1 //
   2 // Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Header information of the source block.
 461 // Method declarations/definitions which are used outside
 462 // the ad-scope can conveniently be defined here.
 463 //
 464 // To keep related declarations/definitions/uses close together,
 465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 466 
 467 // Must be visible to the DFA in dfa_sparc.cpp
 468 extern bool can_branch_register( Node *bol, Node *cmp );
 469 
 470 extern bool use_block_zeroing(Node* count);
 471 
 472 // Macros to extract hi & lo halves from a long pair.
 473 // G0 is not part of any long pair, so assert on that.
 474 // Prevents accidentally using G1 instead of G0.
 475 #define LONG_HI_REG(x) (x)
 476 #define LONG_LO_REG(x) (x)
 477 
 478 class CallStubImpl {
 479 
 480   //--------------------------------------------------------------
 481   //---<  Used for optimization in Compile::Shorten_branches  >---
 482   //--------------------------------------------------------------
 483 
 484  public:
 485   // Size of call trampoline stub.
 486   static uint size_call_trampoline() {
 487     return 0; // no call trampolines on this platform
 488   }
 489 
 490   // number of relocations needed by a call trampoline stub
 491   static uint reloc_call_trampoline() {
 492     return 0; // no call trampolines on this platform
 493   }
 494 };
 495 
 496 class HandlerImpl {
 497 
 498  public:
 499 
 500   static int emit_exception_handler(CodeBuffer &cbuf);
 501   static int emit_deopt_handler(CodeBuffer& cbuf);
 502 
 503   static uint size_exception_handler() {
 504     if (TraceJumps) {
 505       return (400); // just a guess
 506     }
 507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
 508   }
 509 
 510   static uint size_deopt_handler() {
 511     if (TraceJumps) {
 512       return (400); // just a guess
 513     }
 514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
 515   }
 516 };
 517 
 518 %}
 519 
 520 source %{
 521 #define __ _masm.
 522 
 523 // tertiary op of a LoadP or StoreP encoding
 524 #define REGP_OP true
 525 
 526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 528 static Register reg_to_register_object(int register_encoding);
 529 
 530 // Used by the DFA in dfa_sparc.cpp.
 531 // Check for being able to use a V9 branch-on-register.  Requires a
 532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 533 // extended.  Doesn't work following an integer ADD, for example, because of
 534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 536 // replace them with zero, which could become sign-extension in a different OS
 537 // release.  There's no obvious reason why an interrupt will ever fill these
 538 // bits with non-zero junk (the registers are reloaded with standard LD
 539 // instructions which either zero-fill or sign-fill).
 540 bool can_branch_register( Node *bol, Node *cmp ) {
 541   if( !BranchOnRegister ) return false;
 542 #ifdef _LP64
 543   if( cmp->Opcode() == Op_CmpP )
 544     return true;  // No problems with pointer compares
 545 #endif
 546   if( cmp->Opcode() == Op_CmpL )
 547     return true;  // No problems with long compares
 548 
 549   if( !SparcV9RegsHiBitsZero ) return false;
 550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 551       bol->as_Bool()->_test._test != BoolTest::eq )
 552      return false;
 553 
 554   // Check for comparing against a 'safe' value.  Any operation which
 555   // clears out the high word is safe.  Thus, loads and certain shifts
 556   // are safe, as are non-negative constants.  Any operation which
 557   // preserves zero bits in the high word is safe as long as each of its
 558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 559   // inputs are safe.  At present, the only important case to recognize
 560   // seems to be loads.  Constants should fold away, and shifts &
 561   // logicals can use the 'cc' forms.
 562   Node *x = cmp->in(1);
 563   if( x->is_Load() ) return true;
 564   if( x->is_Phi() ) {
 565     for( uint i = 1; i < x->req(); i++ )
 566       if( !x->in(i)->is_Load() )
 567         return false;
 568     return true;
 569   }
 570   return false;
 571 }
 572 
 573 bool use_block_zeroing(Node* count) {
 574   // Use BIS for zeroing if count is not constant
 575   // or it is >= BlockZeroingLowLimit.
 576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 577 }
 578 
 579 // ****************************************************************************
 580 
 581 // REQUIRED FUNCTIONALITY
 582 
 583 // !!!!! Special hack to get all type of calls to specify the byte offset
 584 //       from the start of the call to the point where the return address
 585 //       will point.
 586 //       The "return address" is the address of the call instruction, plus 8.
 587 
 588 int MachCallStaticJavaNode::ret_addr_offset() {
 589   int offset = NativeCall::instruction_size;  // call; delay slot
 590   if (_method_handle_invoke)
 591     offset += 4;  // restore SP
 592   return offset;
 593 }
 594 
 595 int MachCallDynamicJavaNode::ret_addr_offset() {
 596   int vtable_index = this->_vtable_index;
 597   if (vtable_index < 0) {
 598     // must be invalid_vtable_index, not nonvirtual_vtable_index
 599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 600     return (NativeMovConstReg::instruction_size +
 601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 602   } else {
 603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 604     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 605     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 606     int klass_load_size;
 607     if (UseCompressedClassPointers) {
 608       assert(Universe::heap() != NULL, "java heap should be initialized");
 609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 610     } else {
 611       klass_load_size = 1*BytesPerInstWord;
 612     }
 613     if (Assembler::is_simm13(v_off)) {
 614       return klass_load_size +
 615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 616              NativeCall::instruction_size);  // call; delay slot
 617     } else {
 618       return klass_load_size +
 619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 620              NativeCall::instruction_size);  // call; delay slot
 621     }
 622   }
 623 }
 624 
 625 int MachCallRuntimeNode::ret_addr_offset() {
 626 #ifdef _LP64
 627   if (MacroAssembler::is_far_target(entry_point())) {
 628     return NativeFarCall::instruction_size;
 629   } else {
 630     return NativeCall::instruction_size;
 631   }
 632 #else
 633   return NativeCall::instruction_size;  // call; delay slot
 634 #endif
 635 }
 636 
 637 // Indicate if the safepoint node needs the polling page as an input.
 638 // Since Sparc does not have absolute addressing, it does.
 639 bool SafePointNode::needs_polling_address_input() {
 640   return true;
 641 }
 642 
 643 // emit an interrupt that is caught by the debugger (for debugging compiler)
 644 void emit_break(CodeBuffer &cbuf) {
 645   MacroAssembler _masm(&cbuf);
 646   __ breakpoint_trap();
 647 }
 648 
 649 #ifndef PRODUCT
 650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 651   st->print("TA");
 652 }
 653 #endif
 654 
 655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 656   emit_break(cbuf);
 657 }
 658 
 659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 660   return MachNode::size(ra_);
 661 }
 662 
 663 // Traceable jump
 664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 665   MacroAssembler _masm(&cbuf);
 666   Register rdest = reg_to_register_object(jump_target);
 667   __ JMP(rdest, 0);
 668   __ delayed()->nop();
 669 }
 670 
 671 // Traceable jump and set exception pc
 672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 673   MacroAssembler _masm(&cbuf);
 674   Register rdest = reg_to_register_object(jump_target);
 675   __ JMP(rdest, 0);
 676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 677 }
 678 
 679 void emit_nop(CodeBuffer &cbuf) {
 680   MacroAssembler _masm(&cbuf);
 681   __ nop();
 682 }
 683 
 684 void emit_illtrap(CodeBuffer &cbuf) {
 685   MacroAssembler _masm(&cbuf);
 686   __ illtrap(0);
 687 }
 688 
 689 
 690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 691   assert(n->rule() != loadUB_rule, "");
 692 
 693   intptr_t offset = 0;
 694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 695   const Node* addr = n->get_base_and_disp(offset, adr_type);
 696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 699   atype = atype->add_offset(offset);
 700   assert(disp32 == offset, "wrong disp32");
 701   return atype->_offset;
 702 }
 703 
 704 
 705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 706   assert(n->rule() != loadUB_rule, "");
 707 
 708   intptr_t offset = 0;
 709   Node* addr = n->in(2);
 710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 712     Node* a = addr->in(2/*AddPNode::Address*/);
 713     Node* o = addr->in(3/*AddPNode::Offset*/);
 714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 716     assert(atype->isa_oop_ptr(), "still an oop");
 717   }
 718   offset = atype->is_ptr()->_offset;
 719   if (offset != Type::OffsetBot)  offset += disp32;
 720   return offset;
 721 }
 722 
 723 static inline jdouble replicate_immI(int con, int count, int width) {
 724   // Load a constant replicated "count" times with width "width"
 725   assert(count*width == 8 && width <= 4, "sanity");
 726   int bit_width = width * 8;
 727   jlong val = con;
 728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 729   for (int i = 0; i < count - 1; i++) {
 730     val |= (val << bit_width);
 731   }
 732   jdouble dval = *((jdouble*) &val);  // coerce to double type
 733   return dval;
 734 }
 735 
 736 static inline jdouble replicate_immF(float con) {
 737   // Replicate float con 2 times and pack into vector.
 738   int val = *((int*)&con);
 739   jlong lval = val;
 740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 742   return dval;
 743 }
 744 
 745 // Standard Sparc opcode form2 field breakdown
 746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 748   int op = (f30 << 30) |
 749            (f29 << 29) |
 750            (f25 << 25) |
 751            (f22 << 22) |
 752            (f20 << 20) |
 753            (f19 << 19) |
 754            (f0  <<  0);
 755   cbuf.insts()->emit_int32(op);
 756 }
 757 
 758 // Standard Sparc opcode form2 field breakdown
 759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 760   f0 >>= 10;           // Drop 10 bits
 761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 762   int op = (f30 << 30) |
 763            (f25 << 25) |
 764            (f22 << 22) |
 765            (f0  <<  0);
 766   cbuf.insts()->emit_int32(op);
 767 }
 768 
 769 // Standard Sparc opcode form3 field breakdown
 770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 771   int op = (f30 << 30) |
 772            (f25 << 25) |
 773            (f19 << 19) |
 774            (f14 << 14) |
 775            (f5  <<  5) |
 776            (f0  <<  0);
 777   cbuf.insts()->emit_int32(op);
 778 }
 779 
 780 // Standard Sparc opcode form3 field breakdown
 781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 782   simm13 &= (1<<13)-1; // Mask to 13 bits
 783   int op = (f30 << 30) |
 784            (f25 << 25) |
 785            (f19 << 19) |
 786            (f14 << 14) |
 787            (1   << 13) | // bit to indicate immediate-mode
 788            (simm13<<0);
 789   cbuf.insts()->emit_int32(op);
 790 }
 791 
 792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 793   simm10 &= (1<<10)-1; // Mask to 10 bits
 794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 795 }
 796 
 797 #ifdef ASSERT
 798 // Helper function for VerifyOops in emit_form3_mem_reg
 799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 800   warning("VerifyOops encountered unexpected instruction:");
 801   n->dump(2);
 802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 803 }
 804 #endif
 805 
 806 
 807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 809 
 810 #ifdef ASSERT
 811   // The following code implements the +VerifyOops feature.
 812   // It verifies oop values which are loaded into or stored out of
 813   // the current method activation.  +VerifyOops complements techniques
 814   // like ScavengeALot, because it eagerly inspects oops in transit,
 815   // as they enter or leave the stack, as opposed to ScavengeALot,
 816   // which inspects oops "at rest", in the stack or heap, at safepoints.
 817   // For this reason, +VerifyOops can sometimes detect bugs very close
 818   // to their point of creation.  It can also serve as a cross-check
 819   // on the validity of oop maps, when used toegether with ScavengeALot.
 820 
 821   // It would be good to verify oops at other points, especially
 822   // when an oop is used as a base pointer for a load or store.
 823   // This is presently difficult, because it is hard to know when
 824   // a base address is biased or not.  (If we had such information,
 825   // it would be easy and useful to make a two-argument version of
 826   // verify_oop which unbiases the base, and performs verification.)
 827 
 828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 829   bool is_verified_oop_base  = false;
 830   bool is_verified_oop_load  = false;
 831   bool is_verified_oop_store = false;
 832   int tmp_enc = -1;
 833   if (VerifyOops && src1_enc != R_SP_enc) {
 834     // classify the op, mainly for an assert check
 835     int st_op = 0, ld_op = 0;
 836     switch (primary) {
 837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 841     case Assembler::std_op3:  st_op = Op_StoreL; break;
 842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 844 
 845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 856 
 857     default: ShouldNotReachHere();
 858     }
 859     if (tertiary == REGP_OP) {
 860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 862       else                          ShouldNotReachHere();
 863       if (st_op) {
 864         // a store
 865         // inputs are (0:control, 1:memory, 2:address, 3:value)
 866         Node* n2 = n->in(3);
 867         if (n2 != NULL) {
 868           const Type* t = n2->bottom_type();
 869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 870         }
 871       } else {
 872         // a load
 873         const Type* t = n->bottom_type();
 874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 875       }
 876     }
 877 
 878     if (ld_op) {
 879       // a Load
 880       // inputs are (0:control, 1:memory, 2:address)
 881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 892           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 893           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 894           !(n->rule() == loadUB_rule)) {
 895         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 896       }
 897     } else if (st_op) {
 898       // a Store
 899       // inputs are (0:control, 1:memory, 2:address, 3:value)
 900       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 901           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 902           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 903           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 904           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 905           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 906           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 907         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 908       }
 909     }
 910 
 911     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 912       Node* addr = n->in(2);
 913       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 914         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 915         if (atype != NULL) {
 916           intptr_t offset = get_offset_from_base(n, atype, disp32);
 917           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 918           if (offset != offset_2) {
 919             get_offset_from_base(n, atype, disp32);
 920             get_offset_from_base_2(n, atype, disp32);
 921           }
 922           assert(offset == offset_2, "different offsets");
 923           if (offset == disp32) {
 924             // we now know that src1 is a true oop pointer
 925             is_verified_oop_base = true;
 926             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 927               if( primary == Assembler::ldd_op3 ) {
 928                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 929               } else {
 930                 tmp_enc = dst_enc;
 931                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 932                 assert(src1_enc != dst_enc, "");
 933               }
 934             }
 935           }
 936           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 937                        || offset == oopDesc::mark_offset_in_bytes())) {
 938                       // loading the mark should not be allowed either, but
 939                       // we don't check this since it conflicts with InlineObjectHash
 940                       // usage of LoadINode to get the mark. We could keep the
 941                       // check if we create a new LoadMarkNode
 942             // but do not verify the object before its header is initialized
 943             ShouldNotReachHere();
 944           }
 945         }
 946       }
 947     }
 948   }
 949 #endif
 950 
 951   uint instr;
 952   instr = (Assembler::ldst_op << 30)
 953         | (dst_enc        << 25)
 954         | (primary        << 19)
 955         | (src1_enc       << 14);
 956 
 957   uint index = src2_enc;
 958   int disp = disp32;
 959 
 960   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 961     disp += STACK_BIAS;
 962     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
 963     if (!Assembler::is_simm13(disp)) {
 964       ra->C->record_method_not_compilable("unable to handle large constant offsets");
 965       return;
 966     }
 967   }
 968 
 969   // We should have a compiler bailout here rather than a guarantee.
 970   // Better yet would be some mechanism to handle variable-size matches correctly.
 971   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 972 
 973   if( disp == 0 ) {
 974     // use reg-reg form
 975     // bit 13 is already zero
 976     instr |= index;
 977   } else {
 978     // use reg-imm form
 979     instr |= 0x00002000;          // set bit 13 to one
 980     instr |= disp & 0x1FFF;
 981   }
 982 
 983   cbuf.insts()->emit_int32(instr);
 984 
 985 #ifdef ASSERT
 986   {
 987     MacroAssembler _masm(&cbuf);
 988     if (is_verified_oop_base) {
 989       __ verify_oop(reg_to_register_object(src1_enc));
 990     }
 991     if (is_verified_oop_store) {
 992       __ verify_oop(reg_to_register_object(dst_enc));
 993     }
 994     if (tmp_enc != -1) {
 995       __ mov(O7, reg_to_register_object(tmp_enc));
 996     }
 997     if (is_verified_oop_load) {
 998       __ verify_oop(reg_to_register_object(dst_enc));
 999     }
1000   }
1001 #endif
1002 }
1003 
1004 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
1005   // The method which records debug information at every safepoint
1006   // expects the call to be the first instruction in the snippet as
1007   // it creates a PcDesc structure which tracks the offset of a call
1008   // from the start of the codeBlob. This offset is computed as
1009   // code_end() - code_begin() of the code which has been emitted
1010   // so far.
1011   // In this particular case we have skirted around the problem by
1012   // putting the "mov" instruction in the delay slot but the problem
1013   // may bite us again at some other point and a cleaner/generic
1014   // solution using relocations would be needed.
1015   MacroAssembler _masm(&cbuf);
1016   __ set_inst_mark();
1017 
1018   // We flush the current window just so that there is a valid stack copy
1019   // the fact that the current window becomes active again instantly is
1020   // not a problem there is nothing live in it.
1021 
1022 #ifdef ASSERT
1023   int startpos = __ offset();
1024 #endif /* ASSERT */
1025 
1026   __ call((address)entry_point, rtype);
1027 
1028   if (preserve_g2)   __ delayed()->mov(G2, L7);
1029   else __ delayed()->nop();
1030 
1031   if (preserve_g2)   __ mov(L7, G2);
1032 
1033 #ifdef ASSERT
1034   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
1035 #ifdef _LP64
1036     // Trash argument dump slots.
1037     __ set(0xb0b8ac0db0b8ac0d, G1);
1038     __ mov(G1, G5);
1039     __ stx(G1, SP, STACK_BIAS + 0x80);
1040     __ stx(G1, SP, STACK_BIAS + 0x88);
1041     __ stx(G1, SP, STACK_BIAS + 0x90);
1042     __ stx(G1, SP, STACK_BIAS + 0x98);
1043     __ stx(G1, SP, STACK_BIAS + 0xA0);
1044     __ stx(G1, SP, STACK_BIAS + 0xA8);
1045 #else // _LP64
1046     // this is also a native call, so smash the first 7 stack locations,
1047     // and the various registers
1048 
1049     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1050     // while [SP+0x44..0x58] are the argument dump slots.
1051     __ set((intptr_t)0xbaadf00d, G1);
1052     __ mov(G1, G5);
1053     __ sllx(G1, 32, G1);
1054     __ or3(G1, G5, G1);
1055     __ mov(G1, G5);
1056     __ stx(G1, SP, 0x40);
1057     __ stx(G1, SP, 0x48);
1058     __ stx(G1, SP, 0x50);
1059     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1060 #endif // _LP64
1061   }
1062 #endif /*ASSERT*/
1063 }
1064 
1065 //=============================================================================
1066 // REQUIRED FUNCTIONALITY for encoding
1067 void emit_lo(CodeBuffer &cbuf, int val) {  }
1068 void emit_hi(CodeBuffer &cbuf, int val) {  }
1069 
1070 
1071 //=============================================================================
1072 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1073 
1074 int Compile::ConstantTable::calculate_table_base_offset() const {
1075   if (UseRDPCForConstantTableBase) {
1076     // The table base offset might be less but then it fits into
1077     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1078     return Assembler::min_simm13();
1079   } else {
1080     int offset = -(size() / 2);
1081     if (!Assembler::is_simm13(offset)) {
1082       offset = Assembler::min_simm13();
1083     }
1084     return offset;
1085   }
1086 }
1087 
1088 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1089 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1090   ShouldNotReachHere();
1091 }
1092 
1093 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1094   Compile* C = ra_->C;
1095   Compile::ConstantTable& constant_table = C->constant_table();
1096   MacroAssembler _masm(&cbuf);
1097 
1098   Register r = as_Register(ra_->get_encode(this));
1099   CodeSection* consts_section = __ code()->consts();
1100   int consts_size = consts_section->align_at_start(consts_section->size());
1101   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1102 
1103   if (UseRDPCForConstantTableBase) {
1104     // For the following RDPC logic to work correctly the consts
1105     // section must be allocated right before the insts section.  This
1106     // assert checks for that.  The layout and the SECT_* constants
1107     // are defined in src/share/vm/asm/codeBuffer.hpp.
1108     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1109     int insts_offset = __ offset();
1110 
1111     // Layout:
1112     //
1113     // |----------- consts section ------------|----------- insts section -----------...
1114     // |------ constant table -----|- padding -|------------------x----
1115     //                                                            \ current PC (RDPC instruction)
1116     // |<------------- consts_size ----------->|<- insts_offset ->|
1117     //                                                            \ table base
1118     // The table base offset is later added to the load displacement
1119     // so it has to be negative.
1120     int table_base_offset = -(consts_size + insts_offset);
1121     int disp;
1122 
1123     // If the displacement from the current PC to the constant table
1124     // base fits into simm13 we set the constant table base to the
1125     // current PC.
1126     if (Assembler::is_simm13(table_base_offset)) {
1127       constant_table.set_table_base_offset(table_base_offset);
1128       disp = 0;
1129     } else {
1130       // Otherwise we set the constant table base offset to the
1131       // maximum negative displacement of load instructions to keep
1132       // the disp as small as possible:
1133       //
1134       // |<------------- consts_size ----------->|<- insts_offset ->|
1135       // |<--------- min_simm13 --------->|<-------- disp --------->|
1136       //                                  \ table base
1137       table_base_offset = Assembler::min_simm13();
1138       constant_table.set_table_base_offset(table_base_offset);
1139       disp = (consts_size + insts_offset) + table_base_offset;
1140     }
1141 
1142     __ rdpc(r);
1143 
1144     if (disp != 0) {
1145       assert(r != O7, "need temporary");
1146       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1147     }
1148   }
1149   else {
1150     // Materialize the constant table base.
1151     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1152     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1153     AddressLiteral base(baseaddr, rspec);
1154     __ set(base, r);
1155   }
1156 }
1157 
1158 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1159   if (UseRDPCForConstantTableBase) {
1160     // This is really the worst case but generally it's only 1 instruction.
1161     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1162   } else {
1163     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1164   }
1165 }
1166 
1167 #ifndef PRODUCT
1168 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1169   char reg[128];
1170   ra_->dump_register(this, reg);
1171   if (UseRDPCForConstantTableBase) {
1172     st->print("RDPC   %s\t! constant table base", reg);
1173   } else {
1174     st->print("SET    &constanttable,%s\t! constant table base", reg);
1175   }
1176 }
1177 #endif
1178 
1179 
1180 //=============================================================================
1181 
1182 #ifndef PRODUCT
1183 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1184   Compile* C = ra_->C;
1185 
1186   for (int i = 0; i < OptoPrologueNops; i++) {
1187     st->print_cr("NOP"); st->print("\t");
1188   }
1189 
1190   if( VerifyThread ) {
1191     st->print_cr("Verify_Thread"); st->print("\t");
1192   }
1193 
1194   size_t framesize = C->frame_size_in_bytes();
1195   int bangsize = C->bang_size_in_bytes();
1196 
1197   // Calls to C2R adapters often do not accept exceptional returns.
1198   // We require that their callers must bang for them.  But be careful, because
1199   // some VM calls (such as call site linkage) can use several kilobytes of
1200   // stack.  But the stack safety zone should account for that.
1201   // See bugs 4446381, 4468289, 4497237.
1202   if (C->need_stack_bang(bangsize)) {
1203     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1204   }
1205 
1206   if (Assembler::is_simm13(-framesize)) {
1207     st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1208   } else {
1209     st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1210     st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1211     st->print   ("SAVE   R_SP,R_G3,R_SP");
1212   }
1213 
1214 }
1215 #endif
1216 
1217 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1218   Compile* C = ra_->C;
1219   MacroAssembler _masm(&cbuf);
1220 
1221   for (int i = 0; i < OptoPrologueNops; i++) {
1222     __ nop();
1223   }
1224 
1225   __ verify_thread();
1226 
1227   size_t framesize = C->frame_size_in_bytes();
1228   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1229   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1230   int bangsize = C->bang_size_in_bytes();
1231 
1232   // Calls to C2R adapters often do not accept exceptional returns.
1233   // We require that their callers must bang for them.  But be careful, because
1234   // some VM calls (such as call site linkage) can use several kilobytes of
1235   // stack.  But the stack safety zone should account for that.
1236   // See bugs 4446381, 4468289, 4497237.
1237   if (C->need_stack_bang(bangsize)) {
1238     __ generate_stack_overflow_check(bangsize);
1239   }
1240 
1241   if (Assembler::is_simm13(-framesize)) {
1242     __ save(SP, -framesize, SP);
1243   } else {
1244     __ sethi(-framesize & ~0x3ff, G3);
1245     __ add(G3, -framesize & 0x3ff, G3);
1246     __ save(SP, G3, SP);
1247   }
1248   C->set_frame_complete( __ offset() );
1249 
1250   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1251     // NOTE: We set the table base offset here because users might be
1252     // emitted before MachConstantBaseNode.
1253     Compile::ConstantTable& constant_table = C->constant_table();
1254     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1255   }
1256 }
1257 
1258 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1259   return MachNode::size(ra_);
1260 }
1261 
1262 int MachPrologNode::reloc() const {
1263   return 10; // a large enough number
1264 }
1265 
1266 //=============================================================================
1267 #ifndef PRODUCT
1268 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1269   Compile* C = ra_->C;
1270 
1271   if(do_polling() && ra_->C->is_method_compilation()) {
1272     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1273 #ifdef _LP64
1274     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1275 #else
1276     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1277 #endif
1278   }
1279 
1280   if(do_polling()) {
1281     if (UseCBCond && !ra_->C->is_method_compilation()) {
1282       st->print("NOP\n\t");
1283     }
1284     st->print("RET\n\t");
1285   }
1286 
1287   st->print("RESTORE");
1288 }
1289 #endif
1290 
1291 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1292   MacroAssembler _masm(&cbuf);
1293   Compile* C = ra_->C;
1294 
1295   __ verify_thread();
1296 
1297   // If this does safepoint polling, then do it here
1298   if(do_polling() && ra_->C->is_method_compilation()) {
1299     AddressLiteral polling_page(os::get_polling_page());
1300     __ sethi(polling_page, L0);
1301     __ relocate(relocInfo::poll_return_type);
1302     __ ld_ptr(L0, 0, G0);
1303   }
1304 
1305   // If this is a return, then stuff the restore in the delay slot
1306   if(do_polling()) {
1307     if (UseCBCond && !ra_->C->is_method_compilation()) {
1308       // Insert extra padding for the case when the epilogue is preceded by
1309       // a cbcond jump, which can't be followed by a CTI instruction
1310       __ nop();
1311     }
1312     __ ret();
1313     __ delayed()->restore();
1314   } else {
1315     __ restore();
1316   }
1317 }
1318 
1319 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1320   return MachNode::size(ra_);
1321 }
1322 
1323 int MachEpilogNode::reloc() const {
1324   return 16; // a large enough number
1325 }
1326 
1327 const Pipeline * MachEpilogNode::pipeline() const {
1328   return MachNode::pipeline_class();
1329 }
1330 
1331 int MachEpilogNode::safepoint_offset() const {
1332   assert( do_polling(), "no return for this epilog node");
1333   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1334 }
1335 
1336 //=============================================================================
1337 
1338 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1339 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1340 static enum RC rc_class( OptoReg::Name reg ) {
1341   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1342   if (OptoReg::is_stack(reg)) return rc_stack;
1343   VMReg r = OptoReg::as_VMReg(reg);
1344   if (r->is_Register()) return rc_int;
1345   assert(r->is_FloatRegister(), "must be");
1346   return rc_float;
1347 }
1348 
1349 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1350   if (cbuf) {
1351     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1352   }
1353 #ifndef PRODUCT
1354   else if (!do_size) {
1355     if (size != 0) st->print("\n\t");
1356     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1357     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1358   }
1359 #endif
1360   return size+4;
1361 }
1362 
1363 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1364   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1365 #ifndef PRODUCT
1366   else if( !do_size ) {
1367     if( size != 0 ) st->print("\n\t");
1368     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1369   }
1370 #endif
1371   return size+4;
1372 }
1373 
1374 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1375                                         PhaseRegAlloc *ra_,
1376                                         bool do_size,
1377                                         outputStream* st ) const {
1378   // Get registers to move
1379   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1380   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1381   OptoReg::Name dst_second = ra_->get_reg_second(this );
1382   OptoReg::Name dst_first = ra_->get_reg_first(this );
1383 
1384   enum RC src_second_rc = rc_class(src_second);
1385   enum RC src_first_rc = rc_class(src_first);
1386   enum RC dst_second_rc = rc_class(dst_second);
1387   enum RC dst_first_rc = rc_class(dst_first);
1388 
1389   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1390 
1391   // Generate spill code!
1392   int size = 0;
1393 
1394   if( src_first == dst_first && src_second == dst_second )
1395     return size;            // Self copy, no move
1396 
1397   // --------------------------------------
1398   // Check for mem-mem move.  Load into unused float registers and fall into
1399   // the float-store case.
1400   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1401     int offset = ra_->reg2offset(src_first);
1402     // Further check for aligned-adjacent pair, so we can use a double load
1403     if( (src_first&1)==0 && src_first+1 == src_second ) {
1404       src_second    = OptoReg::Name(R_F31_num);
1405       src_second_rc = rc_float;
1406       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1407     } else {
1408       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1409     }
1410     src_first    = OptoReg::Name(R_F30_num);
1411     src_first_rc = rc_float;
1412   }
1413 
1414   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1415     int offset = ra_->reg2offset(src_second);
1416     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1417     src_second    = OptoReg::Name(R_F31_num);
1418     src_second_rc = rc_float;
1419   }
1420 
1421   // --------------------------------------
1422   // Check for float->int copy; requires a trip through memory
1423   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1424     int offset = frame::register_save_words*wordSize;
1425     if (cbuf) {
1426       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1427       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1428       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1429       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1430     }
1431 #ifndef PRODUCT
1432     else if (!do_size) {
1433       if (size != 0) st->print("\n\t");
1434       st->print(  "SUB    R_SP,16,R_SP\n");
1435       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1436       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1437       st->print("\tADD    R_SP,16,R_SP\n");
1438     }
1439 #endif
1440     size += 16;
1441   }
1442 
1443   // Check for float->int copy on T4
1444   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1445     // Further check for aligned-adjacent pair, so we can use a double move
1446     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1447       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1448     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1449   }
1450   // Check for int->float copy on T4
1451   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1452     // Further check for aligned-adjacent pair, so we can use a double move
1453     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1454       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1455     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1456   }
1457 
1458   // --------------------------------------
1459   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1460   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1461   // hardware does the flop for me.  Doubles are always aligned, so no problem
1462   // there.  Misaligned sources only come from native-long-returns (handled
1463   // special below).
1464 #ifndef _LP64
1465   if( src_first_rc == rc_int &&     // source is already big-endian
1466       src_second_rc != rc_bad &&    // 64-bit move
1467       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1468     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1469     // Do the big-endian flop.
1470     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1471     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1472   }
1473 #endif
1474 
1475   // --------------------------------------
1476   // Check for integer reg-reg copy
1477   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1478 #ifndef _LP64
1479     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1480       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1481       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1482       //       operand contains the least significant word of the 64-bit value and vice versa.
1483       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1484       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1485       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1486       if( cbuf ) {
1487         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1488         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1489         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1490 #ifndef PRODUCT
1491       } else if( !do_size ) {
1492         if( size != 0 ) st->print("\n\t");
1493         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1494         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1495         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1496 #endif
1497       }
1498       return size+12;
1499     }
1500     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1501       // returning a long value in I0/I1
1502       // a SpillCopy must be able to target a return instruction's reg_class
1503       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1504       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1505       //       operand contains the least significant word of the 64-bit value and vice versa.
