1 //
   2 // Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Header information of the source block.
 461 // Method declarations/definitions which are used outside
 462 // the ad-scope can conveniently be defined here.
 463 //
 464 // To keep related declarations/definitions/uses close together,
 465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 466 
 467 // Must be visible to the DFA in dfa_sparc.cpp
 468 extern bool can_branch_register( Node *bol, Node *cmp );
 469 
 470 extern bool use_block_zeroing(Node* count);
 471 
 472 // Macros to extract hi & lo halves from a long pair.
 473 // G0 is not part of any long pair, so assert on that.
 474 // Prevents accidentally using G1 instead of G0.
 475 #define LONG_HI_REG(x) (x)
 476 #define LONG_LO_REG(x) (x)
 477 
 478 class CallStubImpl {
 479 
 480   //--------------------------------------------------------------
 481   //---<  Used for optimization in Compile::Shorten_branches  >---
 482   //--------------------------------------------------------------
 483 
 484  public:
 485   // Size of call trampoline stub.
 486   static uint size_call_trampoline() {
 487     return 0; // no call trampolines on this platform
 488   }
 489 
 490   // number of relocations needed by a call trampoline stub
 491   static uint reloc_call_trampoline() {
 492     return 0; // no call trampolines on this platform
 493   }
 494 };
 495 
 496 class HandlerImpl {
 497 
 498  public:
 499 
 500   static int emit_exception_handler(CodeBuffer &cbuf);
 501   static int emit_deopt_handler(CodeBuffer& cbuf);
 502 
 503   static uint size_exception_handler() {
 504     if (TraceJumps) {
 505       return (400); // just a guess
 506     }
 507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
 508   }
 509 
 510   static uint size_deopt_handler() {
 511     if (TraceJumps) {
 512       return (400); // just a guess
 513     }
 514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
 515   }
 516 };
 517 
 518 %}
 519 
 520 source %{
 521 #define __ _masm.
 522 
 523 // tertiary op of a LoadP or StoreP encoding
 524 #define REGP_OP true
 525 
 526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 528 static Register reg_to_register_object(int register_encoding);
 529 
 530 // Used by the DFA in dfa_sparc.cpp.
 531 // Check for being able to use a V9 branch-on-register.  Requires a
 532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 533 // extended.  Doesn't work following an integer ADD, for example, because of
 534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 536 // replace them with zero, which could become sign-extension in a different OS
 537 // release.  There's no obvious reason why an interrupt will ever fill these
 538 // bits with non-zero junk (the registers are reloaded with standard LD
 539 // instructions which either zero-fill or sign-fill).
 540 bool can_branch_register( Node *bol, Node *cmp ) {
 541   if( !BranchOnRegister ) return false;
 542 #ifdef _LP64
 543   if( cmp->Opcode() == Op_CmpP )
 544     return true;  // No problems with pointer compares
 545 #endif
 546   if( cmp->Opcode() == Op_CmpL )
 547     return true;  // No problems with long compares
 548 
 549   if( !SparcV9RegsHiBitsZero ) return false;
 550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 551       bol->as_Bool()->_test._test != BoolTest::eq )
 552      return false;
 553 
 554   // Check for comparing against a 'safe' value.  Any operation which
 555   // clears out the high word is safe.  Thus, loads and certain shifts
 556   // are safe, as are non-negative constants.  Any operation which
 557   // preserves zero bits in the high word is safe as long as each of its
 558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 559   // inputs are safe.  At present, the only important case to recognize
 560   // seems to be loads.  Constants should fold away, and shifts &
 561   // logicals can use the 'cc' forms.
 562   Node *x = cmp->in(1);
 563   if( x->is_Load() ) return true;
 564   if( x->is_Phi() ) {
 565     for( uint i = 1; i < x->req(); i++ )
 566       if( !x->in(i)->is_Load() )
 567         return false;
 568     return true;
 569   }
 570   return false;
 571 }
 572 
 573 bool use_block_zeroing(Node* count) {
 574   // Use BIS for zeroing if count is not constant
 575   // or it is >= BlockZeroingLowLimit.
 576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 577 }
 578 
 579 // ****************************************************************************
 580 
 581 // REQUIRED FUNCTIONALITY
 582 
 583 // !!!!! Special hack to get all type of calls to specify the byte offset
 584 //       from the start of the call to the point where the return address
 585 //       will point.
 586 //       The "return address" is the address of the call instruction, plus 8.
 587 
 588 int MachCallStaticJavaNode::ret_addr_offset() {
 589   int offset = NativeCall::instruction_size;  // call; delay slot
 590   if (_method_handle_invoke)
 591     offset += 4;  // restore SP
 592   return offset;
 593 }
 594 
 595 int MachCallDynamicJavaNode::ret_addr_offset() {
 596   int vtable_index = this->_vtable_index;
 597   if (vtable_index < 0) {
 598     // must be invalid_vtable_index, not nonvirtual_vtable_index
 599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 600     return (NativeMovConstReg::instruction_size +
 601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 602   } else {
 603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 604     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 605     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 606     int klass_load_size;
 607     if (UseCompressedClassPointers) {
 608       assert(Universe::heap() != NULL, "java heap should be initialized");
 609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 610     } else {
 611       klass_load_size = 1*BytesPerInstWord;
 612     }
 613     if (Assembler::is_simm13(v_off)) {
 614       return klass_load_size +
 615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 616              NativeCall::instruction_size);  // call; delay slot
 617     } else {
 618       return klass_load_size +
 619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 620              NativeCall::instruction_size);  // call; delay slot
 621     }
 622   }
 623 }
 624 
 625 int MachCallRuntimeNode::ret_addr_offset() {
 626 #ifdef _LP64
 627   if (MacroAssembler::is_far_target(entry_point())) {
 628     return NativeFarCall::instruction_size;
 629   } else {
 630     return NativeCall::instruction_size;
 631   }
 632 #else
 633   return NativeCall::instruction_size;  // call; delay slot
 634 #endif
 635 }
 636 
 637 // Indicate if the safepoint node needs the polling page as an input.
 638 // Since Sparc does not have absolute addressing, it does.
 639 bool SafePointNode::needs_polling_address_input() {
 640   return true;
 641 }
 642 
 643 // emit an interrupt that is caught by the debugger (for debugging compiler)
 644 void emit_break(CodeBuffer &cbuf) {
 645   MacroAssembler _masm(&cbuf);
 646   __ breakpoint_trap();
 647 }
 648 
 649 #ifndef PRODUCT
 650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 651   st->print("TA");
 652 }
 653 #endif
 654 
 655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 656   emit_break(cbuf);
 657 }
 658 
 659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 660   return MachNode::size(ra_);
 661 }
 662 
 663 // Traceable jump
 664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 665   MacroAssembler _masm(&cbuf);
 666   Register rdest = reg_to_register_object(jump_target);
 667   __ JMP(rdest, 0);
 668   __ delayed()->nop();
 669 }
 670 
 671 // Traceable jump and set exception pc
 672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 673   MacroAssembler _masm(&cbuf);
 674   Register rdest = reg_to_register_object(jump_target);
 675   __ JMP(rdest, 0);
 676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 677 }
 678 
 679 void emit_nop(CodeBuffer &cbuf) {
 680   MacroAssembler _masm(&cbuf);
 681   __ nop();
 682 }
 683 
 684 void emit_illtrap(CodeBuffer &cbuf) {
 685   MacroAssembler _masm(&cbuf);
 686   __ illtrap(0);
 687 }
 688 
 689 
 690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 691   assert(n->rule() != loadUB_rule, "");
 692 
 693   intptr_t offset = 0;
 694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 695   const Node* addr = n->get_base_and_disp(offset, adr_type);
 696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 699   atype = atype->add_offset(offset);
 700   assert(disp32 == offset, "wrong disp32");
 701   return atype->_offset;
 702 }
 703 
 704 
 705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 706   assert(n->rule() != loadUB_rule, "");
 707 
 708   intptr_t offset = 0;
 709   Node* addr = n->in(2);
 710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 712     Node* a = addr->in(2/*AddPNode::Address*/);
 713     Node* o = addr->in(3/*AddPNode::Offset*/);
 714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 716     assert(atype->isa_oop_ptr(), "still an oop");
 717   }
 718   offset = atype->is_ptr()->_offset;
 719   if (offset != Type::OffsetBot)  offset += disp32;
 720   return offset;
 721 }
 722 
 723 static inline jdouble replicate_immI(int con, int count, int width) {
 724   // Load a constant replicated "count" times with width "width"
 725   assert(count*width == 8 && width <= 4, "sanity");
 726   int bit_width = width * 8;
 727   jlong val = con;
 728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 729   for (int i = 0; i < count - 1; i++) {
 730     val |= (val << bit_width);
 731   }
 732   jdouble dval = *((jdouble*) &val);  // coerce to double type
 733   return dval;
 734 }
 735 
 736 static inline jdouble replicate_immF(float con) {
 737   // Replicate float con 2 times and pack into vector.
 738   int val = *((int*)&con);
 739   jlong lval = val;
 740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 742   return dval;
 743 }
 744 
 745 // Standard Sparc opcode form2 field breakdown
 746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 748   int op = (f30 << 30) |
 749            (f29 << 29) |
 750            (f25 << 25) |
 751            (f22 << 22) |
 752            (f20 << 20) |
 753            (f19 << 19) |
 754            (f0  <<  0);
 755   cbuf.insts()->emit_int32(op);
 756 }
 757 
 758 // Standard Sparc opcode form2 field breakdown
 759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 760   f0 >>= 10;           // Drop 10 bits
 761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 762   int op = (f30 << 30) |
 763            (f25 << 25) |
 764            (f22 << 22) |
 765            (f0  <<  0);
 766   cbuf.insts()->emit_int32(op);
 767 }
 768 
 769 // Standard Sparc opcode form3 field breakdown
 770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 771   int op = (f30 << 30) |
 772            (f25 << 25) |
 773            (f19 << 19) |
 774            (f14 << 14) |
 775            (f5  <<  5) |
 776            (f0  <<  0);
 777   cbuf.insts()->emit_int32(op);
 778 }
 779 
 780 // Standard Sparc opcode form3 field breakdown
 781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 782   simm13 &= (1<<13)-1; // Mask to 13 bits
 783   int op = (f30 << 30) |
 784            (f25 << 25) |
 785            (f19 << 19) |
 786            (f14 << 14) |
 787            (1   << 13) | // bit to indicate immediate-mode
 788            (simm13<<0);
 789   cbuf.insts()->emit_int32(op);
 790 }
 791 
 792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 793   simm10 &= (1<<10)-1; // Mask to 10 bits
 794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 795 }
 796 
 797 #ifdef ASSERT
 798 // Helper function for VerifyOops in emit_form3_mem_reg
 799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 800   warning("VerifyOops encountered unexpected instruction:");
 801   n->dump(2);
 802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 803 }
 804 #endif
 805 
 806 
 807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 809 
 810 #ifdef ASSERT
 811   // The following code implements the +VerifyOops feature.
 812   // It verifies oop values which are loaded into or stored out of
 813   // the current method activation.  +VerifyOops complements techniques
 814   // like ScavengeALot, because it eagerly inspects oops in transit,
 815   // as they enter or leave the stack, as opposed to ScavengeALot,
 816   // which inspects oops "at rest", in the stack or heap, at safepoints.
 817   // For this reason, +VerifyOops can sometimes detect bugs very close
 818   // to their point of creation.  It can also serve as a cross-check
 819   // on the validity of oop maps, when used toegether with ScavengeALot.
 820 
 821   // It would be good to verify oops at other points, especially
 822   // when an oop is used as a base pointer for a load or store.
 823   // This is presently difficult, because it is hard to know when
 824   // a base address is biased or not.  (If we had such information,
 825   // it would be easy and useful to make a two-argument version of
 826   // verify_oop which unbiases the base, and performs verification.)
 827 
 828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 829   bool is_verified_oop_base  = false;
 830   bool is_verified_oop_load  = false;
 831   bool is_verified_oop_store = false;
 832   int tmp_enc = -1;
 833   if (VerifyOops && src1_enc != R_SP_enc) {
 834     // classify the op, mainly for an assert check
 835     int st_op = 0, ld_op = 0;
 836     switch (primary) {
 837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 841     case Assembler::std_op3:  st_op = Op_StoreL; break;
 842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 844 
 845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 856 
 857     default: ShouldNotReachHere();
 858     }
 859     if (tertiary == REGP_OP) {
 860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 862       else                          ShouldNotReachHere();
 863       if (st_op) {
 864         // a store
 865         // inputs are (0:control, 1:memory, 2:address, 3:value)
 866         Node* n2 = n->in(3);
 867         if (n2 != NULL) {
 868           const Type* t = n2->bottom_type();
 869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 870         }
 871       } else {
 872         // a load
 873         const Type* t = n->bottom_type();
 874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 875       }
 876     }
 877 
 878     if (ld_op) {
 879       // a Load
 880       // inputs are (0:control, 1:memory, 2:address)
 881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 892           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 893           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 894           !(n->rule() == loadUB_rule)) {
 895         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 896       }
 897     } else if (st_op) {
 898       // a Store
 899       // inputs are (0:control, 1:memory, 2:address, 3:value)
 900       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 901           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 902           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 903           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 904           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 905           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 906           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 907         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 908       }
 909     }
 910 
 911     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 912       Node* addr = n->in(2);
 913       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 914         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 915         if (atype != NULL) {
 916           intptr_t offset = get_offset_from_base(n, atype, disp32);
 917           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 918           if (offset != offset_2) {
 919             get_offset_from_base(n, atype, disp32);
 920             get_offset_from_base_2(n, atype, disp32);
 921           }
 922           assert(offset == offset_2, "different offsets");
 923           if (offset == disp32) {
 924             // we now know that src1 is a true oop pointer
 925             is_verified_oop_base = true;
 926             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 927               if( primary == Assembler::ldd_op3 ) {
 928                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 929               } else {
 930                 tmp_enc = dst_enc;
 931                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 932                 assert(src1_enc != dst_enc, "");
 933               }
 934             }
 935           }
 936           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 937                        || offset == oopDesc::mark_offset_in_bytes())) {
 938                       // loading the mark should not be allowed either, but
 939                       // we don't check this since it conflicts with InlineObjectHash
 940                       // usage of LoadINode to get the mark. We could keep the
 941                       // check if we create a new LoadMarkNode
 942             // but do not verify the object before its header is initialized
 943             ShouldNotReachHere();
 944           }
 945         }
 946       }
 947     }
 948   }
 949 #endif
 950 
 951   uint instr;
 952   instr = (Assembler::ldst_op << 30)
 953         | (dst_enc        << 25)
 954         | (primary        << 19)
 955         | (src1_enc       << 14);
 956 
 957   uint index = src2_enc;
 958   int disp = disp32;
 959 
 960   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 961     disp += STACK_BIAS;
 962     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
 963     if (!Assembler::is_simm13(disp)) {
 964       ra->C->record_method_not_compilable("unable to handle large constant offsets");
 965       return;
 966     }
 967   }
 968 
 969   // We should have a compiler bailout here rather than a guarantee.
 970   // Better yet would be some mechanism to handle variable-size matches correctly.
 971   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 972 
 973   if( disp == 0 ) {
 974     // use reg-reg form
 975     // bit 13 is already zero
 976     instr |= index;
 977   } else {
 978     // use reg-imm form
 979     instr |= 0x00002000;          // set bit 13 to one
 980     instr |= disp & 0x1FFF;
 981   }
 982 
 983   cbuf.insts()->emit_int32(instr);
 984 
 985 #ifdef ASSERT
 986   {
 987     MacroAssembler _masm(&cbuf);
 988     if (is_verified_oop_base) {
 989       __ verify_oop(reg_to_register_object(src1_enc));
 990     }
 991     if (is_verified_oop_store) {
 992       __ verify_oop(reg_to_register_object(dst_enc));
 993     }
 994     if (tmp_enc != -1) {
 995       __ mov(O7, reg_to_register_object(tmp_enc));
 996     }
 997     if (is_verified_oop_load) {
 998       __ verify_oop(reg_to_register_object(dst_enc));
 999     }
1000   }
1001 #endif
1002 }
1003 
1004 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
1005   // The method which records debug information at every safepoint
1006   // expects the call to be the first instruction in the snippet as
1007   // it creates a PcDesc structure which tracks the offset of a call
1008   // from the start of the codeBlob. This offset is computed as
1009   // code_end() - code_begin() of the code which has been emitted
1010   // so far.
1011   // In this particular case we have skirted around the problem by
1012   // putting the "mov" instruction in the delay slot but the problem
1013   // may bite us again at some other point and a cleaner/generic
1014   // solution using relocations would be needed.
1015   MacroAssembler _masm(&cbuf);
1016   __ set_inst_mark();
1017 
1018   // We flush the current window just so that there is a valid stack copy
1019   // the fact that the current window becomes active again instantly is
1020   // not a problem there is nothing live in it.
1021 
1022 #ifdef ASSERT
1023   int startpos = __ offset();
1024 #endif /* ASSERT */
1025 
1026   __ call((address)entry_point, rtype);
1027 
1028   if (preserve_g2)   __ delayed()->mov(G2, L7);
1029   else __ delayed()->nop();
1030 
1031   if (preserve_g2)   __ mov(L7, G2);
1032 
1033 #ifdef ASSERT
1034   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
1035 #ifdef _LP64
1036     // Trash argument dump slots.
1037     __ set(0xb0b8ac0db0b8ac0d, G1);
1038     __ mov(G1, G5);
1039     __ stx(G1, SP, STACK_BIAS + 0x80);
1040     __ stx(G1, SP, STACK_BIAS + 0x88);
1041     __ stx(G1, SP, STACK_BIAS + 0x90);
1042     __ stx(G1, SP, STACK_BIAS + 0x98);
1043     __ stx(G1, SP, STACK_BIAS + 0xA0);
1044     __ stx(G1, SP, STACK_BIAS + 0xA8);
1045 #else // _LP64
1046     // this is also a native call, so smash the first 7 stack locations,
1047     // and the various registers
1048 
1049     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1050     // while [SP+0x44..0x58] are the argument dump slots.
1051     __ set((intptr_t)0xbaadf00d, G1);
1052     __ mov(G1, G5);
1053     __ sllx(G1, 32, G1);
1054     __ or3(G1, G5, G1);
1055     __ mov(G1, G5);
1056     __ stx(G1, SP, 0x40);
1057     __ stx(G1, SP, 0x48);
1058     __ stx(G1, SP, 0x50);
1059     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1060 #endif // _LP64
1061   }
1062 #endif /*ASSERT*/
1063 }
1064 
1065 //=============================================================================
1066 // REQUIRED FUNCTIONALITY for encoding
1067 void emit_lo(CodeBuffer &cbuf, int val) {  }
1068 void emit_hi(CodeBuffer &cbuf, int val) {  }
1069 
1070 
1071 //=============================================================================
1072 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1073 
1074 int Compile::ConstantTable::calculate_table_base_offset() const {
1075   if (UseRDPCForConstantTableBase) {
1076     // The table base offset might be less but then it fits into
1077     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1078     return Assembler::min_simm13();
1079   } else {
1080     int offset = -(size() / 2);
1081     if (!Assembler::is_simm13(offset)) {
1082       offset = Assembler::min_simm13();
1083     }
1084     return offset;
1085   }
1086 }
1087 
1088 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1089 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1090   ShouldNotReachHere();
1091 }
1092 
1093 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1094   Compile* C = ra_->C;
1095   Compile::ConstantTable& constant_table = C->constant_table();
1096   MacroAssembler _masm(&cbuf);
1097 
1098   Register r = as_Register(ra_->get_encode(this));
1099   CodeSection* consts_section = __ code()->consts();
1100   int consts_size = consts_section->align_at_start(consts_section->size());
1101   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1102 
1103   if (UseRDPCForConstantTableBase) {
1104     // For the following RDPC logic to work correctly the consts
1105     // section must be allocated right before the insts section.  This
1106     // assert checks for that.  The layout and the SECT_* constants
1107     // are defined in src/share/vm/asm/codeBuffer.hpp.
1108     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1109     int insts_offset = __ offset();
1110 
1111     // Layout:
1112     //
1113     // |----------- consts section ------------|----------- insts section -----------...
1114     // |------ constant table -----|- padding -|------------------x----
1115     //                                                            \ current PC (RDPC instruction)
1116     // |<------------- consts_size ----------->|<- insts_offset ->|
1117     //                                                            \ table base
1118     // The table base offset is later added to the load displacement
1119     // so it has to be negative.
1120     int table_base_offset = -(consts_size + insts_offset);
1121     int disp;
1122 
1123     // If the displacement from the current PC to the constant table
1124     // base fits into simm13 we set the constant table base to the
1125     // current PC.
1126     if (Assembler::is_simm13(table_base_offset)) {
1127       constant_table.set_table_base_offset(table_base_offset);
1128       disp = 0;
1129     } else {
1130       // Otherwise we set the constant table base offset to the
1131       // maximum negative displacement of load instructions to keep
1132       // the disp as small as possible:
1133       //
1134       // |<------------- consts_size ----------->|<- insts_offset ->|
1135       // |<--------- min_simm13 --------->|<-------- disp --------->|
1136       //                                  \ table base
1137       table_base_offset = Assembler::min_simm13();
1138       constant_table.set_table_base_offset(table_base_offset);
1139       disp = (consts_size + insts_offset) + table_base_offset;
1140     }
1141 
1142     __ rdpc(r);
1143 
1144     if (disp != 0) {
1145       assert(r != O7, "need temporary");
1146       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1147     }
1148   }
1149   else {
1150     // Materialize the constant table base.
1151     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1152     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1153     AddressLiteral base(baseaddr, rspec);
1154     __ set(base, r);
1155   }
1156 }
1157 
1158 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1159   if (UseRDPCForConstantTableBase) {
1160     // This is really the worst case but generally it's only 1 instruction.
1161     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1162   } else {
1163     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1164   }
1165 }
1166 
1167 #ifndef PRODUCT
1168 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1169   char reg[128];
1170   ra_->dump_register(this, reg);
1171   if (UseRDPCForConstantTableBase) {
1172     st->print("RDPC   %s\t! constant table base", reg);
1173   } else {
1174     st->print("SET    &constanttable,%s\t! constant table base", reg);
1175   }
1176 }
1177 #endif
1178 
1179 
1180 //=============================================================================
1181 
1182 #ifndef PRODUCT
1183 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1184   Compile* C = ra_->C;
1185 
1186   for (int i = 0; i < OptoPrologueNops; i++) {
1187     st->print_cr("NOP"); st->print("\t");
1188   }
1189 
1190   if( VerifyThread ) {
1191     st->print_cr("Verify_Thread"); st->print("\t");
1192   }
1193 
1194   size_t framesize = C->frame_size_in_bytes();
1195   int bangsize = C->bang_size_in_bytes();
1196 
1197   // Calls to C2R adapters often do not accept exceptional returns.
1198   // We require that their callers must bang for them.  But be careful, because
1199   // some VM calls (such as call site linkage) can use several kilobytes of
1200   // stack.  But the stack safety zone should account for that.
1201   // See bugs 4446381, 4468289, 4497237.
1202   if (C->need_stack_bang(bangsize)) {
1203     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1204   }
1205 
1206   if (Assembler::is_simm13(-framesize)) {
1207     st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1208   } else {
1209     st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1210     st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1211     st->print   ("SAVE   R_SP,R_G3,R_SP");
1212   }
1213 
1214 }
1215 #endif
1216 
1217 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1218   Compile* C = ra_->C;
1219   MacroAssembler _masm(&cbuf);
1220 
1221   for (int i = 0; i < OptoPrologueNops; i++) {
1222     __ nop();
1223   }
1224 
1225   __ verify_thread();
1226 
1227   size_t framesize = C->frame_size_in_bytes();
1228   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1229   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1230   int bangsize = C->bang_size_in_bytes();
1231 
1232   // Calls to C2R adapters often do not accept exceptional returns.
1233   // We require that their callers must bang for them.  But be careful, because
1234   // some VM calls (such as call site linkage) can use several kilobytes of
1235   // stack.  But the stack safety zone should account for that.
1236   // See bugs 4446381, 4468289, 4497237.
1237   if (C->need_stack_bang(bangsize)) {
1238     __ generate_stack_overflow_check(bangsize);
1239   }
1240 
1241   if (Assembler::is_simm13(-framesize)) {
1242     __ save(SP, -framesize, SP);
1243   } else {
1244     __ sethi(-framesize & ~0x3ff, G3);
1245     __ add(G3, -framesize & 0x3ff, G3);
1246     __ save(SP, G3, SP);
1247   }
1248   C->set_frame_complete( __ offset() );
1249 
1250   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1251     // NOTE: We set the table base offset here because users might be
1252     // emitted before MachConstantBaseNode.
1253     Compile::ConstantTable& constant_table = C->constant_table();
1254     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1255   }
1256 }
1257 
1258 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1259   return MachNode::size(ra_);
1260 }
1261 
1262 int MachPrologNode::reloc() const {
1263   return 10; // a large enough number
1264 }
1265 
1266 //=============================================================================
1267 #ifndef PRODUCT
1268 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1269   Compile* C = ra_->C;
1270 
1271   if(do_polling() && ra_->C->is_method_compilation()) {
1272     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1273 #ifdef _LP64
1274     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1275 #else
1276     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1277 #endif
1278   }
1279 
1280   if(do_polling()) {
1281     if (UseCBCond && !ra_->C->is_method_compilation()) {
1282       st->print("NOP\n\t");
1283     }
1284     st->print("RET\n\t");
1285   }
1286 
1287   st->print("RESTORE");
1288 }
1289 #endif
1290 
1291 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1292   MacroAssembler _masm(&cbuf);
1293   Compile* C = ra_->C;
1294 
1295   __ verify_thread();
1296 
1297   // If this does safepoint polling, then do it here
1298   if(do_polling() && ra_->C->is_method_compilation()) {
1299     AddressLiteral polling_page(os::get_polling_page());
1300     __ sethi(polling_page, L0);
1301     __ relocate(relocInfo::poll_return_type);
1302     __ ld_ptr(L0, 0, G0);
1303   }
1304 
1305   // If this is a return, then stuff the restore in the delay slot
1306   if(do_polling()) {
1307     if (UseCBCond && !ra_->C->is_method_compilation()) {
1308       // Insert extra padding for the case when the epilogue is preceded by
1309       // a cbcond jump, which can't be followed by a CTI instruction
1310       __ nop();
1311     }
1312     __ ret();
1313     __ delayed()->restore();
1314   } else {
1315     __ restore();
1316   }
1317 }
1318 
1319 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1320   return MachNode::size(ra_);
1321 }
1322 
1323 int MachEpilogNode::reloc() const {
1324   return 16; // a large enough number
1325 }
1326 
1327 const Pipeline * MachEpilogNode::pipeline() const {
1328   return MachNode::pipeline_class();
1329 }
1330 
1331 int MachEpilogNode::safepoint_offset() const {
1332   assert( do_polling(), "no return for this epilog node");
1333   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1334 }
1335 
1336 //=============================================================================
1337 
1338 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1339 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1340 static enum RC rc_class( OptoReg::Name reg ) {
1341   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1342   if (OptoReg::is_stack(reg)) return rc_stack;
1343   VMReg r = OptoReg::as_VMReg(reg);
1344   if (r->is_Register()) return rc_int;
1345   assert(r->is_FloatRegister(), "must be");
1346   return rc_float;
1347 }
1348 
1349 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1350   if (cbuf) {
1351     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1352   }
1353 #ifndef PRODUCT
1354   else if (!do_size) {
1355     if (size != 0) st->print("\n\t");
1356     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1357     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1358   }
1359 #endif
1360   return size+4;
1361 }
1362 
1363 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1364   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1365 #ifndef PRODUCT
1366   else if( !do_size ) {
1367     if( size != 0 ) st->print("\n\t");
1368     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1369   }
1370 #endif
1371   return size+4;
1372 }
1373 
1374 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1375                                         PhaseRegAlloc *ra_,
1376                                         bool do_size,
1377                                         outputStream* st ) const {
1378   // Get registers to move
1379   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1380   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1381   OptoReg::Name dst_second = ra_->get_reg_second(this );
1382   OptoReg::Name dst_first = ra_->get_reg_first(this );
1383 
1384   enum RC src_second_rc = rc_class(src_second);
1385   enum RC src_first_rc = rc_class(src_first);
1386   enum RC dst_second_rc = rc_class(dst_second);
1387   enum RC dst_first_rc = rc_class(dst_first);
1388 
1389   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1390 
1391   // Generate spill code!
1392   int size = 0;
1393 
1394   if( src_first == dst_first && src_second == dst_second )
1395     return size;            // Self copy, no move
1396 
1397   // --------------------------------------
1398   // Check for mem-mem move.  Load into unused float registers and fall into
1399   // the float-store case.
1400   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1401     int offset = ra_->reg2offset(src_first);
1402     // Further check for aligned-adjacent pair, so we can use a double load
1403     if( (src_first&1)==0 && src_first+1 == src_second ) {
1404       src_second    = OptoReg::Name(R_F31_num);
1405       src_second_rc = rc_float;
1406       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1407     } else {
1408       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1409     }
1410     src_first    = OptoReg::Name(R_F30_num);
1411     src_first_rc = rc_float;
1412   }
1413 
1414   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1415     int offset = ra_->reg2offset(src_second);
1416     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1417     src_second    = OptoReg::Name(R_F31_num);
1418     src_second_rc = rc_float;
1419   }
1420 
1421   // --------------------------------------
1422   // Check for float->int copy; requires a trip through memory
1423   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1424     int offset = frame::register_save_words*wordSize;
1425     if (cbuf) {
1426       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1427       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1428       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1429       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1430     }
1431 #ifndef PRODUCT
1432     else if (!do_size) {
1433       if (size != 0) st->print("\n\t");
1434       st->print(  "SUB    R_SP,16,R_SP\n");
1435       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1436       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1437       st->print("\tADD    R_SP,16,R_SP\n");
1438     }
1439 #endif
1440     size += 16;
1441   }
1442 
1443   // Check for float->int copy on T4
1444   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1445     // Further check for aligned-adjacent pair, so we can use a double move
1446     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1447       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1448     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1449   }
1450   // Check for int->float copy on T4
1451   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1452     // Further check for aligned-adjacent pair, so we can use a double move
1453     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1454       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1455     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1456   }
1457 
1458   // --------------------------------------
1459   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1460   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1461   // hardware does the flop for me.  Doubles are always aligned, so no problem
1462   // there.  Misaligned sources only come from native-long-returns (handled
1463   // special below).
1464 #ifndef _LP64
1465   if( src_first_rc == rc_int &&     // source is already big-endian
1466       src_second_rc != rc_bad &&    // 64-bit move
1467       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1468     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1469     // Do the big-endian flop.
1470     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1471     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1472   }
1473 #endif
1474 
1475   // --------------------------------------
1476   // Check for integer reg-reg copy
1477   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1478 #ifndef _LP64
1479     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1480       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1481       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1482       //       operand contains the least significant word of the 64-bit value and vice versa.
1483       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1484       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1485       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1486       if( cbuf ) {
1487         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1488         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1489         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1490 #ifndef PRODUCT
1491       } else if( !do_size ) {
1492         if( size != 0 ) st->print("\n\t");
1493         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1494         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1495         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1496 #endif
1497       }
1498       return size+12;
1499     }
1500     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1501       // returning a long value in I0/I1
1502       // a SpillCopy must be able to target a return instruction's reg_class
1503       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1504       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1505       //       operand contains the least significant word of the 64-bit value and vice versa.
1506       OptoReg::Name tdest = dst_first;
1507 
1508       if (src_first == dst_first) {
1509         tdest = OptoReg::Name(R_O7_num);
1510         size += 4;
1511       }
1512 
1513       if( cbuf ) {
1514         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1515         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1516         // ShrL_reg_imm6
1517         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1518         // ShrR_reg_imm6  src, 0, dst
1519         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1520         if (tdest != dst_first) {
1521           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1522         }
1523       }
1524 #ifndef PRODUCT
1525       else if( !do_size ) {
1526         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1527         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1528         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1529         if (tdest != dst_first) {
1530           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1531         }
1532       }
1533 #endif // PRODUCT
1534       return size+8;
1535     }
1536 #endif // !_LP64
1537     // Else normal reg-reg copy
1538     assert( src_second != dst_first, "smashed second before evacuating it" );
1539     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1540     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1541     // This moves an aligned adjacent pair.
1542     // See if we are done.
1543     if( src_first+1 == src_second && dst_first+1 == dst_second )
1544       return size;
1545   }
1546 
1547   // Check for integer store
1548   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1549     int offset = ra_->reg2offset(dst_first);
1550     // Further check for aligned-adjacent pair, so we can use a double store
1551     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1552       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1553     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1554   }
1555 
1556   // Check for integer load
1557   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1558     int offset = ra_->reg2offset(src_first);
1559     // Further check for aligned-adjacent pair, so we can use a double load
1560     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1561       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1562     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1563   }
1564 
1565   // Check for float reg-reg copy
1566   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1567     // Further check for aligned-adjacent pair, so we can use a double move
1568     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1569       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1570     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1571   }
1572 
1573   // Check for float store
1574   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1575     int offset = ra_->reg2offset(dst_first);
1576     // Further check for aligned-adjacent pair, so we can use a double store
1577     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1578       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1579     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1580   }
1581 
1582   // Check for float load
1583   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1584     int offset = ra_->reg2offset(src_first);
1585     // Further check for aligned-adjacent pair, so we can use a double load
1586     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1587       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1588     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1589   }
1590 
1591   // --------------------------------------------------------------------
1592   // Check for hi bits still needing moving.  Only happens for misaligned
1593   // arguments to native calls.
1594   if( src_second == dst_second )
1595     return size;               // Self copy; no move
1596   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1597 
1598 #ifndef _LP64
1599   // In the LP64 build, all registers can be moved as aligned/adjacent
1600   // pairs, so there's never any need to move the high bits separately.
1601   // The 32-bit builds have to deal with the 32-bit ABI which can force
1602   // all sorts of silly alignment problems.
1603 
1604   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1605   // 32-bits of a 64-bit register, but are needed in low bits of another
1606   // register (else it's a hi-bits-to-hi-bits copy which should have
1607   // happened already as part of a 64-bit move)
1608   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1609     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1610     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1611     // Shift src_second down to dst_second's low bits.
1612     if( cbuf ) {
1613       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1614 #ifndef PRODUCT
1615     } else if( !do_size ) {
1616       if( size != 0 ) st->print("\n\t");
1617       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1618 #endif
1619     }
1620     return size+4;
1621   }
1622 
1623   // Check for high word integer store.  Must down-shift the hi bits
1624   // into a temp register, then fall into the case of storing int bits.
1625   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1626     // Shift src_second down to dst_second's low bits.
1627     if( cbuf ) {
1628       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1629 #ifndef PRODUCT
1630     } else if( !do_size ) {
1631       if( size != 0 ) st->print("\n\t");
1632       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1633 #endif
1634     }
1635     size+=4;
1636     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1637   }
1638 
1639   // Check for high word integer load
1640   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1641     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1642 
1643   // Check for high word integer store
1644   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1645     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1646 
1647   // Check for high word float store
1648   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1649     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1650 
1651 #endif // !_LP64
1652 
1653   Unimplemented();
1654 }
1655 
1656 #ifndef PRODUCT
1657 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1658   implementation( NULL, ra_, false, st );
1659 }
1660 #endif
1661 
1662 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1663   implementation( &cbuf, ra_, false, NULL );
1664 }
1665 
1666 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1667   return implementation( NULL, ra_, true, NULL );
1668 }
1669 
1670 //=============================================================================
1671 #ifndef PRODUCT
1672 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1673   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1674 }
1675 #endif
1676 
1677 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1678   MacroAssembler _masm(&cbuf);
1679   for(int i = 0; i < _count; i += 1) {
1680     __ nop();
1681   }
1682 }
1683 
1684 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1685   return 4 * _count;
1686 }
1687 
1688 
1689 //=============================================================================
1690 #ifndef PRODUCT
1691 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1692   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1693   int reg = ra_->get_reg_first(this);
1694   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1695 }
1696 #endif
1697 
1698 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1699   MacroAssembler _masm(&cbuf);
1700   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1701   int reg = ra_->get_encode(this);
1702 
1703   if (Assembler::is_simm13(offset)) {
1704      __ add(SP, offset, reg_to_register_object(reg));
1705   } else {
1706      __ set(offset, O7);
1707      __ add(SP, O7, reg_to_register_object(reg));
1708   }
1709 }
1710 
1711 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1712   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1713   assert(ra_ == ra_->C->regalloc(), "sanity");
1714   return ra_->C->scratch_emit_size(this);
1715 }
1716 
1717 //=============================================================================
1718 #ifndef PRODUCT
1719 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1720   st->print_cr("\nUEP:");
1721 #ifdef    _LP64
1722   if (UseCompressedClassPointers) {
1723     assert(Universe::heap() != NULL, "java heap should be initialized");
1724     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1725     if (Universe::narrow_klass_base() != 0) {
1726       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1727       if (Universe::narrow_klass_shift() != 0) {
1728         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1729       }
1730       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1731       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1732     } else {
1733       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1734     }
1735   } else {
1736     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1737   }
1738   st->print_cr("\tCMP    R_G5,R_G3" );
1739   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1740 #else  // _LP64
1741   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1742   st->print_cr("\tCMP    R_G5,R_G3" );
1743   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1744 #endif // _LP64
1745 }
1746 #endif
1747 
1748 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1749   MacroAssembler _masm(&cbuf);
1750   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1751   Register temp_reg   = G3;
1752   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1753 
1754   // Load klass from receiver
1755   __ load_klass(O0, temp_reg);
1756   // Compare against expected klass
1757   __ cmp(temp_reg, G5_ic_reg);
1758   // Branch to miss code, checks xcc or icc depending
1759   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1760 }
1761 
1762 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1763   return MachNode::size(ra_);
1764 }
1765 
1766 
1767 //=============================================================================
1768 
1769 
1770 // Emit exception handler code.
1771 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1772   Register temp_reg = G3;
1773   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1774   MacroAssembler _masm(&cbuf);
1775 
1776   address base =
1777   __ start_a_stub(size_exception_handler());
1778   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1779 
1780   int offset = __ offset();
1781 
1782   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1783   __ delayed()->nop();
1784 
1785   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1786 
1787   __ end_a_stub();
1788 
1789   return offset;
1790 }
1791 
1792 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1793   // Can't use any of the current frame's registers as we may have deopted
1794   // at a poll and everything (including G3) can be live.
1795   Register temp_reg = L0;
1796   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1797   MacroAssembler _masm(&cbuf);
1798 
1799   address base =
1800   __ start_a_stub(size_deopt_handler());
1801   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1802 
1803   int offset = __ offset();
1804   __ save_frame(0);
1805   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1806   __ delayed()->restore();
1807 
1808   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1809 
1810   __ end_a_stub();
1811   return offset;
1812 
1813 }
1814 
1815 // Given a register encoding, produce a Integer Register object
1816 static Register reg_to_register_object(int register_encoding) {
1817   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1818   return as_Register(register_encoding);
1819 }
1820 
1821 // Given a register encoding, produce a single-precision Float Register object
1822 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1823   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1824   return as_SingleFloatRegister(register_encoding);
1825 }
1826 
1827 // Given a register encoding, produce a double-precision Float Register object
1828 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1829   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1830   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1831   return as_DoubleFloatRegister(register_encoding);
1832 }
1833 
1834 const bool Matcher::match_rule_supported(int opcode) {
1835   if (!has_match_rule(opcode))
1836     return false;
1837 
1838   switch (opcode) {
1839   case Op_CountLeadingZerosI:
1840   case Op_CountLeadingZerosL:
1841   case Op_CountTrailingZerosI:
1842   case Op_CountTrailingZerosL:
1843   case Op_PopCountI:
1844   case Op_PopCountL:
1845     if (!UsePopCountInstruction)
1846       return false;
1847   case Op_CompareAndSwapL:
1848 #ifdef _LP64
1849   case Op_CompareAndSwapP:
1850 #endif
1851     if (!VM_Version::supports_cx8())
1852       return false;
1853     break;
1854   }
1855 
1856   return true;  // Per default match rules are supported.
