy(buf, val);
 194     return true;
 195   }
 196   if (len > 0) buf[0] = 0;  // return a null string
 197   return false;
 198 }
 199 
 200 
 201 // Return true if user is running as root.
 202 
 203 bool os::have_special_privileges() {
 204   static bool init = false;
 205   static bool privileges = false;
 206   if (!init) {
 207     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 208     init = true;
 209   }
 210   return privileges;
 211 }
 212 
 213 
 214 #ifndef SYS_gettid
 215 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 216   #ifdef __ia64__
 217     #define SYS_gettid 1105
 218   #elif __i386__
 219     #define SYS_gettid 224
 220   #elif __amd64__
 221     #define SYS_gettid 186
 222   #elif __sparc__
 223     #define SYS_gettid 143
 224   #else
 225     #error define gettid for the arch
 226   #endif
 227 #endif
 228 
 229 // Cpu architecture string
 230 #if   defined(ZERO)
 231 static char cpu_arch[] = ZERO_LIBARCH;
 232 #elif defined(IA64)
 233 static char cpu_arch[] = "ia64";
 234 #elif defined(IA32)
 235 static char cpu_arch[] = "i386";
 236 #elif defined(AMD64)
 237 static char cpu_arch[] = "amd64";
 238 #elif defined(ARM)
 239 static char cpu_arch[] = "arm";
 240 #elif defined(PPC32)
 241 static char cpu_arch[] = "ppc";
 242 #elif defined(PPC64)
 243 #if defined(VM_LITTLE_ENDIAN)
 244 static char cpu_arch[] = "ppc64le";
 245 #else
 246 static char cpu_arch[] = "ppc64";
 247 #endif
 248 #elif defined(SPARC)
 249   #ifdef _LP64
 250 static char cpu_arch[] = "sparcv9";
 251   #else
 252 static char cpu_arch[] = "sparc";
 253   #endif
 254 #else
 255   #error Add appropriate cpu_arch setting
 256 #endif
 257 
 258 
 259 // pid_t gettid()
 260 //
 261 // Returns the kernel thread id of the currently running thread. Kernel
 262 // thread id is used to access /proc.
 263 //
 264 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 265 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 266 //
 267 pid_t os::Linux::gettid() {
 268   int rslt = syscall(SYS_gettid);
 269   if (rslt == -1) {
 270     // old kernel, no NPTL support
 271     return getpid();
 272   } else {
 273     return (pid_t)rslt;
 274   }
 275 }
 276 
 277 // Most versions of linux have a bug where the number of processors are
 278 // determined by looking at the /proc file system.  In a chroot environment,
 279 // the system call returns 1.  This causes the VM to act as if it is
 280 // a single processor and elide locking (see is_MP() call).
 281 static bool unsafe_chroot_detected = false;
 282 static const char *unstable_chroot_error = "/proc file system not found.\n"
 283                      "Java may be unstable running multithreaded in a chroot "
 284                      "environment on Linux when /proc filesystem is not mounted.";
 285 
 286 void os::Linux::initialize_system_info() {
 287   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 288   if (processor_count() == 1) {
 289     pid_t pid = os::Linux::gettid();
 290     char fname[32];
 291     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 292     FILE *fp = fopen(fname, "r");
 293     if (fp == NULL) {
 294       unsafe_chroot_detected = true;
 295     } else {
 296       fclose(fp);
 297     }
 298   }
 299   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 300   assert(processor_count() > 0, "linux error");
 301 }
 302 
 303 void os::init_system_properties_values() {
 304   // The next steps are taken in the product version:
 305   //
 306   // Obtain the JAVA_HOME value from the location of libjvm.so.
 307   // This library should be located at:
 308   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 309   //
 310   // If "/jre/lib/" appears at the right place in the path, then we
 311   // assume libjvm.so is installed in a JDK and we use this path.
 312   //
 313   // Otherwise exit with message: "Could not create the Java virtual machine."
 314   //
 315   // The following extra steps are taken in the debugging version:
 316   //
 317   // If "/jre/lib/" does NOT appear at the right place in the path
 318   // instead of exit check for $JAVA_HOME environment variable.
 319   //
 320   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 321   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 322   // it looks like libjvm.so is installed there
 323   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 324   //
 325   // Otherwise exit.
 326   //
 327   // Important note: if the location of libjvm.so changes this
 328   // code needs to be changed accordingly.
 329 
 330   // See ld(1):
 331   //      The linker uses the following search paths to locate required
 332   //      shared libraries:
 333   //        1: ...
 334   //        ...
 335   //        7: The default directories, normally /lib and /usr/lib.
 336 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 337   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 338 #else
 339   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 340 #endif
 341 
 342 // Base path of extensions installed on the system.
 343 #define SYS_EXT_DIR     "/usr/java/packages"
 344 #define EXTENSIONS_DIR  "/lib/ext"
 345 
 346   // Buffer that fits several sprintfs.
 347   // Note that the space for the colon and the trailing null are provided
 348   // by the nulls included by the sizeof operator.
 349   const size_t bufsize =
 350     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 351          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 352   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 353 
 354   // sysclasspath, java_home, dll_dir
 355   {
 356     char *pslash;
 357     os::jvm_path(buf, bufsize);
 358 
 359     // Found the full path to libjvm.so.
 360     // Now cut the path to <java_home>/jre if we can.
 361     pslash = strrchr(buf, '/');
 362     if (pslash != NULL) {
 363       *pslash = '\0';            // Get rid of /libjvm.so.
 364     }
 365     pslash = strrchr(buf, '/');
 366     if (pslash != NULL) {
 367       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 368     }
 369     Arguments::set_dll_dir(buf);
 370 
 371     if (pslash != NULL) {
 372       pslash = strrchr(buf, '/');
 373       if (pslash != NULL) {
 374         *pslash = '\0';          // Get rid of /<arch>.
 375         pslash = strrchr(buf, '/');
 376         if (pslash != NULL) {
 377           *pslash = '\0';        // Get rid of /lib.
 378         }
 379       }
 380     }
 381     Arguments::set_java_home(buf);
 382     set_boot_path('/', ':');
 383   }
 384 
 385   // Where to look for native libraries.
 386   //
 387   // Note: Due to a legacy implementation, most of the library path
 388   // is set in the launcher. This was to accomodate linking restrictions
 389   // on legacy Linux implementations (which are no longer supported).
 390   // Eventually, all the library path setting will be done here.
 391   //
 392   // However, to prevent the proliferation of improperly built native
 393   // libraries, the new path component /usr/java/packages is added here.
 394   // Eventually, all the library path setting will be done here.
 395   {
 396     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 397     // should always exist (until the legacy problem cited above is
 398     // addressed).
 399     const char *v = ::getenv("LD_LIBRARY_PATH");
 400     const char *v_colon = ":";
 401     if (v == NULL) { v = ""; v_colon = ""; }
 402     // That's +1 for the colon and +1 for the trailing '\0'.
 403     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 404                                                      strlen(v) + 1 +
 405                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 406                                                      mtInternal);
 407     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 408     Arguments::set_library_path(ld_library_path);
 409     FREE_C_HEAP_ARRAY(char, ld_library_path);
 410   }
 411 
 412   // Extensions directories.
 413   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 414   Arguments::set_ext_dirs(buf);
 415 
 416   FREE_C_HEAP_ARRAY(char, buf);
 417 
 418 #undef DEFAULT_LIBPATH
 419 #undef SYS_EXT_DIR
 420 #undef EXTENSIONS_DIR
 421 }
 422 
 423 ////////////////////////////////////////////////////////////////////////////////
 424 // breakpoint support
 425 
 426 void os::breakpoint() {
 427   BREAKPOINT;
 428 }
 429 
 430 extern "C" void breakpoint() {
 431   // use debugger to set breakpoint here
 432 }
 433 
 434 ////////////////////////////////////////////////////////////////////////////////
 435 // signal support
 436 
 437 debug_only(static bool signal_sets_initialized = false);
 438 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 439 
 440 bool os::Linux::is_sig_ignored(int sig) {
 441   struct sigaction oact;
 442   sigaction(sig, (struct sigaction*)NULL, &oact);
 443   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 444                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 445   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 446     return true;
 447   } else {
 448     return false;
 449   }
 450 }
 451 
 452 void os::Linux::signal_sets_init() {
 453   // Should also have an assertion stating we are still single-threaded.
 454   assert(!signal_sets_initialized, "Already initialized");
 455   // Fill in signals that are necessarily unblocked for all threads in
 456   // the VM. Currently, we unblock the following signals:
 457   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 458   //                         by -Xrs (=ReduceSignalUsage));
 459   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 460   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 461   // the dispositions or masks wrt these signals.
 462   // Programs embedding the VM that want to use the above signals for their
 463   // own purposes must, at this time, use the "-Xrs" option to prevent
 464   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 465   // (See bug 4345157, and other related bugs).
 466   // In reality, though, unblocking these signals is really a nop, since
 467   // these signals are not blocked by default.
 468   sigemptyset(&unblocked_sigs);
 469   sigemptyset(&allowdebug_blocked_sigs);
 470   sigaddset(&unblocked_sigs, SIGILL);
 471   sigaddset(&unblocked_sigs, SIGSEGV);
 472   sigaddset(&unblocked_sigs, SIGBUS);
 473   sigaddset(&unblocked_sigs, SIGFPE);
 474 #if defined(PPC64)
 475   sigaddset(&unblocked_sigs, SIGTRAP);
 476 #endif
 477   sigaddset(&unblocked_sigs, SR_signum);
 478 
 479   if (!ReduceSignalUsage) {
 480     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 481       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 482       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 483     }
 484     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 485       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 486       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 487     }
 488     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 489       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 490       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 491     }
 492   }
 493   // Fill in signals that are blocked by all but the VM thread.
 494   sigemptyset(&vm_sigs);
 495   if (!ReduceSignalUsage) {
 496     sigaddset(&vm_sigs, BREAK_SIGNAL);
 497   }
 498   debug_only(signal_sets_initialized = true);
 499 
 500 }
 501 
 502 // These are signals that are unblocked while a thread is running Java.
 503 // (For some reason, they get blocked by default.)
 504 sigset_t* os::Linux::unblocked_signals() {
 505   assert(signal_sets_initialized, "Not initialized");
 506   return &unblocked_sigs;
 507 }
 508 
 509 // These are the signals that are blocked while a (non-VM) thread is
 510 // running Java. Only the VM thread handles these signals.
 511 sigset_t* os::Linux::vm_signals() {
 512   assert(signal_sets_initialized, "Not initialized");
 513   return &vm_sigs;
 514 }
 515 
 516 // These are signals that are blocked during cond_wait to allow debugger in
 517 sigset_t* os::Linux::allowdebug_blocked_signals() {
 518   assert(signal_sets_initialized, "Not initialized");
 519   return &allowdebug_blocked_sigs;
 520 }
 521 
 522 void os::Linux::hotspot_sigmask(Thread* thread) {
 523 
 524   //Save caller's signal mask before setting VM signal mask
 525   sigset_t caller_sigmask;
 526   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 527 
 528   OSThread* osthread = thread->osthread();
 529   osthread->set_caller_sigmask(caller_sigmask);
 530 
 531   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 532 
 533   if (!ReduceSignalUsage) {
 534     if (thread->is_VM_thread()) {
 535       // Only the VM thread handles BREAK_SIGNAL ...
 536       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 537     } else {
 538       // ... all other threads block BREAK_SIGNAL
 539       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 540     }
 541   }
 542 }
 543 
 544 //////////////////////////////////////////////////////////////////////////////
 545 // detecting pthread library
 546 
 547 void os::Linux::libpthread_init() {
 548   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 549   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 550   // generic name for earlier versions.
 551   // Define macros here so we can build HotSpot on old systems.
 552 #ifndef _CS_GNU_LIBC_VERSION
 553   #define _CS_GNU_LIBC_VERSION 2
 554 #endif
 555 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 556   #define _CS_GNU_LIBPTHREAD_VERSION 3
 557 #endif
 558 
 559   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 560   if (n > 0) {
 561     char *str = (char *)malloc(n, mtInternal);
 562     confstr(_CS_GNU_LIBC_VERSION, str, n);
 563     os::Linux::set_glibc_version(str);
 564   } else {
 565     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 566     static char _gnu_libc_version[32];
 567     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 568                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 569     os::Linux::set_glibc_version(_gnu_libc_version);
 570   }
 571 
 572   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 573   if (n > 0) {
 574     char *str = (char *)malloc(n, mtInternal);
 575     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 576     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 577     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 578     // is the case. LinuxThreads has a hard limit on max number of threads.
 579     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 580     // On the other hand, NPTL does not have such a limit, sysconf()
 581     // will return -1 and errno is not changed. Check if it is really NPTL.
 582     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 583         strstr(str, "NPTL") &&
 584         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 585       free(str);
 586       os::Linux::set_libpthread_version("linuxthreads");
 587     } else {
 588       os::Linux::set_libpthread_version(str);
 589     }
 590   } else {
 591     // glibc before 2.3.2 only has LinuxThreads.
 592     os::Linux::set_libpthread_version("linuxthreads");
 593   }
 594 
 595   if (strstr(libpthread_version(), "NPTL")) {
 596     os::Linux::set_is_NPTL();
 597   } else {
 598     os::Linux::set_is_LinuxThreads();
 599   }
 600 
 601   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 602   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 603   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 604     os::Linux::set_is_floating_stack();
 605   }
 606 }
 607 
 608 /////////////////////////////////////////////////////////////////////////////
 609 // thread stack
 610 
 611 // Force Linux kernel to expand current thread stack. If "bottom" is close
 612 // to the stack guard, caller should block all signals.
 613 //
 614 // MAP_GROWSDOWN:
 615 //   A special mmap() flag that is used to implement thread stacks. It tells
 616 //   kernel that the memory region should extend downwards when needed. This
 617 //   allows early versions of LinuxThreads to only mmap the first few pages
 618 //   when creating a new thread. Linux kernel will automatically expand thread
 619 //   stack as needed (on page faults).
 620 //
 621 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 622 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 623 //   region, it's hard to tell if the fault is due to a legitimate stack
 624 //   access or because of reading/writing non-exist memory (e.g. buffer
 625 //   overrun). As a rule, if the fault happens below current stack pointer,
 626 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 627 //   application (see Linux kernel fault.c).
 628 //
 629 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 630 //   stack overflow detection.
 631 //
 632 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 633 //   not use this flag. However, the stack of initial thread is not created
 634 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 635 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 636 //   and then attach the thread to JVM.
 637 //
 638 // To get around the problem and allow stack banging on Linux, we need to
 639 // manually expand thread stack after receiving the SIGSEGV.
 640 //
 641 // There are two ways to expand thread stack to address "bottom", we used
 642 // both of them in JVM before 1.5:
 643 //   1. adjust stack pointer first so that it is below "bottom", and then
 644 //      touch "bottom"
 645 //   2. mmap() the page in question
 646 //
 647 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 648 // if current sp is already near the lower end of page 101, and we need to
 649 // call mmap() to map page 100, it is possible that part of the mmap() frame
 650 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 651 // That will destroy the mmap() frame and cause VM to crash.
 652 //
 653 // The following code works by adjusting sp first, then accessing the "bottom"
 654 // page to force a page fault. Linux kernel will then automatically expand the
 655 // stack mapping.
 656 //
 657 // _expand_stack_to() assumes its frame size is less than page size, which
 658 // should always be true if the function is not inlined.
 659 
 660 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 661   #define NOINLINE
 662 #else
 663   #define NOINLINE __attribute__ ((noinline))
 664 #endif
 665 
 666 static void _expand_stack_to(address bottom) NOINLINE;
 667 
 668 static void _expand_stack_to(address bottom) {
 669   address sp;
 670   size_t size;
 671   volatile char *p;
 672 
 673   // Adjust bottom to point to the largest address within the same page, it
 674   // gives us a one-page buffer if alloca() allocates slightly more memory.
 675   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 676   bottom += os::Linux::page_size() - 1;
 677 
 678   // sp might be slightly above current stack pointer; if that's the case, we
 679   // will alloca() a little more space than necessary, which is OK. Don't use
 680   // os::current_stack_pointer(), as its result can be slightly below current
 681   // stack pointer, causing us to not alloca enough to reach "bottom".
 682   sp = (address)&sp;
 683 
 684   if (sp > bottom) {
 685     size = sp - bottom;
 686     p = (volatile char *)alloca(size);
 687     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 688     p[0] = '\0';
 689   }
 690 }
 691 
 692 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 693   assert(t!=NULL, "just checking");
 694   assert(t->osthread()->expanding_stack(), "expand should be set");
 695   assert(t->stack_base() != NULL, "stack_base was not initialized");
 696 
 697   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 698     sigset_t mask_all, old_sigset;
 699     sigfillset(&mask_all);
 700     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 701     _expand_stack_to(addr);
 702     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 703     return true;
 704   }
 705   return false;
 706 }
 707 
 708 //////////////////////////////////////////////////////////////////////////////
 709 // create new thread
 710 
 711 static address highest_vm_reserved_address();
 712 
 713 // check if it's safe to start a new thread
 714 static bool _thread_safety_check(Thread* thread) {
 715   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 716     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 717     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 718     //   allocated (MAP_FIXED) from high address space. Every thread stack
 719     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 720     //   it to other values if they rebuild LinuxThreads).
 721     //
 722     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 723     // the memory region has already been mmap'ed. That means if we have too
 724     // many threads and/or very large heap, eventually thread stack will
 725     // collide with heap.
 726     //
 727     // Here we try to prevent heap/stack collision by comparing current
 728     // stack bottom with the highest address that has been mmap'ed by JVM
 729     // plus a safety margin for memory maps created by native code.
 730     //
 731     // This feature can be disabled by setting ThreadSafetyMargin to 0
 732     //
 733     if (ThreadSafetyMargin > 0) {
 734       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 735 
 736       // not safe if our stack extends below the safety margin
 737       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 738     } else {
 739       return true;
 740     }
 741   } else {
 742     // Floating stack LinuxThreads or NPTL:
 743     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 744     //   there's not enough space left, pthread_create() will fail. If we come
 745     //   here, that means enough space has been reserved for stack.
 746     return true;
 747   }
 748 }
 749 
 750 // Thread start routine for all newly created threads
 751 static void *java_start(Thread *thread) {
 752   // Try to randomize the cache line index of hot stack frames.
 753   // This helps when threads of the same stack traces evict each other's
 754   // cache lines. The threads can be either from the same JVM instance, or
 755   // from different JVM instances. The benefit is especially true for
 756   // processors with hyperthreading technology.
 757   static int counter = 0;
 758   int pid = os::current_process_id();
 759   alloca(((pid ^ counter++) & 7) * 128);
 760 
 761   ThreadLocalStorage::set_thread(thread);
 762 
 763   OSThread* osthread = thread->osthread();
 764   Monitor* sync = osthread->startThread_lock();
 765 
 766   // non floating stack LinuxThreads needs extra check, see above
 767   if (!_thread_safety_check(thread)) {
 768     // notify parent thread
 769     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 770     osthread->set_state(ZOMBIE);
 771     sync->notify_all();
 772     return NULL;
 773   }
 774 
 775   // thread_id is kernel thread id (similar to Solaris LWP id)
 776   osthread->set_thread_id(os::Linux::gettid());
 777 
 778   if (UseNUMA) {
 779     int lgrp_id = os::numa_get_group_id();
 780     if (lgrp_id != -1) {
 781       thread->set_lgrp_id(lgrp_id);
 782     }
 783   }
 784   // initialize signal mask for this thread
 785   os::Linux::hotspot_sigmask(thread);
 786 
 787   // initialize floating point control register
 788   os::Linux::init_thread_fpu_state();
 789 
 790   // handshaking with parent thread
 791   {
 792     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 793 
 794     // notify parent thread
 795     osthread->set_state(INITIALIZED);
 796     sync->notify_all();
 797 
 798     // wait until os::start_thread()
 799     while (osthread->get_state() == INITIALIZED) {
 800       sync->wait(Mutex::_no_safepoint_check_flag);
 801     }
 802   }
 803 
 804   // call one more level start routine
 805   thread->run();
 806 
 807   return 0;
 808 }
 809 
 810 bool os::create_thread(Thread* thread, ThreadType thr_type,
 811                        size_t stack_size) {
 812   assert(thread->osthread() == NULL, "caller responsible");
 813 
 814   // Allocate the OSThread object
 815   OSThread* osthread = new OSThread(NULL, NULL);
 816   if (osthread == NULL) {
 817     return false;
 818   }
 819 
 820   // set the correct thread state
 821   osthread->set_thread_type(thr_type);
 822 
 823   // Initial state is ALLOCATED but not INITIALIZED
 824   osthread->set_state(ALLOCATED);
 825 
 826   thread->set_osthread(osthread);
 827 
 828   // init thread attributes
 829   pthread_attr_t attr;
 830   pthread_attr_init(&attr);
 831   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 832 
 833   // stack size
 834   if (os::Linux::supports_variable_stack_size()) {
 835     // calculate stack size if it's not specified by caller
 836     if (stack_size == 0) {
 837       stack_size = os::Linux::default_stack_size(thr_type);
 838 
 839       switch (thr_type) {
 840       case os::java_thread:
 841         // Java threads use ThreadStackSize which default value can be
 842         // changed with the flag -Xss
 843         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 844         stack_size = JavaThread::stack_size_at_create();
 845         break;
 846       case os::compiler_thread:
 847         if (CompilerThreadStackSize > 0) {
 848           stack_size = (size_t)(CompilerThreadStackSize * K);
 849           break;
 850         } // else fall through:
 851           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 852       case os::vm_thread:
 853       case os::pgc_thread:
 854       case os::cgc_thread:
 855       case os::watcher_thread:
 856         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 857         break;
 858       }
 859     }
 860 
 861     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 862     pthread_attr_setstacksize(&attr, stack_size);
 863   } else {
 864     // let pthread_create() pick the default value.