1506       OptoReg::Name tdest = dst_first;
1507 
1508       if (src_first == dst_first) {
1509         tdest = OptoReg::Name(R_O7_num);
1510         size += 4;
1511       }
1512 
1513       if( cbuf ) {
1514         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1515         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1516         // ShrL_reg_imm6
1517         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1518         // ShrR_reg_imm6  src, 0, dst
1519         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1520         if (tdest != dst_first) {
1521           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1522         }
1523       }
1524 #ifndef PRODUCT
1525       else if( !do_size ) {
1526         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1527         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1528         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1529         if (tdest != dst_first) {
1530           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1531         }
1532       }
1533 #endif // PRODUCT
1534       return size+8;
1535     }
1536 #endif // !_LP64
1537     // Else normal reg-reg copy
1538     assert( src_second != dst_first, "smashed second before evacuating it" );
1539     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1540     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1541     // This moves an aligned adjacent pair.
1542     // See if we are done.
1543     if( src_first+1 == src_second && dst_first+1 == dst_second )
1544       return size;
1545   }
1546 
1547   // Check for integer store
1548   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1549     int offset = ra_->reg2offset(dst_first);
1550     // Further check for aligned-adjacent pair, so we can use a double store
1551     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1552       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1553     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1554   }
1555 
1556   // Check for integer load
1557   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1558     int offset = ra_->reg2offset(src_first);
1559     // Further check for aligned-adjacent pair, so we can use a double load
1560     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1561       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1562     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1563   }
1564 
1565   // Check for float reg-reg copy
1566   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1567     // Further check for aligned-adjacent pair, so we can use a double move
1568     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1569       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1570     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1571   }
1572 
1573   // Check for float store
1574   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1575     int offset = ra_->reg2offset(dst_first);
1576     // Further check for aligned-adjacent pair, so we can use a double store
1577     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1578       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1579     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1580   }
1581 
1582   // Check for float load
1583   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1584     int offset = ra_->reg2offset(src_first);
1585     // Further check for aligned-adjacent pair, so we can use a double load
1586     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1587       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1588     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1589   }
1590 
1591   // --------------------------------------------------------------------
1592   // Check for hi bits still needing moving.  Only happens for misaligned
1593   // arguments to native calls.
1594   if( src_second == dst_second )
1595     return size;               // Self copy; no move
1596   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1597 
1598 #ifndef _LP64
1599   // In the LP64 build, all registers can be moved as aligned/adjacent
1600   // pairs, so there's never any need to move the high bits separately.
1601   // The 32-bit builds have to deal with the 32-bit ABI which can force
1602   // all sorts of silly alignment problems.
1603 
1604   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1605   // 32-bits of a 64-bit register, but are needed in low bits of another
1606   // register (else it's a hi-bits-to-hi-bits copy which should have
1607   // happened already as part of a 64-bit move)
1608   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1609     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1610     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1611     // Shift src_second down to dst_second's low bits.
1612     if( cbuf ) {
1613       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1614 #ifndef PRODUCT
1615     } else if( !do_size ) {
1616       if( size != 0 ) st->print("\n\t");
1617       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1618 #endif
1619     }
1620     return size+4;
1621   }
1622 
1623   // Check for high word integer store.  Must down-shift the hi bits
1624   // into a temp register, then fall into the case of storing int bits.
1625   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1626     // Shift src_second down to dst_second's low bits.
1627     if( cbuf ) {
1628       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1629 #ifndef PRODUCT
1630     } else if( !do_size ) {
1631       if( size != 0 ) st->print("\n\t");
1632       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1633 #endif
1634     }
1635     size+=4;
1636     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1637   }
1638 
1639   // Check for high word integer load
1640   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1641     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1642 
1643   // Check for high word integer store
1644   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1645     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1646 
1647   // Check for high word float store
1648   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1649     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1650 
1651 #endif // !_LP64
1652 
1653   Unimplemented();
1654 }
1655 
1656 #ifndef PRODUCT
1657 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1658   implementation( NULL, ra_, false, st );
1659 }
1660 #endif
1661 
1662 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1663   implementation( &cbuf, ra_, false, NULL );
1664 }
1665 
1666 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1667   return implementation( NULL, ra_, true, NULL );
1668 }
1669 
1670 //=============================================================================
1671 #ifndef PRODUCT
1672 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1673   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1674 }
1675 #endif
1676 
1677 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1678   MacroAssembler _masm(&cbuf);
1679   for(int i = 0; i < _count; i += 1) {
1680     __ nop();
1681   }
1682 }
1683 
1684 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1685   return 4 * _count;
1686 }
1687 
1688 
1689 //=============================================================================
1690 #ifndef PRODUCT
1691 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1692   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1693   int reg = ra_->get_reg_first(this);
1694   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1695 }
1696 #endif
1697 
1698 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1699   MacroAssembler _masm(&cbuf);
1700   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1701   int reg = ra_->get_encode(this);
1702 
1703   if (Assembler::is_simm13(offset)) {
1704      __ add(SP, offset, reg_to_register_object(reg));
1705   } else {
1706      __ set(offset, O7);
1707      __ add(SP, O7, reg_to_register_object(reg));
1708   }
1709 }
1710 
1711 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1712   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1713   assert(ra_ == ra_->C->regalloc(), "sanity");
1714   return ra_->C->scratch_emit_size(this);
1715 }
1716 
1717 //=============================================================================
1718 #ifndef PRODUCT
1719 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1720   st->print_cr("\nUEP:");
1721 #ifdef    _LP64
1722   if (UseCompressedClassPointers) {
1723     assert(Universe::heap() != NULL, "java heap should be initialized");
1724     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1725     if (Universe::narrow_klass_base() != 0) {
1726       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1727       if (Universe::narrow_klass_shift() != 0) {
1728         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1729       }
1730       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1731       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1732     } else {
1733       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1734     }
1735   } else {
1736     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1737   }
1738   st->print_cr("\tCMP    R_G5,R_G3" );
1739   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1740 #else  // _LP64
1741   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1742   st->print_cr("\tCMP    R_G5,R_G3" );
1743   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1744 #endif // _LP64
1745 }
1746 #endif
1747 
1748 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1749   MacroAssembler _masm(&cbuf);
1750   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1751   Register temp_reg   = G3;
1752   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1753 
1754   // Load klass from receiver
1755   __ load_klass(O0, temp_reg);
1756   // Compare against expected klass
1757   __ cmp(temp_reg, G5_ic_reg);
1758   // Branch to miss code, checks xcc or icc depending
1759   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1760 }
1761 
1762 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1763   return MachNode::size(ra_);
1764 }
1765 
1766 
1767 //=============================================================================
1768 
1769 
1770 // Emit exception handler code.
1771 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1772   Register temp_reg = G3;
1773   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1774   MacroAssembler _masm(&cbuf);
1775 
1776   address base =
1777   __ start_a_stub(size_exception_handler());
1778   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1779 
1780   int offset = __ offset();
1781 
1782   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1783   __ delayed()->nop();
1784 
1785   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1786 
1787   __ end_a_stub();
1788 
1789   return offset;
1790 }
1791 
1792 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1793   // Can't use any of the current frame's registers as we may have deopted
1794   // at a poll and everything (including G3) can be live.
1795   Register temp_reg = L0;
1796   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1797   MacroAssembler _masm(&cbuf);
1798 
1799   address base =
1800   __ start_a_stub(size_deopt_handler());
1801   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1802 
1803   int offset = __ offset();
1804   __ save_frame(0);
1805   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1806   __ delayed()->restore();
1807 
1808   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1809 
1810   __ end_a_stub();
1811   return offset;
1812 
1813 }
1814 
1815 // Given a register encoding, produce a Integer Register object
1816 static Register reg_to_register_object(int register_encoding) {
1817   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1818   return as_Register(register_encoding);
1819 }
1820 
1821 // Given a register encoding, produce a single-precision Float Register object
1822 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1823   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1824   return as_SingleFloatRegister(register_encoding);
1825 }
1826 
1827 // Given a register encoding, produce a double-precision Float Register object
1828 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1829   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1830   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1831   return as_DoubleFloatRegister(register_encoding);
1832 }
1833 
1834 const bool Matcher::match_rule_supported(int opcode) {
1835   if (!has_match_rule(opcode))
1836     return false;
1837 
1838   switch (opcode) {
1839   case Op_CountLeadingZerosI:
1840   case Op_CountLeadingZerosL:
1841   case Op_CountTrailingZerosI:
1842   case Op_CountTrailingZerosL:
1843   case Op_PopCountI:
1844   case Op_PopCountL:
1845     if (!UsePopCountInstruction)
1846       return false;
1847   case Op_CompareAndSwapL:
1848 #ifdef _LP64
1849   case Op_CompareAndSwapP:
1850 #endif
1851     if (!VM_Version::supports_cx8())
1852       return false;
1853     break;
1854   }
1855 
1856   return true;  // Per default match rules are supported.
1857 }
1858 
1859 int Matcher::regnum_to_fpu_offset(int regnum) {
1860   return regnum - 32; // The FP registers are in the second chunk
1861 }
1862 
1863 #ifdef ASSERT
1864 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1865 #endif
1866 
1867 // Vector width in bytes
1868 const int Matcher::vector_width_in_bytes(BasicType bt) {
1869   assert(MaxVectorSize == 8, "");
1870   return 8;
1871 }
1872 
1873 // Vector ideal reg
1874 const int Matcher::vector_ideal_reg(int size) {
1875   assert(MaxVectorSize == 8, "");
1876   return Op_RegD;
1877 }
1878 
1879 const int Matcher::vector_shift_count_ideal_reg(int size) {
1880   fatal("vector shift is not supported");
1881   return Node::NotAMachineReg;
1882 }
1883 
1884 // Limits on vector size (number of elements) loaded into vector.
1885 const int Matcher::max_vector_size(const BasicType bt) {
1886   assert(is_java_primitive(bt), "only primitive type vectors");
1887   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1888 }
1889 
1890 const int Matcher::min_vector_size(const BasicType bt) {
1891   return max_vector_size(bt); // Same as max.
1892 }
1893 
1894 // SPARC doesn't support misaligned vectors store/load.
1895 const bool Matcher::misaligned_vectors_ok() {
1896   return false;
1897 }
1898 
1899 // Current (2013) SPARC platforms need to read original key
1900 // to construct decryption expanded key 
1901 const bool Matcher::pass_original_key_for_aes() {
1902   return true;
1903 }
1904 
1905 // USII supports fxtof through the whole range of number, USIII doesn't
1906 const bool Matcher::convL2FSupported(void) {
1907   return VM_Version::has_fast_fxtof();
1908 }
1909 
1910 // Is this branch offset short enough that a short branch can be used?
1911 //
1912 // NOTE: If the platform does not provide any short branch variants, then
1913 //       this method should return false for offset 0.
1914 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1915   // The passed offset is relative to address of the branch.
1916   // Don't need to adjust the offset.
1917   return UseCBCond && Assembler::is_simm12(offset);
1918 }
1919 
1920 const bool Matcher::isSimpleConstant64(jlong value) {
1921   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1922   // Depends on optimizations in MacroAssembler::setx.
1923   int hi = (int)(value >> 32);
1924   int lo = (int)(value & ~0);
1925   return (hi == 0) || (hi == -1) || (lo == 0);
1926 }
1927 
1928 // No scaling for the parameter the ClearArray node.
1929 const bool Matcher::init_array_count_is_in_bytes = true;
1930 
1931 // Threshold size for cleararray.
1932 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1933 
1934 // No additional cost for CMOVL.
1935 const int Matcher::long_cmove_cost() { return 0; }
1936 
1937 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1938 const int Matcher::float_cmove_cost() {
1939   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1940 }
1941 
1942 // Does the CPU require late expand (see block.cpp for description of late expand)?
1943 const bool Matcher::require_postalloc_expand = false;
1944 
1945 // Should the Matcher clone shifts on addressing modes, expecting them to
1946 // be subsumed into complex addressing expressions or compute them into
1947 // registers?  True for Intel but false for most RISCs
1948 const bool Matcher::clone_shift_expressions = false;
1949 
1950 // Do we need to mask the count passed to shift instructions or does
1951 // the cpu only look at the lower 5/6 bits anyway?
1952 const bool Matcher::need_masked_shift_count = false;
1953 
1954 bool Matcher::narrow_oop_use_complex_address() {
1955   NOT_LP64(ShouldNotCallThis());
1956   assert(UseCompressedOops, "only for compressed oops code");
1957   return false;
1958 }
1959 
1960 bool Matcher::narrow_klass_use_complex_address() {
1961   NOT_LP64(ShouldNotCallThis());
1962   assert(UseCompressedClassPointers, "only for compressed klass code");
1963   return false;
1964 }
1965 
1966 // Is it better to copy float constants, or load them directly from memory?
1967 // Intel can load a float constant from a direct address, requiring no
1968 // extra registers.  Most RISCs will have to materialize an address into a
1969 // register first, so they would do better to copy the constant from stack.
1970 const bool Matcher::rematerialize_float_constants = false;
1971 
1972 // If CPU can load and store mis-aligned doubles directly then no fixup is
1973 // needed.  Else we split the double into 2 integer pieces and move it
1974 // piece-by-piece.  Only happens when passing doubles into C code as the
1975 // Java calling convention forces doubles to be aligned.
1976 #ifdef _LP64
1977 const bool Matcher::misaligned_doubles_ok = true;
1978 #else
1979 const bool Matcher::misaligned_doubles_ok = false;
1980 #endif
1981 
1982 // No-op on SPARC.
1983 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1984 }
1985 
1986 // Advertise here if the CPU requires explicit rounding operations
1987 // to implement the UseStrictFP mode.
1988 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1989 
1990 // Are floats converted to double when stored to stack during deoptimization?
1991 // Sparc does not handle callee-save floats.
1992 bool Matcher::float_in_double() { return false; }
1993 
1994 // Do ints take an entire long register or just half?
1995 // Note that we if-def off of _LP64.
1996 // The relevant question is how the int is callee-saved.  In _LP64
1997 // the whole long is written but de-opt'ing will have to extract
1998 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1999 #ifdef _LP64
2000 const bool Matcher::int_in_long = true;
2001 #else
2002 const bool Matcher::int_in_long = false;
2003 #endif
2004 
2005 // Return whether or not this register is ever used as an argument.  This
2006 // function is used on startup to build the trampoline stubs in generateOptoStub.
2007 // Registers not mentioned will be killed by the VM call in the trampoline, and
2008 // arguments in those registers not be available to the callee.
2009 bool Matcher::can_be_java_arg( int reg ) {
2010   // Standard sparc 6 args in registers
2011   if( reg == R_I0_num ||
2012       reg == R_I1_num ||
2013       reg == R_I2_num ||
2014       reg == R_I3_num ||
2015       reg == R_I4_num ||
2016       reg == R_I5_num ) return true;
2017 #ifdef _LP64
2018   // 64-bit builds can pass 64-bit pointers and longs in
2019   // the high I registers
2020   if( reg == R_I0H_num ||
2021       reg == R_I1H_num ||
2022       reg == R_I2H_num ||
2023       reg == R_I3H_num ||
2024       reg == R_I4H_num ||
2025       reg == R_I5H_num ) return true;
2026 
2027   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2028     return true;
2029   }
2030 
2031 #else
2032   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2033   // Longs cannot be passed in O regs, because O regs become I regs
2034   // after a 'save' and I regs get their high bits chopped off on
2035   // interrupt.
2036   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2037   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2038 #endif
2039   // A few float args in registers
2040   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2041 
2042   return false;
2043 }
2044 
2045 bool Matcher::is_spillable_arg( int reg ) {
2046   return can_be_java_arg(reg);
2047 }
2048 
2049 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2050   // Use hardware SDIVX instruction when it is
2051   // faster than a code which use multiply.
2052   return VM_Version::has_fast_idiv();
2053 }
2054 
2055 // Register for DIVI projection of divmodI
2056 RegMask Matcher::divI_proj_mask() {
2057   ShouldNotReachHere();
2058   return RegMask();
2059 }
2060 
2061 // Register for MODI projection of divmodI
2062 RegMask Matcher::modI_proj_mask() {
2063   ShouldNotReachHere();
2064   return RegMask();
2065 }
2066 
2067 // Register for DIVL projection of divmodL
2068 RegMask Matcher::divL_proj_mask() {
2069   ShouldNotReachHere();
2070   return RegMask();
2071 }
2072 
2073 // Register for MODL projection of divmodL
2074 RegMask Matcher::modL_proj_mask() {
2075   ShouldNotReachHere();
2076   return RegMask();
2077 }
2078 
2079 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2080   return L7_REGP_mask();
2081 }
2082 
2083 %}
2084 
2085 
2086 // The intptr_t operand types, defined by textual substitution.
2087 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2088 #ifdef _LP64
2089 #define immX      immL
2090 #define immX13    immL13
2091 #define immX13m7  immL13m7
2092 #define iRegX     iRegL
2093 #define g1RegX    g1RegL
2094 #else
2095 #define immX      immI
2096 #define immX13    immI13
2097 #define immX13m7  immI13m7
2098 #define iRegX     iRegI
2099 #define g1RegX    g1RegI
2100 #endif
2101 
2102 //----------ENCODING BLOCK-----------------------------------------------------
2103 // This block specifies the encoding classes used by the compiler to output
2104 // byte streams.  Encoding classes are parameterized macros used by
2105 // Machine Instruction Nodes in order to generate the bit encoding of the
2106 // instruction.  Operands specify their base encoding interface with the
2107 // interface keyword.  There are currently supported four interfaces,
2108 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2109 // operand to generate a function which returns its register number when
2110 // queried.   CONST_INTER causes an operand to generate a function which
2111 // returns the value of the constant when queried.  MEMORY_INTER causes an
2112 // operand to generate four functions which return the Base Register, the
2113 // Index Register, the Scale Value, and the Offset Value of the operand when
2114 // queried.  COND_INTER causes an operand to generate six functions which
2115 // return the encoding code (ie - encoding bits for the instruction)
2116 // associated with each basic boolean condition for a conditional instruction.
2117 //
2118 // Instructions specify two basic values for encoding.  Again, a function
2119 // is available to check if the constant displacement is an oop. They use the
2120 // ins_encode keyword to specify their encoding classes (which must be
2121 // a sequence of enc_class names, and their parameters, specified in
2122 // the encoding block), and they use the
2123 // opcode keyword to specify, in order, their primary, secondary, and
2124 // tertiary opcode.  Only the opcode sections which a particular instruction
2125 // needs for encoding need to be specified.
2126 encode %{
2127   enc_class enc_untested %{
2128 #ifdef ASSERT
2129     MacroAssembler _masm(&cbuf);
2130     __ untested("encoding");
2131 #endif
2132   %}
2133 
2134   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2135     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2136                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2137   %}
2138 
2139   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2140     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2141                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2142   %}
2143 
2144   enc_class form3_mem_prefetch_read( memory mem ) %{
2145     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2146                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2147   %}
2148 
2149   enc_class form3_mem_prefetch_write( memory mem ) %{
2150     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2151                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2152   %}
2153 
2154   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2155     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2156     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2157     guarantee($mem$$index == R_G0_enc, "double index?");
2158     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2159     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2160     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2161     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2162   %}
2163 
2164   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2165     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2166     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2167     guarantee($mem$$index == R_G0_enc, "double index?");
2168     // Load long with 2 instructions
2169     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2170     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2171   %}
2172 
2173   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2174   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2175     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2176     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2177   %}
2178 
2179   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2180     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2181     if( $rs2$$reg != $rd$$reg )
2182       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2183   %}
2184 
2185   // Target lo half of long
2186   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2187     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2188     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2189       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2190   %}
2191 
2192   // Source lo half of long
2193   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2194     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2195     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2196       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2197   %}
2198 
2199   // Target hi half of long
2200   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2201     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2202   %}
2203 
2204   // Source lo half of long, and leave it sign extended.
2205   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2206     // Sign extend low half
2207     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2208   %}
2209 
2210   // Source hi half of long, and leave it sign extended.
2211   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2212     // Shift high half to low half
2213     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2214   %}
2215 
2216   // Source hi half of long
2217   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2218     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2219     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2220       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2221   %}
2222 
2223   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2224     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2225   %}
2226 
2227   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2228     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2229     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2230   %}
2231 
2232   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2233     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2234     // clear if nothing else is happening
2235     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2236     // blt,a,pn done
2237     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2238     // mov dst,-1 in delay slot
2239     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2240   %}
2241 
2242   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2243     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2244   %}
2245 
2246   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2247     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2248   %}
2249 
2250   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2251     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2252   %}
2253 
2254   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2255     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2256   %}
2257 
2258   enc_class move_return_pc_to_o1() %{
2259     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2260   %}
2261 
2262 #ifdef _LP64
2263   /* %%% merge with enc_to_bool */
2264   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2265     MacroAssembler _masm(&cbuf);
2266 
2267     Register   src_reg = reg_to_register_object($src$$reg);
2268     Register   dst_reg = reg_to_register_object($dst$$reg);
2269     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2270   %}
2271 #endif
2272 
2273   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2274     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2275     MacroAssembler _masm(&cbuf);
2276 
2277     Register   p_reg = reg_to_register_object($p$$reg);
2278     Register   q_reg = reg_to_register_object($q$$reg);
2279     Register   y_reg = reg_to_register_object($y$$reg);
2280     Register tmp_reg = reg_to_register_object($tmp$$reg);
2281 
2282     __ subcc( p_reg, q_reg,   p_reg );
2283     __ add  ( p_reg, y_reg, tmp_reg );
2284     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2285   %}
2286 
2287   enc_class form_d2i_helper(regD src, regF dst) %{
2288     // fcmp %fcc0,$src,$src
2289     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2290     // branch %fcc0 not-nan, predict taken
2291     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2292     // fdtoi $src,$dst
2293     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2294     // fitos $dst,$dst (if nan)
2295     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2296     // clear $dst (if nan)
2297     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2298     // carry on here...
2299   %}
2300 
2301   enc_class form_d2l_helper(regD src, regD dst) %{
2302     // fcmp %fcc0,$src,$src  check for NAN
2303     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2304     // branch %fcc0 not-nan, predict taken
2305     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2306     // fdtox $src,$dst   convert in delay slot
2307     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2308     // fxtod $dst,$dst  (if nan)
2309     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2310     // clear $dst (if nan)
2311     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2312     // carry on here...
2313   %}
2314 
2315   enc_class form_f2i_helper(regF src, regF dst) %{
2316     // fcmps %fcc0,$src,$src
2317     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2318     // branch %fcc0 not-nan, predict taken
2319     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2320     // fstoi $src,$dst
2321     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2322     // fitos $dst,$dst (if nan)
2323     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2324     // clear $dst (if nan)
2325     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2326     // carry on here...
2327   %}
2328 
2329   enc_class form_f2l_helper(regF src, regD dst) %{
2330     // fcmps %fcc0,$src,$src
2331     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2332     // branch %fcc0 not-nan, predict taken
2333     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2334     // fstox $src,$dst
2335     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2336     // fxtod $dst,$dst (if nan)
2337     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2338     // clear $dst (if nan)
2339     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2340     // carry on here...
2341   %}
2342 
2343   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2344   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2345   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2346   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2347 
2348   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2349 
2350   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2351   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2352 
2353   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2354     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2355   %}
2356 
2357   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2358     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2359   %}
2360 
2361   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2362     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2363   %}
2364 
2365   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2366     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2367   %}
2368 
2369   enc_class form3_convI2F(regF rs2, regF rd) %{
2370     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2371   %}
2372 
2373   // Encloding class for traceable jumps
2374   enc_class form_jmpl(g3RegP dest) %{
2375     emit_jmpl(cbuf, $dest$$reg);
2376   %}
2377 
2378   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2379     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2380   %}
2381 
2382   enc_class form2_nop() %{
2383     emit_nop(cbuf);
2384   %}
2385 
2386   enc_class form2_illtrap() %{
2387     emit_illtrap(cbuf);
2388   %}
2389 
2390 
2391   // Compare longs and convert into -1, 0, 1.
2392   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2393     // CMP $src1,$src2
2394     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2395     // blt,a,pn done
2396     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2397     // mov dst,-1 in delay slot
2398     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2399     // bgt,a,pn done
2400     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2401     // mov dst,1 in delay slot
2402     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2403     // CLR    $dst
2404     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2405   %}
2406 
2407   enc_class enc_PartialSubtypeCheck() %{
2408     MacroAssembler _masm(&cbuf);
2409     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2410     __ delayed()->nop();
2411   %}
2412 
2413   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2414     MacroAssembler _masm(&cbuf);
2415     Label* L = $labl$$label;
2416     Assembler::Predict predict_taken =
2417       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2418 
2419     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2420     __ delayed()->nop();
2421   %}
2422 
2423   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2424     MacroAssembler _masm(&cbuf);
2425     Label* L = $labl$$label;
2426     Assembler::Predict predict_taken =
2427       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2428 
2429     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2430     __ delayed()->nop();
2431   %}
2432 
2433   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2434     int op = (Assembler::arith_op << 30) |
2435              ($dst$$reg << 25) |
2436              (Assembler::movcc_op3 << 19) |
2437              (1 << 18) |                    // cc2 bit for 'icc'
2438              ($cmp$$cmpcode << 14) |
2439              (0 << 13) |                    // select register move
2440              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2441              ($src$$reg << 0);
2442     cbuf.insts()->emit_int32(op);
2443   %}
2444 
2445   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2446     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2447     int op = (Assembler::arith_op << 30) |
2448              ($dst$$reg << 25) |
2449              (Assembler::movcc_op3 << 19) |
2450              (1 << 18) |                    // cc2 bit for 'icc'
2451              ($cmp$$cmpcode << 14) |
2452              (1 << 13) |                    // select immediate move
2453              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2454              (simm11 << 0);
2455     cbuf.insts()->emit_int32(op);
2456   %}
2457 
2458   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2459     int op = (Assembler::arith_op << 30) |
2460              ($dst$$reg << 25) |
2461              (Assembler::movcc_op3 << 19) |
2462              (0 << 18) |                    // cc2 bit for 'fccX'
2463              ($cmp$$cmpcode << 14) |
2464              (0 << 13) |                    // select register move
2465              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2466              ($src$$reg << 0);
2467     cbuf.insts()->emit_int32(op);
2468   %}
2469 
2470   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2471     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2472     int op = (Assembler::arith_op << 30) |
2473              ($dst$$reg << 25) |
2474              (Assembler::movcc_op3 << 19) |
2475              (0 << 18) |                    // cc2 bit for 'fccX'
2476              ($cmp$$cmpcode << 14) |
2477              (1 << 13) |                    // select immediate move
2478              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2479              (simm11 << 0);
2480     cbuf.insts()->emit_int32(op);
2481   %}
2482 
2483   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2484     int op = (Assembler::arith_op << 30) |
2485              ($dst$$reg << 25) |
2486              (Assembler::fpop2_op3 << 19) |
2487              (0 << 18) |
2488              ($cmp$$cmpcode << 14) |
2489              (1 << 13) |                    // select register move
2490              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2491              ($primary << 5) |              // select single, double or quad
2492              ($src$$reg << 0);
2493     cbuf.insts()->emit_int32(op);
2494   %}
2495 
2496   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2497     int op = (Assembler::arith_op << 30) |
2498              ($dst$$reg << 25) |
2499              (Assembler::fpop2_op3 << 19) |
2500              (0 << 18) |
2501              ($cmp$$cmpcode << 14) |
2502              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2503              ($primary << 5) |              // select single, double or quad
2504              ($src$$reg << 0);
2505     cbuf.insts()->emit_int32(op);
2506   %}
2507 
2508   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2509   // the condition comes from opcode-field instead of an argument.
2510   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2511     int op = (Assembler::arith_op << 30) |
2512              ($dst$$reg << 25) |
2513              (Assembler::movcc_op3 << 19) |
2514              (1 << 18) |                    // cc2 bit for 'icc'
2515              ($primary << 14) |
2516              (0 << 13) |                    // select register move
2517              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2518              ($src$$reg << 0);
2519     cbuf.insts()->emit_int32(op);
2520   %}
2521 
2522   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2523     int op = (Assembler::arith_op << 30) |
2524              ($dst$$reg << 25) |
2525              (Assembler::movcc_op3 << 19) |
2526              (6 << 16) |                    // cc2 bit for 'xcc'
2527              ($primary << 14) |
2528              (0 << 13) |                    // select register move
2529              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2530              ($src$$reg << 0);
2531     cbuf.insts()->emit_int32(op);
2532   %}
2533 
2534   enc_class Set13( immI13 src, iRegI rd ) %{
2535     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2536   %}
2537 
2538   enc_class SetHi22( immI src, iRegI rd ) %{
2539     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2540   %}
2541 
2542   enc_class Set32( immI src, iRegI rd ) %{
2543     MacroAssembler _masm(&cbuf);
2544     __ set($src$$constant, reg_to_register_object($rd$$reg));
2545   %}
2546 
2547   enc_class call_epilog %{
2548     if( VerifyStackAtCalls ) {
2549       MacroAssembler _masm(&cbuf);
2550       int framesize = ra_->C->frame_size_in_bytes();
2551       Register temp_reg = G3;
2552       __ add(SP, framesize, temp_reg);
2553       __ cmp(temp_reg, FP);
2554       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2555     }
2556   %}
2557 
2558   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2559   // to G1 so the register allocator will not have to deal with the misaligned register
2560   // pair.
2561   enc_class adjust_long_from_native_call %{
2562 #ifndef _LP64
2563     if (returns_long()) {
2564       //    sllx  O0,32,O0
2565       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2566       //    srl   O1,0,O1
2567       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2568       //    or    O0,O1,G1
2569       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2570     }
2571 #endif
2572   %}
2573 
2574   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2575     // CALL directly to the runtime
2576     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2577     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2578                     /*preserve_g2=*/true);
2579   %}
2580 
2581   enc_class preserve_SP %{
2582     MacroAssembler _masm(&cbuf);
2583     __ mov(SP, L7_mh_SP_save);
2584   %}
2585 
2586   enc_class restore_SP %{
2587     MacroAssembler _masm(&cbuf);
2588     __ mov(L7_mh_SP_save, SP);
2589   %}
2590 
2591   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2592     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2593     // who we intended to call.
2594     if (!_method) {
2595       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2596     } else if (_optimized_virtual) {
2597       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2598     } else {
2599       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2600     }
2601     if (_method) {  // Emit stub for static call.
2602       CompiledStaticCall::emit_to_interp_stub(cbuf);
2603     }
2604   %}
2605 
2606   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2607     MacroAssembler _masm(&cbuf);
2608     __ set_inst_mark();
2609     int vtable_index = this->_vtable_index;
2610     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2611     if (vtable_index < 0) {
2612       // must be invalid_vtable_index, not nonvirtual_vtable_index
2613       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2614       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2615       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2616       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2617       __ ic_call((address)$meth$$method);
2618     } else {
2619       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2620       // Just go thru the vtable
2621       // get receiver klass (receiver already checked for non-null)
2622       // If we end up going thru a c2i adapter interpreter expects method in G5
2623       int off = __ offset();
2624       __ load_klass(O0, G3_scratch);
2625       int klass_load_size;
2626       if (UseCompressedClassPointers) {
2627         assert(Universe::heap() != NULL, "java heap should be initialized");
2628         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2629       } else {
2630         klass_load_size = 1*BytesPerInstWord;
2631       }
2632       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2633       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2634       if (Assembler::is_simm13(v_off)) {
2635         __ ld_ptr(G3, v_off, G5_method);
2636       } else {
2637         // Generate 2 instructions
2638         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2639         __ or3(G5_method, v_off & 0x3ff, G5_method);
2640         // ld_ptr, set_hi, set
2641         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2642                "Unexpected instruction size(s)");
2643         __ ld_ptr(G3, G5_method, G5_method);
2644       }
2645       // NOTE: for vtable dispatches, the vtable entry will never be null.