1857 }
1858 
1859 int Matcher::regnum_to_fpu_offset(int regnum) {
1860   return regnum - 32; // The FP registers are in the second chunk
1861 }
1862 
1863 #ifdef ASSERT
1864 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1865 #endif
1866 
1867 // Vector width in bytes
1868 const int Matcher::vector_width_in_bytes(BasicType bt) {
1869   assert(MaxVectorSize == 8, "");
1870   return 8;
1871 }
1872 
1873 // Vector ideal reg
1874 const int Matcher::vector_ideal_reg(int size) {
1875   assert(MaxVectorSize == 8, "");
1876   return Op_RegD;
1877 }
1878 
1879 const int Matcher::vector_shift_count_ideal_reg(int size) {
1880   fatal("vector shift is not supported");
1881   return Node::NotAMachineReg;
1882 }
1883 
1884 // Limits on vector size (number of elements) loaded into vector.
1885 const int Matcher::max_vector_size(const BasicType bt) {
1886   assert(is_java_primitive(bt), "only primitive type vectors");
1887   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1888 }
1889 
1890 const int Matcher::min_vector_size(const BasicType bt) {
1891   return max_vector_size(bt); // Same as max.
1892 }
1893 
1894 // SPARC doesn't support misaligned vectors store/load.
1895 const bool Matcher::misaligned_vectors_ok() {
1896   return false;
1897 }
1898 
1899 // Current (2013) SPARC platforms need to read original key
1900 // to construct decryption expanded key 
1901 const bool Matcher::pass_original_key_for_aes() {
1902   return true;
1903 }
1904 
1905 // USII supports fxtof through the whole range of number, USIII doesn't
1906 const bool Matcher::convL2FSupported(void) {
1907   return VM_Version::has_fast_fxtof();
1908 }
1909 
1910 // Is this branch offset short enough that a short branch can be used?
1911 //
1912 // NOTE: If the platform does not provide any short branch variants, then
1913 //       this method should return false for offset 0.
1914 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1915   // The passed offset is relative to address of the branch.
1916   // Don't need to adjust the offset.
1917   return UseCBCond && Assembler::is_simm12(offset);
1918 }
1919 
1920 const bool Matcher::isSimpleConstant64(jlong value) {
1921   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1922   // Depends on optimizations in MacroAssembler::setx.
1923   int hi = (int)(value >> 32);
1924   int lo = (int)(value & ~0);
1925   return (hi == 0) || (hi == -1) || (lo == 0);
1926 }
1927 
1928 // No scaling for the parameter the ClearArray node.
1929 const bool Matcher::init_array_count_is_in_bytes = true;
1930 
1931 // Threshold size for cleararray.
1932 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1933 
1934 // No additional cost for CMOVL.
1935 const int Matcher::long_cmove_cost() { return 0; }
1936 
1937 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1938 const int Matcher::float_cmove_cost() {
1939   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1940 }
1941 
1942 // Does the CPU require late expand (see block.cpp for description of late expand)?
1943 const bool Matcher::require_postalloc_expand = false;
1944 
1945 // Should the Matcher clone shifts on addressing modes, expecting them to
1946 // be subsumed into complex addressing expressions or compute them into
1947 // registers?  True for Intel but false for most RISCs
1948 const bool Matcher::clone_shift_expressions = false;
1949 
1950 // Do we need to mask the count passed to shift instructions or does
1951 // the cpu only look at the lower 5/6 bits anyway?
1952 const bool Matcher::need_masked_shift_count = false;
1953 
1954 bool Matcher::narrow_oop_use_complex_address() {
1955   NOT_LP64(ShouldNotCallThis());
1956   assert(UseCompressedOops, "only for compressed oops code");
1957   return false;
1958 }
1959 
1960 bool Matcher::narrow_klass_use_complex_address() {
1961   NOT_LP64(ShouldNotCallThis());
1962   assert(UseCompressedClassPointers, "only for compressed klass code");
1963   return false;
1964 }
1965 
1966 // Is it better to copy float constants, or load them directly from memory?
1967 // Intel can load a float constant from a direct address, requiring no
1968 // extra registers.  Most RISCs will have to materialize an address into a
1969 // register first, so they would do better to copy the constant from stack.
1970 const bool Matcher::rematerialize_float_constants = false;
1971 
1972 // If CPU can load and store mis-aligned doubles directly then no fixup is
1973 // needed.  Else we split the double into 2 integer pieces and move it
1974 // piece-by-piece.  Only happens when passing doubles into C code as the
1975 // Java calling convention forces doubles to be aligned.
1976 #ifdef _LP64
1977 const bool Matcher::misaligned_doubles_ok = true;
1978 #else
1979 const bool Matcher::misaligned_doubles_ok = false;
1980 #endif
1981 
1982 // No-op on SPARC.
1983 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1984 }
1985 
1986 // Advertise here if the CPU requires explicit rounding operations
1987 // to implement the UseStrictFP mode.
1988 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1989 
1990 // Are floats converted to double when stored to stack during deoptimization?
1991 // Sparc does not handle callee-save floats.
1992 bool Matcher::float_in_double() { return false; }
1993 
1994 // Do ints take an entire long register or just half?
1995 // Note that we if-def off of _LP64.
1996 // The relevant question is how the int is callee-saved.  In _LP64
1997 // the whole long is written but de-opt'ing will have to extract
1998 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1999 #ifdef _LP64
2000 const bool Matcher::int_in_long = true;
2001 #else
2002 const bool Matcher::int_in_long = false;
2003 #endif
2004 
2005 // Return whether or not this register is ever used as an argument.  This
2006 // function is used on startup to build the trampoline stubs in generateOptoStub.
2007 // Registers not mentioned will be killed by the VM call in the trampoline, and
2008 // arguments in those registers not be available to the callee.
2009 bool Matcher::can_be_java_arg( int reg ) {
2010   // Standard sparc 6 args in registers
2011   if( reg == R_I0_num ||
2012       reg == R_I1_num ||
2013       reg == R_I2_num ||
2014       reg == R_I3_num ||
2015       reg == R_I4_num ||
2016       reg == R_I5_num ) return true;
2017 #ifdef _LP64
2018   // 64-bit builds can pass 64-bit pointers and longs in
2019   // the high I registers
2020   if( reg == R_I0H_num ||
2021       reg == R_I1H_num ||
2022       reg == R_I2H_num ||
2023       reg == R_I3H_num ||
2024       reg == R_I4H_num ||
2025       reg == R_I5H_num ) return true;
2026 
2027   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2028     return true;
2029   }
2030 
2031 #else
2032   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2033   // Longs cannot be passed in O regs, because O regs become I regs
2034   // after a 'save' and I regs get their high bits chopped off on
2035   // interrupt.
2036   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2037   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2038 #endif
2039   // A few float args in registers
2040   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2041 
2042   return false;
2043 }
2044 
2045 bool Matcher::is_spillable_arg( int reg ) {
2046   return can_be_java_arg(reg);
2047 }
2048 
2049 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2050   // Use hardware SDIVX instruction when it is
2051   // faster than a code which use multiply.
2052   return VM_Version::has_fast_idiv();
2053 }
2054 
2055 // Register for DIVI projection of divmodI
2056 RegMask Matcher::divI_proj_mask() {
2057   ShouldNotReachHere();
2058   return RegMask();
2059 }
2060 
2061 // Register for MODI projection of divmodI
2062 RegMask Matcher::modI_proj_mask() {
2063   ShouldNotReachHere();
2064   return RegMask();
2065 }
2066 
2067 // Register for DIVL projection of divmodL
2068 RegMask Matcher::divL_proj_mask() {
2069   ShouldNotReachHere();
2070   return RegMask();
2071 }
2072 
2073 // Register for MODL projection of divmodL
2074 RegMask Matcher::modL_proj_mask() {
2075   ShouldNotReachHere();
2076   return RegMask();
2077 }
2078 
2079 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2080   return L7_REGP_mask();
2081 }
2082 
2083 %}
2084 
2085 
2086 // The intptr_t operand types, defined by textual substitution.
2087 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2088 #ifdef _LP64
2089 #define immX      immL
2090 #define immX13    immL13
2091 #define immX13m7  immL13m7
2092 #define iRegX     iRegL
2093 #define g1RegX    g1RegL
2094 #else
2095 #define immX      immI
2096 #define immX13    immI13
2097 #define immX13m7  immI13m7
2098 #define iRegX     iRegI
2099 #define g1RegX    g1RegI
2100 #endif
2101 
2102 //----------ENCODING BLOCK-----------------------------------------------------
2103 // This block specifies the encoding classes used by the compiler to output
2104 // byte streams.  Encoding classes are parameterized macros used by
2105 // Machine Instruction Nodes in order to generate the bit encoding of the
2106 // instruction.  Operands specify their base encoding interface with the
2107 // interface keyword.  There are currently supported four interfaces,
2108 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2109 // operand to generate a function which returns its register number when
2110 // queried.   CONST_INTER causes an operand to generate a function which
2111 // returns the value of the constant when queried.  MEMORY_INTER causes an
2112 // operand to generate four functions which return the Base Register, the
2113 // Index Register, the Scale Value, and the Offset Value of the operand when
2114 // queried.  COND_INTER causes an operand to generate six functions which
2115 // return the encoding code (ie - encoding bits for the instruction)
2116 // associated with each basic boolean condition for a conditional instruction.
2117 //
2118 // Instructions specify two basic values for encoding.  Again, a function
2119 // is available to check if the constant displacement is an oop. They use the
2120 // ins_encode keyword to specify their encoding classes (which must be
2121 // a sequence of enc_class names, and their parameters, specified in
2122 // the encoding block), and they use the
2123 // opcode keyword to specify, in order, their primary, secondary, and
2124 // tertiary opcode.  Only the opcode sections which a particular instruction
2125 // needs for encoding need to be specified.
2126 encode %{
2127   enc_class enc_untested %{
2128 #ifdef ASSERT
2129     MacroAssembler _masm(&cbuf);
2130     __ untested("encoding");
2131 #endif
2132   %}
2133 
2134   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2135     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2136                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2137   %}
2138 
2139   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2140     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2141                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2142   %}
2143 
2144   enc_class form3_mem_prefetch_read( memory mem ) %{
2145     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2146                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2147   %}
2148 
2149   enc_class form3_mem_prefetch_write( memory mem ) %{
2150     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2151                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2152   %}
2153 
2154   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2155     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2156     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2157     guarantee($mem$$index == R_G0_enc, "double index?");
2158     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2159     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2160     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2161     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2162   %}
2163 
2164   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2165     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2166     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2167     guarantee($mem$$index == R_G0_enc, "double index?");
2168     // Load long with 2 instructions
2169     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2170     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2171   %}
2172 
2173   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2174   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2175     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2176     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2177   %}
2178 
2179   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2180     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2181     if( $rs2$$reg != $rd$$reg )
2182       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2183   %}
2184 
2185   // Target lo half of long
2186   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2187     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2188     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2189       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2190   %}
2191 
2192   // Source lo half of long
2193   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2194     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2195     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2196       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2197   %}
2198 
2199   // Target hi half of long
2200   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2201     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2202   %}
2203 
2204   // Source lo half of long, and leave it sign extended.
2205   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2206     // Sign extend low half
2207     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2208   %}
2209 
2210   // Source hi half of long, and leave it sign extended.
2211   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2212     // Shift high half to low half
2213     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2214   %}
2215 
2216   // Source hi half of long
2217   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2218     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2219     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2220       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2221   %}
2222 
2223   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2224     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2225   %}
2226 
2227   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2228     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2229     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2230   %}
2231 
2232   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2233     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2234     // clear if nothing else is happening
2235     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2236     // blt,a,pn done
2237     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2238     // mov dst,-1 in delay slot
2239     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2240   %}
2241 
2242   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2243     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2244   %}
2245 
2246   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2247     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2248   %}
2249 
2250   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2251     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2252   %}
2253 
2254   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2255     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2256   %}
2257 
2258   enc_class move_return_pc_to_o1() %{
2259     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2260   %}
2261 
2262 #ifdef _LP64
2263   /* %%% merge with enc_to_bool */
2264   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2265     MacroAssembler _masm(&cbuf);
2266 
2267     Register   src_reg = reg_to_register_object($src$$reg);
2268     Register   dst_reg = reg_to_register_object($dst$$reg);
2269     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2270   %}
2271 #endif
2272 
2273   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2274     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2275     MacroAssembler _masm(&cbuf);
2276 
2277     Register   p_reg = reg_to_register_object($p$$reg);
2278     Register   q_reg = reg_to_register_object($q$$reg);
2279     Register   y_reg = reg_to_register_object($y$$reg);
2280     Register tmp_reg = reg_to_register_object($tmp$$reg);
2281 
2282     __ subcc( p_reg, q_reg,   p_reg );
2283     __ add  ( p_reg, y_reg, tmp_reg );
2284     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2285   %}
2286 
2287   enc_class form_d2i_helper(regD src, regF dst) %{
2288     // fcmp %fcc0,$src,$src
2289     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2290     // branch %fcc0 not-nan, predict taken
2291     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2292     // fdtoi $src,$dst
2293     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2294     // fitos $dst,$dst (if nan)
2295     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2296     // clear $dst (if nan)
2297     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2298     // carry on here...
2299   %}
2300 
2301   enc_class form_d2l_helper(regD src, regD dst) %{
2302     // fcmp %fcc0,$src,$src  check for NAN
2303     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2304     // branch %fcc0 not-nan, predict taken
2305     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2306     // fdtox $src,$dst   convert in delay slot
2307     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2308     // fxtod $dst,$dst  (if nan)
2309     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2310     // clear $dst (if nan)
2311     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2312     // carry on here...
2313   %}
2314 
2315   enc_class form_f2i_helper(regF src, regF dst) %{
2316     // fcmps %fcc0,$src,$src
2317     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2318     // branch %fcc0 not-nan, predict taken
2319     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2320     // fstoi $src,$dst
2321     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2322     // fitos $dst,$dst (if nan)
2323     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2324     // clear $dst (if nan)
2325     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2326     // carry on here...
2327   %}
2328 
2329   enc_class form_f2l_helper(regF src, regD dst) %{
2330     // fcmps %fcc0,$src,$src
2331     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2332     // branch %fcc0 not-nan, predict taken
2333     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2334     // fstox $src,$dst
2335     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2336     // fxtod $dst,$dst (if nan)
2337     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2338     // clear $dst (if nan)
2339     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2340     // carry on here...
2341   %}
2342 
2343   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2344   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2345   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2346   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2347 
2348   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2349 
2350   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2351   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2352 
2353   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2354     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2355   %}
2356 
2357   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2358     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2359   %}
2360 
2361   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2362     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2363   %}
2364 
2365   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2366     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2367   %}
2368 
2369   enc_class form3_convI2F(regF rs2, regF rd) %{
2370     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2371   %}
2372 
2373   // Encloding class for traceable jumps
2374   enc_class form_jmpl(g3RegP dest) %{
2375     emit_jmpl(cbuf, $dest$$reg);
2376   %}
2377 
2378   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2379     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2380   %}
2381 
2382   enc_class form2_nop() %{
2383     emit_nop(cbuf);
2384   %}
2385 
2386   enc_class form2_illtrap() %{
2387     emit_illtrap(cbuf);
2388   %}
2389 
2390 
2391   // Compare longs and convert into -1, 0, 1.
2392   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2393     // CMP $src1,$src2
2394     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2395     // blt,a,pn done
2396     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2397     // mov dst,-1 in delay slot
2398     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2399     // bgt,a,pn done
2400     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2401     // mov dst,1 in delay slot
2402     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2403     // CLR    $dst
2404     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2405   %}
2406 
2407   enc_class enc_PartialSubtypeCheck() %{
2408     MacroAssembler _masm(&cbuf);
2409     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2410     __ delayed()->nop();
2411   %}
2412 
2413   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2414     MacroAssembler _masm(&cbuf);
2415     Label* L = $labl$$label;
2416     Assembler::Predict predict_taken =
2417       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2418 
2419     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2420     __ delayed()->nop();
2421   %}
2422 
2423   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2424     MacroAssembler _masm(&cbuf);
2425     Label* L = $labl$$label;
2426     Assembler::Predict predict_taken =
2427       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2428 
2429     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2430     __ delayed()->nop();
2431   %}
2432 
2433   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2434     int op = (Assembler::arith_op << 30) |
2435              ($dst$$reg << 25) |
2436              (Assembler::movcc_op3 << 19) |
2437              (1 << 18) |                    // cc2 bit for 'icc'
2438              ($cmp$$cmpcode << 14) |
2439              (0 << 13) |                    // select register move
2440              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2441              ($src$$reg << 0);
2442     cbuf.insts()->emit_int32(op);
2443   %}
2444 
2445   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2446     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2447     int op = (Assembler::arith_op << 30) |
2448              ($dst$$reg << 25) |
2449              (Assembler::movcc_op3 << 19) |
2450              (1 << 18) |                    // cc2 bit for 'icc'
2451              ($cmp$$cmpcode << 14) |
2452              (1 << 13) |                    // select immediate move
2453              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2454              (simm11 << 0);
2455     cbuf.insts()->emit_int32(op);
2456   %}
2457 
2458   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2459     int op = (Assembler::arith_op << 30) |
2460              ($dst$$reg << 25) |
2461              (Assembler::movcc_op3 << 19) |
2462              (0 << 18) |                    // cc2 bit for 'fccX'
2463              ($cmp$$cmpcode << 14) |
2464              (0 << 13) |                    // select register move
2465              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2466              ($src$$reg << 0);
2467     cbuf.insts()->emit_int32(op);
2468   %}
2469 
2470   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2471     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2472     int op = (Assembler::arith_op << 30) |
2473              ($dst$$reg << 25) |
2474              (Assembler::movcc_op3 << 19) |
2475              (0 << 18) |                    // cc2 bit for 'fccX'
2476              ($cmp$$cmpcode << 14) |
2477              (1 << 13) |                    // select immediate move
2478              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2479              (simm11 << 0);
2480     cbuf.insts()->emit_int32(op);
2481   %}
2482 
2483   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2484     int op = (Assembler::arith_op << 30) |
2485              ($dst$$reg << 25) |
2486              (Assembler::fpop2_op3 << 19) |
2487              (0 << 18) |
2488              ($cmp$$cmpcode << 14) |
2489              (1 << 13) |                    // select register move
2490              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2491              ($primary << 5) |              // select single, double or quad
2492              ($src$$reg << 0);
2493     cbuf.insts()->emit_int32(op);
2494   %}
2495 
2496   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2497     int op = (Assembler::arith_op << 30) |
2498              ($dst$$reg << 25) |
2499              (Assembler::fpop2_op3 << 19) |
2500              (0 << 18) |
2501              ($cmp$$cmpcode << 14) |
2502              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2503              ($primary << 5) |              // select single, double or quad
2504              ($src$$reg << 0);
2505     cbuf.insts()->emit_int32(op);
2506   %}
2507 
2508   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2509   // the condition comes from opcode-field instead of an argument.
2510   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2511     int op = (Assembler::arith_op << 30) |
2512              ($dst$$reg << 25) |
2513              (Assembler::movcc_op3 << 19) |
2514              (1 << 18) |                    // cc2 bit for 'icc'
2515              ($primary << 14) |
2516              (0 << 13) |                    // select register move
2517              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2518              ($src$$reg << 0);
2519     cbuf.insts()->emit_int32(op);
2520   %}
2521 
2522   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2523     int op = (Assembler::arith_op << 30) |
2524              ($dst$$reg << 25) |
2525              (Assembler::movcc_op3 << 19) |
2526              (6 << 16) |                    // cc2 bit for 'xcc'
2527              ($primary << 14) |
2528              (0 << 13) |                    // select register move
2529              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2530              ($src$$reg << 0);
2531     cbuf.insts()->emit_int32(op);
2532   %}
2533 
2534   enc_class Set13( immI13 src, iRegI rd ) %{
2535     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2536   %}
2537 
2538   enc_class SetHi22( immI src, iRegI rd ) %{
2539     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2540   %}
2541 
2542   enc_class Set32( immI src, iRegI rd ) %{
2543     MacroAssembler _masm(&cbuf);
2544     __ set($src$$constant, reg_to_register_object($rd$$reg));
2545   %}
2546 
2547   enc_class call_epilog %{
2548     if( VerifyStackAtCalls ) {
2549       MacroAssembler _masm(&cbuf);
2550       int framesize = ra_->C->frame_size_in_bytes();
2551       Register temp_reg = G3;
2552       __ add(SP, framesize, temp_reg);
2553       __ cmp(temp_reg, FP);
2554       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2555     }
2556   %}
2557 
2558   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2559   // to G1 so the register allocator will not have to deal with the misaligned register
2560   // pair.
2561   enc_class adjust_long_from_native_call %{
2562 #ifndef _LP64
2563     if (returns_long()) {
2564       //    sllx  O0,32,O0
2565       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2566       //    srl   O1,0,O1
2567       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2568       //    or    O0,O1,G1
2569       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2570     }
2571 #endif
2572   %}
2573 
2574   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2575     // CALL directly to the runtime
2576     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2577     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2578                     /*preserve_g2=*/true);
2579   %}
2580 
2581   enc_class preserve_SP %{
2582     MacroAssembler _masm(&cbuf);
2583     __ mov(SP, L7_mh_SP_save);
2584   %}
2585 
2586   enc_class restore_SP %{
2587     MacroAssembler _masm(&cbuf);
2588     __ mov(L7_mh_SP_save, SP);
2589   %}
2590 
2591   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2592     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2593     // who we intended to call.
2594     if (!_method) {
2595       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2596     } else if (_optimized_virtual) {
2597       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2598     } else {
2599       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2600     }
2601     if (_method) {  // Emit stub for static call.
2602       CompiledStaticCall::emit_to_interp_stub(cbuf);
2603     }
2604   %}
2605 
2606   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2607     MacroAssembler _masm(&cbuf);
2608     __ set_inst_mark();
2609     int vtable_index = this->_vtable_index;
2610     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2611     if (vtable_index < 0) {
2612       // must be invalid_vtable_index, not nonvirtual_vtable_index
2613       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2614       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2615       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2616       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2617       __ ic_call((address)$meth$$method);
2618     } else {
2619       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2620       // Just go thru the vtable
2621       // get receiver klass (receiver already checked for non-null)
2622       // If we end up going thru a c2i adapter interpreter expects method in G5
2623       int off = __ offset();
2624       __ load_klass(O0, G3_scratch);
2625       int klass_load_size;
2626       if (UseCompressedClassPointers) {
2627         assert(Universe::heap() != NULL, "java heap should be initialized");
2628         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2629       } else {
2630         klass_load_size = 1*BytesPerInstWord;
2631       }
2632       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2633       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2634       if (Assembler::is_simm13(v_off)) {
2635         __ ld_ptr(G3, v_off, G5_method);
2636       } else {
2637         // Generate 2 instructions
2638         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2639         __ or3(G5_method, v_off & 0x3ff, G5_method);
2640         // ld_ptr, set_hi, set
2641         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2642                "Unexpected instruction size(s)");
2643         __ ld_ptr(G3, G5_method, G5_method);
2644       }
2645       // NOTE: for vtable dispatches, the vtable entry will never be null.
2646       // However it may very well end up in handle_wrong_method if the
2647       // method is abstract for the particular class.
2648       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2649       // jump to target (either compiled code or c2iadapter)
2650       __ jmpl(G3_scratch, G0, O7);
2651       __ delayed()->nop();
2652     }
2653   %}
2654 
2655   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2656     MacroAssembler _masm(&cbuf);
2657 
2658     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2659     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2660                               // we might be calling a C2I adapter which needs it.
2661 
2662     assert(temp_reg != G5_ic_reg, "conflicting registers");
2663     // Load nmethod
2664     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2665 
2666     // CALL to compiled java, indirect the contents of G3
2667     __ set_inst_mark();
2668     __ callr(temp_reg, G0);
2669     __ delayed()->nop();
2670   %}
2671 
2672 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2673     MacroAssembler _masm(&cbuf);
2674     Register Rdividend = reg_to_register_object($src1$$reg);
2675     Register Rdivisor = reg_to_register_object($src2$$reg);
2676     Register Rresult = reg_to_register_object($dst$$reg);
2677 
2678     __ sra(Rdivisor, 0, Rdivisor);
2679     __ sra(Rdividend, 0, Rdividend);
2680     __ sdivx(Rdividend, Rdivisor, Rresult);
2681 %}
2682 
2683 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2684     MacroAssembler _masm(&cbuf);
2685 
2686     Register Rdividend = reg_to_register_object($src1$$reg);
2687     int divisor = $imm$$constant;
2688     Register Rresult = reg_to_register_object($dst$$reg);
2689 
2690     __ sra(Rdividend, 0, Rdividend);
2691     __ sdivx(Rdividend, divisor, Rresult);
2692 %}
2693 
2694 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2695     MacroAssembler _masm(&cbuf);
2696     Register Rsrc1 = reg_to_register_object($src1$$reg);
2697     Register Rsrc2 = reg_to_register_object($src2$$reg);
2698     Register Rdst  = reg_to_register_object($dst$$reg);
2699 
2700     __ sra( Rsrc1, 0, Rsrc1 );
2701     __ sra( Rsrc2, 0, Rsrc2 );
2702     __ mulx( Rsrc1, Rsrc2, Rdst );
2703     __ srlx( Rdst, 32, Rdst );
2704 %}
2705 
2706 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2707     MacroAssembler _masm(&cbuf);
2708     Register Rdividend = reg_to_register_object($src1$$reg);
2709     Register Rdivisor = reg_to_register_object($src2$$reg);
2710     Register Rresult = reg_to_register_object($dst$$reg);
2711     Register Rscratch = reg_to_register_object($scratch$$reg);
2712 
2713     assert(Rdividend != Rscratch, "");
2714     assert(Rdivisor  != Rscratch, "");
2715 
2716     __ sra(Rdividend, 0, Rdividend);
2717     __ sra(Rdivisor, 0, Rdivisor);
2718     __ sdivx(Rdividend, Rdivisor, Rscratch);
2719     __ mulx(Rscratch, Rdivisor, Rscratch);
2720     __ sub(Rdividend, Rscratch, Rresult);
2721 %}
2722 
2723 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2724     MacroAssembler _masm(&cbuf);
2725 
2726     Register Rdividend = reg_to_register_object($src1$$reg);
2727     int divisor = $imm$$constant;
2728     Register Rresult = reg_to_register_object($dst$$reg);
2729     Register Rscratch = reg_to_register_object($scratch$$reg);
2730 
2731     assert(Rdividend != Rscratch, "");
2732 
2733     __ sra(Rdividend, 0, Rdividend);
2734     __ sdivx(Rdividend, divisor, Rscratch);
2735     __ mulx(Rscratch, divisor, Rscratch);
2736     __ sub(Rdividend, Rscratch, Rresult);
2737 %}
2738 
2739 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2740     MacroAssembler _masm(&cbuf);
2741 
2742     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2743     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2744 
2745     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2746 %}
2747 
2748 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2749     MacroAssembler _masm(&cbuf);
2750 
2751     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2752     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2753 
2754     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2755 %}
2756 
2757 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2758     MacroAssembler _masm(&cbuf);
2759 
2760     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2761     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2762 
2763     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2764 %}
2765 
2766 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2767     MacroAssembler _masm(&cbuf);
2768 
2769     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2770     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2771 
2772     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2773 %}
2774 
2775 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2776     MacroAssembler _masm(&cbuf);
2777 
2778     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2779     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2780 
2781     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2782 %}
2783 
2784 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2785     MacroAssembler _masm(&cbuf);
2786 
2787     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2788     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2789 
2790     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2791 %}
2792 
2793 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2794     MacroAssembler _masm(&cbuf);
2795 
2796     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2797     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2798 
2799     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2800 %}
2801 
2802 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2803     MacroAssembler _masm(&cbuf);
2804 
2805     Register Roop  = reg_to_register_object($oop$$reg);
2806     Register Rbox  = reg_to_register_object($box$$reg);
2807     Register Rscratch = reg_to_register_object($scratch$$reg);
2808     Register Rmark =    reg_to_register_object($scratch2$$reg);
2809 
2810     assert(Roop  != Rscratch, "");
2811     assert(Roop  != Rmark, "");
2812     assert(Rbox  != Rscratch, "");
2813     assert(Rbox  != Rmark, "");
2814 
2815     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2816 %}
2817 
2818 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2819     MacroAssembler _masm(&cbuf);
2820 
2821     Register Roop  = reg_to_register_object($oop$$reg);
2822     Register Rbox  = reg_to_register_object($box$$reg);
2823     Register Rscratch = reg_to_register_object($scratch$$reg);
2824     Register Rmark =    reg_to_register_object($scratch2$$reg);
2825 
2826     assert(Roop  != Rscratch, "");
2827     assert(Roop  != Rmark, "");
2828     assert(Rbox  != Rscratch, "");
2829     assert(Rbox  != Rmark, "");
2830 
2831     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2832   %}
2833 
2834   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2835     MacroAssembler _masm(&cbuf);
2836     Register Rmem = reg_to_register_object($mem$$reg);
2837     Register Rold = reg_to_register_object($old$$reg);
2838     Register Rnew = reg_to_register_object($new$$reg);
2839 
2840     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2841     __ cmp( Rold, Rnew );
2842   %}
2843 
2844   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2845     Register Rmem = reg_to_register_object($mem$$reg);
2846     Register Rold = reg_to_register_object($old$$reg);
2847     Register Rnew = reg_to_register_object($new$$reg);
2848 
2849     MacroAssembler _masm(&cbuf);
2850     __ mov(Rnew, O7);
2851     __ casx(Rmem, Rold, O7);
2852     __ cmp( Rold, O7 );
2853   %}
2854 
2855   // raw int cas, used for compareAndSwap
2856   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2857     Register Rmem = reg_to_register_object($mem$$reg);
2858     Register Rold = reg_to_register_object($old$$reg);
2859     Register Rnew = reg_to_register_object($new$$reg);
2860 
2861     MacroAssembler _masm(&cbuf);
2862     __ mov(Rnew, O7);
2863     __ cas(Rmem, Rold, O7);
2864     __ cmp( Rold, O7 );
2865   %}
2866 
2867   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2868     Register Rres = reg_to_register_object($res$$reg);
2869 
2870     MacroAssembler _masm(&cbuf);
2871     __ mov(1, Rres);
2872     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2873   %}
2874 
2875   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2876     Register Rres = reg_to_register_object($res$$reg);
2877 
2878     MacroAssembler _masm(&cbuf);
2879     __ mov(1, Rres);
2880     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2881   %}
2882 
2883   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2884     MacroAssembler _masm(&cbuf);
2885     Register Rdst = reg_to_register_object($dst$$reg);
2886     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2887                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2888     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2889                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2890 
2891     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2892     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2893   %}
2894 
2895 
2896   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2897     Label Ldone, Lloop;
2898     MacroAssembler _masm(&cbuf);
2899 
2900     Register   str1_reg = reg_to_register_object($str1$$reg);
2901     Register   str2_reg = reg_to_register_object($str2$$reg);
2902     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2903     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2904     Register result_reg = reg_to_register_object($result$$reg);
2905 
2906     assert(result_reg != str1_reg &&
2907            result_reg != str2_reg &&
2908            result_reg != cnt1_reg &&
2909            result_reg != cnt2_reg ,
2910            "need different registers");
2911 
2912     // Compute the minimum of the string lengths(str1_reg) and the
2913     // difference of the string lengths (stack)
2914 
2915     // See if the lengths are different, and calculate min in str1_reg.
2916     // Stash diff in O7 in case we need it for a tie-breaker.
2917     Label Lskip;
2918     __ subcc(cnt1_reg, cnt2_reg, O7);
2919     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2920     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2921     // cnt2 is shorter, so use its count:
2922     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2923     __ bind(Lskip);
2924 
2925     // reallocate cnt1_reg, cnt2_reg, result_reg
2926     // Note:  limit_reg holds the string length pre-scaled by 2
2927     Register limit_reg =   cnt1_reg;
2928     Register  chr2_reg =   cnt2_reg;
2929     Register  chr1_reg = result_reg;
2930     // str{12} are the base pointers
2931 
2932     // Is the minimum length zero?
2933     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2934     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2935     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2936 
2937     // Load first characters
2938     __ lduh(str1_reg, 0, chr1_reg);
2939     __ lduh(str2_reg, 0, chr2_reg);
2940 
2941     // Compare first characters
2942     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2943     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2944     assert(chr1_reg == result_reg, "result must be pre-placed");
2945     __ delayed()->nop();
2946 
2947     {
2948       // Check after comparing first character to see if strings are equivalent
2949       Label LSkip2;
2950       // Check if the strings start at same location
2951       __ cmp(str1_reg, str2_reg);
2952       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2953       __ delayed()->nop();
2954 
2955       // Check if the length difference is zero (in O7)
2956       __ cmp(G0, O7);
2957       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2958       __ delayed()->mov(G0, result_reg);  // result is zero
2959 
2960       // Strings might not be equal
2961       __ bind(LSkip2);
2962     }
2963 
2964     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2965     __ signx(limit_reg);
2966 
2967     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2968     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2969     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2970 
2971     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2972     __ add(str1_reg, limit_reg, str1_reg);
2973     __ add(str2_reg, limit_reg, str2_reg);
2974     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2975 
2976     // Compare the rest of the characters
2977     __ lduh(str1_reg, limit_reg, chr1_reg);
2978     __ bind(Lloop);
2979     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2980     __ lduh(str2_reg, limit_reg, chr2_reg);
2981     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2982     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2983     assert(chr1_reg == result_reg, "result must be pre-placed");
2984     __ delayed()->inccc(limit_reg, sizeof(jchar));
2985     // annul LDUH if branch is not taken to prevent access past end of string
2986     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2987     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2988 
2989     // If strings are equal up to min length, return the length difference.
2990     __ mov(O7, result_reg);
2991 
2992     // Otherwise, return the difference between the first mismatched chars.
2993     __ bind(Ldone);
2994   %}
2995 
2996 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2997     Label Lchar, Lchar_loop, Ldone;
2998     MacroAssembler _masm(&cbuf);
2999 
3000     Register   str1_reg = reg_to_register_object($str1$$reg);
3001     Register   str2_reg = reg_to_register_object($str2$$reg);
3002     Register    cnt_reg = reg_to_register_object($cnt$$reg);
3003     Register   tmp1_reg = O7;
3004     Register result_reg = reg_to_register_object($result$$reg);
3005 
3006     assert(result_reg != str1_reg &&
3007            result_reg != str2_reg &&
3008            result_reg !=  cnt_reg &&
3009            result_reg != tmp1_reg ,
3010            "need different registers");
3011 
3012     __ cmp(str1_reg, str2_reg); //same char[] ?
3013     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3014     __ delayed()->add(G0, 1, result_reg);
3015 
3016     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
3017     __ delayed()->add(G0, 1, result_reg); // count == 0
3018 
3019     //rename registers
3020     Register limit_reg =    cnt_reg;
3021     Register  chr1_reg = result_reg;
3022     Register  chr2_reg =   tmp1_reg;
3023 
3024     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
3025     __ signx(limit_reg);
3026 
3027     //check for alignment and position the pointers to the ends
3028     __ or3(str1_reg, str2_reg, chr1_reg);
3029     __ andcc(chr1_reg, 0x3, chr1_reg);
3030     // notZero means at least one not 4-byte aligned.
3031     // We could optimize the case when both arrays are not aligned
3032     // but it is not frequent case and it requires additional checks.
3033     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
3034     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
3035 
3036     // Compare char[] arrays aligned to 4 bytes.
3037     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3038                           chr1_reg, chr2_reg, Ldone);
3039     __ ba(Ldone);
3040     __ delayed()->add(G0, 1, result_reg);
3041 
3042     // char by char compare
3043     __ bind(Lchar);
3044     __ add(str1_reg, limit_reg, str1_reg);
3045     __ add(str2_reg, limit_reg, str2_reg);
3046     __ neg(limit_reg); //negate count
3047 
3048     __ lduh(str1_reg, limit_reg, chr1_reg);
3049     // Lchar_loop
3050     __ bind(Lchar_loop);
3051     __ lduh(str2_reg, limit_reg, chr2_reg);
3052     __ cmp(chr1_reg, chr2_reg);
3053     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3054     __ delayed()->mov(G0, result_reg); //not equal
3055     __ inccc(limit_reg, sizeof(jchar));
3056     // annul LDUH if branch is not taken to prevent access past end of string
3057     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3058     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3059 
3060     __ add(G0, 1, result_reg);  //equal
3061 
3062     __ bind(Ldone);
3063   %}
3064 
3065 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3066     Label Lvector, Ldone, Lloop;
3067     MacroAssembler _masm(&cbuf);
3068 
3069     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3070     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3071     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3072     Register   tmp2_reg = O7;
3073     Register result_reg = reg_to_register_object($result$$reg);
3074 
3075     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3076     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3077 
3078     // return true if the same array
3079     __ cmp(ary1_reg, ary2_reg);
3080     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3081     __ delayed()->add(G0, 1, result_reg); // equal
3082 
3083     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3084     __ delayed()->mov(G0, result_reg);    // not equal
3085 
3086     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3087     __ delayed()->mov(G0, result_reg);    // not equal
3088 
3089     //load the lengths of arrays
3090     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3091     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3092 
3093     // return false if the two arrays are not equal length
3094     __ cmp(tmp1_reg, tmp2_reg);
3095     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3096     __ delayed()->mov(G0, result_reg);     // not equal
3097 
3098     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3099     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3100 
3101     // load array addresses
3102     __ add(ary1_reg, base_offset, ary1_reg);
3103     __ add(ary2_reg, base_offset, ary2_reg);
3104 
3105     // renaming registers
3106     Register chr1_reg  =  result_reg; // for characters in ary1
3107     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3108     Register limit_reg =  tmp1_reg;   // length
3109 
3110     // set byte count
3111     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3112 
3113     // Compare char[] arrays aligned to 4 bytes.
3114     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3115                           chr1_reg, chr2_reg, Ldone);
3116     __ add(G0, 1, result_reg); // equals
3117 
3118     __ bind(Ldone);
3119   %}
3120 
3121   enc_class enc_rethrow() %{
3122     cbuf.set_insts_mark();
3123     Register temp_reg = G3;
3124     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3125     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3126     MacroAssembler _masm(&cbuf);
3127 #ifdef ASSERT
3128     __ save_frame(0);
3129     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3130     __ sethi(last_rethrow_addrlit, L1);
3131     Address addr(L1, last_rethrow_addrlit.low10());
3132     __ rdpc(L2);
3133     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3134     __ st_ptr(L2, addr);
3135     __ restore();
3136 #endif
3137     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3138     __ delayed()->nop();
3139   %}
3140 
3141   enc_class emit_mem_nop() %{
3142     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3143     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3144   %}
3145 
3146   enc_class emit_fadd_nop() %{
3147     // Generates the instruction FMOVS f31,f31
3148     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3149   %}
3150 
3151   enc_class emit_br_nop() %{
3152     // Generates the instruction BPN,PN .