 865   }
 866 
 867   // glibc guard page
 868   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 869 
 870   ThreadState state;
 871 
 872   {
 873     // Serialize thread creation if we are running with fixed stack LinuxThreads
 874     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 875     if (lock) {
 876       os::Linux::createThread_lock()->lock_without_safepoint_check();
 877     }
 878 
 879     pthread_t tid;
 880     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 881 
 882     pthread_attr_destroy(&attr);
 883 
 884     if (ret != 0) {
 885       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 886         perror("pthread_create()");
 887       }
 888       // Need to clean up stuff we've allocated so far
 889       thread->set_osthread(NULL);
 890       delete osthread;
 891       if (lock) os::Linux::createThread_lock()->unlock();
 892       return false;
 893     }
 894 
 895     // Store pthread info into the OSThread
 896     osthread->set_pthread_id(tid);
 897 
 898     // Wait until child thread is either initialized or aborted
 899     {
 900       Monitor* sync_with_child = osthread->startThread_lock();
 901       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 902       while ((state = osthread->get_state()) == ALLOCATED) {
 903         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 904       }
 905     }
 906 
 907     if (lock) {
 908       os::Linux::createThread_lock()->unlock();
 909     }
 910   }
 911 
 912   // Aborted due to thread limit being reached
 913   if (state == ZOMBIE) {
 914     thread->set_osthread(NULL);
 915     delete osthread;
 916     return false;
 917   }
 918 
 919   // The thread is returned suspended (in state INITIALIZED),
 920   // and is started higher up in the call chain
 921   assert(state == INITIALIZED, "race condition");
 922   return true;
 923 }
 924 
 925 /////////////////////////////////////////////////////////////////////////////
 926 // attach existing thread
 927 
 928 // bootstrap the main thread
 929 bool os::create_main_thread(JavaThread* thread) {
 930   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 931   return create_attached_thread(thread);
 932 }
 933 
 934 bool os::create_attached_thread(JavaThread* thread) {
 935 #ifdef ASSERT
 936   thread->verify_not_published();
 937 #endif
 938 
 939   // Allocate the OSThread object
 940   OSThread* osthread = new OSThread(NULL, NULL);
 941 
 942   if (osthread == NULL) {
 943     return false;
 944   }
 945 
 946   // Store pthread info into the OSThread
 947   osthread->set_thread_id(os::Linux::gettid());
 948   osthread->set_pthread_id(::pthread_self());
 949 
 950   // initialize floating point control register
 951   os::Linux::init_thread_fpu_state();
 952 
 953   // Initial thread state is RUNNABLE
 954   osthread->set_state(RUNNABLE);
 955 
 956   thread->set_osthread(osthread);
 957 
 958   if (UseNUMA) {
 959     int lgrp_id = os::numa_get_group_id();
 960     if (lgrp_id != -1) {
 961       thread->set_lgrp_id(lgrp_id);
 962     }
 963   }
 964 
 965   if (os::Linux::is_initial_thread()) {
 966     // If current thread is initial thread, its stack is mapped on demand,
 967     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 968     // the entire stack region to avoid SEGV in stack banging.
 969     // It is also useful to get around the heap-stack-gap problem on SuSE
 970     // kernel (see 4821821 for details). We first expand stack to the top
 971     // of yellow zone, then enable stack yellow zone (order is significant,
 972     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 973     // is no gap between the last two virtual memory regions.
 974 
 975     JavaThread *jt = (JavaThread *)thread;
 976     address addr = jt->stack_yellow_zone_base();
 977     assert(addr != NULL, "initialization problem?");
 978     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 979 
 980     osthread->set_expanding_stack();
 981     os::Linux::manually_expand_stack(jt, addr);
 982     osthread->clear_expanding_stack();
 983   }
 984 
 985   // initialize signal mask for this thread
 986   // and save the caller's signal mask
 987   os::Linux::hotspot_sigmask(thread);
 988 
 989   return true;
 990 }
 991 
 992 void os::pd_start_thread(Thread* thread) {
 993   OSThread * osthread = thread->osthread();
 994   assert(osthread->get_state() != INITIALIZED, "just checking");
 995   Monitor* sync_with_child = osthread->startThread_lock();
 996   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 997   sync_with_child->notify();
 998 }
 999 
1000 // Free Linux resources related to the OSThread
1001 void os::free_thread(OSThread* osthread) {
1002   assert(osthread != NULL, "osthread not set");
1003 
1004   if (Thread::current()->osthread() == osthread) {
1005     // Restore caller's signal mask
1006     sigset_t sigmask = osthread->caller_sigmask();
1007     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1008   }
1009 
1010   delete osthread;
1011 }
1012 
1013 //////////////////////////////////////////////////////////////////////////////
1014 // thread local storage
1015 
1016 // Restore the thread pointer if the destructor is called. This is in case
1017 // someone from JNI code sets up a destructor with pthread_key_create to run
1018 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1019 // will hang or crash. When detachCurrentThread is called the key will be set
1020 // to null and we will not be called again. If detachCurrentThread is never
1021 // called we could loop forever depending on the pthread implementation.
1022 static void restore_thread_pointer(void* p) {
1023   Thread* thread = (Thread*) p;
1024   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1025 }
1026 
1027 int os::allocate_thread_local_storage() {
1028   pthread_key_t key;
1029   int rslt = pthread_key_create(&key, restore_thread_pointer);
1030   assert(rslt == 0, "cannot allocate thread local storage");
1031   return (int)key;
1032 }
1033 
1034 // Note: This is currently not used by VM, as we don't destroy TLS key
1035 // on VM exit.
1036 void os::free_thread_local_storage(int index) {
1037   int rslt = pthread_key_delete((pthread_key_t)index);
1038   assert(rslt == 0, "invalid index");
1039 }
1040 
1041 void os::thread_local_storage_at_put(int index, void* value) {
1042   int rslt = pthread_setspecific((pthread_key_t)index, value);
1043   assert(rslt == 0, "pthread_setspecific failed");
1044 }
1045 
1046 extern "C" Thread* get_thread() {
1047   return ThreadLocalStorage::thread();
1048 }
1049 
1050 //////////////////////////////////////////////////////////////////////////////
1051 // initial thread
1052 
1053 // Check if current thread is the initial thread, similar to Solaris thr_main.
1054 bool os::Linux::is_initial_thread(void) {
1055   char dummy;
1056   // If called before init complete, thread stack bottom will be null.
1057   // Can be called if fatal error occurs before initialization.
1058   if (initial_thread_stack_bottom() == NULL) return false;
1059   assert(initial_thread_stack_bottom() != NULL &&
1060          initial_thread_stack_size()   != 0,
1061          "os::init did not locate initial thread's stack region");
1062   if ((address)&dummy >= initial_thread_stack_bottom() &&
1063       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1064     return true;
1065   } else {
1066     return false;
1067   }
1068 }
1069 
1070 // Find the virtual memory area that contains addr
1071 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1072   FILE *fp = fopen("/proc/self/maps", "r");
1073   if (fp) {
1074     address low, high;
1075     while (!feof(fp)) {
1076       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1077         if (low <= addr && addr < high) {
1078           if (vma_low)  *vma_low  = low;
1079           if (vma_high) *vma_high = high;
1080           fclose(fp);
1081           return true;
1082         }
1083       }
1084       for (;;) {
1085         int ch = fgetc(fp);
1086         if (ch == EOF || ch == (int)'\n') break;
1087       }
1088     }
1089     fclose(fp);
1090   }
1091   return false;
1092 }
1093 
1094 // Locate initial thread stack. This special handling of initial thread stack
1095 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1096 // bogus value for initial thread.
1097 void os::Linux::capture_initial_stack(size_t max_size) {
1098   // stack size is the easy part, get it from RLIMIT_STACK
1099   size_t stack_size;
1100   struct rlimit rlim;
1101   getrlimit(RLIMIT_STACK, &rlim);
1102   stack_size = rlim.rlim_cur;
1103 
1104   // 6308388: a bug in ld.so will relocate its own .data section to the
1105   //   lower end of primordial stack; reduce ulimit -s value a little bit
1106   //   so we won't install guard page on ld.so's data section.
1107   stack_size -= 2 * page_size();
1108 
1109   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1110   //   7.1, in both cases we will get 2G in return value.
1111   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1112   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1113   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1114   //   in case other parts in glibc still assumes 2M max stack size.
1115   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1116   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1117   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1118     stack_size = 2 * K * K IA64_ONLY(*2);
1119   }
1120   // Try to figure out where the stack base (top) is. This is harder.
1121   //
1122   // When an application is started, glibc saves the initial stack pointer in
1123   // a global variable "__libc_stack_end", which is then used by system
1124   // libraries. __libc_stack_end should be pretty close to stack top. The
1125   // variable is available since the very early days. However, because it is
1126   // a private interface, it could disappear in the future.
1127   //
1128   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1129   // to __libc_stack_end, it is very close to stack top, but isn't the real
1130   // stack top. Note that /proc may not exist if VM is running as a chroot
1131   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1132   // /proc/<pid>/stat could change in the future (though unlikely).
1133   //
1134   // We try __libc_stack_end first. If that doesn't work, look for
1135   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1136   // as a hint, which should work well in most cases.
1137 
1138   uintptr_t stack_start;
1139 
1140   // try __libc_stack_end first
1141   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1142   if (p && *p) {
1143     stack_start = *p;
1144   } else {
1145     // see if we can get the start_stack field from /proc/self/stat
1146     FILE *fp;
1147     int pid;
1148     char state;
1149     int ppid;
1150     int pgrp;
1151     int session;
1152     int nr;
1153     int tpgrp;
1154     unsigned long flags;
1155     unsigned long minflt;
1156     unsigned long cminflt;
1157     unsigned long majflt;
1158     unsigned long cmajflt;
1159     unsigned long utime;
1160     unsigned long stime;
1161     long cutime;
1162     long cstime;
1163     long prio;
1164     long nice;
1165     long junk;
1166     long it_real;
1167     uintptr_t start;
1168     uintptr_t vsize;
1169     intptr_t rss;
1170     uintptr_t rsslim;
1171     uintptr_t scodes;
1172     uintptr_t ecode;
1173     int i;
1174 
1175     // Figure what the primordial thread stack base is. Code is inspired
1176     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1177     // followed by command name surrounded by parentheses, state, etc.
1178     char stat[2048];
1179     int statlen;
1180 
1181     fp = fopen("/proc/self/stat", "r");
1182     if (fp) {
1183       statlen = fread(stat, 1, 2047, fp);
1184       stat[statlen] = '\0';
1185       fclose(fp);
1186 
1187       // Skip pid and the command string. Note that we could be dealing with
1188       // weird command names, e.g. user could decide to rename java launcher
1189       // to "java 1.4.2 :)", then the stat file would look like
1190       //                1234 (java 1.4.2 :)) R ... ...
1191       // We don't really need to know the command string, just find the last
1192       // occurrence of ")" and then start parsing from there. See bug 4726580.
1193       char * s = strrchr(stat, ')');
1194 
1195       i = 0;
1196       if (s) {
1197         // Skip blank chars
1198         do { s++; } while (s && isspace(*s));
1199 
1200 #define _UFM UINTX_FORMAT
1201 #define _DFM INTX_FORMAT
1202 
1203         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1204         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1205         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1206                    &state,          // 3  %c
1207                    &ppid,           // 4  %d
1208                    &pgrp,           // 5  %d
1209                    &session,        // 6  %d
1210                    &nr,             // 7  %d
1211                    &tpgrp,          // 8  %d
1212                    &flags,          // 9  %lu
1213                    &minflt,         // 10 %lu
1214                    &cminflt,        // 11 %lu
1215                    &majflt,         // 12 %lu
1216                    &cmajflt,        // 13 %lu
1217                    &utime,          // 14 %lu
1218                    &stime,          // 15 %lu
1219                    &cutime,         // 16 %ld
1220                    &cstime,         // 17 %ld
1221                    &prio,           // 18 %ld
1222                    &nice,           // 19 %ld
1223                    &junk,           // 20 %ld
1224                    &it_real,        // 21 %ld
1225                    &start,          // 22 UINTX_FORMAT
1226                    &vsize,          // 23 UINTX_FORMAT
1227                    &rss,            // 24 INTX_FORMAT
1228                    &rsslim,         // 25 UINTX_FORMAT
1229                    &scodes,         // 26 UINTX_FORMAT
1230                    &ecode,          // 27 UINTX_FORMAT
1231                    &stack_start);   // 28 UINTX_FORMAT
1232       }
1233 
1234 #undef _UFM
1235 #undef _DFM
1236 
1237       if (i != 28 - 2) {
1238         assert(false, "Bad conversion from /proc/self/stat");
1239         // product mode - assume we are the initial thread, good luck in the
1240         // embedded case.
1241         warning("Can't detect initial thread stack location - bad conversion");
1242         stack_start = (uintptr_t) &rlim;
1243       }
1244     } else {
1245       // For some reason we can't open /proc/self/stat (for example, running on
1246       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1247       // most cases, so don't abort:
1248       warning("Can't detect initial thread stack location - no /proc/self/stat");
1249       stack_start = (uintptr_t) &rlim;
1250     }
1251   }
1252 
1253   // Now we have a pointer (stack_start) very close to the stack top, the
1254   // next thing to do is to figure out the exact location of stack top. We
1255   // can find out the virtual memory area that contains stack_start by
1256   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1257   // and its upper limit is the real stack top. (again, this would fail if
1258   // running inside chroot, because /proc may not exist.)
1259 
1260   uintptr_t stack_top;
1261   address low, high;
1262   if (find_vma((address)stack_start, &low, &high)) {
1263     // success, "high" is the true stack top. (ignore "low", because initial
1264     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1265     stack_top = (uintptr_t)high;
1266   } else {
1267     // failed, likely because /proc/self/maps does not exist
1268     warning("Can't detect initial thread stack location - find_vma failed");
1269     // best effort: stack_start is normally within a few pages below the real
1270     // stack top, use it as stack top, and reduce stack size so we won't put
1271     // guard page outside stack.
1272     stack_top = stack_start;
1273     stack_size -= 16 * page_size();
1274   }
1275 
1276   // stack_top could be partially down the page so align it
1277   stack_top = align_size_up(stack_top, page_size());
1278 
1279   if (max_size && stack_size > max_size) {
1280     _initial_thread_stack_size = max_size;
1281   } else {
1282     _initial_thread_stack_size = stack_size;
1283   }
1284 
1285   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1286   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1287 }
1288 
1289 ////////////////////////////////////////////////////////////////////////////////
1290 // time support
1291 
1292 // Time since start-up in seconds to a fine granularity.
1293 // Used by VMSelfDestructTimer and the MemProfiler.
1294 double os::elapsedTime() {
1295 
1296   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1297 }
1298 
1299 jlong os::elapsed_counter() {
1300   return javaTimeNanos() - initial_time_count;
1301 }
1302 
1303 jlong os::elapsed_frequency() {
1304   return NANOSECS_PER_SEC; // nanosecond resolution
1305 }
1306 
1307 bool os::supports_vtime() { return true; }
1308 bool os::enable_vtime()   { return false; }
1309 bool os::vtime_enabled()  { return false; }
1310 
1311 double os::elapsedVTime() {
1312   struct rusage usage;
1313   int retval = getrusage(RUSAGE_THREAD, &usage);
1314   if (retval == 0) {
1315     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1316   } else {
1317     // better than nothing, but not much
1318     return elapsedTime();
1319   }
1320 }
1321 
1322 jlong os::javaTimeMillis() {
1323   timeval time;
1324   int status = gettimeofday(&time, NULL);
1325   assert(status != -1, "linux error");
1326   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1327 }
1328 
1329 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1330   timeval time;
1331   int status = gettimeofday(&time, NULL);
1332   assert(status != -1, "linux error");
1333   seconds = jlong(time.tv_sec);
1334   nanos = jlong(time.tv_usec) * 1000;
1335 }
1336 
1337 
1338 #ifndef CLOCK_MONOTONIC
1339   #define CLOCK_MONOTONIC (1)
1340 #endif
1341 
1342 void os::Linux::clock_init() {
1343   // we do dlopen's in this particular order due to bug in linux
1344   // dynamical loader (see 6348968) leading to crash on exit
1345   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1346   if (handle == NULL) {
1347     handle = dlopen("librt.so", RTLD_LAZY);
1348   }
1349 
1350   if (handle) {
1351     int (*clock_getres_func)(clockid_t, struct timespec*) =
1352            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1353     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1354            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1355     if (clock_getres_func && clock_gettime_func) {
1356       // See if monotonic clock is supported by the kernel. Note that some
1357       // early implementations simply return kernel jiffies (updated every
1358       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1359       // for nano time (though the monotonic property is still nice to have).
1360       // It's fixed in newer kernels, however clock_getres() still returns
1361       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1362       // resolution for now. Hopefully as people move to new kernels, this
1363       // won't be a problem.
1364       struct timespec res;
1365       struct timespec tp;
1366       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1367           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1368         // yes, monotonic clock is supported
1369         _clock_gettime = clock_gettime_func;
1370         return;
1371       } else {
1372         // close librt if there is no monotonic clock
1373         dlclose(handle);
1374       }
1375     }
1376   }
1377   warning("No monotonic clock was available - timed services may " \
1378           "be adversely affected if the time-of-day clock changes");
1379 }
1380 
1381 #ifndef SYS_clock_getres
1382   #if defined(IA32) || defined(AMD64)
1383     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1384     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1385   #else
1386     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1387     #define sys_clock_getres(x,y)  -1
1388   #endif
1389 #else
1390   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1391 #endif
1392 
1393 void os::Linux::fast_thread_clock_init() {
1394   if (!UseLinuxPosixThreadCPUClocks) {
1395     return;
1396   }
1397   clockid_t clockid;
1398   struct timespec tp;
1399   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1400       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1401 
1402   // Switch to using fast clocks for thread cpu time if
1403   // the sys_clock_getres() returns 0 error code.
1404   // Note, that some kernels may support the current thread
1405   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1406   // returned by the pthread_getcpuclockid().
1407   // If the fast Posix clocks are supported then the sys_clock_getres()
1408   // must return at least tp.tv_sec == 0 which means a resolution
1409   // better than 1 sec. This is extra check for reliability.
1410 
1411   if (pthread_getcpuclockid_func &&
1412       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1413       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1414     _supports_fast_thread_cpu_time = true;
1415     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1416   }
1417 }
1418 
1419 jlong os::javaTimeNanos() {
1420   if (os::supports_monotonic_clock()) {
1421     struct timespec tp;
1422     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1423     assert(status == 0, "gettime error");
1424     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1425     return result;
1426   } else {
1427     timeval time;
1428     int status = gettimeofday(&time, NULL);
1429     assert(status != -1, "linux error");
1430     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1431     return 1000 * usecs;
1432   }
1433 }
1434 
1435 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1436   if (os::supports_monotonic_clock()) {
1437     info_ptr->max_value = ALL_64_BITS;
1438 
1439     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1440     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1441     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1442   } else {
1443     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1444     info_ptr->max_value = ALL_64_BITS;
1445 
1446     // gettimeofday is a real time clock so it skips
1447     info_ptr->may_skip_backward = true;
1448     info_ptr->may_skip_forward = true;
1449   }
1450 
1451   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1452 }
1453 
1454 // Return the real, user, and system times in seconds from an
1455 // arbitrary fixed point in the past.
1456 bool os::getTimesSecs(double* process_real_time,
1457                       double* process_user_time,
1458                       double* process_system_time) {
1459   struct tms ticks;
1460   clock_t real_ticks = times(&ticks);
1461 
1462   if (real_ticks == (clock_t) (-1)) {
1463     return false;
1464   } else {
1465     double ticks_per_second = (double) clock_tics_per_sec;
1466     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1467     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1468     *process_real_time = ((double) real_ticks) / ticks_per_second;
1469 
1470     return true;
1471   }
1472 }
1473 
1474 
1475 char * os::local_time_string(char *buf, size_t buflen) {
1476   struct tm t;
1477   time_t long_time;
1478   time(&long_time);
1479   localtime_r(&long_time, &t);
1480   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1481                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1482                t.tm_hour, t.tm_min, t.tm_sec);
1483   return buf;
1484 }
1485 
1486 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1487   return localtime_r(clock, res);
1488 }
1489 
1490 ////////////////////////////////////////////////////////////////////////////////
1491 // runtime exit support
1492 
1493 // Note: os::shutdown() might be called very early during initialization, or
1494 // called from signal handler. Before adding something to os::shutdown(), make
1495 // sure it is async-safe and can handle partially initialized VM.
1496 void os::shutdown() {
1497 
1498   // allow PerfMemory to attempt cleanup of any persistent resources
1499   perfMemory_exit();
1500 
1501   // needs to remove object in file system
1502   AttachListener::abort();
1503 
1504   // flush buffered output, finish log files
1505   ostream_abort();
1506 
1507   // Check for abort hook
1508   abort_hook_t abort_hook = Arguments::abort_hook();
1509   if (abort_hook != NULL) {
1510     abort_hook();
1511   }
1512 
1513 }
1514 
1515 // Note: os::abort() might be called very early during initialization, or
1516 // called from signal handler. Before adding something to os::abort(), make
1517 // sure it is async-safe and can handle partially initialized VM.
1518 void os::abort(bool dump_core) {
1519   os::shutdown();
1520   if (dump_core) {
1521 #ifndef PRODUCT
1522     fdStream out(defaultStream::output_fd());
1523     out.print_raw("Current thread is ");
1524     char buf[16];
1525     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1526     out.print_raw_cr(buf);
1527     out.print_raw_cr("Dumping core ...");
1528 #endif
1529     ::abort(); // dump core
1530   }
1531 
1532   ::exit(1);
1533 }
1534 
1535 // Die immediately, no exit hook, no abort hook, no cleanup.
1536 void os::die() {
1537   // _exit() on LinuxThreads only kills current thread
1538   ::abort();
1539 }
1540 
1541 
1542 // This method is a copy of JDK's sysGetLastErrorString
1543 // from src/solaris/hpi/src/system_md.c
1544 
1545 size_t os::lasterror(char *buf, size_t len) {
1546   if (errno == 0)  return 0;
1547 
1548   const char *s = ::strerror(errno);
1549   size_t n = ::strlen(s);
1550   if (n >= len) {
1551     n = len - 1;
1552   }
1553   ::strncpy(buf, s, n);
1554   buf[n] = '\0';
1555   return n;
1556 }
1557 
1558 intx os::current_thread_id() { return (intx)pthread_self(); }
1559 int os::current_process_id() {
1560 
1561   // Under the old linux thread library, linux gives each thread
1562   // its own process id. Because of this each thread will return
1563   // a different pid if this method were to return the result
1564   // of getpid(2). Linux provides no api that returns the pid
1565   // of the launcher thread for the vm. This implementation
1566   // returns a unique pid, the pid of the launcher thread
1567   // that starts the vm 'process'.
1568 
1569   // Under the NPTL, getpid() returns the same pid as the
1570   // launcher thread rather than a unique pid per thread.
1571   // Use gettid() if you want the old pre NPTL behaviour.
1572 
1573   // if you are looking for the result of a call to getpid() that
1574   // returns a unique pid for the calling thread, then look at the
1575   // OSThread::thread_id() method in osThread_linux.hpp file
1576 
1577   return (int)(_initial_pid ? _initial_pid : getpid());
1578 }
1579 
1580 // DLL functions
1581 
1582 const char* os::dll_file_extension() { return ".so"; }
1583 
1584 // This must be hard coded because it's the system's temporary
1585 // directory not the java application's temp directory, ala java.io.tmpdir.
1586 const char* os::get_temp_directory() { return "/tmp"; }
1587 
1588 static bool file_exists(const char* filename) {
1589   struct stat statbuf;
1590   if (filename == NULL || strlen(filename) == 0) {
1591     return false;
1592   }
1593   return os::stat(filename, &statbuf) == 0;
1594 }
1595 
1596 bool os::dll_build_name(char* buffer, size_t buflen,
1597                         const char* pname, const char* fname) {
1598   bool retval = false;
1599   // Copied from libhpi
1600   const size_t pnamelen = pname ? strlen(pname) : 0;
1601 
1602   // Return error on buffer overflow.