2646       // However it may very well end up in handle_wrong_method if the
2647       // method is abstract for the particular class.
2648       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2649       // jump to target (either compiled code or c2iadapter)
2650       __ jmpl(G3_scratch, G0, O7);
2651       __ delayed()->nop();
2652     }
2653   %}
2654 
2655   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2656     MacroAssembler _masm(&cbuf);
2657 
2658     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2659     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2660                               // we might be calling a C2I adapter which needs it.
2661 
2662     assert(temp_reg != G5_ic_reg, "conflicting registers");
2663     // Load nmethod
2664     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2665 
2666     // CALL to compiled java, indirect the contents of G3
2667     __ set_inst_mark();
2668     __ callr(temp_reg, G0);
2669     __ delayed()->nop();
2670   %}
2671 
2672 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2673     MacroAssembler _masm(&cbuf);
2674     Register Rdividend = reg_to_register_object($src1$$reg);
2675     Register Rdivisor = reg_to_register_object($src2$$reg);
2676     Register Rresult = reg_to_register_object($dst$$reg);
2677 
2678     __ sra(Rdivisor, 0, Rdivisor);
2679     __ sra(Rdividend, 0, Rdividend);
2680     __ sdivx(Rdividend, Rdivisor, Rresult);
2681 %}
2682 
2683 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2684     MacroAssembler _masm(&cbuf);
2685 
2686     Register Rdividend = reg_to_register_object($src1$$reg);
2687     int divisor = $imm$$constant;
2688     Register Rresult = reg_to_register_object($dst$$reg);
2689 
2690     __ sra(Rdividend, 0, Rdividend);
2691     __ sdivx(Rdividend, divisor, Rresult);
2692 %}
2693 
2694 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2695     MacroAssembler _masm(&cbuf);
2696     Register Rsrc1 = reg_to_register_object($src1$$reg);
2697     Register Rsrc2 = reg_to_register_object($src2$$reg);
2698     Register Rdst  = reg_to_register_object($dst$$reg);
2699 
2700     __ sra( Rsrc1, 0, Rsrc1 );
2701     __ sra( Rsrc2, 0, Rsrc2 );
2702     __ mulx( Rsrc1, Rsrc2, Rdst );
2703     __ srlx( Rdst, 32, Rdst );
2704 %}
2705 
2706 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2707     MacroAssembler _masm(&cbuf);
2708     Register Rdividend = reg_to_register_object($src1$$reg);
2709     Register Rdivisor = reg_to_register_object($src2$$reg);
2710     Register Rresult = reg_to_register_object($dst$$reg);
2711     Register Rscratch = reg_to_register_object($scratch$$reg);
2712 
2713     assert(Rdividend != Rscratch, "");
2714     assert(Rdivisor  != Rscratch, "");
2715 
2716     __ sra(Rdividend, 0, Rdividend);
2717     __ sra(Rdivisor, 0, Rdivisor);
2718     __ sdivx(Rdividend, Rdivisor, Rscratch);
2719     __ mulx(Rscratch, Rdivisor, Rscratch);
2720     __ sub(Rdividend, Rscratch, Rresult);
2721 %}
2722 
2723 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2724     MacroAssembler _masm(&cbuf);
2725 
2726     Register Rdividend = reg_to_register_object($src1$$reg);
2727     int divisor = $imm$$constant;
2728     Register Rresult = reg_to_register_object($dst$$reg);
2729     Register Rscratch = reg_to_register_object($scratch$$reg);
2730 
2731     assert(Rdividend != Rscratch, "");
2732 
2733     __ sra(Rdividend, 0, Rdividend);
2734     __ sdivx(Rdividend, divisor, Rscratch);
2735     __ mulx(Rscratch, divisor, Rscratch);
2736     __ sub(Rdividend, Rscratch, Rresult);
2737 %}
2738 
2739 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2740     MacroAssembler _masm(&cbuf);
2741 
2742     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2743     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2744 
2745     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2746 %}
2747 
2748 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2749     MacroAssembler _masm(&cbuf);
2750 
2751     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2752     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2753 
2754     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2755 %}
2756 
2757 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2758     MacroAssembler _masm(&cbuf);
2759 
2760     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2761     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2762 
2763     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2764 %}
2765 
2766 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2767     MacroAssembler _masm(&cbuf);
2768 
2769     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2770     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2771 
2772     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2773 %}
2774 
2775 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2776     MacroAssembler _masm(&cbuf);
2777 
2778     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2779     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2780 
2781     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2782 %}
2783 
2784 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2785     MacroAssembler _masm(&cbuf);
2786 
2787     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2788     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2789 
2790     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2791 %}
2792 
2793 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2794     MacroAssembler _masm(&cbuf);
2795 
2796     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2797     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2798 
2799     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2800 %}
2801 
2802 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2803     MacroAssembler _masm(&cbuf);
2804 
2805     Register Roop  = reg_to_register_object($oop$$reg);
2806     Register Rbox  = reg_to_register_object($box$$reg);
2807     Register Rscratch = reg_to_register_object($scratch$$reg);
2808     Register Rmark =    reg_to_register_object($scratch2$$reg);
2809 
2810     assert(Roop  != Rscratch, "");
2811     assert(Roop  != Rmark, "");
2812     assert(Rbox  != Rscratch, "");
2813     assert(Rbox  != Rmark, "");
2814 
2815     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2816 %}
2817 
2818 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2819     MacroAssembler _masm(&cbuf);
2820 
2821     Register Roop  = reg_to_register_object($oop$$reg);
2822     Register Rbox  = reg_to_register_object($box$$reg);
2823     Register Rscratch = reg_to_register_object($scratch$$reg);
2824     Register Rmark =    reg_to_register_object($scratch2$$reg);
2825 
2826     assert(Roop  != Rscratch, "");
2827     assert(Roop  != Rmark, "");
2828     assert(Rbox  != Rscratch, "");
2829     assert(Rbox  != Rmark, "");
2830 
2831     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2832   %}
2833 
2834   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2835     MacroAssembler _masm(&cbuf);
2836     Register Rmem = reg_to_register_object($mem$$reg);
2837     Register Rold = reg_to_register_object($old$$reg);
2838     Register Rnew = reg_to_register_object($new$$reg);
2839 
2840     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2841     __ cmp( Rold, Rnew );
2842   %}
2843 
2844   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2845     Register Rmem = reg_to_register_object($mem$$reg);
2846     Register Rold = reg_to_register_object($old$$reg);
2847     Register Rnew = reg_to_register_object($new$$reg);
2848 
2849     MacroAssembler _masm(&cbuf);
2850     __ mov(Rnew, O7);
2851     __ casx(Rmem, Rold, O7);
2852     __ cmp( Rold, O7 );
2853   %}
2854 
2855   // raw int cas, used for compareAndSwap
2856   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2857     Register Rmem = reg_to_register_object($mem$$reg);
2858     Register Rold = reg_to_register_object($old$$reg);
2859     Register Rnew = reg_to_register_object($new$$reg);
2860 
2861     MacroAssembler _masm(&cbuf);
2862     __ mov(Rnew, O7);
2863     __ cas(Rmem, Rold, O7);
2864     __ cmp( Rold, O7 );
2865   %}
2866 
2867   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2868     Register Rres = reg_to_register_object($res$$reg);
2869 
2870     MacroAssembler _masm(&cbuf);
2871     __ mov(1, Rres);
2872     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2873   %}
2874 
2875   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2876     Register Rres = reg_to_register_object($res$$reg);
2877 
2878     MacroAssembler _masm(&cbuf);
2879     __ mov(1, Rres);
2880     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2881   %}
2882 
2883   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2884     MacroAssembler _masm(&cbuf);
2885     Register Rdst = reg_to_register_object($dst$$reg);
2886     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2887                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2888     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2889                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2890 
2891     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2892     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2893   %}
2894 
2895 
2896   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2897     Label Ldone, Lloop;
2898     MacroAssembler _masm(&cbuf);
2899 
2900     Register   str1_reg = reg_to_register_object($str1$$reg);
2901     Register   str2_reg = reg_to_register_object($str2$$reg);
2902     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2903     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2904     Register result_reg = reg_to_register_object($result$$reg);
2905 
2906     assert(result_reg != str1_reg &&
2907            result_reg != str2_reg &&
2908            result_reg != cnt1_reg &&
2909            result_reg != cnt2_reg ,
2910            "need different registers");
2911 
2912     // Compute the minimum of the string lengths(str1_reg) and the
2913     // difference of the string lengths (stack)
2914 
2915     // See if the lengths are different, and calculate min in str1_reg.
2916     // Stash diff in O7 in case we need it for a tie-breaker.
2917     Label Lskip;
2918     __ subcc(cnt1_reg, cnt2_reg, O7);
2919     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2920     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2921     // cnt2 is shorter, so use its count:
2922     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2923     __ bind(Lskip);
2924 
2925     // reallocate cnt1_reg, cnt2_reg, result_reg
2926     // Note:  limit_reg holds the string length pre-scaled by 2
2927     Register limit_reg =   cnt1_reg;
2928     Register  chr2_reg =   cnt2_reg;
2929     Register  chr1_reg = result_reg;
2930     // str{12} are the base pointers
2931 
2932     // Is the minimum length zero?
2933     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2934     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2935     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2936 
2937     // Load first characters
2938     __ lduh(str1_reg, 0, chr1_reg);
2939     __ lduh(str2_reg, 0, chr2_reg);
2940 
2941     // Compare first characters
2942     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2943     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2944     assert(chr1_reg == result_reg, "result must be pre-placed");
2945     __ delayed()->nop();
2946 
2947     {
2948       // Check after comparing first character to see if strings are equivalent
2949       Label LSkip2;
2950       // Check if the strings start at same location
2951       __ cmp(str1_reg, str2_reg);
2952       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2953       __ delayed()->nop();
2954 
2955       // Check if the length difference is zero (in O7)
2956       __ cmp(G0, O7);
2957       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2958       __ delayed()->mov(G0, result_reg);  // result is zero
2959 
2960       // Strings might not be equal
2961       __ bind(LSkip2);
2962     }
2963 
2964     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2965     __ signx(limit_reg);
2966 
2967     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2968     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2969     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2970 
2971     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2972     __ add(str1_reg, limit_reg, str1_reg);
2973     __ add(str2_reg, limit_reg, str2_reg);
2974     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2975 
2976     // Compare the rest of the characters
2977     __ lduh(str1_reg, limit_reg, chr1_reg);
2978     __ bind(Lloop);
2979     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2980     __ lduh(str2_reg, limit_reg, chr2_reg);
2981     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2982     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2983     assert(chr1_reg == result_reg, "result must be pre-placed");
2984     __ delayed()->inccc(limit_reg, sizeof(jchar));
2985     // annul LDUH if branch is not taken to prevent access past end of string
2986     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2987     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2988 
2989     // If strings are equal up to min length, return the length difference.
2990     __ mov(O7, result_reg);
2991 
2992     // Otherwise, return the difference between the first mismatched chars.
2993     __ bind(Ldone);
2994   %}
2995 
2996 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2997     Label Lchar, Lchar_loop, Ldone;
2998     MacroAssembler _masm(&cbuf);
2999 
3000     Register   str1_reg = reg_to_register_object($str1$$reg);
3001     Register   str2_reg = reg_to_register_object($str2$$reg);
3002     Register    cnt_reg = reg_to_register_object($cnt$$reg);
3003     Register   tmp1_reg = O7;
3004     Register result_reg = reg_to_register_object($result$$reg);
3005 
3006     assert(result_reg != str1_reg &&
3007            result_reg != str2_reg &&
3008            result_reg !=  cnt_reg &&
3009            result_reg != tmp1_reg ,
3010            "need different registers");
3011 
3012     __ cmp(str1_reg, str2_reg); //same char[] ?
3013     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3014     __ delayed()->add(G0, 1, result_reg);
3015 
3016     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
3017     __ delayed()->add(G0, 1, result_reg); // count == 0
3018 
3019     //rename registers
3020     Register limit_reg =    cnt_reg;
3021     Register  chr1_reg = result_reg;
3022     Register  chr2_reg =   tmp1_reg;
3023 
3024     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
3025     __ signx(limit_reg);
3026 
3027     //check for alignment and position the pointers to the ends
3028     __ or3(str1_reg, str2_reg, chr1_reg);
3029     __ andcc(chr1_reg, 0x3, chr1_reg);
3030     // notZero means at least one not 4-byte aligned.
3031     // We could optimize the case when both arrays are not aligned
3032     // but it is not frequent case and it requires additional checks.
3033     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
3034     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
3035 
3036     // Compare char[] arrays aligned to 4 bytes.
3037     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3038                           chr1_reg, chr2_reg, Ldone);
3039     __ ba(Ldone);
3040     __ delayed()->add(G0, 1, result_reg);
3041 
3042     // char by char compare
3043     __ bind(Lchar);
3044     __ add(str1_reg, limit_reg, str1_reg);
3045     __ add(str2_reg, limit_reg, str2_reg);
3046     __ neg(limit_reg); //negate count
3047 
3048     __ lduh(str1_reg, limit_reg, chr1_reg);
3049     // Lchar_loop
3050     __ bind(Lchar_loop);
3051     __ lduh(str2_reg, limit_reg, chr2_reg);
3052     __ cmp(chr1_reg, chr2_reg);
3053     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3054     __ delayed()->mov(G0, result_reg); //not equal
3055     __ inccc(limit_reg, sizeof(jchar));
3056     // annul LDUH if branch is not taken to prevent access past end of string
3057     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3058     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3059 
3060     __ add(G0, 1, result_reg);  //equal
3061 
3062     __ bind(Ldone);
3063   %}
3064 
3065 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3066     Label Lvector, Ldone, Lloop;
3067     MacroAssembler _masm(&cbuf);
3068 
3069     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3070     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3071     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3072     Register   tmp2_reg = O7;
3073     Register result_reg = reg_to_register_object($result$$reg);
3074 
3075     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3076     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3077 
3078     // return true if the same array
3079     __ cmp(ary1_reg, ary2_reg);
3080     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3081     __ delayed()->add(G0, 1, result_reg); // equal
3082 
3083     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3084     __ delayed()->mov(G0, result_reg);    // not equal
3085 
3086     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3087     __ delayed()->mov(G0, result_reg);    // not equal
3088 
3089     //load the lengths of arrays
3090     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3091     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3092 
3093     // return false if the two arrays are not equal length
3094     __ cmp(tmp1_reg, tmp2_reg);
3095     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3096     __ delayed()->mov(G0, result_reg);     // not equal
3097 
3098     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3099     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3100 
3101     // load array addresses
3102     __ add(ary1_reg, base_offset, ary1_reg);
3103     __ add(ary2_reg, base_offset, ary2_reg);
3104 
3105     // renaming registers
3106     Register chr1_reg  =  result_reg; // for characters in ary1
3107     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3108     Register limit_reg =  tmp1_reg;   // length
3109 
3110     // set byte count
3111     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3112 
3113     // Compare char[] arrays aligned to 4 bytes.
3114     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3115                           chr1_reg, chr2_reg, Ldone);
3116     __ add(G0, 1, result_reg); // equals
3117 
3118     __ bind(Ldone);
3119   %}
3120 
3121   enc_class enc_rethrow() %{
3122     cbuf.set_insts_mark();
3123     Register temp_reg = G3;
3124     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3125     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3126     MacroAssembler _masm(&cbuf);
3127 #ifdef ASSERT
3128     __ save_frame(0);
3129     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3130     __ sethi(last_rethrow_addrlit, L1);
3131     Address addr(L1, last_rethrow_addrlit.low10());
3132     __ rdpc(L2);
3133     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3134     __ st_ptr(L2, addr);
3135     __ restore();
3136 #endif
3137     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3138     __ delayed()->nop();
3139   %}
3140 
3141   enc_class emit_mem_nop() %{
3142     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3143     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3144   %}
3145 
3146   enc_class emit_fadd_nop() %{
3147     // Generates the instruction FMOVS f31,f31
3148     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3149   %}
3150 
3151   enc_class emit_br_nop() %{
3152     // Generates the instruction BPN,PN .
3153     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3154   %}
3155 
3156   enc_class enc_membar_acquire %{
3157     MacroAssembler _masm(&cbuf);
3158     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3159   %}
3160 
3161   enc_class enc_membar_release %{
3162     MacroAssembler _masm(&cbuf);
3163     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3164   %}
3165 
3166   enc_class enc_membar_volatile %{
3167     MacroAssembler _masm(&cbuf);
3168     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3169   %}
3170 
3171 %}
3172 
3173 //----------FRAME--------------------------------------------------------------
3174 // Definition of frame structure and management information.
3175 //
3176 //  S T A C K   L A Y O U T    Allocators stack-slot number
3177 //                             |   (to get allocators register number
3178 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3179 //  r   CALLER     |        |
3180 //  o     |        +--------+      pad to even-align allocators stack-slot
3181 //  w     V        |  pad0  |        numbers; owned by CALLER
3182 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3183 //  h     ^        |   in   |  5
3184 //        |        |  args  |  4   Holes in incoming args owned by SELF
3185 //  |     |        |        |  3
3186 //  |     |        +--------+
3187 //  V     |        | old out|      Empty on Intel, window on Sparc
3188 //        |    old |preserve|      Must be even aligned.
3189 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3190 //        |        |   in   |  3   area for Intel ret address
3191 //     Owned by    |preserve|      Empty on Sparc.
3192 //       SELF      +--------+
3193 //        |        |  pad2  |  2   pad to align old SP
3194 //        |        +--------+  1
3195 //        |        | locks  |  0
3196 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3197 //        |        |  pad1  | 11   pad to align new SP
3198 //        |        +--------+
3199 //        |        |        | 10
3200 //        |        | spills |  9   spills
3201 //        V        |        |  8   (pad0 slot for callee)
3202 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3203 //        ^        |  out   |  7
3204 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3205 //     Owned by    +--------+
3206 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3207 //        |    new |preserve|      Must be even-aligned.
3208 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3209 //        |        |        |
3210 //
3211 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3212 //         known from SELF's arguments and the Java calling convention.
3213 //         Region 6-7 is determined per call site.
3214 // Note 2: If the calling convention leaves holes in the incoming argument
3215 //         area, those holes are owned by SELF.  Holes in the outgoing area
3216 //         are owned by the CALLEE.  Holes should not be nessecary in the
3217 //         incoming area, as the Java calling convention is completely under
3218 //         the control of the AD file.  Doubles can be sorted and packed to
3219 //         avoid holes.  Holes in the outgoing arguments may be necessary for
3220 //         varargs C calling conventions.
3221 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3222 //         even aligned with pad0 as needed.
3223 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3224 //         region 6-11 is even aligned; it may be padded out more so that
3225 //         the region from SP to FP meets the minimum stack alignment.
3226 
3227 frame %{
3228   // What direction does stack grow in (assumed to be same for native & Java)
3229   stack_direction(TOWARDS_LOW);
3230 
3231   // These two registers define part of the calling convention
3232   // between compiled code and the interpreter.
3233   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3234   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3235 
3236   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3237   cisc_spilling_operand_name(indOffset);
3238 
3239   // Number of stack slots consumed by a Monitor enter
3240 #ifdef _LP64
3241   sync_stack_slots(2);
3242 #else
3243   sync_stack_slots(1);
3244 #endif
3245 
3246   // Compiled code's Frame Pointer
3247   frame_pointer(R_SP);
3248 
3249   // Stack alignment requirement
3250   stack_alignment(StackAlignmentInBytes);
3251   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3252   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3253 
3254   // Number of stack slots between incoming argument block and the start of
3255   // a new frame.  The PROLOG must add this many slots to the stack.  The
3256   // EPILOG must remove this many slots.
3257   in_preserve_stack_slots(0);
3258 
3259   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3260   // for calls to C.  Supports the var-args backing area for register parms.
3261   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3262 #ifdef _LP64
3263   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3264   varargs_C_out_slots_killed(12);
3265 #else
3266   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3267   varargs_C_out_slots_killed( 7);
3268 #endif
3269 
3270   // The after-PROLOG location of the return address.  Location of
3271   // return address specifies a type (REG or STACK) and a number
3272   // representing the register number (i.e. - use a register name) or
3273   // stack slot.
3274   return_addr(REG R_I7);          // Ret Addr is in register I7
3275 
3276   // Body of function which returns an OptoRegs array locating
3277   // arguments either in registers or in stack slots for calling
3278   // java
3279   calling_convention %{
3280     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3281 
3282   %}
3283 
3284   // Body of function which returns an OptoRegs array locating
3285   // arguments either in registers or in stack slots for calling
3286   // C.
3287   c_calling_convention %{
3288     // This is obviously always outgoing
3289     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3290   %}
3291 
3292   // Location of native (C/C++) and interpreter return values.  This is specified to
3293   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3294   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3295   // to and from the register pairs is done by the appropriate call and epilog
3296   // opcodes.  This simplifies the register allocator.
3297   c_return_value %{
3298     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3299 #ifdef     _LP64
3300     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3301     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3302     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3303     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3304 #else  // !_LP64
3305     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3306     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3307     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3308     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3309 #endif
3310     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3311                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3312   %}
3313 
3314   // Location of compiled Java return values.  Same as C
3315   return_value %{
3316     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3317 #ifdef     _LP64
3318     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3319     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3320     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3321     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3322 #else  // !_LP64
3323     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3324     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3325     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3326     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3327 #endif
3328     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3329                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3330   %}
3331 
3332 %}
3333 
3334 
3335 //----------ATTRIBUTES---------------------------------------------------------
3336 //----------Operand Attributes-------------------------------------------------
3337 op_attrib op_cost(1);          // Required cost attribute
3338 
3339 //----------Instruction Attributes---------------------------------------------
3340 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3341 ins_attrib ins_size(32);           // Required size attribute (in bits)
3342 
3343 // avoid_back_to_back attribute is an expression that must return
3344 // one of the following values defined in MachNode:
3345 // AVOID_NONE   - instruction can be placed anywhere
3346 // AVOID_BEFORE - instruction cannot be placed after an
3347 //                instruction with MachNode::AVOID_AFTER
3348 // AVOID_AFTER  - the next instruction cannot be the one 
3349 //                with MachNode::AVOID_BEFORE
3350 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at 
3351 //                          the same time                                
3352 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
3353 
3354 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3355                                    // non-matching short branch variant of some
3356                                                             // long branch?
3357 
3358 //----------OPERANDS-----------------------------------------------------------
3359 // Operand definitions must precede instruction definitions for correct parsing
3360 // in the ADLC because operands constitute user defined types which are used in
3361 // instruction definitions.
3362 
3363 //----------Simple Operands----------------------------------------------------
3364 // Immediate Operands
3365 // Integer Immediate: 32-bit
3366 operand immI() %{
3367   match(ConI);
3368 
3369   op_cost(0);
3370   // formats are generated automatically for constants and base registers
3371   format %{ %}
3372   interface(CONST_INTER);
3373 %}
3374 
3375 // Integer Immediate: 8-bit
3376 operand immI8() %{
3377   predicate(Assembler::is_simm8(n->get_int()));
3378   match(ConI);
3379   op_cost(0);
3380   format %{ %}
3381   interface(CONST_INTER);
3382 %}
3383 
3384 // Integer Immediate: 13-bit
3385 operand immI13() %{
3386   predicate(Assembler::is_simm13(n->get_int()));
3387   match(ConI);
3388   op_cost(0);
3389 
3390   format %{ %}
3391   interface(CONST_INTER);
3392 %}
3393 
3394 // Integer Immediate: 13-bit minus 7
3395 operand immI13m7() %{
3396   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3397   match(ConI);
3398   op_cost(0);
3399 
3400   format %{ %}
3401   interface(CONST_INTER);
3402 %}
3403 
3404 // Integer Immediate: 16-bit
3405 operand immI16() %{
3406   predicate(Assembler::is_simm16(n->get_int()));
3407   match(ConI);
3408   op_cost(0);
3409   format %{ %}
3410   interface(CONST_INTER);
3411 %}
3412 
3413 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3414 operand immU12() %{
3415   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3416   match(ConI);
3417   op_cost(0);
3418 
3419   format %{ %}
3420   interface(CONST_INTER);
3421 %}
3422 
3423 // Integer Immediate: 6-bit
3424 operand immU6() %{
3425   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3426   match(ConI);
3427   op_cost(0);
3428   format %{ %}
3429   interface(CONST_INTER);
3430 %}
3431 
3432 // Integer Immediate: 11-bit
3433 operand immI11() %{
3434   predicate(Assembler::is_simm11(n->get_int()));
3435   match(ConI);
3436   op_cost(0);
3437   format %{ %}
3438   interface(CONST_INTER);
3439 %}
3440 
3441 // Integer Immediate: 5-bit
3442 operand immI5() %{
3443   predicate(Assembler::is_simm5(n->get_int()));
3444   match(ConI);
3445   op_cost(0);
3446   format %{ %}
3447   interface(CONST_INTER);
3448 %}
3449 
3450 // Int Immediate non-negative
3451 operand immU31()
3452 %{
3453   predicate(n->get_int() >= 0);
3454   match(ConI);
3455 
3456   op_cost(0);
3457   format %{ %}
3458   interface(CONST_INTER);
3459 %}
3460 
3461 // Integer Immediate: 0-bit
3462 operand immI0() %{
3463   predicate(n->get_int() == 0);
3464   match(ConI);
3465   op_cost(0);
3466 
3467   format %{ %}
3468   interface(CONST_INTER);
3469 %}
3470 
3471 // Integer Immediate: the value 10
3472 operand immI10() %{
3473   predicate(n->get_int() == 10);
3474   match(ConI);
3475   op_cost(0);
3476 
3477   format %{ %}
3478   interface(CONST_INTER);
3479 %}
3480 
3481 // Integer Immediate: the values 0-31
3482 operand immU5() %{
3483   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3484   match(ConI);
3485   op_cost(0);
3486 
3487   format %{ %}
3488   interface(CONST_INTER);
3489 %}
3490 
3491 // Integer Immediate: the values 1-31
3492 operand immI_1_31() %{
3493   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3494   match(ConI);
3495   op_cost(0);
3496 
3497   format %{ %}
3498   interface(CONST_INTER);
3499 %}
3500 
3501 // Integer Immediate: the values 32-63
3502 operand immI_32_63() %{
3503   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3504   match(ConI);
3505   op_cost(0);
3506 
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 // Immediates for special shifts (sign extend)
3512 
3513 // Integer Immediate: the value 16
3514 operand immI_16() %{
3515   predicate(n->get_int() == 16);
3516   match(ConI);
3517   op_cost(0);
3518 
3519   format %{ %}
3520   interface(CONST_INTER);
3521 %}
3522 
3523 // Integer Immediate: the value 24
3524 operand immI_24() %{
3525   predicate(n->get_int() == 24);
3526   match(ConI);
3527   op_cost(0);
3528 
3529   format %{ %}
3530   interface(CONST_INTER);
3531 %}
3532 
3533 // Integer Immediate: the value 255
3534 operand immI_255() %{
3535   predicate( n->get_int() == 255 );
3536   match(ConI);
3537   op_cost(0);
3538 
3539   format %{ %}
3540   interface(CONST_INTER);
3541 %}
3542 
3543 // Integer Immediate: the value 65535
3544 operand immI_65535() %{
3545   predicate(n->get_int() == 65535);
3546   match(ConI);
3547   op_cost(0);
3548 
3549   format %{ %}
3550   interface(CONST_INTER);
3551 %}
3552 
3553 // Long Immediate: the value FF
3554 operand immL_FF() %{
3555   predicate( n->get_long() == 0xFFL );
3556   match(ConL);
3557   op_cost(0);
3558 
3559   format %{ %}
3560   interface(CONST_INTER);
3561 %}
3562 
3563 // Long Immediate: the value FFFF
3564 operand immL_FFFF() %{
3565   predicate( n->get_long() == 0xFFFFL );
3566   match(ConL);
3567   op_cost(0);
3568 
3569   format %{ %}
3570   interface(CONST_INTER);
3571 %}
3572 
3573 // Pointer Immediate: 32 or 64-bit
3574 operand immP() %{
3575   match(ConP);
3576 
3577   op_cost(5);
3578   // formats are generated automatically for constants and base registers
3579   format %{ %}
3580   interface(CONST_INTER);
3581 %}
3582 
3583 #ifdef _LP64
3584 // Pointer Immediate: 64-bit
3585 operand immP_set() %{
3586   predicate(!VM_Version::is_niagara_plus());
3587   match(ConP);
3588 
3589   op_cost(5);
3590   // formats are generated automatically for constants and base registers
3591   format %{ %}
3592   interface(CONST_INTER);
3593 %}
3594 
3595 // Pointer Immediate: 64-bit
3596 // From Niagara2 processors on a load should be better than materializing.