3153     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3154   %}
3155 
3156   enc_class enc_membar_acquire %{
3157     MacroAssembler _masm(&cbuf);
3158     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3159   %}
3160 
3161   enc_class enc_membar_release %{
3162     MacroAssembler _masm(&cbuf);
3163     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3164   %}
3165 
3166   enc_class enc_membar_volatile %{
3167     MacroAssembler _masm(&cbuf);
3168     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3169   %}
3170 
3171 %}
3172 
3173 //----------FRAME--------------------------------------------------------------
3174 // Definition of frame structure and management information.
3175 //
3176 //  S T A C K   L A Y O U T    Allocators stack-slot number
3177 //                             |   (to get allocators register number
3178 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3179 //  r   CALLER     |        |
3180 //  o     |        +--------+      pad to even-align allocators stack-slot
3181 //  w     V        |  pad0  |        numbers; owned by CALLER
3182 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3183 //  h     ^        |   in   |  5
3184 //        |        |  args  |  4   Holes in incoming args owned by SELF
3185 //  |     |        |        |  3
3186 //  |     |        +--------+
3187 //  V     |        | old out|      Empty on Intel, window on Sparc
3188 //        |    old |preserve|      Must be even aligned.
3189 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3190 //        |        |   in   |  3   area for Intel ret address
3191 //     Owned by    |preserve|      Empty on Sparc.
3192 //       SELF      +--------+
3193 //        |        |  pad2  |  2   pad to align old SP
3194 //        |        +--------+  1
3195 //        |        | locks  |  0
3196 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3197 //        |        |  pad1  | 11   pad to align new SP
3198 //        |        +--------+
3199 //        |        |        | 10
3200 //        |        | spills |  9   spills
3201 //        V        |        |  8   (pad0 slot for callee)
3202 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3203 //        ^        |  out   |  7
3204 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3205 //     Owned by    +--------+
3206 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3207 //        |    new |preserve|      Must be even-aligned.
3208 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3209 //        |        |        |
3210 //
3211 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3212 //         known from SELF's arguments and the Java calling convention.
3213 //         Region 6-7 is determined per call site.
3214 // Note 2: If the calling convention leaves holes in the incoming argument
3215 //         area, those holes are owned by SELF.  Holes in the outgoing area
3216 //         are owned by the CALLEE.  Holes should not be nessecary in the
3217 //         incoming area, as the Java calling convention is completely under
3218 //         the control of the AD file.  Doubles can be sorted and packed to
3219 //         avoid holes.  Holes in the outgoing arguments may be necessary for
3220 //         varargs C calling conventions.
3221 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3222 //         even aligned with pad0 as needed.
3223 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3224 //         region 6-11 is even aligned; it may be padded out more so that
3225 //         the region from SP to FP meets the minimum stack alignment.
3226 
3227 frame %{
3228   // What direction does stack grow in (assumed to be same for native & Java)
3229   stack_direction(TOWARDS_LOW);
3230 
3231   // These two registers define part of the calling convention
3232   // between compiled code and the interpreter.
3233   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3234   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3235 
3236   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3237   cisc_spilling_operand_name(indOffset);
3238 
3239   // Number of stack slots consumed by a Monitor enter
3240 #ifdef _LP64
3241   sync_stack_slots(2);
3242 #else
3243   sync_stack_slots(1);
3244 #endif
3245 
3246   // Compiled code's Frame Pointer
3247   frame_pointer(R_SP);
3248 
3249   // Stack alignment requirement
3250   stack_alignment(StackAlignmentInBytes);
3251   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3252   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3253 
3254   // Number of stack slots between incoming argument block and the start of
3255   // a new frame.  The PROLOG must add this many slots to the stack.  The
3256   // EPILOG must remove this many slots.
3257   in_preserve_stack_slots(0);
3258 
3259   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3260   // for calls to C.  Supports the var-args backing area for register parms.
3261   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3262 #ifdef _LP64
3263   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3264   varargs_C_out_slots_killed(12);
3265 #else
3266   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3267   varargs_C_out_slots_killed( 7);
3268 #endif
3269 
3270   // The after-PROLOG location of the return address.  Location of
3271   // return address specifies a type (REG or STACK) and a number
3272   // representing the register number (i.e. - use a register name) or
3273   // stack slot.
3274   return_addr(REG R_I7);          // Ret Addr is in register I7
3275 
3276   // Body of function which returns an OptoRegs array locating
3277   // arguments either in registers or in stack slots for calling
3278   // java
3279   calling_convention %{
3280     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3281 
3282   %}
3283 
3284   // Body of function which returns an OptoRegs array locating
3285   // arguments either in registers or in stack slots for calling
3286   // C.
3287   c_calling_convention %{
3288     // This is obviously always outgoing
3289     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3290   %}
3291 
3292   // Location of native (C/C++) and interpreter return values.  This is specified to
3293   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3294   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3295   // to and from the register pairs is done by the appropriate call and epilog
3296   // opcodes.  This simplifies the register allocator.
3297   c_return_value %{
3298     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3299 #ifdef     _LP64
3300     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3301     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3302     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3303     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3304 #else  // !_LP64
3305     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3306     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3307     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3308     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3309 #endif
3310     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3311                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3312   %}
3313 
3314   // Location of compiled Java return values.  Same as C
3315   return_value %{
3316     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3317 #ifdef     _LP64
3318     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3319     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3320     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3321     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3322 #else  // !_LP64
3323     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3324     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3325     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3326     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3327 #endif
3328     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3329                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3330   %}
3331 
3332 %}
3333 
3334 
3335 //----------ATTRIBUTES---------------------------------------------------------
3336 //----------Operand Attributes-------------------------------------------------
3337 op_attrib op_cost(1);          // Required cost attribute
3338 
3339 //----------Instruction Attributes---------------------------------------------
3340 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3341 ins_attrib ins_size(32);           // Required size attribute (in bits)
3342 
3343 // avoid_back_to_back attribute is an expression that must return
3344 // one of the following values defined in MachNode:
3345 // AVOID_NONE   - instruction can be placed anywhere
3346 // AVOID_BEFORE - instruction cannot be placed after an
3347 //                instruction with MachNode::AVOID_AFTER
3348 // AVOID_AFTER  - the next instruction cannot be the one 
3349 //                with MachNode::AVOID_BEFORE
3350 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at 
3351 //                          the same time                                
3352 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
3353 
3354 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3355                                    // non-matching short branch variant of some
3356                                                             // long branch?
3357 
3358 //----------OPERANDS-----------------------------------------------------------
3359 // Operand definitions must precede instruction definitions for correct parsing
3360 // in the ADLC because operands constitute user defined types which are used in
3361 // instruction definitions.
3362 
3363 //----------Simple Operands----------------------------------------------------
3364 // Immediate Operands
3365 // Integer Immediate: 32-bit
3366 operand immI() %{
3367   match(ConI);
3368 
3369   op_cost(0);
3370   // formats are generated automatically for constants and base registers
3371   format %{ %}
3372   interface(CONST_INTER);
3373 %}
3374 
3375 // Integer Immediate: 8-bit
3376 operand immI8() %{
3377   predicate(Assembler::is_simm8(n->get_int()));
3378   match(ConI);
3379   op_cost(0);
3380   format %{ %}
3381   interface(CONST_INTER);
3382 %}
3383 
3384 // Integer Immediate: 13-bit
3385 operand immI13() %{
3386   predicate(Assembler::is_simm13(n->get_int()));
3387   match(ConI);
3388   op_cost(0);
3389 
3390   format %{ %}
3391   interface(CONST_INTER);
3392 %}
3393 
3394 // Integer Immediate: 13-bit minus 7
3395 operand immI13m7() %{
3396   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3397   match(ConI);
3398   op_cost(0);
3399 
3400   format %{ %}
3401   interface(CONST_INTER);
3402 %}
3403 
3404 // Integer Immediate: 16-bit
3405 operand immI16() %{
3406   predicate(Assembler::is_simm16(n->get_int()));
3407   match(ConI);
3408   op_cost(0);
3409   format %{ %}
3410   interface(CONST_INTER);
3411 %}
3412 
3413 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3414 operand immU12() %{
3415   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3416   match(ConI);
3417   op_cost(0);
3418 
3419   format %{ %}
3420   interface(CONST_INTER);
3421 %}
3422 
3423 // Integer Immediate: 6-bit
3424 operand immU6() %{
3425   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3426   match(ConI);
3427   op_cost(0);
3428   format %{ %}
3429   interface(CONST_INTER);
3430 %}
3431 
3432 // Integer Immediate: 11-bit
3433 operand immI11() %{
3434   predicate(Assembler::is_simm11(n->get_int()));
3435   match(ConI);
3436   op_cost(0);
3437   format %{ %}
3438   interface(CONST_INTER);
3439 %}
3440 
3441 // Integer Immediate: 5-bit
3442 operand immI5() %{
3443   predicate(Assembler::is_simm5(n->get_int()));
3444   match(ConI);
3445   op_cost(0);
3446   format %{ %}
3447   interface(CONST_INTER);
3448 %}
3449 
3450 // Int Immediate non-negative
3451 operand immU31()
3452 %{
3453   predicate(n->get_int() >= 0);
3454   match(ConI);
3455 
3456   op_cost(0);
3457   format %{ %}
3458   interface(CONST_INTER);
3459 %}
3460 
3461 // Integer Immediate: 0-bit
3462 operand immI0() %{
3463   predicate(n->get_int() == 0);
3464   match(ConI);
3465   op_cost(0);
3466 
3467   format %{ %}
3468   interface(CONST_INTER);
3469 %}
3470 
3471 // Integer Immediate: the value 10
3472 operand immI10() %{
3473   predicate(n->get_int() == 10);
3474   match(ConI);
3475   op_cost(0);
3476 
3477   format %{ %}
3478   interface(CONST_INTER);
3479 %}
3480 
3481 // Integer Immediate: the values 0-31
3482 operand immU5() %{
3483   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3484   match(ConI);
3485   op_cost(0);
3486 
3487   format %{ %}
3488   interface(CONST_INTER);
3489 %}
3490 
3491 // Integer Immediate: the values 1-31
3492 operand immI_1_31() %{
3493   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3494   match(ConI);
3495   op_cost(0);
3496 
3497   format %{ %}
3498   interface(CONST_INTER);
3499 %}
3500 
3501 // Integer Immediate: the values 32-63
3502 operand immI_32_63() %{
3503   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3504   match(ConI);
3505   op_cost(0);
3506 
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 // Immediates for special shifts (sign extend)
3512 
3513 // Integer Immediate: the value 16
3514 operand immI_16() %{
3515   predicate(n->get_int() == 16);
3516   match(ConI);
3517   op_cost(0);
3518 
3519   format %{ %}
3520   interface(CONST_INTER);
3521 %}
3522 
3523 // Integer Immediate: the value 24
3524 operand immI_24() %{
3525   predicate(n->get_int() == 24);
3526   match(ConI);
3527   op_cost(0);
3528 
3529   format %{ %}
3530   interface(CONST_INTER);
3531 %}
3532 
3533 // Integer Immediate: the value 255
3534 operand immI_255() %{
3535   predicate( n->get_int() == 255 );
3536   match(ConI);
3537   op_cost(0);
3538 
3539   format %{ %}
3540   interface(CONST_INTER);
3541 %}
3542 
3543 // Integer Immediate: the value 65535
3544 operand immI_65535() %{
3545   predicate(n->get_int() == 65535);
3546   match(ConI);
3547   op_cost(0);
3548 
3549   format %{ %}
3550   interface(CONST_INTER);
3551 %}
3552 
3553 // Long Immediate: the value FF
3554 operand immL_FF() %{
3555   predicate( n->get_long() == 0xFFL );
3556   match(ConL);
3557   op_cost(0);
3558 
3559   format %{ %}
3560   interface(CONST_INTER);
3561 %}
3562 
3563 // Long Immediate: the value FFFF
3564 operand immL_FFFF() %{
3565   predicate( n->get_long() == 0xFFFFL );
3566   match(ConL);
3567   op_cost(0);
3568 
3569   format %{ %}
3570   interface(CONST_INTER);
3571 %}
3572 
3573 // Pointer Immediate: 32 or 64-bit
3574 operand immP() %{
3575   match(ConP);
3576 
3577   op_cost(5);
3578   // formats are generated automatically for constants and base registers
3579   format %{ %}
3580   interface(CONST_INTER);
3581 %}
3582 
3583 #ifdef _LP64
3584 // Pointer Immediate: 64-bit
3585 operand immP_set() %{
3586   predicate(!VM_Version::is_niagara_plus());
3587   match(ConP);
3588 
3589   op_cost(5);
3590   // formats are generated automatically for constants and base registers
3591   format %{ %}
3592   interface(CONST_INTER);
3593 %}
3594 
3595 // Pointer Immediate: 64-bit
3596 // From Niagara2 processors on a load should be better than materializing.
3597 operand immP_load() %{
3598   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3599   match(ConP);
3600 
3601   op_cost(5);
3602   // formats are generated automatically for constants and base registers
3603   format %{ %}
3604   interface(CONST_INTER);
3605 %}
3606 
3607 // Pointer Immediate: 64-bit
3608 operand immP_no_oop_cheap() %{
3609   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3610   match(ConP);
3611 
3612   op_cost(5);
3613   // formats are generated automatically for constants and base registers
3614   format %{ %}
3615   interface(CONST_INTER);
3616 %}
3617 #endif
3618 
3619 operand immP13() %{
3620   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3621   match(ConP);
3622   op_cost(0);
3623 
3624   format %{ %}
3625   interface(CONST_INTER);
3626 %}
3627 
3628 operand immP0() %{
3629   predicate(n->get_ptr() == 0);
3630   match(ConP);
3631   op_cost(0);
3632 
3633   format %{ %}
3634   interface(CONST_INTER);
3635 %}
3636 
3637 operand immP_poll() %{
3638   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3639   match(ConP);
3640 
3641   // formats are generated automatically for constants and base registers
3642   format %{ %}
3643   interface(CONST_INTER);
3644 %}
3645 
3646 // Pointer Immediate
3647 operand immN()
3648 %{
3649   match(ConN);
3650 
3651   op_cost(10);
3652   format %{ %}
3653   interface(CONST_INTER);
3654 %}
3655 
3656 operand immNKlass()
3657 %{
3658   match(ConNKlass);
3659 
3660   op_cost(10);
3661   format %{ %}
3662   interface(CONST_INTER);
3663 %}
3664 
3665 // NULL Pointer Immediate
3666 operand immN0()
3667 %{
3668   predicate(n->get_narrowcon() == 0);
3669   match(ConN);
3670 
3671   op_cost(0);
3672   format %{ %}
3673   interface(CONST_INTER);
3674 %}
3675 
3676 operand immL() %{
3677   match(ConL);
3678   op_cost(40);
3679   // formats are generated automatically for constants and base registers
3680   format %{ %}
3681   interface(CONST_INTER);
3682 %}
3683 
3684 operand immL0() %{
3685   predicate(n->get_long() == 0L);
3686   match(ConL);
3687   op_cost(0);
3688   // formats are generated automatically for constants and base registers
3689   format %{ %}
3690   interface(CONST_INTER);
3691 %}
3692 
3693 // Integer Immediate: 5-bit
3694 operand immL5() %{
3695   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3696   match(ConL);
3697   op_cost(0);
3698   format %{ %}
3699   interface(CONST_INTER);
3700 %}
3701 
3702 // Long Immediate: 13-bit
3703 operand immL13() %{
3704   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3705   match(ConL);
3706   op_cost(0);
3707 
3708   format %{ %}
3709   interface(CONST_INTER);
3710 %}
3711 
3712 // Long Immediate: 13-bit minus 7
3713 operand immL13m7() %{
3714   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3715   match(ConL);
3716   op_cost(0);
3717 
3718   format %{ %}
3719   interface(CONST_INTER);
3720 %}
3721 
3722 // Long Immediate: low 32-bit mask
3723 operand immL_32bits() %{
3724   predicate(n->get_long() == 0xFFFFFFFFL);
3725   match(ConL);
3726   op_cost(0);
3727 
3728   format %{ %}
3729   interface(CONST_INTER);
3730 %}
3731 
3732 // Long Immediate: cheap (materialize in <= 3 instructions)
3733 operand immL_cheap() %{
3734   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3735   match(ConL);
3736   op_cost(0);
3737 
3738   format %{ %}
3739   interface(CONST_INTER);
3740 %}
3741 
3742 // Long Immediate: expensive (materialize in > 3 instructions)
3743 operand immL_expensive() %{
3744   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3745   match(ConL);
3746   op_cost(0);
3747 
3748   format %{ %}
3749   interface(CONST_INTER);
3750 %}
3751 
3752 // Double Immediate
3753 operand immD() %{
3754   match(ConD);
3755 
3756   op_cost(40);
3757   format %{ %}
3758   interface(CONST_INTER);
3759 %}
3760 
3761 operand immD0() %{
3762 #ifdef _LP64
3763   // on 64-bit architectures this comparision is faster
3764   predicate(jlong_cast(n->getd()) == 0);
3765 #else
3766   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3767 #endif
3768   match(ConD);
3769 
3770   op_cost(0);
3771   format %{ %}
3772   interface(CONST_INTER);
3773 %}
3774 
3775 // Float Immediate
3776 operand immF() %{
3777   match(ConF);
3778 
3779   op_cost(20);
3780   format %{ %}
3781   interface(CONST_INTER);
3782 %}
3783 
3784 // Float Immediate: 0
3785 operand immF0() %{
3786   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3787   match(ConF);
3788 
3789   op_cost(0);
3790   format %{ %}
3791   interface(CONST_INTER);
3792 %}
3793 
3794 // Integer Register Operands
3795 // Integer Register
3796 operand iRegI() %{
3797   constraint(ALLOC_IN_RC(int_reg));
3798   match(RegI);
3799 
3800   match(notemp_iRegI);
3801   match(g1RegI);
3802   match(o0RegI);
3803   match(iRegIsafe);
3804 
3805   format %{ %}
3806   interface(REG_INTER);
3807 %}
3808 
3809 operand notemp_iRegI() %{
3810   constraint(ALLOC_IN_RC(notemp_int_reg));
3811   match(RegI);
3812 
3813   match(o0RegI);
3814 
3815   format %{ %}
3816   interface(REG_INTER);
3817 %}
3818 
3819 operand o0RegI() %{
3820   constraint(ALLOC_IN_RC(o0_regI));
3821   match(iRegI);
3822 
3823   format %{ %}
3824   interface(REG_INTER);
3825 %}
3826 
3827 // Pointer Register
3828 operand iRegP() %{
3829   constraint(ALLOC_IN_RC(ptr_reg));
3830   match(RegP);
3831 
3832   match(lock_ptr_RegP);
3833   match(g1RegP);
3834   match(g2RegP);
3835   match(g3RegP);
3836   match(g4RegP);
3837   match(i0RegP);
3838   match(o0RegP);
3839   match(o1RegP);
3840   match(l7RegP);
3841 
3842   format %{ %}
3843   interface(REG_INTER);
3844 %}
3845 
3846 operand sp_ptr_RegP() %{
3847   constraint(ALLOC_IN_RC(sp_ptr_reg));
3848   match(RegP);
3849   match(iRegP);
3850 
3851   format %{ %}
3852   interface(REG_INTER);
3853 %}
3854 
3855 operand lock_ptr_RegP() %{
3856   constraint(ALLOC_IN_RC(lock_ptr_reg));
3857   match(RegP);
3858   match(i0RegP);
3859   match(o0RegP);
3860   match(o1RegP);
3861   match(l7RegP);
3862 
3863   format %{ %}
3864   interface(REG_INTER);
3865 %}
3866 
3867 operand g1RegP() %{
3868   constraint(ALLOC_IN_RC(g1_regP));
3869   match(iRegP);
3870 
3871   format %{ %}
3872   interface(REG_INTER);
3873 %}
3874 
3875 operand g2RegP() %{
3876   constraint(ALLOC_IN_RC(g2_regP));
3877   match(iRegP);
3878 
3879   format %{ %}
3880   interface(REG_INTER);
3881 %}
3882 
3883 operand g3RegP() %{
3884   constraint(ALLOC_IN_RC(g3_regP));
3885   match(iRegP);
3886 
3887   format %{ %}
3888   interface(REG_INTER);
3889 %}
3890 
3891 operand g1RegI() %{
3892   constraint(ALLOC_IN_RC(g1_regI));
3893   match(iRegI);
3894 
3895   format %{ %}
3896   interface(REG_INTER);
3897 %}
3898 
3899 operand g3RegI() %{
3900   constraint(ALLOC_IN_RC(g3_regI));
3901   match(iRegI);
3902 
3903   format %{ %}
3904   interface(REG_INTER);
3905 %}
3906 
3907 operand g4RegI() %{
3908   constraint(ALLOC_IN_RC(g4_regI));
3909   match(iRegI);
3910 
3911   format %{ %}
3912   interface(REG_INTER);
3913 %}
3914 
3915 operand g4RegP() %{
3916   constraint(ALLOC_IN_RC(g4_regP));
3917   match(iRegP);
3918 
3919   format %{ %}
3920   interface(REG_INTER);
3921 %}
3922 
3923 operand i0RegP() %{
3924   constraint(ALLOC_IN_RC(i0_regP));
3925   match(iRegP);
3926 
3927   format %{ %}
3928   interface(REG_INTER);
3929 %}
3930 
3931 operand o0RegP() %{
3932   constraint(ALLOC_IN_RC(o0_regP));
3933   match(iRegP);
3934 
3935   format %{ %}
3936   interface(REG_INTER);
3937 %}
3938 
3939 operand o1RegP() %{
3940   constraint(ALLOC_IN_RC(o1_regP));
3941   match(iRegP);
3942 
3943   format %{ %}
3944   interface(REG_INTER);
3945 %}
3946 
3947 operand o2RegP() %{
3948   constraint(ALLOC_IN_RC(o2_regP));
3949   match(iRegP);
3950 
3951   format %{ %}
3952   interface(REG_INTER);
3953 %}
3954 
3955 operand o7RegP() %{
3956   constraint(ALLOC_IN_RC(o7_regP));
3957   match(iRegP);
3958 
3959   format %{ %}
3960   interface(REG_INTER);
3961 %}
3962 
3963 operand l7RegP() %{
3964   constraint(ALLOC_IN_RC(l7_regP));
3965   match(iRegP);
3966 
3967   format %{ %}
3968   interface(REG_INTER);
3969 %}
3970 
3971 operand o7RegI() %{
3972   constraint(ALLOC_IN_RC(o7_regI));
3973   match(iRegI);
3974 
3975   format %{ %}
3976   interface(REG_INTER);
3977 %}
3978 
3979 operand iRegN() %{
3980   constraint(ALLOC_IN_RC(int_reg));
3981   match(RegN);
3982 
3983   format %{ %}
3984   interface(REG_INTER);
3985 %}
3986 
3987 // Long Register
3988 operand iRegL() %{
3989   constraint(ALLOC_IN_RC(long_reg));
3990   match(RegL);
3991 
3992   format %{ %}
3993   interface(REG_INTER);
3994 %}
3995 
3996 operand o2RegL() %{
3997   constraint(ALLOC_IN_RC(o2_regL));
3998   match(iRegL);
3999 
4000   format %{ %}
4001   interface(REG_INTER);
4002 %}
4003 
4004 operand o7RegL() %{
4005   constraint(ALLOC_IN_RC(o7_regL));
4006   match(iRegL);
4007 
4008   format %{ %}
4009   interface(REG_INTER);
4010 %}
4011 
4012 operand g1RegL() %{
4013   constraint(ALLOC_IN_RC(g1_regL));
4014   match(iRegL);
4015 
4016   format %{ %}
4017   interface(REG_INTER);
4018 %}
4019 
4020 operand g3RegL() %{
4021   constraint(ALLOC_IN_RC(g3_regL));
4022   match(iRegL);
4023 
4024   format %{ %}
4025   interface(REG_INTER);
4026 %}
4027 
4028 // Int Register safe
4029 // This is 64bit safe
4030 operand iRegIsafe() %{
4031   constraint(ALLOC_IN_RC(long_reg));
4032 
4033   match(iRegI);
4034 
4035   format %{ %}
4036   interface(REG_INTER);
4037 %}
4038 
4039 // Condition Code Flag Register
4040 operand flagsReg() %{
4041   constraint(ALLOC_IN_RC(int_flags));
4042   match(RegFlags);
4043 
4044   format %{ "ccr" %} // both ICC and XCC
4045   interface(REG_INTER);
4046 %}
4047 
4048 // Condition Code Register, unsigned comparisons.
4049 operand flagsRegU() %{
4050   constraint(ALLOC_IN_RC(int_flags));
4051   match(RegFlags);
4052 
4053   format %{ "icc_U" %}
4054   interface(REG_INTER);
4055 %}
4056 
4057 // Condition Code Register, pointer comparisons.
4058 operand flagsRegP() %{
4059   constraint(ALLOC_IN_RC(int_flags));
4060   match(RegFlags);
4061 
4062 #ifdef _LP64
4063   format %{ "xcc_P" %}
4064 #else
4065   format %{ "icc_P" %}
4066 #endif
4067   interface(REG_INTER);
4068 %}
4069 
4070 // Condition Code Register, long comparisons.
4071 operand flagsRegL() %{
4072   constraint(ALLOC_IN_RC(int_flags));
4073   match(RegFlags);
4074 
4075   format %{ "xcc_L" %}
4076   interface(REG_INTER);
4077 %}
4078 
4079 // Condition Code Register, floating comparisons, unordered same as "less".
4080 operand flagsRegF() %{
4081   constraint(ALLOC_IN_RC(float_flags));
4082   match(RegFlags);
4083   match(flagsRegF0);
4084 
4085   format %{ %}
4086   interface(REG_INTER);
4087 %}
4088 
4089 operand flagsRegF0() %{
4090   constraint(ALLOC_IN_RC(float_flag0));
4091   match(RegFlags);
4092 
4093   format %{ %}
4094   interface(REG_INTER);
4095 %}
4096 
4097 
4098 // Condition Code Flag Register used by long compare
4099 operand flagsReg_long_LTGE() %{
4100   constraint(ALLOC_IN_RC(int_flags));
4101   match(RegFlags);
4102   format %{ "icc_LTGE" %}
4103   interface(REG_INTER);
4104 %}
4105 operand flagsReg_long_EQNE() %{
4106   constraint(ALLOC_IN_RC(int_flags));
4107   match(RegFlags);
4108   format %{ "icc_EQNE" %}
4109   interface(REG_INTER);
4110 %}
4111 operand flagsReg_long_LEGT() %{
4112   constraint(ALLOC_IN_RC(int_flags));
4113   match(RegFlags);
4114   format %{ "icc_LEGT" %}
4115   interface(REG_INTER);
4116 %}
4117 
4118 
4119 operand regD() %{
4120   constraint(ALLOC_IN_RC(dflt_reg));
4121   match(RegD);
4122 
4123   match(regD_low);
4124 
4125   format %{ %}
4126   interface(REG_INTER);
4127 %}
4128 
4129 operand regF() %{
4130   constraint(ALLOC_IN_RC(sflt_reg));
4131   match(RegF);
4132 
4133   format %{ %}
4134   interface(REG_INTER);
4135 %}
4136 
4137 operand regD_low() %{
4138   constraint(ALLOC_IN_RC(dflt_low_reg));
4139   match(regD);
4140 
4141   format %{ %}
4142   interface(REG_INTER);
4143 %}
4144 
4145 // Special Registers
4146 
4147 // Method Register
4148 operand inline_cache_regP(iRegP reg) %{
4149   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4150   match(reg);
4151   format %{ %}
4152   interface(REG_INTER);
4153 %}
4154 
4155 operand interpreter_method_oop_regP(iRegP reg) %{
4156   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4157   match(reg);
4158   format %{ %}
4159   interface(REG_INTER);
4160 %}
4161 
4162 
4163 //----------Complex Operands---------------------------------------------------
4164 // Indirect Memory Reference
4165 operand indirect(sp_ptr_RegP reg) %{
4166   constraint(ALLOC_IN_RC(sp_ptr_reg));
4167   match(reg);
4168 
4169   op_cost(100);
4170   format %{ "[$reg]" %}
4171   interface(MEMORY_INTER) %{
4172     base($reg);
4173     index(0x0);
4174     scale(0x0);
4175     disp(0x0);
4176   %}
4177 %}
4178 
4179 // Indirect with simm13 Offset
4180 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4181   constraint(ALLOC_IN_RC(sp_ptr_reg));
4182   match(AddP reg offset);
4183 
4184   op_cost(100);
4185   format %{ "[$reg + $offset]" %}
4186   interface(MEMORY_INTER) %{
4187     base($reg);
4188     index(0x0);
4189     scale(0x0);
4190     disp($offset);
4191   %}
4192 %}
4193 
4194 // Indirect with simm13 Offset minus 7
4195 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4196   constraint(ALLOC_IN_RC(sp_ptr_reg));
4197   match(AddP reg offset);
4198 
4199   op_cost(100);
4200   format %{ "[$reg + $offset]" %}
4201   interface(MEMORY_INTER) %{
4202     base($reg);
4203     index(0x0);
4204     scale(0x0);
4205     disp($offset);
4206   %}
4207 %}
4208 
4209 // Note:  Intel has a swapped version also, like this:
4210 //operand indOffsetX(iRegI reg, immP offset) %{
4211 //  constraint(ALLOC_IN_RC(int_reg));
4212 //  match(AddP offset reg);
4213 //
4214 //  op_cost(100);
4215 //  format %{ "[$reg + $offset]" %}
4216 //  interface(MEMORY_INTER) %{
4217 //    base($reg);
4218 //    index(0x0);
4219 //    scale(0x0);
4220 //    disp($offset);
4221 //  %}
4222 //%}
4223 //// However, it doesn't make sense for SPARC, since
4224 // we have no particularly good way to embed oops in
4225 // single instructions.
4226 
4227 // Indirect with Register Index
4228 operand indIndex(iRegP addr, iRegX index) %{
4229   constraint(ALLOC_IN_RC(ptr_reg));
4230   match(AddP addr index);
4231 
4232   op_cost(100);
4233   format %{ "[$addr + $index]" %}
4234   interface(MEMORY_INTER) %{
4235     base($addr);
4236     index($index);
4237     scale(0x0);
4238     disp(0x0);
4239   %}
4240 %}
4241 
4242 //----------Special Memory Operands--------------------------------------------
4243 // Stack Slot Operand - This operand is used for loading and storing temporary
4244 //                      values on the stack where a match requires a value to
4245 //                      flow through memory.
4246 operand stackSlotI(sRegI reg) %{
4247   constraint(ALLOC_IN_RC(stack_slots));
4248   op_cost(100);
4249   //match(RegI);
4250   format %{ "[$reg]" %}
4251   interface(MEMORY_INTER) %{
4252     base(0xE);   // R_SP
4253     index(0x0);
4254     scale(0x0);
4255     disp($reg);  // Stack Offset
4256   %}
4257 %}
4258 
4259 operand stackSlotP(sRegP reg) %{
4260   constraint(ALLOC_IN_RC(stack_slots));
4261   op_cost(100);
4262   //match(RegP);
4263   format %{ "[$reg]" %}
4264   interface(MEMORY_INTER) %{
4265     base(0xE);   // R_SP
4266     index(0x0);
4267     scale(0x0);
4268     disp($reg);  // Stack Offset
4269   %}
4270 %}
4271 
4272 operand stackSlotF(sRegF reg) %{
4273   constraint(ALLOC_IN_RC(stack_slots));
4274   op_cost(100);
4275   //match(RegF);
4276   format %{ "[$reg]" %}
4277   interface(MEMORY_INTER) %{
4278     base(0xE);   // R_SP
4279     index(0x0);
4280     scale(0x0);
4281     disp($reg);  // Stack Offset
4282   %}
4283 %}
4284 operand stackSlotD(sRegD reg) %{
4285   constraint(ALLOC_IN_RC(stack_slots));
4286   op_cost(100);
4287   //match(RegD);
4288   format %{ "[$reg]" %}
4289   interface(MEMORY_INTER) %{
4290     base(0xE);   // R_SP
4291     index(0x0);
4292     scale(0x0);
4293     disp($reg);  // Stack Offset
4294   %}
4295 %}
4296 operand stackSlotL(sRegL reg) %{
4297   constraint(ALLOC_IN_RC(stack_slots));
4298   op_cost(100);
4299   //match(RegL);
4300   format %{ "[$reg]" %}
4301   interface(MEMORY_INTER) %{
4302     base(0xE);   // R_SP
4303     index(0x0);
4304     scale(0x0);
4305     disp($reg);  // Stack Offset
4306   %}
4307 %}
4308 
4309 // Operands for expressing Control Flow
4310 // NOTE:  Label is a predefined operand which should not be redefined in
4311 //        the AD file.  It is generically handled within the ADLC.
4312 
4313 //----------Conditional Branch Operands----------------------------------------
4314 // Comparison Op  - This is the operation of the comparison, and is limited to
4315 //                  the following set of codes:
4316 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4317 //
4318 // Other attributes of the comparison, such as unsignedness, are specified
4319 // by the comparison instruction that sets a condition code flags register.
4320 // That result is represented by a flags operand whose subtype is appropriate
4321 // to the unsignedness (etc.) of the comparison.
4322 //
4323 // Later, the instruction which matches both the Comparison Op (a Bool) and
4324 // the flags (produced by the Cmp) specifies the coding of the comparison op
4325 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4326 
4327 operand cmpOp() %{
4328   match(Bool);
4329 
4330   format %{ "" %}
4331   interface(COND_INTER) %{
4332     equal(0x1);
4333     not_equal(0x9);
4334     less(0x3);
4335     greater_equal(0xB);
4336     less_equal(0x2);
4337     greater(0xA);
4338     overflow(0x7);
4339     no_overflow(0xF);
4340   %}
4341 %}
4342 
4343 // Comparison Op, unsigned
4344 operand cmpOpU() %{
4345   match(Bool);
4346   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4347             n->as_Bool()->_test._test != BoolTest::no_overflow);
4348 
4349   format %{ "u" %}
4350   interface(COND_INTER) %{
4351     equal(0x1);
4352     not_equal(0x9);
4353     less(0x5);
4354     greater_equal(0xD);
4355     less_equal(0x4);
4356     greater(0xC);
4357     overflow(0x7);
4358     no_overflow(0xF);
4359   %}
4360 %}
4361 
4362 // Comparison Op, pointer (same as unsigned)
4363 operand cmpOpP() %{
4364   match(Bool);
4365   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4366             n->as_Bool()->_test._test != BoolTest::no_overflow);
4367 
4368   format %{ "p" %}
4369   interface(COND_INTER) %{
4370     equal(0x1);
4371     not_equal(0x9);
4372     less(0x5);
4373     greater_equal(0xD);
4374     less_equal(0x4);
4375     greater(0xC);
4376     overflow(0x7);
4377     no_overflow(0xF);
4378   %}
4379 %}
4380 
4381 // Comparison Op, branch-register encoding
4382 operand cmpOp_reg() %{
4383   match(Bool);
4384   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4385             n->as_Bool()->_test._test != BoolTest::no_overflow);
4386 
4387   format %{ "" %}
4388   interface(COND_INTER) %{
4389     equal        (0x1);
4390     not_equal    (0x5);
4391     less         (0x3);
4392     greater_equal(0x7);
4393     less_equal   (0x2);
4394     greater      (0x6);
4395     overflow(0x7); // not supported
4396     no_overflow(0xF); // not supported
4397   %}
4398 %}
4399 
4400 // Comparison Code, floating, unordered same as less
4401 operand cmpOpF() %{
4402   match(Bool);
4403   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4404             n->as_Bool()->_test._test != BoolTest::no_overflow);
4405 
4406   format %{ "fl" %}
4407   interface(COND_INTER) %{
4408     equal(0x9);
4409     not_equal(0x1);
4410     less(0x3);
4411     greater_equal(0xB);
4412     less_equal(0xE);
4413     greater(0x6);
4414 
4415     overflow(0x7); // not supported
4416     no_overflow(0xF); // not supported
4417   %}
4418 %}
4419 
4420 // Used by long compare
4421 operand cmpOp_commute() %{
4422   match(Bool);
4423   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4424             n->as_Bool()->_test._test != BoolTest::no_overflow);
4425 
4426   format %{ "" %}
4427   interface(COND_INTER) %{
4428     equal(0x1);
4429     not_equal(0x9);
4430     less(0xA);
4431     greater_equal(0x2);
4432     less_equal(0xB);
4433     greater(0x3);
4434     overflow(0x7);
4435     no_overflow(0xF);
4436   %}
4437 %}
4438 
4439 //----------OPERAND CLASSES----------------------------------------------------
4440 // Operand Classes are groups of operands that are used to simplify
4441 // instruction definitions by not requiring the AD writer to specify separate
4442 // instructions for every form of operand when the instruction accepts
4443 // multiple operand types with the same basic encoding and format.  The classic
4444 // case of this is memory operands.
4445 opclass memory( indirect, indOffset13, indIndex );
4446 opclass indIndexMemory( indIndex );
4447 
4448 //----------PIPELINE-----------------------------------------------------------
4449 pipeline %{
4450 
4451 //----------ATTRIBUTES---------------------------------------------------------
4452 attributes %{
4453   fixed_size_instructions;           // Fixed size instructions
4454   branch_has_delay_slot;             // Branch has delay slot following
4455   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4456   instruction_unit_size = 4;         // An instruction is 4 bytes long
4457   instruction_fetch_unit_size = 16;  // The processor fetches one line
4458   instruction_fetch_units = 1;       // of 16 bytes
4459 
4460   // List of nop instructions
4461   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4462 %}
4463 
4464 //----------RESOURCES----------------------------------------------------------
4465 // Resources are the functional units available to the machine
4466 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4467 
4468 //----------PIPELINE DESCRIPTION-----------------------------------------------
4469 // Pipeline Description specifies the stages in the machine's pipeline
4470 
4471 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4472 
4473 //----------PIPELINE CLASSES---------------------------------------------------
4474 // Pipeline Classes describe the stages in which input and output are
4475 // referenced by the hardware pipeline.