1603   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1604     return retval;
1605   }
1606 
1607   if (pnamelen == 0) {
1608     snprintf(buffer, buflen, "lib%s.so", fname);
1609     retval = true;
1610   } else if (strchr(pname, *os::path_separator()) != NULL) {
1611     int n;
1612     char** pelements = split_path(pname, &n);
1613     if (pelements == NULL) {
1614       return false;
1615     }
1616     for (int i = 0; i < n; i++) {
1617       // Really shouldn't be NULL, but check can't hurt
1618       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1619         continue; // skip the empty path values
1620       }
1621       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1622       if (file_exists(buffer)) {
1623         retval = true;
1624         break;
1625       }
1626     }
1627     // release the storage
1628     for (int i = 0; i < n; i++) {
1629       if (pelements[i] != NULL) {
1630         FREE_C_HEAP_ARRAY(char, pelements[i]);
1631       }
1632     }
1633     if (pelements != NULL) {
1634       FREE_C_HEAP_ARRAY(char*, pelements);
1635     }
1636   } else {
1637     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1638     retval = true;
1639   }
1640   return retval;
1641 }
1642 
1643 // check if addr is inside libjvm.so
1644 bool os::address_is_in_vm(address addr) {
1645   static address libjvm_base_addr;
1646   Dl_info dlinfo;
1647 
1648   if (libjvm_base_addr == NULL) {
1649     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1650       libjvm_base_addr = (address)dlinfo.dli_fbase;
1651     }
1652     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1653   }
1654 
1655   if (dladdr((void *)addr, &dlinfo) != 0) {
1656     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1657   }
1658 
1659   return false;
1660 }
1661 
1662 bool os::dll_address_to_function_name(address addr, char *buf,
1663                                       int buflen, int *offset) {
1664   // buf is not optional, but offset is optional
1665   assert(buf != NULL, "sanity check");
1666 
1667   Dl_info dlinfo;
1668 
1669   if (dladdr((void*)addr, &dlinfo) != 0) {
1670     // see if we have a matching symbol
1671     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1672       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1673         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1674       }
1675       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1676       return true;
1677     }
1678     // no matching symbol so try for just file info
1679     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1680       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1681                           buf, buflen, offset, dlinfo.dli_fname)) {
1682         return true;
1683       }
1684     }
1685   }
1686 
1687   buf[0] = '\0';
1688   if (offset != NULL) *offset = -1;
1689   return false;
1690 }
1691 
1692 struct _address_to_library_name {
1693   address addr;          // input : memory address
1694   size_t  buflen;        //         size of fname
1695   char*   fname;         // output: library name
1696   address base;          //         library base addr
1697 };
1698 
1699 static int address_to_library_name_callback(struct dl_phdr_info *info,
1700                                             size_t size, void *data) {
1701   int i;
1702   bool found = false;
1703   address libbase = NULL;
1704   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1705 
1706   // iterate through all loadable segments
1707   for (i = 0; i < info->dlpi_phnum; i++) {
1708     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1709     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1710       // base address of a library is the lowest address of its loaded
1711       // segments.
1712       if (libbase == NULL || libbase > segbase) {
1713         libbase = segbase;
1714       }
1715       // see if 'addr' is within current segment
1716       if (segbase <= d->addr &&
1717           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1718         found = true;
1719       }
1720     }
1721   }
1722 
1723   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1724   // so dll_address_to_library_name() can fall through to use dladdr() which
1725   // can figure out executable name from argv[0].
1726   if (found && info->dlpi_name && info->dlpi_name[0]) {
1727     d->base = libbase;
1728     if (d->fname) {
1729       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1730     }
1731     return 1;
1732   }
1733   return 0;
1734 }
1735 
1736 bool os::dll_address_to_library_name(address addr, char* buf,
1737                                      int buflen, int* offset) {
1738   // buf is not optional, but offset is optional
1739   assert(buf != NULL, "sanity check");
1740 
1741   Dl_info dlinfo;
1742   struct _address_to_library_name data;
1743 
1744   // There is a bug in old glibc dladdr() implementation that it could resolve
1745   // to wrong library name if the .so file has a base address != NULL. Here
1746   // we iterate through the program headers of all loaded libraries to find
1747   // out which library 'addr' really belongs to. This workaround can be
1748   // removed once the minimum requirement for glibc is moved to 2.3.x.
1749   data.addr = addr;
1750   data.fname = buf;
1751   data.buflen = buflen;
1752   data.base = NULL;
1753   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1754 
1755   if (rslt) {
1756     // buf already contains library name
1757     if (offset) *offset = addr - data.base;
1758     return true;
1759   }
1760   if (dladdr((void*)addr, &dlinfo) != 0) {
1761     if (dlinfo.dli_fname != NULL) {
1762       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1763     }
1764     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1765       *offset = addr - (address)dlinfo.dli_fbase;
1766     }
1767     return true;
1768   }
1769 
1770   buf[0] = '\0';
1771   if (offset) *offset = -1;
1772   return false;
1773 }
1774 
1775 // Loads .dll/.so and
1776 // in case of error it checks if .dll/.so was built for the
1777 // same architecture as Hotspot is running on
1778 
1779 
1780 // Remember the stack's state. The Linux dynamic linker will change
1781 // the stack to 'executable' at most once, so we must safepoint only once.
1782 bool os::Linux::_stack_is_executable = false;
1783 
1784 // VM operation that loads a library.  This is necessary if stack protection
1785 // of the Java stacks can be lost during loading the library.  If we
1786 // do not stop the Java threads, they can stack overflow before the stacks
1787 // are protected again.
1788 class VM_LinuxDllLoad: public VM_Operation {
1789  private:
1790   const char *_filename;
1791   char *_ebuf;
1792   int _ebuflen;
1793   void *_lib;
1794  public:
1795   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1796     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1797   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1798   void doit() {
1799     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1800     os::Linux::_stack_is_executable = true;
1801   }
1802   void* loaded_library() { return _lib; }
1803 };
1804 
1805 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1806   void * result = NULL;
1807   bool load_attempted = false;
1808 
1809   // Check whether the library to load might change execution rights
1810   // of the stack. If they are changed, the protection of the stack
1811   // guard pages will be lost. We need a safepoint to fix this.
1812   //
1813   // See Linux man page execstack(8) for more info.
1814   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1815     ElfFile ef(filename);
1816     if (!ef.specifies_noexecstack()) {
1817       if (!is_init_completed()) {
1818         os::Linux::_stack_is_executable = true;
1819         // This is OK - No Java threads have been created yet, and hence no
1820         // stack guard pages to fix.
1821         //
1822         // This should happen only when you are building JDK7 using a very
1823         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1824         //
1825         // Dynamic loader will make all stacks executable after
1826         // this function returns, and will not do that again.
1827         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1828       } else {
1829         warning("You have loaded library %s which might have disabled stack guard. "
1830                 "The VM will try to fix the stack guard now.\n"
1831                 "It's highly recommended that you fix the library with "
1832                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1833                 filename);
1834 
1835         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1836         JavaThread *jt = JavaThread::current();
1837         if (jt->thread_state() != _thread_in_native) {
1838           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1839           // that requires ExecStack. Cannot enter safe point. Let's give up.
1840           warning("Unable to fix stack guard. Giving up.");
1841         } else {
1842           if (!LoadExecStackDllInVMThread) {
1843             // This is for the case where the DLL has an static
1844             // constructor function that executes JNI code. We cannot
1845             // load such DLLs in the VMThread.
1846             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1847           }
1848 
1849           ThreadInVMfromNative tiv(jt);
1850           debug_only(VMNativeEntryWrapper vew;)
1851 
1852           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1853           VMThread::execute(&op);
1854           if (LoadExecStackDllInVMThread) {
1855             result = op.loaded_library();
1856           }
1857           load_attempted = true;
1858         }
1859       }
1860     }
1861   }
1862 
1863   if (!load_attempted) {
1864     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1865   }
1866 
1867   if (result != NULL) {
1868     // Successful loading
1869     return result;
1870   }
1871 
1872   Elf32_Ehdr elf_head;
1873   int diag_msg_max_length=ebuflen-strlen(ebuf);
1874   char* diag_msg_buf=ebuf+strlen(ebuf);
1875 
1876   if (diag_msg_max_length==0) {
1877     // No more space in ebuf for additional diagnostics message
1878     return NULL;
1879   }
1880 
1881 
1882   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1883 
1884   if (file_descriptor < 0) {
1885     // Can't open library, report dlerror() message
1886     return NULL;
1887   }
1888 
1889   bool failed_to_read_elf_head=
1890     (sizeof(elf_head)!=
1891      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1892 
1893   ::close(file_descriptor);
1894   if (failed_to_read_elf_head) {
1895     // file i/o error - report dlerror() msg
1896     return NULL;
1897   }
1898 
1899   typedef struct {
1900     Elf32_Half  code;         // Actual value as defined in elf.h
1901     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1902     char        elf_class;    // 32 or 64 bit
1903     char        endianess;    // MSB or LSB
1904     char*       name;         // String representation
1905   } arch_t;
1906 
1907 #ifndef EM_486
1908   #define EM_486          6               /* Intel 80486 */
1909 #endif
1910 
1911   static const arch_t arch_array[]={
1912     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1913     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1914     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1915     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1916     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1917     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1918     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1919     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1920 #if defined(VM_LITTLE_ENDIAN)
1921     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1922 #else
1923     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1924 #endif
1925     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1926     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1927     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1928     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1929     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1930     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1931     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1932   };
1933 
1934 #if  (defined IA32)
1935   static  Elf32_Half running_arch_code=EM_386;
1936 #elif   (defined AMD64)
1937   static  Elf32_Half running_arch_code=EM_X86_64;
1938 #elif  (defined IA64)
1939   static  Elf32_Half running_arch_code=EM_IA_64;
1940 #elif  (defined __sparc) && (defined _LP64)
1941   static  Elf32_Half running_arch_code=EM_SPARCV9;
1942 #elif  (defined __sparc) && (!defined _LP64)
1943   static  Elf32_Half running_arch_code=EM_SPARC;
1944 #elif  (defined __powerpc64__)
1945   static  Elf32_Half running_arch_code=EM_PPC64;
1946 #elif  (defined __powerpc__)
1947   static  Elf32_Half running_arch_code=EM_PPC;
1948 #elif  (defined ARM)
1949   static  Elf32_Half running_arch_code=EM_ARM;
1950 #elif  (defined S390)
1951   static  Elf32_Half running_arch_code=EM_S390;
1952 #elif  (defined ALPHA)
1953   static  Elf32_Half running_arch_code=EM_ALPHA;
1954 #elif  (defined MIPSEL)
1955   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1956 #elif  (defined PARISC)
1957   static  Elf32_Half running_arch_code=EM_PARISC;
1958 #elif  (defined MIPS)
1959   static  Elf32_Half running_arch_code=EM_MIPS;
1960 #elif  (defined M68K)
1961   static  Elf32_Half running_arch_code=EM_68K;
1962 #else
1963     #error Method os::dll_load requires that one of following is defined:\
1964          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1965 #endif
1966 
1967   // Identify compatability class for VM's architecture and library's architecture
1968   // Obtain string descriptions for architectures
1969 
1970   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1971   int running_arch_index=-1;
1972 
1973   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1974     if (running_arch_code == arch_array[i].code) {
1975       running_arch_index    = i;
1976     }
1977     if (lib_arch.code == arch_array[i].code) {
1978       lib_arch.compat_class = arch_array[i].compat_class;
1979       lib_arch.name         = arch_array[i].name;
1980     }
1981   }
1982 
1983   assert(running_arch_index != -1,
1984          "Didn't find running architecture code (running_arch_code) in arch_array");
1985   if (running_arch_index == -1) {
1986     // Even though running architecture detection failed
1987     // we may still continue with reporting dlerror() message
1988     return NULL;
1989   }
1990 
1991   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1992     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1993     return NULL;
1994   }
1995 
1996 #ifndef S390
1997   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1998     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1999     return NULL;
2000   }
2001 #endif // !S390
2002 
2003   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2004     if (lib_arch.name!=NULL) {
2005       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2006                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2007                  lib_arch.name, arch_array[running_arch_index].name);
2008     } else {
2009       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2010                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2011                  lib_arch.code,
2012                  arch_array[running_arch_index].name);
2013     }
2014   }
2015 
2016   return NULL;
2017 }
2018 
2019 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2020                                 int ebuflen) {
2021   void * result = ::dlopen(filename, RTLD_LAZY);
2022   if (result == NULL) {
2023     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2024     ebuf[ebuflen-1] = '\0';
2025   }
2026   return result;
2027 }
2028 
2029 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2030                                        int ebuflen) {
2031   void * result = NULL;
2032   if (LoadExecStackDllInVMThread) {
2033     result = dlopen_helper(filename, ebuf, ebuflen);
2034   }
2035 
2036   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2037   // library that requires an executable stack, or which does not have this
2038   // stack attribute set, dlopen changes the stack attribute to executable. The
2039   // read protection of the guard pages gets lost.
2040   //
2041   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2042   // may have been queued at the same time.
2043 
2044   if (!_stack_is_executable) {
2045     JavaThread *jt = Threads::first();
2046 
2047     while (jt) {
2048       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2049           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2050         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2051                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2052           warning("Attempt to reguard stack yellow zone failed.");
2053         }
2054       }
2055       jt = jt->next();
2056     }
2057   }
2058 
2059   return result;
2060 }
2061 
2062 // glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2063 // chances are you might want to run the generated bits against glibc-2.0
2064 // libdl.so, so always use locking for any version of glibc.
2065 //
2066 void* os::dll_lookup(void* handle, const char* name) {
2067   pthread_mutex_lock(&dl_mutex);
2068   void* res = dlsym(handle, name);
2069   pthread_mutex_unlock(&dl_mutex);
2070   return res;
2071 }
2072 
2073 void* os::get_default_process_handle() {
2074   return (void*)::dlopen(NULL, RTLD_LAZY);
2075 }
2076 
2077 static bool _print_ascii_file(const char* filename, outputStream* st) {
2078   int fd = ::open(filename, O_RDONLY);
2079   if (fd == -1) {
2080     return false;
2081   }
2082 
2083   char buf[32];
2084   int bytes;
2085   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2086     st->print_raw(buf, bytes);
2087   }
2088 
2089   ::close(fd);
2090 
2091   return true;
2092 }
2093 
2094 void os::print_dll_info(outputStream *st) {
2095   st->print_cr("Dynamic libraries:");
2096 
2097   char fname[32];
2098   pid_t pid = os::Linux::gettid();
2099 
2100   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2101 
2102   if (!_print_ascii_file(fname, st)) {
2103     st->print("Can not get library information for pid = %d\n", pid);
2104   }
2105 }
2106 
2107 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2108   FILE *procmapsFile = NULL;
2109 
2110   // Open the procfs maps file for the current process
2111   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2112     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2113     char line[PATH_MAX + 100];
2114 
2115     // Read line by line from 'file'
2116     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2117       u8 base, top, offset, inode;
2118       char permissions[5];
2119       char device[6];
2120       char name[PATH_MAX + 1];
2121 
2122       // Parse fields from line
2123       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2124 
2125       // Filter by device id '00:00' so that we only get file system mapped files.
2126       if (strcmp(device, "00:00") != 0) {
2127 
2128         // Call callback with the fields of interest
2129         if(callback(name, (address)base, (address)top, param)) {
2130           // Oops abort, callback aborted
2131           fclose(procmapsFile);
2132           return 1;
2133         }
2134       }
2135     }
2136     fclose(procmapsFile);
2137   }
2138   return 0;
2139 }
2140 
2141 void os::print_os_info_brief(outputStream* st) {
2142   os::Linux::print_distro_info(st);
2143 
2144   os::Posix::print_uname_info(st);
2145 
2146   os::Linux::print_libversion_info(st);
2147 
2148 }
2149 
2150 void os::print_os_info(outputStream* st) {
2151   st->print("OS:");
2152 
2153   os::Linux::print_distro_info(st);
2154 
2155   os::Posix::print_uname_info(st);
2156 
2157   // Print warning if unsafe chroot environment detected
2158   if (unsafe_chroot_detected) {
2159     st->print("WARNING!! ");
2160     st->print_cr("%s", unstable_chroot_error);
2161   }
2162 
2163   os::Linux::print_libversion_info(st);
2164 
2165   os::Posix::print_rlimit_info(st);
2166 
2167   os::Posix::print_load_average(st);
2168 
2169   os::Linux::print_full_memory_info(st);
2170 }
2171 
2172 // Try to identify popular distros.
2173 // Most Linux distributions have a /etc/XXX-release file, which contains
2174 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2175 // file that also contains the OS version string. Some have more than one
2176 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2177 // /etc/redhat-release.), so the order is important.
2178 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2179 // their own specific XXX-release file as well as a redhat-release file.
2180 // Because of this the XXX-release file needs to be searched for before the
2181 // redhat-release file.
2182 // Since Red Hat has a lsb-release file that is not very descriptive the
2183 // search for redhat-release needs to be before lsb-release.
2184 // Since the lsb-release file is the new standard it needs to be searched
2185 // before the older style release files.
2186 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2187 // next to last resort.  The os-release file is a new standard that contains
2188 // distribution information and the system-release file seems to be an old
2189 // standard that has been replaced by the lsb-release and os-release files.
2190 // Searching for the debian_version file is the last resort.  It contains
2191 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2192 // "Debian " is printed before the contents of the debian_version file.
2193 void os::Linux::print_distro_info(outputStream* st) {
2194   if (!_print_ascii_file("/etc/oracle-release", st) &&
2195       !_print_ascii_file("/etc/mandriva-release", st) &&
2196       !_print_ascii_file("/etc/mandrake-release", st) &&
2197       !_print_ascii_file("/etc/sun-release", st) &&
2198       !_print_ascii_file("/etc/redhat-release", st) &&
2199       !_print_ascii_file("/etc/lsb-release", st) &&
2200       !_print_ascii_file("/etc/SuSE-release", st) &&
2201       !_print_ascii_file("/etc/turbolinux-release", st) &&
2202       !_print_ascii_file("/etc/gentoo-release", st) &&
2203       !_print_ascii_file("/etc/ltib-release", st) &&
2204       !_print_ascii_file("/etc/angstrom-version", st) &&
2205       !_print_ascii_file("/etc/system-release", st) &&
2206       !_print_ascii_file("/etc/os-release", st)) {
2207 
2208     if (file_exists("/etc/debian_version")) {
2209       st->print("Debian ");
2210       _print_ascii_file("/etc/debian_version", st);
2211     } else {
2212       st->print("Linux");
2213     }
2214   }
2215   st->cr();
2216 }
2217 
2218 void os::Linux::print_libversion_info(outputStream* st) {
2219   // libc, pthread
2220   st->print("libc:");
2221   st->print("%s ", os::Linux::glibc_version());
2222   st->print("%s ", os::Linux::libpthread_version());
2223   if (os::Linux::is_LinuxThreads()) {
2224     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2225   }
2226   st->cr();
2227 }
2228 
2229 void os::Linux::print_full_memory_info(outputStream* st) {
2230   st->print("\n/proc/meminfo:\n");
2231   _print_ascii_file("/proc/meminfo", st);
2232   st->cr();
2233 }
2234 
2235 void os::print_memory_info(outputStream* st) {
2236 
2237   st->print("Memory:");
2238   st->print(" %dk page", os::vm_page_size()>>10);
2239 
2240   // values in struct sysinfo are "unsigned long"
2241   struct sysinfo si;
2242   sysinfo(&si);
2243 
2244   st->print(", physical " UINT64_FORMAT "k",
2245             os::physical_memory() >> 10);
2246   st->print("(" UINT64_FORMAT "k free)",
2247             os::available_memory() >> 10);
2248   st->print(", swap " UINT64_FORMAT "k",
2249             ((jlong)si.totalswap * si.mem_unit) >> 10);
2250   st->print("(" UINT64_FORMAT "k free)",
2251             ((jlong)si.freeswap * si.mem_unit) >> 10);
2252   st->cr();
2253 }
2254 
2255 void os::pd_print_cpu_info(outputStream* st) {
2256   st->print("\n/proc/cpuinfo:\n");
2257   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2258     st->print("  <Not Available>");
2259   }
2260   st->cr();
2261 }
2262 
2263 void os::print_siginfo(outputStream* st, void* siginfo) {
2264   const siginfo_t* si = (const siginfo_t*)siginfo;
2265 
2266   os::Posix::print_siginfo_brief(st, si);
2267 #if INCLUDE_CDS
2268   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2269       UseSharedSpaces) {
2270     FileMapInfo* mapinfo = FileMapInfo::current_info();
2271     if (mapinfo->is_in_shared_space(si->si_addr)) {
2272       st->print("\n\nError accessing class data sharing archive."   \
2273                 " Mapped file inaccessible during execution, "      \
2274                 " possible disk/network problem.");
2275     }
2276   }
2277 #endif
2278   st->cr();
2279 }
2280 
2281 
2282 static void print_signal_handler(outputStream* st, int sig,
2283                                  char* buf, size_t buflen);
2284 
2285 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2286   st->print_cr("Signal Handlers:");
2287   print_signal_handler(st, SIGSEGV, buf, buflen);
2288   print_signal_handler(st, SIGBUS , buf, buflen);
2289   print_signal_handler(st, SIGFPE , buf, buflen);
2290   print_signal_handler(st, SIGPIPE, buf, buflen);
2291   print_signal_handler(st, SIGXFSZ, buf, buflen);
2292   print_signal_handler(st, SIGILL , buf, buflen);
2293   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2294   print_signal_handler(st, SR_signum, buf, buflen);
2295   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2296   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2297   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2298   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2299 #if defined(PPC64)
2300   print_signal_handler(st, SIGTRAP, buf, buflen);
2301 #endif
2302 }
2303 
2304 static char saved_jvm_path[MAXPATHLEN] = {0};
2305 
2306 // Find the full path to the current module, libjvm.so
2307 void os::jvm_path(char *buf, jint buflen) {
2308   // Error checking.
2309   if (buflen < MAXPATHLEN) {
2310     assert(false, "must use a large-enough buffer");
2311     buf[0] = '\0';
2312     return;
2313   }
2314   // Lazy resolve the path to current module.
2315   if (saved_jvm_path[0] != 0) {
2316     strcpy(buf, saved_jvm_path);
2317     return;
2318   }
2319 
2320   char dli_fname[MAXPATHLEN];
2321   bool ret = dll_address_to_library_name(
2322                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2323                                          dli_fname, sizeof(dli_fname), NULL);
2324   assert(ret, "cannot locate libjvm");
2325   char *rp = NULL;
2326   if (ret && dli_fname[0] != '\0') {
2327     rp = realpath(dli_fname, buf);
2328   }
2329   if (rp == NULL) {
2330     return;
2331   }
2332 
2333   if (Arguments::sun_java_launcher_is_altjvm()) {
2334     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2335     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2336     // If "/jre/lib/" appears at the right place in the string, then
2337     // assume we are installed in a JDK and we're done. Otherwise, check
2338     // for a JAVA_HOME environment variable and fix up the path so it
2339     // looks like libjvm.so is installed there (append a fake suffix
2340     // hotspot/libjvm.so).