3597 operand immP_load() %{
3598   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3599   match(ConP);
3600 
3601   op_cost(5);
3602   // formats are generated automatically for constants and base registers
3603   format %{ %}
3604   interface(CONST_INTER);
3605 %}
3606 
3607 // Pointer Immediate: 64-bit
3608 operand immP_no_oop_cheap() %{
3609   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3610   match(ConP);
3611 
3612   op_cost(5);
3613   // formats are generated automatically for constants and base registers
3614   format %{ %}
3615   interface(CONST_INTER);
3616 %}
3617 #endif
3618 
3619 operand immP13() %{
3620   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3621   match(ConP);
3622   op_cost(0);
3623 
3624   format %{ %}
3625   interface(CONST_INTER);
3626 %}
3627 
3628 operand immP0() %{
3629   predicate(n->get_ptr() == 0);
3630   match(ConP);
3631   op_cost(0);
3632 
3633   format %{ %}
3634   interface(CONST_INTER);
3635 %}
3636 
3637 operand immP_poll() %{
3638   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3639   match(ConP);
3640 
3641   // formats are generated automatically for constants and base registers
3642   format %{ %}
3643   interface(CONST_INTER);
3644 %}
3645 
3646 // Pointer Immediate
3647 operand immN()
3648 %{
3649   match(ConN);
3650 
3651   op_cost(10);
3652   format %{ %}
3653   interface(CONST_INTER);
3654 %}
3655 
3656 operand immNKlass()
3657 %{
3658   match(ConNKlass);
3659 
3660   op_cost(10);
3661   format %{ %}
3662   interface(CONST_INTER);
3663 %}
3664 
3665 // NULL Pointer Immediate
3666 operand immN0()
3667 %{
3668   predicate(n->get_narrowcon() == 0);
3669   match(ConN);
3670 
3671   op_cost(0);
3672   format %{ %}
3673   interface(CONST_INTER);
3674 %}
3675 
3676 operand immL() %{
3677   match(ConL);
3678   op_cost(40);
3679   // formats are generated automatically for constants and base registers
3680   format %{ %}
3681   interface(CONST_INTER);
3682 %}
3683 
3684 operand immL0() %{
3685   predicate(n->get_long() == 0L);
3686   match(ConL);
3687   op_cost(0);
3688   // formats are generated automatically for constants and base registers
3689   format %{ %}
3690   interface(CONST_INTER);
3691 %}
3692 
3693 // Integer Immediate: 5-bit
3694 operand immL5() %{
3695   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3696   match(ConL);
3697   op_cost(0);
3698   format %{ %}
3699   interface(CONST_INTER);
3700 %}
3701 
3702 // Long Immediate: 13-bit
3703 operand immL13() %{
3704   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3705   match(ConL);
3706   op_cost(0);
3707 
3708   format %{ %}
3709   interface(CONST_INTER);
3710 %}
3711 
3712 // Long Immediate: 13-bit minus 7
3713 operand immL13m7() %{
3714   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3715   match(ConL);
3716   op_cost(0);
3717 
3718   format %{ %}
3719   interface(CONST_INTER);
3720 %}
3721 
3722 // Long Immediate: low 32-bit mask
3723 operand immL_32bits() %{
3724   predicate(n->get_long() == 0xFFFFFFFFL);
3725   match(ConL);
3726   op_cost(0);
3727 
3728   format %{ %}
3729   interface(CONST_INTER);
3730 %}
3731 
3732 // Long Immediate: cheap (materialize in <= 3 instructions)
3733 operand immL_cheap() %{
3734   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3735   match(ConL);
3736   op_cost(0);
3737 
3738   format %{ %}
3739   interface(CONST_INTER);
3740 %}
3741 
3742 // Long Immediate: expensive (materialize in > 3 instructions)
3743 operand immL_expensive() %{
3744   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3745   match(ConL);
3746   op_cost(0);
3747 
3748   format %{ %}
3749   interface(CONST_INTER);
3750 %}
3751 
3752 // Double Immediate
3753 operand immD() %{
3754   match(ConD);
3755 
3756   op_cost(40);
3757   format %{ %}
3758   interface(CONST_INTER);
3759 %}
3760 
3761 // Double Immediate: +0.0d
3762 operand immD0() %{
3763   predicate(jlong_cast(n->getd()) == 0);
3764   match(ConD);
3765 
3766   op_cost(0);
3767   format %{ %}
3768   interface(CONST_INTER);
3769 %}
3770 
3771 // Float Immediate
3772 operand immF() %{
3773   match(ConF);
3774 
3775   op_cost(20);
3776   format %{ %}
3777   interface(CONST_INTER);
3778 %}
3779 
3780 // Float Immediate: +0.0f
3781 operand immF0() %{
3782   predicate(jint_cast(n->getf()) == 0);
3783   match(ConF);
3784 
3785   op_cost(0);
3786   format %{ %}
3787   interface(CONST_INTER);
3788 %}
3789 
3790 // Integer Register Operands
3791 // Integer Register
3792 operand iRegI() %{
3793   constraint(ALLOC_IN_RC(int_reg));
3794   match(RegI);
3795 
3796   match(notemp_iRegI);
3797   match(g1RegI);
3798   match(o0RegI);
3799   match(iRegIsafe);
3800 
3801   format %{ %}
3802   interface(REG_INTER);
3803 %}
3804 
3805 operand notemp_iRegI() %{
3806   constraint(ALLOC_IN_RC(notemp_int_reg));
3807   match(RegI);
3808 
3809   match(o0RegI);
3810 
3811   format %{ %}
3812   interface(REG_INTER);
3813 %}
3814 
3815 operand o0RegI() %{
3816   constraint(ALLOC_IN_RC(o0_regI));
3817   match(iRegI);
3818 
3819   format %{ %}
3820   interface(REG_INTER);
3821 %}
3822 
3823 // Pointer Register
3824 operand iRegP() %{
3825   constraint(ALLOC_IN_RC(ptr_reg));
3826   match(RegP);
3827 
3828   match(lock_ptr_RegP);
3829   match(g1RegP);
3830   match(g2RegP);
3831   match(g3RegP);
3832   match(g4RegP);
3833   match(i0RegP);
3834   match(o0RegP);
3835   match(o1RegP);
3836   match(l7RegP);
3837 
3838   format %{ %}
3839   interface(REG_INTER);
3840 %}
3841 
3842 operand sp_ptr_RegP() %{
3843   constraint(ALLOC_IN_RC(sp_ptr_reg));
3844   match(RegP);
3845   match(iRegP);
3846 
3847   format %{ %}
3848   interface(REG_INTER);
3849 %}
3850 
3851 operand lock_ptr_RegP() %{
3852   constraint(ALLOC_IN_RC(lock_ptr_reg));
3853   match(RegP);
3854   match(i0RegP);
3855   match(o0RegP);
3856   match(o1RegP);
3857   match(l7RegP);
3858 
3859   format %{ %}
3860   interface(REG_INTER);
3861 %}
3862 
3863 operand g1RegP() %{
3864   constraint(ALLOC_IN_RC(g1_regP));
3865   match(iRegP);
3866 
3867   format %{ %}
3868   interface(REG_INTER);
3869 %}
3870 
3871 operand g2RegP() %{
3872   constraint(ALLOC_IN_RC(g2_regP));
3873   match(iRegP);
3874 
3875   format %{ %}
3876   interface(REG_INTER);
3877 %}
3878 
3879 operand g3RegP() %{
3880   constraint(ALLOC_IN_RC(g3_regP));
3881   match(iRegP);
3882 
3883   format %{ %}
3884   interface(REG_INTER);
3885 %}
3886 
3887 operand g1RegI() %{
3888   constraint(ALLOC_IN_RC(g1_regI));
3889   match(iRegI);
3890 
3891   format %{ %}
3892   interface(REG_INTER);
3893 %}
3894 
3895 operand g3RegI() %{
3896   constraint(ALLOC_IN_RC(g3_regI));
3897   match(iRegI);
3898 
3899   format %{ %}
3900   interface(REG_INTER);
3901 %}
3902 
3903 operand g4RegI() %{
3904   constraint(ALLOC_IN_RC(g4_regI));
3905   match(iRegI);
3906 
3907   format %{ %}
3908   interface(REG_INTER);
3909 %}
3910 
3911 operand g4RegP() %{
3912   constraint(ALLOC_IN_RC(g4_regP));
3913   match(iRegP);
3914 
3915   format %{ %}
3916   interface(REG_INTER);
3917 %}
3918 
3919 operand i0RegP() %{
3920   constraint(ALLOC_IN_RC(i0_regP));
3921   match(iRegP);
3922 
3923   format %{ %}
3924   interface(REG_INTER);
3925 %}
3926 
3927 operand o0RegP() %{
3928   constraint(ALLOC_IN_RC(o0_regP));
3929   match(iRegP);
3930 
3931   format %{ %}
3932   interface(REG_INTER);
3933 %}
3934 
3935 operand o1RegP() %{
3936   constraint(ALLOC_IN_RC(o1_regP));
3937   match(iRegP);
3938 
3939   format %{ %}
3940   interface(REG_INTER);
3941 %}
3942 
3943 operand o2RegP() %{
3944   constraint(ALLOC_IN_RC(o2_regP));
3945   match(iRegP);
3946 
3947   format %{ %}
3948   interface(REG_INTER);
3949 %}
3950 
3951 operand o7RegP() %{
3952   constraint(ALLOC_IN_RC(o7_regP));
3953   match(iRegP);
3954 
3955   format %{ %}
3956   interface(REG_INTER);
3957 %}
3958 
3959 operand l7RegP() %{
3960   constraint(ALLOC_IN_RC(l7_regP));
3961   match(iRegP);
3962 
3963   format %{ %}
3964   interface(REG_INTER);
3965 %}
3966 
3967 operand o7RegI() %{
3968   constraint(ALLOC_IN_RC(o7_regI));
3969   match(iRegI);
3970 
3971   format %{ %}
3972   interface(REG_INTER);
3973 %}
3974 
3975 operand iRegN() %{
3976   constraint(ALLOC_IN_RC(int_reg));
3977   match(RegN);
3978 
3979   format %{ %}
3980   interface(REG_INTER);
3981 %}
3982 
3983 // Long Register
3984 operand iRegL() %{
3985   constraint(ALLOC_IN_RC(long_reg));
3986   match(RegL);
3987 
3988   format %{ %}
3989   interface(REG_INTER);
3990 %}
3991 
3992 operand o2RegL() %{
3993   constraint(ALLOC_IN_RC(o2_regL));
3994   match(iRegL);
3995 
3996   format %{ %}
3997   interface(REG_INTER);
3998 %}
3999 
4000 operand o7RegL() %{
4001   constraint(ALLOC_IN_RC(o7_regL));
4002   match(iRegL);
4003 
4004   format %{ %}
4005   interface(REG_INTER);
4006 %}
4007 
4008 operand g1RegL() %{
4009   constraint(ALLOC_IN_RC(g1_regL));
4010   match(iRegL);
4011 
4012   format %{ %}
4013   interface(REG_INTER);
4014 %}
4015 
4016 operand g3RegL() %{
4017   constraint(ALLOC_IN_RC(g3_regL));
4018   match(iRegL);
4019 
4020   format %{ %}
4021   interface(REG_INTER);
4022 %}
4023 
4024 // Int Register safe
4025 // This is 64bit safe
4026 operand iRegIsafe() %{
4027   constraint(ALLOC_IN_RC(long_reg));
4028 
4029   match(iRegI);
4030 
4031   format %{ %}
4032   interface(REG_INTER);
4033 %}
4034 
4035 // Condition Code Flag Register
4036 operand flagsReg() %{
4037   constraint(ALLOC_IN_RC(int_flags));
4038   match(RegFlags);
4039 
4040   format %{ "ccr" %} // both ICC and XCC
4041   interface(REG_INTER);
4042 %}
4043 
4044 // Condition Code Register, unsigned comparisons.
4045 operand flagsRegU() %{
4046   constraint(ALLOC_IN_RC(int_flags));
4047   match(RegFlags);
4048 
4049   format %{ "icc_U" %}
4050   interface(REG_INTER);
4051 %}
4052 
4053 // Condition Code Register, pointer comparisons.
4054 operand flagsRegP() %{
4055   constraint(ALLOC_IN_RC(int_flags));
4056   match(RegFlags);
4057 
4058 #ifdef _LP64
4059   format %{ "xcc_P" %}
4060 #else
4061   format %{ "icc_P" %}
4062 #endif
4063   interface(REG_INTER);
4064 %}
4065 
4066 // Condition Code Register, long comparisons.
4067 operand flagsRegL() %{
4068   constraint(ALLOC_IN_RC(int_flags));
4069   match(RegFlags);
4070 
4071   format %{ "xcc_L" %}
4072   interface(REG_INTER);
4073 %}
4074 
4075 // Condition Code Register, floating comparisons, unordered same as "less".
4076 operand flagsRegF() %{
4077   constraint(ALLOC_IN_RC(float_flags));
4078   match(RegFlags);
4079   match(flagsRegF0);
4080 
4081   format %{ %}
4082   interface(REG_INTER);
4083 %}
4084 
4085 operand flagsRegF0() %{
4086   constraint(ALLOC_IN_RC(float_flag0));
4087   match(RegFlags);
4088 
4089   format %{ %}
4090   interface(REG_INTER);
4091 %}
4092 
4093 
4094 // Condition Code Flag Register used by long compare
4095 operand flagsReg_long_LTGE() %{
4096   constraint(ALLOC_IN_RC(int_flags));
4097   match(RegFlags);
4098   format %{ "icc_LTGE" %}
4099   interface(REG_INTER);
4100 %}
4101 operand flagsReg_long_EQNE() %{
4102   constraint(ALLOC_IN_RC(int_flags));
4103   match(RegFlags);
4104   format %{ "icc_EQNE" %}
4105   interface(REG_INTER);
4106 %}
4107 operand flagsReg_long_LEGT() %{
4108   constraint(ALLOC_IN_RC(int_flags));
4109   match(RegFlags);
4110   format %{ "icc_LEGT" %}
4111   interface(REG_INTER);
4112 %}
4113 
4114 
4115 operand regD() %{
4116   constraint(ALLOC_IN_RC(dflt_reg));
4117   match(RegD);
4118 
4119   match(regD_low);
4120 
4121   format %{ %}
4122   interface(REG_INTER);
4123 %}
4124 
4125 operand regF() %{
4126   constraint(ALLOC_IN_RC(sflt_reg));
4127   match(RegF);
4128 
4129   format %{ %}
4130   interface(REG_INTER);
4131 %}
4132 
4133 operand regD_low() %{
4134   constraint(ALLOC_IN_RC(dflt_low_reg));
4135   match(regD);
4136 
4137   format %{ %}
4138   interface(REG_INTER);
4139 %}
4140 
4141 // Special Registers
4142 
4143 // Method Register
4144 operand inline_cache_regP(iRegP reg) %{
4145   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4146   match(reg);
4147   format %{ %}
4148   interface(REG_INTER);
4149 %}
4150 
4151 operand interpreter_method_oop_regP(iRegP reg) %{
4152   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4153   match(reg);
4154   format %{ %}
4155   interface(REG_INTER);
4156 %}
4157 
4158 
4159 //----------Complex Operands---------------------------------------------------
4160 // Indirect Memory Reference
4161 operand indirect(sp_ptr_RegP reg) %{
4162   constraint(ALLOC_IN_RC(sp_ptr_reg));
4163   match(reg);
4164 
4165   op_cost(100);
4166   format %{ "[$reg]" %}
4167   interface(MEMORY_INTER) %{
4168     base($reg);
4169     index(0x0);
4170     scale(0x0);
4171     disp(0x0);
4172   %}
4173 %}
4174 
4175 // Indirect with simm13 Offset
4176 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4177   constraint(ALLOC_IN_RC(sp_ptr_reg));
4178   match(AddP reg offset);
4179 
4180   op_cost(100);
4181   format %{ "[$reg + $offset]" %}
4182   interface(MEMORY_INTER) %{
4183     base($reg);
4184     index(0x0);
4185     scale(0x0);
4186     disp($offset);
4187   %}
4188 %}
4189 
4190 // Indirect with simm13 Offset minus 7
4191 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4192   constraint(ALLOC_IN_RC(sp_ptr_reg));
4193   match(AddP reg offset);
4194 
4195   op_cost(100);
4196   format %{ "[$reg + $offset]" %}
4197   interface(MEMORY_INTER) %{
4198     base($reg);
4199     index(0x0);
4200     scale(0x0);
4201     disp($offset);
4202   %}
4203 %}
4204 
4205 // Note:  Intel has a swapped version also, like this:
4206 //operand indOffsetX(iRegI reg, immP offset) %{
4207 //  constraint(ALLOC_IN_RC(int_reg));
4208 //  match(AddP offset reg);
4209 //
4210 //  op_cost(100);
4211 //  format %{ "[$reg + $offset]" %}
4212 //  interface(MEMORY_INTER) %{
4213 //    base($reg);
4214 //    index(0x0);
4215 //    scale(0x0);
4216 //    disp($offset);
4217 //  %}
4218 //%}
4219 //// However, it doesn't make sense for SPARC, since
4220 // we have no particularly good way to embed oops in
4221 // single instructions.
4222 
4223 // Indirect with Register Index
4224 operand indIndex(iRegP addr, iRegX index) %{
4225   constraint(ALLOC_IN_RC(ptr_reg));
4226   match(AddP addr index);
4227 
4228   op_cost(100);
4229   format %{ "[$addr + $index]" %}
4230   interface(MEMORY_INTER) %{
4231     base($addr);
4232     index($index);
4233     scale(0x0);
4234     disp(0x0);
4235   %}
4236 %}
4237 
4238 //----------Special Memory Operands--------------------------------------------
4239 // Stack Slot Operand - This operand is used for loading and storing temporary
4240 //                      values on the stack where a match requires a value to
4241 //                      flow through memory.
4242 operand stackSlotI(sRegI reg) %{
4243   constraint(ALLOC_IN_RC(stack_slots));
4244   op_cost(100);
4245   //match(RegI);
4246   format %{ "[$reg]" %}
4247   interface(MEMORY_INTER) %{
4248     base(0xE);   // R_SP
4249     index(0x0);
4250     scale(0x0);
4251     disp($reg);  // Stack Offset
4252   %}
4253 %}
4254 
4255 operand stackSlotP(sRegP reg) %{
4256   constraint(ALLOC_IN_RC(stack_slots));
4257   op_cost(100);
4258   //match(RegP);
4259   format %{ "[$reg]" %}
4260   interface(MEMORY_INTER) %{
4261     base(0xE);   // R_SP
4262     index(0x0);
4263     scale(0x0);
4264     disp($reg);  // Stack Offset
4265   %}
4266 %}
4267 
4268 operand stackSlotF(sRegF reg) %{
4269   constraint(ALLOC_IN_RC(stack_slots));
4270   op_cost(100);
4271   //match(RegF);
4272   format %{ "[$reg]" %}
4273   interface(MEMORY_INTER) %{
4274     base(0xE);   // R_SP
4275     index(0x0);
4276     scale(0x0);
4277     disp($reg);  // Stack Offset
4278   %}
4279 %}
4280 operand stackSlotD(sRegD reg) %{
4281   constraint(ALLOC_IN_RC(stack_slots));
4282   op_cost(100);
4283   //match(RegD);
4284   format %{ "[$reg]" %}
4285   interface(MEMORY_INTER) %{
4286     base(0xE);   // R_SP
4287     index(0x0);
4288     scale(0x0);
4289     disp($reg);  // Stack Offset
4290   %}
4291 %}
4292 operand stackSlotL(sRegL reg) %{
4293   constraint(ALLOC_IN_RC(stack_slots));
4294   op_cost(100);
4295   //match(RegL);
4296   format %{ "[$reg]" %}
4297   interface(MEMORY_INTER) %{
4298     base(0xE);   // R_SP
4299     index(0x0);
4300     scale(0x0);
4301     disp($reg);  // Stack Offset
4302   %}
4303 %}
4304 
4305 // Operands for expressing Control Flow
4306 // NOTE:  Label is a predefined operand which should not be redefined in
4307 //        the AD file.  It is generically handled within the ADLC.
4308 
4309 //----------Conditional Branch Operands----------------------------------------
4310 // Comparison Op  - This is the operation of the comparison, and is limited to
4311 //                  the following set of codes:
4312 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4313 //
4314 // Other attributes of the comparison, such as unsignedness, are specified
4315 // by the comparison instruction that sets a condition code flags register.
4316 // That result is represented by a flags operand whose subtype is appropriate
4317 // to the unsignedness (etc.) of the comparison.
4318 //
4319 // Later, the instruction which matches both the Comparison Op (a Bool) and
4320 // the flags (produced by the Cmp) specifies the coding of the comparison op
4321 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4322 
4323 operand cmpOp() %{
4324   match(Bool);
4325 
4326   format %{ "" %}
4327   interface(COND_INTER) %{
4328     equal(0x1);
4329     not_equal(0x9);
4330     less(0x3);
4331     greater_equal(0xB);
4332     less_equal(0x2);
4333     greater(0xA);
4334     overflow(0x7);
4335     no_overflow(0xF);
4336   %}
4337 %}
4338 
4339 // Comparison Op, unsigned
4340 operand cmpOpU() %{
4341   match(Bool);
4342   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4343             n->as_Bool()->_test._test != BoolTest::no_overflow);
4344 
4345   format %{ "u" %}
4346   interface(COND_INTER) %{
4347     equal(0x1);
4348     not_equal(0x9);
4349     less(0x5);
4350     greater_equal(0xD);
4351     less_equal(0x4);
4352     greater(0xC);
4353     overflow(0x7);
4354     no_overflow(0xF);
4355   %}
4356 %}
4357 
4358 // Comparison Op, pointer (same as unsigned)
4359 operand cmpOpP() %{
4360   match(Bool);
4361   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4362             n->as_Bool()->_test._test != BoolTest::no_overflow);
4363 
4364   format %{ "p" %}
4365   interface(COND_INTER) %{
4366     equal(0x1);
4367     not_equal(0x9);
4368     less(0x5);
4369     greater_equal(0xD);
4370     less_equal(0x4);
4371     greater(0xC);
4372     overflow(0x7);
4373     no_overflow(0xF);
4374   %}
4375 %}
4376 
4377 // Comparison Op, branch-register encoding
4378 operand cmpOp_reg() %{
4379   match(Bool);
4380   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4381             n->as_Bool()->_test._test != BoolTest::no_overflow);
4382 
4383   format %{ "" %}
4384   interface(COND_INTER) %{
4385     equal        (0x1);
4386     not_equal    (0x5);
4387     less         (0x3);
4388     greater_equal(0x7);
4389     less_equal   (0x2);
4390     greater      (0x6);
4391     overflow(0x7); // not supported
4392     no_overflow(0xF); // not supported
4393   %}
4394 %}
4395 
4396 // Comparison Code, floating, unordered same as less
4397 operand cmpOpF() %{
4398   match(Bool);
4399   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4400             n->as_Bool()->_test._test != BoolTest::no_overflow);
4401 
4402   format %{ "fl" %}
4403   interface(COND_INTER) %{
4404     equal(0x9);
4405     not_equal(0x1);
4406     less(0x3);
4407     greater_equal(0xB);
4408     less_equal(0xE);
4409     greater(0x6);
4410 
4411     overflow(0x7); // not supported
4412     no_overflow(0xF); // not supported
4413   %}
4414 %}
4415 
4416 // Used by long compare
4417 operand cmpOp_commute() %{
4418   match(Bool);
4419   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4420             n->as_Bool()->_test._test != BoolTest::no_overflow);
4421 
4422   format %{ "" %}
4423   interface(COND_INTER) %{
4424     equal(0x1);
4425     not_equal(0x9);
4426     less(0xA);
4427     greater_equal(0x2);
4428     less_equal(0xB);
4429     greater(0x3);
4430     overflow(0x7);
4431     no_overflow(0xF);
4432   %}
4433 %}
4434 
4435 //----------OPERAND CLASSES----------------------------------------------------
4436 // Operand Classes are groups of operands that are used to simplify
4437 // instruction definitions by not requiring the AD writer to specify separate
4438 // instructions for every form of operand when the instruction accepts
4439 // multiple operand types with the same basic encoding and format.  The classic
4440 // case of this is memory operands.
4441 opclass memory( indirect, indOffset13, indIndex );
4442 opclass indIndexMemory( indIndex );
4443 
4444 //----------PIPELINE-----------------------------------------------------------
4445 pipeline %{
4446 
4447 //----------ATTRIBUTES---------------------------------------------------------
4448 attributes %{
4449   fixed_size_instructions;           // Fixed size instructions
4450   branch_has_delay_slot;             // Branch has delay slot following
4451   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4452   instruction_unit_size = 4;         // An instruction is 4 bytes long
4453   instruction_fetch_unit_size = 16;  // The processor fetches one line
4454   instruction_fetch_units = 1;       // of 16 bytes
4455 
4456   // List of nop instructions
4457   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4458 %}
4459 
4460 //----------RESOURCES----------------------------------------------------------
4461 // Resources are the functional units available to the machine
4462 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4463 
4464 //----------PIPELINE DESCRIPTION-----------------------------------------------
4465 // Pipeline Description specifies the stages in the machine's pipeline
4466 
4467 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4468 
4469 //----------PIPELINE CLASSES---------------------------------------------------
4470 // Pipeline Classes describe the stages in which input and output are
4471 // referenced by the hardware pipeline.
4472 
4473 // Integer ALU reg-reg operation
4474 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4475     single_instruction;
4476     dst   : E(write);
4477     src1  : R(read);
4478     src2  : R(read);
4479     IALU  : R;
4480 %}
4481 
4482 // Integer ALU reg-reg long operation
4483 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4484     instruction_count(2);
4485     dst   : E(write);
4486     src1  : R(read);
4487     src2  : R(read);
4488     IALU  : R;
4489     IALU  : R;
4490 %}
4491 
4492 // Integer ALU reg-reg long dependent operation
4493 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4494     instruction_count(1); multiple_bundles;
4495     dst   : E(write);
4496     src1  : R(read);
4497     src2  : R(read);
4498     cr    : E(write);
4499     IALU  : R(2);
4500 %}
4501 
4502 // Integer ALU reg-imm operaion
4503 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4504     single_instruction;
4505     dst   : E(write);
4506     src1  : R(read);
4507     IALU  : R;
4508 %}
4509 
4510 // Integer ALU reg-reg operation with condition code
4511 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4512     single_instruction;
4513     dst   : E(write);
4514     cr    : E(write);
4515     src1  : R(read);
4516     src2  : R(read);
4517     IALU  : R;
4518 %}
4519 
4520 // Integer ALU reg-imm operation with condition code
4521 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4522     single_instruction;
4523     dst   : E(write);
4524     cr    : E(write);
4525     src1  : R(read);
4526     IALU  : R;
4527 %}
4528 
4529 // Integer ALU zero-reg operation
4530 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4531     single_instruction;
4532     dst   : E(write);
4533     src2  : R(read);
4534     IALU  : R;
4535 %}
4536 
4537 // Integer ALU zero-reg operation with condition code only
4538 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4539     single_instruction;
4540     cr    : E(write);
4541     src   : R(read);
4542     IALU  : R;
4543 %}
4544 
4545 // Integer ALU reg-reg operation with condition code only
4546 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4547     single_instruction;
4548     cr    : E(write);
4549     src1  : R(read);
4550     src2  : R(read);
4551     IALU  : R;
4552 %}
4553 
4554 // Integer ALU reg-imm operation with condition code only
4555 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4556     single_instruction;
4557     cr    : E(write);
4558     src1  : R(read);
4559     IALU  : R;
4560 %}
4561 
4562 // Integer ALU reg-reg-zero operation with condition code only
4563 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4564     single_instruction;
4565     cr    : E(write);
4566     src1  : R(read);
4567     src2  : R(read);
4568     IALU  : R;
4569 %}
4570 
4571 // Integer ALU reg-imm-zero operation with condition code only
4572 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4573     single_instruction;
4574     cr    : E(write);
4575     src1  : R(read);
4576     IALU  : R;
4577 %}
4578 
4579 // Integer ALU reg-reg operation with condition code, src1 modified
4580 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4581     single_instruction;
4582     cr    : E(write);
4583     src1  : E(write);
4584     src1  : R(read);
4585     src2  : R(read);
4586     IALU  : R;
4587 %}
4588 
4589 // Integer ALU reg-imm operation with condition code, src1 modified
4590 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4591     single_instruction;
4592     cr    : E(write);
4593     src1  : E(write);
4594     src1  : R(read);
4595     IALU  : R;
4596 %}
4597 
4598 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4599     multiple_bundles;
4600     dst   : E(write)+4;
4601     cr    : E(write);
4602     src1  : R(read);
4603     src2  : R(read);
4604     IALU  : R(3);
4605     BR    : R(2);
4606 %}
4607 
4608 // Integer ALU operation
4609 pipe_class ialu_none(iRegI dst) %{
4610     single_instruction;
4611     dst   : E(write);
4612     IALU  : R;
4613 %}
4614 
4615 // Integer ALU reg operation
4616 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4617     single_instruction; may_have_no_code;
4618     dst   : E(write);
4619     src   : R(read);
4620     IALU  : R;
4621 %}
4622 
4623 // Integer ALU reg conditional operation
4624 // This instruction has a 1 cycle stall, and cannot execute
4625 // in the same cycle as the instruction setting the condition
4626 // code. We kludge this by pretending to read the condition code
4627 // 1 cycle earlier, and by marking the functional units as busy
4628 // for 2 cycles with the result available 1 cycle later than
4629 // is really the case.