4476 
4477 // Integer ALU reg-reg operation
4478 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4479     single_instruction;
4480     dst   : E(write);
4481     src1  : R(read);
4482     src2  : R(read);
4483     IALU  : R;
4484 %}
4485 
4486 // Integer ALU reg-reg long operation
4487 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4488     instruction_count(2);
4489     dst   : E(write);
4490     src1  : R(read);
4491     src2  : R(read);
4492     IALU  : R;
4493     IALU  : R;
4494 %}
4495 
4496 // Integer ALU reg-reg long dependent operation
4497 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4498     instruction_count(1); multiple_bundles;
4499     dst   : E(write);
4500     src1  : R(read);
4501     src2  : R(read);
4502     cr    : E(write);
4503     IALU  : R(2);
4504 %}
4505 
4506 // Integer ALU reg-imm operaion
4507 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4508     single_instruction;
4509     dst   : E(write);
4510     src1  : R(read);
4511     IALU  : R;
4512 %}
4513 
4514 // Integer ALU reg-reg operation with condition code
4515 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4516     single_instruction;
4517     dst   : E(write);
4518     cr    : E(write);
4519     src1  : R(read);
4520     src2  : R(read);
4521     IALU  : R;
4522 %}
4523 
4524 // Integer ALU reg-imm operation with condition code
4525 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4526     single_instruction;
4527     dst   : E(write);
4528     cr    : E(write);
4529     src1  : R(read);
4530     IALU  : R;
4531 %}
4532 
4533 // Integer ALU zero-reg operation
4534 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4535     single_instruction;
4536     dst   : E(write);
4537     src2  : R(read);
4538     IALU  : R;
4539 %}
4540 
4541 // Integer ALU zero-reg operation with condition code only
4542 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4543     single_instruction;
4544     cr    : E(write);
4545     src   : R(read);
4546     IALU  : R;
4547 %}
4548 
4549 // Integer ALU reg-reg operation with condition code only
4550 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4551     single_instruction;
4552     cr    : E(write);
4553     src1  : R(read);
4554     src2  : R(read);
4555     IALU  : R;
4556 %}
4557 
4558 // Integer ALU reg-imm operation with condition code only
4559 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4560     single_instruction;
4561     cr    : E(write);
4562     src1  : R(read);
4563     IALU  : R;
4564 %}
4565 
4566 // Integer ALU reg-reg-zero operation with condition code only
4567 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4568     single_instruction;
4569     cr    : E(write);
4570     src1  : R(read);
4571     src2  : R(read);
4572     IALU  : R;
4573 %}
4574 
4575 // Integer ALU reg-imm-zero operation with condition code only
4576 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4577     single_instruction;
4578     cr    : E(write);
4579     src1  : R(read);
4580     IALU  : R;
4581 %}
4582 
4583 // Integer ALU reg-reg operation with condition code, src1 modified
4584 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4585     single_instruction;
4586     cr    : E(write);
4587     src1  : E(write);
4588     src1  : R(read);
4589     src2  : R(read);
4590     IALU  : R;
4591 %}
4592 
4593 // Integer ALU reg-imm operation with condition code, src1 modified
4594 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4595     single_instruction;
4596     cr    : E(write);
4597     src1  : E(write);
4598     src1  : R(read);
4599     IALU  : R;
4600 %}
4601 
4602 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4603     multiple_bundles;
4604     dst   : E(write)+4;
4605     cr    : E(write);
4606     src1  : R(read);
4607     src2  : R(read);
4608     IALU  : R(3);
4609     BR    : R(2);
4610 %}
4611 
4612 // Integer ALU operation
4613 pipe_class ialu_none(iRegI dst) %{
4614     single_instruction;
4615     dst   : E(write);
4616     IALU  : R;
4617 %}
4618 
4619 // Integer ALU reg operation
4620 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4621     single_instruction; may_have_no_code;
4622     dst   : E(write);
4623     src   : R(read);
4624     IALU  : R;
4625 %}
4626 
4627 // Integer ALU reg conditional operation
4628 // This instruction has a 1 cycle stall, and cannot execute
4629 // in the same cycle as the instruction setting the condition
4630 // code. We kludge this by pretending to read the condition code
4631 // 1 cycle earlier, and by marking the functional units as busy
4632 // for 2 cycles with the result available 1 cycle later than
4633 // is really the case.
4634 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4635     single_instruction;
4636     op2_out : C(write);
4637     op1     : R(read);
4638     cr      : R(read);       // This is really E, with a 1 cycle stall
4639     BR      : R(2);
4640     MS      : R(2);
4641 %}
4642 
4643 #ifdef _LP64
4644 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4645     instruction_count(1); multiple_bundles;
4646     dst     : C(write)+1;
4647     src     : R(read)+1;
4648     IALU    : R(1);
4649     BR      : E(2);
4650     MS      : E(2);
4651 %}
4652 #endif
4653 
4654 // Integer ALU reg operation
4655 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4656     single_instruction; may_have_no_code;
4657     dst   : E(write);
4658     src   : R(read);
4659     IALU  : R;
4660 %}
4661 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4662     single_instruction; may_have_no_code;
4663     dst   : E(write);
4664     src   : R(read);
4665     IALU  : R;
4666 %}
4667 
4668 // Two integer ALU reg operations
4669 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4670     instruction_count(2);
4671     dst   : E(write);
4672     src   : R(read);
4673     A0    : R;
4674     A1    : R;
4675 %}
4676 
4677 // Two integer ALU reg operations
4678 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4679     instruction_count(2); may_have_no_code;
4680     dst   : E(write);
4681     src   : R(read);
4682     A0    : R;
4683     A1    : R;
4684 %}
4685 
4686 // Integer ALU imm operation
4687 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4688     single_instruction;
4689     dst   : E(write);
4690     IALU  : R;
4691 %}
4692 
4693 // Integer ALU reg-reg with carry operation
4694 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4695     single_instruction;
4696     dst   : E(write);
4697     src1  : R(read);
4698     src2  : R(read);
4699     IALU  : R;
4700 %}
4701 
4702 // Integer ALU cc operation
4703 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4704     single_instruction;
4705     dst   : E(write);
4706     cc    : R(read);
4707     IALU  : R;
4708 %}
4709 
4710 // Integer ALU cc / second IALU operation
4711 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4712     instruction_count(1); multiple_bundles;
4713     dst   : E(write)+1;
4714     src   : R(read);
4715     IALU  : R;
4716 %}
4717 
4718 // Integer ALU cc / second IALU operation
4719 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4720     instruction_count(1); multiple_bundles;
4721     dst   : E(write)+1;
4722     p     : R(read);
4723     q     : R(read);
4724     IALU  : R;
4725 %}
4726 
4727 // Integer ALU hi-lo-reg operation
4728 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4729     instruction_count(1); multiple_bundles;
4730     dst   : E(write)+1;
4731     IALU  : R(2);
4732 %}
4733 
4734 // Float ALU hi-lo-reg operation (with temp)
4735 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4736     instruction_count(1); multiple_bundles;
4737     dst   : E(write)+1;
4738     IALU  : R(2);
4739 %}
4740 
4741 // Long Constant
4742 pipe_class loadConL( iRegL dst, immL src ) %{
4743     instruction_count(2); multiple_bundles;
4744     dst   : E(write)+1;
4745     IALU  : R(2);
4746     IALU  : R(2);
4747 %}
4748 
4749 // Pointer Constant
4750 pipe_class loadConP( iRegP dst, immP src ) %{
4751     instruction_count(0); multiple_bundles;
4752     fixed_latency(6);
4753 %}
4754 
4755 // Polling Address
4756 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4757 #ifdef _LP64
4758     instruction_count(0); multiple_bundles;
4759     fixed_latency(6);
4760 #else
4761     dst   : E(write);
4762     IALU  : R;
4763 #endif
4764 %}
4765 
4766 // Long Constant small
4767 pipe_class loadConLlo( iRegL dst, immL src ) %{
4768     instruction_count(2);
4769     dst   : E(write);
4770     IALU  : R;
4771     IALU  : R;
4772 %}
4773 
4774 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4775 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4776     instruction_count(1); multiple_bundles;
4777     src   : R(read);
4778     dst   : M(write)+1;
4779     IALU  : R;
4780     MS    : E;
4781 %}
4782 
4783 // Integer ALU nop operation
4784 pipe_class ialu_nop() %{
4785     single_instruction;
4786     IALU  : R;
4787 %}
4788 
4789 // Integer ALU nop operation
4790 pipe_class ialu_nop_A0() %{
4791     single_instruction;
4792     A0    : R;
4793 %}
4794 
4795 // Integer ALU nop operation
4796 pipe_class ialu_nop_A1() %{
4797     single_instruction;
4798     A1    : R;
4799 %}
4800 
4801 // Integer Multiply reg-reg operation
4802 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4803     single_instruction;
4804     dst   : E(write);
4805     src1  : R(read);
4806     src2  : R(read);
4807     MS    : R(5);
4808 %}
4809 
4810 // Integer Multiply reg-imm operation
4811 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4812     single_instruction;
4813     dst   : E(write);
4814     src1  : R(read);
4815     MS    : R(5);
4816 %}
4817 
4818 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4819     single_instruction;
4820     dst   : E(write)+4;
4821     src1  : R(read);
4822     src2  : R(read);
4823     MS    : R(6);
4824 %}
4825 
4826 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4827     single_instruction;
4828     dst   : E(write)+4;
4829     src1  : R(read);
4830     MS    : R(6);
4831 %}
4832 
4833 // Integer Divide reg-reg
4834 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4835     instruction_count(1); multiple_bundles;
4836     dst   : E(write);
4837     temp  : E(write);
4838     src1  : R(read);
4839     src2  : R(read);
4840     temp  : R(read);
4841     MS    : R(38);
4842 %}
4843 
4844 // Integer Divide reg-imm
4845 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4846     instruction_count(1); multiple_bundles;
4847     dst   : E(write);
4848     temp  : E(write);
4849     src1  : R(read);
4850     temp  : R(read);
4851     MS    : R(38);
4852 %}
4853 
4854 // Long Divide
4855 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4856     dst  : E(write)+71;
4857     src1 : R(read);
4858     src2 : R(read)+1;
4859     MS   : R(70);
4860 %}
4861 
4862 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4863     dst  : E(write)+71;
4864     src1 : R(read);
4865     MS   : R(70);
4866 %}
4867 
4868 // Floating Point Add Float
4869 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4870     single_instruction;
4871     dst   : X(write);
4872     src1  : E(read);
4873     src2  : E(read);
4874     FA    : R;
4875 %}
4876 
4877 // Floating Point Add Double
4878 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4879     single_instruction;
4880     dst   : X(write);
4881     src1  : E(read);
4882     src2  : E(read);
4883     FA    : R;
4884 %}
4885 
4886 // Floating Point Conditional Move based on integer flags
4887 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4888     single_instruction;
4889     dst   : X(write);
4890     src   : E(read);
4891     cr    : R(read);
4892     FA    : R(2);
4893     BR    : R(2);
4894 %}
4895 
4896 // Floating Point Conditional Move based on integer flags
4897 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4898     single_instruction;
4899     dst   : X(write);
4900     src   : E(read);
4901     cr    : R(read);
4902     FA    : R(2);
4903     BR    : R(2);
4904 %}
4905 
4906 // Floating Point Multiply Float
4907 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4908     single_instruction;
4909     dst   : X(write);
4910     src1  : E(read);
4911     src2  : E(read);
4912     FM    : R;
4913 %}
4914 
4915 // Floating Point Multiply Double
4916 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4917     single_instruction;
4918     dst   : X(write);
4919     src1  : E(read);
4920     src2  : E(read);
4921     FM    : R;
4922 %}
4923 
4924 // Floating Point Divide Float
4925 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4926     single_instruction;
4927     dst   : X(write);
4928     src1  : E(read);
4929     src2  : E(read);
4930     FM    : R;
4931     FDIV  : C(14);
4932 %}
4933 
4934 // Floating Point Divide Double
4935 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4936     single_instruction;
4937     dst   : X(write);
4938     src1  : E(read);
4939     src2  : E(read);
4940     FM    : R;
4941     FDIV  : C(17);
4942 %}
4943 
4944 // Floating Point Move/Negate/Abs Float
4945 pipe_class faddF_reg(regF dst, regF src) %{
4946     single_instruction;
4947     dst   : W(write);
4948     src   : E(read);
4949     FA    : R(1);
4950 %}
4951 
4952 // Floating Point Move/Negate/Abs Double
4953 pipe_class faddD_reg(regD dst, regD src) %{
4954     single_instruction;
4955     dst   : W(write);
4956     src   : E(read);
4957     FA    : R;
4958 %}
4959 
4960 // Floating Point Convert F->D
4961 pipe_class fcvtF2D(regD dst, regF src) %{
4962     single_instruction;
4963     dst   : X(write);
4964     src   : E(read);
4965     FA    : R;
4966 %}
4967 
4968 // Floating Point Convert I->D
4969 pipe_class fcvtI2D(regD dst, regF src) %{
4970     single_instruction;
4971     dst   : X(write);
4972     src   : E(read);
4973     FA    : R;
4974 %}
4975 
4976 // Floating Point Convert LHi->D
4977 pipe_class fcvtLHi2D(regD dst, regD src) %{
4978     single_instruction;
4979     dst   : X(write);
4980     src   : E(read);
4981     FA    : R;
4982 %}
4983 
4984 // Floating Point Convert L->D
4985 pipe_class fcvtL2D(regD dst, regF src) %{
4986     single_instruction;
4987     dst   : X(write);
4988     src   : E(read);
4989     FA    : R;
4990 %}
4991 
4992 // Floating Point Convert L->F
4993 pipe_class fcvtL2F(regD dst, regF src) %{
4994     single_instruction;
4995     dst   : X(write);
4996     src   : E(read);
4997     FA    : R;
4998 %}
4999 
5000 // Floating Point Convert D->F
5001 pipe_class fcvtD2F(regD dst, regF src) %{
5002     single_instruction;
5003     dst   : X(write);
5004     src   : E(read);
5005     FA    : R;
5006 %}
5007 
5008 // Floating Point Convert I->L
5009 pipe_class fcvtI2L(regD dst, regF src) %{
5010     single_instruction;
5011     dst   : X(write);
5012     src   : E(read);
5013     FA    : R;
5014 %}
5015 
5016 // Floating Point Convert D->F
5017 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
5018     instruction_count(1); multiple_bundles;
5019     dst   : X(write)+6;
5020     src   : E(read);
5021     FA    : R;
5022 %}
5023 
5024 // Floating Point Convert D->L
5025 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
5026     instruction_count(1); multiple_bundles;
5027     dst   : X(write)+6;
5028     src   : E(read);
5029     FA    : R;
5030 %}
5031 
5032 // Floating Point Convert F->I
5033 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
5034     instruction_count(1); multiple_bundles;
5035     dst   : X(write)+6;
5036     src   : E(read);
5037     FA    : R;
5038 %}
5039 
5040 // Floating Point Convert F->L
5041 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
5042     instruction_count(1); multiple_bundles;
5043     dst   : X(write)+6;
5044     src   : E(read);
5045     FA    : R;
5046 %}
5047 
5048 // Floating Point Convert I->F
5049 pipe_class fcvtI2F(regF dst, regF src) %{
5050     single_instruction;
5051     dst   : X(write);
5052     src   : E(read);
5053     FA    : R;
5054 %}
5055 
5056 // Floating Point Compare
5057 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5058     single_instruction;
5059     cr    : X(write);
5060     src1  : E(read);
5061     src2  : E(read);
5062     FA    : R;
5063 %}
5064 
5065 // Floating Point Compare
5066 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5067     single_instruction;
5068     cr    : X(write);
5069     src1  : E(read);
5070     src2  : E(read);
5071     FA    : R;
5072 %}
5073 
5074 // Floating Add Nop
5075 pipe_class fadd_nop() %{
5076     single_instruction;
5077     FA  : R;
5078 %}
5079 
5080 // Integer Store to Memory
5081 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5082     single_instruction;
5083     mem   : R(read);
5084     src   : C(read);
5085     MS    : R;
5086 %}
5087 
5088 // Integer Store to Memory
5089 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5090     single_instruction;
5091     mem   : R(read);
5092     src   : C(read);
5093     MS    : R;
5094 %}
5095 
5096 // Integer Store Zero to Memory
5097 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5098     single_instruction;
5099     mem   : R(read);
5100     MS    : R;
5101 %}
5102 
5103 // Special Stack Slot Store
5104 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5105     single_instruction;
5106     stkSlot : R(read);
5107     src     : C(read);
5108     MS      : R;
5109 %}
5110 
5111 // Special Stack Slot Store
5112 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5113     instruction_count(2); multiple_bundles;
5114     stkSlot : R(read);
5115     src     : C(read);
5116     MS      : R(2);
5117 %}
5118 
5119 // Float Store
5120 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5121     single_instruction;
5122     mem : R(read);
5123     src : C(read);
5124     MS  : R;
5125 %}
5126 
5127 // Float Store
5128 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5129     single_instruction;
5130     mem : R(read);
5131     MS  : R;
5132 %}
5133 
5134 // Double Store
5135 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5136     instruction_count(1);
5137     mem : R(read);
5138     src : C(read);
5139     MS  : R;
5140 %}
5141 
5142 // Double Store
5143 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5144     single_instruction;
5145     mem : R(read);
5146     MS  : R;
5147 %}
5148 
5149 // Special Stack Slot Float Store
5150 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5151     single_instruction;
5152     stkSlot : R(read);
5153     src     : C(read);
5154     MS      : R;
5155 %}
5156 
5157 // Special Stack Slot Double Store
5158 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5159     single_instruction;
5160     stkSlot : R(read);
5161     src     : C(read);
5162     MS      : R;
5163 %}
5164 
5165 // Integer Load (when sign bit propagation not needed)
5166 pipe_class iload_mem(iRegI dst, memory mem) %{
5167     single_instruction;
5168     mem : R(read);
5169     dst : C(write);
5170     MS  : R;
5171 %}
5172 
5173 // Integer Load from stack operand
5174 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5175     single_instruction;
5176     mem : R(read);
5177     dst : C(write);
5178     MS  : R;
5179 %}
5180 
5181 // Integer Load (when sign bit propagation or masking is needed)
5182 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5183     single_instruction;
5184     mem : R(read);
5185     dst : M(write);
5186     MS  : R;
5187 %}
5188 
5189 // Float Load
5190 pipe_class floadF_mem(regF dst, memory mem) %{
5191     single_instruction;
5192     mem : R(read);
5193     dst : M(write);
5194     MS  : R;
5195 %}
5196 
5197 // Float Load
5198 pipe_class floadD_mem(regD dst, memory mem) %{
5199     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5200     mem : R(read);
5201     dst : M(write);
5202     MS  : R;
5203 %}
5204 
5205 // Float Load
5206 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5207     single_instruction;
5208     stkSlot : R(read);
5209     dst : M(write);
5210     MS  : R;
5211 %}
5212 
5213 // Float Load
5214 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5215     single_instruction;
5216     stkSlot : R(read);
5217     dst : M(write);
5218     MS  : R;
5219 %}
5220 
5221 // Memory Nop
5222 pipe_class mem_nop() %{
5223     single_instruction;
5224     MS  : R;
5225 %}
5226 
5227 pipe_class sethi(iRegP dst, immI src) %{
5228     single_instruction;
5229     dst  : E(write);
5230     IALU : R;
5231 %}
5232 
5233 pipe_class loadPollP(iRegP poll) %{
5234     single_instruction;
5235     poll : R(read);
5236     MS   : R;
5237 %}
5238 
5239 pipe_class br(Universe br, label labl) %{
5240     single_instruction_with_delay_slot;
5241     BR  : R;
5242 %}
5243 
5244 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5245     single_instruction_with_delay_slot;
5246     cr    : E(read);
5247     BR    : R;
5248 %}
5249 
5250 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5251     single_instruction_with_delay_slot;
5252     op1 : E(read);
5253     BR  : R;
5254     MS  : R;
5255 %}
5256 
5257 // Compare and branch
5258 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5259     instruction_count(2); has_delay_slot;
5260     cr    : E(write);
5261     src1  : R(read);
5262     src2  : R(read);
5263     IALU  : R;
5264     BR    : R;
5265 %}
5266 
5267 // Compare and branch
5268 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5269     instruction_count(2); has_delay_slot;
5270     cr    : E(write);
5271     src1  : R(read);
5272     IALU  : R;
5273     BR    : R;
5274 %}
5275 
5276 // Compare and branch using cbcond
5277 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5278     single_instruction;
5279     src1  : E(read);
5280     src2  : E(read);
5281     IALU  : R;
5282     BR    : R;
5283 %}
5284 
5285 // Compare and branch using cbcond
5286 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5287     single_instruction;
5288     src1  : E(read);
5289     IALU  : R;
5290     BR    : R;
5291 %}
5292 
5293 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5294     single_instruction_with_delay_slot;
5295     cr    : E(read);
5296     BR    : R;
5297 %}
5298 
5299 pipe_class br_nop() %{
5300     single_instruction;
5301     BR  : R;
5302 %}
5303 
5304 pipe_class simple_call(method meth) %{
5305     instruction_count(2); multiple_bundles; force_serialization;
5306     fixed_latency(100);
5307     BR  : R(1);
5308     MS  : R(1);
5309     A0  : R(1);
5310 %}
5311 
5312 pipe_class compiled_call(method meth) %{
5313     instruction_count(1); multiple_bundles; force_serialization;
5314     fixed_latency(100);
5315     MS  : R(1);
5316 %}
5317 
5318 pipe_class call(method meth) %{
5319     instruction_count(0); multiple_bundles; force_serialization;
5320     fixed_latency(100);
5321 %}
5322 
5323 pipe_class tail_call(Universe ignore, label labl) %{
5324     single_instruction; has_delay_slot;
5325     fixed_latency(100);
5326     BR  : R(1);
5327     MS  : R(1);
5328 %}
5329 
5330 pipe_class ret(Universe ignore) %{
5331     single_instruction; has_delay_slot;
5332     BR  : R(1);
5333     MS  : R(1);
5334 %}
5335 
5336 pipe_class ret_poll(g3RegP poll) %{
5337     instruction_count(3); has_delay_slot;
5338     poll : E(read);
5339     MS   : R;
5340 %}
5341 
5342 // The real do-nothing guy
5343 pipe_class empty( ) %{
5344     instruction_count(0);
5345 %}
5346 
5347 pipe_class long_memory_op() %{
5348     instruction_count(0); multiple_bundles; force_serialization;
5349     fixed_latency(25);
5350     MS  : R(1);
5351 %}
5352 
5353 // Check-cast
5354 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5355     array : R(read);
5356     match  : R(read);
5357     IALU   : R(2);
5358     BR     : R(2);
5359     MS     : R;
5360 %}
5361 
5362 // Convert FPU flags into +1,0,-1
5363 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5364     src1  : E(read);
5365     src2  : E(read);
5366     dst   : E(write);
5367     FA    : R;
5368     MS    : R(2);
5369     BR    : R(2);
5370 %}
5371 
5372 // Compare for p < q, and conditionally add y
5373 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5374     p     : E(read);
5375     q     : E(read);
5376     y     : E(read);
5377     IALU  : R(3)
5378 %}
5379 
5380 // Perform a compare, then move conditionally in a branch delay slot.
5381 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5382     src2   : E(read);
5383     srcdst : E(read);
5384     IALU   : R;
5385     BR     : R;
5386 %}
5387 
5388 // Define the class for the Nop node
5389 define %{
5390    MachNop = ialu_nop;
5391 %}
5392 
5393 %}
5394 
5395 //----------INSTRUCTIONS-------------------------------------------------------
5396 
5397 //------------Special Stack Slot instructions - no match rules-----------------
5398 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5399   // No match rule to avoid chain rule match.
5400   effect(DEF dst, USE src);
5401   ins_cost(MEMORY_REF_COST);
5402   size(4);
5403   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5404   opcode(Assembler::ldf_op3);
5405   ins_encode(simple_form3_mem_reg(src, dst));
5406   ins_pipe(floadF_stk);
5407 %}
5408 
5409 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5410   // No match rule to avoid chain rule match.
5411   effect(DEF dst, USE src);
5412   ins_cost(MEMORY_REF_COST);
5413   size(4);
5414   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5415   opcode(Assembler::lddf_op3);
5416   ins_encode(simple_form3_mem_reg(src, dst));
5417   ins_pipe(floadD_stk);
5418 %}
5419 
5420 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5421   // No match rule to avoid chain rule match.
5422   effect(DEF dst, USE src);
5423   ins_cost(MEMORY_REF_COST);
5424   size(4);
5425   format %{ "STF    $src,$dst\t! regF to stkI" %}
5426   opcode(Assembler::stf_op3);
5427   ins_encode(simple_form3_mem_reg(dst, src));
5428   ins_pipe(fstoreF_stk_reg);
5429 %}
5430 
5431 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5432   // No match rule to avoid chain rule match.
5433   effect(DEF dst, USE src);
5434   ins_cost(MEMORY_REF_COST);
5435   size(4);
5436   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5437   opcode(Assembler::stdf_op3);
5438   ins_encode(simple_form3_mem_reg(dst, src));
5439   ins_pipe(fstoreD_stk_reg);
5440 %}
5441 
5442 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5443   effect(DEF dst, USE src);
5444   ins_cost(MEMORY_REF_COST*2);
5445   size(8);
5446   format %{ "STW    $src,$dst.hi\t! long\n\t"
5447             "STW    R_G0,$dst.lo" %}
5448   opcode(Assembler::stw_op3);
5449   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5450   ins_pipe(lstoreI_stk_reg);
5451 %}
5452 
5453 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5454   // No match rule to avoid chain rule match.
5455   effect(DEF dst, USE src);
5456   ins_cost(MEMORY_REF_COST);
5457   size(4);
5458   format %{ "STX    $src,$dst\t! regL to stkD" %}
5459   opcode(Assembler::stx_op3);
5460   ins_encode(simple_form3_mem_reg( dst, src ) );
5461   ins_pipe(istore_stk_reg);
5462 %}
5463 
5464 //---------- Chain stack slots between similar types --------
5465 
5466 // Load integer from stack slot
5467 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5468   match(Set dst src);
5469   ins_cost(MEMORY_REF_COST);
5470 
5471   size(4);
5472   format %{ "LDUW   $src,$dst\t!stk" %}
5473   opcode(Assembler::lduw_op3);
5474   ins_encode(simple_form3_mem_reg( src, dst ) );
5475   ins_pipe(iload_mem);
5476 %}
5477 
5478 // Store integer to stack slot
5479 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5480   match(Set dst src);
5481   ins_cost(MEMORY_REF_COST);
5482 
5483   size(4);
5484   format %{ "STW    $src,$dst\t!stk" %}
5485   opcode(Assembler::stw_op3);
5486   ins_encode(simple_form3_mem_reg( dst, src ) );
5487   ins_pipe(istore_mem_reg);
5488 %}
5489 
5490 // Load long from stack slot
5491 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5492   match(Set dst src);
5493 
5494   ins_cost(MEMORY_REF_COST);
5495   size(4);
5496   format %{ "LDX    $src,$dst\t! long" %}
5497   opcode(Assembler::ldx_op3);
5498   ins_encode(simple_form3_mem_reg( src, dst ) );
5499   ins_pipe(iload_mem);
5500 %}
5501 
5502 // Store long to stack slot
5503 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5504   match(Set dst src);
5505 
5506   ins_cost(MEMORY_REF_COST);
5507   size(4);
5508   format %{ "STX    $src,$dst\t! long" %}
5509   opcode(Assembler::stx_op3);
5510   ins_encode(simple_form3_mem_reg( dst, src ) );
5511   ins_pipe(istore_mem_reg);
5512 %}
5513 
5514 #ifdef _LP64
5515 // Load pointer from stack slot, 64-bit encoding
5516 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5517   match(Set dst src);
5518   ins_cost(MEMORY_REF_COST);
5519   size(4);
5520   format %{ "LDX    $src,$dst\t!ptr" %}
5521   opcode(Assembler::ldx_op3);
5522   ins_encode(simple_form3_mem_reg( src, dst ) );
5523   ins_pipe(iload_mem);
5524 %}
5525 
5526 // Store pointer to stack slot
5527 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5528   match(Set dst src);
5529   ins_cost(MEMORY_REF_COST);
5530   size(4);
5531   format %{ "STX    $src,$dst\t!ptr" %}
5532   opcode(Assembler::stx_op3);
5533   ins_encode(simple_form3_mem_reg( dst, src ) );
5534   ins_pipe(istore_mem_reg);
5535 %}
5536 #else // _LP64
5537 // Load pointer from stack slot, 32-bit encoding
5538 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5539   match(Set dst src);
5540   ins_cost(MEMORY_REF_COST);
5541   format %{ "LDUW   $src,$dst\t!ptr" %}
5542   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5543   ins_encode(simple_form3_mem_reg( src, dst ) );
5544   ins_pipe(iload_mem);
5545 %}
5546 
5547 // Store pointer to stack slot
5548 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5549   match(Set dst src);
5550   ins_cost(MEMORY_REF_COST);
5551   format %{ "STW    $src,$dst\t!ptr" %}
5552   opcode(Assembler::stw_op3, Assembler::ldst_op);
5553   ins_encode(simple_form3_mem_reg( dst, src ) );
5554   ins_pipe(istore_mem_reg);
5555 %}
5556 #endif // _LP64
5557 
5558 //------------Special Nop instructions for bundling - no match rules-----------
5559 // Nop using the A0 functional unit
5560 instruct Nop_A0() %{
5561   ins_cost(0);
5562 
5563   format %{ "NOP    ! Alu Pipeline" %}
5564   opcode(Assembler::or_op3, Assembler::arith_op);
5565   ins_encode( form2_nop() );
5566   ins_pipe(ialu_nop_A0);
5567 %}
5568 
5569 // Nop using the A1 functional unit
5570 instruct Nop_A1( ) %{
5571   ins_cost(0);
5572 
5573   format %{ "NOP    ! Alu Pipeline" %}
5574   opcode(Assembler::or_op3, Assembler::arith_op);
5575   ins_encode( form2_nop() );
5576   ins_pipe(ialu_nop_A1);
5577 %}
5578 
5579 // Nop using the memory functional unit
5580 instruct Nop_MS( ) %{
5581   ins_cost(0);
5582 
5583   format %{ "NOP    ! Memory Pipeline" %}
5584   ins_encode( emit_mem_nop );
5585   ins_pipe(mem_nop);
5586 %}
5587 
5588 // Nop using the floating add functional unit
5589 instruct Nop_FA( ) %{
5590   ins_cost(0);
5591 
5592   format %{ "NOP    ! Floating Add Pipeline" %}
5593   ins_encode( emit_fadd_nop );
5594   ins_pipe(fadd_nop);
5595 %}
5596 
5597 // Nop using the branch functional unit
5598 instruct Nop_BR( ) %{
5599   ins_cost(0);
5600 
5601   format %{ "NOP    ! Branch Pipeline" %}
5602   ins_encode( emit_br_nop );
5603   ins_pipe(br_nop);
5604 %}
5605 
5606 //----------Load/Store/Move Instructions---------------------------------------
5607 //----------Load Instructions--------------------------------------------------
5608 // Load Byte (8bit signed)
5609 instruct loadB(iRegI dst, memory mem) %{
5610   match(Set dst (LoadB mem));
5611   ins_cost(MEMORY_REF_COST);
5612 
5613   size(4);
5614   format %{ "LDSB   $mem,$dst\t! byte" %}
5615   ins_encode %{
5616     __ ldsb($mem$$Address, $dst$$Register);
5617   %}
5618   ins_pipe(iload_mask_mem);
5619 %}
5620 
5621 // Load Byte (8bit signed) into a Long Register
5622 instruct loadB2L(iRegL dst, memory mem) %{
5623   match(Set dst (ConvI2L (LoadB mem)));
5624   ins_cost(MEMORY_REF_COST);
5625 
5626   size(4);
5627   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5628   ins_encode %{
5629     __ ldsb($mem$$Address, $dst$$Register);
5630   %}
5631   ins_pipe(iload_mask_mem);
5632 %}
5633 
5634 // Load Unsigned Byte (8bit UNsigned) into an int reg
5635 instruct loadUB(iRegI dst, memory mem) %{
5636   match(Set dst (LoadUB mem));
5637   ins_cost(MEMORY_REF_COST);
5638 
5639   size(4);
5640   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5641   ins_encode %{
5642     __ ldub($mem$$Address, $dst$$Register);
5643   %}
5644   ins_pipe(iload_mem);
5645 %}
5646 
5647 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5648 instruct loadUB2L(iRegL dst, memory mem) %{
5649   match(Set dst (ConvI2L (LoadUB mem)));
5650   ins_cost(MEMORY_REF_COST);
5651 
5652   size(4);
5653   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5654   ins_encode %{
5655     __ ldub($mem$$Address, $dst$$Register);
5656   %}
5657   ins_pipe(iload_mem);
5658 %}
5659 
5660 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5661 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5662   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5663   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5664 
5665   size(2*4);
5666   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5667             "AND    $dst,$mask,$dst" %}
5668   ins_encode %{
5669     __ ldub($mem$$Address, $dst$$Register);
5670     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5671   %}
5672   ins_pipe(iload_mem);
5673 %}
5674 
5675 // Load Short (16bit signed)
5676 instruct loadS(iRegI dst, memory mem) %{
5677   match(Set dst (LoadS mem));
5678   ins_cost(MEMORY_REF_COST);
5679 
5680   size(4);
5681   format %{ "LDSH   $mem,$dst\t! short" %}
5682   ins_encode %{
5683     __ ldsh($mem$$Address, $dst$$Register);
5684   %}
5685   ins_pipe(iload_mask_mem);
5686 %}
5687 
5688 // Load Short (16 bit signed) to Byte (8 bit signed)
5689 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5690   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5691   ins_cost(MEMORY_REF_COST);
5692 
5693   size(4);
5694 
5695   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5696   ins_encode %{
5697     __ ldsb($mem$$Address, $dst$$Register, 1);
5698   %}
5699   ins_pipe(iload_mask_mem);
5700 %}
5701 
5702 // Load Short (16bit signed) into a Long Register
5703 instruct loadS2L(iRegL dst, memory mem) %{
5704   match(Set dst (ConvI2L (LoadS mem)));
5705   ins_cost(MEMORY_REF_COST);
5706 
5707   size(4);
5708   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5709   ins_encode %{
5710     __ ldsh($mem$$Address, $dst$$Register);
5711   %}
5712   ins_pipe(iload_mask_mem);
5713 %}
5714 
5715 // Load Unsigned Short/Char (16bit UNsigned)
5716 instruct loadUS(iRegI dst, memory mem) %{
5717   match(Set dst (LoadUS mem));
5718   ins_cost(MEMORY_REF_COST);
5719 
5720   size(4);
5721   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5722   ins_encode %{
5723     __ lduh($mem$$Address, $dst$$Register);
5724   %}
5725   ins_pipe(iload_mem);
5726 %}
5727 
5728 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5729 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5730   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5731   ins_cost(MEMORY_REF_COST);
5732 
5733   size(4);
5734   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5735   ins_encode %{
5736     __ ldsb($mem$$Address, $dst$$Register, 1);
5737   %}
5738   ins_pipe(iload_mask_mem);
5739 %}
5740 
5741 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5742 instruct loadUS2L(iRegL dst, memory mem) %{
5743   match(Set dst (ConvI2L (LoadUS mem)));
5744   ins_cost(MEMORY_REF_COST);
5745 
5746   size(4);
5747   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5748   ins_encode %{
5749     __ lduh($mem$$Address, $dst$$Register);
5750   %}
5751   ins_pipe(iload_mem);
5752 %}
5753 
5754 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5755 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5756   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5757   ins_cost(MEMORY_REF_COST);
5758 
5759   size(4);
5760   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5761   ins_encode %{
5762     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5763   %}
5764   ins_pipe(iload_mem);
5765 %}
5766 
5767 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5768 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5769   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5770   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5771 
5772   size(2*4);
5773   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5774             "AND    $dst,$mask,$dst" %}
5775   ins_encode %{
5776     Register Rdst = $dst$$Register;
5777     __ lduh($mem$$Address, Rdst);
5778     __ and3(Rdst, $mask$$constant, Rdst);
5779   %}
5780   ins_pipe(iload_mem);
5781 %}
5782 
5783 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5784 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5785   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5786   effect(TEMP dst, TEMP tmp);
5787   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5788 
5789   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5790             "SET    $mask,$tmp\n\t"
5791             "AND    $dst,$tmp,$dst" %}
5792   ins_encode %{
5793     Register Rdst = $dst$$Register;
5794     Register Rtmp = $tmp$$Register;
5795     __ lduh($mem$$Address, Rdst);
5796     __ set($mask$$constant, Rtmp);
5797     __ and3(Rdst, Rtmp, Rdst);
5798   %}
5799   ins_pipe(iload_mem);
5800 %}
5801 
5802 // Load Integer
5803 instruct loadI(iRegI dst, memory mem) %{
5804   match(Set dst (LoadI mem));
5805   ins_cost(MEMORY_REF_COST);
5806 
5807   size(4);
5808   format %{ "LDUW   $mem,$dst\t! int" %}
5809   ins_encode %{
5810     __ lduw($mem$$Address, $dst$$Register);
5811   %}
5812   ins_pipe(iload_mem);
5813 %}
5814 
5815 // Load Integer to Byte (8 bit signed)
5816 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5817   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5818   ins_cost(MEMORY_REF_COST);
5819 
5820   size(4);
5821 
5822   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5823   ins_encode %{
5824     __ ldsb($mem$$Address, $dst$$Register, 3);
5825   %}
5826   ins_pipe(iload_mask_mem);
5827 %}
5828 
5829 // Load Integer to Unsigned Byte (8 bit UNsigned)
5830 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5831   match(Set dst (AndI (LoadI mem) mask));
5832   ins_cost(MEMORY_REF_COST);
5833 
5834   size(4);
5835 
5836   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5837   ins_encode %{
5838     __ ldub($mem$$Address, $dst$$Register, 3);
5839   %}
5840   ins_pipe(iload_mask_mem);
5841 %}
5842 
5843 // Load Integer to Short (16 bit signed)
5844 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5845   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5846   ins_cost(MEMORY_REF_COST);
5847 
5848   size(4);
5849 
5850   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5851   ins_encode %{
5852     __ ldsh($mem$$Address, $dst$$Register, 2);
5853   %}
5854   ins_pipe(iload_mask_mem);
5855 %}
5856 
5857 // Load Integer to Unsigned Short (16 bit UNsigned)
5858 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5859   match(Set dst (AndI (LoadI mem) mask));
5860   ins_cost(MEMORY_REF_COST);
5861 
5862   size(4);
5863 
5864   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5865   ins_encode %{
5866     __ lduh($mem$$Address, $dst$$Register, 2);
5867   %}
5868   ins_pipe(iload_mask_mem);
5869 %}
5870 
5871 // Load Integer into a Long Register
5872 instruct loadI2L(iRegL dst, memory mem) %{
5873   match(Set dst (ConvI2L (LoadI mem)));
5874   ins_cost(MEMORY_REF_COST);
5875 
5876   size(4);
5877   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5878   ins_encode %{
5879     __ ldsw($mem$$Address, $dst$$Register);
5880   %}
5881   ins_pipe(iload_mask_mem);
5882 %}
5883 
5884 // Load Integer with mask 0xFF into a Long Register
5885 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5886   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5887   ins_cost(MEMORY_REF_COST);
5888 
5889   size(4);
5890   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5891   ins_encode %{
5892     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5893   %}
5894   ins_pipe(iload_mem);
5895 %}
5896 
5897 // Load Integer with mask 0xFFFF into a Long Register
5898 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5899   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5900   ins_cost(MEMORY_REF_COST);
5901 
5902   size(4);
5903   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5904   ins_encode %{
5905     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5906   %}
5907   ins_pipe(iload_mem);
5908 %}
5909 
5910 // Load Integer with a 12-bit mask into a Long Register
5911 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5912   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5913   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5914 
5915   size(2*4);
5916   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5917             "AND    $dst,$mask,$dst" %}
5918   ins_encode %{
5919     Register Rdst = $dst$$Register;
5920     __ lduw($mem$$Address, Rdst);
5921     __ and3(Rdst, $mask$$constant, Rdst);
5922   %}
5923   ins_pipe(iload_mem);
5924 %}
5925 
5926 // Load Integer with a 31-bit mask into a Long Register
5927 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5928   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5929   effect(TEMP dst, TEMP tmp);
5930   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5931 
5932   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5933             "SET    $mask,$tmp\n\t"
5934             "AND    $dst,$tmp,$dst" %}
5935   ins_encode %{
5936     Register Rdst = $dst$$Register;
5937     Register Rtmp = $tmp$$Register;
5938     __ lduw($mem$$Address, Rdst);
5939     __ set($mask$$constant, Rtmp);
5940     __ and3(Rdst, Rtmp, Rdst);
5941   %}
5942   ins_pipe(iload_mem);
5943 %}
5944 
5945 // Load Unsigned Integer into a Long Register
5946 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5947   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5948   ins_cost(MEMORY_REF_COST);
5949 
5950   size(4);
5951   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5952   ins_encode %{
5953     __ lduw($mem$$Address, $dst$$Register);
5954   %}
5955   ins_pipe(iload_mem);
5956 %}
5957 
5958 // Load Long - aligned
5959 instruct loadL(iRegL dst, memory mem ) %{
5960   match(Set dst (LoadL mem));
5961   ins_cost(MEMORY_REF_COST);
5962 
5963   size(4);
5964   format %{ "LDX    $mem,$dst\t! long" %}
5965   ins_encode %{
5966     __ ldx($mem$$Address, $dst$$Register);
5967   %}
5968   ins_pipe(iload_mem);
5969 %}
5970 
5971 // Load Long - UNaligned
5972 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5973   match(Set dst (LoadL_unaligned mem));
5974   effect(KILL tmp);
5975   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5976   size(16);
5977   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5978           "\tLDUW   $mem  ,$dst\n"
5979           "\tSLLX   #32, $dst, $dst\n"
5980           "\tOR     $dst, R_O7, $dst" %}
5981   opcode(Assembler::lduw_op3);
5982   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5983   ins_pipe(iload_mem);
5984 %}
5985 
5986 // Load Range
5987 instruct loadRange(iRegI dst, memory mem) %{
5988   match(Set dst (LoadRange mem));
5989   ins_cost(MEMORY_REF_COST);
5990 
5991   size(4);
5992   format %{ "LDUW   $mem,$dst\t! range" %}
5993   opcode(Assembler::lduw_op3);
5994   ins_encode(simple_form3_mem_reg( mem, dst ) );
5995   ins_pipe(iload_mem);
5996 %}
5997 
5998 // Load Integer into %f register (for fitos/fitod)
5999 instruct loadI_freg(regF dst, memory mem) %{
6000   match(Set dst (LoadI mem));
6001   ins_cost(MEMORY_REF_COST);
6002   size(4);
6003 
6004   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
6005   opcode(Assembler::ldf_op3);
6006   ins_encode(simple_form3_mem_reg( mem, dst ) );
6007   ins_pipe(floadF_mem);
6008 %}
6009 
6010 // Load Pointer
6011 instruct loadP(iRegP dst, memory mem) %{
6012   match(Set dst (LoadP mem));
6013   ins_cost(MEMORY_REF_COST);
6014   size(4);
6015 
6016 #ifndef _LP64
6017   format %{ "LDUW   $mem,$dst\t! ptr" %}
6018   ins_encode %{
6019     __ lduw($mem$$Address, $dst$$Register);
6020   %}
6021 #else
6022   format %{ "LDX    $mem,$dst\t! ptr" %}
6023   ins_encode %{
6024     __ ldx($mem$$Address, $dst$$Register);
6025   %}
6026 #endif
6027   ins_pipe(iload_mem);
6028 %}
6029 
6030 // Load Compressed Pointer
6031 instruct loadN(iRegN dst, memory mem) %{
6032   match(Set dst (LoadN mem));
6033   ins_cost(MEMORY_REF_COST);
6034   size(4);
6035 
6036   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
6037   ins_encode %{
6038     __ lduw($mem$$Address, $dst$$Register);
6039   %}
6040   ins_pipe(iload_mem);
6041 %}
6042 
6043 // Load Klass Pointer
6044 instruct loadKlass(iRegP dst, memory mem) %{
6045   match(Set dst (LoadKlass mem));
6046   ins_cost(MEMORY_REF_COST);
6047   size(4);
6048 
6049 #ifndef _LP64
6050   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6051   ins_encode %{
6052     __ lduw($mem$$Address, $dst$$Register);
6053   %}
6054 #else
6055   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6056   ins_encode %{
6057     __ ldx($mem$$Address, $dst$$Register);
6058   %}
6059 #endif
6060   ins_pipe(iload_mem);
6061 %}
6062 
6063 // Load narrow Klass Pointer
6064 instruct loadNKlass(iRegN dst, memory mem) %{
6065   match(Set dst (LoadNKlass mem));
6066   ins_cost(MEMORY_REF_COST);
6067   size(4);
6068 
6069   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6070   ins_encode %{
6071     __ lduw($mem$$Address, $dst$$Register);
6072   %}
6073   ins_pipe(iload_mem);
6074 %}
6075 
6076 // Load Double
6077 instruct loadD(regD dst, memory mem) %{
6078   match(Set dst (LoadD mem));
6079   ins_cost(MEMORY_REF_COST);
6080 
6081   size(4);
6082   format %{ "LDDF   $mem,$dst" %}
6083   opcode(Assembler::lddf_op3);
6084   ins_encode(simple_form3_mem_reg( mem, dst ) );
6085   ins_pipe(floadD_mem);
6086 %}
6087 
6088 // Load Double - UNaligned
6089 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6090   match(Set dst (LoadD_unaligned mem));
6091   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6092   size(8);
6093   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6094           "\tLDF    $mem+4,$dst.lo\t!" %}
6095   opcode(Assembler::ldf_op3);
6096   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6097   ins_pipe(iload_mem);
6098 %}
6099 
6100 // Load Float
6101 instruct loadF(regF dst, memory mem) %{
6102   match(Set dst (LoadF mem));
6103   ins_cost(MEMORY_REF_COST);
6104 
6105   size(4);
6106   format %{ "LDF    $mem,$dst" %}
6107   opcode(Assembler::ldf_op3);
6108   ins_encode(simple_form3_mem_reg( mem, dst ) );
6109   ins_pipe(floadF_mem);
6110 %}
6111 
6112 // Load Constant
6113 instruct loadConI( iRegI dst, immI src ) %{
6114   match(Set dst src);
6115   ins_cost(DEFAULT_COST * 3/2);
6116   format %{ "SET    $src,$dst" %}
6117   ins_encode( Set32(src, dst) );
6118   ins_pipe(ialu_hi_lo_reg);
6119 %}
6120 
6121 instruct loadConI13( iRegI dst, immI13 src ) %{
6122   match(Set dst src);
6123 
6124   size(4);
6125   format %{ "MOV    $src,$dst" %}
6126   ins_encode( Set13( src, dst ) );
6127   ins_pipe(ialu_imm);
6128 %}
6129 
6130 #ifndef _LP64
6131 instruct loadConP(iRegP dst, immP con) %{
6132   match(Set dst con);
6133   ins_cost(DEFAULT_COST * 3/2);
6134   format %{ "SET    $con,$dst\t!ptr" %}
6135   ins_encode %{
6136     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6137       intptr_t val = $con$$constant;
6138     if (constant_reloc == relocInfo::oop_type) {
6139       __ set_oop_constant((jobject) val, $dst$$Register);
6140     } else if (constant_reloc == relocInfo::metadata_type) {
6141       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6142     } else {          // non-oop pointers, e.g. card mark base, heap top
6143       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6144       __ set(val, $dst$$Register);
6145     }
6146   %}
6147   ins_pipe(loadConP);
6148 %}
6149 #else
6150 instruct loadConP_set(iRegP dst, immP_set con) %{
6151   match(Set dst con);
6152   ins_cost(DEFAULT_COST * 3/2);
6153   format %{ "SET    $con,$dst\t! ptr" %}
6154   ins_encode %{
6155     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6156       intptr_t val = $con$$constant;
6157     if (constant_reloc == relocInfo::oop_type) {
6158       __ set_oop_constant((jobject) val, $dst$$Register);
6159     } else if (constant_reloc == relocInfo::metadata_type) {
6160       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6161     } else {          // non-oop pointers, e.g. card mark base, heap top
6162       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6163       __ set(val, $dst$$Register);
6164     }
6165   %}
6166   ins_pipe(loadConP);
6167 %}
6168 
6169 instruct loadConP_load(iRegP dst, immP_load con) %{
6170   match(Set dst con);
6171   ins_cost(MEMORY_REF_COST);
6172   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6173   ins_encode %{
6174     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6175     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6176   %}
6177   ins_pipe(loadConP);
6178 %}
6179 
6180 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6181   match(Set dst con);
6182   ins_cost(DEFAULT_COST * 3/2);
6183   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6184   ins_encode %{
6185     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
6186       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
6187     } else {
6188       __ set($con$$constant, $dst$$Register);
6189     }
6190   %}
6191   ins_pipe(loadConP);
6192 %}
6193 #endif // _LP64
6194 
6195 instruct loadConP0(iRegP dst, immP0 src) %{
6196   match(Set dst src);
6197 
6198   size(4);
6199   format %{ "CLR    $dst\t!ptr" %}
6200   ins_encode %{
6201     __ clr($dst$$Register);
6202   %}
6203   ins_pipe(ialu_imm);
6204 %}
6205 
6206 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6207   match(Set dst src);
6208   ins_cost(DEFAULT_COST);
6209   format %{ "SET    $src,$dst\t!ptr" %}
6210   ins_encode %{
6211     AddressLiteral polling_page(os::get_polling_page());
6212     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6213   %}
6214   ins_pipe(loadConP_poll);
6215 %}
6216 
6217 instruct loadConN0(iRegN dst, immN0 src) %{
6218   match(Set dst src);
6219 
6220   size(4);
6221   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6222   ins_encode %{
6223     __ clr($dst$$Register);
6224   %}
6225   ins_pipe(ialu_imm);
6226 %}
6227 
6228 instruct loadConN(iRegN dst, immN src) %{
6229   match(Set dst src);
6230   ins_cost(DEFAULT_COST * 3/2);
6231   format %{ "SET    $src,$dst\t! compressed ptr" %}
6232   ins_encode %{
6233     Register dst = $dst$$Register;
6234     __ set_narrow_oop((jobject)$src$$constant, dst);
6235   %}
6236   ins_pipe(ialu_hi_lo_reg);
6237 %}
6238 
6239 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6240   match(Set dst src);
6241   ins_cost(DEFAULT_COST * 3/2);
6242   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6243   ins_encode %{
6244     Register dst = $dst$$Register;
6245     __ set_narrow_klass((Klass*)$src$$constant, dst);
6246   %}
6247   ins_pipe(ialu_hi_lo_reg);
6248 %}
6249 
6250 // Materialize long value (predicated by immL_cheap).