2341     const char *p = buf + strlen(buf) - 1;
2342     for (int count = 0; p > buf && count < 5; ++count) {
2343       for (--p; p > buf && *p != '/'; --p)
2344         /* empty */ ;
2345     }
2346 
2347     if (strncmp(p, "/jre/lib/", 9) != 0) {
2348       // Look for JAVA_HOME in the environment.
2349       char* java_home_var = ::getenv("JAVA_HOME");
2350       if (java_home_var != NULL && java_home_var[0] != 0) {
2351         char* jrelib_p;
2352         int len;
2353 
2354         // Check the current module name "libjvm.so".
2355         p = strrchr(buf, '/');
2356         if (p == NULL) {
2357           return;
2358         }
2359         assert(strstr(p, "/libjvm") == p, "invalid library name");
2360 
2361         rp = realpath(java_home_var, buf);
2362         if (rp == NULL) {
2363           return;
2364         }
2365 
2366         // determine if this is a legacy image or modules image
2367         // modules image doesn't have "jre" subdirectory
2368         len = strlen(buf);
2369         assert(len < buflen, "Ran out of buffer room");
2370         jrelib_p = buf + len;
2371         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2372         if (0 != access(buf, F_OK)) {
2373           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2374         }
2375 
2376         if (0 == access(buf, F_OK)) {
2377           // Use current module name "libjvm.so"
2378           len = strlen(buf);
2379           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2380         } else {
2381           // Go back to path of .so
2382           rp = realpath(dli_fname, buf);
2383           if (rp == NULL) {
2384             return;
2385           }
2386         }
2387       }
2388     }
2389   }
2390 
2391   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2392   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2393 }
2394 
2395 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2396   // no prefix required, not even "_"
2397 }
2398 
2399 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2400   // no suffix required
2401 }
2402 
2403 ////////////////////////////////////////////////////////////////////////////////
2404 // sun.misc.Signal support
2405 
2406 static volatile jint sigint_count = 0;
2407 
2408 static void UserHandler(int sig, void *siginfo, void *context) {
2409   // 4511530 - sem_post is serialized and handled by the manager thread. When
2410   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2411   // don't want to flood the manager thread with sem_post requests.
2412   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2413     return;
2414   }
2415 
2416   // Ctrl-C is pressed during error reporting, likely because the error
2417   // handler fails to abort. Let VM die immediately.
2418   if (sig == SIGINT && is_error_reported()) {
2419     os::die();
2420   }
2421 
2422   os::signal_notify(sig);
2423 }
2424 
2425 void* os::user_handler() {
2426   return CAST_FROM_FN_PTR(void*, UserHandler);
2427 }
2428 
2429 class Semaphore : public StackObj {
2430  public:
2431   Semaphore();
2432   ~Semaphore();
2433   void signal();
2434   void wait();
2435   bool trywait();
2436   bool timedwait(unsigned int sec, int nsec);
2437  private:
2438   sem_t _semaphore;
2439 };
2440 
2441 Semaphore::Semaphore() {
2442   sem_init(&_semaphore, 0, 0);
2443 }
2444 
2445 Semaphore::~Semaphore() {
2446   sem_destroy(&_semaphore);
2447 }
2448 
2449 void Semaphore::signal() {
2450   sem_post(&_semaphore);
2451 }
2452 
2453 void Semaphore::wait() {
2454   sem_wait(&_semaphore);
2455 }
2456 
2457 bool Semaphore::trywait() {
2458   return sem_trywait(&_semaphore) == 0;
2459 }
2460 
2461 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2462 
2463   struct timespec ts;
2464   // Semaphore's are always associated with CLOCK_REALTIME
2465   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2466   // see unpackTime for discussion on overflow checking
2467   if (sec >= MAX_SECS) {
2468     ts.tv_sec += MAX_SECS;
2469     ts.tv_nsec = 0;
2470   } else {
2471     ts.tv_sec += sec;
2472     ts.tv_nsec += nsec;
2473     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2474       ts.tv_nsec -= NANOSECS_PER_SEC;
2475       ++ts.tv_sec; // note: this must be <= max_secs
2476     }
2477   }
2478 
2479   while (1) {
2480     int result = sem_timedwait(&_semaphore, &ts);
2481     if (result == 0) {
2482       return true;
2483     } else if (errno == EINTR) {
2484       continue;
2485     } else if (errno == ETIMEDOUT) {
2486       return false;
2487     } else {
2488       return false;
2489     }
2490   }
2491 }
2492 
2493 extern "C" {
2494   typedef void (*sa_handler_t)(int);
2495   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2496 }
2497 
2498 void* os::signal(int signal_number, void* handler) {
2499   struct sigaction sigAct, oldSigAct;
2500 
2501   sigfillset(&(sigAct.sa_mask));
2502   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2503   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2504 
2505   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2506     // -1 means registration failed
2507     return (void *)-1;
2508   }
2509 
2510   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2511 }
2512 
2513 void os::signal_raise(int signal_number) {
2514   ::raise(signal_number);
2515 }
2516 
2517 // The following code is moved from os.cpp for making this
2518 // code platform specific, which it is by its very nature.
2519 
2520 // Will be modified when max signal is changed to be dynamic
2521 int os::sigexitnum_pd() {
2522   return NSIG;
2523 }
2524 
2525 // a counter for each possible signal value
2526 static volatile jint pending_signals[NSIG+1] = { 0 };
2527 
2528 // Linux(POSIX) specific hand shaking semaphore.
2529 static sem_t sig_sem;
2530 static Semaphore sr_semaphore;
2531 
2532 void os::signal_init_pd() {
2533   // Initialize signal structures
2534   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2535 
2536   // Initialize signal semaphore
2537   ::sem_init(&sig_sem, 0, 0);
2538 }
2539 
2540 void os::signal_notify(int sig) {
2541   Atomic::inc(&pending_signals[sig]);
2542   ::sem_post(&sig_sem);
2543 }
2544 
2545 static int check_pending_signals(bool wait) {
2546   Atomic::store(0, &sigint_count);
2547   for (;;) {
2548     for (int i = 0; i < NSIG + 1; i++) {
2549       jint n = pending_signals[i];
2550       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2551         return i;
2552       }
2553     }
2554     if (!wait) {
2555       return -1;
2556     }
2557     JavaThread *thread = JavaThread::current();
2558     ThreadBlockInVM tbivm(thread);
2559 
2560     bool threadIsSuspended;
2561     do {
2562       thread->set_suspend_equivalent();
2563       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2564       ::sem_wait(&sig_sem);
2565 
2566       // were we externally suspended while we were waiting?
2567       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2568       if (threadIsSuspended) {
2569         // The semaphore has been incremented, but while we were waiting
2570         // another thread suspended us. We don't want to continue running
2571         // while suspended because that would surprise the thread that
2572         // suspended us.
2573         ::sem_post(&sig_sem);
2574 
2575         thread->java_suspend_self();
2576       }
2577     } while (threadIsSuspended);
2578   }
2579 }
2580 
2581 int os::signal_lookup() {
2582   return check_pending_signals(false);
2583 }
2584 
2585 int os::signal_wait() {
2586   return check_pending_signals(true);
2587 }
2588 
2589 ////////////////////////////////////////////////////////////////////////////////
2590 // Virtual Memory
2591 
2592 int os::vm_page_size() {
2593   // Seems redundant as all get out
2594   assert(os::Linux::page_size() != -1, "must call os::init");
2595   return os::Linux::page_size();
2596 }
2597 
2598 // Solaris allocates memory by pages.
2599 int os::vm_allocation_granularity() {
2600   assert(os::Linux::page_size() != -1, "must call os::init");
2601   return os::Linux::page_size();
2602 }
2603 
2604 // Rationale behind this function:
2605 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2606 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2607 //  samples for JITted code. Here we create private executable mapping over the code cache
2608 //  and then we can use standard (well, almost, as mapping can change) way to provide
2609 //  info for the reporting script by storing timestamp and location of symbol
2610 void linux_wrap_code(char* base, size_t size) {
2611   static volatile jint cnt = 0;
2612 
2613   if (!UseOprofile) {
2614     return;
2615   }
2616 
2617   char buf[PATH_MAX+1];
2618   int num = Atomic::add(1, &cnt);
2619 
2620   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2621            os::get_temp_directory(), os::current_process_id(), num);
2622   unlink(buf);
2623 
2624   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2625 
2626   if (fd != -1) {
2627     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2628     if (rv != (off_t)-1) {
2629       if (::write(fd, "", 1) == 1) {
2630         mmap(base, size,
2631              PROT_READ|PROT_WRITE|PROT_EXEC,
2632              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2633       }
2634     }
2635     ::close(fd);
2636     unlink(buf);
2637   }
2638 }
2639 
2640 static bool recoverable_mmap_error(int err) {
2641   // See if the error is one we can let the caller handle. This
2642   // list of errno values comes from JBS-6843484. I can't find a
2643   // Linux man page that documents this specific set of errno
2644   // values so while this list currently matches Solaris, it may
2645   // change as we gain experience with this failure mode.
2646   switch (err) {
2647   case EBADF:
2648   case EINVAL:
2649   case ENOTSUP:
2650     // let the caller deal with these errors
2651     return true;
2652 
2653   default:
2654     // Any remaining errors on this OS can cause our reserved mapping
2655     // to be lost. That can cause confusion where different data
2656     // structures think they have the same memory mapped. The worst
2657     // scenario is if both the VM and a library think they have the
2658     // same memory mapped.
2659     return false;
2660   }
2661 }
2662 
2663 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2664                                     int err) {
2665   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2666           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2667           strerror(err), err);
2668 }
2669 
2670 static void warn_fail_commit_memory(char* addr, size_t size,
2671                                     size_t alignment_hint, bool exec,
2672                                     int err) {
2673   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2674           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2675           alignment_hint, exec, strerror(err), err);
2676 }
2677 
2678 // NOTE: Linux kernel does not really reserve the pages for us.
2679 //       All it does is to check if there are enough free pages
2680 //       left at the time of mmap(). This could be a potential
2681 //       problem.
2682 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2683   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2684   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2685                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2686   if (res != (uintptr_t) MAP_FAILED) {
2687     if (UseNUMAInterleaving) {
2688       numa_make_global(addr, size);
2689     }
2690     return 0;
2691   }
2692 
2693   int err = errno;  // save errno from mmap() call above
2694 
2695   if (!recoverable_mmap_error(err)) {
2696     warn_fail_commit_memory(addr, size, exec, err);
2697     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2698   }
2699 
2700   return err;
2701 }
2702 
2703 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2704   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2705 }
2706 
2707 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2708                                   const char* mesg) {
2709   assert(mesg != NULL, "mesg must be specified");
2710   int err = os::Linux::commit_memory_impl(addr, size, exec);
2711   if (err != 0) {
2712     // the caller wants all commit errors to exit with the specified mesg:
2713     warn_fail_commit_memory(addr, size, exec, err);
2714     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2715   }
2716 }
2717 
2718 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2719 #ifndef MAP_HUGETLB
2720   #define MAP_HUGETLB 0x40000
2721 #endif
2722 
2723 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2724 #ifndef MADV_HUGEPAGE
2725   #define MADV_HUGEPAGE 14
2726 #endif
2727 
2728 int os::Linux::commit_memory_impl(char* addr, size_t size,
2729                                   size_t alignment_hint, bool exec) {
2730   int err = os::Linux::commit_memory_impl(addr, size, exec);
2731   if (err == 0) {
2732     realign_memory(addr, size, alignment_hint);
2733   }
2734   return err;
2735 }
2736 
2737 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2738                           bool exec) {
2739   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2740 }
2741 
2742 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2743                                   size_t alignment_hint, bool exec,
2744                                   const char* mesg) {
2745   assert(mesg != NULL, "mesg must be specified");
2746   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2747   if (err != 0) {
2748     // the caller wants all commit errors to exit with the specified mesg:
2749     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2750     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2751   }
2752 }
2753 
2754 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2755   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2756     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2757     // be supported or the memory may already be backed by huge pages.
2758     ::madvise(addr, bytes, MADV_HUGEPAGE);
2759   }
2760 }
2761 
2762 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2763   // This method works by doing an mmap over an existing mmaping and effectively discarding
2764   // the existing pages. However it won't work for SHM-based large pages that cannot be
2765   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2766   // small pages on top of the SHM segment. This method always works for small pages, so we
2767   // allow that in any case.
2768   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2769     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2770   }
2771 }
2772 
2773 void os::numa_make_global(char *addr, size_t bytes) {
2774   Linux::numa_interleave_memory(addr, bytes);
2775 }
2776 
2777 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2778 // bind policy to MPOL_PREFERRED for the current thread.
2779 #define USE_MPOL_PREFERRED 0
2780 
2781 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2782   // To make NUMA and large pages more robust when both enabled, we need to ease
2783   // the requirements on where the memory should be allocated. MPOL_BIND is the
2784   // default policy and it will force memory to be allocated on the specified
2785   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2786   // the specified node, but will not force it. Using this policy will prevent
2787   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2788   // free large pages.
2789   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2790   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2791 }
2792 
2793 bool os::numa_topology_changed() { return false; }
2794 
2795 size_t os::numa_get_groups_num() {
2796   int max_node = Linux::numa_max_node();
2797   return max_node > 0 ? max_node + 1 : 1;
2798 }
2799 
2800 int os::numa_get_group_id() {
2801   int cpu_id = Linux::sched_getcpu();
2802   if (cpu_id != -1) {
2803     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2804     if (lgrp_id != -1) {
2805       return lgrp_id;
2806     }
2807   }
2808   return 0;
2809 }
2810 
2811 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2812   for (size_t i = 0; i < size; i++) {
2813     ids[i] = i;
2814   }
2815   return size;
2816 }
2817 
2818 bool os::get_page_info(char *start, page_info* info) {
2819   return false;
2820 }
2821 
2822 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2823                      page_info* page_found) {
2824   return end;
2825 }
2826 
2827 
2828 int os::Linux::sched_getcpu_syscall(void) {
2829   unsigned int cpu;
2830   int retval = -1;
2831 
2832 #if defined(IA32)
2833   #ifndef SYS_getcpu
2834     #define SYS_getcpu 318
2835   #endif
2836   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2837 #elif defined(AMD64)
2838 // Unfortunately we have to bring all these macros here from vsyscall.h
2839 // to be able to compile on old linuxes.
2840   #define __NR_vgetcpu 2
2841   #define VSYSCALL_START (-10UL << 20)
2842   #define VSYSCALL_SIZE 1024
2843   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2844   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2845   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2846   retval = vgetcpu(&cpu, NULL, NULL);
2847 #endif
2848 
2849   return (retval == -1) ? retval : cpu;
2850 }
2851 
2852 // Something to do with the numa-aware allocator needs these symbols
2853 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2854 extern "C" JNIEXPORT void numa_error(char *where) { }
2855 extern "C" JNIEXPORT int fork1() { return fork(); }
2856 
2857 
2858 // If we are running with libnuma version > 2, then we should
2859 // be trying to use symbols with versions 1.1
2860 // If we are running with earlier version, which did not have symbol versions,
2861 // we should use the base version.
2862 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2863   void *f = dlvsym(handle, name, "libnuma_1.1");
2864   if (f == NULL) {
2865     f = dlsym(handle, name);
2866   }
2867   return f;
2868 }
2869 
2870 bool os::Linux::libnuma_init() {
2871   // sched_getcpu() should be in libc.
2872   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2873                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2874 
2875   // If it's not, try a direct syscall.
2876   if (sched_getcpu() == -1) {
2877     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2878                                     (void*)&sched_getcpu_syscall));
2879   }
2880 
2881   if (sched_getcpu() != -1) { // Does it work?
2882     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2883     if (handle != NULL) {
2884       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2885                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2886       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2887                                        libnuma_dlsym(handle, "numa_max_node")));
2888       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2889                                         libnuma_dlsym(handle, "numa_available")));
2890       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2891                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2892       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2893                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2894       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2895                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2896 
2897 
2898       if (numa_available() != -1) {
2899         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2900         // Create a cpu -> node mapping
2901         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2902         rebuild_cpu_to_node_map();
2903         return true;
2904       }
2905     }
2906   }
2907   return false;
2908 }
2909 
2910 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2911 // The table is later used in get_node_by_cpu().
2912 void os::Linux::rebuild_cpu_to_node_map() {
2913   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2914                               // in libnuma (possible values are starting from 16,
2915                               // and continuing up with every other power of 2, but less
2916                               // than the maximum number of CPUs supported by kernel), and
2917                               // is a subject to change (in libnuma version 2 the requirements
2918                               // are more reasonable) we'll just hardcode the number they use
2919                               // in the library.
2920   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2921 
2922   size_t cpu_num = os::active_processor_count();
2923   size_t cpu_map_size = NCPUS / BitsPerCLong;
2924   size_t cpu_map_valid_size =
2925     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2926 
2927   cpu_to_node()->clear();
2928   cpu_to_node()->at_grow(cpu_num - 1);
2929   size_t node_num = numa_get_groups_num();
2930 
2931   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2932   for (size_t i = 0; i < node_num; i++) {
2933     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2934       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2935         if (cpu_map[j] != 0) {
2936           for (size_t k = 0; k < BitsPerCLong; k++) {
2937             if (cpu_map[j] & (1UL << k)) {
2938               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2939             }
2940           }
2941         }
2942       }
2943     }
2944   }
2945   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2946 }
2947 
2948 int os::Linux::get_node_by_cpu(int cpu_id) {
2949   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2950     return cpu_to_node()->at(cpu_id);
2951   }
2952   return -1;
2953 }
2954 
2955 GrowableArray<int>* os::Linux::_cpu_to_node;
2956 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2957 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2958 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2959 os::Linux::numa_available_func_t os::Linux::_numa_available;
2960 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2961 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2962 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2963 unsigned long* os::Linux::_numa_all_nodes;
2964 
2965 bool os::pd_uncommit_memory(char* addr, size_t size) {
2966   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2967                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2968   return res  != (uintptr_t) MAP_FAILED;
2969 }
2970 
2971 static address get_stack_commited_bottom(address bottom, size_t size) {
2972   address nbot = bottom;
2973   address ntop = bottom + size;
2974 
2975   size_t page_sz = os::vm_page_size();
2976   unsigned pages = size / page_sz;
2977 
2978   unsigned char vec[1];
2979   unsigned imin = 1, imax = pages + 1, imid;
2980   int mincore_return_value = 0;
2981 
2982   assert(imin <= imax, "Unexpected page size");
2983 
2984   while (imin < imax) {
2985     imid = (imax + imin) / 2;
2986     nbot = ntop - (imid * page_sz);
2987 
2988     // Use a trick with mincore to check whether the page is mapped or not.
2989     // mincore sets vec to 1 if page resides in memory and to 0 if page
2990     // is swapped output but if page we are asking for is unmapped
2991     // it returns -1,ENOMEM
2992     mincore_return_value = mincore(nbot, page_sz, vec);
2993 
2994     if (mincore_return_value == -1) {
2995       // Page is not mapped go up
2996       // to find first mapped page
2997       if (errno != EAGAIN) {
2998         assert(errno == ENOMEM, "Unexpected mincore errno");
2999         imax = imid;
3000       }
3001     } else {
3002       // Page is mapped go down
3003       // to find first not mapped page
3004       imin = imid + 1;
3005     }
3006   }
3007 
3008   nbot = nbot + page_sz;
3009 
3010   // Adjust stack bottom one page up if last checked page is not mapped
3011   if (mincore_return_value == -1) {
3012     nbot = nbot + page_sz;
3013   }
3014 
3015   return nbot;
3016 }
3017 
3018 
3019 // Linux uses a growable mapping for the stack, and if the mapping for
3020 // the stack guard pages is not removed when we detach a thread the
3021 // stack cannot grow beyond the pages where the stack guard was
3022 // mapped.  If at some point later in the process the stack expands to
3023 // that point, the Linux kernel cannot expand the stack any further
3024 // because the guard pages are in the way, and a segfault occurs.
3025 //
3026 // However, it's essential not to split the stack region by unmapping
3027 // a region (leaving a hole) that's already part of the stack mapping,
3028 // so if the stack mapping has already grown beyond the guard pages at
3029 // the time we create them, we have to truncate the stack mapping.
3030 // So, we need to know the extent of the stack mapping when
3031 // create_stack_guard_pages() is called.
3032 
3033 // We only need this for stacks that are growable: at the time of
3034 // writing thread stacks don't use growable mappings (i.e. those
3035 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3036 // only applies to the main thread.
3037 
3038 // If the (growable) stack mapping already extends beyond the point
3039 // where we're going to put our guard pages, truncate the mapping at
3040 // that point by munmap()ping it.  This ensures that when we later
3041 // munmap() the guard pages we don't leave a hole in the stack
3042 // mapping. This only affects the main/initial thread
3043 
3044 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3045   if (os::Linux::is_initial_thread()) {
3046     // As we manually grow stack up to bottom inside create_attached_thread(),
3047     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3048     // we don't need to do anything special.
3049     // Check it first, before calling heavy function.
3050     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3051     unsigned char vec[1];
3052 
3053     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3054       // Fallback to slow path on all errors, including EAGAIN
3055       stack_extent = (uintptr_t) get_stack_commited_bottom(
3056                                                            os::Linux::initial_thread_stack_bottom(),
3057                                                            (size_t)addr - stack_extent);
3058     }
3059 
3060     if (stack_extent < (uintptr_t)addr) {
3061       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3062     }
3063   }
3064 
3065   return os::commit_memory(addr, size, !ExecMem);
3066 }
3067 
3068 // If this is a growable mapping, remove the guard pages entirely by
3069 // munmap()ping them.  If not, just call uncommit_memory(). This only
3070 // affects the main/initial thread, but guard against future OS changes
3071 // It's safe to always unmap guard pages for initial thread because we
3072 // always place it right after end of the mapped region
3073 
3074 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3075   uintptr_t stack_extent, stack_base;
3076 
3077   if (os::Linux::is_initial_thread()) {
3078     return ::munmap(addr, size) == 0;
3079   }
3080 
3081   return os::uncommit_memory(addr, size);
3082 }
3083 
3084 static address _highest_vm_reserved_address = NULL;
3085 
3086 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3087 // at 'requested_addr'. If there are existing memory mappings at the same
3088 // location, however, they will be overwritten. If 'fixed' is false,
3089 // 'requested_addr' is only treated as a hint, the return value may or
3090 // may not start from the requested address. Unlike Linux mmap(), this
3091 // function returns NULL to indicate failure.
3092 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3093   char * addr;
3094   int flags;
3095 
3096   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3097   if (fixed) {
3098     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3099     flags |= MAP_FIXED;
3100   }
3101 
3102   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3103   // touch an uncommitted page. Otherwise, the read/write might
3104   // succeed if we have enough swap space to back the physical page.
3105   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3106                        flags, -1, 0);
3107 
3108   if (addr != MAP_FAILED) {
3109     // anon_mmap() should only get called during VM initialization,
3110     // don't need lock (actually we can skip locking even it can be called
3111     // from multiple threads, because _highest_vm_reserved_address is just a
3112     // hint about the upper limit of non-stack memory regions.)