4630 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4631     single_instruction;
4632     op2_out : C(write);
4633     op1     : R(read);
4634     cr      : R(read);       // This is really E, with a 1 cycle stall
4635     BR      : R(2);
4636     MS      : R(2);
4637 %}
4638 
4639 #ifdef _LP64
4640 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4641     instruction_count(1); multiple_bundles;
4642     dst     : C(write)+1;
4643     src     : R(read)+1;
4644     IALU    : R(1);
4645     BR      : E(2);
4646     MS      : E(2);
4647 %}
4648 #endif
4649 
4650 // Integer ALU reg operation
4651 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4652     single_instruction; may_have_no_code;
4653     dst   : E(write);
4654     src   : R(read);
4655     IALU  : R;
4656 %}
4657 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4658     single_instruction; may_have_no_code;
4659     dst   : E(write);
4660     src   : R(read);
4661     IALU  : R;
4662 %}
4663 
4664 // Two integer ALU reg operations
4665 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4666     instruction_count(2);
4667     dst   : E(write);
4668     src   : R(read);
4669     A0    : R;
4670     A1    : R;
4671 %}
4672 
4673 // Two integer ALU reg operations
4674 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4675     instruction_count(2); may_have_no_code;
4676     dst   : E(write);
4677     src   : R(read);
4678     A0    : R;
4679     A1    : R;
4680 %}
4681 
4682 // Integer ALU imm operation
4683 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4684     single_instruction;
4685     dst   : E(write);
4686     IALU  : R;
4687 %}
4688 
4689 // Integer ALU reg-reg with carry operation
4690 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4691     single_instruction;
4692     dst   : E(write);
4693     src1  : R(read);
4694     src2  : R(read);
4695     IALU  : R;
4696 %}
4697 
4698 // Integer ALU cc operation
4699 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4700     single_instruction;
4701     dst   : E(write);
4702     cc    : R(read);
4703     IALU  : R;
4704 %}
4705 
4706 // Integer ALU cc / second IALU operation
4707 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4708     instruction_count(1); multiple_bundles;
4709     dst   : E(write)+1;
4710     src   : R(read);
4711     IALU  : R;
4712 %}
4713 
4714 // Integer ALU cc / second IALU operation
4715 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4716     instruction_count(1); multiple_bundles;
4717     dst   : E(write)+1;
4718     p     : R(read);
4719     q     : R(read);
4720     IALU  : R;
4721 %}
4722 
4723 // Integer ALU hi-lo-reg operation
4724 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4725     instruction_count(1); multiple_bundles;
4726     dst   : E(write)+1;
4727     IALU  : R(2);
4728 %}
4729 
4730 // Float ALU hi-lo-reg operation (with temp)
4731 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4732     instruction_count(1); multiple_bundles;
4733     dst   : E(write)+1;
4734     IALU  : R(2);
4735 %}
4736 
4737 // Long Constant
4738 pipe_class loadConL( iRegL dst, immL src ) %{
4739     instruction_count(2); multiple_bundles;
4740     dst   : E(write)+1;
4741     IALU  : R(2);
4742     IALU  : R(2);
4743 %}
4744 
4745 // Pointer Constant
4746 pipe_class loadConP( iRegP dst, immP src ) %{
4747     instruction_count(0); multiple_bundles;
4748     fixed_latency(6);
4749 %}
4750 
4751 // Polling Address
4752 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4753 #ifdef _LP64
4754     instruction_count(0); multiple_bundles;
4755     fixed_latency(6);
4756 #else
4757     dst   : E(write);
4758     IALU  : R;
4759 #endif
4760 %}
4761 
4762 // Long Constant small
4763 pipe_class loadConLlo( iRegL dst, immL src ) %{
4764     instruction_count(2);
4765     dst   : E(write);
4766     IALU  : R;
4767     IALU  : R;
4768 %}
4769 
4770 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4771 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4772     instruction_count(1); multiple_bundles;
4773     src   : R(read);
4774     dst   : M(write)+1;
4775     IALU  : R;
4776     MS    : E;
4777 %}
4778 
4779 // Integer ALU nop operation
4780 pipe_class ialu_nop() %{
4781     single_instruction;
4782     IALU  : R;
4783 %}
4784 
4785 // Integer ALU nop operation
4786 pipe_class ialu_nop_A0() %{
4787     single_instruction;
4788     A0    : R;
4789 %}
4790 
4791 // Integer ALU nop operation
4792 pipe_class ialu_nop_A1() %{
4793     single_instruction;
4794     A1    : R;
4795 %}
4796 
4797 // Integer Multiply reg-reg operation
4798 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4799     single_instruction;
4800     dst   : E(write);
4801     src1  : R(read);
4802     src2  : R(read);
4803     MS    : R(5);
4804 %}
4805 
4806 // Integer Multiply reg-imm operation
4807 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4808     single_instruction;
4809     dst   : E(write);
4810     src1  : R(read);
4811     MS    : R(5);
4812 %}
4813 
4814 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4815     single_instruction;
4816     dst   : E(write)+4;
4817     src1  : R(read);
4818     src2  : R(read);
4819     MS    : R(6);
4820 %}
4821 
4822 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4823     single_instruction;
4824     dst   : E(write)+4;
4825     src1  : R(read);
4826     MS    : R(6);
4827 %}
4828 
4829 // Integer Divide reg-reg
4830 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4831     instruction_count(1); multiple_bundles;
4832     dst   : E(write);
4833     temp  : E(write);
4834     src1  : R(read);
4835     src2  : R(read);
4836     temp  : R(read);
4837     MS    : R(38);
4838 %}
4839 
4840 // Integer Divide reg-imm
4841 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4842     instruction_count(1); multiple_bundles;
4843     dst   : E(write);
4844     temp  : E(write);
4845     src1  : R(read);
4846     temp  : R(read);
4847     MS    : R(38);
4848 %}
4849 
4850 // Long Divide
4851 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4852     dst  : E(write)+71;
4853     src1 : R(read);
4854     src2 : R(read)+1;
4855     MS   : R(70);
4856 %}
4857 
4858 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4859     dst  : E(write)+71;
4860     src1 : R(read);
4861     MS   : R(70);
4862 %}
4863 
4864 // Floating Point Add Float
4865 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4866     single_instruction;
4867     dst   : X(write);
4868     src1  : E(read);
4869     src2  : E(read);
4870     FA    : R;
4871 %}
4872 
4873 // Floating Point Add Double
4874 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4875     single_instruction;
4876     dst   : X(write);
4877     src1  : E(read);
4878     src2  : E(read);
4879     FA    : R;
4880 %}
4881 
4882 // Floating Point Conditional Move based on integer flags
4883 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4884     single_instruction;
4885     dst   : X(write);
4886     src   : E(read);
4887     cr    : R(read);
4888     FA    : R(2);
4889     BR    : R(2);
4890 %}
4891 
4892 // Floating Point Conditional Move based on integer flags
4893 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4894     single_instruction;
4895     dst   : X(write);
4896     src   : E(read);
4897     cr    : R(read);
4898     FA    : R(2);
4899     BR    : R(2);
4900 %}
4901 
4902 // Floating Point Multiply Float
4903 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4904     single_instruction;
4905     dst   : X(write);
4906     src1  : E(read);
4907     src2  : E(read);
4908     FM    : R;
4909 %}
4910 
4911 // Floating Point Multiply Double
4912 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4913     single_instruction;
4914     dst   : X(write);
4915     src1  : E(read);
4916     src2  : E(read);
4917     FM    : R;
4918 %}
4919 
4920 // Floating Point Divide Float
4921 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4922     single_instruction;
4923     dst   : X(write);
4924     src1  : E(read);
4925     src2  : E(read);
4926     FM    : R;
4927     FDIV  : C(14);
4928 %}
4929 
4930 // Floating Point Divide Double
4931 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4932     single_instruction;
4933     dst   : X(write);
4934     src1  : E(read);
4935     src2  : E(read);
4936     FM    : R;
4937     FDIV  : C(17);
4938 %}
4939 
4940 // Floating Point Move/Negate/Abs Float
4941 pipe_class faddF_reg(regF dst, regF src) %{
4942     single_instruction;
4943     dst   : W(write);
4944     src   : E(read);
4945     FA    : R(1);
4946 %}
4947 
4948 // Floating Point Move/Negate/Abs Double
4949 pipe_class faddD_reg(regD dst, regD src) %{
4950     single_instruction;
4951     dst   : W(write);
4952     src   : E(read);
4953     FA    : R;
4954 %}
4955 
4956 // Floating Point Convert F->D
4957 pipe_class fcvtF2D(regD dst, regF src) %{
4958     single_instruction;
4959     dst   : X(write);
4960     src   : E(read);
4961     FA    : R;
4962 %}
4963 
4964 // Floating Point Convert I->D
4965 pipe_class fcvtI2D(regD dst, regF src) %{
4966     single_instruction;
4967     dst   : X(write);
4968     src   : E(read);
4969     FA    : R;
4970 %}
4971 
4972 // Floating Point Convert LHi->D
4973 pipe_class fcvtLHi2D(regD dst, regD src) %{
4974     single_instruction;
4975     dst   : X(write);
4976     src   : E(read);
4977     FA    : R;
4978 %}
4979 
4980 // Floating Point Convert L->D
4981 pipe_class fcvtL2D(regD dst, regF src) %{
4982     single_instruction;
4983     dst   : X(write);
4984     src   : E(read);
4985     FA    : R;
4986 %}
4987 
4988 // Floating Point Convert L->F
4989 pipe_class fcvtL2F(regD dst, regF src) %{
4990     single_instruction;
4991     dst   : X(write);
4992     src   : E(read);
4993     FA    : R;
4994 %}
4995 
4996 // Floating Point Convert D->F
4997 pipe_class fcvtD2F(regD dst, regF src) %{
4998     single_instruction;
4999     dst   : X(write);
5000     src   : E(read);
5001     FA    : R;
5002 %}
5003 
5004 // Floating Point Convert I->L
5005 pipe_class fcvtI2L(regD dst, regF src) %{
5006     single_instruction;
5007     dst   : X(write);
5008     src   : E(read);
5009     FA    : R;
5010 %}
5011 
5012 // Floating Point Convert D->F
5013 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
5014     instruction_count(1); multiple_bundles;
5015     dst   : X(write)+6;
5016     src   : E(read);
5017     FA    : R;
5018 %}
5019 
5020 // Floating Point Convert D->L
5021 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
5022     instruction_count(1); multiple_bundles;
5023     dst   : X(write)+6;
5024     src   : E(read);
5025     FA    : R;
5026 %}
5027 
5028 // Floating Point Convert F->I
5029 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
5030     instruction_count(1); multiple_bundles;
5031     dst   : X(write)+6;
5032     src   : E(read);
5033     FA    : R;
5034 %}
5035 
5036 // Floating Point Convert F->L
5037 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
5038     instruction_count(1); multiple_bundles;
5039     dst   : X(write)+6;
5040     src   : E(read);
5041     FA    : R;
5042 %}
5043 
5044 // Floating Point Convert I->F
5045 pipe_class fcvtI2F(regF dst, regF src) %{
5046     single_instruction;
5047     dst   : X(write);
5048     src   : E(read);
5049     FA    : R;
5050 %}
5051 
5052 // Floating Point Compare
5053 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5054     single_instruction;
5055     cr    : X(write);
5056     src1  : E(read);
5057     src2  : E(read);
5058     FA    : R;
5059 %}
5060 
5061 // Floating Point Compare
5062 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5063     single_instruction;
5064     cr    : X(write);
5065     src1  : E(read);
5066     src2  : E(read);
5067     FA    : R;
5068 %}
5069 
5070 // Floating Add Nop
5071 pipe_class fadd_nop() %{
5072     single_instruction;
5073     FA  : R;
5074 %}
5075 
5076 // Integer Store to Memory
5077 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5078     single_instruction;
5079     mem   : R(read);
5080     src   : C(read);
5081     MS    : R;
5082 %}
5083 
5084 // Integer Store to Memory
5085 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5086     single_instruction;
5087     mem   : R(read);
5088     src   : C(read);
5089     MS    : R;
5090 %}
5091 
5092 // Integer Store Zero to Memory
5093 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5094     single_instruction;
5095     mem   : R(read);
5096     MS    : R;
5097 %}
5098 
5099 // Special Stack Slot Store
5100 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5101     single_instruction;
5102     stkSlot : R(read);
5103     src     : C(read);
5104     MS      : R;
5105 %}
5106 
5107 // Special Stack Slot Store
5108 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5109     instruction_count(2); multiple_bundles;
5110     stkSlot : R(read);
5111     src     : C(read);
5112     MS      : R(2);
5113 %}
5114 
5115 // Float Store
5116 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5117     single_instruction;
5118     mem : R(read);
5119     src : C(read);
5120     MS  : R;
5121 %}
5122 
5123 // Float Store
5124 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5125     single_instruction;
5126     mem : R(read);
5127     MS  : R;
5128 %}
5129 
5130 // Double Store
5131 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5132     instruction_count(1);
5133     mem : R(read);
5134     src : C(read);
5135     MS  : R;
5136 %}
5137 
5138 // Double Store
5139 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5140     single_instruction;
5141     mem : R(read);
5142     MS  : R;
5143 %}
5144 
5145 // Special Stack Slot Float Store
5146 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5147     single_instruction;
5148     stkSlot : R(read);
5149     src     : C(read);
5150     MS      : R;
5151 %}
5152 
5153 // Special Stack Slot Double Store
5154 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5155     single_instruction;
5156     stkSlot : R(read);
5157     src     : C(read);
5158     MS      : R;
5159 %}
5160 
5161 // Integer Load (when sign bit propagation not needed)
5162 pipe_class iload_mem(iRegI dst, memory mem) %{
5163     single_instruction;
5164     mem : R(read);
5165     dst : C(write);
5166     MS  : R;
5167 %}
5168 
5169 // Integer Load from stack operand
5170 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5171     single_instruction;
5172     mem : R(read);
5173     dst : C(write);
5174     MS  : R;
5175 %}
5176 
5177 // Integer Load (when sign bit propagation or masking is needed)
5178 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5179     single_instruction;
5180     mem : R(read);
5181     dst : M(write);
5182     MS  : R;
5183 %}
5184 
5185 // Float Load
5186 pipe_class floadF_mem(regF dst, memory mem) %{
5187     single_instruction;
5188     mem : R(read);
5189     dst : M(write);
5190     MS  : R;
5191 %}
5192 
5193 // Float Load
5194 pipe_class floadD_mem(regD dst, memory mem) %{
5195     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5196     mem : R(read);
5197     dst : M(write);
5198     MS  : R;
5199 %}
5200 
5201 // Float Load
5202 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5203     single_instruction;
5204     stkSlot : R(read);
5205     dst : M(write);
5206     MS  : R;
5207 %}
5208 
5209 // Float Load
5210 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5211     single_instruction;
5212     stkSlot : R(read);
5213     dst : M(write);
5214     MS  : R;
5215 %}
5216 
5217 // Memory Nop
5218 pipe_class mem_nop() %{
5219     single_instruction;
5220     MS  : R;
5221 %}
5222 
5223 pipe_class sethi(iRegP dst, immI src) %{
5224     single_instruction;
5225     dst  : E(write);
5226     IALU : R;
5227 %}
5228 
5229 pipe_class loadPollP(iRegP poll) %{
5230     single_instruction;
5231     poll : R(read);
5232     MS   : R;
5233 %}
5234 
5235 pipe_class br(Universe br, label labl) %{
5236     single_instruction_with_delay_slot;
5237     BR  : R;
5238 %}
5239 
5240 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5241     single_instruction_with_delay_slot;
5242     cr    : E(read);
5243     BR    : R;
5244 %}
5245 
5246 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5247     single_instruction_with_delay_slot;
5248     op1 : E(read);
5249     BR  : R;
5250     MS  : R;
5251 %}
5252 
5253 // Compare and branch
5254 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5255     instruction_count(2); has_delay_slot;
5256     cr    : E(write);
5257     src1  : R(read);
5258     src2  : R(read);
5259     IALU  : R;
5260     BR    : R;
5261 %}
5262 
5263 // Compare and branch
5264 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5265     instruction_count(2); has_delay_slot;
5266     cr    : E(write);
5267     src1  : R(read);
5268     IALU  : R;
5269     BR    : R;
5270 %}
5271 
5272 // Compare and branch using cbcond
5273 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5274     single_instruction;
5275     src1  : E(read);
5276     src2  : E(read);
5277     IALU  : R;
5278     BR    : R;
5279 %}
5280 
5281 // Compare and branch using cbcond
5282 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5283     single_instruction;
5284     src1  : E(read);
5285     IALU  : R;
5286     BR    : R;
5287 %}
5288 
5289 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5290     single_instruction_with_delay_slot;
5291     cr    : E(read);
5292     BR    : R;
5293 %}
5294 
5295 pipe_class br_nop() %{
5296     single_instruction;
5297     BR  : R;
5298 %}
5299 
5300 pipe_class simple_call(method meth) %{
5301     instruction_count(2); multiple_bundles; force_serialization;
5302     fixed_latency(100);
5303     BR  : R(1);
5304     MS  : R(1);
5305     A0  : R(1);
5306 %}
5307 
5308 pipe_class compiled_call(method meth) %{
5309     instruction_count(1); multiple_bundles; force_serialization;
5310     fixed_latency(100);
5311     MS  : R(1);
5312 %}
5313 
5314 pipe_class call(method meth) %{
5315     instruction_count(0); multiple_bundles; force_serialization;
5316     fixed_latency(100);
5317 %}
5318 
5319 pipe_class tail_call(Universe ignore, label labl) %{
5320     single_instruction; has_delay_slot;
5321     fixed_latency(100);
5322     BR  : R(1);
5323     MS  : R(1);
5324 %}
5325 
5326 pipe_class ret(Universe ignore) %{
5327     single_instruction; has_delay_slot;
5328     BR  : R(1);
5329     MS  : R(1);
5330 %}
5331 
5332 pipe_class ret_poll(g3RegP poll) %{
5333     instruction_count(3); has_delay_slot;
5334     poll : E(read);
5335     MS   : R;
5336 %}
5337 
5338 // The real do-nothing guy
5339 pipe_class empty( ) %{
5340     instruction_count(0);
5341 %}
5342 
5343 pipe_class long_memory_op() %{
5344     instruction_count(0); multiple_bundles; force_serialization;
5345     fixed_latency(25);
5346     MS  : R(1);
5347 %}
5348 
5349 // Check-cast
5350 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5351     array : R(read);
5352     match  : R(read);
5353     IALU   : R(2);
5354     BR     : R(2);
5355     MS     : R;
5356 %}
5357 
5358 // Convert FPU flags into +1,0,-1
5359 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5360     src1  : E(read);
5361     src2  : E(read);
5362     dst   : E(write);
5363     FA    : R;
5364     MS    : R(2);
5365     BR    : R(2);
5366 %}
5367 
5368 // Compare for p < q, and conditionally add y
5369 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5370     p     : E(read);
5371     q     : E(read);
5372     y     : E(read);
5373     IALU  : R(3)
5374 %}
5375 
5376 // Perform a compare, then move conditionally in a branch delay slot.
5377 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5378     src2   : E(read);
5379     srcdst : E(read);
5380     IALU   : R;
5381     BR     : R;
5382 %}
5383 
5384 // Define the class for the Nop node
5385 define %{
5386    MachNop = ialu_nop;
5387 %}
5388 
5389 %}
5390 
5391 //----------INSTRUCTIONS-------------------------------------------------------
5392 
5393 //------------Special Stack Slot instructions - no match rules-----------------
5394 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5395   // No match rule to avoid chain rule match.
5396   effect(DEF dst, USE src);
5397   ins_cost(MEMORY_REF_COST);
5398   size(4);
5399   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5400   opcode(Assembler::ldf_op3);
5401   ins_encode(simple_form3_mem_reg(src, dst));
5402   ins_pipe(floadF_stk);
5403 %}
5404 
5405 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5406   // No match rule to avoid chain rule match.
5407   effect(DEF dst, USE src);
5408   ins_cost(MEMORY_REF_COST);
5409   size(4);
5410   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5411   opcode(Assembler::lddf_op3);
5412   ins_encode(simple_form3_mem_reg(src, dst));
5413   ins_pipe(floadD_stk);
5414 %}
5415 
5416 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5417   // No match rule to avoid chain rule match.
5418   effect(DEF dst, USE src);
5419   ins_cost(MEMORY_REF_COST);
5420   size(4);
5421   format %{ "STF    $src,$dst\t! regF to stkI" %}
5422   opcode(Assembler::stf_op3);
5423   ins_encode(simple_form3_mem_reg(dst, src));
5424   ins_pipe(fstoreF_stk_reg);
5425 %}
5426 
5427 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5428   // No match rule to avoid chain rule match.
5429   effect(DEF dst, USE src);
5430   ins_cost(MEMORY_REF_COST);
5431   size(4);
5432   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5433   opcode(Assembler::stdf_op3);
5434   ins_encode(simple_form3_mem_reg(dst, src));
5435   ins_pipe(fstoreD_stk_reg);
5436 %}
5437 
5438 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5439   effect(DEF dst, USE src);
5440   ins_cost(MEMORY_REF_COST*2);
5441   size(8);
5442   format %{ "STW    $src,$dst.hi\t! long\n\t"
5443             "STW    R_G0,$dst.lo" %}
5444   opcode(Assembler::stw_op3);
5445   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5446   ins_pipe(lstoreI_stk_reg);
5447 %}
5448 
5449 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5450   // No match rule to avoid chain rule match.
5451   effect(DEF dst, USE src);
5452   ins_cost(MEMORY_REF_COST);
5453   size(4);
5454   format %{ "STX    $src,$dst\t! regL to stkD" %}
5455   opcode(Assembler::stx_op3);
5456   ins_encode(simple_form3_mem_reg( dst, src ) );
5457   ins_pipe(istore_stk_reg);
5458 %}
5459 
5460 //---------- Chain stack slots between similar types --------
5461 
5462 // Load integer from stack slot
5463 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5464   match(Set dst src);
5465   ins_cost(MEMORY_REF_COST);
5466 
5467   size(4);
5468   format %{ "LDUW   $src,$dst\t!stk" %}
5469   opcode(Assembler::lduw_op3);
5470   ins_encode(simple_form3_mem_reg( src, dst ) );
5471   ins_pipe(iload_mem);
5472 %}
5473 
5474 // Store integer to stack slot
5475 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5476   match(Set dst src);
5477   ins_cost(MEMORY_REF_COST);
5478 
5479   size(4);
5480   format %{ "STW    $src,$dst\t!stk" %}
5481   opcode(Assembler::stw_op3);
5482   ins_encode(simple_form3_mem_reg( dst, src ) );
5483   ins_pipe(istore_mem_reg);
5484 %}
5485 
5486 // Load long from stack slot
5487 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5488   match(Set dst src);
5489 
5490   ins_cost(MEMORY_REF_COST);
5491   size(4);
5492   format %{ "LDX    $src,$dst\t! long" %}
5493   opcode(Assembler::ldx_op3);
5494   ins_encode(simple_form3_mem_reg( src, dst ) );
5495   ins_pipe(iload_mem);
5496 %}
5497 
5498 // Store long to stack slot
5499 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5500   match(Set dst src);
5501 
5502   ins_cost(MEMORY_REF_COST);
5503   size(4);
5504   format %{ "STX    $src,$dst\t! long" %}
5505   opcode(Assembler::stx_op3);
5506   ins_encode(simple_form3_mem_reg( dst, src ) );
5507   ins_pipe(istore_mem_reg);
5508 %}
5509 
5510 #ifdef _LP64
5511 // Load pointer from stack slot, 64-bit encoding
5512 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5513   match(Set dst src);
5514   ins_cost(MEMORY_REF_COST);
5515   size(4);
5516   format %{ "LDX    $src,$dst\t!ptr" %}
5517   opcode(Assembler::ldx_op3);
5518   ins_encode(simple_form3_mem_reg( src, dst ) );
5519   ins_pipe(iload_mem);
5520 %}
5521 
5522 // Store pointer to stack slot
5523 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5524   match(Set dst src);
5525   ins_cost(MEMORY_REF_COST);
5526   size(4);
5527   format %{ "STX    $src,$dst\t!ptr" %}
5528   opcode(Assembler::stx_op3);
5529   ins_encode(simple_form3_mem_reg( dst, src ) );
5530   ins_pipe(istore_mem_reg);
5531 %}
5532 #else // _LP64
5533 // Load pointer from stack slot, 32-bit encoding
5534 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5535   match(Set dst src);
5536   ins_cost(MEMORY_REF_COST);
5537   format %{ "LDUW   $src,$dst\t!ptr" %}
5538   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5539   ins_encode(simple_form3_mem_reg( src, dst ) );
5540   ins_pipe(iload_mem);
5541 %}
5542 
5543 // Store pointer to stack slot
5544 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5545   match(Set dst src);
5546   ins_cost(MEMORY_REF_COST);
5547   format %{ "STW    $src,$dst\t!ptr" %}
5548   opcode(Assembler::stw_op3, Assembler::ldst_op);
5549   ins_encode(simple_form3_mem_reg( dst, src ) );
5550   ins_pipe(istore_mem_reg);
5551 %}
5552 #endif // _LP64
5553 
5554 //------------Special Nop instructions for bundling - no match rules-----------
5555 // Nop using the A0 functional unit
5556 instruct Nop_A0() %{
5557   ins_cost(0);
5558 
5559   format %{ "NOP    ! Alu Pipeline" %}
5560   opcode(Assembler::or_op3, Assembler::arith_op);
5561   ins_encode( form2_nop() );
5562   ins_pipe(ialu_nop_A0);
5563 %}
5564 
5565 // Nop using the A1 functional unit
5566 instruct Nop_A1( ) %{
5567   ins_cost(0);
5568 
5569   format %{ "NOP    ! Alu Pipeline" %}
5570   opcode(Assembler::or_op3, Assembler::arith_op);
5571   ins_encode( form2_nop() );
5572   ins_pipe(ialu_nop_A1);
5573 %}
5574 
5575 // Nop using the memory functional unit
5576 instruct Nop_MS( ) %{
5577   ins_cost(0);
5578 
5579   format %{ "NOP    ! Memory Pipeline" %}
5580   ins_encode( emit_mem_nop );
5581   ins_pipe(mem_nop);
5582 %}
5583 
5584 // Nop using the floating add functional unit
5585 instruct Nop_FA( ) %{
5586   ins_cost(0);
5587 
5588   format %{ "NOP    ! Floating Add Pipeline" %}
5589   ins_encode( emit_fadd_nop );
5590   ins_pipe(fadd_nop);
5591 %}
5592 
5593 // Nop using the branch functional unit
5594 instruct Nop_BR( ) %{
5595   ins_cost(0);
5596 
5597   format %{ "NOP    ! Branch Pipeline" %}
5598   ins_encode( emit_br_nop );
5599   ins_pipe(br_nop);
5600 %}
5601 
5602 //----------Load/Store/Move Instructions---------------------------------------
5603 //----------Load Instructions--------------------------------------------------
5604 // Load Byte (8bit signed)
5605 instruct loadB(iRegI dst, memory mem) %{
5606   match(Set dst (LoadB mem));
5607   ins_cost(MEMORY_REF_COST);
5608 
5609   size(4);
5610   format %{ "LDSB   $mem,$dst\t! byte" %}
5611   ins_encode %{
5612     __ ldsb($mem$$Address, $dst$$Register);
5613   %}
5614   ins_pipe(iload_mask_mem);
5615 %}
5616 
5617 // Load Byte (8bit signed) into a Long Register
5618 instruct loadB2L(iRegL dst, memory mem) %{
5619   match(Set dst (ConvI2L (LoadB mem)));
5620   ins_cost(MEMORY_REF_COST);
5621 
5622   size(4);
5623   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5624   ins_encode %{
5625     __ ldsb($mem$$Address, $dst$$Register);
5626   %}
5627   ins_pipe(iload_mask_mem);
5628 %}
5629 
5630 // Load Unsigned Byte (8bit UNsigned) into an int reg
5631 instruct loadUB(iRegI dst, memory mem) %{
5632   match(Set dst (LoadUB mem));
5633   ins_cost(MEMORY_REF_COST);
5634 
5635   size(4);
5636   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5637   ins_encode %{
5638     __ ldub($mem$$Address, $dst$$Register);
5639   %}
5640   ins_pipe(iload_mem);
5641 %}
5642 
5643 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5644 instruct loadUB2L(iRegL dst, memory mem) %{
5645   match(Set dst (ConvI2L (LoadUB mem)));
5646   ins_cost(MEMORY_REF_COST);
5647 
5648   size(4);
5649   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5650   ins_encode %{
5651     __ ldub($mem$$Address, $dst$$Register);
5652   %}
5653   ins_pipe(iload_mem);
5654 %}
5655 
5656 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5657 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5658   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5659   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5660 
5661   size(2*4);
5662   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5663             "AND    $dst,$mask,$dst" %}
5664   ins_encode %{
5665     __ ldub($mem$$Address, $dst$$Register);
5666     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5667   %}
5668   ins_pipe(iload_mem);
5669 %}
5670 
5671 // Load Short (16bit signed)
5672 instruct loadS(iRegI dst, memory mem) %{
5673   match(Set dst (LoadS mem));
5674   ins_cost(MEMORY_REF_COST);
5675 
5676   size(4);
5677   format %{ "LDSH   $mem,$dst\t! short" %}
5678   ins_encode %{
5679     __ ldsh($mem$$Address, $dst$$Register);
5680   %}
5681   ins_pipe(iload_mask_mem);
5682 %}
5683 
5684 // Load Short (16 bit signed) to Byte (8 bit signed)
5685 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5686   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5687   ins_cost(MEMORY_REF_COST);
5688 
5689   size(4);
5690 
5691   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5692   ins_encode %{
5693     __ ldsb($mem$$Address, $dst$$Register, 1);
5694   %}
5695   ins_pipe(iload_mask_mem);
5696 %}
5697 
5698 // Load Short (16bit signed) into a Long Register
5699 instruct loadS2L(iRegL dst, memory mem) %{
5700   match(Set dst (ConvI2L (LoadS mem)));
5701   ins_cost(MEMORY_REF_COST);
5702 
5703   size(4);
5704   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5705   ins_encode %{
5706     __ ldsh($mem$$Address, $dst$$Register);
5707   %}
5708   ins_pipe(iload_mask_mem);
5709 %}
5710 
5711 // Load Unsigned Short/Char (16bit UNsigned)
5712 instruct loadUS(iRegI dst, memory mem) %{
5713   match(Set dst (LoadUS mem));
5714   ins_cost(MEMORY_REF_COST);
5715 
5716   size(4);
5717   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5718   ins_encode %{
5719     __ lduh($mem$$Address, $dst$$Register);
5720   %}
5721   ins_pipe(iload_mem);
5722 %}
5723 
5724 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5725 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5726   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5727   ins_cost(MEMORY_REF_COST);
5728 
5729   size(4);
5730   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5731   ins_encode %{
5732     __ ldsb($mem$$Address, $dst$$Register, 1);
5733   %}
5734   ins_pipe(iload_mask_mem);
5735 %}
5736 
5737 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5738 instruct loadUS2L(iRegL dst, memory mem) %{
5739   match(Set dst (ConvI2L (LoadUS mem)));
5740   ins_cost(MEMORY_REF_COST);
5741 
5742   size(4);
5743   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5744   ins_encode %{
5745     __ lduh($mem$$Address, $dst$$Register);
5746   %}
5747   ins_pipe(iload_mem);
5748 %}
5749 
5750 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5751 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5752   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5753   ins_cost(MEMORY_REF_COST);
5754 
5755   size(4);
5756   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5757   ins_encode %{
5758     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5759   %}
5760   ins_pipe(iload_mem);
5761 %}
5762 
5763 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5764 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5765   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5766   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5767 
5768   size(2*4);
5769   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5770             "AND    $dst,$mask,$dst" %}
5771   ins_encode %{
5772     Register Rdst = $dst$$Register;
5773     __ lduh($mem$$Address, Rdst);
5774     __ and3(Rdst, $mask$$constant, Rdst);
5775   %}
5776   ins_pipe(iload_mem);
5777 %}
5778 
5779 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5780 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5781   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5782   effect(TEMP dst, TEMP tmp);
5783   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5784 
5785   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5786             "SET    $mask,$tmp\n\t"
5787             "AND    $dst,$tmp,$dst" %}
5788   ins_encode %{
5789     Register Rdst = $dst$$Register;
5790     Register Rtmp = $tmp$$Register;
5791     __ lduh($mem$$Address, Rdst);
5792     __ set($mask$$constant, Rtmp);
5793     __ and3(Rdst, Rtmp, Rdst);
5794   %}
5795   ins_pipe(iload_mem);
5796 %}
5797 
5798 // Load Integer
5799 instruct loadI(iRegI dst, memory mem) %{
5800   match(Set dst (LoadI mem));
5801   ins_cost(MEMORY_REF_COST);
5802 
5803   size(4);
5804   format %{ "LDUW   $mem,$dst\t! int" %}
5805   ins_encode %{
5806     __ lduw($mem$$Address, $dst$$Register);
5807   %}
5808   ins_pipe(iload_mem);
5809 %}
5810 
5811 // Load Integer to Byte (8 bit signed)
5812 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5813   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5814   ins_cost(MEMORY_REF_COST);
5815 
5816   size(4);
5817 
5818   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5819   ins_encode %{
5820     __ ldsb($mem$$Address, $dst$$Register, 3);
5821   %}
5822   ins_pipe(iload_mask_mem);
5823 %}
5824 
5825 // Load Integer to Unsigned Byte (8 bit UNsigned)