6251 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6252   match(Set dst con);
6253   effect(KILL tmp);
6254   ins_cost(DEFAULT_COST * 3);
6255   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6256   ins_encode %{
6257     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6258   %}
6259   ins_pipe(loadConL);
6260 %}
6261 
6262 // Load long value from constant table (predicated by immL_expensive).
6263 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6264   match(Set dst con);
6265   ins_cost(MEMORY_REF_COST);
6266   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6267   ins_encode %{
6268       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6269     __ ldx($constanttablebase, con_offset, $dst$$Register);
6270   %}
6271   ins_pipe(loadConL);
6272 %}
6273 
6274 instruct loadConL0( iRegL dst, immL0 src ) %{
6275   match(Set dst src);
6276   ins_cost(DEFAULT_COST);
6277   size(4);
6278   format %{ "CLR    $dst\t! long" %}
6279   ins_encode( Set13( src, dst ) );
6280   ins_pipe(ialu_imm);
6281 %}
6282 
6283 instruct loadConL13( iRegL dst, immL13 src ) %{
6284   match(Set dst src);
6285   ins_cost(DEFAULT_COST * 2);
6286 
6287   size(4);
6288   format %{ "MOV    $src,$dst\t! long" %}
6289   ins_encode( Set13( src, dst ) );
6290   ins_pipe(ialu_imm);
6291 %}
6292 
6293 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6294   match(Set dst con);
6295   effect(KILL tmp);
6296   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6297   ins_encode %{
6298       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6299     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6300   %}
6301   ins_pipe(loadConFD);
6302 %}
6303 
6304 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6305   match(Set dst con);
6306   effect(KILL tmp);
6307   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6308   ins_encode %{
6309     // XXX This is a quick fix for 6833573.
6310     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6311     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6312     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6313   %}
6314   ins_pipe(loadConFD);
6315 %}
6316 
6317 // Prefetch instructions for allocation.
6318 // Must be safe to execute with invalid address (cannot fault).
6319 
6320 instruct prefetchAlloc( memory mem ) %{
6321   predicate(AllocatePrefetchInstr == 0);
6322   match( PrefetchAllocation mem );
6323   ins_cost(MEMORY_REF_COST);
6324   size(4);
6325 
6326   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6327   opcode(Assembler::prefetch_op3);
6328   ins_encode( form3_mem_prefetch_write( mem ) );
6329   ins_pipe(iload_mem);
6330 %}
6331 
6332 // Use BIS instruction to prefetch for allocation.
6333 // Could fault, need space at the end of TLAB.
6334 instruct prefetchAlloc_bis( iRegP dst ) %{
6335   predicate(AllocatePrefetchInstr == 1);
6336   match( PrefetchAllocation dst );
6337   ins_cost(MEMORY_REF_COST);
6338   size(4);
6339 
6340   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6341   ins_encode %{
6342     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6343   %}
6344   ins_pipe(istore_mem_reg);
6345 %}
6346 
6347 // Next code is used for finding next cache line address to prefetch.
6348 #ifndef _LP64
6349 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6350   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6351   ins_cost(DEFAULT_COST);
6352   size(4);
6353 
6354   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6355   ins_encode %{
6356     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6357   %}
6358   ins_pipe(ialu_reg_imm);
6359 %}
6360 #else
6361 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6362   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6363   ins_cost(DEFAULT_COST);
6364   size(4);
6365 
6366   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6367   ins_encode %{
6368     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6369   %}
6370   ins_pipe(ialu_reg_imm);
6371 %}
6372 #endif
6373 
6374 //----------Store Instructions-------------------------------------------------
6375 // Store Byte
6376 instruct storeB(memory mem, iRegI src) %{
6377   match(Set mem (StoreB mem src));
6378   ins_cost(MEMORY_REF_COST);
6379 
6380   size(4);
6381   format %{ "STB    $src,$mem\t! byte" %}
6382   opcode(Assembler::stb_op3);
6383   ins_encode(simple_form3_mem_reg( mem, src ) );
6384   ins_pipe(istore_mem_reg);
6385 %}
6386 
6387 instruct storeB0(memory mem, immI0 src) %{
6388   match(Set mem (StoreB mem src));
6389   ins_cost(MEMORY_REF_COST);
6390 
6391   size(4);
6392   format %{ "STB    $src,$mem\t! byte" %}
6393   opcode(Assembler::stb_op3);
6394   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6395   ins_pipe(istore_mem_zero);
6396 %}
6397 
6398 instruct storeCM0(memory mem, immI0 src) %{
6399   match(Set mem (StoreCM mem src));
6400   ins_cost(MEMORY_REF_COST);
6401 
6402   size(4);
6403   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6404   opcode(Assembler::stb_op3);
6405   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6406   ins_pipe(istore_mem_zero);
6407 %}
6408 
6409 // Store Char/Short
6410 instruct storeC(memory mem, iRegI src) %{
6411   match(Set mem (StoreC mem src));
6412   ins_cost(MEMORY_REF_COST);
6413 
6414   size(4);
6415   format %{ "STH    $src,$mem\t! short" %}
6416   opcode(Assembler::sth_op3);
6417   ins_encode(simple_form3_mem_reg( mem, src ) );
6418   ins_pipe(istore_mem_reg);
6419 %}
6420 
6421 instruct storeC0(memory mem, immI0 src) %{
6422   match(Set mem (StoreC mem src));
6423   ins_cost(MEMORY_REF_COST);
6424 
6425   size(4);
6426   format %{ "STH    $src,$mem\t! short" %}
6427   opcode(Assembler::sth_op3);
6428   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6429   ins_pipe(istore_mem_zero);
6430 %}
6431 
6432 // Store Integer
6433 instruct storeI(memory mem, iRegI src) %{
6434   match(Set mem (StoreI mem src));
6435   ins_cost(MEMORY_REF_COST);
6436 
6437   size(4);
6438   format %{ "STW    $src,$mem" %}
6439   opcode(Assembler::stw_op3);
6440   ins_encode(simple_form3_mem_reg( mem, src ) );
6441   ins_pipe(istore_mem_reg);
6442 %}
6443 
6444 // Store Long
6445 instruct storeL(memory mem, iRegL src) %{
6446   match(Set mem (StoreL mem src));
6447   ins_cost(MEMORY_REF_COST);
6448   size(4);
6449   format %{ "STX    $src,$mem\t! long" %}
6450   opcode(Assembler::stx_op3);
6451   ins_encode(simple_form3_mem_reg( mem, src ) );
6452   ins_pipe(istore_mem_reg);
6453 %}
6454 
6455 instruct storeI0(memory mem, immI0 src) %{
6456   match(Set mem (StoreI mem src));
6457   ins_cost(MEMORY_REF_COST);
6458 
6459   size(4);
6460   format %{ "STW    $src,$mem" %}
6461   opcode(Assembler::stw_op3);
6462   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6463   ins_pipe(istore_mem_zero);
6464 %}
6465 
6466 instruct storeL0(memory mem, immL0 src) %{
6467   match(Set mem (StoreL mem src));
6468   ins_cost(MEMORY_REF_COST);
6469 
6470   size(4);
6471   format %{ "STX    $src,$mem" %}
6472   opcode(Assembler::stx_op3);
6473   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6474   ins_pipe(istore_mem_zero);
6475 %}
6476 
6477 // Store Integer from float register (used after fstoi)
6478 instruct storeI_Freg(memory mem, regF src) %{
6479   match(Set mem (StoreI mem src));
6480   ins_cost(MEMORY_REF_COST);
6481 
6482   size(4);
6483   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6484   opcode(Assembler::stf_op3);
6485   ins_encode(simple_form3_mem_reg( mem, src ) );
6486   ins_pipe(fstoreF_mem_reg);
6487 %}
6488 
6489 // Store Pointer
6490 instruct storeP(memory dst, sp_ptr_RegP src) %{
6491   match(Set dst (StoreP dst src));
6492   ins_cost(MEMORY_REF_COST);
6493   size(4);
6494 
6495 #ifndef _LP64
6496   format %{ "STW    $src,$dst\t! ptr" %}
6497   opcode(Assembler::stw_op3, 0, REGP_OP);
6498 #else
6499   format %{ "STX    $src,$dst\t! ptr" %}
6500   opcode(Assembler::stx_op3, 0, REGP_OP);
6501 #endif
6502   ins_encode( form3_mem_reg( dst, src ) );
6503   ins_pipe(istore_mem_spORreg);
6504 %}
6505 
6506 instruct storeP0(memory dst, immP0 src) %{
6507   match(Set dst (StoreP dst src));
6508   ins_cost(MEMORY_REF_COST);
6509   size(4);
6510 
6511 #ifndef _LP64
6512   format %{ "STW    $src,$dst\t! ptr" %}
6513   opcode(Assembler::stw_op3, 0, REGP_OP);
6514 #else
6515   format %{ "STX    $src,$dst\t! ptr" %}
6516   opcode(Assembler::stx_op3, 0, REGP_OP);
6517 #endif
6518   ins_encode( form3_mem_reg( dst, R_G0 ) );
6519   ins_pipe(istore_mem_zero);
6520 %}
6521 
6522 // Store Compressed Pointer
6523 instruct storeN(memory dst, iRegN src) %{
6524    match(Set dst (StoreN dst src));
6525    ins_cost(MEMORY_REF_COST);
6526    size(4);
6527 
6528    format %{ "STW    $src,$dst\t! compressed ptr" %}
6529    ins_encode %{
6530      Register base = as_Register($dst$$base);
6531      Register index = as_Register($dst$$index);
6532      Register src = $src$$Register;
6533      if (index != G0) {
6534        __ stw(src, base, index);
6535      } else {
6536        __ stw(src, base, $dst$$disp);
6537      }
6538    %}
6539    ins_pipe(istore_mem_spORreg);
6540 %}
6541 
6542 instruct storeNKlass(memory dst, iRegN src) %{
6543    match(Set dst (StoreNKlass dst src));
6544    ins_cost(MEMORY_REF_COST);
6545    size(4);
6546 
6547    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6548    ins_encode %{
6549      Register base = as_Register($dst$$base);
6550      Register index = as_Register($dst$$index);
6551      Register src = $src$$Register;
6552      if (index != G0) {
6553        __ stw(src, base, index);
6554      } else {
6555        __ stw(src, base, $dst$$disp);
6556      }
6557    %}
6558    ins_pipe(istore_mem_spORreg);
6559 %}
6560 
6561 instruct storeN0(memory dst, immN0 src) %{
6562    match(Set dst (StoreN dst src));
6563    ins_cost(MEMORY_REF_COST);
6564    size(4);
6565 
6566    format %{ "STW    $src,$dst\t! compressed ptr" %}
6567    ins_encode %{
6568      Register base = as_Register($dst$$base);
6569      Register index = as_Register($dst$$index);
6570      if (index != G0) {
6571        __ stw(0, base, index);
6572      } else {
6573        __ stw(0, base, $dst$$disp);
6574      }
6575    %}
6576    ins_pipe(istore_mem_zero);
6577 %}
6578 
6579 // Store Double
6580 instruct storeD( memory mem, regD src) %{
6581   match(Set mem (StoreD mem src));
6582   ins_cost(MEMORY_REF_COST);
6583 
6584   size(4);
6585   format %{ "STDF   $src,$mem" %}
6586   opcode(Assembler::stdf_op3);
6587   ins_encode(simple_form3_mem_reg( mem, src ) );
6588   ins_pipe(fstoreD_mem_reg);
6589 %}
6590 
6591 instruct storeD0( memory mem, immD0 src) %{
6592   match(Set mem (StoreD mem src));
6593   ins_cost(MEMORY_REF_COST);
6594 
6595   size(4);
6596   format %{ "STX    $src,$mem" %}
6597   opcode(Assembler::stx_op3);
6598   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6599   ins_pipe(fstoreD_mem_zero);
6600 %}
6601 
6602 // Store Float
6603 instruct storeF( memory mem, regF src) %{
6604   match(Set mem (StoreF mem src));
6605   ins_cost(MEMORY_REF_COST);
6606 
6607   size(4);
6608   format %{ "STF    $src,$mem" %}
6609   opcode(Assembler::stf_op3);
6610   ins_encode(simple_form3_mem_reg( mem, src ) );
6611   ins_pipe(fstoreF_mem_reg);
6612 %}
6613 
6614 instruct storeF0( memory mem, immF0 src) %{
6615   match(Set mem (StoreF mem src));
6616   ins_cost(MEMORY_REF_COST);
6617 
6618   size(4);
6619   format %{ "STW    $src,$mem\t! storeF0" %}
6620   opcode(Assembler::stw_op3);
6621   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6622   ins_pipe(fstoreF_mem_zero);
6623 %}
6624 
6625 // Convert oop pointer into compressed form
6626 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6627   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6628   match(Set dst (EncodeP src));
6629   format %{ "encode_heap_oop $src, $dst" %}
6630   ins_encode %{
6631     __ encode_heap_oop($src$$Register, $dst$$Register);
6632   %}
6633   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6634   ins_pipe(ialu_reg);
6635 %}
6636 
6637 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6638   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6639   match(Set dst (EncodeP src));
6640   format %{ "encode_heap_oop_not_null $src, $dst" %}
6641   ins_encode %{
6642     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6643   %}
6644   ins_pipe(ialu_reg);
6645 %}
6646 
6647 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6648   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6649             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6650   match(Set dst (DecodeN src));
6651   format %{ "decode_heap_oop $src, $dst" %}
6652   ins_encode %{
6653     __ decode_heap_oop($src$$Register, $dst$$Register);
6654   %}
6655   ins_pipe(ialu_reg);
6656 %}
6657 
6658 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6659   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6660             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6661   match(Set dst (DecodeN src));
6662   format %{ "decode_heap_oop_not_null $src, $dst" %}
6663   ins_encode %{
6664     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6665   %}
6666   ins_pipe(ialu_reg);
6667 %}
6668 
6669 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6670   match(Set dst (EncodePKlass src));
6671   format %{ "encode_klass_not_null $src, $dst" %}
6672   ins_encode %{
6673     __ encode_klass_not_null($src$$Register, $dst$$Register);
6674   %}
6675   ins_pipe(ialu_reg);
6676 %}
6677 
6678 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6679   match(Set dst (DecodeNKlass src));
6680   format %{ "decode_klass_not_null $src, $dst" %}
6681   ins_encode %{
6682     __ decode_klass_not_null($src$$Register, $dst$$Register);
6683   %}
6684   ins_pipe(ialu_reg);
6685 %}
6686 
6687 //----------MemBar Instructions-----------------------------------------------
6688 // Memory barrier flavors
6689 
6690 instruct membar_acquire() %{
6691   match(MemBarAcquire);
6692   match(LoadFence);
6693   ins_cost(4*MEMORY_REF_COST);
6694 
6695   size(0);
6696   format %{ "MEMBAR-acquire" %}
6697   ins_encode( enc_membar_acquire );
6698   ins_pipe(long_memory_op);
6699 %}
6700 
6701 instruct membar_acquire_lock() %{
6702   match(MemBarAcquireLock);
6703   ins_cost(0);
6704 
6705   size(0);
6706   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6707   ins_encode( );
6708   ins_pipe(empty);
6709 %}
6710 
6711 instruct membar_release() %{
6712   match(MemBarRelease);
6713   match(StoreFence);
6714   ins_cost(4*MEMORY_REF_COST);
6715 
6716   size(0);
6717   format %{ "MEMBAR-release" %}
6718   ins_encode( enc_membar_release );
6719   ins_pipe(long_memory_op);
6720 %}
6721 
6722 instruct membar_release_lock() %{
6723   match(MemBarReleaseLock);
6724   ins_cost(0);
6725 
6726   size(0);
6727   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6728   ins_encode( );
6729   ins_pipe(empty);
6730 %}
6731 
6732 instruct membar_volatile() %{
6733   match(MemBarVolatile);
6734   ins_cost(4*MEMORY_REF_COST);
6735 
6736   size(4);
6737   format %{ "MEMBAR-volatile" %}
6738   ins_encode( enc_membar_volatile );
6739   ins_pipe(long_memory_op);
6740 %}
6741 
6742 instruct unnecessary_membar_volatile() %{
6743   match(MemBarVolatile);
6744   predicate(Matcher::post_store_load_barrier(n));
6745   ins_cost(0);
6746 
6747   size(0);
6748   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6749   ins_encode( );
6750   ins_pipe(empty);
6751 %}
6752 
6753 instruct membar_storestore() %{
6754   match(MemBarStoreStore);
6755   ins_cost(0);
6756 
6757   size(0);
6758   format %{ "!MEMBAR-storestore (empty encoding)" %}
6759   ins_encode( );
6760   ins_pipe(empty);
6761 %}
6762 
6763 //----------Register Move Instructions-----------------------------------------
6764 instruct roundDouble_nop(regD dst) %{
6765   match(Set dst (RoundDouble dst));
6766   ins_cost(0);
6767   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6768   ins_encode( );
6769   ins_pipe(empty);
6770 %}
6771 
6772 
6773 instruct roundFloat_nop(regF dst) %{
6774   match(Set dst (RoundFloat dst));
6775   ins_cost(0);
6776   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6777   ins_encode( );
6778   ins_pipe(empty);
6779 %}
6780 
6781 
6782 // Cast Index to Pointer for unsafe natives
6783 instruct castX2P(iRegX src, iRegP dst) %{
6784   match(Set dst (CastX2P src));
6785 
6786   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6787   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6788   ins_pipe(ialu_reg);
6789 %}
6790 
6791 // Cast Pointer to Index for unsafe natives
6792 instruct castP2X(iRegP src, iRegX dst) %{
6793   match(Set dst (CastP2X src));
6794 
6795   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6796   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6797   ins_pipe(ialu_reg);
6798 %}
6799 
6800 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6801   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6802   match(Set stkSlot src);   // chain rule
6803   ins_cost(MEMORY_REF_COST);
6804   format %{ "STDF   $src,$stkSlot\t!stk" %}
6805   opcode(Assembler::stdf_op3);
6806   ins_encode(simple_form3_mem_reg(stkSlot, src));
6807   ins_pipe(fstoreD_stk_reg);
6808 %}
6809 
6810 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6811   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6812   match(Set dst stkSlot);   // chain rule
6813   ins_cost(MEMORY_REF_COST);
6814   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6815   opcode(Assembler::lddf_op3);
6816   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6817   ins_pipe(floadD_stk);
6818 %}
6819 
6820 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6821   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6822   match(Set stkSlot src);   // chain rule
6823   ins_cost(MEMORY_REF_COST);
6824   format %{ "STF   $src,$stkSlot\t!stk" %}
6825   opcode(Assembler::stf_op3);
6826   ins_encode(simple_form3_mem_reg(stkSlot, src));
6827   ins_pipe(fstoreF_stk_reg);
6828 %}
6829 
6830 //----------Conditional Move---------------------------------------------------
6831 // Conditional move
6832 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6833   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6834   ins_cost(150);
6835   format %{ "MOV$cmp $pcc,$src,$dst" %}
6836   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6837   ins_pipe(ialu_reg);
6838 %}
6839 
6840 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6841   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6842   ins_cost(140);
6843   format %{ "MOV$cmp $pcc,$src,$dst" %}
6844   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6845   ins_pipe(ialu_imm);
6846 %}
6847 
6848 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6849   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6850   ins_cost(150);
6851   size(4);
6852   format %{ "MOV$cmp  $icc,$src,$dst" %}
6853   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6854   ins_pipe(ialu_reg);
6855 %}
6856 
6857 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6858   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6859   ins_cost(140);
6860   size(4);
6861   format %{ "MOV$cmp  $icc,$src,$dst" %}
6862   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6863   ins_pipe(ialu_imm);
6864 %}
6865 
6866 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6867   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6868   ins_cost(150);
6869   size(4);
6870   format %{ "MOV$cmp  $icc,$src,$dst" %}
6871   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6872   ins_pipe(ialu_reg);
6873 %}
6874 
6875 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6876   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6877   ins_cost(140);
6878   size(4);
6879   format %{ "MOV$cmp  $icc,$src,$dst" %}
6880   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6881   ins_pipe(ialu_imm);
6882 %}
6883 
6884 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6885   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6886   ins_cost(150);
6887   size(4);
6888   format %{ "MOV$cmp $fcc,$src,$dst" %}
6889   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6890   ins_pipe(ialu_reg);
6891 %}
6892 
6893 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6894   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6895   ins_cost(140);
6896   size(4);
6897   format %{ "MOV$cmp $fcc,$src,$dst" %}
6898   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6899   ins_pipe(ialu_imm);
6900 %}
6901 
6902 // Conditional move for RegN. Only cmov(reg,reg).
6903 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6904   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6905   ins_cost(150);
6906   format %{ "MOV$cmp $pcc,$src,$dst" %}
6907   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6908   ins_pipe(ialu_reg);
6909 %}
6910 
6911 // This instruction also works with CmpN so we don't need cmovNN_reg.
6912 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6913   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6914   ins_cost(150);
6915   size(4);
6916   format %{ "MOV$cmp  $icc,$src,$dst" %}
6917   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6918   ins_pipe(ialu_reg);
6919 %}
6920 
6921 // This instruction also works with CmpN so we don't need cmovNN_reg.
6922 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6923   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6924   ins_cost(150);
6925   size(4);
6926   format %{ "MOV$cmp  $icc,$src,$dst" %}
6927   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6928   ins_pipe(ialu_reg);
6929 %}
6930 
6931 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6932   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6933   ins_cost(150);
6934   size(4);
6935   format %{ "MOV$cmp $fcc,$src,$dst" %}
6936   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6937   ins_pipe(ialu_reg);
6938 %}
6939 
6940 // Conditional move
6941 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6942   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6943   ins_cost(150);
6944   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6945   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6946   ins_pipe(ialu_reg);
6947 %}
6948 
6949 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6950   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6951   ins_cost(140);
6952   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6953   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6954   ins_pipe(ialu_imm);
6955 %}
6956 
6957 // This instruction also works with CmpN so we don't need cmovPN_reg.
6958 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6959   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6960   ins_cost(150);
6961 
6962   size(4);
6963   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6964   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6965   ins_pipe(ialu_reg);
6966 %}
6967 
6968 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6969   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6970   ins_cost(150);
6971 
6972   size(4);
6973   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6974   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6975   ins_pipe(ialu_reg);
6976 %}
6977 
6978 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6979   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6980   ins_cost(140);
6981 
6982   size(4);
6983   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6984   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6985   ins_pipe(ialu_imm);
6986 %}
6987 
6988 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6989   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6990   ins_cost(140);
6991 
6992   size(4);
6993   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6994   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6995   ins_pipe(ialu_imm);
6996 %}
6997 
6998 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6999   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7000   ins_cost(150);
7001   size(4);
7002   format %{ "MOV$cmp $fcc,$src,$dst" %}
7003   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7004   ins_pipe(ialu_imm);
7005 %}
7006 
7007 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
7008   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7009   ins_cost(140);
7010   size(4);
7011   format %{ "MOV$cmp $fcc,$src,$dst" %}
7012   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
7013   ins_pipe(ialu_imm);
7014 %}
7015 
7016 // Conditional move
7017 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
7018   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
7019   ins_cost(150);
7020   opcode(0x101);
7021   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7022   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7023   ins_pipe(int_conditional_float_move);
7024 %}
7025 
7026 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
7027   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7028   ins_cost(150);
7029 
7030   size(4);
7031   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7032   opcode(0x101);
7033   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7034   ins_pipe(int_conditional_float_move);
7035 %}
7036 
7037 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7038   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7039   ins_cost(150);
7040 
7041   size(4);
7042   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7043   opcode(0x101);
7044   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7045   ins_pipe(int_conditional_float_move);
7046 %}
7047 
7048 // Conditional move,
7049 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7050   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7051   ins_cost(150);
7052   size(4);
7053   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7054   opcode(0x1);
7055   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7056   ins_pipe(int_conditional_double_move);
7057 %}
7058 
7059 // Conditional move
7060 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7061   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7062   ins_cost(150);
7063   size(4);
7064   opcode(0x102);
7065   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7066   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7067   ins_pipe(int_conditional_double_move);
7068 %}
7069 
7070 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7071   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7072   ins_cost(150);
7073 
7074   size(4);
7075   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7076   opcode(0x102);
7077   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7078   ins_pipe(int_conditional_double_move);
7079 %}
7080 
7081 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7082   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7083   ins_cost(150);
7084 
7085   size(4);
7086   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7087   opcode(0x102);
7088   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7089   ins_pipe(int_conditional_double_move);
7090 %}
7091 
7092 // Conditional move,
7093 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7094   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7095   ins_cost(150);
7096   size(4);
7097   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7098   opcode(0x2);
7099   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7100   ins_pipe(int_conditional_double_move);
7101 %}
7102 
7103 // Conditional move
7104 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7105   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7106   ins_cost(150);
7107   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7108   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7109   ins_pipe(ialu_reg);
7110 %}
7111 
7112 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7113   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7114   ins_cost(140);
7115   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7116   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7117   ins_pipe(ialu_imm);
7118 %}
7119 
7120 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7121   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7122   ins_cost(150);
7123 
7124   size(4);
7125   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7126   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7127   ins_pipe(ialu_reg);
7128 %}
7129 
7130 
7131 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7132   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7133   ins_cost(150);
7134 
7135   size(4);
7136   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7137   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7138   ins_pipe(ialu_reg);
7139 %}
7140 
7141 
7142 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7143   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7144   ins_cost(150);
7145 
7146   size(4);
7147   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7148   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7149   ins_pipe(ialu_reg);
7150 %}
7151 
7152 
7153 
7154 //----------OS and Locking Instructions----------------------------------------
7155 
7156 // This name is KNOWN by the ADLC and cannot be changed.
7157 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7158 // for this guy.
7159 instruct tlsLoadP(g2RegP dst) %{
7160   match(Set dst (ThreadLocal));
7161 
7162   size(0);
7163   ins_cost(0);
7164   format %{ "# TLS is in G2" %}
7165   ins_encode( /*empty encoding*/ );
7166   ins_pipe(ialu_none);
7167 %}
7168 
7169 instruct checkCastPP( iRegP dst ) %{
7170   match(Set dst (CheckCastPP dst));
7171 
7172   size(0);
7173   format %{ "# checkcastPP of $dst" %}
7174   ins_encode( /*empty encoding*/ );
7175   ins_pipe(empty);
7176 %}
7177 
7178 
7179 instruct castPP( iRegP dst ) %{
7180   match(Set dst (CastPP dst));
7181   format %{ "# castPP of $dst" %}
7182   ins_encode( /*empty encoding*/ );
7183   ins_pipe(empty);
7184 %}
7185 
7186 instruct castII( iRegI dst ) %{
7187   match(Set dst (CastII dst));
7188   format %{ "# castII of $dst" %}
7189   ins_encode( /*empty encoding*/ );
7190   ins_cost(0);
7191   ins_pipe(empty);
7192 %}
7193 
7194 //----------Arithmetic Instructions--------------------------------------------
7195 // Addition Instructions
7196 // Register Addition
7197 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7198   match(Set dst (AddI src1 src2));
7199 
7200   size(4);
7201   format %{ "ADD    $src1,$src2,$dst" %}
7202   ins_encode %{
7203     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7204   %}
7205   ins_pipe(ialu_reg_reg);
7206 %}
7207 
7208 // Immediate Addition
7209 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7210   match(Set dst (AddI src1 src2));
7211 
7212   size(4);
7213   format %{ "ADD    $src1,$src2,$dst" %}
7214   opcode(Assembler::add_op3, Assembler::arith_op);
7215   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7216   ins_pipe(ialu_reg_imm);
7217 %}
7218 
7219 // Pointer Register Addition
7220 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7221   match(Set dst (AddP src1 src2));
7222 
7223   size(4);
7224   format %{ "ADD    $src1,$src2,$dst" %}
7225   opcode(Assembler::add_op3, Assembler::arith_op);
7226   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7227   ins_pipe(ialu_reg_reg);
7228 %}
7229 
7230 // Pointer Immediate Addition
7231 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7232   match(Set dst (AddP src1 src2));
7233 
7234   size(4);
7235   format %{ "ADD    $src1,$src2,$dst" %}
7236   opcode(Assembler::add_op3, Assembler::arith_op);
7237   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7238   ins_pipe(ialu_reg_imm);
7239 %}
7240 
7241 // Long Addition
7242 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7243   match(Set dst (AddL src1 src2));
7244 
7245   size(4);
7246   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7247   opcode(Assembler::add_op3, Assembler::arith_op);
7248   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7249   ins_pipe(ialu_reg_reg);
7250 %}
7251 
7252 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7253   match(Set dst (AddL src1 con));
7254 
7255   size(4);
7256   format %{ "ADD    $src1,$con,$dst" %}
7257   opcode(Assembler::add_op3, Assembler::arith_op);
7258   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7259   ins_pipe(ialu_reg_imm);
7260 %}
7261 
7262 //----------Conditional_store--------------------------------------------------
7263 // Conditional-store of the updated heap-top.