3113     if ((address)addr + bytes > _highest_vm_reserved_address) {
3114       _highest_vm_reserved_address = (address)addr + bytes;
3115     }
3116   }
3117 
3118   return addr == MAP_FAILED ? NULL : addr;
3119 }
3120 
3121 // Don't update _highest_vm_reserved_address, because there might be memory
3122 // regions above addr + size. If so, releasing a memory region only creates
3123 // a hole in the address space, it doesn't help prevent heap-stack collision.
3124 //
3125 static int anon_munmap(char * addr, size_t size) {
3126   return ::munmap(addr, size) == 0;
3127 }
3128 
3129 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3130                             size_t alignment_hint) {
3131   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3132 }
3133 
3134 bool os::pd_release_memory(char* addr, size_t size) {
3135   return anon_munmap(addr, size);
3136 }
3137 
3138 static address highest_vm_reserved_address() {
3139   return _highest_vm_reserved_address;
3140 }
3141 
3142 static bool linux_mprotect(char* addr, size_t size, int prot) {
3143   // Linux wants the mprotect address argument to be page aligned.
3144   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3145 
3146   // According to SUSv3, mprotect() should only be used with mappings
3147   // established by mmap(), and mmap() always maps whole pages. Unaligned
3148   // 'addr' likely indicates problem in the VM (e.g. trying to change
3149   // protection of malloc'ed or statically allocated memory). Check the
3150   // caller if you hit this assert.
3151   assert(addr == bottom, "sanity check");
3152 
3153   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3154   return ::mprotect(bottom, size, prot) == 0;
3155 }
3156 
3157 // Set protections specified
3158 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3159                         bool is_committed) {
3160   unsigned int p = 0;
3161   switch (prot) {
3162   case MEM_PROT_NONE: p = PROT_NONE; break;
3163   case MEM_PROT_READ: p = PROT_READ; break;
3164   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3165   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3166   default:
3167     ShouldNotReachHere();
3168   }
3169   // is_committed is unused.
3170   return linux_mprotect(addr, bytes, p);
3171 }
3172 
3173 bool os::guard_memory(char* addr, size_t size) {
3174   return linux_mprotect(addr, size, PROT_NONE);
3175 }
3176 
3177 bool os::unguard_memory(char* addr, size_t size) {
3178   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3179 }
3180 
3181 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3182                                                     size_t page_size) {
3183   bool result = false;
3184   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3185                  MAP_ANONYMOUS|MAP_PRIVATE,
3186                  -1, 0);
3187   if (p != MAP_FAILED) {
3188     void *aligned_p = align_ptr_up(p, page_size);
3189 
3190     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3191 
3192     munmap(p, page_size * 2);
3193   }
3194 
3195   if (warn && !result) {
3196     warning("TransparentHugePages is not supported by the operating system.");
3197   }
3198 
3199   return result;
3200 }
3201 
3202 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3203   bool result = false;
3204   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3205                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3206                  -1, 0);
3207 
3208   if (p != MAP_FAILED) {
3209     // We don't know if this really is a huge page or not.
3210     FILE *fp = fopen("/proc/self/maps", "r");
3211     if (fp) {
3212       while (!feof(fp)) {
3213         char chars[257];
3214         long x = 0;
3215         if (fgets(chars, sizeof(chars), fp)) {
3216           if (sscanf(chars, "%lx-%*x", &x) == 1
3217               && x == (long)p) {
3218             if (strstr (chars, "hugepage")) {
3219               result = true;
3220               break;
3221             }
3222           }
3223         }
3224       }
3225       fclose(fp);
3226     }
3227     munmap(p, page_size);
3228   }
3229 
3230   if (warn && !result) {
3231     warning("HugeTLBFS is not supported by the operating system.");
3232   }
3233 
3234   return result;
3235 }
3236 
3237 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3238 //
3239 // From the coredump_filter documentation:
3240 //
3241 // - (bit 0) anonymous private memory
3242 // - (bit 1) anonymous shared memory
3243 // - (bit 2) file-backed private memory
3244 // - (bit 3) file-backed shared memory
3245 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3246 //           effective only if the bit 2 is cleared)
3247 // - (bit 5) hugetlb private memory
3248 // - (bit 6) hugetlb shared memory
3249 //
3250 static void set_coredump_filter(void) {
3251   FILE *f;
3252   long cdm;
3253 
3254   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3255     return;
3256   }
3257 
3258   if (fscanf(f, "%lx", &cdm) != 1) {
3259     fclose(f);
3260     return;
3261   }
3262 
3263   rewind(f);
3264 
3265   if ((cdm & LARGEPAGES_BIT) == 0) {
3266     cdm |= LARGEPAGES_BIT;
3267     fprintf(f, "%#lx", cdm);
3268   }
3269 
3270   fclose(f);
3271 }
3272 
3273 // Large page support
3274 
3275 static size_t _large_page_size = 0;
3276 
3277 size_t os::Linux::find_large_page_size() {
3278   size_t large_page_size = 0;
3279 
3280   // large_page_size on Linux is used to round up heap size. x86 uses either
3281   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3282   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3283   // page as large as 256M.
3284   //
3285   // Here we try to figure out page size by parsing /proc/meminfo and looking
3286   // for a line with the following format:
3287   //    Hugepagesize:     2048 kB
3288   //
3289   // If we can't determine the value (e.g. /proc is not mounted, or the text
3290   // format has been changed), we'll use the largest page size supported by
3291   // the processor.
3292 
3293 #ifndef ZERO
3294   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3295                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3296 #endif // ZERO
3297 
3298   FILE *fp = fopen("/proc/meminfo", "r");
3299   if (fp) {
3300     while (!feof(fp)) {
3301       int x = 0;
3302       char buf[16];
3303       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3304         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3305           large_page_size = x * K;
3306           break;
3307         }
3308       } else {
3309         // skip to next line
3310         for (;;) {
3311           int ch = fgetc(fp);
3312           if (ch == EOF || ch == (int)'\n') break;
3313         }
3314       }
3315     }
3316     fclose(fp);
3317   }
3318 
3319   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3320     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3321             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3322             proper_unit_for_byte_size(large_page_size));
3323   }
3324 
3325   return large_page_size;
3326 }
3327 
3328 size_t os::Linux::setup_large_page_size() {
3329   _large_page_size = Linux::find_large_page_size();
3330   const size_t default_page_size = (size_t)Linux::page_size();
3331   if (_large_page_size > default_page_size) {
3332     _page_sizes[0] = _large_page_size;
3333     _page_sizes[1] = default_page_size;
3334     _page_sizes[2] = 0;
3335   }
3336 
3337   return _large_page_size;
3338 }
3339 
3340 bool os::Linux::setup_large_page_type(size_t page_size) {
3341   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3342       FLAG_IS_DEFAULT(UseSHM) &&
3343       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3344 
3345     // The type of large pages has not been specified by the user.
3346 
3347     // Try UseHugeTLBFS and then UseSHM.
3348     UseHugeTLBFS = UseSHM = true;
3349 
3350     // Don't try UseTransparentHugePages since there are known
3351     // performance issues with it turned on. This might change in the future.
3352     UseTransparentHugePages = false;
3353   }
3354 
3355   if (UseTransparentHugePages) {
3356     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3357     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3358       UseHugeTLBFS = false;
3359       UseSHM = false;
3360       return true;
3361     }
3362     UseTransparentHugePages = false;
3363   }
3364 
3365   if (UseHugeTLBFS) {
3366     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3367     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3368       UseSHM = false;
3369       return true;
3370     }
3371     UseHugeTLBFS = false;
3372   }
3373 
3374   return UseSHM;
3375 }
3376 
3377 void os::large_page_init() {
3378   if (!UseLargePages &&
3379       !UseTransparentHugePages &&
3380       !UseHugeTLBFS &&
3381       !UseSHM) {
3382     // Not using large pages.
3383     return;
3384   }
3385 
3386   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3387     // The user explicitly turned off large pages.
3388     // Ignore the rest of the large pages flags.
3389     UseTransparentHugePages = false;
3390     UseHugeTLBFS = false;
3391     UseSHM = false;
3392     return;
3393   }
3394 
3395   size_t large_page_size = Linux::setup_large_page_size();
3396   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3397 
3398   set_coredump_filter();
3399 }
3400 
3401 #ifndef SHM_HUGETLB
3402   #define SHM_HUGETLB 04000
3403 #endif
3404 
3405 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3406                                             char* req_addr, bool exec) {
3407   // "exec" is passed in but not used.  Creating the shared image for
3408   // the code cache doesn't have an SHM_X executable permission to check.
3409   assert(UseLargePages && UseSHM, "only for SHM large pages");
3410   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3411 
3412   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3413     return NULL; // Fallback to small pages.
3414   }
3415 
3416   key_t key = IPC_PRIVATE;
3417   char *addr;
3418 
3419   bool warn_on_failure = UseLargePages &&
3420                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3421                          !FLAG_IS_DEFAULT(UseSHM) ||
3422                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3423   char msg[128];
3424 
3425   // Create a large shared memory region to attach to based on size.
3426   // Currently, size is the total size of the heap
3427   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3428   if (shmid == -1) {
3429     // Possible reasons for shmget failure:
3430     // 1. shmmax is too small for Java heap.
3431     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3432     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3433     // 2. not enough large page memory.
3434     //    > check available large pages: cat /proc/meminfo
3435     //    > increase amount of large pages:
3436     //          echo new_value > /proc/sys/vm/nr_hugepages
3437     //      Note 1: different Linux may use different name for this property,
3438     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3439     //      Note 2: it's possible there's enough physical memory available but
3440     //            they are so fragmented after a long run that they can't
3441     //            coalesce into large pages. Try to reserve large pages when
3442     //            the system is still "fresh".
3443     if (warn_on_failure) {
3444       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3445       warning("%s", msg);
3446     }
3447     return NULL;
3448   }
3449 
3450   // attach to the region
3451   addr = (char*)shmat(shmid, req_addr, 0);
3452   int err = errno;
3453 
3454   // Remove shmid. If shmat() is successful, the actual shared memory segment
3455   // will be deleted when it's detached by shmdt() or when the process
3456   // terminates. If shmat() is not successful this will remove the shared
3457   // segment immediately.
3458   shmctl(shmid, IPC_RMID, NULL);
3459 
3460   if ((intptr_t)addr == -1) {
3461     if (warn_on_failure) {
3462       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3463       warning("%s", msg);
3464     }
3465     return NULL;
3466   }
3467 
3468   return addr;
3469 }
3470 
3471 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3472                                         int error) {
3473   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3474 
3475   bool warn_on_failure = UseLargePages &&
3476       (!FLAG_IS_DEFAULT(UseLargePages) ||
3477        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3478        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3479 
3480   if (warn_on_failure) {
3481     char msg[128];
3482     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3483                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3484     warning("%s", msg);
3485   }
3486 }
3487 
3488 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3489                                                         char* req_addr,
3490                                                         bool exec) {
3491   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3492   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3493   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3494 
3495   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3496   char* addr = (char*)::mmap(req_addr, bytes, prot,
3497                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3498                              -1, 0);
3499 
3500   if (addr == MAP_FAILED) {
3501     warn_on_large_pages_failure(req_addr, bytes, errno);
3502     return NULL;
3503   }
3504 
3505   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3506 
3507   return addr;
3508 }
3509 
3510 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3511                                                          size_t alignment,
3512                                                          char* req_addr,
3513                                                          bool exec) {
3514   size_t large_page_size = os::large_page_size();
3515 
3516   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3517 
3518   // Allocate small pages.
3519 
3520   char* start;
3521   if (req_addr != NULL) {
3522     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3523     assert(is_size_aligned(bytes, alignment), "Must be");
3524     start = os::reserve_memory(bytes, req_addr);
3525     assert(start == NULL || start == req_addr, "Must be");
3526   } else {
3527     start = os::reserve_memory_aligned(bytes, alignment);
3528   }
3529 
3530   if (start == NULL) {
3531     return NULL;
3532   }
3533 
3534   assert(is_ptr_aligned(start, alignment), "Must be");
3535 
3536   if (MemTracker::tracking_level() > NMT_minimal) {
3537     // os::reserve_memory_special will record this memory area.
3538     // Need to release it here to prevent overlapping reservations.
3539     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3540     tkr.record((address)start, bytes);
3541   }
3542 
3543   char* end = start + bytes;
3544 
3545   // Find the regions of the allocated chunk that can be promoted to large pages.
3546   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3547   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3548 
3549   size_t lp_bytes = lp_end - lp_start;
3550 
3551   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3552 
3553   if (lp_bytes == 0) {
3554     // The mapped region doesn't even span the start and the end of a large page.
3555     // Fall back to allocate a non-special area.
3556     ::munmap(start, end - start);
3557     return NULL;
3558   }
3559 
3560   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3561 
3562 
3563   void* result;
3564 
3565   if (start != lp_start) {
3566     result = ::mmap(start, lp_start - start, prot,
3567                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3568                     -1, 0);
3569     if (result == MAP_FAILED) {
3570       ::munmap(lp_start, end - lp_start);
3571       return NULL;
3572     }
3573   }
3574 
3575   result = ::mmap(lp_start, lp_bytes, prot,
3576                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3577                   -1, 0);
3578   if (result == MAP_FAILED) {
3579     warn_on_large_pages_failure(req_addr, bytes, errno);
3580     // If the mmap above fails, the large pages region will be unmapped and we
3581     // have regions before and after with small pages. Release these regions.
3582     //
3583     // |  mapped  |  unmapped  |  mapped  |
3584     // ^          ^            ^          ^
3585     // start      lp_start     lp_end     end
3586     //
3587     ::munmap(start, lp_start - start);
3588     ::munmap(lp_end, end - lp_end);
3589     return NULL;
3590   }
3591 
3592   if (lp_end != end) {
3593     result = ::mmap(lp_end, end - lp_end, prot,
3594                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3595                     -1, 0);
3596     if (result == MAP_FAILED) {
3597       ::munmap(start, lp_end - start);
3598       return NULL;
3599     }
3600   }
3601 
3602   return start;
3603 }
3604 
3605 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3606                                                    size_t alignment,
3607                                                    char* req_addr,
3608                                                    bool exec) {
3609   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3610   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3611   assert(is_power_of_2(alignment), "Must be");
3612   assert(is_power_of_2(os::large_page_size()), "Must be");
3613   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3614 
3615   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3616     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3617   } else {
3618     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3619   }
3620 }
3621 
3622 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3623                                  char* req_addr, bool exec) {
3624   assert(UseLargePages, "only for large pages");
3625 
3626   char* addr;
3627   if (UseSHM) {
3628     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3629   } else {
3630     assert(UseHugeTLBFS, "must be");
3631     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3632   }
3633 
3634   if (addr != NULL) {
3635     if (UseNUMAInterleaving) {
3636       numa_make_global(addr, bytes);
3637     }
3638 
3639     // The memory is committed
3640     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3641   }
3642 
3643   return addr;
3644 }
3645 
3646 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3647   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3648   return shmdt(base) == 0;
3649 }
3650 
3651 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3652   return pd_release_memory(base, bytes);
3653 }
3654 
3655 bool os::release_memory_special(char* base, size_t bytes) {
3656   bool res;
3657   if (MemTracker::tracking_level() > NMT_minimal) {
3658     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3659     res = os::Linux::release_memory_special_impl(base, bytes);
3660     if (res) {
3661       tkr.record((address)base, bytes);
3662     }
3663 
3664   } else {
3665     res = os::Linux::release_memory_special_impl(base, bytes);
3666   }
3667   return res;
3668 }
3669 
3670 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3671   assert(UseLargePages, "only for large pages");
3672   bool res;
3673 
3674   if (UseSHM) {
3675     res = os::Linux::release_memory_special_shm(base, bytes);
3676   } else {
3677     assert(UseHugeTLBFS, "must be");
3678     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3679   }
3680   return res;
3681 }
3682 
3683 size_t os::large_page_size() {
3684   return _large_page_size;
3685 }
3686 
3687 // With SysV SHM the entire memory region must be allocated as shared
3688 // memory.
3689 // HugeTLBFS allows application to commit large page memory on demand.
3690 // However, when committing memory with HugeTLBFS fails, the region
3691 // that was supposed to be committed will lose the old reservation
3692 // and allow other threads to steal that memory region. Because of this
3693 // behavior we can't commit HugeTLBFS memory.
3694 bool os::can_commit_large_page_memory() {
3695   return UseTransparentHugePages;
3696 }
3697 
3698 bool os::can_execute_large_page_memory() {
3699   return UseTransparentHugePages || UseHugeTLBFS;
3700 }
3701 
3702 // Reserve memory at an arbitrary address, only if that area is
3703 // available (and not reserved for something else).
3704 
3705 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3706   const int max_tries = 10;
3707   char* base[max_tries];
3708   size_t size[max_tries];
3709   const size_t gap = 0x000000;
3710 
3711   // Assert only that the size is a multiple of the page size, since
3712   // that's all that mmap requires, and since that's all we really know
3713   // about at this low abstraction level.  If we need higher alignment,
3714   // we can either pass an alignment to this method or verify alignment
3715   // in one of the methods further up the call chain.  See bug 5044738.
3716   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3717 
3718   // Repeatedly allocate blocks until the block is allocated at the
3719   // right spot. Give up after max_tries. Note that reserve_memory() will
3720   // automatically update _highest_vm_reserved_address if the call is
3721   // successful. The variable tracks the highest memory address every reserved
3722   // by JVM. It is used to detect heap-stack collision if running with
3723   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3724   // space than needed, it could confuse the collision detecting code. To
3725   // solve the problem, save current _highest_vm_reserved_address and
3726   // calculate the correct value before return.
3727   address old_highest = _highest_vm_reserved_address;
3728 
3729   // Linux mmap allows caller to pass an address as hint; give it a try first,
3730   // if kernel honors the hint then we can return immediately.
3731   char * addr = anon_mmap(requested_addr, bytes, false);
3732   if (addr == requested_addr) {
3733     return requested_addr;
3734   }
3735 
3736   if (addr != NULL) {
3737     // mmap() is successful but it fails to reserve at the requested address
3738     anon_munmap(addr, bytes);
3739   }
3740 
3741   int i;
3742   for (i = 0; i < max_tries; ++i) {
3743     base[i] = reserve_memory(bytes);
3744 
3745     if (base[i] != NULL) {
3746       // Is this the block we wanted?
3747       if (base[i] == requested_addr) {
3748         size[i] = bytes;
3749         break;
3750       }
3751 
3752       // Does this overlap the block we wanted? Give back the overlapped
3753       // parts and try again.
3754 
3755       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3756       if (top_overlap >= 0 && top_overlap < bytes) {
3757         unmap_memory(base[i], top_overlap);
3758         base[i] += top_overlap;
3759         size[i] = bytes - top_overlap;
3760       } else {
3761         size_t bottom_overlap = base[i] + bytes - requested_addr;
3762         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3763           unmap_memory(requested_addr, bottom_overlap);
3764           size[i] = bytes - bottom_overlap;
3765         } else {
3766           size[i] = bytes;
3767         }
3768       }
3769     }
3770   }
3771 
3772   // Give back the unused reserved pieces.
3773 
3774   for (int j = 0; j < i; ++j) {
3775     if (base[j] != NULL) {
3776       unmap_memory(base[j], size[j]);
3777     }
3778   }
3779 
3780   if (i < max_tries) {
3781     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3782     return requested_addr;
3783   } else {
3784     _highest_vm_reserved_address = old_highest;
3785     return NULL;
3786   }
3787 }
3788 
3789 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3790   return ::read(fd, buf, nBytes);
3791 }
3792 
3793 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3794   return ::pread(fd, buf, nBytes, offset);
3795 }
3796 
3797 // Short sleep, direct OS call.
3798 //
3799 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3800 // sched_yield(2) will actually give up the CPU:
3801 //
3802 //   * Alone on this pariticular CPU, keeps running.
3803 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3804 //     (pre 2.6.39).
3805 //
3806 // So calling this with 0 is an alternative.
3807 //
3808 void os::naked_short_sleep(jlong ms) {
3809   struct timespec req;
3810 
3811   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3812   req.tv_sec = 0;
3813   if (ms > 0) {
3814     req.tv_nsec = (ms % 1000) * 1000000;
3815   } else {
3816     req.tv_nsec = 1;
3817   }
3818 
3819   nanosleep(&req, NULL);
3820 
3821   return;
3822 }
3823 
3824 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3825 void os::infinite_sleep() {
3826   while (true) {    // sleep forever ...
3827     ::sleep(100);   // ... 100 seconds at a time
3828   }
3829 }
3830 
3831 // Used to convert frequent JVM_Yield() to nops
3832 bool os::dont_yield() {
3833   return DontYieldALot;
3834 }
3835 
3836 void os::naked_yield() {
3837   sched_yield();
3838 }
3839 
3840 ////////////////////////////////////////////////////////////////////////////////
3841 // thread priority support
3842 
3843 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3844 // only supports dynamic priority, static priority must be zero. For real-time
3845 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3846 // However, for large multi-threaded applications, SCHED_RR is not only slower
3847 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3848 // of 5 runs - Sep 2005).
3849 //
3850 // The following code actually changes the niceness of kernel-thread/LWP. It
3851 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3852 // not the entire user process, and user level threads are 1:1 mapped to kernel
3853 // threads. It has always been the case, but could change in the future. For
3854 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3855 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3856 
3857 int os::java_to_os_priority[CriticalPriority + 1] = {
3858   19,              // 0 Entry should never be used
3859 
3860    4,              // 1 MinPriority
3861    3,              // 2
3862    2,              // 3
3863 
3864    1,              // 4
3865    0,              // 5 NormPriority
3866   -1,              // 6
3867 
3868   -2,              // 7
3869   -3,              // 8
3870   -4,              // 9 NearMaxPriority
3871 
3872   -5,              // 10 MaxPriority
3873 
3874   -5               // 11 CriticalPriority
3875 };
3876 
3877 static int prio_init() {
3878   if (ThreadPriorityPolicy == 1) {
3879     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3880     // if effective uid is not root. Perhaps, a more elegant way of doing
3881     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3882     if (geteuid() != 0) {
3883       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3884         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3885       }
3886       ThreadPriorityPolicy = 0;
3887     }
3888   }
3889   if (UseCriticalJavaThreadPriority) {
3890     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3891   }
3892   return 0;
3893 }
3894 
3895 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3896   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3897 
3898   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3899   return (ret == 0) ? OS_OK : OS_ERR;
3900 }
3901 
3902 OSReturn os::get_native_priority(const Thread* const thread,
3903                                  int *priority_ptr) {
3904   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3905     *priority_ptr = java_to_os_priority[NormPriority];
3906     return OS_OK;
3907   }
3908 
3909   errno = 0;
3910   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3911   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3912 }
3913 
3914 // Hint to the underlying OS that a task switch would not be good.
3915 // Void return because it's a hint and can fail.
3916 void os::hint_no_preempt() {}
3917 
3918 ////////////////////////////////////////////////////////////////////////////////
3919 // suspend/resume support
3920 
3921 //  the low-level signal-based suspend/resume support is a remnant from the
3922 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3923 //  within hotspot. Now there is a single use-case for this:
3924 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3925 //      that runs in the watcher thread.
3926 //  The remaining code is greatly simplified from the more general suspension
3927 //  code that used to be used.