5826 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5827   match(Set dst (AndI (LoadI mem) mask));
5828   ins_cost(MEMORY_REF_COST);
5829 
5830   size(4);
5831 
5832   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5833   ins_encode %{
5834     __ ldub($mem$$Address, $dst$$Register, 3);
5835   %}
5836   ins_pipe(iload_mask_mem);
5837 %}
5838 
5839 // Load Integer to Short (16 bit signed)
5840 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5841   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5842   ins_cost(MEMORY_REF_COST);
5843 
5844   size(4);
5845 
5846   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5847   ins_encode %{
5848     __ ldsh($mem$$Address, $dst$$Register, 2);
5849   %}
5850   ins_pipe(iload_mask_mem);
5851 %}
5852 
5853 // Load Integer to Unsigned Short (16 bit UNsigned)
5854 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5855   match(Set dst (AndI (LoadI mem) mask));
5856   ins_cost(MEMORY_REF_COST);
5857 
5858   size(4);
5859 
5860   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5861   ins_encode %{
5862     __ lduh($mem$$Address, $dst$$Register, 2);
5863   %}
5864   ins_pipe(iload_mask_mem);
5865 %}
5866 
5867 // Load Integer into a Long Register
5868 instruct loadI2L(iRegL dst, memory mem) %{
5869   match(Set dst (ConvI2L (LoadI mem)));
5870   ins_cost(MEMORY_REF_COST);
5871 
5872   size(4);
5873   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5874   ins_encode %{
5875     __ ldsw($mem$$Address, $dst$$Register);
5876   %}
5877   ins_pipe(iload_mask_mem);
5878 %}
5879 
5880 // Load Integer with mask 0xFF into a Long Register
5881 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5882   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5883   ins_cost(MEMORY_REF_COST);
5884 
5885   size(4);
5886   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5887   ins_encode %{
5888     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5889   %}
5890   ins_pipe(iload_mem);
5891 %}
5892 
5893 // Load Integer with mask 0xFFFF into a Long Register
5894 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5895   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5896   ins_cost(MEMORY_REF_COST);
5897 
5898   size(4);
5899   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5900   ins_encode %{
5901     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5902   %}
5903   ins_pipe(iload_mem);
5904 %}
5905 
5906 // Load Integer with a 12-bit mask into a Long Register
5907 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5908   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5909   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5910 
5911   size(2*4);
5912   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5913             "AND    $dst,$mask,$dst" %}
5914   ins_encode %{
5915     Register Rdst = $dst$$Register;
5916     __ lduw($mem$$Address, Rdst);
5917     __ and3(Rdst, $mask$$constant, Rdst);
5918   %}
5919   ins_pipe(iload_mem);
5920 %}
5921 
5922 // Load Integer with a 31-bit mask into a Long Register
5923 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5924   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5925   effect(TEMP dst, TEMP tmp);
5926   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5927 
5928   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5929             "SET    $mask,$tmp\n\t"
5930             "AND    $dst,$tmp,$dst" %}
5931   ins_encode %{
5932     Register Rdst = $dst$$Register;
5933     Register Rtmp = $tmp$$Register;
5934     __ lduw($mem$$Address, Rdst);
5935     __ set($mask$$constant, Rtmp);
5936     __ and3(Rdst, Rtmp, Rdst);
5937   %}
5938   ins_pipe(iload_mem);
5939 %}
5940 
5941 // Load Unsigned Integer into a Long Register
5942 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5943   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5944   ins_cost(MEMORY_REF_COST);
5945 
5946   size(4);
5947   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5948   ins_encode %{
5949     __ lduw($mem$$Address, $dst$$Register);
5950   %}
5951   ins_pipe(iload_mem);
5952 %}
5953 
5954 // Load Long - aligned
5955 instruct loadL(iRegL dst, memory mem ) %{
5956   match(Set dst (LoadL mem));
5957   ins_cost(MEMORY_REF_COST);
5958 
5959   size(4);
5960   format %{ "LDX    $mem,$dst\t! long" %}
5961   ins_encode %{
5962     __ ldx($mem$$Address, $dst$$Register);
5963   %}
5964   ins_pipe(iload_mem);
5965 %}
5966 
5967 // Load Long - UNaligned
5968 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5969   match(Set dst (LoadL_unaligned mem));
5970   effect(KILL tmp);
5971   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5972   size(16);
5973   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5974           "\tLDUW   $mem  ,$dst\n"
5975           "\tSLLX   #32, $dst, $dst\n"
5976           "\tOR     $dst, R_O7, $dst" %}
5977   opcode(Assembler::lduw_op3);
5978   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5979   ins_pipe(iload_mem);
5980 %}
5981 
5982 // Load Range
5983 instruct loadRange(iRegI dst, memory mem) %{
5984   match(Set dst (LoadRange mem));
5985   ins_cost(MEMORY_REF_COST);
5986 
5987   size(4);
5988   format %{ "LDUW   $mem,$dst\t! range" %}
5989   opcode(Assembler::lduw_op3);
5990   ins_encode(simple_form3_mem_reg( mem, dst ) );
5991   ins_pipe(iload_mem);
5992 %}
5993 
5994 // Load Integer into %f register (for fitos/fitod)
5995 instruct loadI_freg(regF dst, memory mem) %{
5996   match(Set dst (LoadI mem));
5997   ins_cost(MEMORY_REF_COST);
5998   size(4);
5999 
6000   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
6001   opcode(Assembler::ldf_op3);
6002   ins_encode(simple_form3_mem_reg( mem, dst ) );
6003   ins_pipe(floadF_mem);
6004 %}
6005 
6006 // Load Pointer
6007 instruct loadP(iRegP dst, memory mem) %{
6008   match(Set dst (LoadP mem));
6009   ins_cost(MEMORY_REF_COST);
6010   size(4);
6011 
6012 #ifndef _LP64
6013   format %{ "LDUW   $mem,$dst\t! ptr" %}
6014   ins_encode %{
6015     __ lduw($mem$$Address, $dst$$Register);
6016   %}
6017 #else
6018   format %{ "LDX    $mem,$dst\t! ptr" %}
6019   ins_encode %{
6020     __ ldx($mem$$Address, $dst$$Register);
6021   %}
6022 #endif
6023   ins_pipe(iload_mem);
6024 %}
6025 
6026 // Load Compressed Pointer
6027 instruct loadN(iRegN dst, memory mem) %{
6028   match(Set dst (LoadN mem));
6029   ins_cost(MEMORY_REF_COST);
6030   size(4);
6031 
6032   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
6033   ins_encode %{
6034     __ lduw($mem$$Address, $dst$$Register);
6035   %}
6036   ins_pipe(iload_mem);
6037 %}
6038 
6039 // Load Klass Pointer
6040 instruct loadKlass(iRegP dst, memory mem) %{
6041   match(Set dst (LoadKlass mem));
6042   ins_cost(MEMORY_REF_COST);
6043   size(4);
6044 
6045 #ifndef _LP64
6046   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6047   ins_encode %{
6048     __ lduw($mem$$Address, $dst$$Register);
6049   %}
6050 #else
6051   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6052   ins_encode %{
6053     __ ldx($mem$$Address, $dst$$Register);
6054   %}
6055 #endif
6056   ins_pipe(iload_mem);
6057 %}
6058 
6059 // Load narrow Klass Pointer
6060 instruct loadNKlass(iRegN dst, memory mem) %{
6061   match(Set dst (LoadNKlass mem));
6062   ins_cost(MEMORY_REF_COST);
6063   size(4);
6064 
6065   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6066   ins_encode %{
6067     __ lduw($mem$$Address, $dst$$Register);
6068   %}
6069   ins_pipe(iload_mem);
6070 %}
6071 
6072 // Load Double
6073 instruct loadD(regD dst, memory mem) %{
6074   match(Set dst (LoadD mem));
6075   ins_cost(MEMORY_REF_COST);
6076 
6077   size(4);
6078   format %{ "LDDF   $mem,$dst" %}
6079   opcode(Assembler::lddf_op3);
6080   ins_encode(simple_form3_mem_reg( mem, dst ) );
6081   ins_pipe(floadD_mem);
6082 %}
6083 
6084 // Load Double - UNaligned
6085 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6086   match(Set dst (LoadD_unaligned mem));
6087   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6088   size(8);
6089   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6090           "\tLDF    $mem+4,$dst.lo\t!" %}
6091   opcode(Assembler::ldf_op3);
6092   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6093   ins_pipe(iload_mem);
6094 %}
6095 
6096 // Load Float
6097 instruct loadF(regF dst, memory mem) %{
6098   match(Set dst (LoadF mem));
6099   ins_cost(MEMORY_REF_COST);
6100 
6101   size(4);
6102   format %{ "LDF    $mem,$dst" %}
6103   opcode(Assembler::ldf_op3);
6104   ins_encode(simple_form3_mem_reg( mem, dst ) );
6105   ins_pipe(floadF_mem);
6106 %}
6107 
6108 // Load Constant
6109 instruct loadConI( iRegI dst, immI src ) %{
6110   match(Set dst src);
6111   ins_cost(DEFAULT_COST * 3/2);
6112   format %{ "SET    $src,$dst" %}
6113   ins_encode( Set32(src, dst) );
6114   ins_pipe(ialu_hi_lo_reg);
6115 %}
6116 
6117 instruct loadConI13( iRegI dst, immI13 src ) %{
6118   match(Set dst src);
6119 
6120   size(4);
6121   format %{ "MOV    $src,$dst" %}
6122   ins_encode( Set13( src, dst ) );
6123   ins_pipe(ialu_imm);
6124 %}
6125 
6126 #ifndef _LP64
6127 instruct loadConP(iRegP dst, immP con) %{
6128   match(Set dst con);
6129   ins_cost(DEFAULT_COST * 3/2);
6130   format %{ "SET    $con,$dst\t!ptr" %}
6131   ins_encode %{
6132     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6133       intptr_t val = $con$$constant;
6134     if (constant_reloc == relocInfo::oop_type) {
6135       __ set_oop_constant((jobject) val, $dst$$Register);
6136     } else if (constant_reloc == relocInfo::metadata_type) {
6137       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6138     } else {          // non-oop pointers, e.g. card mark base, heap top
6139       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6140       __ set(val, $dst$$Register);
6141     }
6142   %}
6143   ins_pipe(loadConP);
6144 %}
6145 #else
6146 instruct loadConP_set(iRegP dst, immP_set con) %{
6147   match(Set dst con);
6148   ins_cost(DEFAULT_COST * 3/2);
6149   format %{ "SET    $con,$dst\t! ptr" %}
6150   ins_encode %{
6151     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6152       intptr_t val = $con$$constant;
6153     if (constant_reloc == relocInfo::oop_type) {
6154       __ set_oop_constant((jobject) val, $dst$$Register);
6155     } else if (constant_reloc == relocInfo::metadata_type) {
6156       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6157     } else {          // non-oop pointers, e.g. card mark base, heap top
6158       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6159       __ set(val, $dst$$Register);
6160     }
6161   %}
6162   ins_pipe(loadConP);
6163 %}
6164 
6165 instruct loadConP_load(iRegP dst, immP_load con) %{
6166   match(Set dst con);
6167   ins_cost(MEMORY_REF_COST);
6168   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6169   ins_encode %{
6170     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6171     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6172   %}
6173   ins_pipe(loadConP);
6174 %}
6175 
6176 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6177   match(Set dst con);
6178   ins_cost(DEFAULT_COST * 3/2);
6179   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6180   ins_encode %{
6181     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
6182       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
6183     } else {
6184       __ set($con$$constant, $dst$$Register);
6185     }
6186   %}
6187   ins_pipe(loadConP);
6188 %}
6189 #endif // _LP64
6190 
6191 instruct loadConP0(iRegP dst, immP0 src) %{
6192   match(Set dst src);
6193 
6194   size(4);
6195   format %{ "CLR    $dst\t!ptr" %}
6196   ins_encode %{
6197     __ clr($dst$$Register);
6198   %}
6199   ins_pipe(ialu_imm);
6200 %}
6201 
6202 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6203   match(Set dst src);
6204   ins_cost(DEFAULT_COST);
6205   format %{ "SET    $src,$dst\t!ptr" %}
6206   ins_encode %{
6207     AddressLiteral polling_page(os::get_polling_page());
6208     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6209   %}
6210   ins_pipe(loadConP_poll);
6211 %}
6212 
6213 instruct loadConN0(iRegN dst, immN0 src) %{
6214   match(Set dst src);
6215 
6216   size(4);
6217   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6218   ins_encode %{
6219     __ clr($dst$$Register);
6220   %}
6221   ins_pipe(ialu_imm);
6222 %}
6223 
6224 instruct loadConN(iRegN dst, immN src) %{
6225   match(Set dst src);
6226   ins_cost(DEFAULT_COST * 3/2);
6227   format %{ "SET    $src,$dst\t! compressed ptr" %}
6228   ins_encode %{
6229     Register dst = $dst$$Register;
6230     __ set_narrow_oop((jobject)$src$$constant, dst);
6231   %}
6232   ins_pipe(ialu_hi_lo_reg);
6233 %}
6234 
6235 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6236   match(Set dst src);
6237   ins_cost(DEFAULT_COST * 3/2);
6238   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6239   ins_encode %{
6240     Register dst = $dst$$Register;
6241     __ set_narrow_klass((Klass*)$src$$constant, dst);
6242   %}
6243   ins_pipe(ialu_hi_lo_reg);
6244 %}
6245 
6246 // Materialize long value (predicated by immL_cheap).
6247 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6248   match(Set dst con);
6249   effect(KILL tmp);
6250   ins_cost(DEFAULT_COST * 3);
6251   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6252   ins_encode %{
6253     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6254   %}
6255   ins_pipe(loadConL);
6256 %}
6257 
6258 // Load long value from constant table (predicated by immL_expensive).
6259 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6260   match(Set dst con);
6261   ins_cost(MEMORY_REF_COST);
6262   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6263   ins_encode %{
6264       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6265     __ ldx($constanttablebase, con_offset, $dst$$Register);
6266   %}
6267   ins_pipe(loadConL);
6268 %}
6269 
6270 instruct loadConL0( iRegL dst, immL0 src ) %{
6271   match(Set dst src);
6272   ins_cost(DEFAULT_COST);
6273   size(4);
6274   format %{ "CLR    $dst\t! long" %}
6275   ins_encode( Set13( src, dst ) );
6276   ins_pipe(ialu_imm);
6277 %}
6278 
6279 instruct loadConL13( iRegL dst, immL13 src ) %{
6280   match(Set dst src);
6281   ins_cost(DEFAULT_COST * 2);
6282 
6283   size(4);
6284   format %{ "MOV    $src,$dst\t! long" %}
6285   ins_encode( Set13( src, dst ) );
6286   ins_pipe(ialu_imm);
6287 %}
6288 
6289 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6290   match(Set dst con);
6291   effect(KILL tmp);
6292   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6293   ins_encode %{
6294       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6295     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6296   %}
6297   ins_pipe(loadConFD);
6298 %}
6299 
6300 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6301   match(Set dst con);
6302   effect(KILL tmp);
6303   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6304   ins_encode %{
6305     // XXX This is a quick fix for 6833573.
6306     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6307     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6308     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6309   %}
6310   ins_pipe(loadConFD);
6311 %}
6312 
6313 // Prefetch instructions for allocation.
6314 // Must be safe to execute with invalid address (cannot fault).
6315 
6316 instruct prefetchAlloc( memory mem ) %{
6317   predicate(AllocatePrefetchInstr == 0);
6318   match( PrefetchAllocation mem );
6319   ins_cost(MEMORY_REF_COST);
6320   size(4);
6321 
6322   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6323   opcode(Assembler::prefetch_op3);
6324   ins_encode( form3_mem_prefetch_write( mem ) );
6325   ins_pipe(iload_mem);
6326 %}
6327 
6328 // Use BIS instruction to prefetch for allocation.
6329 // Could fault, need space at the end of TLAB.
6330 instruct prefetchAlloc_bis( iRegP dst ) %{
6331   predicate(AllocatePrefetchInstr == 1);
6332   match( PrefetchAllocation dst );
6333   ins_cost(MEMORY_REF_COST);
6334   size(4);
6335 
6336   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6337   ins_encode %{
6338     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6339   %}
6340   ins_pipe(istore_mem_reg);
6341 %}
6342 
6343 // Next code is used for finding next cache line address to prefetch.
6344 #ifndef _LP64
6345 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6346   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6347   ins_cost(DEFAULT_COST);
6348   size(4);
6349 
6350   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6351   ins_encode %{
6352     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6353   %}
6354   ins_pipe(ialu_reg_imm);
6355 %}
6356 #else
6357 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6358   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6359   ins_cost(DEFAULT_COST);
6360   size(4);
6361 
6362   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6363   ins_encode %{
6364     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6365   %}
6366   ins_pipe(ialu_reg_imm);
6367 %}
6368 #endif
6369 
6370 //----------Store Instructions-------------------------------------------------
6371 // Store Byte
6372 instruct storeB(memory mem, iRegI src) %{
6373   match(Set mem (StoreB mem src));
6374   ins_cost(MEMORY_REF_COST);
6375 
6376   size(4);
6377   format %{ "STB    $src,$mem\t! byte" %}
6378   opcode(Assembler::stb_op3);
6379   ins_encode(simple_form3_mem_reg( mem, src ) );
6380   ins_pipe(istore_mem_reg);
6381 %}
6382 
6383 instruct storeB0(memory mem, immI0 src) %{
6384   match(Set mem (StoreB mem src));
6385   ins_cost(MEMORY_REF_COST);
6386 
6387   size(4);
6388   format %{ "STB    $src,$mem\t! byte" %}
6389   opcode(Assembler::stb_op3);
6390   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6391   ins_pipe(istore_mem_zero);
6392 %}
6393 
6394 instruct storeCM0(memory mem, immI0 src) %{
6395   match(Set mem (StoreCM mem src));
6396   ins_cost(MEMORY_REF_COST);
6397 
6398   size(4);
6399   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6400   opcode(Assembler::stb_op3);
6401   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6402   ins_pipe(istore_mem_zero);
6403 %}
6404 
6405 // Store Char/Short
6406 instruct storeC(memory mem, iRegI src) %{
6407   match(Set mem (StoreC mem src));
6408   ins_cost(MEMORY_REF_COST);
6409 
6410   size(4);
6411   format %{ "STH    $src,$mem\t! short" %}
6412   opcode(Assembler::sth_op3);
6413   ins_encode(simple_form3_mem_reg( mem, src ) );
6414   ins_pipe(istore_mem_reg);
6415 %}
6416 
6417 instruct storeC0(memory mem, immI0 src) %{
6418   match(Set mem (StoreC mem src));
6419   ins_cost(MEMORY_REF_COST);
6420 
6421   size(4);
6422   format %{ "STH    $src,$mem\t! short" %}
6423   opcode(Assembler::sth_op3);
6424   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6425   ins_pipe(istore_mem_zero);
6426 %}
6427 
6428 // Store Integer
6429 instruct storeI(memory mem, iRegI src) %{
6430   match(Set mem (StoreI mem src));
6431   ins_cost(MEMORY_REF_COST);
6432 
6433   size(4);
6434   format %{ "STW    $src,$mem" %}
6435   opcode(Assembler::stw_op3);
6436   ins_encode(simple_form3_mem_reg( mem, src ) );
6437   ins_pipe(istore_mem_reg);
6438 %}
6439 
6440 // Store Long
6441 instruct storeL(memory mem, iRegL src) %{
6442   match(Set mem (StoreL mem src));
6443   ins_cost(MEMORY_REF_COST);
6444   size(4);
6445   format %{ "STX    $src,$mem\t! long" %}
6446   opcode(Assembler::stx_op3);
6447   ins_encode(simple_form3_mem_reg( mem, src ) );
6448   ins_pipe(istore_mem_reg);
6449 %}
6450 
6451 instruct storeI0(memory mem, immI0 src) %{
6452   match(Set mem (StoreI mem src));
6453   ins_cost(MEMORY_REF_COST);
6454 
6455   size(4);
6456   format %{ "STW    $src,$mem" %}
6457   opcode(Assembler::stw_op3);
6458   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6459   ins_pipe(istore_mem_zero);
6460 %}
6461 
6462 instruct storeL0(memory mem, immL0 src) %{
6463   match(Set mem (StoreL mem src));
6464   ins_cost(MEMORY_REF_COST);
6465 
6466   size(4);
6467   format %{ "STX    $src,$mem" %}
6468   opcode(Assembler::stx_op3);
6469   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6470   ins_pipe(istore_mem_zero);
6471 %}
6472 
6473 // Store Integer from float register (used after fstoi)
6474 instruct storeI_Freg(memory mem, regF src) %{
6475   match(Set mem (StoreI mem src));
6476   ins_cost(MEMORY_REF_COST);
6477 
6478   size(4);
6479   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6480   opcode(Assembler::stf_op3);
6481   ins_encode(simple_form3_mem_reg( mem, src ) );
6482   ins_pipe(fstoreF_mem_reg);
6483 %}
6484 
6485 // Store Pointer
6486 instruct storeP(memory dst, sp_ptr_RegP src) %{
6487   match(Set dst (StoreP dst src));
6488   ins_cost(MEMORY_REF_COST);
6489   size(4);
6490 
6491 #ifndef _LP64
6492   format %{ "STW    $src,$dst\t! ptr" %}
6493   opcode(Assembler::stw_op3, 0, REGP_OP);
6494 #else
6495   format %{ "STX    $src,$dst\t! ptr" %}
6496   opcode(Assembler::stx_op3, 0, REGP_OP);
6497 #endif
6498   ins_encode( form3_mem_reg( dst, src ) );
6499   ins_pipe(istore_mem_spORreg);
6500 %}
6501 
6502 instruct storeP0(memory dst, immP0 src) %{
6503   match(Set dst (StoreP dst src));
6504   ins_cost(MEMORY_REF_COST);
6505   size(4);
6506 
6507 #ifndef _LP64
6508   format %{ "STW    $src,$dst\t! ptr" %}
6509   opcode(Assembler::stw_op3, 0, REGP_OP);
6510 #else
6511   format %{ "STX    $src,$dst\t! ptr" %}
6512   opcode(Assembler::stx_op3, 0, REGP_OP);
6513 #endif
6514   ins_encode( form3_mem_reg( dst, R_G0 ) );
6515   ins_pipe(istore_mem_zero);
6516 %}
6517 
6518 // Store Compressed Pointer
6519 instruct storeN(memory dst, iRegN src) %{
6520    match(Set dst (StoreN dst src));
6521    ins_cost(MEMORY_REF_COST);
6522    size(4);
6523 
6524    format %{ "STW    $src,$dst\t! compressed ptr" %}
6525    ins_encode %{
6526      Register base = as_Register($dst$$base);
6527      Register index = as_Register($dst$$index);
6528      Register src = $src$$Register;
6529      if (index != G0) {
6530        __ stw(src, base, index);
6531      } else {
6532        __ stw(src, base, $dst$$disp);
6533      }
6534    %}
6535    ins_pipe(istore_mem_spORreg);
6536 %}
6537 
6538 instruct storeNKlass(memory dst, iRegN src) %{
6539    match(Set dst (StoreNKlass dst src));
6540    ins_cost(MEMORY_REF_COST);
6541    size(4);
6542 
6543    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6544    ins_encode %{
6545      Register base = as_Register($dst$$base);
6546      Register index = as_Register($dst$$index);
6547      Register src = $src$$Register;
6548      if (index != G0) {
6549        __ stw(src, base, index);
6550      } else {
6551        __ stw(src, base, $dst$$disp);
6552      }
6553    %}
6554    ins_pipe(istore_mem_spORreg);
6555 %}
6556 
6557 instruct storeN0(memory dst, immN0 src) %{
6558    match(Set dst (StoreN dst src));
6559    ins_cost(MEMORY_REF_COST);
6560    size(4);
6561 
6562    format %{ "STW    $src,$dst\t! compressed ptr" %}
6563    ins_encode %{
6564      Register base = as_Register($dst$$base);
6565      Register index = as_Register($dst$$index);
6566      if (index != G0) {
6567        __ stw(0, base, index);
6568      } else {
6569        __ stw(0, base, $dst$$disp);
6570      }
6571    %}
6572    ins_pipe(istore_mem_zero);
6573 %}
6574 
6575 // Store Double
6576 instruct storeD( memory mem, regD src) %{
6577   match(Set mem (StoreD mem src));
6578   ins_cost(MEMORY_REF_COST);
6579 
6580   size(4);
6581   format %{ "STDF   $src,$mem" %}
6582   opcode(Assembler::stdf_op3);
6583   ins_encode(simple_form3_mem_reg( mem, src ) );
6584   ins_pipe(fstoreD_mem_reg);
6585 %}
6586 
6587 instruct storeD0( memory mem, immD0 src) %{
6588   match(Set mem (StoreD mem src));
6589   ins_cost(MEMORY_REF_COST);
6590 
6591   size(4);
6592   format %{ "STX    $src,$mem" %}
6593   opcode(Assembler::stx_op3);
6594   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6595   ins_pipe(fstoreD_mem_zero);
6596 %}
6597 
6598 // Store Float
6599 instruct storeF( memory mem, regF src) %{
6600   match(Set mem (StoreF mem src));
6601   ins_cost(MEMORY_REF_COST);
6602 
6603   size(4);
6604   format %{ "STF    $src,$mem" %}
6605   opcode(Assembler::stf_op3);
6606   ins_encode(simple_form3_mem_reg( mem, src ) );
6607   ins_pipe(fstoreF_mem_reg);
6608 %}
6609 
6610 instruct storeF0( memory mem, immF0 src) %{
6611   match(Set mem (StoreF mem src));
6612   ins_cost(MEMORY_REF_COST);
6613 
6614   size(4);
6615   format %{ "STW    $src,$mem\t! storeF0" %}
6616   opcode(Assembler::stw_op3);
6617   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6618   ins_pipe(fstoreF_mem_zero);
6619 %}
6620 
6621 // Convert oop pointer into compressed form
6622 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6623   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6624   match(Set dst (EncodeP src));
6625   format %{ "encode_heap_oop $src, $dst" %}
6626   ins_encode %{
6627     __ encode_heap_oop($src$$Register, $dst$$Register);
6628   %}
6629   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6630   ins_pipe(ialu_reg);
6631 %}
6632 
6633 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6634   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6635   match(Set dst (EncodeP src));
6636   format %{ "encode_heap_oop_not_null $src, $dst" %}
6637   ins_encode %{
6638     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6639   %}
6640   ins_pipe(ialu_reg);
6641 %}
6642 
6643 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6644   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6645             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6646   match(Set dst (DecodeN src));
6647   format %{ "decode_heap_oop $src, $dst" %}
6648   ins_encode %{
6649     __ decode_heap_oop($src$$Register, $dst$$Register);
6650   %}
6651   ins_pipe(ialu_reg);
6652 %}
6653 
6654 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6655   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6656             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6657   match(Set dst (DecodeN src));
6658   format %{ "decode_heap_oop_not_null $src, $dst" %}
6659   ins_encode %{
6660     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6661   %}
6662   ins_pipe(ialu_reg);
6663 %}
6664 
6665 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6666   match(Set dst (EncodePKlass src));
6667   format %{ "encode_klass_not_null $src, $dst" %}
6668   ins_encode %{
6669     __ encode_klass_not_null($src$$Register, $dst$$Register);
6670   %}
6671   ins_pipe(ialu_reg);
6672 %}
6673 
6674 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6675   match(Set dst (DecodeNKlass src));
6676   format %{ "decode_klass_not_null $src, $dst" %}
6677   ins_encode %{
6678     __ decode_klass_not_null($src$$Register, $dst$$Register);
6679   %}
6680   ins_pipe(ialu_reg);
6681 %}
6682 
6683 //----------MemBar Instructions-----------------------------------------------
6684 // Memory barrier flavors
6685 
6686 instruct membar_acquire() %{
6687   match(MemBarAcquire);
6688   match(LoadFence);
6689   ins_cost(4*MEMORY_REF_COST);
6690 
6691   size(0);
6692   format %{ "MEMBAR-acquire" %}
6693   ins_encode( enc_membar_acquire );
6694   ins_pipe(long_memory_op);
6695 %}
6696 
6697 instruct membar_acquire_lock() %{
6698   match(MemBarAcquireLock);
6699   ins_cost(0);
6700 
6701   size(0);
6702   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6703   ins_encode( );
6704   ins_pipe(empty);
6705 %}
6706 
6707 instruct membar_release() %{
6708   match(MemBarRelease);
6709   match(StoreFence);
6710   ins_cost(4*MEMORY_REF_COST);
6711 
6712   size(0);
6713   format %{ "MEMBAR-release" %}
6714   ins_encode( enc_membar_release );
6715   ins_pipe(long_memory_op);
6716 %}
6717 
6718 instruct membar_release_lock() %{
6719   match(MemBarReleaseLock);
6720   ins_cost(0);
6721 
6722   size(0);
6723   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6724   ins_encode( );
6725   ins_pipe(empty);
6726 %}
6727 
6728 instruct membar_volatile() %{
6729   match(MemBarVolatile);
6730   ins_cost(4*MEMORY_REF_COST);
6731 
6732   size(4);
6733   format %{ "MEMBAR-volatile" %}
6734   ins_encode( enc_membar_volatile );
6735   ins_pipe(long_memory_op);
6736 %}
6737 
6738 instruct unnecessary_membar_volatile() %{
6739   match(MemBarVolatile);
6740   predicate(Matcher::post_store_load_barrier(n));
6741   ins_cost(0);
6742 
6743   size(0);
6744   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6745   ins_encode( );
6746   ins_pipe(empty);
6747 %}
6748 
6749 instruct membar_storestore() %{
6750   match(MemBarStoreStore);
6751   ins_cost(0);
6752 
6753   size(0);
6754   format %{ "!MEMBAR-storestore (empty encoding)" %}
6755   ins_encode( );
6756   ins_pipe(empty);
6757 %}
6758 
6759 //----------Register Move Instructions-----------------------------------------
6760 instruct roundDouble_nop(regD dst) %{
6761   match(Set dst (RoundDouble dst));
6762   ins_cost(0);
6763   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6764   ins_encode( );
6765   ins_pipe(empty);
6766 %}
6767 
6768 
6769 instruct roundFloat_nop(regF dst) %{
6770   match(Set dst (RoundFloat dst));
6771   ins_cost(0);
6772   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6773   ins_encode( );
6774   ins_pipe(empty);
6775 %}
6776 
6777 
6778 // Cast Index to Pointer for unsafe natives
6779 instruct castX2P(iRegX src, iRegP dst) %{
6780   match(Set dst (CastX2P src));
6781 
6782   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6783   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6784   ins_pipe(ialu_reg);
6785 %}
6786 
6787 // Cast Pointer to Index for unsafe natives
6788 instruct castP2X(iRegP src, iRegX dst) %{
6789   match(Set dst (CastP2X src));
6790 
6791   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6792   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6793   ins_pipe(ialu_reg);
6794 %}
6795 
6796 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6797   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6798   match(Set stkSlot src);   // chain rule
6799   ins_cost(MEMORY_REF_COST);
6800   format %{ "STDF   $src,$stkSlot\t!stk" %}
6801   opcode(Assembler::stdf_op3);
6802   ins_encode(simple_form3_mem_reg(stkSlot, src));
6803   ins_pipe(fstoreD_stk_reg);
6804 %}
6805 
6806 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6807   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6808   match(Set dst stkSlot);   // chain rule
6809   ins_cost(MEMORY_REF_COST);
6810   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6811   opcode(Assembler::lddf_op3);
6812   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6813   ins_pipe(floadD_stk);
6814 %}
6815 
6816 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6817   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6818   match(Set stkSlot src);   // chain rule
6819   ins_cost(MEMORY_REF_COST);
6820   format %{ "STF   $src,$stkSlot\t!stk" %}
6821   opcode(Assembler::stf_op3);
6822   ins_encode(simple_form3_mem_reg(stkSlot, src));
6823   ins_pipe(fstoreF_stk_reg);
6824 %}
6825 
6826 //----------Conditional Move---------------------------------------------------
6827 // Conditional move
6828 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6829   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6830   ins_cost(150);
6831   format %{ "MOV$cmp $pcc,$src,$dst" %}
6832   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6833   ins_pipe(ialu_reg);
6834 %}
6835 
6836 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6837   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6838   ins_cost(140);
6839   format %{ "MOV$cmp $pcc,$src,$dst" %}
6840   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6841   ins_pipe(ialu_imm);
6842 %}
6843 
6844 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6845   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6846   ins_cost(150);
6847   size(4);
6848   format %{ "MOV$cmp  $icc,$src,$dst" %}
6849   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6850   ins_pipe(ialu_reg);
6851 %}
6852 
6853 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6854   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6855   ins_cost(140);
6856   size(4);
6857   format %{ "MOV$cmp  $icc,$src,$dst" %}
6858   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6859   ins_pipe(ialu_imm);
6860 %}
6861 
6862 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6863   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6864   ins_cost(150);
6865   size(4);
6866   format %{ "MOV$cmp  $icc,$src,$dst" %}
6867   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6868   ins_pipe(ialu_reg);
6869 %}
6870 
6871 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6872   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6873   ins_cost(140);
6874   size(4);
6875   format %{ "MOV$cmp  $icc,$src,$dst" %}
6876   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6877   ins_pipe(ialu_imm);
6878 %}
6879 
6880 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6881   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6882   ins_cost(150);
6883   size(4);
6884   format %{ "MOV$cmp $fcc,$src,$dst" %}
6885   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6886   ins_pipe(ialu_reg);
6887 %}
6888 
6889 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6890   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6891   ins_cost(140);
6892   size(4);
6893   format %{ "MOV$cmp $fcc,$src,$dst" %}
6894   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6895   ins_pipe(ialu_imm);
6896 %}
6897 
6898 // Conditional move for RegN. Only cmov(reg,reg).