7264 // Used during allocation of the shared heap.
7265 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7266 
7267 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7268 instruct loadPLocked(iRegP dst, memory mem) %{
7269   match(Set dst (LoadPLocked mem));
7270   ins_cost(MEMORY_REF_COST);
7271 
7272 #ifndef _LP64
7273   size(4);
7274   format %{ "LDUW   $mem,$dst\t! ptr" %}
7275   opcode(Assembler::lduw_op3, 0, REGP_OP);
7276 #else
7277   format %{ "LDX    $mem,$dst\t! ptr" %}
7278   opcode(Assembler::ldx_op3, 0, REGP_OP);
7279 #endif
7280   ins_encode( form3_mem_reg( mem, dst ) );
7281   ins_pipe(iload_mem);
7282 %}
7283 
7284 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7285   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7286   effect( KILL newval );
7287   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7288             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7289   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7290   ins_pipe( long_memory_op );
7291 %}
7292 
7293 // Conditional-store of an int value.
7294 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7295   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7296   effect( KILL newval );
7297   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7298             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7299   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7300   ins_pipe( long_memory_op );
7301 %}
7302 
7303 // Conditional-store of a long value.
7304 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7305   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7306   effect( KILL newval );
7307   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7308             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7309   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7310   ins_pipe( long_memory_op );
7311 %}
7312 
7313 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7314 
7315 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7316   predicate(VM_Version::supports_cx8());
7317   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7318   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7319   format %{
7320             "MOV    $newval,O7\n\t"
7321             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7322             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7323             "MOV    1,$res\n\t"
7324             "MOVne  xcc,R_G0,$res"
7325   %}
7326   ins_encode( enc_casx(mem_ptr, oldval, newval),
7327               enc_lflags_ne_to_boolean(res) );
7328   ins_pipe( long_memory_op );
7329 %}
7330 
7331 
7332 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7333   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7334   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7335   format %{
7336             "MOV    $newval,O7\n\t"
7337             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7338             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7339             "MOV    1,$res\n\t"
7340             "MOVne  icc,R_G0,$res"
7341   %}
7342   ins_encode( enc_casi(mem_ptr, oldval, newval),
7343               enc_iflags_ne_to_boolean(res) );
7344   ins_pipe( long_memory_op );
7345 %}
7346 
7347 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7348 #ifdef _LP64
7349   predicate(VM_Version::supports_cx8());
7350 #endif
7351   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7352   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7353   format %{
7354             "MOV    $newval,O7\n\t"
7355             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7356             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7357             "MOV    1,$res\n\t"
7358             "MOVne  xcc,R_G0,$res"
7359   %}
7360 #ifdef _LP64
7361   ins_encode( enc_casx(mem_ptr, oldval, newval),
7362               enc_lflags_ne_to_boolean(res) );
7363 #else
7364   ins_encode( enc_casi(mem_ptr, oldval, newval),
7365               enc_iflags_ne_to_boolean(res) );
7366 #endif
7367   ins_pipe( long_memory_op );
7368 %}
7369 
7370 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7371   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7372   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7373   format %{
7374             "MOV    $newval,O7\n\t"
7375             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7376             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7377             "MOV    1,$res\n\t"
7378             "MOVne  icc,R_G0,$res"
7379   %}
7380   ins_encode( enc_casi(mem_ptr, oldval, newval),
7381               enc_iflags_ne_to_boolean(res) );
7382   ins_pipe( long_memory_op );
7383 %}
7384 
7385 instruct xchgI( memory mem, iRegI newval) %{
7386   match(Set newval (GetAndSetI mem newval));
7387   format %{ "SWAP  [$mem],$newval" %}
7388   size(4);
7389   ins_encode %{
7390     __ swap($mem$$Address, $newval$$Register);
7391   %}
7392   ins_pipe( long_memory_op );
7393 %}
7394 
7395 #ifndef _LP64
7396 instruct xchgP( memory mem, iRegP newval) %{
7397   match(Set newval (GetAndSetP mem newval));
7398   format %{ "SWAP  [$mem],$newval" %}
7399   size(4);
7400   ins_encode %{
7401     __ swap($mem$$Address, $newval$$Register);
7402   %}
7403   ins_pipe( long_memory_op );
7404 %}
7405 #endif
7406 
7407 instruct xchgN( memory mem, iRegN newval) %{
7408   match(Set newval (GetAndSetN mem newval));
7409   format %{ "SWAP  [$mem],$newval" %}
7410   size(4);
7411   ins_encode %{
7412     __ swap($mem$$Address, $newval$$Register);
7413   %}
7414   ins_pipe( long_memory_op );
7415 %}
7416 
7417 //---------------------
7418 // Subtraction Instructions
7419 // Register Subtraction
7420 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7421   match(Set dst (SubI src1 src2));
7422 
7423   size(4);
7424   format %{ "SUB    $src1,$src2,$dst" %}
7425   opcode(Assembler::sub_op3, Assembler::arith_op);
7426   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7427   ins_pipe(ialu_reg_reg);
7428 %}
7429 
7430 // Immediate Subtraction
7431 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7432   match(Set dst (SubI src1 src2));
7433 
7434   size(4);
7435   format %{ "SUB    $src1,$src2,$dst" %}
7436   opcode(Assembler::sub_op3, Assembler::arith_op);
7437   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7438   ins_pipe(ialu_reg_imm);
7439 %}
7440 
7441 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7442   match(Set dst (SubI zero src2));
7443 
7444   size(4);
7445   format %{ "NEG    $src2,$dst" %}
7446   opcode(Assembler::sub_op3, Assembler::arith_op);
7447   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7448   ins_pipe(ialu_zero_reg);
7449 %}
7450 
7451 // Long subtraction
7452 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7453   match(Set dst (SubL src1 src2));
7454 
7455   size(4);
7456   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7457   opcode(Assembler::sub_op3, Assembler::arith_op);
7458   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7459   ins_pipe(ialu_reg_reg);
7460 %}
7461 
7462 // Immediate Subtraction
7463 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7464   match(Set dst (SubL src1 con));
7465 
7466   size(4);
7467   format %{ "SUB    $src1,$con,$dst\t! long" %}
7468   opcode(Assembler::sub_op3, Assembler::arith_op);
7469   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7470   ins_pipe(ialu_reg_imm);
7471 %}
7472 
7473 // Long negation
7474 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7475   match(Set dst (SubL zero src2));
7476 
7477   size(4);
7478   format %{ "NEG    $src2,$dst\t! long" %}
7479   opcode(Assembler::sub_op3, Assembler::arith_op);
7480   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7481   ins_pipe(ialu_zero_reg);
7482 %}
7483 
7484 // Multiplication Instructions
7485 // Integer Multiplication
7486 // Register Multiplication
7487 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7488   match(Set dst (MulI src1 src2));
7489 
7490   size(4);
7491   format %{ "MULX   $src1,$src2,$dst" %}
7492   opcode(Assembler::mulx_op3, Assembler::arith_op);
7493   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7494   ins_pipe(imul_reg_reg);
7495 %}
7496 
7497 // Immediate Multiplication
7498 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7499   match(Set dst (MulI src1 src2));
7500 
7501   size(4);
7502   format %{ "MULX   $src1,$src2,$dst" %}
7503   opcode(Assembler::mulx_op3, Assembler::arith_op);
7504   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7505   ins_pipe(imul_reg_imm);
7506 %}
7507 
7508 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7509   match(Set dst (MulL src1 src2));
7510   ins_cost(DEFAULT_COST * 5);
7511   size(4);
7512   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7513   opcode(Assembler::mulx_op3, Assembler::arith_op);
7514   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7515   ins_pipe(mulL_reg_reg);
7516 %}
7517 
7518 // Immediate Multiplication
7519 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7520   match(Set dst (MulL src1 src2));
7521   ins_cost(DEFAULT_COST * 5);
7522   size(4);
7523   format %{ "MULX   $src1,$src2,$dst" %}
7524   opcode(Assembler::mulx_op3, Assembler::arith_op);
7525   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7526   ins_pipe(mulL_reg_imm);
7527 %}
7528 
7529 // Integer Division
7530 // Register Division
7531 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7532   match(Set dst (DivI src1 src2));
7533   ins_cost((2+71)*DEFAULT_COST);
7534 
7535   format %{ "SRA     $src2,0,$src2\n\t"
7536             "SRA     $src1,0,$src1\n\t"
7537             "SDIVX   $src1,$src2,$dst" %}
7538   ins_encode( idiv_reg( src1, src2, dst ) );
7539   ins_pipe(sdiv_reg_reg);
7540 %}
7541 
7542 // Immediate Division
7543 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7544   match(Set dst (DivI src1 src2));
7545   ins_cost((2+71)*DEFAULT_COST);
7546 
7547   format %{ "SRA     $src1,0,$src1\n\t"
7548             "SDIVX   $src1,$src2,$dst" %}
7549   ins_encode( idiv_imm( src1, src2, dst ) );
7550   ins_pipe(sdiv_reg_imm);
7551 %}
7552 
7553 //----------Div-By-10-Expansion------------------------------------------------
7554 // Extract hi bits of a 32x32->64 bit multiply.
7555 // Expand rule only, not matched
7556 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7557   effect( DEF dst, USE src1, USE src2 );
7558   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7559             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7560   ins_encode( enc_mul_hi(dst,src1,src2));
7561   ins_pipe(sdiv_reg_reg);
7562 %}
7563 
7564 // Magic constant, reciprocal of 10
7565 instruct loadConI_x66666667(iRegIsafe dst) %{
7566   effect( DEF dst );
7567 
7568   size(8);
7569   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7570   ins_encode( Set32(0x66666667, dst) );
7571   ins_pipe(ialu_hi_lo_reg);
7572 %}
7573 
7574 // Register Shift Right Arithmetic Long by 32-63
7575 instruct sra_31( iRegI dst, iRegI src ) %{
7576   effect( DEF dst, USE src );
7577   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7578   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7579   ins_pipe(ialu_reg_reg);
7580 %}
7581 
7582 // Arithmetic Shift Right by 8-bit immediate
7583 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7584   effect( DEF dst, USE src );
7585   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7586   opcode(Assembler::sra_op3, Assembler::arith_op);
7587   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7588   ins_pipe(ialu_reg_imm);
7589 %}
7590 
7591 // Integer DIV with 10
7592 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7593   match(Set dst (DivI src div));
7594   ins_cost((6+6)*DEFAULT_COST);
7595   expand %{
7596     iRegIsafe tmp1;               // Killed temps;
7597     iRegIsafe tmp2;               // Killed temps;
7598     iRegI tmp3;                   // Killed temps;
7599     iRegI tmp4;                   // Killed temps;
7600     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7601     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7602     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7603     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7604     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7605   %}
7606 %}
7607 
7608 // Register Long Division
7609 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7610   match(Set dst (DivL src1 src2));
7611   ins_cost(DEFAULT_COST*71);
7612   size(4);
7613   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7614   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7615   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7616   ins_pipe(divL_reg_reg);
7617 %}
7618 
7619 // Register Long Division
7620 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7621   match(Set dst (DivL src1 src2));
7622   ins_cost(DEFAULT_COST*71);
7623   size(4);
7624   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7625   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7626   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7627   ins_pipe(divL_reg_imm);
7628 %}
7629 
7630 // Integer Remainder
7631 // Register Remainder
7632 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7633   match(Set dst (ModI src1 src2));
7634   effect( KILL ccr, KILL temp);
7635 
7636   format %{ "SREM   $src1,$src2,$dst" %}
7637   ins_encode( irem_reg(src1, src2, dst, temp) );
7638   ins_pipe(sdiv_reg_reg);
7639 %}
7640 
7641 // Immediate Remainder
7642 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7643   match(Set dst (ModI src1 src2));
7644   effect( KILL ccr, KILL temp);
7645 
7646   format %{ "SREM   $src1,$src2,$dst" %}
7647   ins_encode( irem_imm(src1, src2, dst, temp) );
7648   ins_pipe(sdiv_reg_imm);
7649 %}
7650 
7651 // Register Long Remainder
7652 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7653   effect(DEF dst, USE src1, USE src2);
7654   size(4);
7655   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7656   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7657   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7658   ins_pipe(divL_reg_reg);
7659 %}
7660 
7661 // Register Long Division
7662 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7663   effect(DEF dst, USE src1, USE src2);
7664   size(4);
7665   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7666   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7667   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7668   ins_pipe(divL_reg_imm);
7669 %}
7670 
7671 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7672   effect(DEF dst, USE src1, USE src2);
7673   size(4);
7674   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7675   opcode(Assembler::mulx_op3, Assembler::arith_op);
7676   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7677   ins_pipe(mulL_reg_reg);
7678 %}
7679 
7680 // Immediate Multiplication
7681 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7682   effect(DEF dst, USE src1, USE src2);
7683   size(4);
7684   format %{ "MULX   $src1,$src2,$dst" %}
7685   opcode(Assembler::mulx_op3, Assembler::arith_op);
7686   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7687   ins_pipe(mulL_reg_imm);
7688 %}
7689 
7690 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7691   effect(DEF dst, USE src1, USE src2);
7692   size(4);
7693   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7694   opcode(Assembler::sub_op3, Assembler::arith_op);
7695   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7696   ins_pipe(ialu_reg_reg);
7697 %}
7698 
7699 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7700   effect(DEF dst, USE src1, USE src2);
7701   size(4);
7702   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7703   opcode(Assembler::sub_op3, Assembler::arith_op);
7704   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7705   ins_pipe(ialu_reg_reg);
7706 %}
7707 
7708 // Register Long Remainder
7709 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7710   match(Set dst (ModL src1 src2));
7711   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7712   expand %{
7713     iRegL tmp1;
7714     iRegL tmp2;
7715     divL_reg_reg_1(tmp1, src1, src2);
7716     mulL_reg_reg_1(tmp2, tmp1, src2);
7717     subL_reg_reg_1(dst,  src1, tmp2);
7718   %}
7719 %}
7720 
7721 // Register Long Remainder
7722 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7723   match(Set dst (ModL src1 src2));
7724   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7725   expand %{
7726     iRegL tmp1;
7727     iRegL tmp2;
7728     divL_reg_imm13_1(tmp1, src1, src2);
7729     mulL_reg_imm13_1(tmp2, tmp1, src2);
7730     subL_reg_reg_2  (dst,  src1, tmp2);
7731   %}
7732 %}
7733 
7734 // Integer Shift Instructions
7735 // Register Shift Left
7736 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7737   match(Set dst (LShiftI src1 src2));
7738 
7739   size(4);
7740   format %{ "SLL    $src1,$src2,$dst" %}
7741   opcode(Assembler::sll_op3, Assembler::arith_op);
7742   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7743   ins_pipe(ialu_reg_reg);
7744 %}
7745 
7746 // Register Shift Left Immediate
7747 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7748   match(Set dst (LShiftI src1 src2));
7749 
7750   size(4);
7751   format %{ "SLL    $src1,$src2,$dst" %}
7752   opcode(Assembler::sll_op3, Assembler::arith_op);
7753   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7754   ins_pipe(ialu_reg_imm);
7755 %}
7756 
7757 // Register Shift Left
7758 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7759   match(Set dst (LShiftL src1 src2));
7760 
7761   size(4);
7762   format %{ "SLLX   $src1,$src2,$dst" %}
7763   opcode(Assembler::sllx_op3, Assembler::arith_op);
7764   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7765   ins_pipe(ialu_reg_reg);
7766 %}
7767 
7768 // Register Shift Left Immediate
7769 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7770   match(Set dst (LShiftL src1 src2));
7771 
7772   size(4);
7773   format %{ "SLLX   $src1,$src2,$dst" %}
7774   opcode(Assembler::sllx_op3, Assembler::arith_op);
7775   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7776   ins_pipe(ialu_reg_imm);
7777 %}
7778 
7779 // Register Arithmetic Shift Right
7780 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7781   match(Set dst (RShiftI src1 src2));
7782   size(4);
7783   format %{ "SRA    $src1,$src2,$dst" %}
7784   opcode(Assembler::sra_op3, Assembler::arith_op);
7785   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7786   ins_pipe(ialu_reg_reg);
7787 %}
7788 
7789 // Register Arithmetic Shift Right Immediate
7790 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7791   match(Set dst (RShiftI src1 src2));
7792 
7793   size(4);
7794   format %{ "SRA    $src1,$src2,$dst" %}
7795   opcode(Assembler::sra_op3, Assembler::arith_op);
7796   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7797   ins_pipe(ialu_reg_imm);
7798 %}
7799 
7800 // Register Shift Right Arithmatic Long
7801 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7802   match(Set dst (RShiftL src1 src2));
7803 
7804   size(4);
7805   format %{ "SRAX   $src1,$src2,$dst" %}
7806   opcode(Assembler::srax_op3, Assembler::arith_op);
7807   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7808   ins_pipe(ialu_reg_reg);
7809 %}
7810 
7811 // Register Shift Left Immediate
7812 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7813   match(Set dst (RShiftL src1 src2));
7814 
7815   size(4);
7816   format %{ "SRAX   $src1,$src2,$dst" %}
7817   opcode(Assembler::srax_op3, Assembler::arith_op);
7818   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7819   ins_pipe(ialu_reg_imm);
7820 %}
7821 
7822 // Register Shift Right
7823 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7824   match(Set dst (URShiftI src1 src2));
7825 
7826   size(4);
7827   format %{ "SRL    $src1,$src2,$dst" %}
7828   opcode(Assembler::srl_op3, Assembler::arith_op);
7829   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7830   ins_pipe(ialu_reg_reg);
7831 %}
7832 
7833 // Register Shift Right Immediate
7834 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7835   match(Set dst (URShiftI src1 src2));
7836 
7837   size(4);
7838   format %{ "SRL    $src1,$src2,$dst" %}
7839   opcode(Assembler::srl_op3, Assembler::arith_op);
7840   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7841   ins_pipe(ialu_reg_imm);
7842 %}
7843 
7844 // Register Shift Right
7845 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7846   match(Set dst (URShiftL src1 src2));
7847 
7848   size(4);
7849   format %{ "SRLX   $src1,$src2,$dst" %}
7850   opcode(Assembler::srlx_op3, Assembler::arith_op);
7851   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7852   ins_pipe(ialu_reg_reg);
7853 %}
7854 
7855 // Register Shift Right Immediate
7856 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7857   match(Set dst (URShiftL src1 src2));
7858 
7859   size(4);
7860   format %{ "SRLX   $src1,$src2,$dst" %}
7861   opcode(Assembler::srlx_op3, Assembler::arith_op);
7862   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7863   ins_pipe(ialu_reg_imm);
7864 %}
7865 
7866 // Register Shift Right Immediate with a CastP2X
7867 #ifdef _LP64
7868 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7869   match(Set dst (URShiftL (CastP2X src1) src2));
7870   size(4);
7871   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7872   opcode(Assembler::srlx_op3, Assembler::arith_op);
7873   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7874   ins_pipe(ialu_reg_imm);
7875 %}
7876 #else
7877 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7878   match(Set dst (URShiftI (CastP2X src1) src2));
7879   size(4);
7880   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7881   opcode(Assembler::srl_op3, Assembler::arith_op);
7882   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7883   ins_pipe(ialu_reg_imm);
7884 %}
7885 #endif
7886 
7887 
7888 //----------Floating Point Arithmetic Instructions-----------------------------
7889 
7890 //  Add float single precision
7891 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7892   match(Set dst (AddF src1 src2));
7893 
7894   size(4);
7895   format %{ "FADDS  $src1,$src2,$dst" %}
7896   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7897   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7898   ins_pipe(faddF_reg_reg);
7899 %}
7900 
7901 //  Add float double precision
7902 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7903   match(Set dst (AddD src1 src2));
7904 
7905   size(4);
7906   format %{ "FADDD  $src1,$src2,$dst" %}
7907   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7908   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7909   ins_pipe(faddD_reg_reg);
7910 %}
7911 
7912 //  Sub float single precision
7913 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7914   match(Set dst (SubF src1 src2));
7915 
7916   size(4);
7917   format %{ "FSUBS  $src1,$src2,$dst" %}
7918   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7919   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7920   ins_pipe(faddF_reg_reg);
7921 %}
7922 
7923 //  Sub float double precision
7924 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7925   match(Set dst (SubD src1 src2));
7926 
7927   size(4);
7928   format %{ "FSUBD  $src1,$src2,$dst" %}
7929   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7930   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7931   ins_pipe(faddD_reg_reg);
7932 %}
7933 
7934 //  Mul float single precision
7935 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7936   match(Set dst (MulF src1 src2));
7937 
7938   size(4);
7939   format %{ "FMULS  $src1,$src2,$dst" %}
7940   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7941   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7942   ins_pipe(fmulF_reg_reg);
7943 %}
7944 
7945 //  Mul float double precision
7946 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7947   match(Set dst (MulD src1 src2));
7948 
7949   size(4);
7950   format %{ "FMULD  $src1,$src2,$dst" %}
7951   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7952   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7953   ins_pipe(fmulD_reg_reg);
7954 %}
7955 
7956 //  Div float single precision
7957 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7958   match(Set dst (DivF src1 src2));
7959 
7960   size(4);
7961   format %{ "FDIVS  $src1,$src2,$dst" %}
7962   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7963   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7964   ins_pipe(fdivF_reg_reg);
7965 %}
7966 
7967 //  Div float double precision
7968 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7969   match(Set dst (DivD src1 src2));
7970 
7971   size(4);
7972   format %{ "FDIVD  $src1,$src2,$dst" %}
7973   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7974   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7975   ins_pipe(fdivD_reg_reg);
7976 %}
7977 
7978 //  Absolute float double precision
7979 instruct absD_reg(regD dst, regD src) %{
7980   match(Set dst (AbsD src));
7981 
7982   format %{ "FABSd  $src,$dst" %}
7983   ins_encode(fabsd(dst, src));
7984   ins_pipe(faddD_reg);
7985 %}
7986 
7987 //  Absolute float single precision
7988 instruct absF_reg(regF dst, regF src) %{
7989   match(Set dst (AbsF src));
7990 
7991   format %{ "FABSs  $src,$dst" %}
7992   ins_encode(fabss(dst, src));
7993   ins_pipe(faddF_reg);
7994 %}
7995 
7996 instruct negF_reg(regF dst, regF src) %{
7997   match(Set dst (NegF src));
7998 
7999   size(4);
8000   format %{ "FNEGs  $src,$dst" %}
8001   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
8002   ins_encode(form3_opf_rs2F_rdF(src, dst));
8003   ins_pipe(faddF_reg);
8004 %}
8005 
8006 instruct negD_reg(regD dst, regD src) %{
8007   match(Set dst (NegD src));
8008 
8009   format %{ "FNEGd  $src,$dst" %}
8010   ins_encode(fnegd(dst, src));
8011   ins_pipe(faddD_reg);
8012 %}
8013 
8014 //  Sqrt float double precision
8015 instruct sqrtF_reg_reg(regF dst, regF src) %{
8016   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8017 
8018   size(4);
8019   format %{ "FSQRTS $src,$dst" %}
8020   ins_encode(fsqrts(dst, src));
8021   ins_pipe(fdivF_reg_reg);
8022 %}
8023 
8024 //  Sqrt float double precision
8025 instruct sqrtD_reg_reg(regD dst, regD src) %{
8026   match(Set dst (SqrtD src));
8027 
8028   size(4);
8029   format %{ "FSQRTD $src,$dst" %}
8030   ins_encode(fsqrtd(dst, src));
8031   ins_pipe(fdivD_reg_reg);
8032 %}
8033 
8034 //----------Logical Instructions-----------------------------------------------
8035 // And Instructions
8036 // Register And
8037 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8038   match(Set dst (AndI src1 src2));
8039 
8040   size(4);
8041   format %{ "AND    $src1,$src2,$dst" %}
8042   opcode(Assembler::and_op3, Assembler::arith_op);
8043   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8044   ins_pipe(ialu_reg_reg);
8045 %}
8046 
8047 // Immediate And
8048 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8049   match(Set dst (AndI src1 src2));
8050 
8051   size(4);
8052   format %{ "AND    $src1,$src2,$dst" %}
8053   opcode(Assembler::and_op3, Assembler::arith_op);
8054   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8055   ins_pipe(ialu_reg_imm);
8056 %}
8057 
8058 // Register And Long
8059 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8060   match(Set dst (AndL src1 src2));
8061 
8062   ins_cost(DEFAULT_COST);
8063   size(4);
8064   format %{ "AND    $src1,$src2,$dst\t! long" %}
8065   opcode(Assembler::and_op3, Assembler::arith_op);
8066   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8067   ins_pipe(ialu_reg_reg);
8068 %}
8069 
8070 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8071   match(Set dst (AndL src1 con));
8072 
8073   ins_cost(DEFAULT_COST);
8074   size(4);
8075   format %{ "AND    $src1,$con,$dst\t! long" %}
8076   opcode(Assembler::and_op3, Assembler::arith_op);
8077   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8078   ins_pipe(ialu_reg_imm);
8079 %}
8080 
8081 // Or Instructions
8082 // Register Or
8083 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8084   match(Set dst (OrI src1 src2));
8085 
8086   size(4);
8087   format %{ "OR     $src1,$src2,$dst" %}
8088   opcode(Assembler::or_op3, Assembler::arith_op);
8089   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8090   ins_pipe(ialu_reg_reg);
8091 %}
8092 
8093 // Immediate Or
8094 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8095   match(Set dst (OrI src1 src2));
8096 
8097   size(4);
8098   format %{ "OR     $src1,$src2,$dst" %}
8099   opcode(Assembler::or_op3, Assembler::arith_op);
8100   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8101   ins_pipe(ialu_reg_imm);
8102 %}
8103 
8104 // Register Or Long
8105 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8106   match(Set dst (OrL src1 src2));
8107 
8108   ins_cost(DEFAULT_COST);
8109   size(4);
8110   format %{ "OR     $src1,$src2,$dst\t! long" %}
8111   opcode(Assembler::or_op3, Assembler::arith_op);
8112   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8113   ins_pipe(ialu_reg_reg);
8114 %}
8115 
8116 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8117   match(Set dst (OrL src1 con));
8118   ins_cost(DEFAULT_COST*2);
8119 
8120   ins_cost(DEFAULT_COST);
8121   size(4);
8122   format %{ "OR     $src1,$con,$dst\t! long" %}
8123   opcode(Assembler::or_op3, Assembler::arith_op);
8124   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8125   ins_pipe(ialu_reg_imm);
8126 %}
8127 
8128 #ifndef _LP64
8129 
8130 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8131 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8132   match(Set dst (OrI src1 (CastP2X src2)));
8133 
8134   size(4);
8135   format %{ "OR     $src1,$src2,$dst" %}
8136   opcode(Assembler::or_op3, Assembler::arith_op);
8137   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8138   ins_pipe(ialu_reg_reg);
8139 %}
8140 
8141 #else
8142 
8143 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8144   match(Set dst (OrL src1 (CastP2X src2)));
8145 
8146   ins_cost(DEFAULT_COST);
8147   size(4);
8148   format %{ "OR     $src1,$src2,$dst\t! long" %}
8149   opcode(Assembler::or_op3, Assembler::arith_op);
8150   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8151   ins_pipe(ialu_reg_reg);
8152 %}
8153 
8154 #endif
8155 
8156 // Xor Instructions
8157 // Register Xor
8158 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8159   match(Set dst (XorI src1 src2));
8160 
8161   size(4);
8162   format %{ "XOR    $src1,$src2,$dst" %}
8163   opcode(Assembler::xor_op3, Assembler::arith_op);
8164   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8165   ins_pipe(ialu_reg_reg);
8166 %}
8167 
8168 // Immediate Xor
8169 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8170   match(Set dst (XorI src1 src2));
8171 
8172   size(4);
8173   format %{ "XOR    $src1,$src2,$dst" %}
8174   opcode(Assembler::xor_op3, Assembler::arith_op);
8175   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8176   ins_pipe(ialu_reg_imm);
8177 %}
8178 
8179 // Register Xor Long
8180 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8181   match(Set dst (XorL src1 src2));
8182 
8183   ins_cost(DEFAULT_COST);
8184   size(4);
8185   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8186   opcode(Assembler::xor_op3, Assembler::arith_op);
8187   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8188   ins_pipe(ialu_reg_reg);
8189 %}
8190 
8191 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8192   match(Set dst (XorL src1 con));
8193 
8194   ins_cost(DEFAULT_COST);
8195   size(4);
8196   format %{ "XOR    $src1,$con,$dst\t! long" %}
8197   opcode(Assembler::xor_op3, Assembler::arith_op);
8198   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8199   ins_pipe(ialu_reg_imm);
8200 %}
8201 
8202 //----------Convert to Boolean-------------------------------------------------
8203 // Nice hack for 32-bit tests but doesn't work for
8204 // 64-bit pointers.
8205 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8206   match(Set dst (Conv2B src));
8207   effect( KILL ccr );
8208   ins_cost(DEFAULT_COST*2);
8209   format %{ "CMP    R_G0,$src\n\t"
8210             "ADDX   R_G0,0,$dst" %}
8211   ins_encode( enc_to_bool( src, dst ) );
8212   ins_pipe(ialu_reg_ialu);
8213 %}
8214 
8215 #ifndef _LP64
8216 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8217   match(Set dst (Conv2B src));
8218   effect( KILL ccr );
8219   ins_cost(DEFAULT_COST*2);
8220   format %{ "CMP    R_G0,$src\n\t"
8221             "ADDX   R_G0,0,$dst" %}
8222   ins_encode( enc_to_bool( src, dst ) );
8223   ins_pipe(ialu_reg_ialu);
8224 %}
8225 #else
8226 instruct convP2B( iRegI dst, iRegP src ) %{
8227   match(Set dst (Conv2B src));
8228   ins_cost(DEFAULT_COST*2);
8229   format %{ "MOV    $src,$dst\n\t"
8230             "MOVRNZ $src,1,$dst" %}
8231   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8232   ins_pipe(ialu_clr_and_mover);
8233 %}
8234 #endif
8235 
8236 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8237   match(Set dst (CmpLTMask src zero));
8238   effect(KILL ccr);
8239   size(4);
8240   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8241   ins_encode %{
8242     __ sra($src$$Register, 31, $dst$$Register);
8243   %}
8244   ins_pipe(ialu_reg_imm);
8245 %}
8246 
8247 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8248   match(Set dst (CmpLTMask p q));
8249   effect( KILL ccr );
8250   ins_cost(DEFAULT_COST*4);
8251   format %{ "CMP    $p,$q\n\t"
8252             "MOV    #0,$dst\n\t"
8253             "BLT,a  .+8\n\t"
8254             "MOV    #-1,$dst" %}
8255   ins_encode( enc_ltmask(p,q,dst) );
8256   ins_pipe(ialu_reg_reg_ialu);
8257 %}
8258 
8259 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8260   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8261   effect(KILL ccr, TEMP tmp);
8262   ins_cost(DEFAULT_COST*3);
8263 
8264   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8265             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8266             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8267   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8268   ins_pipe(cadd_cmpltmask);
8269 %}
8270 
8271 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8272   match(Set p (AndI (CmpLTMask p q) y));
8273   effect(KILL ccr);
8274   ins_cost(DEFAULT_COST*3);
8275 
8276   format %{ "CMP  $p,$q\n\t"
8277             "MOV  $y,$p\n\t"
8278             "MOVge G0,$p" %}
8279   ins_encode %{
8280     __ cmp($p$$Register, $q$$Register);
8281     __ mov($y$$Register, $p$$Register);
8282     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8283   %}
8284   ins_pipe(ialu_reg_reg_ialu);
8285 %}
8286 
8287 //-----------------------------------------------------------------
8288 // Direct raw moves between float and general registers using VIS3.
8289 
8290 //  ins_pipe(faddF_reg);
8291 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8292   predicate(UseVIS >= 3);
8293   match(Set dst (MoveF2I src));
8294 
8295   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8296   ins_encode %{
8297     __ movstouw($src$$FloatRegister, $dst$$Register);
8298   %}
8299   ins_pipe(ialu_reg_reg);
8300 %}
8301 
8302 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8303   predicate(UseVIS >= 3);
8304   match(Set dst (MoveI2F src));
8305 
8306   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8307   ins_encode %{
8308     __ movwtos($src$$Register, $dst$$FloatRegister);
8309   %}
8310   ins_pipe(ialu_reg_reg);
8311 %}
8312 
8313 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8314   predicate(UseVIS >= 3);
8315   match(Set dst (MoveD2L src));
8316 
8317   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8318   ins_encode %{
8319     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8320   %}
8321   ins_pipe(ialu_reg_reg);
8322 %}
8323 
8324 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8325   predicate(UseVIS >= 3);
8326   match(Set dst (MoveL2D src));
8327 
8328   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8329   ins_encode %{
8330     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8331   %}
8332   ins_pipe(ialu_reg_reg);
8333 %}
8334 
8335 
8336 // Raw moves between float and general registers using stack.
8337 
8338 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8339   match(Set dst (MoveF2I src));
8340   effect(DEF dst, USE src);
8341   ins_cost(MEMORY_REF_COST);
8342 
8343   size(4);
8344   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8345   opcode(Assembler::lduw_op3);
8346   ins_encode(simple_form3_mem_reg( src, dst ) );
8347   ins_pipe(iload_mem);
8348 %}
8349 
8350 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8351   match(Set dst (MoveI2F src));
8352   effect(DEF dst, USE src);
8353   ins_cost(MEMORY_REF_COST);
8354 
8355   size(4);
8356   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8357   opcode(Assembler::ldf_op3);
8358   ins_encode(simple_form3_mem_reg(src, dst));
8359   ins_pipe(floadF_stk);
8360 %}
8361 
8362 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8363   match(Set dst (MoveD2L src));
8364   effect(DEF dst, USE src);
8365   ins_cost(MEMORY_REF_COST);
8366 
8367   size(4);
8368   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8369   opcode(Assembler::ldx_op3);
8370   ins_encode(simple_form3_mem_reg( src, dst ) );
8371   ins_pipe(iload_mem);
8372 %}
8373 
8374 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8375   match(Set dst (MoveL2D src));
8376   effect(DEF dst, USE src);
8377   ins_cost(MEMORY_REF_COST);
8378 
8379   size(4);
8380   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8381   opcode(Assembler::lddf_op3);
8382   ins_encode(simple_form3_mem_reg(src, dst));
8383   ins_pipe(floadD_stk);
8384 %}
8385 
8386 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8387   match(Set dst (MoveF2I src));
8388   effect(DEF dst, USE src);
8389   ins_cost(MEMORY_REF_COST);
8390 
8391   size(4);
8392   format %{ "STF   $src,$dst\t! MoveF2I" %}
8393   opcode(Assembler::stf_op3);
8394   ins_encode(simple_form3_mem_reg(dst, src));
8395   ins_pipe(fstoreF_stk_reg);
8396 %}
8397 
8398 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8399   match(Set dst (MoveI2F src));
8400   effect(DEF dst, USE src);
8401   ins_cost(MEMORY_REF_COST);
8402 
8403   size(4);
8404   format %{ "STW    $src,$dst\t! MoveI2F" %}
8405   opcode(Assembler::stw_op3);
8406   ins_encode(simple_form3_mem_reg( dst, src ) );
8407   ins_pipe(istore_mem_reg);
8408 %}
8409 
8410 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8411   match(Set dst (MoveD2L src));
8412   effect(DEF dst, USE src);
8413   ins_cost(MEMORY_REF_COST);
8414 
8415   size(4);
8416   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8417   opcode(Assembler::stdf_op3);
8418   ins_encode(simple_form3_mem_reg(dst, src));
8419   ins_pipe(fstoreD_stk_reg);
8420 %}
8421 
8422 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8423   match(Set dst (MoveL2D src));
8424   effect(DEF dst, USE src);
8425   ins_cost(MEMORY_REF_COST);
8426 
8427   size(4);
8428   format %{ "STX    $src,$dst\t! MoveL2D" %}
8429   opcode(Assembler::stx_op3);
8430   ins_encode(simple_form3_mem_reg( dst, src ) );
8431   ins_pipe(istore_mem_reg);
8432 %}
8433 
8434 
8435 //----------Arithmetic Conversion Instructions---------------------------------
8436 // The conversions operations are all Alpha sorted.  Please keep it that way!
8437 
8438 instruct convD2F_reg(regF dst, regD src) %{
8439   match(Set dst (ConvD2F src));
8440   size(4);
8441   format %{ "FDTOS  $src,$dst" %}
8442   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8443   ins_encode(form3_opf_rs2D_rdF(src, dst));
8444   ins_pipe(fcvtD2F);
8445 %}
8446 
8447 
8448 // Convert a double to an int in a float register.
8449 // If the double is a NAN, stuff a zero in instead.
8450 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8451   effect(DEF dst, USE src, KILL fcc0);
8452   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8453             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8454             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8455             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8456             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8457       "skip:" %}
8458   ins_encode(form_d2i_helper(src,dst));
8459   ins_pipe(fcvtD2I);
8460 %}
8461 
8462 instruct convD2I_stk(stackSlotI dst, regD src) %{
8463   match(Set dst (ConvD2I src));
8464   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8465   expand %{
8466     regF tmp;
8467     convD2I_helper(tmp, src);
8468     regF_to_stkI(dst, tmp);
8469   %}
8470 %}
8471 
8472 instruct convD2I_reg(iRegI dst, regD src) %{
8473   predicate(UseVIS >= 3);
8474   match(Set dst (ConvD2I src));
8475   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8476   expand %{
8477     regF tmp;
8478     convD2I_helper(tmp, src);
8479     MoveF2I_reg_reg(dst, tmp);
8480   %}
8481 %}
8482 
8483 
8484 // Convert a double to a long in a double register.
8485 // If the double is a NAN, stuff a zero in instead.
8486 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8487   effect(DEF dst, USE src, KILL fcc0);
8488   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8489             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8490             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8491             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8492             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8493       "skip:" %}
8494   ins_encode(form_d2l_helper(src,dst));
8495   ins_pipe(fcvtD2L);
8496 %}
8497 
8498 instruct convD2L_stk(stackSlotL dst, regD src) %{
8499   match(Set dst (ConvD2L src));
8500   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8501   expand %{
8502     regD tmp;
8503     convD2L_helper(tmp, src);
8504     regD_to_stkL(dst, tmp);
8505   %}
8506 %}
8507 
8508 instruct convD2L_reg(iRegL dst, regD src) %{
8509   predicate(UseVIS >= 3);
8510   match(Set dst (ConvD2L src));
8511   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8512   expand %{
8513     regD tmp;
8514     convD2L_helper(tmp, src);
8515     MoveD2L_reg_reg(dst, tmp);
8516   %}
8517 %}
8518 
8519 
8520 instruct convF2D_reg(regD dst, regF src) %{
8521   match(Set dst (ConvF2D src));
8522   format %{ "FSTOD  $src,$dst" %}
8523   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8524   ins_encode(form3_opf_rs2F_rdD(src, dst));
8525   ins_pipe(fcvtF2D);
8526 %}
8527 
8528 
8529 // Convert a float to an int in a float register.
8530 // If the float is a NAN, stuff a zero in instead.