3928 //
3929 //  The protocol is quite simple:
3930 //  - suspend:
3931 //      - sends a signal to the target thread
3932 //      - polls the suspend state of the osthread using a yield loop
3933 //      - target thread signal handler (SR_handler) sets suspend state
3934 //        and blocks in sigsuspend until continued
3935 //  - resume:
3936 //      - sets target osthread state to continue
3937 //      - sends signal to end the sigsuspend loop in the SR_handler
3938 //
3939 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3940 
3941 static void resume_clear_context(OSThread *osthread) {
3942   osthread->set_ucontext(NULL);
3943   osthread->set_siginfo(NULL);
3944 }
3945 
3946 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3947                                  ucontext_t* context) {
3948   osthread->set_ucontext(context);
3949   osthread->set_siginfo(siginfo);
3950 }
3951 
3952 // Handler function invoked when a thread's execution is suspended or
3953 // resumed. We have to be careful that only async-safe functions are
3954 // called here (Note: most pthread functions are not async safe and
3955 // should be avoided.)
3956 //
3957 // Note: sigwait() is a more natural fit than sigsuspend() from an
3958 // interface point of view, but sigwait() prevents the signal hander
3959 // from being run. libpthread would get very confused by not having
3960 // its signal handlers run and prevents sigwait()'s use with the
3961 // mutex granting granting signal.
3962 //
3963 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3964 //
3965 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3966   // Save and restore errno to avoid confusing native code with EINTR
3967   // after sigsuspend.
3968   int old_errno = errno;
3969 
3970   Thread* thread = Thread::current();
3971   OSThread* osthread = thread->osthread();
3972   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3973 
3974   os::SuspendResume::State current = osthread->sr.state();
3975   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3976     suspend_save_context(osthread, siginfo, context);
3977 
3978     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3979     os::SuspendResume::State state = osthread->sr.suspended();
3980     if (state == os::SuspendResume::SR_SUSPENDED) {
3981       sigset_t suspend_set;  // signals for sigsuspend()
3982 
3983       // get current set of blocked signals and unblock resume signal
3984       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3985       sigdelset(&suspend_set, SR_signum);
3986 
3987       sr_semaphore.signal();
3988       // wait here until we are resumed
3989       while (1) {
3990         sigsuspend(&suspend_set);
3991 
3992         os::SuspendResume::State result = osthread->sr.running();
3993         if (result == os::SuspendResume::SR_RUNNING) {
3994           sr_semaphore.signal();
3995           break;
3996         }
3997       }
3998 
3999     } else if (state == os::SuspendResume::SR_RUNNING) {
4000       // request was cancelled, continue
4001     } else {
4002       ShouldNotReachHere();
4003     }
4004 
4005     resume_clear_context(osthread);
4006   } else if (current == os::SuspendResume::SR_RUNNING) {
4007     // request was cancelled, continue
4008   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4009     // ignore
4010   } else {
4011     // ignore
4012   }
4013 
4014   errno = old_errno;
4015 }
4016 
4017 
4018 static int SR_initialize() {
4019   struct sigaction act;
4020   char *s;
4021   // Get signal number to use for suspend/resume
4022   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4023     int sig = ::strtol(s, 0, 10);
4024     if (sig > 0 || sig < _NSIG) {
4025       SR_signum = sig;
4026     }
4027   }
4028 
4029   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4030          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4031 
4032   sigemptyset(&SR_sigset);
4033   sigaddset(&SR_sigset, SR_signum);
4034 
4035   // Set up signal handler for suspend/resume
4036   act.sa_flags = SA_RESTART|SA_SIGINFO;
4037   act.sa_handler = (void (*)(int)) SR_handler;
4038 
4039   // SR_signum is blocked by default.
4040   // 4528190 - We also need to block pthread restart signal (32 on all
4041   // supported Linux platforms). Note that LinuxThreads need to block
4042   // this signal for all threads to work properly. So we don't have
4043   // to use hard-coded signal number when setting up the mask.
4044   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4045 
4046   if (sigaction(SR_signum, &act, 0) == -1) {
4047     return -1;
4048   }
4049 
4050   // Save signal flag
4051   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4052   return 0;
4053 }
4054 
4055 static int sr_notify(OSThread* osthread) {
4056   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4057   assert_status(status == 0, status, "pthread_kill");
4058   return status;
4059 }
4060 
4061 // "Randomly" selected value for how long we want to spin
4062 // before bailing out on suspending a thread, also how often
4063 // we send a signal to a thread we want to resume
4064 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4065 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4066 
4067 // returns true on success and false on error - really an error is fatal
4068 // but this seems the normal response to library errors
4069 static bool do_suspend(OSThread* osthread) {
4070   assert(osthread->sr.is_running(), "thread should be running");
4071   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4072 
4073   // mark as suspended and send signal
4074   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4075     // failed to switch, state wasn't running?
4076     ShouldNotReachHere();
4077     return false;
4078   }
4079 
4080   if (sr_notify(osthread) != 0) {
4081     ShouldNotReachHere();
4082   }
4083 
4084   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4085   while (true) {
4086     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4087       break;
4088     } else {
4089       // timeout
4090       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4091       if (cancelled == os::SuspendResume::SR_RUNNING) {
4092         return false;
4093       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4094         // make sure that we consume the signal on the semaphore as well
4095         sr_semaphore.wait();
4096         break;
4097       } else {
4098         ShouldNotReachHere();
4099         return false;
4100       }
4101     }
4102   }
4103 
4104   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4105   return true;
4106 }
4107 
4108 static void do_resume(OSThread* osthread) {
4109   assert(osthread->sr.is_suspended(), "thread should be suspended");
4110   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4111 
4112   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4113     // failed to switch to WAKEUP_REQUEST
4114     ShouldNotReachHere();
4115     return;
4116   }
4117 
4118   while (true) {
4119     if (sr_notify(osthread) == 0) {
4120       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4121         if (osthread->sr.is_running()) {
4122           return;
4123         }
4124       }
4125     } else {
4126       ShouldNotReachHere();
4127     }
4128   }
4129 
4130   guarantee(osthread->sr.is_running(), "Must be running!");
4131 }
4132 
4133 ///////////////////////////////////////////////////////////////////////////////////
4134 // signal handling (except suspend/resume)
4135 
4136 // This routine may be used by user applications as a "hook" to catch signals.
4137 // The user-defined signal handler must pass unrecognized signals to this
4138 // routine, and if it returns true (non-zero), then the signal handler must
4139 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4140 // routine will never retun false (zero), but instead will execute a VM panic
4141 // routine kill the process.
4142 //
4143 // If this routine returns false, it is OK to call it again.  This allows
4144 // the user-defined signal handler to perform checks either before or after
4145 // the VM performs its own checks.  Naturally, the user code would be making
4146 // a serious error if it tried to handle an exception (such as a null check
4147 // or breakpoint) that the VM was generating for its own correct operation.
4148 //
4149 // This routine may recognize any of the following kinds of signals:
4150 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4151 // It should be consulted by handlers for any of those signals.
4152 //
4153 // The caller of this routine must pass in the three arguments supplied
4154 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4155 // field of the structure passed to sigaction().  This routine assumes that
4156 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4157 //
4158 // Note that the VM will print warnings if it detects conflicting signal
4159 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4160 //
4161 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4162                                                  siginfo_t* siginfo,
4163                                                  void* ucontext,
4164                                                  int abort_if_unrecognized);
4165 
4166 void signalHandler(int sig, siginfo_t* info, void* uc) {
4167   assert(info != NULL && uc != NULL, "it must be old kernel");
4168   int orig_errno = errno;  // Preserve errno value over signal handler.
4169   JVM_handle_linux_signal(sig, info, uc, true);
4170   errno = orig_errno;
4171 }
4172 
4173 
4174 // This boolean allows users to forward their own non-matching signals
4175 // to JVM_handle_linux_signal, harmlessly.
4176 bool os::Linux::signal_handlers_are_installed = false;
4177 
4178 // For signal-chaining
4179 struct sigaction os::Linux::sigact[MAXSIGNUM];
4180 unsigned int os::Linux::sigs = 0;
4181 bool os::Linux::libjsig_is_loaded = false;
4182 typedef struct sigaction *(*get_signal_t)(int);
4183 get_signal_t os::Linux::get_signal_action = NULL;
4184 
4185 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4186   struct sigaction *actp = NULL;
4187 
4188   if (libjsig_is_loaded) {
4189     // Retrieve the old signal handler from libjsig
4190     actp = (*get_signal_action)(sig);
4191   }
4192   if (actp == NULL) {
4193     // Retrieve the preinstalled signal handler from jvm
4194     actp = get_preinstalled_handler(sig);
4195   }
4196 
4197   return actp;
4198 }
4199 
4200 static bool call_chained_handler(struct sigaction *actp, int sig,
4201                                  siginfo_t *siginfo, void *context) {
4202   // Call the old signal handler
4203   if (actp->sa_handler == SIG_DFL) {
4204     // It's more reasonable to let jvm treat it as an unexpected exception
4205     // instead of taking the default action.
4206     return false;
4207   } else if (actp->sa_handler != SIG_IGN) {
4208     if ((actp->sa_flags & SA_NODEFER) == 0) {
4209       // automaticlly block the signal
4210       sigaddset(&(actp->sa_mask), sig);
4211     }
4212 
4213     sa_handler_t hand;
4214     sa_sigaction_t sa;
4215     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4216     // retrieve the chained handler
4217     if (siginfo_flag_set) {
4218       sa = actp->sa_sigaction;
4219     } else {
4220       hand = actp->sa_handler;
4221     }
4222 
4223     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4224       actp->sa_handler = SIG_DFL;
4225     }
4226 
4227     // try to honor the signal mask
4228     sigset_t oset;
4229     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4230 
4231     // call into the chained handler
4232     if (siginfo_flag_set) {
4233       (*sa)(sig, siginfo, context);
4234     } else {
4235       (*hand)(sig);
4236     }
4237 
4238     // restore the signal mask
4239     pthread_sigmask(SIG_SETMASK, &oset, 0);
4240   }
4241   // Tell jvm's signal handler the signal is taken care of.
4242   return true;
4243 }
4244 
4245 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4246   bool chained = false;
4247   // signal-chaining
4248   if (UseSignalChaining) {
4249     struct sigaction *actp = get_chained_signal_action(sig);
4250     if (actp != NULL) {
4251       chained = call_chained_handler(actp, sig, siginfo, context);
4252     }
4253   }
4254   return chained;
4255 }
4256 
4257 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4258   if ((((unsigned int)1 << sig) & sigs) != 0) {
4259     return &sigact[sig];
4260   }
4261   return NULL;
4262 }
4263 
4264 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4265   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4266   sigact[sig] = oldAct;
4267   sigs |= (unsigned int)1 << sig;
4268 }
4269 
4270 // for diagnostic
4271 int os::Linux::sigflags[MAXSIGNUM];
4272 
4273 int os::Linux::get_our_sigflags(int sig) {
4274   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4275   return sigflags[sig];
4276 }
4277 
4278 void os::Linux::set_our_sigflags(int sig, int flags) {
4279   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4280   sigflags[sig] = flags;
4281 }
4282 
4283 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4284   // Check for overwrite.
4285   struct sigaction oldAct;
4286   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4287 
4288   void* oldhand = oldAct.sa_sigaction
4289                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4290                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4291   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4292       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4293       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4294     if (AllowUserSignalHandlers || !set_installed) {
4295       // Do not overwrite; user takes responsibility to forward to us.
4296       return;
4297     } else if (UseSignalChaining) {
4298       // save the old handler in jvm
4299       save_preinstalled_handler(sig, oldAct);
4300       // libjsig also interposes the sigaction() call below and saves the
4301       // old sigaction on it own.
4302     } else {
4303       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4304                     "%#lx for signal %d.", (long)oldhand, sig));
4305     }
4306   }
4307 
4308   struct sigaction sigAct;
4309   sigfillset(&(sigAct.sa_mask));
4310   sigAct.sa_handler = SIG_DFL;
4311   if (!set_installed) {
4312     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4313   } else {
4314     sigAct.sa_sigaction = signalHandler;
4315     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4316   }
4317   // Save flags, which are set by ours
4318   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4319   sigflags[sig] = sigAct.sa_flags;
4320 
4321   int ret = sigaction(sig, &sigAct, &oldAct);
4322   assert(ret == 0, "check");
4323 
4324   void* oldhand2  = oldAct.sa_sigaction
4325                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4326                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4327   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4328 }
4329 
4330 // install signal handlers for signals that HotSpot needs to
4331 // handle in order to support Java-level exception handling.
4332 
4333 void os::Linux::install_signal_handlers() {
4334   if (!signal_handlers_are_installed) {
4335     signal_handlers_are_installed = true;
4336 
4337     // signal-chaining
4338     typedef void (*signal_setting_t)();
4339     signal_setting_t begin_signal_setting = NULL;
4340     signal_setting_t end_signal_setting = NULL;
4341     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4342                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4343     if (begin_signal_setting != NULL) {
4344       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4345                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4346       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4347                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4348       libjsig_is_loaded = true;
4349       assert(UseSignalChaining, "should enable signal-chaining");
4350     }
4351     if (libjsig_is_loaded) {
4352       // Tell libjsig jvm is setting signal handlers
4353       (*begin_signal_setting)();
4354     }
4355 
4356     set_signal_handler(SIGSEGV, true);
4357     set_signal_handler(SIGPIPE, true);
4358     set_signal_handler(SIGBUS, true);
4359     set_signal_handler(SIGILL, true);
4360     set_signal_handler(SIGFPE, true);
4361 #if defined(PPC64)
4362     set_signal_handler(SIGTRAP, true);
4363 #endif
4364     set_signal_handler(SIGXFSZ, true);
4365 
4366     if (libjsig_is_loaded) {
4367       // Tell libjsig jvm finishes setting signal handlers
4368       (*end_signal_setting)();
4369     }
4370 
4371     // We don't activate signal checker if libjsig is in place, we trust ourselves
4372     // and if UserSignalHandler is installed all bets are off.
4373     // Log that signal checking is off only if -verbose:jni is specified.
4374     if (CheckJNICalls) {
4375       if (libjsig_is_loaded) {
4376         if (PrintJNIResolving) {
4377           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4378         }
4379         check_signals = false;
4380       }
4381       if (AllowUserSignalHandlers) {
4382         if (PrintJNIResolving) {
4383           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4384         }
4385         check_signals = false;
4386       }
4387     }
4388   }
4389 }
4390 
4391 // This is the fastest way to get thread cpu time on Linux.
4392 // Returns cpu time (user+sys) for any thread, not only for current.
4393 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4394 // It might work on 2.6.10+ with a special kernel/glibc patch.
4395 // For reference, please, see IEEE Std 1003.1-2004:
4396 //   http://www.unix.org/single_unix_specification
4397 
4398 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4399   struct timespec tp;
4400   int rc = os::Linux::clock_gettime(clockid, &tp);
4401   assert(rc == 0, "clock_gettime is expected to return 0 code");
4402 
4403   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4404 }
4405 
4406 /////
4407 // glibc on Linux platform uses non-documented flag
4408 // to indicate, that some special sort of signal
4409 // trampoline is used.
4410 // We will never set this flag, and we should
4411 // ignore this flag in our diagnostic
4412 #ifdef SIGNIFICANT_SIGNAL_MASK
4413   #undef SIGNIFICANT_SIGNAL_MASK
4414 #endif
4415 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4416 
4417 static const char* get_signal_handler_name(address handler,
4418                                            char* buf, int buflen) {
4419   int offset;
4420   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4421   if (found) {
4422     // skip directory names
4423     const char *p1, *p2;
4424     p1 = buf;
4425     size_t len = strlen(os::file_separator());
4426     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4427     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4428   } else {
4429     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4430   }
4431   return buf;
4432 }
4433 
4434 static void print_signal_handler(outputStream* st, int sig,
4435                                  char* buf, size_t buflen) {
4436   struct sigaction sa;
4437 
4438   sigaction(sig, NULL, &sa);
4439 
4440   // See comment for SIGNIFICANT_SIGNAL_MASK define
4441   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4442 
4443   st->print("%s: ", os::exception_name(sig, buf, buflen));
4444 
4445   address handler = (sa.sa_flags & SA_SIGINFO)
4446     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4447     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4448 
4449   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4450     st->print("SIG_DFL");
4451   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4452     st->print("SIG_IGN");
4453   } else {
4454     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4455   }
4456 
4457   st->print(", sa_mask[0]=");
4458   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4459 
4460   address rh = VMError::get_resetted_sighandler(sig);
4461   // May be, handler was resetted by VMError?
4462   if (rh != NULL) {
4463     handler = rh;
4464     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4465   }
4466 
4467   st->print(", sa_flags=");
4468   os::Posix::print_sa_flags(st, sa.sa_flags);
4469 
4470   // Check: is it our handler?
4471   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4472       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4473     // It is our signal handler
4474     // check for flags, reset system-used one!
4475     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4476       st->print(
4477                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4478                 os::Linux::get_our_sigflags(sig));
4479     }
4480   }
4481   st->cr();
4482 }
4483 
4484 
4485 #define DO_SIGNAL_CHECK(sig)                      \
4486   do {                                            \
4487     if (!sigismember(&check_signal_done, sig)) {  \
4488       os::Linux::check_signal_handler(sig);       \
4489     }                                             \
4490   } while (0)
4491 
4492 // This method is a periodic task to check for misbehaving JNI applications
4493 // under CheckJNI, we can add any periodic checks here
4494 
4495 void os::run_periodic_checks() {
4496   if (check_signals == false) return;
4497 
4498   // SEGV and BUS if overridden could potentially prevent
4499   // generation of hs*.log in the event of a crash, debugging
4500   // such a case can be very challenging, so we absolutely
4501   // check the following for a good measure:
4502   DO_SIGNAL_CHECK(SIGSEGV);
4503   DO_SIGNAL_CHECK(SIGILL);
4504   DO_SIGNAL_CHECK(SIGFPE);
4505   DO_SIGNAL_CHECK(SIGBUS);
4506   DO_SIGNAL_CHECK(SIGPIPE);
4507   DO_SIGNAL_CHECK(SIGXFSZ);
4508 #if defined(PPC64)
4509   DO_SIGNAL_CHECK(SIGTRAP);
4510 #endif
4511 
4512   // ReduceSignalUsage allows the user to override these handlers
4513   // see comments at the very top and jvm_solaris.h
4514   if (!ReduceSignalUsage) {
4515     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4516     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4517     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4518     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4519   }
4520 
4521   DO_SIGNAL_CHECK(SR_signum);
4522   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4523 }
4524 
4525 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4526 
4527 static os_sigaction_t os_sigaction = NULL;
4528 
4529 void os::Linux::check_signal_handler(int sig) {
4530   char buf[O_BUFLEN];
4531   address jvmHandler = NULL;
4532 
4533 
4534   struct sigaction act;
4535   if (os_sigaction == NULL) {
4536     // only trust the default sigaction, in case it has been interposed
4537     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4538     if (os_sigaction == NULL) return;
4539   }
4540 
4541   os_sigaction(sig, (struct sigaction*)NULL, &act);
4542 
4543 
4544   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4545 
4546   address thisHandler = (act.sa_flags & SA_SIGINFO)
4547     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4548     : CAST_FROM_FN_PTR(address, act.sa_handler);
4549 
4550 
4551   switch (sig) {
4552   case SIGSEGV:
4553   case SIGBUS:
4554   case SIGFPE:
4555   case SIGPIPE:
4556   case SIGILL:
4557   case SIGXFSZ:
4558     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4559     break;
4560 
4561   case SHUTDOWN1_SIGNAL:
4562   case SHUTDOWN2_SIGNAL:
4563   case SHUTDOWN3_SIGNAL:
4564   case BREAK_SIGNAL:
4565     jvmHandler = (address)user_handler();
4566     break;
4567 
4568   case INTERRUPT_SIGNAL:
4569     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4570     break;
4571 
4572   default:
4573     if (sig == SR_signum) {
4574       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4575     } else {
4576       return;
4577     }
4578     break;
4579   }
4580 
4581   if (thisHandler != jvmHandler) {
4582     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4583     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4584     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4585     // No need to check this sig any longer
4586     sigaddset(&check_signal_done, sig);
4587     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4588     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4589       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4590                     exception_name(sig, buf, O_BUFLEN));
4591     }
4592   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4593     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4594     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4595     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4596     // No need to check this sig any longer
4597     sigaddset(&check_signal_done, sig);
4598   }
4599 
4600   // Dump all the signal
4601   if (sigismember(&check_signal_done, sig)) {
4602     print_signal_handlers(tty, buf, O_BUFLEN);
4603   }
4604 }
4605 
4606 extern void report_error(char* file_name, int line_no, char* title,
4607                          char* format, ...);
4608 
4609 extern bool signal_name(int signo, char* buf, size_t len);
4610 
4611 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4612   if (0 < exception_code && exception_code <= SIGRTMAX) {
4613     // signal
4614     if (!signal_name(exception_code, buf, size)) {
4615       jio_snprintf(buf, size, "SIG%d", exception_code);
4616     }
4617     return buf;
4618   } else {
4619     return NULL;
4620   }
4621 }
4622 
4623 // this is called _before_ the most of global arguments have been parsed
4624 void os::init(void) {
4625   char dummy;   // used to get a guess on initial stack address
4626 //  first_hrtime = gethrtime();
4627 
4628   // With LinuxThreads the JavaMain thread pid (primordial thread)
4629   // is different than the pid of the java launcher thread.
4630   // So, on Linux, the launcher thread pid is passed to the VM
4631   // via the sun.java.launcher.pid property.
4632   // Use this property instead of getpid() if it was correctly passed.
4633   // See bug 6351349.
4634   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4635 
4636   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4637 
4638   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4639 
4640   init_random(1234567);
4641 
4642   ThreadCritical::initialize();
4643 
4644   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4645   if (Linux::page_size() == -1) {
4646     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4647                   strerror(errno)));
4648   }
4649   init_page_sizes((size_t) Linux::page_size());
4650 
4651   Linux::initialize_system_info();
4652 
4653   // main_thread points to the aboriginal thread
4654   Linux::_main_thread = pthread_self();
4655 
4656   Linux::clock_init();
4657   initial_time_count = javaTimeNanos();
4658 
4659   // pthread_condattr initialization for monotonic clock
4660   int status;
4661   pthread_condattr_t* _condattr = os::Linux::condAttr();
4662   if ((status = pthread_condattr_init(_condattr)) != 0) {
4663     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4664   }
4665   // Only set the clock if CLOCK_MONOTONIC is available
4666   if (os::supports_monotonic_clock()) {
4667     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4668       if (status == EINVAL) {
4669         warning("Unable to use monotonic clock with relative timed-waits" \
4670                 " - changes to the time-of-day clock may have adverse affects");
4671       } else {
4672         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4673       }
4674     }
4675   }
4676   // else it defaults to CLOCK_REALTIME
4677 
4678   pthread_mutex_init(&dl_mutex, NULL);
4679 
4680   // If the pagesize of the VM is greater than 8K determine the appropriate
4681   // number of initial guard pages.  The user can change this with the
4682   // command line arguments, if needed.