6899 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6900   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6901   ins_cost(150);
6902   format %{ "MOV$cmp $pcc,$src,$dst" %}
6903   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6904   ins_pipe(ialu_reg);
6905 %}
6906 
6907 // This instruction also works with CmpN so we don't need cmovNN_reg.
6908 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6909   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6910   ins_cost(150);
6911   size(4);
6912   format %{ "MOV$cmp  $icc,$src,$dst" %}
6913   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6914   ins_pipe(ialu_reg);
6915 %}
6916 
6917 // This instruction also works with CmpN so we don't need cmovNN_reg.
6918 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6919   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6920   ins_cost(150);
6921   size(4);
6922   format %{ "MOV$cmp  $icc,$src,$dst" %}
6923   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6924   ins_pipe(ialu_reg);
6925 %}
6926 
6927 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6928   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6929   ins_cost(150);
6930   size(4);
6931   format %{ "MOV$cmp $fcc,$src,$dst" %}
6932   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6933   ins_pipe(ialu_reg);
6934 %}
6935 
6936 // Conditional move
6937 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6938   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6939   ins_cost(150);
6940   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6941   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6942   ins_pipe(ialu_reg);
6943 %}
6944 
6945 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6946   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6947   ins_cost(140);
6948   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6949   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6950   ins_pipe(ialu_imm);
6951 %}
6952 
6953 // This instruction also works with CmpN so we don't need cmovPN_reg.
6954 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6955   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6956   ins_cost(150);
6957 
6958   size(4);
6959   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6960   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6961   ins_pipe(ialu_reg);
6962 %}
6963 
6964 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6965   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6966   ins_cost(150);
6967 
6968   size(4);
6969   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6970   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6971   ins_pipe(ialu_reg);
6972 %}
6973 
6974 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6975   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6976   ins_cost(140);
6977 
6978   size(4);
6979   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6980   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6981   ins_pipe(ialu_imm);
6982 %}
6983 
6984 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6985   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6986   ins_cost(140);
6987 
6988   size(4);
6989   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6990   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6991   ins_pipe(ialu_imm);
6992 %}
6993 
6994 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6995   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6996   ins_cost(150);
6997   size(4);
6998   format %{ "MOV$cmp $fcc,$src,$dst" %}
6999   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7000   ins_pipe(ialu_imm);
7001 %}
7002 
7003 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
7004   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7005   ins_cost(140);
7006   size(4);
7007   format %{ "MOV$cmp $fcc,$src,$dst" %}
7008   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
7009   ins_pipe(ialu_imm);
7010 %}
7011 
7012 // Conditional move
7013 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
7014   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
7015   ins_cost(150);
7016   opcode(0x101);
7017   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7018   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7019   ins_pipe(int_conditional_float_move);
7020 %}
7021 
7022 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
7023   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7024   ins_cost(150);
7025 
7026   size(4);
7027   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7028   opcode(0x101);
7029   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7030   ins_pipe(int_conditional_float_move);
7031 %}
7032 
7033 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7034   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7035   ins_cost(150);
7036 
7037   size(4);
7038   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7039   opcode(0x101);
7040   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7041   ins_pipe(int_conditional_float_move);
7042 %}
7043 
7044 // Conditional move,
7045 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7046   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7047   ins_cost(150);
7048   size(4);
7049   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7050   opcode(0x1);
7051   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7052   ins_pipe(int_conditional_double_move);
7053 %}
7054 
7055 // Conditional move
7056 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7057   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7058   ins_cost(150);
7059   size(4);
7060   opcode(0x102);
7061   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7062   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7063   ins_pipe(int_conditional_double_move);
7064 %}
7065 
7066 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7067   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7068   ins_cost(150);
7069 
7070   size(4);
7071   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7072   opcode(0x102);
7073   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7074   ins_pipe(int_conditional_double_move);
7075 %}
7076 
7077 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7078   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7079   ins_cost(150);
7080 
7081   size(4);
7082   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7083   opcode(0x102);
7084   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7085   ins_pipe(int_conditional_double_move);
7086 %}
7087 
7088 // Conditional move,
7089 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7090   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7091   ins_cost(150);
7092   size(4);
7093   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7094   opcode(0x2);
7095   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7096   ins_pipe(int_conditional_double_move);
7097 %}
7098 
7099 // Conditional move
7100 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7101   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7102   ins_cost(150);
7103   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7104   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7105   ins_pipe(ialu_reg);
7106 %}
7107 
7108 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7109   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7110   ins_cost(140);
7111   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7112   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7113   ins_pipe(ialu_imm);
7114 %}
7115 
7116 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7117   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7118   ins_cost(150);
7119 
7120   size(4);
7121   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7122   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7123   ins_pipe(ialu_reg);
7124 %}
7125 
7126 
7127 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7128   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7129   ins_cost(150);
7130 
7131   size(4);
7132   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7133   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7134   ins_pipe(ialu_reg);
7135 %}
7136 
7137 
7138 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7139   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7140   ins_cost(150);
7141 
7142   size(4);
7143   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7144   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7145   ins_pipe(ialu_reg);
7146 %}
7147 
7148 
7149 
7150 //----------OS and Locking Instructions----------------------------------------
7151 
7152 // This name is KNOWN by the ADLC and cannot be changed.
7153 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7154 // for this guy.
7155 instruct tlsLoadP(g2RegP dst) %{
7156   match(Set dst (ThreadLocal));
7157 
7158   size(0);
7159   ins_cost(0);
7160   format %{ "# TLS is in G2" %}
7161   ins_encode( /*empty encoding*/ );
7162   ins_pipe(ialu_none);
7163 %}
7164 
7165 instruct checkCastPP( iRegP dst ) %{
7166   match(Set dst (CheckCastPP dst));
7167 
7168   size(0);
7169   format %{ "# checkcastPP of $dst" %}
7170   ins_encode( /*empty encoding*/ );
7171   ins_pipe(empty);
7172 %}
7173 
7174 
7175 instruct castPP( iRegP dst ) %{
7176   match(Set dst (CastPP dst));
7177   format %{ "# castPP of $dst" %}
7178   ins_encode( /*empty encoding*/ );
7179   ins_pipe(empty);
7180 %}
7181 
7182 instruct castII( iRegI dst ) %{
7183   match(Set dst (CastII dst));
7184   format %{ "# castII of $dst" %}
7185   ins_encode( /*empty encoding*/ );
7186   ins_cost(0);
7187   ins_pipe(empty);
7188 %}
7189 
7190 //----------Arithmetic Instructions--------------------------------------------
7191 // Addition Instructions
7192 // Register Addition
7193 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7194   match(Set dst (AddI src1 src2));
7195 
7196   size(4);
7197   format %{ "ADD    $src1,$src2,$dst" %}
7198   ins_encode %{
7199     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7200   %}
7201   ins_pipe(ialu_reg_reg);
7202 %}
7203 
7204 // Immediate Addition
7205 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7206   match(Set dst (AddI src1 src2));
7207 
7208   size(4);
7209   format %{ "ADD    $src1,$src2,$dst" %}
7210   opcode(Assembler::add_op3, Assembler::arith_op);
7211   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7212   ins_pipe(ialu_reg_imm);
7213 %}
7214 
7215 // Pointer Register Addition
7216 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7217   match(Set dst (AddP src1 src2));
7218 
7219   size(4);
7220   format %{ "ADD    $src1,$src2,$dst" %}
7221   opcode(Assembler::add_op3, Assembler::arith_op);
7222   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7223   ins_pipe(ialu_reg_reg);
7224 %}
7225 
7226 // Pointer Immediate Addition
7227 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7228   match(Set dst (AddP src1 src2));
7229 
7230   size(4);
7231   format %{ "ADD    $src1,$src2,$dst" %}
7232   opcode(Assembler::add_op3, Assembler::arith_op);
7233   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7234   ins_pipe(ialu_reg_imm);
7235 %}
7236 
7237 // Long Addition
7238 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7239   match(Set dst (AddL src1 src2));
7240 
7241   size(4);
7242   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7243   opcode(Assembler::add_op3, Assembler::arith_op);
7244   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7245   ins_pipe(ialu_reg_reg);
7246 %}
7247 
7248 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7249   match(Set dst (AddL src1 con));
7250 
7251   size(4);
7252   format %{ "ADD    $src1,$con,$dst" %}
7253   opcode(Assembler::add_op3, Assembler::arith_op);
7254   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7255   ins_pipe(ialu_reg_imm);
7256 %}
7257 
7258 //----------Conditional_store--------------------------------------------------
7259 // Conditional-store of the updated heap-top.
7260 // Used during allocation of the shared heap.
7261 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7262 
7263 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7264 instruct loadPLocked(iRegP dst, memory mem) %{
7265   match(Set dst (LoadPLocked mem));
7266   ins_cost(MEMORY_REF_COST);
7267 
7268 #ifndef _LP64
7269   size(4);
7270   format %{ "LDUW   $mem,$dst\t! ptr" %}
7271   opcode(Assembler::lduw_op3, 0, REGP_OP);
7272 #else
7273   format %{ "LDX    $mem,$dst\t! ptr" %}
7274   opcode(Assembler::ldx_op3, 0, REGP_OP);
7275 #endif
7276   ins_encode( form3_mem_reg( mem, dst ) );
7277   ins_pipe(iload_mem);
7278 %}
7279 
7280 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7281   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7282   effect( KILL newval );
7283   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7284             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7285   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7286   ins_pipe( long_memory_op );
7287 %}
7288 
7289 // Conditional-store of an int value.
7290 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7291   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7292   effect( KILL newval );
7293   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7294             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7295   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7296   ins_pipe( long_memory_op );
7297 %}
7298 
7299 // Conditional-store of a long value.
7300 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7301   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7302   effect( KILL newval );
7303   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7304             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7305   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7306   ins_pipe( long_memory_op );
7307 %}
7308 
7309 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7310 
7311 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7312   predicate(VM_Version::supports_cx8());
7313   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7314   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7315   format %{
7316             "MOV    $newval,O7\n\t"
7317             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7318             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7319             "MOV    1,$res\n\t"
7320             "MOVne  xcc,R_G0,$res"
7321   %}
7322   ins_encode( enc_casx(mem_ptr, oldval, newval),
7323               enc_lflags_ne_to_boolean(res) );
7324   ins_pipe( long_memory_op );
7325 %}
7326 
7327 
7328 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7329   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7330   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7331   format %{
7332             "MOV    $newval,O7\n\t"
7333             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7334             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7335             "MOV    1,$res\n\t"
7336             "MOVne  icc,R_G0,$res"
7337   %}
7338   ins_encode( enc_casi(mem_ptr, oldval, newval),
7339               enc_iflags_ne_to_boolean(res) );
7340   ins_pipe( long_memory_op );
7341 %}
7342 
7343 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7344 #ifdef _LP64
7345   predicate(VM_Version::supports_cx8());
7346 #endif
7347   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7348   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7349   format %{
7350             "MOV    $newval,O7\n\t"
7351             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7352             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7353             "MOV    1,$res\n\t"
7354             "MOVne  xcc,R_G0,$res"
7355   %}
7356 #ifdef _LP64
7357   ins_encode( enc_casx(mem_ptr, oldval, newval),
7358               enc_lflags_ne_to_boolean(res) );
7359 #else
7360   ins_encode( enc_casi(mem_ptr, oldval, newval),
7361               enc_iflags_ne_to_boolean(res) );
7362 #endif
7363   ins_pipe( long_memory_op );
7364 %}
7365 
7366 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7367   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7368   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7369   format %{
7370             "MOV    $newval,O7\n\t"
7371             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7372             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7373             "MOV    1,$res\n\t"
7374             "MOVne  icc,R_G0,$res"
7375   %}
7376   ins_encode( enc_casi(mem_ptr, oldval, newval),
7377               enc_iflags_ne_to_boolean(res) );
7378   ins_pipe( long_memory_op );
7379 %}
7380 
7381 instruct xchgI( memory mem, iRegI newval) %{
7382   match(Set newval (GetAndSetI mem newval));
7383   format %{ "SWAP  [$mem],$newval" %}
7384   size(4);
7385   ins_encode %{
7386     __ swap($mem$$Address, $newval$$Register);
7387   %}
7388   ins_pipe( long_memory_op );
7389 %}
7390 
7391 #ifndef _LP64
7392 instruct xchgP( memory mem, iRegP newval) %{
7393   match(Set newval (GetAndSetP mem newval));
7394   format %{ "SWAP  [$mem],$newval" %}
7395   size(4);
7396   ins_encode %{
7397     __ swap($mem$$Address, $newval$$Register);
7398   %}
7399   ins_pipe( long_memory_op );
7400 %}
7401 #endif
7402 
7403 instruct xchgN( memory mem, iRegN newval) %{
7404   match(Set newval (GetAndSetN mem newval));
7405   format %{ "SWAP  [$mem],$newval" %}
7406   size(4);
7407   ins_encode %{
7408     __ swap($mem$$Address, $newval$$Register);
7409   %}
7410   ins_pipe( long_memory_op );
7411 %}
7412 
7413 //---------------------
7414 // Subtraction Instructions
7415 // Register Subtraction
7416 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7417   match(Set dst (SubI src1 src2));
7418 
7419   size(4);
7420   format %{ "SUB    $src1,$src2,$dst" %}
7421   opcode(Assembler::sub_op3, Assembler::arith_op);
7422   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7423   ins_pipe(ialu_reg_reg);
7424 %}
7425 
7426 // Immediate Subtraction
7427 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7428   match(Set dst (SubI src1 src2));
7429 
7430   size(4);
7431   format %{ "SUB    $src1,$src2,$dst" %}
7432   opcode(Assembler::sub_op3, Assembler::arith_op);
7433   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7434   ins_pipe(ialu_reg_imm);
7435 %}
7436 
7437 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7438   match(Set dst (SubI zero src2));
7439 
7440   size(4);
7441   format %{ "NEG    $src2,$dst" %}
7442   opcode(Assembler::sub_op3, Assembler::arith_op);
7443   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7444   ins_pipe(ialu_zero_reg);
7445 %}
7446 
7447 // Long subtraction
7448 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7449   match(Set dst (SubL src1 src2));
7450 
7451   size(4);
7452   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7453   opcode(Assembler::sub_op3, Assembler::arith_op);
7454   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7455   ins_pipe(ialu_reg_reg);
7456 %}
7457 
7458 // Immediate Subtraction
7459 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7460   match(Set dst (SubL src1 con));
7461 
7462   size(4);
7463   format %{ "SUB    $src1,$con,$dst\t! long" %}
7464   opcode(Assembler::sub_op3, Assembler::arith_op);
7465   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7466   ins_pipe(ialu_reg_imm);
7467 %}
7468 
7469 // Long negation
7470 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7471   match(Set dst (SubL zero src2));
7472 
7473   size(4);
7474   format %{ "NEG    $src2,$dst\t! long" %}
7475   opcode(Assembler::sub_op3, Assembler::arith_op);
7476   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7477   ins_pipe(ialu_zero_reg);
7478 %}
7479 
7480 // Multiplication Instructions
7481 // Integer Multiplication
7482 // Register Multiplication
7483 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7484   match(Set dst (MulI src1 src2));
7485 
7486   size(4);
7487   format %{ "MULX   $src1,$src2,$dst" %}
7488   opcode(Assembler::mulx_op3, Assembler::arith_op);
7489   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7490   ins_pipe(imul_reg_reg);
7491 %}
7492 
7493 // Immediate Multiplication
7494 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7495   match(Set dst (MulI src1 src2));
7496 
7497   size(4);
7498   format %{ "MULX   $src1,$src2,$dst" %}
7499   opcode(Assembler::mulx_op3, Assembler::arith_op);
7500   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7501   ins_pipe(imul_reg_imm);
7502 %}
7503 
7504 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7505   match(Set dst (MulL src1 src2));
7506   ins_cost(DEFAULT_COST * 5);
7507   size(4);
7508   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7509   opcode(Assembler::mulx_op3, Assembler::arith_op);
7510   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7511   ins_pipe(mulL_reg_reg);
7512 %}
7513 
7514 // Immediate Multiplication
7515 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7516   match(Set dst (MulL src1 src2));
7517   ins_cost(DEFAULT_COST * 5);
7518   size(4);
7519   format %{ "MULX   $src1,$src2,$dst" %}
7520   opcode(Assembler::mulx_op3, Assembler::arith_op);
7521   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7522   ins_pipe(mulL_reg_imm);
7523 %}
7524 
7525 // Integer Division
7526 // Register Division
7527 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7528   match(Set dst (DivI src1 src2));
7529   ins_cost((2+71)*DEFAULT_COST);
7530 
7531   format %{ "SRA     $src2,0,$src2\n\t"
7532             "SRA     $src1,0,$src1\n\t"
7533             "SDIVX   $src1,$src2,$dst" %}
7534   ins_encode( idiv_reg( src1, src2, dst ) );
7535   ins_pipe(sdiv_reg_reg);
7536 %}
7537 
7538 // Immediate Division
7539 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7540   match(Set dst (DivI src1 src2));
7541   ins_cost((2+71)*DEFAULT_COST);
7542 
7543   format %{ "SRA     $src1,0,$src1\n\t"
7544             "SDIVX   $src1,$src2,$dst" %}
7545   ins_encode( idiv_imm( src1, src2, dst ) );
7546   ins_pipe(sdiv_reg_imm);
7547 %}
7548 
7549 //----------Div-By-10-Expansion------------------------------------------------
7550 // Extract hi bits of a 32x32->64 bit multiply.
7551 // Expand rule only, not matched
7552 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7553   effect( DEF dst, USE src1, USE src2 );
7554   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7555             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7556   ins_encode( enc_mul_hi(dst,src1,src2));
7557   ins_pipe(sdiv_reg_reg);
7558 %}
7559 
7560 // Magic constant, reciprocal of 10
7561 instruct loadConI_x66666667(iRegIsafe dst) %{
7562   effect( DEF dst );
7563 
7564   size(8);
7565   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7566   ins_encode( Set32(0x66666667, dst) );
7567   ins_pipe(ialu_hi_lo_reg);
7568 %}
7569 
7570 // Register Shift Right Arithmetic Long by 32-63
7571 instruct sra_31( iRegI dst, iRegI src ) %{
7572   effect( DEF dst, USE src );
7573   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7574   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7575   ins_pipe(ialu_reg_reg);
7576 %}
7577 
7578 // Arithmetic Shift Right by 8-bit immediate
7579 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7580   effect( DEF dst, USE src );
7581   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7582   opcode(Assembler::sra_op3, Assembler::arith_op);
7583   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7584   ins_pipe(ialu_reg_imm);
7585 %}
7586 
7587 // Integer DIV with 10
7588 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7589   match(Set dst (DivI src div));
7590   ins_cost((6+6)*DEFAULT_COST);
7591   expand %{
7592     iRegIsafe tmp1;               // Killed temps;
7593     iRegIsafe tmp2;               // Killed temps;
7594     iRegI tmp3;                   // Killed temps;
7595     iRegI tmp4;                   // Killed temps;
7596     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7597     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7598     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7599     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7600     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7601   %}
7602 %}
7603 
7604 // Register Long Division
7605 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7606   match(Set dst (DivL src1 src2));
7607   ins_cost(DEFAULT_COST*71);
7608   size(4);
7609   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7610   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7611   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7612   ins_pipe(divL_reg_reg);
7613 %}
7614 
7615 // Register Long Division
7616 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7617   match(Set dst (DivL src1 src2));
7618   ins_cost(DEFAULT_COST*71);
7619   size(4);
7620   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7621   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7622   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7623   ins_pipe(divL_reg_imm);
7624 %}
7625 
7626 // Integer Remainder
7627 // Register Remainder
7628 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7629   match(Set dst (ModI src1 src2));
7630   effect( KILL ccr, KILL temp);
7631 
7632   format %{ "SREM   $src1,$src2,$dst" %}
7633   ins_encode( irem_reg(src1, src2, dst, temp) );
7634   ins_pipe(sdiv_reg_reg);
7635 %}
7636 
7637 // Immediate Remainder
7638 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7639   match(Set dst (ModI src1 src2));
7640   effect( KILL ccr, KILL temp);
7641 
7642   format %{ "SREM   $src1,$src2,$dst" %}
7643   ins_encode( irem_imm(src1, src2, dst, temp) );
7644   ins_pipe(sdiv_reg_imm);
7645 %}
7646 
7647 // Register Long Remainder
7648 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7649   effect(DEF dst, USE src1, USE src2);
7650   size(4);
7651   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7652   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7653   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7654   ins_pipe(divL_reg_reg);
7655 %}
7656 
7657 // Register Long Division
7658 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7659   effect(DEF dst, USE src1, USE src2);
7660   size(4);
7661   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7662   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7663   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7664   ins_pipe(divL_reg_imm);
7665 %}
7666 
7667 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7668   effect(DEF dst, USE src1, USE src2);
7669   size(4);
7670   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7671   opcode(Assembler::mulx_op3, Assembler::arith_op);
7672   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7673   ins_pipe(mulL_reg_reg);
7674 %}
7675 
7676 // Immediate Multiplication
7677 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7678   effect(DEF dst, USE src1, USE src2);
7679   size(4);
7680   format %{ "MULX   $src1,$src2,$dst" %}
7681   opcode(Assembler::mulx_op3, Assembler::arith_op);
7682   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7683   ins_pipe(mulL_reg_imm);
7684 %}
7685 
7686 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7687   effect(DEF dst, USE src1, USE src2);
7688   size(4);
7689   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7690   opcode(Assembler::sub_op3, Assembler::arith_op);
7691   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7692   ins_pipe(ialu_reg_reg);
7693 %}
7694 
7695 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7696   effect(DEF dst, USE src1, USE src2);
7697   size(4);
7698   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7699   opcode(Assembler::sub_op3, Assembler::arith_op);
7700   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7701   ins_pipe(ialu_reg_reg);
7702 %}
7703 
7704 // Register Long Remainder
7705 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7706   match(Set dst (ModL src1 src2));
7707   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7708   expand %{
7709     iRegL tmp1;
7710     iRegL tmp2;
7711     divL_reg_reg_1(tmp1, src1, src2);
7712     mulL_reg_reg_1(tmp2, tmp1, src2);
7713     subL_reg_reg_1(dst,  src1, tmp2);
7714   %}
7715 %}
7716 
7717 // Register Long Remainder
7718 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7719   match(Set dst (ModL src1 src2));
7720   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7721   expand %{
7722     iRegL tmp1;
7723     iRegL tmp2;
7724     divL_reg_imm13_1(tmp1, src1, src2);
7725     mulL_reg_imm13_1(tmp2, tmp1, src2);
7726     subL_reg_reg_2  (dst,  src1, tmp2);
7727   %}
7728 %}
7729 
7730 // Integer Shift Instructions
7731 // Register Shift Left
7732 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7733   match(Set dst (LShiftI src1 src2));
7734 
7735   size(4);
7736   format %{ "SLL    $src1,$src2,$dst" %}
7737   opcode(Assembler::sll_op3, Assembler::arith_op);
7738   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7739   ins_pipe(ialu_reg_reg);
7740 %}
7741 
7742 // Register Shift Left Immediate
7743 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7744   match(Set dst (LShiftI src1 src2));
7745 
7746   size(4);
7747   format %{ "SLL    $src1,$src2,$dst" %}
7748   opcode(Assembler::sll_op3, Assembler::arith_op);
7749   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7750   ins_pipe(ialu_reg_imm);
7751 %}
7752 
7753 // Register Shift Left
7754 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7755   match(Set dst (LShiftL src1 src2));
7756 
7757   size(4);
7758   format %{ "SLLX   $src1,$src2,$dst" %}
7759   opcode(Assembler::sllx_op3, Assembler::arith_op);
7760   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7761   ins_pipe(ialu_reg_reg);
7762 %}
7763 
7764 // Register Shift Left Immediate
7765 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7766   match(Set dst (LShiftL src1 src2));
7767 
7768   size(4);
7769   format %{ "SLLX   $src1,$src2,$dst" %}
7770   opcode(Assembler::sllx_op3, Assembler::arith_op);
7771   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7772   ins_pipe(ialu_reg_imm);
7773 %}
7774 
7775 // Register Arithmetic Shift Right
7776 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7777   match(Set dst (RShiftI src1 src2));
7778   size(4);
7779   format %{ "SRA    $src1,$src2,$dst" %}
7780   opcode(Assembler::sra_op3, Assembler::arith_op);
7781   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7782   ins_pipe(ialu_reg_reg);
7783 %}
7784 
7785 // Register Arithmetic Shift Right Immediate
7786 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7787   match(Set dst (RShiftI src1 src2));
7788 
7789   size(4);
7790   format %{ "SRA    $src1,$src2,$dst" %}
7791   opcode(Assembler::sra_op3, Assembler::arith_op);
7792   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7793   ins_pipe(ialu_reg_imm);
7794 %}
7795 
7796 // Register Shift Right Arithmatic Long
7797 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7798   match(Set dst (RShiftL src1 src2));
7799 
7800   size(4);
7801   format %{ "SRAX   $src1,$src2,$dst" %}
7802   opcode(Assembler::srax_op3, Assembler::arith_op);
7803   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7804   ins_pipe(ialu_reg_reg);
7805 %}
7806 
7807 // Register Shift Left Immediate
7808 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7809   match(Set dst (RShiftL src1 src2));
7810 
7811   size(4);
7812   format %{ "SRAX   $src1,$src2,$dst" %}
7813   opcode(Assembler::srax_op3, Assembler::arith_op);
7814   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7815   ins_pipe(ialu_reg_imm);
7816 %}
7817 
7818 // Register Shift Right
7819 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7820   match(Set dst (URShiftI src1 src2));
7821 
7822   size(4);
7823   format %{ "SRL    $src1,$src2,$dst" %}
7824   opcode(Assembler::srl_op3, Assembler::arith_op);
7825   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7826   ins_pipe(ialu_reg_reg);
7827 %}
7828 
7829 // Register Shift Right Immediate
7830 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7831   match(Set dst (URShiftI src1 src2));
7832 
7833   size(4);
7834   format %{ "SRL    $src1,$src2,$dst" %}
7835   opcode(Assembler::srl_op3, Assembler::arith_op);
7836   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7837   ins_pipe(ialu_reg_imm);
7838 %}
7839 
7840 // Register Shift Right
7841 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7842   match(Set dst (URShiftL src1 src2));
7843 
7844   size(4);
7845   format %{ "SRLX   $src1,$src2,$dst" %}
7846   opcode(Assembler::srlx_op3, Assembler::arith_op);
7847   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7848   ins_pipe(ialu_reg_reg);
7849 %}
7850 
7851 // Register Shift Right Immediate
7852 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7853   match(Set dst (URShiftL src1 src2));
7854 
7855   size(4);
7856   format %{ "SRLX   $src1,$src2,$dst" %}
7857   opcode(Assembler::srlx_op3, Assembler::arith_op);
7858   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7859   ins_pipe(ialu_reg_imm);
7860 %}
7861 
7862 // Register Shift Right Immediate with a CastP2X
7863 #ifdef _LP64
7864 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7865   match(Set dst (URShiftL (CastP2X src1) src2));
7866   size(4);
7867   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7868   opcode(Assembler::srlx_op3, Assembler::arith_op);
7869   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7870   ins_pipe(ialu_reg_imm);
7871 %}
7872 #else
7873 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7874   match(Set dst (URShiftI (CastP2X src1) src2));
7875   size(4);
7876   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7877   opcode(Assembler::srl_op3, Assembler::arith_op);
7878   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7879   ins_pipe(ialu_reg_imm);
7880 %}
7881 #endif
7882 
7883 
7884 //----------Floating Point Arithmetic Instructions-----------------------------
7885 
7886 //  Add float single precision
7887 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7888   match(Set dst (AddF src1 src2));
7889 
7890   size(4);
7891   format %{ "FADDS  $src1,$src2,$dst" %}
7892   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7893   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7894   ins_pipe(faddF_reg_reg);
7895 %}
7896 
7897 //  Add float double precision
7898 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7899   match(Set dst (AddD src1 src2));
7900 
7901   size(4);
7902   format %{ "FADDD  $src1,$src2,$dst" %}
7903   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7904   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7905   ins_pipe(faddD_reg_reg);
7906 %}
7907 
7908 //  Sub float single precision
7909 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7910   match(Set dst (SubF src1 src2));
7911 
7912   size(4);
7913   format %{ "FSUBS  $src1,$src2,$dst" %}
7914   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7915   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7916   ins_pipe(faddF_reg_reg);
7917 %}
7918 
7919 //  Sub float double precision
7920 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7921   match(Set dst (SubD src1 src2));
7922 
7923   size(4);
7924   format %{ "FSUBD  $src1,$src2,$dst" %}
7925   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7926   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7927   ins_pipe(faddD_reg_reg);
7928 %}
7929 
7930 //  Mul float single precision
7931 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7932   match(Set dst (MulF src1 src2));
7933 
7934   size(4);
7935   format %{ "FMULS  $src1,$src2,$dst" %}
7936   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7937   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7938   ins_pipe(fmulF_reg_reg);
7939 %}
7940 
7941 //  Mul float double precision
7942 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7943   match(Set dst (MulD src1 src2));
7944 
7945   size(4);
7946   format %{ "FMULD  $src1,$src2,$dst" %}
7947   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7948   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7949   ins_pipe(fmulD_reg_reg);
7950 %}
7951 
7952 //  Div float single precision
7953 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7954   match(Set dst (DivF src1 src2));
7955 
7956   size(4);
7957   format %{ "FDIVS  $src1,$src2,$dst" %}
7958   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7959   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7960   ins_pipe(fdivF_reg_reg);
7961 %}
7962 
7963 //  Div float double precision
7964 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7965   match(Set dst (DivD src1 src2));
7966 
7967   size(4);
7968   format %{ "FDIVD  $src1,$src2,$dst" %}
7969   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7970   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7971   ins_pipe(fdivD_reg_reg);
7972 %}
7973 
7974 //  Absolute float double precision
7975 instruct absD_reg(regD dst, regD src) %{
7976   match(Set dst (AbsD src));
7977 
7978   format %{ "FABSd  $src,$dst" %}
7979   ins_encode(fabsd(dst, src));
7980   ins_pipe(faddD_reg);
7981 %}
7982 
7983 //  Absolute float single precision
7984 instruct absF_reg(regF dst, regF src) %{
7985   match(Set dst (AbsF src));
7986 
7987   format %{ "FABSs  $src,$dst" %}
7988   ins_encode(fabss(dst, src));
7989   ins_pipe(faddF_reg);
7990 %}
7991 
7992 instruct negF_reg(regF dst, regF src) %{
7993   match(Set dst (NegF src));
7994 
7995   size(4);
7996   format %{ "FNEGs  $src,$dst" %}
7997   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7998   ins_encode(form3_opf_rs2F_rdF(src, dst));
7999   ins_pipe(faddF_reg);
8000 %}
8001 
8002 instruct negD_reg(regD dst, regD src) %{
8003   match(Set dst (NegD src));
8004 
8005   format %{ "FNEGd  $src,$dst" %}
8006   ins_encode(fnegd(dst, src));
8007   ins_pipe(faddD_reg);
8008 %}
8009 
8010 //  Sqrt float double precision
8011 instruct sqrtF_reg_reg(regF dst, regF src) %{
8012   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8013 
8014   size(4);
8015   format %{ "FSQRTS $src,$dst" %}
8016   ins_encode(fsqrts(dst, src));
8017   ins_pipe(fdivF_reg_reg);
8018 %}
8019 
8020 //  Sqrt float double precision
8021 instruct sqrtD_reg_reg(regD dst, regD src) %{
8022   match(Set dst (SqrtD src));
8023 
8024   size(4);
8025   format %{ "FSQRTD $src,$dst" %}
8026   ins_encode(fsqrtd(dst, src));
8027   ins_pipe(fdivD_reg_reg);
8028 %}
8029 
8030 //----------Logical Instructions-----------------------------------------------
8031 // And Instructions
8032 // Register And
8033 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8034   match(Set dst (AndI src1 src2));
8035 
8036   size(4);
8037   format %{ "AND    $src1,$src2,$dst" %}
8038   opcode(Assembler::and_op3, Assembler::arith_op);
8039   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8040   ins_pipe(ialu_reg_reg);
8041 %}
8042 
8043 // Immediate And
8044 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8045   match(Set dst (AndI src1 src2));
8046 
8047   size(4);
8048   format %{ "AND    $src1,$src2,$dst" %}
8049   opcode(Assembler::and_op3, Assembler::arith_op);
8050   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8051   ins_pipe(ialu_reg_imm);
8052 %}
8053 
8054 // Register And Long
8055 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8056   match(Set dst (AndL src1 src2));
8057 
8058   ins_cost(DEFAULT_COST);
8059   size(4);
8060   format %{ "AND    $src1,$src2,$dst\t! long" %}
8061   opcode(Assembler::and_op3, Assembler::arith_op);
8062   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8063   ins_pipe(ialu_reg_reg);
8064 %}
8065 
8066 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8067   match(Set dst (AndL src1 con));
8068 
8069   ins_cost(DEFAULT_COST);
8070   size(4);
8071   format %{ "AND    $src1,$con,$dst\t! long" %}
8072   opcode(Assembler::and_op3, Assembler::arith_op);
8073   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8074   ins_pipe(ialu_reg_imm);
8075 %}
8076 
8077 // Or Instructions
8078 // Register Or
8079 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8080   match(Set dst (OrI src1 src2));
8081 
8082   size(4);
8083   format %{ "OR     $src1,$src2,$dst" %}
8084   opcode(Assembler::or_op3, Assembler::arith_op);
8085   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8086   ins_pipe(ialu_reg_reg);
8087 %}
8088 
8089 // Immediate Or
8090 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8091   match(Set dst (OrI src1 src2));
8092 
8093   size(4);
8094   format %{ "OR     $src1,$src2,$dst" %}
8095   opcode(Assembler::or_op3, Assembler::arith_op);
8096   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8097   ins_pipe(ialu_reg_imm);
8098 %}
8099 
8100 // Register Or Long
8101 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8102   match(Set dst (OrL src1 src2));
8103 
8104   ins_cost(DEFAULT_COST);
8105   size(4);
8106   format %{ "OR     $src1,$src2,$dst\t! long" %}
8107   opcode(Assembler::or_op3, Assembler::arith_op);
8108   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8109   ins_pipe(ialu_reg_reg);
8110 %}
8111 
8112 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8113   match(Set dst (OrL src1 con));
8114   ins_cost(DEFAULT_COST*2);
8115 
8116   ins_cost(DEFAULT_COST);
8117   size(4);
8118   format %{ "OR     $src1,$con,$dst\t! long" %}
8119   opcode(Assembler::or_op3, Assembler::arith_op);
8120   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8121   ins_pipe(ialu_reg_imm);
8122 %}
8123 
8124 #ifndef _LP64
8125 
8126 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8127 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8128   match(Set dst (OrI src1 (CastP2X src2)));
8129 
8130   size(4);
8131   format %{ "OR     $src1,$src2,$dst" %}
8132   opcode(Assembler::or_op3, Assembler::arith_op);
8133   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8134   ins_pipe(ialu_reg_reg);
8135 %}
8136 
8137 #else
8138 
8139 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8140   match(Set dst (OrL src1 (CastP2X src2)));
8141 
8142   ins_cost(DEFAULT_COST);
8143   size(4);
8144   format %{ "OR     $src1,$src2,$dst\t! long" %}
8145   opcode(Assembler::or_op3, Assembler::arith_op);
8146   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8147   ins_pipe(ialu_reg_reg);
8148 %}
8149 
8150 #endif
8151 
8152 // Xor Instructions
8153 // Register Xor
8154 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8155   match(Set dst (XorI src1 src2));
8156 
8157   size(4);
8158   format %{ "XOR    $src1,$src2,$dst" %}
8159   opcode(Assembler::xor_op3, Assembler::arith_op);
8160   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8161   ins_pipe(ialu_reg_reg);
8162 %}
8163 
8164 // Immediate Xor
8165 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8166   match(Set dst (XorI src1 src2));
8167 
8168   size(4);
8169   format %{ "XOR    $src1,$src2,$dst" %}
8170   opcode(Assembler::xor_op3, Assembler::arith_op);
8171   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8172   ins_pipe(ialu_reg_imm);
8173 %}
8174 
8175 // Register Xor Long
8176 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8177   match(Set dst (XorL src1 src2));
8178 
8179   ins_cost(DEFAULT_COST);
8180   size(4);
8181   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8182   opcode(Assembler::xor_op3, Assembler::arith_op);
8183   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8184   ins_pipe(ialu_reg_reg);
8185 %}
8186 
8187 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8188   match(Set dst (XorL src1 con));
8189 
8190   ins_cost(DEFAULT_COST);
8191   size(4);
8192   format %{ "XOR    $src1,$con,$dst\t! long" %}
8193   opcode(Assembler::xor_op3, Assembler::arith_op);
8194   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8195   ins_pipe(ialu_reg_imm);
8196 %}
8197 
8198 //----------Convert to Boolean-------------------------------------------------
8199 // Nice hack for 32-bit tests but doesn't work for
8200 // 64-bit pointers.