8531 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8532   effect(DEF dst, USE src, KILL fcc0);
8533   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8534             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8535             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8536             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8537             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8538       "skip:" %}
8539   ins_encode(form_f2i_helper(src,dst));
8540   ins_pipe(fcvtF2I);
8541 %}
8542 
8543 instruct convF2I_stk(stackSlotI dst, regF src) %{
8544   match(Set dst (ConvF2I src));
8545   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8546   expand %{
8547     regF tmp;
8548     convF2I_helper(tmp, src);
8549     regF_to_stkI(dst, tmp);
8550   %}
8551 %}
8552 
8553 instruct convF2I_reg(iRegI dst, regF src) %{
8554   predicate(UseVIS >= 3);
8555   match(Set dst (ConvF2I src));
8556   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8557   expand %{
8558     regF tmp;
8559     convF2I_helper(tmp, src);
8560     MoveF2I_reg_reg(dst, tmp);
8561   %}
8562 %}
8563 
8564 
8565 // Convert a float to a long in a float register.
8566 // If the float is a NAN, stuff a zero in instead.
8567 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8568   effect(DEF dst, USE src, KILL fcc0);
8569   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8570             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8571             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8572             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8573             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8574       "skip:" %}
8575   ins_encode(form_f2l_helper(src,dst));
8576   ins_pipe(fcvtF2L);
8577 %}
8578 
8579 instruct convF2L_stk(stackSlotL dst, regF src) %{
8580   match(Set dst (ConvF2L src));
8581   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8582   expand %{
8583     regD tmp;
8584     convF2L_helper(tmp, src);
8585     regD_to_stkL(dst, tmp);
8586   %}
8587 %}
8588 
8589 instruct convF2L_reg(iRegL dst, regF src) %{
8590   predicate(UseVIS >= 3);
8591   match(Set dst (ConvF2L src));
8592   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8593   expand %{
8594     regD tmp;
8595     convF2L_helper(tmp, src);
8596     MoveD2L_reg_reg(dst, tmp);
8597   %}
8598 %}
8599 
8600 
8601 instruct convI2D_helper(regD dst, regF tmp) %{
8602   effect(USE tmp, DEF dst);
8603   format %{ "FITOD  $tmp,$dst" %}
8604   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8605   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8606   ins_pipe(fcvtI2D);
8607 %}
8608 
8609 instruct convI2D_stk(stackSlotI src, regD dst) %{
8610   match(Set dst (ConvI2D src));
8611   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8612   expand %{
8613     regF tmp;
8614     stkI_to_regF(tmp, src);
8615     convI2D_helper(dst, tmp);
8616   %}
8617 %}
8618 
8619 instruct convI2D_reg(regD_low dst, iRegI src) %{
8620   predicate(UseVIS >= 3);
8621   match(Set dst (ConvI2D src));
8622   expand %{
8623     regF tmp;
8624     MoveI2F_reg_reg(tmp, src);
8625     convI2D_helper(dst, tmp);
8626   %}
8627 %}
8628 
8629 instruct convI2D_mem(regD_low dst, memory mem) %{
8630   match(Set dst (ConvI2D (LoadI mem)));
8631   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8632   size(8);
8633   format %{ "LDF    $mem,$dst\n\t"
8634             "FITOD  $dst,$dst" %}
8635   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8636   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8637   ins_pipe(floadF_mem);
8638 %}
8639 
8640 
8641 instruct convI2F_helper(regF dst, regF tmp) %{
8642   effect(DEF dst, USE tmp);
8643   format %{ "FITOS  $tmp,$dst" %}
8644   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8645   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8646   ins_pipe(fcvtI2F);
8647 %}
8648 
8649 instruct convI2F_stk(regF dst, stackSlotI src) %{
8650   match(Set dst (ConvI2F src));
8651   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8652   expand %{
8653     regF tmp;
8654     stkI_to_regF(tmp,src);
8655     convI2F_helper(dst, tmp);
8656   %}
8657 %}
8658 
8659 instruct convI2F_reg(regF dst, iRegI src) %{
8660   predicate(UseVIS >= 3);
8661   match(Set dst (ConvI2F src));
8662   ins_cost(DEFAULT_COST);
8663   expand %{
8664     regF tmp;
8665     MoveI2F_reg_reg(tmp, src);
8666     convI2F_helper(dst, tmp);
8667   %}
8668 %}
8669 
8670 instruct convI2F_mem( regF dst, memory mem ) %{
8671   match(Set dst (ConvI2F (LoadI mem)));
8672   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8673   size(8);
8674   format %{ "LDF    $mem,$dst\n\t"
8675             "FITOS  $dst,$dst" %}
8676   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8677   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8678   ins_pipe(floadF_mem);
8679 %}
8680 
8681 
8682 instruct convI2L_reg(iRegL dst, iRegI src) %{
8683   match(Set dst (ConvI2L src));
8684   size(4);
8685   format %{ "SRA    $src,0,$dst\t! int->long" %}
8686   opcode(Assembler::sra_op3, Assembler::arith_op);
8687   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8688   ins_pipe(ialu_reg_reg);
8689 %}
8690 
8691 // Zero-extend convert int to long
8692 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8693   match(Set dst (AndL (ConvI2L src) mask) );
8694   size(4);
8695   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8696   opcode(Assembler::srl_op3, Assembler::arith_op);
8697   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8698   ins_pipe(ialu_reg_reg);
8699 %}
8700 
8701 // Zero-extend long
8702 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8703   match(Set dst (AndL src mask) );
8704   size(4);
8705   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8706   opcode(Assembler::srl_op3, Assembler::arith_op);
8707   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8708   ins_pipe(ialu_reg_reg);
8709 %}
8710 
8711 
8712 //-----------
8713 // Long to Double conversion using V8 opcodes.
8714 // Still useful because cheetah traps and becomes
8715 // amazingly slow for some common numbers.
8716 
8717 // Magic constant, 0x43300000
8718 instruct loadConI_x43300000(iRegI dst) %{
8719   effect(DEF dst);
8720   size(4);
8721   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8722   ins_encode(SetHi22(0x43300000, dst));
8723   ins_pipe(ialu_none);
8724 %}
8725 
8726 // Magic constant, 0x41f00000
8727 instruct loadConI_x41f00000(iRegI dst) %{
8728   effect(DEF dst);
8729   size(4);
8730   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8731   ins_encode(SetHi22(0x41f00000, dst));
8732   ins_pipe(ialu_none);
8733 %}
8734 
8735 // Construct a double from two float halves
8736 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8737   effect(DEF dst, USE src1, USE src2);
8738   size(8);
8739   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8740             "FMOVS  $src2.lo,$dst.lo" %}
8741   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8742   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8743   ins_pipe(faddD_reg_reg);
8744 %}
8745 
8746 // Convert integer in high half of a double register (in the lower half of
8747 // the double register file) to double
8748 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8749   effect(DEF dst, USE src);
8750   size(4);
8751   format %{ "FITOD  $src,$dst" %}
8752   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8753   ins_encode(form3_opf_rs2D_rdD(src, dst));
8754   ins_pipe(fcvtLHi2D);
8755 %}
8756 
8757 // Add float double precision
8758 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8759   effect(DEF dst, USE src1, USE src2);
8760   size(4);
8761   format %{ "FADDD  $src1,$src2,$dst" %}
8762   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8763   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8764   ins_pipe(faddD_reg_reg);
8765 %}
8766 
8767 // Sub float double precision
8768 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8769   effect(DEF dst, USE src1, USE src2);
8770   size(4);
8771   format %{ "FSUBD  $src1,$src2,$dst" %}
8772   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8773   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8774   ins_pipe(faddD_reg_reg);
8775 %}
8776 
8777 // Mul float double precision
8778 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8779   effect(DEF dst, USE src1, USE src2);
8780   size(4);
8781   format %{ "FMULD  $src1,$src2,$dst" %}
8782   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8783   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8784   ins_pipe(fmulD_reg_reg);
8785 %}
8786 
8787 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8788   match(Set dst (ConvL2D src));
8789   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8790 
8791   expand %{
8792     regD_low   tmpsrc;
8793     iRegI      ix43300000;
8794     iRegI      ix41f00000;
8795     stackSlotL lx43300000;
8796     stackSlotL lx41f00000;
8797     regD_low   dx43300000;
8798     regD       dx41f00000;
8799     regD       tmp1;
8800     regD_low   tmp2;
8801     regD       tmp3;
8802     regD       tmp4;
8803 
8804     stkL_to_regD(tmpsrc, src);
8805 
8806     loadConI_x43300000(ix43300000);
8807     loadConI_x41f00000(ix41f00000);
8808     regI_to_stkLHi(lx43300000, ix43300000);
8809     regI_to_stkLHi(lx41f00000, ix41f00000);
8810     stkL_to_regD(dx43300000, lx43300000);
8811     stkL_to_regD(dx41f00000, lx41f00000);
8812 
8813     convI2D_regDHi_regD(tmp1, tmpsrc);
8814     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8815     subD_regD_regD(tmp3, tmp2, dx43300000);
8816     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8817     addD_regD_regD(dst, tmp3, tmp4);
8818   %}
8819 %}
8820 
8821 // Long to Double conversion using fast fxtof
8822 instruct convL2D_helper(regD dst, regD tmp) %{
8823   effect(DEF dst, USE tmp);
8824   size(4);
8825   format %{ "FXTOD  $tmp,$dst" %}
8826   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8827   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8828   ins_pipe(fcvtL2D);
8829 %}
8830 
8831 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8832   predicate(VM_Version::has_fast_fxtof());
8833   match(Set dst (ConvL2D src));
8834   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8835   expand %{
8836     regD tmp;
8837     stkL_to_regD(tmp, src);
8838     convL2D_helper(dst, tmp);
8839   %}
8840 %}
8841 
8842 instruct convL2D_reg(regD dst, iRegL src) %{
8843   predicate(UseVIS >= 3);
8844   match(Set dst (ConvL2D src));
8845   expand %{
8846     regD tmp;
8847     MoveL2D_reg_reg(tmp, src);
8848     convL2D_helper(dst, tmp);
8849   %}
8850 %}
8851 
8852 // Long to Float conversion using fast fxtof
8853 instruct convL2F_helper(regF dst, regD tmp) %{
8854   effect(DEF dst, USE tmp);
8855   size(4);
8856   format %{ "FXTOS  $tmp,$dst" %}
8857   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8858   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8859   ins_pipe(fcvtL2F);
8860 %}
8861 
8862 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8863   match(Set dst (ConvL2F src));
8864   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8865   expand %{
8866     regD tmp;
8867     stkL_to_regD(tmp, src);
8868     convL2F_helper(dst, tmp);
8869   %}
8870 %}
8871 
8872 instruct convL2F_reg(regF dst, iRegL src) %{
8873   predicate(UseVIS >= 3);
8874   match(Set dst (ConvL2F src));
8875   ins_cost(DEFAULT_COST);
8876   expand %{
8877     regD tmp;
8878     MoveL2D_reg_reg(tmp, src);
8879     convL2F_helper(dst, tmp);
8880   %}
8881 %}
8882 
8883 //-----------
8884 
8885 instruct convL2I_reg(iRegI dst, iRegL src) %{
8886   match(Set dst (ConvL2I src));
8887 #ifndef _LP64
8888   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8889   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8890   ins_pipe(ialu_move_reg_I_to_L);
8891 #else
8892   size(4);
8893   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8894   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8895   ins_pipe(ialu_reg);
8896 #endif
8897 %}
8898 
8899 // Register Shift Right Immediate
8900 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8901   match(Set dst (ConvL2I (RShiftL src cnt)));
8902 
8903   size(4);
8904   format %{ "SRAX   $src,$cnt,$dst" %}
8905   opcode(Assembler::srax_op3, Assembler::arith_op);
8906   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8907   ins_pipe(ialu_reg_imm);
8908 %}
8909 
8910 //----------Control Flow Instructions------------------------------------------
8911 // Compare Instructions
8912 // Compare Integers
8913 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8914   match(Set icc (CmpI op1 op2));
8915   effect( DEF icc, USE op1, USE op2 );
8916 
8917   size(4);
8918   format %{ "CMP    $op1,$op2" %}
8919   opcode(Assembler::subcc_op3, Assembler::arith_op);
8920   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8921   ins_pipe(ialu_cconly_reg_reg);
8922 %}
8923 
8924 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8925   match(Set icc (CmpU op1 op2));
8926 
8927   size(4);
8928   format %{ "CMP    $op1,$op2\t! unsigned" %}
8929   opcode(Assembler::subcc_op3, Assembler::arith_op);
8930   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8931   ins_pipe(ialu_cconly_reg_reg);
8932 %}
8933 
8934 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8935   match(Set icc (CmpI op1 op2));
8936   effect( DEF icc, USE op1 );
8937 
8938   size(4);
8939   format %{ "CMP    $op1,$op2" %}
8940   opcode(Assembler::subcc_op3, Assembler::arith_op);
8941   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8942   ins_pipe(ialu_cconly_reg_imm);
8943 %}
8944 
8945 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8946   match(Set icc (CmpI (AndI op1 op2) zero));
8947 
8948   size(4);
8949   format %{ "BTST   $op2,$op1" %}
8950   opcode(Assembler::andcc_op3, Assembler::arith_op);
8951   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8952   ins_pipe(ialu_cconly_reg_reg_zero);
8953 %}
8954 
8955 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8956   match(Set icc (CmpI (AndI op1 op2) zero));
8957 
8958   size(4);
8959   format %{ "BTST   $op2,$op1" %}
8960   opcode(Assembler::andcc_op3, Assembler::arith_op);
8961   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8962   ins_pipe(ialu_cconly_reg_imm_zero);
8963 %}
8964 
8965 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8966   match(Set xcc (CmpL op1 op2));
8967   effect( DEF xcc, USE op1, USE op2 );
8968 
8969   size(4);
8970   format %{ "CMP    $op1,$op2\t\t! long" %}
8971   opcode(Assembler::subcc_op3, Assembler::arith_op);
8972   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8973   ins_pipe(ialu_cconly_reg_reg);
8974 %}
8975 
8976 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8977   match(Set xcc (CmpL op1 con));
8978   effect( DEF xcc, USE op1, USE con );
8979 
8980   size(4);
8981   format %{ "CMP    $op1,$con\t\t! long" %}
8982   opcode(Assembler::subcc_op3, Assembler::arith_op);
8983   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8984   ins_pipe(ialu_cconly_reg_reg);
8985 %}
8986 
8987 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8988   match(Set xcc (CmpL (AndL op1 op2) zero));
8989   effect( DEF xcc, USE op1, USE op2 );
8990 
8991   size(4);
8992   format %{ "BTST   $op1,$op2\t\t! long" %}
8993   opcode(Assembler::andcc_op3, Assembler::arith_op);
8994   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8995   ins_pipe(ialu_cconly_reg_reg);
8996 %}
8997 
8998 // useful for checking the alignment of a pointer:
8999 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9000   match(Set xcc (CmpL (AndL op1 con) zero));
9001   effect( DEF xcc, USE op1, USE con );
9002 
9003   size(4);
9004   format %{ "BTST   $op1,$con\t\t! long" %}
9005   opcode(Assembler::andcc_op3, Assembler::arith_op);
9006   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9007   ins_pipe(ialu_cconly_reg_reg);
9008 %}
9009 
9010 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
9011   match(Set icc (CmpU op1 op2));
9012 
9013   size(4);
9014   format %{ "CMP    $op1,$op2\t! unsigned" %}
9015   opcode(Assembler::subcc_op3, Assembler::arith_op);
9016   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9017   ins_pipe(ialu_cconly_reg_imm);
9018 %}
9019 
9020 // Compare Pointers
9021 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9022   match(Set pcc (CmpP op1 op2));
9023 
9024   size(4);
9025   format %{ "CMP    $op1,$op2\t! ptr" %}
9026   opcode(Assembler::subcc_op3, Assembler::arith_op);
9027   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9028   ins_pipe(ialu_cconly_reg_reg);
9029 %}
9030 
9031 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9032   match(Set pcc (CmpP op1 op2));
9033 
9034   size(4);
9035   format %{ "CMP    $op1,$op2\t! ptr" %}
9036   opcode(Assembler::subcc_op3, Assembler::arith_op);
9037   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9038   ins_pipe(ialu_cconly_reg_imm);
9039 %}
9040 
9041 // Compare Narrow oops
9042 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9043   match(Set icc (CmpN op1 op2));
9044 
9045   size(4);
9046   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9047   opcode(Assembler::subcc_op3, Assembler::arith_op);
9048   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9049   ins_pipe(ialu_cconly_reg_reg);
9050 %}
9051 
9052 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9053   match(Set icc (CmpN op1 op2));
9054 
9055   size(4);
9056   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9057   opcode(Assembler::subcc_op3, Assembler::arith_op);
9058   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9059   ins_pipe(ialu_cconly_reg_imm);
9060 %}
9061 
9062 //----------Max and Min--------------------------------------------------------
9063 // Min Instructions
9064 // Conditional move for min
9065 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9066   effect( USE_DEF op2, USE op1, USE icc );
9067 
9068   size(4);
9069   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9070   opcode(Assembler::less);
9071   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9072   ins_pipe(ialu_reg_flags);
9073 %}
9074 
9075 // Min Register with Register.
9076 instruct minI_eReg(iRegI op1, iRegI op2) %{
9077   match(Set op2 (MinI op1 op2));
9078   ins_cost(DEFAULT_COST*2);
9079   expand %{
9080     flagsReg icc;
9081     compI_iReg(icc,op1,op2);
9082     cmovI_reg_lt(op2,op1,icc);
9083   %}
9084 %}
9085 
9086 // Max Instructions
9087 // Conditional move for max
9088 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9089   effect( USE_DEF op2, USE op1, USE icc );
9090   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9091   opcode(Assembler::greater);
9092   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9093   ins_pipe(ialu_reg_flags);
9094 %}
9095 
9096 // Max Register with Register
9097 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9098   match(Set op2 (MaxI op1 op2));
9099   ins_cost(DEFAULT_COST*2);
9100   expand %{
9101     flagsReg icc;
9102     compI_iReg(icc,op1,op2);
9103     cmovI_reg_gt(op2,op1,icc);
9104   %}
9105 %}
9106 
9107 
9108 //----------Float Compares----------------------------------------------------
9109 // Compare floating, generate condition code
9110 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9111   match(Set fcc (CmpF src1 src2));
9112 
9113   size(4);
9114   format %{ "FCMPs  $fcc,$src1,$src2" %}
9115   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9116   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9117   ins_pipe(faddF_fcc_reg_reg_zero);
9118 %}
9119 
9120 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9121   match(Set fcc (CmpD src1 src2));
9122 
9123   size(4);
9124   format %{ "FCMPd  $fcc,$src1,$src2" %}
9125   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9126   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9127   ins_pipe(faddD_fcc_reg_reg_zero);
9128 %}
9129 
9130 
9131 // Compare floating, generate -1,0,1
9132 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9133   match(Set dst (CmpF3 src1 src2));
9134   effect(KILL fcc0);
9135   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9136   format %{ "fcmpl  $dst,$src1,$src2" %}
9137   // Primary = float
9138   opcode( true );
9139   ins_encode( floating_cmp( dst, src1, src2 ) );
9140   ins_pipe( floating_cmp );
9141 %}
9142 
9143 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9144   match(Set dst (CmpD3 src1 src2));
9145   effect(KILL fcc0);
9146   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9147   format %{ "dcmpl  $dst,$src1,$src2" %}
9148   // Primary = double (not float)
9149   opcode( false );
9150   ins_encode( floating_cmp( dst, src1, src2 ) );
9151   ins_pipe( floating_cmp );
9152 %}
9153 
9154 //----------Branches---------------------------------------------------------
9155 // Jump
9156 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9157 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9158   match(Jump switch_val);
9159   effect(TEMP table);
9160 
9161   ins_cost(350);
9162 
9163   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9164              "LD     [O7 + $switch_val], O7\n\t"
9165              "JUMP   O7" %}
9166   ins_encode %{
9167     // Calculate table address into a register.
9168     Register table_reg;
9169     Register label_reg = O7;
9170     // If we are calculating the size of this instruction don't trust
9171     // zero offsets because they might change when
9172     // MachConstantBaseNode decides to optimize the constant table
9173     // base.
9174     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9175       table_reg = $constanttablebase;
9176     } else {
9177       table_reg = O7;
9178       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9179       __ add($constanttablebase, con_offset, table_reg);
9180     }
9181 
9182     // Jump to base address + switch value
9183     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9184     __ jmp(label_reg, G0);
9185     __ delayed()->nop();
9186   %}
9187   ins_pipe(ialu_reg_reg);
9188 %}
9189 
9190 // Direct Branch.  Use V8 version with longer range.
9191 instruct branch(label labl) %{
9192   match(Goto);
9193   effect(USE labl);
9194 
9195   size(8);
9196   ins_cost(BRANCH_COST);
9197   format %{ "BA     $labl" %}
9198   ins_encode %{
9199     Label* L = $labl$$label;
9200     __ ba(*L);
9201     __ delayed()->nop();
9202   %}
9203   ins_avoid_back_to_back(AVOID_BEFORE);
9204   ins_pipe(br);
9205 %}
9206 
9207 // Direct Branch, short with no delay slot
9208 instruct branch_short(label labl) %{
9209   match(Goto);
9210   predicate(UseCBCond);
9211   effect(USE labl);
9212 
9213   size(4);
9214   ins_cost(BRANCH_COST);
9215   format %{ "BA     $labl\t! short branch" %}
9216   ins_encode %{
9217     Label* L = $labl$$label;
9218     assert(__ use_cbcond(*L), "back to back cbcond");
9219     __ ba_short(*L);
9220   %}
9221   ins_short_branch(1);
9222   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9223   ins_pipe(cbcond_reg_imm);
9224 %}
9225 
9226 // Conditional Direct Branch
9227 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9228   match(If cmp icc);
9229   effect(USE labl);
9230 
9231   size(8);
9232   ins_cost(BRANCH_COST);
9233   format %{ "BP$cmp   $icc,$labl" %}
9234   // Prim = bits 24-22, Secnd = bits 31-30
9235   ins_encode( enc_bp( labl, cmp, icc ) );
9236   ins_avoid_back_to_back(AVOID_BEFORE);
9237   ins_pipe(br_cc);
9238 %}
9239 
9240 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9241   match(If cmp icc);
9242   effect(USE labl);
9243 
9244   ins_cost(BRANCH_COST);
9245   format %{ "BP$cmp  $icc,$labl" %}
9246   // Prim = bits 24-22, Secnd = bits 31-30
9247   ins_encode( enc_bp( labl, cmp, icc ) );
9248   ins_avoid_back_to_back(AVOID_BEFORE);
9249   ins_pipe(br_cc);
9250 %}
9251 
9252 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9253   match(If cmp pcc);
9254   effect(USE labl);
9255 
9256   size(8);
9257   ins_cost(BRANCH_COST);
9258   format %{ "BP$cmp  $pcc,$labl" %}
9259   ins_encode %{
9260     Label* L = $labl$$label;
9261     Assembler::Predict predict_taken =
9262       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9263 
9264     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9265     __ delayed()->nop();
9266   %}
9267   ins_avoid_back_to_back(AVOID_BEFORE);
9268   ins_pipe(br_cc);
9269 %}
9270 
9271 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9272   match(If cmp fcc);
9273   effect(USE labl);
9274 
9275   size(8);
9276   ins_cost(BRANCH_COST);
9277   format %{ "FBP$cmp $fcc,$labl" %}
9278   ins_encode %{
9279     Label* L = $labl$$label;
9280     Assembler::Predict predict_taken =
9281       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9282 
9283     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9284     __ delayed()->nop();
9285   %}
9286   ins_avoid_back_to_back(AVOID_BEFORE);
9287   ins_pipe(br_fcc);
9288 %}
9289 
9290 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9291   match(CountedLoopEnd cmp icc);
9292   effect(USE labl);
9293 
9294   size(8);
9295   ins_cost(BRANCH_COST);
9296   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9297   // Prim = bits 24-22, Secnd = bits 31-30
9298   ins_encode( enc_bp( labl, cmp, icc ) );
9299   ins_avoid_back_to_back(AVOID_BEFORE);
9300   ins_pipe(br_cc);
9301 %}
9302 
9303 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9304   match(CountedLoopEnd cmp icc);
9305   effect(USE labl);
9306 
9307   size(8);
9308   ins_cost(BRANCH_COST);
9309   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9310   // Prim = bits 24-22, Secnd = bits 31-30
9311   ins_encode( enc_bp( labl, cmp, icc ) );
9312   ins_avoid_back_to_back(AVOID_BEFORE);
9313   ins_pipe(br_cc);
9314 %}
9315 
9316 // Compare and branch instructions
9317 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9318   match(If cmp (CmpI op1 op2));
9319   effect(USE labl, KILL icc);
9320 
9321   size(12);
9322   ins_cost(BRANCH_COST);
9323   format %{ "CMP    $op1,$op2\t! int\n\t"
9324             "BP$cmp   $labl" %}
9325   ins_encode %{
9326     Label* L = $labl$$label;
9327     Assembler::Predict predict_taken =
9328       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9329     __ cmp($op1$$Register, $op2$$Register);
9330     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9331     __ delayed()->nop();
9332   %}
9333   ins_pipe(cmp_br_reg_reg);
9334 %}
9335 
9336 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9337   match(If cmp (CmpI op1 op2));
9338   effect(USE labl, KILL icc);
9339 
9340   size(12);
9341   ins_cost(BRANCH_COST);
9342   format %{ "CMP    $op1,$op2\t! int\n\t"
9343             "BP$cmp   $labl" %}
9344   ins_encode %{
9345     Label* L = $labl$$label;
9346     Assembler::Predict predict_taken =
9347       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9348     __ cmp($op1$$Register, $op2$$constant);
9349     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9350     __ delayed()->nop();
9351   %}
9352   ins_pipe(cmp_br_reg_imm);
9353 %}
9354 
9355 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9356   match(If cmp (CmpU op1 op2));
9357   effect(USE labl, KILL icc);
9358 
9359   size(12);
9360   ins_cost(BRANCH_COST);
9361   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9362             "BP$cmp  $labl" %}
9363   ins_encode %{
9364     Label* L = $labl$$label;
9365     Assembler::Predict predict_taken =
9366       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9367     __ cmp($op1$$Register, $op2$$Register);
9368     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9369     __ delayed()->nop();
9370   %}
9371   ins_pipe(cmp_br_reg_reg);
9372 %}
9373 
9374 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9375   match(If cmp (CmpU op1 op2));
9376   effect(USE labl, KILL icc);
9377 
9378   size(12);
9379   ins_cost(BRANCH_COST);
9380   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9381             "BP$cmp  $labl" %}
9382   ins_encode %{
9383     Label* L = $labl$$label;
9384     Assembler::Predict predict_taken =
9385       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9386     __ cmp($op1$$Register, $op2$$constant);
9387     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9388     __ delayed()->nop();
9389   %}
9390   ins_pipe(cmp_br_reg_imm);
9391 %}
9392 
9393 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9394   match(If cmp (CmpL op1 op2));
9395   effect(USE labl, KILL xcc);
9396 
9397   size(12);
9398   ins_cost(BRANCH_COST);
9399   format %{ "CMP    $op1,$op2\t! long\n\t"
9400             "BP$cmp   $labl" %}
9401   ins_encode %{
9402     Label* L = $labl$$label;
9403     Assembler::Predict predict_taken =
9404       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9405     __ cmp($op1$$Register, $op2$$Register);
9406     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9407     __ delayed()->nop();
9408   %}
9409   ins_pipe(cmp_br_reg_reg);
9410 %}
9411 
9412 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9413   match(If cmp (CmpL op1 op2));
9414   effect(USE labl, KILL xcc);
9415 
9416   size(12);
9417   ins_cost(BRANCH_COST);
9418   format %{ "CMP    $op1,$op2\t! long\n\t"
9419             "BP$cmp   $labl" %}
9420   ins_encode %{
9421     Label* L = $labl$$label;
9422     Assembler::Predict predict_taken =
9423       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9424     __ cmp($op1$$Register, $op2$$constant);
9425     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9426     __ delayed()->nop();
9427   %}
9428   ins_pipe(cmp_br_reg_imm);
9429 %}
9430 
9431 // Compare Pointers and branch
9432 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9433   match(If cmp (CmpP op1 op2));
9434   effect(USE labl, KILL pcc);
9435 
9436   size(12);
9437   ins_cost(BRANCH_COST);
9438   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9439             "B$cmp   $labl" %}
9440   ins_encode %{
9441     Label* L = $labl$$label;
9442     Assembler::Predict predict_taken =
9443       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9444     __ cmp($op1$$Register, $op2$$Register);
9445     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9446     __ delayed()->nop();
9447   %}
9448   ins_pipe(cmp_br_reg_reg);
9449 %}
9450 
9451 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9452   match(If cmp (CmpP op1 null));
9453   effect(USE labl, KILL pcc);
9454 
9455   size(12);
9456   ins_cost(BRANCH_COST);
9457   format %{ "CMP    $op1,0\t! ptr\n\t"
9458             "B$cmp   $labl" %}
9459   ins_encode %{
9460     Label* L = $labl$$label;
9461     Assembler::Predict predict_taken =
9462       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9463     __ cmp($op1$$Register, G0);
9464     // bpr() is not used here since it has shorter distance.
9465     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9466     __ delayed()->nop();
9467   %}
9468   ins_pipe(cmp_br_reg_reg);
9469 %}
9470 
9471 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9472   match(If cmp (CmpN op1 op2));
9473   effect(USE labl, KILL icc);
9474 
9475   size(12);
9476   ins_cost(BRANCH_COST);
9477   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9478             "BP$cmp   $labl" %}
9479   ins_encode %{
9480     Label* L = $labl$$label;
9481     Assembler::Predict predict_taken =
9482       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9483     __ cmp($op1$$Register, $op2$$Register);
9484     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9485     __ delayed()->nop();
9486   %}
9487   ins_pipe(cmp_br_reg_reg);
9488 %}
9489 
9490 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9491   match(If cmp (CmpN op1 null));
9492   effect(USE labl, KILL icc);
9493 
9494   size(12);
9495   ins_cost(BRANCH_COST);
9496   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9497             "BP$cmp   $labl" %}
9498   ins_encode %{
9499     Label* L = $labl$$label;
9500     Assembler::Predict predict_taken =
9501       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9502     __ cmp($op1$$Register, G0);
9503     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9504     __ delayed()->nop();
9505   %}
9506   ins_pipe(cmp_br_reg_reg);
9507 %}
9508 
9509 // Loop back branch
9510 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9511   match(CountedLoopEnd cmp (CmpI op1 op2));
9512   effect(USE labl, KILL icc);
9513 
9514   size(12);
9515   ins_cost(BRANCH_COST);
9516   format %{ "CMP    $op1,$op2\t! int\n\t"
9517             "BP$cmp   $labl\t! Loop end" %}
9518   ins_encode %{
9519     Label* L = $labl$$label;
9520     Assembler::Predict predict_taken =
9521       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9522     __ cmp($op1$$Register, $op2$$Register);
9523     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9524     __ delayed()->nop();
9525   %}
9526   ins_pipe(cmp_br_reg_reg);
9527 %}
9528 
9529 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9530   match(CountedLoopEnd cmp (CmpI op1 op2));
9531   effect(USE labl, KILL icc);
9532 
9533   size(12);
9534   ins_cost(BRANCH_COST);
9535   format %{ "CMP    $op1,$op2\t! int\n\t"
9536             "BP$cmp   $labl\t! Loop end" %}
9537   ins_encode %{
9538     Label* L = $labl$$label;
9539     Assembler::Predict predict_taken =
9540       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9541     __ cmp($op1$$Register, $op2$$constant);
9542     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9543     __ delayed()->nop();
9544   %}
9545   ins_pipe(cmp_br_reg_imm);
9546 %}
9547 
9548 // Short compare and branch instructions
9549 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9550   match(If cmp (CmpI op1 op2));
9551   predicate(UseCBCond);
9552   effect(USE labl, KILL icc);
9553 
9554   size(4);
9555   ins_cost(BRANCH_COST);
9556   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9557   ins_encode %{
9558     Label* L = $labl$$label;
9559     assert(__ use_cbcond(*L), "back to back cbcond");
9560     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9561   %}
9562   ins_short_branch(1);
9563   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9564   ins_pipe(cbcond_reg_reg);
9565 %}
9566 
9567 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9568   match(If cmp (CmpI op1 op2));
9569   predicate(UseCBCond);
9570   effect(USE labl, KILL icc);
9571 
9572   size(4);
9573   ins_cost(BRANCH_COST);
9574   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9575   ins_encode %{
9576     Label* L = $labl$$label;
9577     assert(__ use_cbcond(*L), "back to back cbcond");
9578     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9579   %}
9580   ins_short_branch(1);
9581   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9582   ins_pipe(cbcond_reg_imm);
9583 %}
9584 
9585 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9586   match(If cmp (CmpU op1 op2));
9587   predicate(UseCBCond);
9588   effect(USE labl, KILL icc);
9589 
9590   size(4);
9591   ins_cost(BRANCH_COST);
9592   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9593   ins_encode %{
9594     Label* L = $labl$$label;
9595     assert(__ use_cbcond(*L), "back to back cbcond");
9596     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9597   %}
9598   ins_short_branch(1);
9599   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9600   ins_pipe(cbcond_reg_reg);
9601 %}
9602 
9603 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9604   match(If cmp (CmpU op1 op2));
9605   predicate(UseCBCond);
9606   effect(USE labl, KILL icc);
9607 
9608   size(4);
9609   ins_cost(BRANCH_COST);
9610   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9611   ins_encode %{
9612     Label* L = $labl$$label;
9613     assert(__ use_cbcond(*L), "back to back cbcond");
9614     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9615   %}
9616   ins_short_branch(1);
9617   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9618   ins_pipe(cbcond_reg_imm);
9619 %}
9620 
9621 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9622   match(If cmp (CmpL op1 op2));
9623   predicate(UseCBCond);
9624   effect(USE labl, KILL xcc);
9625 
9626   size(4);
9627   ins_cost(BRANCH_COST);
9628   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9629   ins_encode %{
9630     Label* L = $labl$$label;
9631     assert(__ use_cbcond(*L), "back to back cbcond");
9632     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9633   %}
9634   ins_short_branch(1);
9635   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9636   ins_pipe(cbcond_reg_reg);
9637 %}
9638 
9639 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9640   match(If cmp (CmpL op1 op2));
9641   predicate(UseCBCond);
9642   effect(USE labl, KILL xcc);
9643 
9644   size(4);
9645   ins_cost(BRANCH_COST);
9646   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9647   ins_encode %{
9648     Label* L = $labl$$label;
9649     assert(__ use_cbcond(*L), "back to back cbcond");
9650     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9651   %}
9652   ins_short_branch(1);
9653   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9654   ins_pipe(cbcond_reg_imm);
9655 %}
9656 
9657 // Compare Pointers and branch
9658 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9659   match(If cmp (CmpP op1 op2));
9660   predicate(UseCBCond);
9661   effect(USE labl, KILL pcc);
9662 
9663   size(4);
9664   ins_cost(BRANCH_COST);
9665 #ifdef _LP64
9666   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9667 #else
9668   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9669 #endif
9670   ins_encode %{
9671     Label* L = $labl$$label;
9672     assert(__ use_cbcond(*L), "back to back cbcond");
9673     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9674   %}
9675   ins_short_branch(1);
9676   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9677   ins_pipe(cbcond_reg_reg);
9678 %}
9679 
9680 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9681   match(If cmp (CmpP op1 null));
9682   predicate(UseCBCond);
9683   effect(USE labl, KILL pcc);
9684 
9685   size(4);
9686   ins_cost(BRANCH_COST);
9687 #ifdef _LP64
9688   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9689 #else
9690   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9691 #endif
9692   ins_encode %{
9693     Label* L = $labl$$label;
9694     assert(__ use_cbcond(*L), "back to back cbcond");
9695     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9696   %}
9697   ins_short_branch(1);
9698   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9699   ins_pipe(cbcond_reg_reg);
9700 %}
9701 
9702 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9703   match(If cmp (CmpN op1 op2));
9704   predicate(UseCBCond);
9705   effect(USE labl, KILL icc);
9706 
9707   size(4);
9708   ins_cost(BRANCH_COST);
9709   format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9710   ins_encode %{
9711     Label* L = $labl$$label;
9712     assert(__ use_cbcond(*L), "back to back cbcond");
9713     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9714   %}
9715   ins_short_branch(1);
9716   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9717   ins_pipe(cbcond_reg_reg);
9718 %}
9719 
9720 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9721   match(If cmp (CmpN op1 null));
9722   predicate(UseCBCond);
9723   effect(USE labl, KILL icc);
9724 
9725   size(4);
9726   ins_cost(BRANCH_COST);
9727   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9728   ins_encode %{
9729     Label* L = $labl$$label;
9730     assert(__ use_cbcond(*L), "back to back cbcond");
9731     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9732   %}
9733   ins_short_branch(1);
9734   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9735   ins_pipe(cbcond_reg_reg);
9736 %}
9737 
9738 // Loop back branch
9739 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9740   match(CountedLoopEnd cmp (CmpI op1 op2));
9741   predicate(UseCBCond);
9742   effect(USE labl, KILL icc);
9743 
9744   size(4);
9745   ins_cost(BRANCH_COST);
9746   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9747   ins_encode %{
9748     Label* L = $labl$$label;
9749     assert(__ use_cbcond(*L), "back to back cbcond");
9750     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9751   %}
9752   ins_short_branch(1);
9753   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9754   ins_pipe(cbcond_reg_reg);
9755 %}
9756 
9757 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9758   match(CountedLoopEnd cmp (CmpI op1 op2));
9759   predicate(UseCBCond);
9760   effect(USE labl, KILL icc);
9761 
9762   size(4);
9763   ins_cost(BRANCH_COST);
9764   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9765   ins_encode %{
9766     Label* L = $labl$$label;
9767     assert(__ use_cbcond(*L), "back to back cbcond");
9768     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9769   %}
9770   ins_short_branch(1);
9771   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9772   ins_pipe(cbcond_reg_imm);
9773 %}
9774 
9775 // Branch-on-register tests all 64 bits.  We assume that values
9776 // in 64-bit registers always remains zero or sign extended
9777 // unless our code munges the high bits.  Interrupts can chop
9778 // the high order bits to zero or sign at any time.
9779 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9780   match(If cmp (CmpI op1 zero));
9781   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9782   effect(USE labl);
9783 
9784   size(8);
9785   ins_cost(BRANCH_COST);
9786   format %{ "BR$cmp   $op1,$labl" %}
9787   ins_encode( enc_bpr( labl, cmp, op1 ) );
9788   ins_avoid_back_to_back(AVOID_BEFORE);
9789   ins_pipe(br_reg);
9790 %}
9791 
9792 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9793   match(If cmp (CmpP op1 null));
9794   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9795   effect(USE labl);
9796 
9797   size(8);
9798   ins_cost(BRANCH_COST);
9799   format %{ "BR$cmp   $op1,$labl" %}
9800   ins_encode( enc_bpr( labl, cmp, op1 ) );
9801   ins_avoid_back_to_back(AVOID_BEFORE);
9802   ins_pipe(br_reg);
9803 %}
9804 
9805 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9806   match(If cmp (CmpL op1 zero));
9807   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9808   effect(USE labl);
9809 
9810   size(8);
9811   ins_cost(BRANCH_COST);
9812   format %{ "BR$cmp   $op1,$labl" %}
9813   ins_encode( enc_bpr( labl, cmp, op1 ) );
9814   ins_avoid_back_to_back(AVOID_BEFORE);
9815   ins_pipe(br_reg);
9816 %}
9817 
9818 
9819 // ============================================================================
9820 // Long Compare
9821 //
9822 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9823 // is tricky.  The flavor of compare used depends on whether we are testing
9824 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9825 // The GE test is the negated LT test.  The LE test can be had by commuting
9826 // the operands (yielding a GE test) and then negating; negate again for the
9827 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9828 // NE test is negated from that.