4683   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4684     StackYellowPages = 1;
4685     StackRedPages = 1;
4686     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4687   }
4688 
4689   // retrieve entry point for pthread_setname_np
4690   Linux::_pthread_setname_np =
4691     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4692 
4693 }
4694 
4695 // To install functions for atexit system call
4696 extern "C" {
4697   static void perfMemory_exit_helper() {
4698     perfMemory_exit();
4699   }
4700 }
4701 
4702 // this is called _after_ the global arguments have been parsed
4703 jint os::init_2(void) {
4704   Linux::fast_thread_clock_init();
4705 
4706   // Allocate a single page and mark it as readable for safepoint polling
4707   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4708   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4709 
4710   os::set_polling_page(polling_page);
4711 
4712 #ifndef PRODUCT
4713   if (Verbose && PrintMiscellaneous) {
4714     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4715                (intptr_t)polling_page);
4716   }
4717 #endif
4718 
4719   if (!UseMembar) {
4720     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4721     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4722     os::set_memory_serialize_page(mem_serialize_page);
4723 
4724 #ifndef PRODUCT
4725     if (Verbose && PrintMiscellaneous) {
4726       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4727                  (intptr_t)mem_serialize_page);
4728     }
4729 #endif
4730   }
4731 
4732   // initialize suspend/resume support - must do this before signal_sets_init()
4733   if (SR_initialize() != 0) {
4734     perror("SR_initialize failed");
4735     return JNI_ERR;
4736   }
4737 
4738   Linux::signal_sets_init();
4739   Linux::install_signal_handlers();
4740 
4741   // Check minimum allowable stack size for thread creation and to initialize
4742   // the java system classes, including StackOverflowError - depends on page
4743   // size.  Add a page for compiler2 recursion in main thread.
4744   // Add in 2*BytesPerWord times page size to account for VM stack during
4745   // class initialization depending on 32 or 64 bit VM.
4746   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4747                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4748                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4749 
4750   size_t threadStackSizeInBytes = ThreadStackSize * K;
4751   if (threadStackSizeInBytes != 0 &&
4752       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4753     tty->print_cr("\nThe stack size specified is too small, "
4754                   "Specify at least %dk",
4755                   os::Linux::min_stack_allowed/ K);
4756     return JNI_ERR;
4757   }
4758 
4759   // Make the stack size a multiple of the page size so that
4760   // the yellow/red zones can be guarded.
4761   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4762                                                 vm_page_size()));
4763 
4764   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4765 
4766 #if defined(IA32)
4767   workaround_expand_exec_shield_cs_limit();
4768 #endif
4769 
4770   Linux::libpthread_init();
4771   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4772     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4773                   Linux::glibc_version(), Linux::libpthread_version(),
4774                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4775   }
4776 
4777   if (UseNUMA) {
4778     if (!Linux::libnuma_init()) {
4779       UseNUMA = false;
4780     } else {
4781       if ((Linux::numa_max_node() < 1)) {
4782         // There's only one node(they start from 0), disable NUMA.
4783         UseNUMA = false;
4784       }
4785     }
4786     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4787     // we can make the adaptive lgrp chunk resizing work. If the user specified
4788     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4789     // disable adaptive resizing.
4790     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4791       if (FLAG_IS_DEFAULT(UseNUMA)) {
4792         UseNUMA = false;
4793       } else {
4794         if (FLAG_IS_DEFAULT(UseLargePages) &&
4795             FLAG_IS_DEFAULT(UseSHM) &&
4796             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4797           UseLargePages = false;
4798         } else {
4799           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4800           UseAdaptiveSizePolicy = false;
4801           UseAdaptiveNUMAChunkSizing = false;
4802         }
4803       }
4804     }
4805     if (!UseNUMA && ForceNUMA) {
4806       UseNUMA = true;
4807     }
4808   }
4809 
4810   if (MaxFDLimit) {
4811     // set the number of file descriptors to max. print out error
4812     // if getrlimit/setrlimit fails but continue regardless.
4813     struct rlimit nbr_files;
4814     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4815     if (status != 0) {
4816       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4817         perror("os::init_2 getrlimit failed");
4818       }
4819     } else {
4820       nbr_files.rlim_cur = nbr_files.rlim_max;
4821       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4822       if (status != 0) {
4823         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4824           perror("os::init_2 setrlimit failed");
4825         }
4826       }
4827     }
4828   }
4829 
4830   // Initialize lock used to serialize thread creation (see os::create_thread)
4831   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4832 
4833   // at-exit methods are called in the reverse order of their registration.
4834   // atexit functions are called on return from main or as a result of a
4835   // call to exit(3C). There can be only 32 of these functions registered
4836   // and atexit() does not set errno.
4837 
4838   if (PerfAllowAtExitRegistration) {
4839     // only register atexit functions if PerfAllowAtExitRegistration is set.
4840     // atexit functions can be delayed until process exit time, which
4841     // can be problematic for embedded VM situations. Embedded VMs should
4842     // call DestroyJavaVM() to assure that VM resources are released.
4843 
4844     // note: perfMemory_exit_helper atexit function may be removed in
4845     // the future if the appropriate cleanup code can be added to the
4846     // VM_Exit VMOperation's doit method.
4847     if (atexit(perfMemory_exit_helper) != 0) {
4848       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4849     }
4850   }
4851 
4852   // initialize thread priority policy
4853   prio_init();
4854 
4855   return JNI_OK;
4856 }
4857 
4858 // Mark the polling page as unreadable
4859 void os::make_polling_page_unreadable(void) {
4860   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4861     fatal("Could not disable polling page");
4862   }
4863 }
4864 
4865 // Mark the polling page as readable
4866 void os::make_polling_page_readable(void) {
4867   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4868     fatal("Could not enable polling page");
4869   }
4870 }
4871 
4872 int os::active_processor_count() {
4873   // Linux doesn't yet have a (official) notion of processor sets,
4874   // so just return the number of online processors.
4875   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4876   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4877   return online_cpus;
4878 }
4879 
4880 void os::set_native_thread_name(const char *name) {
4881   if (Linux::_pthread_setname_np) {
4882     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4883     snprintf(buf, sizeof(buf), "%s", name);
4884     buf[sizeof(buf) - 1] = '\0';
4885     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4886     // ERANGE should not happen; all other errors should just be ignored.
4887     assert(rc != ERANGE, "pthread_setname_np failed");
4888   }
4889 }
4890 
4891 bool os::distribute_processes(uint length, uint* distribution) {
4892   // Not yet implemented.
4893   return false;
4894 }
4895 
4896 bool os::bind_to_processor(uint processor_id) {
4897   // Not yet implemented.
4898   return false;
4899 }
4900 
4901 ///
4902 
4903 void os::SuspendedThreadTask::internal_do_task() {
4904   if (do_suspend(_thread->osthread())) {
4905     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4906     do_task(context);
4907     do_resume(_thread->osthread());
4908   }
4909 }
4910 
4911 class PcFetcher : public os::SuspendedThreadTask {
4912  public:
4913   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4914   ExtendedPC result();
4915  protected:
4916   void do_task(const os::SuspendedThreadTaskContext& context);
4917  private:
4918   ExtendedPC _epc;
4919 };
4920 
4921 ExtendedPC PcFetcher::result() {
4922   guarantee(is_done(), "task is not done yet.");
4923   return _epc;
4924 }
4925 
4926 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4927   Thread* thread = context.thread();
4928   OSThread* osthread = thread->osthread();
4929   if (osthread->ucontext() != NULL) {
4930     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4931   } else {
4932     // NULL context is unexpected, double-check this is the VMThread
4933     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4934   }
4935 }
4936 
4937 // Suspends the target using the signal mechanism and then grabs the PC before
4938 // resuming the target. Used by the flat-profiler only
4939 ExtendedPC os::get_thread_pc(Thread* thread) {
4940   // Make sure that it is called by the watcher for the VMThread
4941   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4942   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4943 
4944   PcFetcher fetcher(thread);
4945   fetcher.run();
4946   return fetcher.result();
4947 }
4948 
4949 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4950                                    pthread_mutex_t *_mutex,
4951                                    const struct timespec *_abstime) {
4952   if (is_NPTL()) {
4953     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4954   } else {
4955     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4956     // word back to default 64bit precision if condvar is signaled. Java
4957     // wants 53bit precision.  Save and restore current value.
4958     int fpu = get_fpu_control_word();
4959     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4960     set_fpu_control_word(fpu);
4961     return status;
4962   }
4963 }
4964 
4965 ////////////////////////////////////////////////////////////////////////////////
4966 // debug support
4967 
4968 bool os::find(address addr, outputStream* st) {
4969   Dl_info dlinfo;
4970   memset(&dlinfo, 0, sizeof(dlinfo));
4971   if (dladdr(addr, &dlinfo) != 0) {
4972     st->print(PTR_FORMAT ": ", addr);
4973     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4974       st->print("%s+%#x", dlinfo.dli_sname,
4975                 addr - (intptr_t)dlinfo.dli_saddr);
4976     } else if (dlinfo.dli_fbase != NULL) {
4977       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4978     } else {
4979       st->print("<absolute address>");
4980     }
4981     if (dlinfo.dli_fname != NULL) {
4982       st->print(" in %s", dlinfo.dli_fname);
4983     }
4984     if (dlinfo.dli_fbase != NULL) {
4985       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4986     }
4987     st->cr();
4988 
4989     if (Verbose) {
4990       // decode some bytes around the PC
4991       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4992       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4993       address       lowest = (address) dlinfo.dli_sname;
4994       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4995       if (begin < lowest)  begin = lowest;
4996       Dl_info dlinfo2;
4997       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4998           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4999         end = (address) dlinfo2.dli_saddr;
5000       }
5001       Disassembler::decode(begin, end, st);
5002     }
5003     return true;
5004   }
5005   return false;
5006 }
5007 
5008 ////////////////////////////////////////////////////////////////////////////////
5009 // misc
5010 
5011 // This does not do anything on Linux. This is basically a hook for being
5012 // able to use structured exception handling (thread-local exception filters)
5013 // on, e.g., Win32.
5014 void
5015 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5016                          JavaCallArguments* args, Thread* thread) {
5017   f(value, method, args, thread);
5018 }
5019 
5020 void os::print_statistics() {
5021 }
5022 
5023 int os::message_box(const char* title, const char* message) {
5024   int i;
5025   fdStream err(defaultStream::error_fd());
5026   for (i = 0; i < 78; i++) err.print_raw("=");
5027   err.cr();
5028   err.print_raw_cr(title);
5029   for (i = 0; i < 78; i++) err.print_raw("-");
5030   err.cr();
5031   err.print_raw_cr(message);
5032   for (i = 0; i < 78; i++) err.print_raw("=");
5033   err.cr();
5034 
5035   char buf[16];
5036   // Prevent process from exiting upon "read error" without consuming all CPU
5037   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5038 
5039   return buf[0] == 'y' || buf[0] == 'Y';
5040 }
5041 
5042 int os::stat(const char *path, struct stat *sbuf) {
5043   char pathbuf[MAX_PATH];
5044   if (strlen(path) > MAX_PATH - 1) {
5045     errno = ENAMETOOLONG;
5046     return -1;
5047   }
5048   os::native_path(strcpy(pathbuf, path));
5049   return ::stat(pathbuf, sbuf);
5050 }
5051 
5052 bool os::check_heap(bool force) {
5053   return true;
5054 }
5055 
5056 // Is a (classpath) directory empty?
5057 bool os::dir_is_empty(const char* path) {
5058   DIR *dir = NULL;
5059   struct dirent *ptr;
5060 
5061   dir = opendir(path);
5062   if (dir == NULL) return true;
5063 
5064   // Scan the directory
5065   bool result = true;
5066   char buf[sizeof(struct dirent) + MAX_PATH];
5067   while (result && (ptr = ::readdir(dir)) != NULL) {
5068     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5069       result = false;
5070     }
5071   }
5072   closedir(dir);
5073   return result;
5074 }
5075 
5076 // This code originates from JDK's sysOpen and open64_w
5077 // from src/solaris/hpi/src/system_md.c
5078 
5079 int os::open(const char *path, int oflag, int mode) {
5080   if (strlen(path) > MAX_PATH - 1) {
5081     errno = ENAMETOOLONG;
5082     return -1;
5083   }
5084 
5085   // All file descriptors that are opened in the Java process and not
5086   // specifically destined for a subprocess should have the close-on-exec
5087   // flag set.  If we don't set it, then careless 3rd party native code
5088   // might fork and exec without closing all appropriate file descriptors
5089   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5090   // turn might:
5091   //
5092   // - cause end-of-file to fail to be detected on some file
5093   //   descriptors, resulting in mysterious hangs, or
5094   //
5095   // - might cause an fopen in the subprocess to fail on a system
5096   //   suffering from bug 1085341.
5097   //
5098   // (Yes, the default setting of the close-on-exec flag is a Unix
5099   // design flaw)
5100   //
5101   // See:
5102   // 1085341: 32-bit stdio routines should support file descriptors >255
5103   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5104   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5105   //
5106   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5107   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5108   // because it saves a system call and removes a small window where the flag
5109   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5110   // and we fall back to using FD_CLOEXEC (see below).
5111 #ifdef O_CLOEXEC
5112   oflag |= O_CLOEXEC;
5113 #endif
5114 
5115   int fd = ::open64(path, oflag, mode);
5116   if (fd == -1) return -1;
5117 
5118   //If the open succeeded, the file might still be a directory
5119   {
5120     struct stat64 buf64;
5121     int ret = ::fstat64(fd, &buf64);
5122     int st_mode = buf64.st_mode;
5123 
5124     if (ret != -1) {
5125       if ((st_mode & S_IFMT) == S_IFDIR) {
5126         errno = EISDIR;
5127         ::close(fd);
5128         return -1;
5129       }
5130     } else {
5131       ::close(fd);
5132       return -1;
5133     }
5134   }
5135 
5136 #ifdef FD_CLOEXEC
5137   // Validate that the use of the O_CLOEXEC flag on open above worked.
5138   // With recent kernels, we will perform this check exactly once.
5139   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5140   if (!O_CLOEXEC_is_known_to_work) {
5141     int flags = ::fcntl(fd, F_GETFD);
5142     if (flags != -1) {
5143       if ((flags & FD_CLOEXEC) != 0)
5144         O_CLOEXEC_is_known_to_work = 1;
5145       else
5146         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5147     }
5148   }
5149 #endif
5150 
5151   return fd;
5152 }
5153 
5154 
5155 // create binary file, rewriting existing file if required
5156 int os::create_binary_file(const char* path, bool rewrite_existing) {
5157   int oflags = O_WRONLY | O_CREAT;
5158   if (!rewrite_existing) {
5159     oflags |= O_EXCL;
5160   }
5161   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5162 }
5163 
5164 // return current position of file pointer
5165 jlong os::current_file_offset(int fd) {
5166   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5167 }
5168 
5169 // move file pointer to the specified offset
5170 jlong os::seek_to_file_offset(int fd, jlong offset) {
5171   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5172 }
5173 
5174 // This code originates from JDK's sysAvailable
5175 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5176 
5177 int os::available(int fd, jlong *bytes) {
5178   jlong cur, end;
5179   int mode;
5180   struct stat64 buf64;
5181 
5182   if (::fstat64(fd, &buf64) >= 0) {
5183     mode = buf64.st_mode;
5184     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5185       // XXX: is the following call interruptible? If so, this might
5186       // need to go through the INTERRUPT_IO() wrapper as for other
5187       // blocking, interruptible calls in this file.
5188       int n;
5189       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5190         *bytes = n;
5191         return 1;
5192       }
5193     }
5194   }
5195   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5196     return 0;
5197   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5198     return 0;
5199   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5200     return 0;
5201   }
5202   *bytes = end - cur;
5203   return 1;
5204 }
5205 
5206 // Map a block of memory.
5207 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5208                         char *addr, size_t bytes, bool read_only,
5209                         bool allow_exec) {
5210   int prot;
5211   int flags = MAP_PRIVATE;
5212 
5213   if (read_only) {
5214     prot = PROT_READ;
5215   } else {
5216     prot = PROT_READ | PROT_WRITE;
5217   }
5218 
5219   if (allow_exec) {
5220     prot |= PROT_EXEC;
5221   }
5222 
5223   if (addr != NULL) {
5224     flags |= MAP_FIXED;
5225   }
5226 
5227   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5228                                      fd, file_offset);
5229   if (mapped_address == MAP_FAILED) {
5230     return NULL;
5231   }
5232   return mapped_address;
5233 }
5234 
5235 
5236 // Remap a block of memory.
5237 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5238                           char *addr, size_t bytes, bool read_only,
5239                           bool allow_exec) {
5240   // same as map_memory() on this OS
5241   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5242                         allow_exec);
5243 }
5244 
5245 
5246 // Unmap a block of memory.
5247 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5248   return munmap(addr, bytes) == 0;
5249 }
5250 
5251 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5252 
5253 static clockid_t thread_cpu_clockid(Thread* thread) {
5254   pthread_t tid = thread->osthread()->pthread_id();
5255   clockid_t clockid;
5256 
5257   // Get thread clockid
5258   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5259   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5260   return clockid;
5261 }
5262 
5263 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5264 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5265 // of a thread.
5266 //
5267 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5268 // the fast estimate available on the platform.
5269 
5270 jlong os::current_thread_cpu_time() {
5271   if (os::Linux::supports_fast_thread_cpu_time()) {
5272     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5273   } else {
5274     // return user + sys since the cost is the same
5275     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5276   }
5277 }
5278 
5279 jlong os::thread_cpu_time(Thread* thread) {
5280   // consistent with what current_thread_cpu_time() returns
5281   if (os::Linux::supports_fast_thread_cpu_time()) {
5282     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5283   } else {
5284     return slow_thread_cpu_time(thread, true /* user + sys */);
5285   }
5286 }
5287 
5288 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5289   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5290     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5291   } else {
5292     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5293   }
5294 }
5295 
5296 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5297   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5298     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5299   } else {
5300     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5301   }
5302 }
5303 
5304 //  -1 on error.
5305 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5306   pid_t  tid = thread->osthread()->thread_id();
5307   char *s;
5308   char stat[2048];
5309   int statlen;
5310   char proc_name[64];
5311   int count;
5312   long sys_time, user_time;
5313   char cdummy;
5314   int idummy;
5315   long ldummy;
5316   FILE *fp;
5317 
5318   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5319   fp = fopen(proc_name, "r");
5320   if (fp == NULL) return -1;
5321   statlen = fread(stat, 1, 2047, fp);
5322   stat[statlen] = '\0';
5323   fclose(fp);
5324 
5325   // Skip pid and the command string. Note that we could be dealing with
5326   // weird command names, e.g. user could decide to rename java launcher
5327   // to "java 1.4.2 :)", then the stat file would look like
5328   //                1234 (java 1.4.2 :)) R ... ...
5329   // We don't really need to know the command string, just find the last
5330   // occurrence of ")" and then start parsing from there. See bug 4726580.
5331   s = strrchr(stat, ')');
5332   if (s == NULL) return -1;
5333 
5334   // Skip blank chars
5335   do { s++; } while (s && isspace(*s));
5336 
5337   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5338                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5339                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5340                  &user_time, &sys_time);
5341   if (count != 13) return -1;
5342   if (user_sys_cpu_time) {
5343     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5344   } else {
5345     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5346   }
5347 }
5348 
5349 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5350   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5351   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5352   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5353   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5354 }
5355 
5356 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5357   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5358   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5359   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5360   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5361 }
5362 
5363 bool os::is_thread_cpu_time_supported() {
5364   return true;
5365 }
5366 
5367 // System loadavg support.  Returns -1 if load average cannot be obtained.
5368 // Linux doesn't yet have a (official) notion of processor sets,
5369 // so just return the system wide load average.
5370 int os::loadavg(double loadavg[], int nelem) {
5371   return ::getloadavg(loadavg, nelem);
5372 }
5373 
5374 void os::pause() {
5375   char filename[MAX_PATH];
5376   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5377     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5378   } else {
5379     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5380   }
5381 
5382   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5383   if (fd != -1) {
5384     struct stat buf;
5385     ::close(fd);
5386     while (::stat(filename, &buf) == 0) {
5387       (void)::poll(NULL, 0, 100);
5388     }
5389   } else {
5390     jio_fprintf(stderr,
5391                 "Could not open pause file '%s', continuing immediately.\n", filename);
5392   }
5393 }
5394 
5395 
5396 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5397 // comment paragraphs are worth repeating here:
5398 //
5399 // Assumption:
5400 //    Only one parker can exist on an event, which is why we allocate
5401 //    them per-thread. Multiple unparkers can coexist.
5402 //
5403 // _Event serves as a restricted-range semaphore.
5404 //   -1 : thread is blocked, i.e. there is a waiter
5405 //    0 : neutral: thread is running or ready,
5406 //        could have been signaled after a wait started
5407 //    1 : signaled - thread is running or ready
5408 //
5409 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5410 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5411 // For specifics regarding the bug see GLIBC BUGID 261237 :
5412 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5413 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5414 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5415 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5416 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5417 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5418 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5419 // of libpthread avoids the problem, but isn't practical.
5420 //
5421 // Possible remedies:
5422 //
5423 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5424 //      This is palliative and probabilistic, however.  If the thread is preempted
5425 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5426 //      than the minimum period may have passed, and the abstime may be stale (in the
5427 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5428 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5429 //
5430 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5431 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5432 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5433 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5434 //      thread.
5435 //
5436 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5437 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5438 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5439 //      This also works well.  In fact it avoids kernel-level scalability impediments
5440 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5441 //      timers in a graceful fashion.
5442 //
5443 // 4.   When the abstime value is in the past it appears that control returns
5444 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5445 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5446 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5447 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5448 //      It may be possible to avoid reinitialization by checking the return
5449 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5450 //      condvar we must establish the invariant that cond_signal() is only called
5451 //      within critical sections protected by the adjunct mutex.  This prevents
5452 //      cond_signal() from "seeing" a condvar that's in the midst of being
5453 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5454 //      desirable signal-after-unlock optimization that avoids futile context switching.
5455 //
5456 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5457 //      structure when a condvar is used or initialized.  cond_destroy()  would
5458 //      release the helper structure.  Our reinitialize-after-timedwait fix
5459 //      put excessive stress on malloc/free and locks protecting the c-heap.
5460 //
5461 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5462 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5463 // and only enabling the work-around for vulnerable environments.
5464 
5465 // utility to compute the abstime argument to timedwait:
5466 // millis is the relative timeout time
5467 // abstime will be the absolute timeout time
5468 // TODO: replace compute_abstime() with unpackTime()
5469 
5470 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5471   if (millis < 0)  millis = 0;
5472 
5473   jlong seconds = millis / 1000;
5474   millis %= 1000;
5475   if (seconds > 50000000) { // see man cond_timedwait(3T)
5476     seconds = 50000000;
5477   }
5478 
5479   if (os::supports_monotonic_clock()) {
5480     struct timespec now;
5481     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5482     assert_status(status == 0, status, "clock_gettime");
5483     abstime->tv_sec = now.tv_sec  + seconds;
5484     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5485     if (nanos >= NANOSECS_PER_SEC) {
5486       abstime->tv_sec += 1;
5487       nanos -= NANOSECS_PER_SEC;
5488     }
5489     abstime->tv_nsec = nanos;
5490   } else {
5491     struct timeval now;
5492     int status = gettimeofday(&now, NULL);
5493     assert(status == 0, "gettimeofday");
5494     abstime->tv_sec = now.tv_sec  + seconds;
5495     long usec = now.tv_usec + millis * 1000;
5496     if (usec >= 1000000) {
5497       abstime->tv_sec += 1;
5498       usec -= 1000000;
5499     }
5500     abstime->tv_nsec = usec * 1000;
5501   }
5502   return abstime;
5503 }
5504 
5505 void os::PlatformEvent::park() {       // AKA "down()"
5506   // Transitions for _Event:
5507   //   -1 => -1 : illegal
5508   //    1 =>  0 : pass - return immediately
5509   //    0 => -1 : block; then set _Event to 0 before returning
5510 
5511   // Invariant: Only the thread associated with the Event/PlatformEvent
5512   // may call park().
5513   // TODO: assert that _Assoc != NULL or _Assoc == Self
5514   assert(_nParked == 0, "invariant");
5515 
5516   int v;
5517   for (;;) {
5518     v = _Event;
5519     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5520   }
5521   guarantee(v >= 0, "invariant");
5522   if (v == 0) {
5523     // Do this the hard way by blocking ...
5524     int status = pthread_mutex_lock(_mutex);
5525     assert_status(status == 0, status, "mutex_lock");
5526     guarantee(_nParked == 0, "invariant");
5527     ++_nParked;
5528     while (_Event < 0) {
5529       status = pthread_cond_wait(_cond, _mutex);
5530       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5531       // Treat this the same as if the wait was interrupted
5532       if (status == ETIME) { status = EINTR; }
5533       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5534     }
5535     --_nParked;
5536 
5537     _Event = 0;
5538     status = pthread_mutex_unlock(_mutex);
5539     assert_status(status == 0, status, "mutex_unlock");
5540     // Paranoia to ensure our locked and lock-free paths interact
5541     // correctly with each other.
5542     OrderAccess::fence();
5543   }
5544   guarantee(_Event >= 0, "invariant");
5545 }
5546 
5547 int os::PlatformEvent::park(jlong millis) {
5548   // Transitions for _Event:
5549   //   -1 => -1 : illegal
5550   //    1 =>  0 : pass - return immediately
5551   //    0 => -1 : block; then set _Event to 0 before returning
5552 
5553   guarantee(_nParked == 0, "invariant");
5554 
5555   int v;
5556   for (;;) {
5557     v = _Event;
5558     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5559   }
5560   guarantee(v >= 0, "invariant");
5561   if (v != 0) return OS_OK;
5562 
5563   // We do this the hard way, by blocking the thread.
5564   // Consider enforcing a minimum timeout value.
5565   struct timespec abst;
5566   compute_abstime(&abst, millis);
5567 
5568   int ret = OS_TIMEOUT;
5569   int status = pthread_mutex_lock(_mutex);
5570   assert_status(status == 0, status, "mutex_lock");
5571   guarantee(_nParked == 0, "invariant");
5572   ++_nParked;
5573 
5574   // Object.wait(timo) will return because of
5575   // (a) notification
5576   // (b) timeout
5577   // (c) thread.interrupt
5578   //
5579   // Thread.interrupt and object.notify{All} both call Event::set.
5580   // That is, we treat thread.interrupt as a special case of notification.
5581   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5582   // We assume all ETIME returns are valid.
5583   //
5584   // TODO: properly differentiate simultaneous notify+interrupt.
5585   // In that case, we should propagate the notify to another waiter.
5586 
5587   while (_Event < 0) {
5588     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5589     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5590       pthread_cond_destroy(_cond);
5591       pthread_cond_init(_cond, os::Linux::condAttr());
5592     }
5593     assert_status(status == 0 || status == EINTR ||
5594                   status == ETIME || status == ETIMEDOUT,
5595                   status, "cond_timedwait");
5596     if (!FilterSpuriousWakeups) break;                 // previous semantics
5597     if (status == ETIME || status == ETIMEDOUT) break;
5598     // We consume and ignore EINTR and spurious wakeups.
5599   }
5600   --_nParked;
5601   if (_Event >= 0) {
5602     ret = OS_OK;
5603   }
5604   _Event = 0;
5605   status = pthread_mutex_unlock(_mutex);
5606   assert_status(status == 0, status, "mutex_unlock");
5607   assert(_nParked == 0, "invariant");
5608   // Paranoia to ensure our locked and lock-free paths interact
5609   // correctly with each other.
5610   OrderAccess::fence();
5611   return ret;
5612 }
5613 
5614 void os::PlatformEvent::unpark() {
5615   // Transitions for _Event:
5616   //    0 => 1 : just return
5617   //    1 => 1 : just return
5618   //   -1 => either 0 or 1; must signal target thread
5619   //         That is, we can safely transition _Event from -1 to either
5620   //         0 or 1.
5621   // See also: "Semaphores in Plan 9" by Mullender & Cox
5622   //
5623   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5624   // that it will take two back-to-back park() calls for the owning
5625   // thread to block. This has the benefit of forcing a spurious return
5626   // from the first park() call after an unpark() call which will help
5627   // shake out uses of park() and unpark() without condition variables.
5628 
5629   if (Atomic::xchg(1, &_Event) >= 0) return;
5630 
5631   // Wait for the thread associated with the event to vacate
5632   int status = pthread_mutex_lock(_mutex);
5633   assert_status(status == 0, status, "mutex_lock");
5634   int AnyWaiters = _nParked;
5635   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5636   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5637     AnyWaiters = 0;
5638     pthread_cond_signal(_cond);
5639   }
5640   status = pthread_mutex_unlock(_mutex);
5641   assert_status(status == 0, status, "mutex_unlock");
5642   if (AnyWaiters != 0) {
5643     // Note that we signal() *after* dropping the lock for "immortal" Events.
5644     // This is safe and avoids a common class of  futile wakeups.  In rare
5645     // circumstances this can cause a thread to return prematurely from
5646     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5647     // will simply re-test the condition and re-park itself.
5648     // This provides particular benefit if the underlying platform does not
5649     // provide wait morphing.
5650     status = pthread_cond_signal(_cond);
5651     assert_status(status == 0, status, "cond_signal");
5652   }
5653 }
5654 
5655 
5656 // JSR166
5657 // -------------------------------------------------------
5658 
5659 // The solaris and linux implementations of park/unpark are fairly
5660 // conservative for now, but can be improved. They currently use a
5661 // mutex/condvar pair, plus a a count.
5662 // Park decrements count if > 0, else does a condvar wait.  Unpark
5663 // sets count to 1 and signals condvar.  Only one thread ever waits
5664 // on the condvar. Contention seen when trying to park implies that someone
5665 // is unparking you, so don't wait. And spurious returns are fine, so there
5666 // is no need to track notifications.
5667 
5668 // This code is common to linux and solaris and will be moved to a
5669 // common place in dolphin.
5670 //
5671 // The passed in time value is either a relative time in nanoseconds
5672 // or an absolute time in milliseconds. Either way it has to be unpacked
5673 // into suitable seconds and nanoseconds components and stored in the
5674 // given timespec structure.
5675 // Given time is a 64-bit value and the time_t used in the timespec is only
5676 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5677 // overflow if times way in the future are given. Further on Solaris versions
5678 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5679 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5680 // As it will be 28 years before "now + 100000000" will overflow we can
5681 // ignore overflow and just impose a hard-limit on seconds using the value
5682 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5683 // years from "now".
5684 
5685 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5686   assert(time > 0, "convertTime");
5687   time_t max_secs = 0;
5688 
5689   if (!os::supports_monotonic_clock() || isAbsolute) {
5690     struct timeval now;
5691     int status = gettimeofday(&now, NULL);
5692     assert(status == 0, "gettimeofday");
5693 
5694     max_secs = now.tv_sec + MAX_SECS;
5695 
5696     if (isAbsolute) {
5697       jlong secs = time / 1000;
5698       if (secs > max_secs) {
5699         absTime->tv_sec = max_secs;
5700       } else {
5701         absTime->tv_sec = secs;
5702       }
5703       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5704     } else {
5705       jlong secs = time / NANOSECS_PER_SEC;
5706       if (secs >= MAX_SECS) {
5707         absTime->tv_sec = max_secs;
5708         absTime->tv_nsec = 0;
5709       } else {
5710         absTime->tv_sec = now.tv_sec + secs;
5711         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5712         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5713           absTime->tv_nsec -= NANOSECS_PER_SEC;
5714           ++absTime->tv_sec; // note: this must be <= max_secs
5715         }
5716       }
5717     }
5718   } else {
5719     // must be relative using monotonic clock
5720     struct timespec now;
5721     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5722     assert_status(status == 0, status, "clock_gettime");
5723     max_secs = now.tv_sec + MAX_SECS;
5724     jlong secs = time / NANOSECS_PER_SEC;
5725     if (secs >= MAX_SECS) {
5726       absTime->tv_sec = max_secs;
5727       absTime->tv_nsec = 0;
5728     } else {
5729       absTime->tv_sec = now.tv_sec + secs;
5730       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5731       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5732         absTime->tv_nsec -= NANOSECS_PER_SEC;
5733         ++absTime->tv_sec; // note: this must be <= max_secs
5734       }
5735     }
5736   }
5737   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5738   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5739   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5740   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5741 }
5742 
5743 void Parker::park(bool isAbsolute, jlong time) {
5744   // Ideally we'd do something useful while spinning, such
5745   // as calling unpackTime().
5746 
5747   // Optional fast-path check:
5748   // Return immediately if a permit is available.
5749   // We depend on Atomic::xchg() having full barrier semantics
5750   // since we are doing a lock-free update to _counter.
5751   if (Atomic::xchg(0, &_counter) > 0) return;
5752 
5753   Thread* thread = Thread::current();
5754   assert(thread->is_Java_thread(), "Must be JavaThread");
5755   JavaThread *jt = (JavaThread *)thread;
5756 
5757   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5758   // Check interrupt before trying to wait
5759   if (Thread::is_interrupted(thread, false)) {
5760     return;
5761   }
5762 
5763   // Next, demultiplex/decode time arguments
5764   timespec absTime;
5765   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5766     return;
5767   }
5768   if (time > 0) {
5769     unpackTime(&absTime, isAbsolute, time);
5770   }
5771 
5772 
5773   // Enter safepoint region
5774   // Beware of deadlocks such as 6317397.
5775   // The per-thread Parker:: mutex is a classic leaf-lock.
5776   // In particular a thread must never block on the Threads_lock while
5777   // holding the Parker:: mutex.  If safepoints are pending both the
5778   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5779   ThreadBlockInVM tbivm(jt);
5780 
5781   // Don't wait if cannot get lock since interference arises from
5782   // unblocking.  Also. check interrupt before trying wait
5783   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5784     return;
5785   }
5786 
5787   int status;
5788   if (_counter > 0)  { // no wait needed
5789     _counter = 0;
5790     status = pthread_mutex_unlock(_mutex);
5791     assert(status == 0, "invariant");
5792     // Paranoia to ensure our locked and lock-free paths interact
5793     // correctly with each other and Java-level accesses.
5794     OrderAccess::fence();
5795     return;
5796   }
5797 
5798 #ifdef ASSERT
5799   // Don't catch signals while blocked; let the running threads have the signals.
5800   // (This allows a debugger to break into the running thread.)
5801   sigset_t oldsigs;
5802   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5803   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5804 #endif
5805 
5806   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5807   jt->set_suspend_equivalent();
5808   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5809 
5810   assert(_cur_index == -1, "invariant");
5811   if (time == 0) {
5812     _cur_index = REL_INDEX; // arbitrary choice when not timed
5813     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5814   } else {
5815     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5816     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5817     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5818       pthread_cond_destroy(&_cond[_cur_index]);
5819       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5820     }
5821   }
5822   _cur_index = -1;
5823   assert_status(status == 0 || status == EINTR ||
5824                 status == ETIME || status == ETIMEDOUT,
5825                 status, "cond_timedwait");
5826 
5827 #ifdef ASSERT
5828   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5829 #endif
5830 
5831   _counter = 0;
5832   status = pthread_mutex_unlock(_mutex);
5833   assert_status(status == 0, status, "invariant");
5834   // Paranoia to ensure our locked and lock-free paths interact
5835   // correctly with each other and Java-level accesses.
5836   OrderAccess::fence();
5837 
5838   // If externally suspended while waiting, re-suspend
5839   if (jt->handle_special_suspend_equivalent_condition()) {
5840     jt->java_suspend_self();
5841   }
5842 }
5843 
5844 void Parker::unpark() {
5845   int status = pthread_mutex_lock(_mutex);
5846   assert(status == 0, "invariant");
5847   const int s = _counter;
5848   _counter = 1;
5849   if (s < 1) {
5850     // thread might be parked
5851     if (_cur_index != -1) {
5852       // thread is definitely parked
5853       if (WorkAroundNPTLTimedWaitHang) {
5854         status = pthread_cond_signal(&_cond[_cur_index]);
5855         assert(status == 0, "invariant");
5856         status = pthread_mutex_unlock(_mutex);
5857         assert(status == 0, "invariant");
5858       } else {
5859         status = pthread_mutex_unlock(_mutex);
5860         assert(status == 0, "invariant");
5861         status = pthread_cond_signal(&_cond[_cur_index]);
5862         assert(status == 0, "invariant");
5863       }
5864     } else {
5865       pthread_mutex_unlock(_mutex);
5866       assert(status == 0, "invariant");
5867     }
5868   } else {
5869     pthread_mutex_unlock(_mutex);
5870     assert(status == 0, "invariant");
5871   }
5872 }
5873 
5874 
5875 extern char** environ;
5876 
5877 #ifndef __NR_fork
5878   #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5879 #endif
5880 
5881 #ifndef __NR_execve
5882   #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5883 #endif
5884 
5885 // Run the specified command in a separate process. Return its exit value,
5886 // or -1 on failure (e.g. can't fork a new process).
5887 // Unlike system(), this function can be called from signal handler. It
5888 // doesn't block SIGINT et al.
5889 int os::fork_and_exec(char* cmd) {
5890   const char * argv[4] = {"sh", "-c", cmd, NULL};
5891 
5892   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5893   // pthread_atfork handlers and reset pthread library. All we need is a
5894   // separate process to execve. Make a direct syscall to fork process.
5895   // On IA64 there's no fork syscall, we have to use fork() and hope for
5896   // the best...
5897   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5898   IA64_ONLY(fork();)
5899 
5900   if (pid < 0) {
5901     // fork failed
5902     return -1;
5903 
5904   } else if (pid == 0) {
5905     // child process
5906 
5907     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5908     // first to kill every thread on the thread list. Because this list is
5909     // not reset by fork() (see notes above), execve() will instead kill
5910     // every thread in the parent process. We know this is the only thread
5911     // in the new process, so make a system call directly.
5912     // IA64 should use normal execve() from glibc to match the glibc fork()
5913     // above.
5914     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5915     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5916 
5917     // execve failed
5918     _exit(-1);
5919 
5920   } else  {
5921     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5922     // care about the actual exit code, for now.
5923 
5924     int status;
5925 
5926     // Wait for the child process to exit.  This returns immediately if
5927     // the child has already exited. */
5928     while (waitpid(pid, &status, 0) < 0) {
5929       switch (errno) {
5930       case ECHILD: return 0;
5931       case EINTR: break;
5932       default: return -1;
5933       }
5934     }
5935 
5936     if (WIFEXITED(status)) {
5937       // The child exited normally; get its exit code.
5938       return WEXITSTATUS(status);
5939     } else if (WIFSIGNALED(status)) {
5940       // The child exited because of a signal
5941       // The best value to return is 0x80 + signal number,
5942       // because that is what all Unix shells do, and because
5943       // it allows callers to distinguish between process exit and
5944       // process death by signal.
5945       return 0x80 + WTERMSIG(status);
5946     } else {
5947       // Unknown exit code; pass it through
5948       return status;
5949     }
5950   }
5951 }
5952 
5953 // is_headless_jre()
5954 //
5955 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5956 // in order to report if we are running in a headless jre
5957 //
5958 // Since JDK8 xawt/libmawt.so was moved into the same directory
5959 // as libawt.so, and renamed libawt_xawt.so
5960 //
5961 bool os::is_headless_jre() {
5962   struct stat statbuf;
5963   char buf[MAXPATHLEN];
5964   char libmawtpath[MAXPATHLEN];
5965   const char *xawtstr  = "/xawt/libmawt.so";
5966   const char *new_xawtstr = "/libawt_xawt.so";
5967   char *p;
5968 
5969   // Get path to libjvm.so
5970   os::jvm_path(buf, sizeof(buf));
5971 
5972   // Get rid of libjvm.so
5973   p = strrchr(buf, '/');
5974   if (p == NULL) {
5975     return false;
5976   } else {
5977     *p = '\0';
5978   }
5979 
5980   // Get rid of client or server
5981   p = strrchr(buf, '/');
5982   if (p == NULL) {
5983     return false;
5984   } else {
5985     *p = '\0';
5986   }
5987 
5988   // check xawt/libmawt.so
5989   strcpy(libmawtpath, buf);
5990   strcat(libmawtpath, xawtstr);
5991   if (::stat(libmawtpath, &statbuf) == 0) return false;
5992 
5993   // check libawt_xawt.so
5994   strcpy(libmawtpath, buf);
5995   strcat(libmawtpath, new_xawtstr);
5996   if (::stat(libmawtpath, &statbuf) == 0) return false;
5997 
5998   return true;
5999 }
6000 
6001 // Get the default path to the core file
6002 // Returns the length of the string
6003 int os::get_core_path(char* buffer, size_t bufferSize) {
6004   /*
6005    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6006    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6007    */
6008   const int core_pattern_len = 129;
6009   char core_pattern[core_pattern_len] = {0};
6010 
6011   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6012   if (core_pattern_file != -1) {
6013     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6014     ::close(core_pattern_file);
6015 
6016     if (ret > 0) {
6017       char *last_char = core_pattern + strlen(core_pattern) - 1;
6018 
6019       if (*last_char == '\n') {
6020         *last_char = '\0';
6021       }
6022     }
6023   }
6024 
6025   if (strlen(core_pattern) == 0) {
6026     return 0;
6027   }
6028 
6029   char *pid_pos = strstr(core_pattern, "%p");
6030   size_t written;
6031 
6032   if (core_pattern[0] == '/') {
6033     written = jio_snprintf(buffer, bufferSize, core_pattern);
6034   } else {
6035     char cwd[PATH_MAX];
6036 
6037     const char* p = get_current_directory(cwd, PATH_MAX);
6038     if (p == NULL) {
6039       assert(p != NULL, "failed to get current directory");
6040       return 0;
6041     }
6042 
6043     if (core_pattern[0] == '|') {
6044       written = jio_snprintf(buffer, bufferSize,
6045                         "\"%s\" (or dumping to %s/core.%d)",
6046                                      &core_pattern[1], p, current_process_id());
6047     } else {
6048       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6049     }
6050   }
6051 
6052   if ((written >= 0) && (written < bufferSize)
6053             && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6054     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6055 
6056     if (core_uses_pid_file != -1) {
6057       char core_uses_pid = 0;
6058       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6059       ::close(core_uses_pid_file);
6060 
6061       if (core_uses_pid == '1'){
6062         jio_snprintf(buffer + written, bufferSize - written,
6063                                           ".%d", current_process_id());
6064       }
6065     }
6066   }
6067 
6068   return strlen(buffer);
6069 }
6070 
6071 /////////////// Unit tests ///////////////
6072 
6073 #ifndef PRODUCT
6074 
6075 #define test_log(...)              \
6076   do {                             \
6077     if (VerboseInternalVMTests) {  \
6078       tty->print_cr(__VA_ARGS__);  \
6079       tty->flush();                \
6080     }                              \
6081   } while (false)
6082 
6083 class TestReserveMemorySpecial : AllStatic {
6084  public:
6085   static void small_page_write(void* addr, size_t size) {
6086     size_t page_size = os::vm_page_size();
6087 
6088     char* end = (char*)addr + size;
6089     for (char* p = (char*)addr; p < end; p += page_size) {
6090       *p = 1;
6091     }
6092   }
6093 
6094   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6095     if (!UseHugeTLBFS) {
6096       return;
6097     }
6098 
6099     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6100 
6101     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6102 
6103     if (addr != NULL) {
6104       small_page_write(addr, size);
6105 
6106       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6107     }
6108   }
6109 
6110   static void test_reserve_memory_special_huge_tlbfs_only() {
6111     if (!UseHugeTLBFS) {
6112       return;
6113     }
6114 
6115     size_t lp = os::large_page_size();
6116 
6117     for (size_t size = lp; size <= lp * 10; size += lp) {
6118       test_reserve_memory_special_huge_tlbfs_only(size);
6119     }
6120   }
6121 
6122   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6123     if (!UseHugeTLBFS) {
6124       return;
6125     }
6126 
6127     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6128              size, alignment);
6129 
6130     assert(size >= os::large_page_size(), "Incorrect input to test");
6131 
6132     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6133 
6134     if (addr != NULL) {
6135       small_page_write(addr, size);
6136 
6137       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6138     }
6139   }
6140 
6141   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6142     size_t lp = os::large_page_size();
6143     size_t ag = os::vm_allocation_granularity();
6144 
6145     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6146       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6147     }
6148   }
6149 
6150   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6151     size_t lp = os::large_page_size();
6152     size_t ag = os::vm_allocation_granularity();
6153 
6154     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6155     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6156     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6157     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6158     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6159     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6160     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6161     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6162     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6163   }
6164 
6165   static void test_reserve_memory_special_huge_tlbfs() {
6166     if (!UseHugeTLBFS) {
6167       return;
6168     }
6169 
6170     test_reserve_memory_special_huge_tlbfs_only();
6171     test_reserve_memory_special_huge_tlbfs_mixed();
6172   }
6173 
6174   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6175     if (!UseSHM) {
6176       return;
6177     }
6178 
6179     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6180 
6181     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6182 
6183     if (addr != NULL) {
6184       assert(is_ptr_aligned(addr, alignment), "Check");
6185       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6186 
6187       small_page_write(addr, size);
6188 
6189       os::Linux::release_memory_special_shm(addr, size);
6190     }
6191   }
6192 
6193   static void test_reserve_memory_special_shm() {
6194     size_t lp = os::large_page_size();
6195     size_t ag = os::vm_allocation_granularity();
6196 
6197     for (size_t size = ag; size < lp * 3; size += ag) {
6198       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6199         test_reserve_memory_special_shm(size, alignment);
6200       }
6201     }
6202   }
6203 
6204   static void test() {
6205     test_reserve_memory_special_huge_tlbfs();
6206     test_reserve_memory_special_shm();
6207   }
6208 };
6209 
6210 void TestReserveMemorySpecial_test() {
6211   TestReserveMemorySpecial::test();
6212 }
6213 
6214 #endif