9829 
9830 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9831 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9832 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9833 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9834 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9835 // foo match ends up with the wrong leaf.  One fix is to not match both
9836 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9837 // both forms beat the trinary form of long-compare and both are very useful
9838 // on Intel which has so few registers.
9839 
9840 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9841   match(If cmp xcc);
9842   effect(USE labl);
9843 
9844   size(8);
9845   ins_cost(BRANCH_COST);
9846   format %{ "BP$cmp   $xcc,$labl" %}
9847   ins_encode %{
9848     Label* L = $labl$$label;
9849     Assembler::Predict predict_taken =
9850       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9851 
9852     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9853     __ delayed()->nop();
9854   %}
9855   ins_avoid_back_to_back(AVOID_BEFORE);
9856   ins_pipe(br_cc);
9857 %}
9858 
9859 // Manifest a CmpL3 result in an integer register.  Very painful.
9860 // This is the test to avoid.
9861 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9862   match(Set dst (CmpL3 src1 src2) );
9863   effect( KILL ccr );
9864   ins_cost(6*DEFAULT_COST);
9865   size(24);
9866   format %{ "CMP    $src1,$src2\t\t! long\n"
9867           "\tBLT,a,pn done\n"
9868           "\tMOV    -1,$dst\t! delay slot\n"
9869           "\tBGT,a,pn done\n"
9870           "\tMOV    1,$dst\t! delay slot\n"
9871           "\tCLR    $dst\n"
9872     "done:"     %}
9873   ins_encode( cmpl_flag(src1,src2,dst) );
9874   ins_pipe(cmpL_reg);
9875 %}
9876 
9877 // Conditional move
9878 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9879   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9880   ins_cost(150);
9881   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9882   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9883   ins_pipe(ialu_reg);
9884 %}
9885 
9886 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9887   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9888   ins_cost(140);
9889   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9890   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9891   ins_pipe(ialu_imm);
9892 %}
9893 
9894 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9895   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9896   ins_cost(150);
9897   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9898   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9899   ins_pipe(ialu_reg);
9900 %}
9901 
9902 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9903   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9904   ins_cost(140);
9905   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9906   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9907   ins_pipe(ialu_imm);
9908 %}
9909 
9910 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9911   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9912   ins_cost(150);
9913   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9914   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9915   ins_pipe(ialu_reg);
9916 %}
9917 
9918 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9919   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9920   ins_cost(150);
9921   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9922   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9923   ins_pipe(ialu_reg);
9924 %}
9925 
9926 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9927   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9928   ins_cost(140);
9929   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9930   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9931   ins_pipe(ialu_imm);
9932 %}
9933 
9934 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9935   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9936   ins_cost(150);
9937   opcode(0x101);
9938   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9939   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9940   ins_pipe(int_conditional_float_move);
9941 %}
9942 
9943 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9944   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9945   ins_cost(150);
9946   opcode(0x102);
9947   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9948   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9949   ins_pipe(int_conditional_float_move);
9950 %}
9951 
9952 // ============================================================================
9953 // Safepoint Instruction
9954 instruct safePoint_poll(iRegP poll) %{
9955   match(SafePoint poll);
9956   effect(USE poll);
9957 
9958   size(4);
9959 #ifdef _LP64
9960   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9961 #else
9962   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9963 #endif
9964   ins_encode %{
9965     __ relocate(relocInfo::poll_type);
9966     __ ld_ptr($poll$$Register, 0, G0);
9967   %}
9968   ins_pipe(loadPollP);
9969 %}
9970 
9971 // ============================================================================
9972 // Call Instructions
9973 // Call Java Static Instruction
9974 instruct CallStaticJavaDirect( method meth ) %{
9975   match(CallStaticJava);
9976   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9977   effect(USE meth);
9978 
9979   size(8);
9980   ins_cost(CALL_COST);
9981   format %{ "CALL,static  ; NOP ==> " %}
9982   ins_encode( Java_Static_Call( meth ), call_epilog );
9983   ins_avoid_back_to_back(AVOID_BEFORE);
9984   ins_pipe(simple_call);
9985 %}
9986 
9987 // Call Java Static Instruction (method handle version)
9988 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9989   match(CallStaticJava);
9990   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9991   effect(USE meth, KILL l7_mh_SP_save);
9992 
9993   size(16);
9994   ins_cost(CALL_COST);
9995   format %{ "CALL,static/MethodHandle" %}
9996   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9997   ins_pipe(simple_call);
9998 %}
9999 
10000 // Call Java Dynamic Instruction
10001 instruct CallDynamicJavaDirect( method meth ) %{
10002   match(CallDynamicJava);
10003   effect(USE meth);
10004 
10005   ins_cost(CALL_COST);
10006   format %{ "SET    (empty),R_G5\n\t"
10007             "CALL,dynamic  ; NOP ==> " %}
10008   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
10009   ins_pipe(call);
10010 %}
10011 
10012 // Call Runtime Instruction
10013 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
10014   match(CallRuntime);
10015   effect(USE meth, KILL l7);
10016   ins_cost(CALL_COST);
10017   format %{ "CALL,runtime" %}
10018   ins_encode( Java_To_Runtime( meth ),
10019               call_epilog, adjust_long_from_native_call );
10020   ins_avoid_back_to_back(AVOID_BEFORE);
10021   ins_pipe(simple_call);
10022 %}
10023 
10024 // Call runtime without safepoint - same as CallRuntime
10025 instruct CallLeafDirect(method meth, l7RegP l7) %{
10026   match(CallLeaf);
10027   effect(USE meth, KILL l7);
10028   ins_cost(CALL_COST);
10029   format %{ "CALL,runtime leaf" %}
10030   ins_encode( Java_To_Runtime( meth ),
10031               call_epilog,
10032               adjust_long_from_native_call );
10033   ins_avoid_back_to_back(AVOID_BEFORE);
10034   ins_pipe(simple_call);
10035 %}
10036 
10037 // Call runtime without safepoint - same as CallLeaf
10038 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
10039   match(CallLeafNoFP);
10040   effect(USE meth, KILL l7);
10041   ins_cost(CALL_COST);
10042   format %{ "CALL,runtime leaf nofp" %}
10043   ins_encode( Java_To_Runtime( meth ),
10044               call_epilog,
10045               adjust_long_from_native_call );
10046   ins_avoid_back_to_back(AVOID_BEFORE);
10047   ins_pipe(simple_call);
10048 %}
10049 
10050 // Tail Call; Jump from runtime stub to Java code.
10051 // Also known as an 'interprocedural jump'.
10052 // Target of jump will eventually return to caller.
10053 // TailJump below removes the return address.
10054 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10055   match(TailCall jump_target method_oop );
10056 
10057   ins_cost(CALL_COST);
10058   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10059   ins_encode(form_jmpl(jump_target));
10060   ins_avoid_back_to_back(AVOID_BEFORE);
10061   ins_pipe(tail_call);
10062 %}
10063 
10064 
10065 // Return Instruction
10066 instruct Ret() %{
10067   match(Return);
10068 
10069   // The epilogue node did the ret already.
10070   size(0);
10071   format %{ "! return" %}
10072   ins_encode();
10073   ins_pipe(empty);
10074 %}
10075 
10076 
10077 // Tail Jump; remove the return address; jump to target.
10078 // TailCall above leaves the return address around.
10079 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10080 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10081 // "restore" before this instruction (in Epilogue), we need to materialize it
10082 // in %i0.
10083 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10084   match( TailJump jump_target ex_oop );
10085   ins_cost(CALL_COST);
10086   format %{ "! discard R_O7\n\t"
10087             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10088   ins_encode(form_jmpl_set_exception_pc(jump_target));
10089   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10090   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10091   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10092   ins_avoid_back_to_back(AVOID_BEFORE);
10093   ins_pipe(tail_call);
10094 %}
10095 
10096 // Create exception oop: created by stack-crawling runtime code.
10097 // Created exception is now available to this handler, and is setup
10098 // just prior to jumping to this handler.  No code emitted.
10099 instruct CreateException( o0RegP ex_oop )
10100 %{
10101   match(Set ex_oop (CreateEx));
10102   ins_cost(0);
10103 
10104   size(0);
10105   // use the following format syntax
10106   format %{ "! exception oop is in R_O0; no code emitted" %}
10107   ins_encode();
10108   ins_pipe(empty);
10109 %}
10110 
10111 
10112 // Rethrow exception:
10113 // The exception oop will come in the first argument position.
10114 // Then JUMP (not call) to the rethrow stub code.
10115 instruct RethrowException()
10116 %{
10117   match(Rethrow);
10118   ins_cost(CALL_COST);
10119 
10120   // use the following format syntax
10121   format %{ "Jmp    rethrow_stub" %}
10122   ins_encode(enc_rethrow);
10123   ins_avoid_back_to_back(AVOID_BEFORE);
10124   ins_pipe(tail_call);
10125 %}
10126 
10127 
10128 // Die now
10129 instruct ShouldNotReachHere( )
10130 %{
10131   match(Halt);
10132   ins_cost(CALL_COST);
10133 
10134   size(4);
10135   // Use the following format syntax
10136   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10137   ins_encode( form2_illtrap() );
10138   ins_pipe(tail_call);
10139 %}
10140 
10141 // ============================================================================
10142 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10143 // array for an instance of the superklass.  Set a hidden internal cache on a
10144 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10145 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10146 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10147   match(Set index (PartialSubtypeCheck sub super));
10148   effect( KILL pcc, KILL o7 );
10149   ins_cost(DEFAULT_COST*10);
10150   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10151   ins_encode( enc_PartialSubtypeCheck() );
10152   ins_avoid_back_to_back(AVOID_BEFORE);
10153   ins_pipe(partial_subtype_check_pipe);
10154 %}
10155 
10156 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10157   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10158   effect( KILL idx, KILL o7 );
10159   ins_cost(DEFAULT_COST*10);
10160   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10161   ins_encode( enc_PartialSubtypeCheck() );
10162   ins_avoid_back_to_back(AVOID_BEFORE);
10163   ins_pipe(partial_subtype_check_pipe);
10164 %}
10165 
10166 
10167 // ============================================================================
10168 // inlined locking and unlocking
10169 
10170 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10171   match(Set pcc (FastLock object box));
10172 
10173   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10174   ins_cost(100);
10175 
10176   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10177   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10178   ins_pipe(long_memory_op);
10179 %}
10180 
10181 
10182 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10183   match(Set pcc (FastUnlock object box));
10184   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10185   ins_cost(100);
10186 
10187   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10188   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10189   ins_pipe(long_memory_op);
10190 %}
10191 
10192 // The encodings are generic.
10193 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10194   predicate(!use_block_zeroing(n->in(2)) );
10195   match(Set dummy (ClearArray cnt base));
10196   effect(TEMP temp, KILL ccr);
10197   ins_cost(300);
10198   format %{ "MOV    $cnt,$temp\n"
10199     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10200     "        BRge   loop\t\t! Clearing loop\n"
10201     "        STX    G0,[$base+$temp]\t! delay slot" %}
10202 
10203   ins_encode %{
10204     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10205     Register nof_bytes_arg    = $cnt$$Register;
10206     Register nof_bytes_tmp    = $temp$$Register;
10207     Register base_pointer_arg = $base$$Register;
10208 
10209     Label loop;
10210     __ mov(nof_bytes_arg, nof_bytes_tmp);
10211 
10212     // Loop and clear, walking backwards through the array.
10213     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10214     __ bind(loop);
10215     __ deccc(nof_bytes_tmp, 8);
10216     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10217     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10218     // %%%% this mini-loop must not cross a cache boundary!
10219   %}
10220   ins_pipe(long_memory_op);
10221 %}
10222 
10223 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10224   predicate(use_block_zeroing(n->in(2)));
10225   match(Set dummy (ClearArray cnt base));
10226   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10227   ins_cost(300);
10228   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10229 
10230   ins_encode %{
10231 
10232     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10233     Register to    = $base$$Register;
10234     Register count = $cnt$$Register;
10235 
10236     Label Ldone;
10237     __ nop(); // Separate short branches
10238     // Use BIS for zeroing (temp is not used).
10239     __ bis_zeroing(to, count, G0, Ldone);
10240     __ bind(Ldone);
10241 
10242   %}
10243   ins_pipe(long_memory_op);
10244 %}
10245 
10246 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10247   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10248   match(Set dummy (ClearArray cnt base));
10249   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10250   ins_cost(300);
10251   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10252 
10253   ins_encode %{
10254 
10255     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10256     Register to    = $base$$Register;
10257     Register count = $cnt$$Register;
10258     Register temp  = $tmp$$Register;
10259 
10260     Label Ldone;
10261     __ nop(); // Separate short branches
10262     // Use BIS for zeroing
10263     __ bis_zeroing(to, count, temp, Ldone);
10264     __ bind(Ldone);
10265 
10266   %}
10267   ins_pipe(long_memory_op);
10268 %}
10269 
10270 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10271                         o7RegI tmp, flagsReg ccr) %{
10272   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10273   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10274   ins_cost(300);
10275   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10276   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10277   ins_pipe(long_memory_op);
10278 %}
10279 
10280 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10281                        o7RegI tmp, flagsReg ccr) %{
10282   match(Set result (StrEquals (Binary str1 str2) cnt));
10283   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10284   ins_cost(300);
10285   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10286   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10287   ins_pipe(long_memory_op);
10288 %}
10289 
10290 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10291                       o7RegI tmp2, flagsReg ccr) %{
10292   match(Set result (AryEq ary1 ary2));
10293   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10294   ins_cost(300);
10295   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10296   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10297   ins_pipe(long_memory_op);
10298 %}
10299 
10300 
10301 //---------- Zeros Count Instructions ------------------------------------------
10302 
10303 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10304   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10305   match(Set dst (CountLeadingZerosI src));
10306   effect(TEMP dst, TEMP tmp, KILL cr);
10307 
10308   // x |= (x >> 1);
10309   // x |= (x >> 2);
10310   // x |= (x >> 4);
10311   // x |= (x >> 8);
10312   // x |= (x >> 16);
10313   // return (WORDBITS - popc(x));
10314   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10315             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10316             "OR      $dst,$tmp,$dst\n\t"
10317             "SRL     $dst,2,$tmp\n\t"
10318             "OR      $dst,$tmp,$dst\n\t"
10319             "SRL     $dst,4,$tmp\n\t"
10320             "OR      $dst,$tmp,$dst\n\t"
10321             "SRL     $dst,8,$tmp\n\t"
10322             "OR      $dst,$tmp,$dst\n\t"
10323             "SRL     $dst,16,$tmp\n\t"
10324             "OR      $dst,$tmp,$dst\n\t"
10325             "POPC    $dst,$dst\n\t"
10326             "MOV     32,$tmp\n\t"
10327             "SUB     $tmp,$dst,$dst" %}
10328   ins_encode %{
10329     Register Rdst = $dst$$Register;
10330     Register Rsrc = $src$$Register;
10331     Register Rtmp = $tmp$$Register;
10332     __ srl(Rsrc, 1,    Rtmp);
10333     __ srl(Rsrc, 0,    Rdst);
10334     __ or3(Rdst, Rtmp, Rdst);
10335     __ srl(Rdst, 2,    Rtmp);
10336     __ or3(Rdst, Rtmp, Rdst);
10337     __ srl(Rdst, 4,    Rtmp);
10338     __ or3(Rdst, Rtmp, Rdst);
10339     __ srl(Rdst, 8,    Rtmp);
10340     __ or3(Rdst, Rtmp, Rdst);
10341     __ srl(Rdst, 16,   Rtmp);
10342     __ or3(Rdst, Rtmp, Rdst);
10343     __ popc(Rdst, Rdst);
10344     __ mov(BitsPerInt, Rtmp);
10345     __ sub(Rtmp, Rdst, Rdst);
10346   %}
10347   ins_pipe(ialu_reg);
10348 %}
10349 
10350 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10351   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10352   match(Set dst (CountLeadingZerosL src));
10353   effect(TEMP dst, TEMP tmp, KILL cr);
10354 
10355   // x |= (x >> 1);
10356   // x |= (x >> 2);
10357   // x |= (x >> 4);
10358   // x |= (x >> 8);
10359   // x |= (x >> 16);
10360   // x |= (x >> 32);
10361   // return (WORDBITS - popc(x));
10362   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10363             "OR      $src,$tmp,$dst\n\t"
10364             "SRLX    $dst,2,$tmp\n\t"
10365             "OR      $dst,$tmp,$dst\n\t"
10366             "SRLX    $dst,4,$tmp\n\t"
10367             "OR      $dst,$tmp,$dst\n\t"
10368             "SRLX    $dst,8,$tmp\n\t"
10369             "OR      $dst,$tmp,$dst\n\t"
10370             "SRLX    $dst,16,$tmp\n\t"
10371             "OR      $dst,$tmp,$dst\n\t"
10372             "SRLX    $dst,32,$tmp\n\t"
10373             "OR      $dst,$tmp,$dst\n\t"
10374             "POPC    $dst,$dst\n\t"
10375             "MOV     64,$tmp\n\t"
10376             "SUB     $tmp,$dst,$dst" %}
10377   ins_encode %{
10378     Register Rdst = $dst$$Register;
10379     Register Rsrc = $src$$Register;
10380     Register Rtmp = $tmp$$Register;
10381     __ srlx(Rsrc, 1,    Rtmp);
10382     __ or3( Rsrc, Rtmp, Rdst);
10383     __ srlx(Rdst, 2,    Rtmp);
10384     __ or3( Rdst, Rtmp, Rdst);
10385     __ srlx(Rdst, 4,    Rtmp);
10386     __ or3( Rdst, Rtmp, Rdst);
10387     __ srlx(Rdst, 8,    Rtmp);
10388     __ or3( Rdst, Rtmp, Rdst);
10389     __ srlx(Rdst, 16,   Rtmp);
10390     __ or3( Rdst, Rtmp, Rdst);
10391     __ srlx(Rdst, 32,   Rtmp);
10392     __ or3( Rdst, Rtmp, Rdst);
10393     __ popc(Rdst, Rdst);
10394     __ mov(BitsPerLong, Rtmp);
10395     __ sub(Rtmp, Rdst, Rdst);
10396   %}
10397   ins_pipe(ialu_reg);
10398 %}
10399 
10400 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10401   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10402   match(Set dst (CountTrailingZerosI src));
10403   effect(TEMP dst, KILL cr);
10404 
10405   // return popc(~x & (x - 1));
10406   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10407             "ANDN    $dst,$src,$dst\n\t"
10408             "SRL     $dst,R_G0,$dst\n\t"
10409             "POPC    $dst,$dst" %}
10410   ins_encode %{
10411     Register Rdst = $dst$$Register;
10412     Register Rsrc = $src$$Register;
10413     __ sub(Rsrc, 1, Rdst);
10414     __ andn(Rdst, Rsrc, Rdst);
10415     __ srl(Rdst, G0, Rdst);
10416     __ popc(Rdst, Rdst);
10417   %}
10418   ins_pipe(ialu_reg);
10419 %}
10420 
10421 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10422   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10423   match(Set dst (CountTrailingZerosL src));
10424   effect(TEMP dst, KILL cr);
10425 
10426   // return popc(~x & (x - 1));
10427   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10428             "ANDN    $dst,$src,$dst\n\t"
10429             "POPC    $dst,$dst" %}
10430   ins_encode %{
10431     Register Rdst = $dst$$Register;
10432     Register Rsrc = $src$$Register;
10433     __ sub(Rsrc, 1, Rdst);
10434     __ andn(Rdst, Rsrc, Rdst);
10435     __ popc(Rdst, Rdst);
10436   %}
10437   ins_pipe(ialu_reg);
10438 %}
10439 
10440 
10441 //---------- Population Count Instructions -------------------------------------
10442 
10443 instruct popCountI(iRegIsafe dst, iRegI src) %{
10444   predicate(UsePopCountInstruction);
10445   match(Set dst (PopCountI src));
10446 
10447   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10448             "POPC   $dst, $dst" %}
10449   ins_encode %{
10450     __ srl($src$$Register, G0, $dst$$Register);
10451     __ popc($dst$$Register, $dst$$Register);
10452   %}
10453   ins_pipe(ialu_reg);
10454 %}
10455 
10456 // Note: Long.bitCount(long) returns an int.
10457 instruct popCountL(iRegIsafe dst, iRegL src) %{
10458   predicate(UsePopCountInstruction);
10459   match(Set dst (PopCountL src));
10460 
10461   format %{ "POPC   $src, $dst" %}
10462   ins_encode %{
10463     __ popc($src$$Register, $dst$$Register);
10464   %}
10465   ins_pipe(ialu_reg);
10466 %}
10467 
10468 
10469 // ============================================================================
10470 //------------Bytes reverse--------------------------------------------------
10471 
10472 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10473   match(Set dst (ReverseBytesI src));
10474 
10475   // Op cost is artificially doubled to make sure that load or store
10476   // instructions are preferred over this one which requires a spill
10477   // onto a stack slot.
10478   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10479   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10480 
10481   ins_encode %{
10482     __ set($src$$disp + STACK_BIAS, O7);
10483     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10484   %}
10485   ins_pipe( iload_mem );
10486 %}
10487 
10488 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10489   match(Set dst (ReverseBytesL src));
10490 
10491   // Op cost is artificially doubled to make sure that load or store
10492   // instructions are preferred over this one which requires a spill
10493   // onto a stack slot.
10494   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10495   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10496 
10497   ins_encode %{
10498     __ set($src$$disp + STACK_BIAS, O7);
10499     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10500   %}
10501   ins_pipe( iload_mem );
10502 %}
10503 
10504 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10505   match(Set dst (ReverseBytesUS src));
10506 
10507   // Op cost is artificially doubled to make sure that load or store
10508   // instructions are preferred over this one which requires a spill
10509   // onto a stack slot.
10510   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10511   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10512 
10513   ins_encode %{
10514     // the value was spilled as an int so bias the load
10515     __ set($src$$disp + STACK_BIAS + 2, O7);
10516     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10517   %}
10518   ins_pipe( iload_mem );
10519 %}
10520 
10521 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10522   match(Set dst (ReverseBytesS src));
10523 
10524   // Op cost is artificially doubled to make sure that load or store
10525   // instructions are preferred over this one which requires a spill
10526   // onto a stack slot.
10527   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10528   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10529 
10530   ins_encode %{
10531     // the value was spilled as an int so bias the load
10532     __ set($src$$disp + STACK_BIAS + 2, O7);
10533     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10534   %}
10535   ins_pipe( iload_mem );
10536 %}
10537 
10538 // Load Integer reversed byte order
10539 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10540   match(Set dst (ReverseBytesI (LoadI src)));
10541 
10542   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10543   size(4);
10544   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10545 
10546   ins_encode %{
10547     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10548   %}
10549   ins_pipe(iload_mem);
10550 %}
10551 
10552 // Load Long - aligned and reversed
10553 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10554   match(Set dst (ReverseBytesL (LoadL src)));
10555 
10556   ins_cost(MEMORY_REF_COST);
10557   size(4);
10558   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10559 
10560   ins_encode %{
10561     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10562   %}
10563   ins_pipe(iload_mem);
10564 %}
10565 
10566 // Load unsigned short / char reversed byte order
10567 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10568   match(Set dst (ReverseBytesUS (LoadUS src)));
10569 
10570   ins_cost(MEMORY_REF_COST);
10571   size(4);
10572   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10573 
10574   ins_encode %{
10575     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10576   %}
10577   ins_pipe(iload_mem);
10578 %}
10579 
10580 // Load short reversed byte order
10581 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10582   match(Set dst (ReverseBytesS (LoadS src)));
10583 
10584   ins_cost(MEMORY_REF_COST);
10585   size(4);
10586   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10587 
10588   ins_encode %{
10589     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10590   %}
10591   ins_pipe(iload_mem);
10592 %}
10593 
10594 // Store Integer reversed byte order
10595 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10596   match(Set dst (StoreI dst (ReverseBytesI src)));
10597 
10598   ins_cost(MEMORY_REF_COST);
10599   size(4);
10600   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10601 
10602   ins_encode %{
10603     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10604   %}
10605   ins_pipe(istore_mem_reg);
10606 %}
10607 
10608 // Store Long reversed byte order
10609 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10610   match(Set dst (StoreL dst (ReverseBytesL src)));
10611 
10612   ins_cost(MEMORY_REF_COST);
10613   size(4);
10614   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10615 
10616   ins_encode %{
10617     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10618   %}
10619   ins_pipe(istore_mem_reg);
10620 %}
10621 
10622 // Store unsighed short/char reversed byte order
10623 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10624   match(Set dst (StoreC dst (ReverseBytesUS src)));
10625 
10626   ins_cost(MEMORY_REF_COST);
10627   size(4);
10628   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10629 
10630   ins_encode %{
10631     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10632   %}
10633   ins_pipe(istore_mem_reg);
10634 %}
10635 
10636 // Store short reversed byte order
10637 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10638   match(Set dst (StoreC dst (ReverseBytesS src)));
10639 
10640   ins_cost(MEMORY_REF_COST);
10641   size(4);
10642   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10643 
10644   ins_encode %{
10645     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10646   %}
10647   ins_pipe(istore_mem_reg);
10648 %}
10649 
10650 // ====================VECTOR INSTRUCTIONS=====================================
10651 
10652 // Load Aligned Packed values into a Double Register
10653 instruct loadV8(regD dst, memory mem) %{
10654   predicate(n->as_LoadVector()->memory_size() == 8);
10655   match(Set dst (LoadVector mem));
10656   ins_cost(MEMORY_REF_COST);
10657   size(4);
10658   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10659   ins_encode %{
10660     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10661   %}
10662   ins_pipe(floadD_mem);
10663 %}
10664 
10665 // Store Vector in Double register to memory
10666 instruct storeV8(memory mem, regD src) %{
10667   predicate(n->as_StoreVector()->memory_size() == 8);
10668   match(Set mem (StoreVector mem src));
10669   ins_cost(MEMORY_REF_COST);
10670   size(4);
10671   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10672   ins_encode %{
10673     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10674   %}
10675   ins_pipe(fstoreD_mem_reg);
10676 %}
10677 
10678 // Store Zero into vector in memory
10679 instruct storeV8B_zero(memory mem, immI0 zero) %{
10680   predicate(n->as_StoreVector()->memory_size() == 8);
10681   match(Set mem (StoreVector mem (ReplicateB zero)));
10682   ins_cost(MEMORY_REF_COST);
10683   size(4);
10684   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10685   ins_encode %{
10686     __ stx(G0, $mem$$Address);
10687   %}
10688   ins_pipe(fstoreD_mem_zero);
10689 %}
10690 
10691 instruct storeV4S_zero(memory mem, immI0 zero) %{
10692   predicate(n->as_StoreVector()->memory_size() == 8);
10693   match(Set mem (StoreVector mem (ReplicateS zero)));
10694   ins_cost(MEMORY_REF_COST);
10695   size(4);
10696   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10697   ins_encode %{
10698     __ stx(G0, $mem$$Address);
10699   %}
10700   ins_pipe(fstoreD_mem_zero);
10701 %}
10702 
10703 instruct storeV2I_zero(memory mem, immI0 zero) %{
10704   predicate(n->as_StoreVector()->memory_size() == 8);
10705   match(Set mem (StoreVector mem (ReplicateI zero)));
10706   ins_cost(MEMORY_REF_COST);
10707   size(4);
10708   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10709   ins_encode %{
10710     __ stx(G0, $mem$$Address);
10711   %}
10712   ins_pipe(fstoreD_mem_zero);
10713 %}
10714 
10715 instruct storeV2F_zero(memory mem, immF0 zero) %{
10716   predicate(n->as_StoreVector()->memory_size() == 8);
10717   match(Set mem (StoreVector mem (ReplicateF zero)));
10718   ins_cost(MEMORY_REF_COST);
10719   size(4);
10720   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10721   ins_encode %{
10722     __ stx(G0, $mem$$Address);
10723   %}
10724   ins_pipe(fstoreD_mem_zero);
10725 %}
10726 
10727 // Replicate scalar to packed byte values into Double register
10728 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10729   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10730   match(Set dst (ReplicateB src));
10731   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10732   format %{ "SLLX  $src,56,$tmp\n\t"
10733             "SRLX  $tmp, 8,$tmp2\n\t"
10734             "OR    $tmp,$tmp2,$tmp\n\t"
10735             "SRLX  $tmp,16,$tmp2\n\t"
10736             "OR    $tmp,$tmp2,$tmp\n\t"
10737             "SRLX  $tmp,32,$tmp2\n\t"
10738             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10739             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10740   ins_encode %{
10741     Register Rsrc = $src$$Register;
10742     Register Rtmp = $tmp$$Register;
10743     Register Rtmp2 = $tmp2$$Register;
10744     __ sllx(Rsrc,    56, Rtmp);
10745     __ srlx(Rtmp,     8, Rtmp2);
10746     __ or3 (Rtmp, Rtmp2, Rtmp);
10747     __ srlx(Rtmp,    16, Rtmp2);
10748     __ or3 (Rtmp, Rtmp2, Rtmp);
10749     __ srlx(Rtmp,    32, Rtmp2);
10750     __ or3 (Rtmp, Rtmp2, Rtmp);
10751     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10752   %}
10753   ins_pipe(ialu_reg);
10754 %}
10755 
10756 // Replicate scalar to packed byte values into Double stack
10757 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10758   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10759   match(Set dst (ReplicateB src));
10760   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10761   format %{ "SLLX  $src,56,$tmp\n\t"
10762             "SRLX  $tmp, 8,$tmp2\n\t"
10763             "OR    $tmp,$tmp2,$tmp\n\t"
10764             "SRLX  $tmp,16,$tmp2\n\t"
10765             "OR    $tmp,$tmp2,$tmp\n\t"
10766             "SRLX  $tmp,32,$tmp2\n\t"
10767             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10768             "STX   $tmp,$dst\t! regL to stkD" %}
10769   ins_encode %{
10770     Register Rsrc = $src$$Register;
10771     Register Rtmp = $tmp$$Register;
10772     Register Rtmp2 = $tmp2$$Register;
10773     __ sllx(Rsrc,    56, Rtmp);
10774     __ srlx(Rtmp,     8, Rtmp2);
10775     __ or3 (Rtmp, Rtmp2, Rtmp);
10776     __ srlx(Rtmp,    16, Rtmp2);
10777     __ or3 (Rtmp, Rtmp2, Rtmp);
10778     __ srlx(Rtmp,    32, Rtmp2);
10779     __ or3 (Rtmp, Rtmp2, Rtmp);
10780     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10781     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10782   %}
10783   ins_pipe(ialu_reg);
10784 %}
10785 
10786 // Replicate scalar constant to packed byte values in Double register
10787 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10788   predicate(n->as_Vector()->length() == 8);
10789   match(Set dst (ReplicateB con));
10790   effect(KILL tmp);
10791   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10792   ins_encode %{
10793     // XXX This is a quick fix for 6833573.
10794     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10795     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10796     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10797   %}
10798   ins_pipe(loadConFD);
10799 %}
10800 
10801 // Replicate scalar to packed char/short values into Double register
10802 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10803   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10804   match(Set dst (ReplicateS src));
10805   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10806   format %{ "SLLX  $src,48,$tmp\n\t"
10807             "SRLX  $tmp,16,$tmp2\n\t"
10808             "OR    $tmp,$tmp2,$tmp\n\t"
10809             "SRLX  $tmp,32,$tmp2\n\t"
10810             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10811             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10812   ins_encode %{
10813     Register Rsrc = $src$$Register;
10814     Register Rtmp = $tmp$$Register;
10815     Register Rtmp2 = $tmp2$$Register;
10816     __ sllx(Rsrc,    48, Rtmp);
10817     __ srlx(Rtmp,    16, Rtmp2);
10818     __ or3 (Rtmp, Rtmp2, Rtmp);
10819     __ srlx(Rtmp,    32, Rtmp2);
10820     __ or3 (Rtmp, Rtmp2, Rtmp);
10821     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10822   %}
10823   ins_pipe(ialu_reg);
10824 %}
10825 
10826 // Replicate scalar to packed char/short values into Double stack
10827 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10828   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10829   match(Set dst (ReplicateS src));
10830   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10831   format %{ "SLLX  $src,48,$tmp\n\t"
10832             "SRLX  $tmp,16,$tmp2\n\t"
10833             "OR    $tmp,$tmp2,$tmp\n\t"
10834             "SRLX  $tmp,32,$tmp2\n\t"
10835             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10836             "STX   $tmp,$dst\t! regL to stkD" %}
10837   ins_encode %{
10838     Register Rsrc = $src$$Register;
10839     Register Rtmp = $tmp$$Register;
10840     Register Rtmp2 = $tmp2$$Register;
10841     __ sllx(Rsrc,    48, Rtmp);
10842     __ srlx(Rtmp,    16, Rtmp2);
10843     __ or3 (Rtmp, Rtmp2, Rtmp);
10844     __ srlx(Rtmp,    32, Rtmp2);
10845     __ or3 (Rtmp, Rtmp2, Rtmp);
10846     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10847     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10848   %}
10849   ins_pipe(ialu_reg);
10850 %}
10851 
10852 // Replicate scalar constant to packed char/short values in Double register
10853 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10854   predicate(n->as_Vector()->length() == 4);
10855   match(Set dst (ReplicateS con));
10856   effect(KILL tmp);
10857   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10858   ins_encode %{
10859     // XXX This is a quick fix for 6833573.
10860     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10861     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10862     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10863   %}
10864   ins_pipe(loadConFD);
10865 %}
10866 
10867 // Replicate scalar to packed int values into Double register
10868 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10869   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10870   match(Set dst (ReplicateI src));
10871   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10872   format %{ "SLLX  $src,32,$tmp\n\t"
10873             "SRLX  $tmp,32,$tmp2\n\t"
10874             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10875             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10876   ins_encode %{
10877     Register Rsrc = $src$$Register;
10878     Register Rtmp = $tmp$$Register;
10879     Register Rtmp2 = $tmp2$$Register;
10880     __ sllx(Rsrc,    32, Rtmp);
10881     __ srlx(Rtmp,    32, Rtmp2);
10882     __ or3 (Rtmp, Rtmp2, Rtmp);
10883     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10884   %}
10885   ins_pipe(ialu_reg);
10886 %}
10887 
10888 // Replicate scalar to packed int values into Double stack
10889 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10890   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10891   match(Set dst (ReplicateI src));
10892   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10893   format %{ "SLLX  $src,32,$tmp\n\t"
10894             "SRLX  $tmp,32,$tmp2\n\t"
10895             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10896             "STX   $tmp,$dst\t! regL to stkD" %}
10897   ins_encode %{
10898     Register Rsrc = $src$$Register;
10899     Register Rtmp = $tmp$$Register;
10900     Register Rtmp2 = $tmp2$$Register;
10901     __ sllx(Rsrc,    32, Rtmp);
10902     __ srlx(Rtmp,    32, Rtmp2);
10903     __ or3 (Rtmp, Rtmp2, Rtmp);
10904     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10905     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10906   %}
10907   ins_pipe(ialu_reg);
10908 %}
10909 
10910 // Replicate scalar zero constant to packed int values in Double register
10911 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10912   predicate(n->as_Vector()->length() == 2);
10913   match(Set dst (ReplicateI con));
10914   effect(KILL tmp);
10915   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10916   ins_encode %{
10917     // XXX This is a quick fix for 6833573.
10918     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10919     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10920     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10921   %}
10922   ins_pipe(loadConFD);
10923 %}
10924 
10925 // Replicate scalar to packed float values into Double stack
10926 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10927   predicate(n->as_Vector()->length() == 2);
10928   match(Set dst (ReplicateF src));
10929   ins_cost(MEMORY_REF_COST*2);
10930   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10931             "STF    $src,$dst.lo" %}
10932   opcode(Assembler::stf_op3);
10933   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10934   ins_pipe(fstoreF_stk_reg);
10935 %}
10936 
10937 // Replicate scalar zero constant to packed float values in Double register
10938 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10939   predicate(n->as_Vector()->length() == 2);
10940   match(Set dst (ReplicateF con));
10941   effect(KILL tmp);
10942   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10943   ins_encode %{
10944     // XXX This is a quick fix for 6833573.
10945     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10946     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10947     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10948   %}
10949   ins_pipe(loadConFD);
10950 %}
10951 
10952 //----------PEEPHOLE RULES-----------------------------------------------------
10953 // These must follow all instruction definitions as they use the names
10954 // defined in the instructions definitions.
10955 //
10956 // peepmatch ( root_instr_name [preceding_instruction]* );
10957 //
10958 // peepconstraint %{
10959 // (instruction_number.operand_name relational_op instruction_number.operand_name
10960 //  [, ...] );
10961 // // instruction numbers are zero-based using left to right order in peepmatch
10962 //
10963 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10964 // // provide an instruction_number.operand_name for each operand that appears
10965 // // in the replacement instruction's match rule
10966 //
10967 // ---------VM FLAGS---------------------------------------------------------
10968 //
10969 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10970 //
10971 // Each peephole rule is given an identifying number starting with zero and
10972 // increasing by one in the order seen by the parser.  An individual peephole
10973 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10974 // on the command-line.
10975 //
10976 // ---------CURRENT LIMITATIONS----------------------------------------------
10977 //
10978 // Only match adjacent instructions in same basic block
10979 // Only equality constraints
10980 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10981 // Only one replacement instruction
10982 //
10983 // ---------EXAMPLE----------------------------------------------------------
10984 //
10985 // // pertinent parts of existing instructions in architecture description
10986 // instruct movI(eRegI dst, eRegI src) %{
10987 //   match(Set dst (CopyI src));
10988 // %}
10989 //
10990 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10991 //   match(Set dst (AddI dst src));
10992 //   effect(KILL cr);
10993 // %}
10994 //
10995 // // Change (inc mov) to lea
10996 // peephole %{
10997 //   // increment preceeded by register-register move
10998 //   peepmatch ( incI_eReg movI );
10999 //   // require that the destination register of the increment
11000 //   // match the destination register of the move
11001 //   peepconstraint ( 0.dst == 1.dst );
11002 //   // construct a replacement instruction that sets
11003 //   // the destination to ( move's source register + one )
11004 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
11005 // %}
11006 //
11007 
11008 // // Change load of spilled value to only a spill
11009 // instruct storeI(memory mem, eRegI src) %{
11010 //   match(Set mem (StoreI mem src));
11011 // %}
11012 //
11013 // instruct loadI(eRegI dst, memory mem) %{
11014 //   match(Set dst (LoadI mem));
11015 // %}
11016 //
11017 // peephole %{
11018 //   peepmatch ( loadI storeI );
11019 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
11020 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
11021 // %}
11022 
11023 //----------SMARTSPILL RULES---------------------------------------------------
11024 // These must follow all instruction definitions as they use the names
11025 // defined in the instructions definitions.
11026 //
11027 // SPARC will probably not have any of these rules due to RISC instruction set.
11028 
11029 //----------PIPELINE-----------------------------------------------------------
11030 // Rules which define the behavior of the target architectures pipeline.