8201 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8202   match(Set dst (Conv2B src));
8203   effect( KILL ccr );
8204   ins_cost(DEFAULT_COST*2);
8205   format %{ "CMP    R_G0,$src\n\t"
8206             "ADDX   R_G0,0,$dst" %}
8207   ins_encode( enc_to_bool( src, dst ) );
8208   ins_pipe(ialu_reg_ialu);
8209 %}
8210 
8211 #ifndef _LP64
8212 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8213   match(Set dst (Conv2B src));
8214   effect( KILL ccr );
8215   ins_cost(DEFAULT_COST*2);
8216   format %{ "CMP    R_G0,$src\n\t"
8217             "ADDX   R_G0,0,$dst" %}
8218   ins_encode( enc_to_bool( src, dst ) );
8219   ins_pipe(ialu_reg_ialu);
8220 %}
8221 #else
8222 instruct convP2B( iRegI dst, iRegP src ) %{
8223   match(Set dst (Conv2B src));
8224   ins_cost(DEFAULT_COST*2);
8225   format %{ "MOV    $src,$dst\n\t"
8226             "MOVRNZ $src,1,$dst" %}
8227   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8228   ins_pipe(ialu_clr_and_mover);
8229 %}
8230 #endif
8231 
8232 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8233   match(Set dst (CmpLTMask src zero));
8234   effect(KILL ccr);
8235   size(4);
8236   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8237   ins_encode %{
8238     __ sra($src$$Register, 31, $dst$$Register);
8239   %}
8240   ins_pipe(ialu_reg_imm);
8241 %}
8242 
8243 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8244   match(Set dst (CmpLTMask p q));
8245   effect( KILL ccr );
8246   ins_cost(DEFAULT_COST*4);
8247   format %{ "CMP    $p,$q\n\t"
8248             "MOV    #0,$dst\n\t"
8249             "BLT,a  .+8\n\t"
8250             "MOV    #-1,$dst" %}
8251   ins_encode( enc_ltmask(p,q,dst) );
8252   ins_pipe(ialu_reg_reg_ialu);
8253 %}
8254 
8255 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8256   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8257   effect(KILL ccr, TEMP tmp);
8258   ins_cost(DEFAULT_COST*3);
8259 
8260   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8261             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8262             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8263   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8264   ins_pipe(cadd_cmpltmask);
8265 %}
8266 
8267 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8268   match(Set p (AndI (CmpLTMask p q) y));
8269   effect(KILL ccr);
8270   ins_cost(DEFAULT_COST*3);
8271 
8272   format %{ "CMP  $p,$q\n\t"
8273             "MOV  $y,$p\n\t"
8274             "MOVge G0,$p" %}
8275   ins_encode %{
8276     __ cmp($p$$Register, $q$$Register);
8277     __ mov($y$$Register, $p$$Register);
8278     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8279   %}
8280   ins_pipe(ialu_reg_reg_ialu);
8281 %}
8282 
8283 //-----------------------------------------------------------------
8284 // Direct raw moves between float and general registers using VIS3.
8285 
8286 //  ins_pipe(faddF_reg);
8287 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8288   predicate(UseVIS >= 3);
8289   match(Set dst (MoveF2I src));
8290 
8291   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8292   ins_encode %{
8293     __ movstouw($src$$FloatRegister, $dst$$Register);
8294   %}
8295   ins_pipe(ialu_reg_reg);
8296 %}
8297 
8298 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8299   predicate(UseVIS >= 3);
8300   match(Set dst (MoveI2F src));
8301 
8302   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8303   ins_encode %{
8304     __ movwtos($src$$Register, $dst$$FloatRegister);
8305   %}
8306   ins_pipe(ialu_reg_reg);
8307 %}
8308 
8309 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8310   predicate(UseVIS >= 3);
8311   match(Set dst (MoveD2L src));
8312 
8313   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8314   ins_encode %{
8315     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8316   %}
8317   ins_pipe(ialu_reg_reg);
8318 %}
8319 
8320 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8321   predicate(UseVIS >= 3);
8322   match(Set dst (MoveL2D src));
8323 
8324   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8325   ins_encode %{
8326     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8327   %}
8328   ins_pipe(ialu_reg_reg);
8329 %}
8330 
8331 
8332 // Raw moves between float and general registers using stack.
8333 
8334 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8335   match(Set dst (MoveF2I src));
8336   effect(DEF dst, USE src);
8337   ins_cost(MEMORY_REF_COST);
8338 
8339   size(4);
8340   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8341   opcode(Assembler::lduw_op3);
8342   ins_encode(simple_form3_mem_reg( src, dst ) );
8343   ins_pipe(iload_mem);
8344 %}
8345 
8346 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8347   match(Set dst (MoveI2F src));
8348   effect(DEF dst, USE src);
8349   ins_cost(MEMORY_REF_COST);
8350 
8351   size(4);
8352   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8353   opcode(Assembler::ldf_op3);
8354   ins_encode(simple_form3_mem_reg(src, dst));
8355   ins_pipe(floadF_stk);
8356 %}
8357 
8358 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8359   match(Set dst (MoveD2L src));
8360   effect(DEF dst, USE src);
8361   ins_cost(MEMORY_REF_COST);
8362 
8363   size(4);
8364   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8365   opcode(Assembler::ldx_op3);
8366   ins_encode(simple_form3_mem_reg( src, dst ) );
8367   ins_pipe(iload_mem);
8368 %}
8369 
8370 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8371   match(Set dst (MoveL2D src));
8372   effect(DEF dst, USE src);
8373   ins_cost(MEMORY_REF_COST);
8374 
8375   size(4);
8376   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8377   opcode(Assembler::lddf_op3);
8378   ins_encode(simple_form3_mem_reg(src, dst));
8379   ins_pipe(floadD_stk);
8380 %}
8381 
8382 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8383   match(Set dst (MoveF2I src));
8384   effect(DEF dst, USE src);
8385   ins_cost(MEMORY_REF_COST);
8386 
8387   size(4);
8388   format %{ "STF   $src,$dst\t! MoveF2I" %}
8389   opcode(Assembler::stf_op3);
8390   ins_encode(simple_form3_mem_reg(dst, src));
8391   ins_pipe(fstoreF_stk_reg);
8392 %}
8393 
8394 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8395   match(Set dst (MoveI2F src));
8396   effect(DEF dst, USE src);
8397   ins_cost(MEMORY_REF_COST);
8398 
8399   size(4);
8400   format %{ "STW    $src,$dst\t! MoveI2F" %}
8401   opcode(Assembler::stw_op3);
8402   ins_encode(simple_form3_mem_reg( dst, src ) );
8403   ins_pipe(istore_mem_reg);
8404 %}
8405 
8406 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8407   match(Set dst (MoveD2L src));
8408   effect(DEF dst, USE src);
8409   ins_cost(MEMORY_REF_COST);
8410 
8411   size(4);
8412   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8413   opcode(Assembler::stdf_op3);
8414   ins_encode(simple_form3_mem_reg(dst, src));
8415   ins_pipe(fstoreD_stk_reg);
8416 %}
8417 
8418 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8419   match(Set dst (MoveL2D src));
8420   effect(DEF dst, USE src);
8421   ins_cost(MEMORY_REF_COST);
8422 
8423   size(4);
8424   format %{ "STX    $src,$dst\t! MoveL2D" %}
8425   opcode(Assembler::stx_op3);
8426   ins_encode(simple_form3_mem_reg( dst, src ) );
8427   ins_pipe(istore_mem_reg);
8428 %}
8429 
8430 
8431 //----------Arithmetic Conversion Instructions---------------------------------
8432 // The conversions operations are all Alpha sorted.  Please keep it that way!
8433 
8434 instruct convD2F_reg(regF dst, regD src) %{
8435   match(Set dst (ConvD2F src));
8436   size(4);
8437   format %{ "FDTOS  $src,$dst" %}
8438   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8439   ins_encode(form3_opf_rs2D_rdF(src, dst));
8440   ins_pipe(fcvtD2F);
8441 %}
8442 
8443 
8444 // Convert a double to an int in a float register.
8445 // If the double is a NAN, stuff a zero in instead.
8446 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8447   effect(DEF dst, USE src, KILL fcc0);
8448   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8449             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8450             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8451             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8452             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8453       "skip:" %}
8454   ins_encode(form_d2i_helper(src,dst));
8455   ins_pipe(fcvtD2I);
8456 %}
8457 
8458 instruct convD2I_stk(stackSlotI dst, regD src) %{
8459   match(Set dst (ConvD2I src));
8460   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8461   expand %{
8462     regF tmp;
8463     convD2I_helper(tmp, src);
8464     regF_to_stkI(dst, tmp);
8465   %}
8466 %}
8467 
8468 instruct convD2I_reg(iRegI dst, regD src) %{
8469   predicate(UseVIS >= 3);
8470   match(Set dst (ConvD2I src));
8471   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8472   expand %{
8473     regF tmp;
8474     convD2I_helper(tmp, src);
8475     MoveF2I_reg_reg(dst, tmp);
8476   %}
8477 %}
8478 
8479 
8480 // Convert a double to a long in a double register.
8481 // If the double is a NAN, stuff a zero in instead.
8482 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8483   effect(DEF dst, USE src, KILL fcc0);
8484   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8485             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8486             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8487             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8488             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8489       "skip:" %}
8490   ins_encode(form_d2l_helper(src,dst));
8491   ins_pipe(fcvtD2L);
8492 %}
8493 
8494 instruct convD2L_stk(stackSlotL dst, regD src) %{
8495   match(Set dst (ConvD2L src));
8496   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8497   expand %{
8498     regD tmp;
8499     convD2L_helper(tmp, src);
8500     regD_to_stkL(dst, tmp);
8501   %}
8502 %}
8503 
8504 instruct convD2L_reg(iRegL dst, regD src) %{
8505   predicate(UseVIS >= 3);
8506   match(Set dst (ConvD2L src));
8507   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8508   expand %{
8509     regD tmp;
8510     convD2L_helper(tmp, src);
8511     MoveD2L_reg_reg(dst, tmp);
8512   %}
8513 %}
8514 
8515 
8516 instruct convF2D_reg(regD dst, regF src) %{
8517   match(Set dst (ConvF2D src));
8518   format %{ "FSTOD  $src,$dst" %}
8519   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8520   ins_encode(form3_opf_rs2F_rdD(src, dst));
8521   ins_pipe(fcvtF2D);
8522 %}
8523 
8524 
8525 // Convert a float to an int in a float register.
8526 // If the float is a NAN, stuff a zero in instead.
8527 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8528   effect(DEF dst, USE src, KILL fcc0);
8529   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8530             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8531             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8532             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8533             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8534       "skip:" %}
8535   ins_encode(form_f2i_helper(src,dst));
8536   ins_pipe(fcvtF2I);
8537 %}
8538 
8539 instruct convF2I_stk(stackSlotI dst, regF src) %{
8540   match(Set dst (ConvF2I src));
8541   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8542   expand %{
8543     regF tmp;
8544     convF2I_helper(tmp, src);
8545     regF_to_stkI(dst, tmp);
8546   %}
8547 %}
8548 
8549 instruct convF2I_reg(iRegI dst, regF src) %{
8550   predicate(UseVIS >= 3);
8551   match(Set dst (ConvF2I src));
8552   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8553   expand %{
8554     regF tmp;
8555     convF2I_helper(tmp, src);
8556     MoveF2I_reg_reg(dst, tmp);
8557   %}
8558 %}
8559 
8560 
8561 // Convert a float to a long in a float register.
8562 // If the float is a NAN, stuff a zero in instead.
8563 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8564   effect(DEF dst, USE src, KILL fcc0);
8565   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8566             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8567             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8568             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8569             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8570       "skip:" %}
8571   ins_encode(form_f2l_helper(src,dst));
8572   ins_pipe(fcvtF2L);
8573 %}
8574 
8575 instruct convF2L_stk(stackSlotL dst, regF src) %{
8576   match(Set dst (ConvF2L src));
8577   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8578   expand %{
8579     regD tmp;
8580     convF2L_helper(tmp, src);
8581     regD_to_stkL(dst, tmp);
8582   %}
8583 %}
8584 
8585 instruct convF2L_reg(iRegL dst, regF src) %{
8586   predicate(UseVIS >= 3);
8587   match(Set dst (ConvF2L src));
8588   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8589   expand %{
8590     regD tmp;
8591     convF2L_helper(tmp, src);
8592     MoveD2L_reg_reg(dst, tmp);
8593   %}
8594 %}
8595 
8596 
8597 instruct convI2D_helper(regD dst, regF tmp) %{
8598   effect(USE tmp, DEF dst);
8599   format %{ "FITOD  $tmp,$dst" %}
8600   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8601   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8602   ins_pipe(fcvtI2D);
8603 %}
8604 
8605 instruct convI2D_stk(stackSlotI src, regD dst) %{
8606   match(Set dst (ConvI2D src));
8607   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8608   expand %{
8609     regF tmp;
8610     stkI_to_regF(tmp, src);
8611     convI2D_helper(dst, tmp);
8612   %}
8613 %}
8614 
8615 instruct convI2D_reg(regD_low dst, iRegI src) %{
8616   predicate(UseVIS >= 3);
8617   match(Set dst (ConvI2D src));
8618   expand %{
8619     regF tmp;
8620     MoveI2F_reg_reg(tmp, src);
8621     convI2D_helper(dst, tmp);
8622   %}
8623 %}
8624 
8625 instruct convI2D_mem(regD_low dst, memory mem) %{
8626   match(Set dst (ConvI2D (LoadI mem)));
8627   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8628   size(8);
8629   format %{ "LDF    $mem,$dst\n\t"
8630             "FITOD  $dst,$dst" %}
8631   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8632   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8633   ins_pipe(floadF_mem);
8634 %}
8635 
8636 
8637 instruct convI2F_helper(regF dst, regF tmp) %{
8638   effect(DEF dst, USE tmp);
8639   format %{ "FITOS  $tmp,$dst" %}
8640   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8641   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8642   ins_pipe(fcvtI2F);
8643 %}
8644 
8645 instruct convI2F_stk(regF dst, stackSlotI src) %{
8646   match(Set dst (ConvI2F src));
8647   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8648   expand %{
8649     regF tmp;
8650     stkI_to_regF(tmp,src);
8651     convI2F_helper(dst, tmp);
8652   %}
8653 %}
8654 
8655 instruct convI2F_reg(regF dst, iRegI src) %{
8656   predicate(UseVIS >= 3);
8657   match(Set dst (ConvI2F src));
8658   ins_cost(DEFAULT_COST);
8659   expand %{
8660     regF tmp;
8661     MoveI2F_reg_reg(tmp, src);
8662     convI2F_helper(dst, tmp);
8663   %}
8664 %}
8665 
8666 instruct convI2F_mem( regF dst, memory mem ) %{
8667   match(Set dst (ConvI2F (LoadI mem)));
8668   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8669   size(8);
8670   format %{ "LDF    $mem,$dst\n\t"
8671             "FITOS  $dst,$dst" %}
8672   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8673   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8674   ins_pipe(floadF_mem);
8675 %}
8676 
8677 
8678 instruct convI2L_reg(iRegL dst, iRegI src) %{
8679   match(Set dst (ConvI2L src));
8680   size(4);
8681   format %{ "SRA    $src,0,$dst\t! int->long" %}
8682   opcode(Assembler::sra_op3, Assembler::arith_op);
8683   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8684   ins_pipe(ialu_reg_reg);
8685 %}
8686 
8687 // Zero-extend convert int to long
8688 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8689   match(Set dst (AndL (ConvI2L src) mask) );
8690   size(4);
8691   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8692   opcode(Assembler::srl_op3, Assembler::arith_op);
8693   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8694   ins_pipe(ialu_reg_reg);
8695 %}
8696 
8697 // Zero-extend long
8698 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8699   match(Set dst (AndL src mask) );
8700   size(4);
8701   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8702   opcode(Assembler::srl_op3, Assembler::arith_op);
8703   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8704   ins_pipe(ialu_reg_reg);
8705 %}
8706 
8707 
8708 //-----------
8709 // Long to Double conversion using V8 opcodes.
8710 // Still useful because cheetah traps and becomes
8711 // amazingly slow for some common numbers.
8712 
8713 // Magic constant, 0x43300000
8714 instruct loadConI_x43300000(iRegI dst) %{
8715   effect(DEF dst);
8716   size(4);
8717   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8718   ins_encode(SetHi22(0x43300000, dst));
8719   ins_pipe(ialu_none);
8720 %}
8721 
8722 // Magic constant, 0x41f00000
8723 instruct loadConI_x41f00000(iRegI dst) %{
8724   effect(DEF dst);
8725   size(4);
8726   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8727   ins_encode(SetHi22(0x41f00000, dst));
8728   ins_pipe(ialu_none);
8729 %}
8730 
8731 // Construct a double from two float halves
8732 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8733   effect(DEF dst, USE src1, USE src2);
8734   size(8);
8735   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8736             "FMOVS  $src2.lo,$dst.lo" %}
8737   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8738   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8739   ins_pipe(faddD_reg_reg);
8740 %}
8741 
8742 // Convert integer in high half of a double register (in the lower half of
8743 // the double register file) to double
8744 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8745   effect(DEF dst, USE src);
8746   size(4);
8747   format %{ "FITOD  $src,$dst" %}
8748   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8749   ins_encode(form3_opf_rs2D_rdD(src, dst));
8750   ins_pipe(fcvtLHi2D);
8751 %}
8752 
8753 // Add float double precision
8754 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8755   effect(DEF dst, USE src1, USE src2);
8756   size(4);
8757   format %{ "FADDD  $src1,$src2,$dst" %}
8758   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8759   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8760   ins_pipe(faddD_reg_reg);
8761 %}
8762 
8763 // Sub float double precision
8764 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8765   effect(DEF dst, USE src1, USE src2);
8766   size(4);
8767   format %{ "FSUBD  $src1,$src2,$dst" %}
8768   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8769   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8770   ins_pipe(faddD_reg_reg);
8771 %}
8772 
8773 // Mul float double precision
8774 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8775   effect(DEF dst, USE src1, USE src2);
8776   size(4);
8777   format %{ "FMULD  $src1,$src2,$dst" %}
8778   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8779   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8780   ins_pipe(fmulD_reg_reg);
8781 %}
8782 
8783 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8784   match(Set dst (ConvL2D src));
8785   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8786 
8787   expand %{
8788     regD_low   tmpsrc;
8789     iRegI      ix43300000;
8790     iRegI      ix41f00000;
8791     stackSlotL lx43300000;
8792     stackSlotL lx41f00000;
8793     regD_low   dx43300000;
8794     regD       dx41f00000;
8795     regD       tmp1;
8796     regD_low   tmp2;
8797     regD       tmp3;
8798     regD       tmp4;
8799 
8800     stkL_to_regD(tmpsrc, src);
8801 
8802     loadConI_x43300000(ix43300000);
8803     loadConI_x41f00000(ix41f00000);
8804     regI_to_stkLHi(lx43300000, ix43300000);
8805     regI_to_stkLHi(lx41f00000, ix41f00000);
8806     stkL_to_regD(dx43300000, lx43300000);
8807     stkL_to_regD(dx41f00000, lx41f00000);
8808 
8809     convI2D_regDHi_regD(tmp1, tmpsrc);
8810     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8811     subD_regD_regD(tmp3, tmp2, dx43300000);
8812     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8813     addD_regD_regD(dst, tmp3, tmp4);
8814   %}
8815 %}
8816 
8817 // Long to Double conversion using fast fxtof
8818 instruct convL2D_helper(regD dst, regD tmp) %{
8819   effect(DEF dst, USE tmp);
8820   size(4);
8821   format %{ "FXTOD  $tmp,$dst" %}
8822   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8823   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8824   ins_pipe(fcvtL2D);
8825 %}
8826 
8827 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8828   predicate(VM_Version::has_fast_fxtof());
8829   match(Set dst (ConvL2D src));
8830   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8831   expand %{
8832     regD tmp;
8833     stkL_to_regD(tmp, src);
8834     convL2D_helper(dst, tmp);
8835   %}
8836 %}
8837 
8838 instruct convL2D_reg(regD dst, iRegL src) %{
8839   predicate(UseVIS >= 3);
8840   match(Set dst (ConvL2D src));
8841   expand %{
8842     regD tmp;
8843     MoveL2D_reg_reg(tmp, src);
8844     convL2D_helper(dst, tmp);
8845   %}
8846 %}
8847 
8848 // Long to Float conversion using fast fxtof
8849 instruct convL2F_helper(regF dst, regD tmp) %{
8850   effect(DEF dst, USE tmp);
8851   size(4);
8852   format %{ "FXTOS  $tmp,$dst" %}
8853   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8854   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8855   ins_pipe(fcvtL2F);
8856 %}
8857 
8858 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8859   match(Set dst (ConvL2F src));
8860   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8861   expand %{
8862     regD tmp;
8863     stkL_to_regD(tmp, src);
8864     convL2F_helper(dst, tmp);
8865   %}
8866 %}
8867 
8868 instruct convL2F_reg(regF dst, iRegL src) %{
8869   predicate(UseVIS >= 3);
8870   match(Set dst (ConvL2F src));
8871   ins_cost(DEFAULT_COST);
8872   expand %{
8873     regD tmp;
8874     MoveL2D_reg_reg(tmp, src);
8875     convL2F_helper(dst, tmp);
8876   %}
8877 %}
8878 
8879 //-----------
8880 
8881 instruct convL2I_reg(iRegI dst, iRegL src) %{
8882   match(Set dst (ConvL2I src));
8883 #ifndef _LP64
8884   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8885   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8886   ins_pipe(ialu_move_reg_I_to_L);
8887 #else
8888   size(4);
8889   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8890   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8891   ins_pipe(ialu_reg);
8892 #endif
8893 %}
8894 
8895 // Register Shift Right Immediate
8896 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8897   match(Set dst (ConvL2I (RShiftL src cnt)));
8898 
8899   size(4);
8900   format %{ "SRAX   $src,$cnt,$dst" %}
8901   opcode(Assembler::srax_op3, Assembler::arith_op);
8902   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8903   ins_pipe(ialu_reg_imm);
8904 %}
8905 
8906 //----------Control Flow Instructions------------------------------------------
8907 // Compare Instructions
8908 // Compare Integers
8909 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8910   match(Set icc (CmpI op1 op2));
8911   effect( DEF icc, USE op1, USE op2 );
8912 
8913   size(4);
8914   format %{ "CMP    $op1,$op2" %}
8915   opcode(Assembler::subcc_op3, Assembler::arith_op);
8916   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8917   ins_pipe(ialu_cconly_reg_reg);
8918 %}
8919 
8920 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8921   match(Set icc (CmpU op1 op2));
8922 
8923   size(4);
8924   format %{ "CMP    $op1,$op2\t! unsigned" %}
8925   opcode(Assembler::subcc_op3, Assembler::arith_op);
8926   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8927   ins_pipe(ialu_cconly_reg_reg);
8928 %}
8929 
8930 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8931   match(Set icc (CmpI op1 op2));
8932   effect( DEF icc, USE op1 );
8933 
8934   size(4);
8935   format %{ "CMP    $op1,$op2" %}
8936   opcode(Assembler::subcc_op3, Assembler::arith_op);
8937   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8938   ins_pipe(ialu_cconly_reg_imm);
8939 %}
8940 
8941 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8942   match(Set icc (CmpI (AndI op1 op2) zero));
8943 
8944   size(4);
8945   format %{ "BTST   $op2,$op1" %}
8946   opcode(Assembler::andcc_op3, Assembler::arith_op);
8947   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8948   ins_pipe(ialu_cconly_reg_reg_zero);
8949 %}
8950 
8951 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8952   match(Set icc (CmpI (AndI op1 op2) zero));
8953 
8954   size(4);
8955   format %{ "BTST   $op2,$op1" %}
8956   opcode(Assembler::andcc_op3, Assembler::arith_op);
8957   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8958   ins_pipe(ialu_cconly_reg_imm_zero);
8959 %}
8960 
8961 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8962   match(Set xcc (CmpL op1 op2));
8963   effect( DEF xcc, USE op1, USE op2 );
8964 
8965   size(4);
8966   format %{ "CMP    $op1,$op2\t\t! long" %}
8967   opcode(Assembler::subcc_op3, Assembler::arith_op);
8968   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8969   ins_pipe(ialu_cconly_reg_reg);
8970 %}
8971 
8972 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8973   match(Set xcc (CmpL op1 con));
8974   effect( DEF xcc, USE op1, USE con );
8975 
8976   size(4);
8977   format %{ "CMP    $op1,$con\t\t! long" %}
8978   opcode(Assembler::subcc_op3, Assembler::arith_op);
8979   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8980   ins_pipe(ialu_cconly_reg_reg);
8981 %}
8982 
8983 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8984   match(Set xcc (CmpL (AndL op1 op2) zero));
8985   effect( DEF xcc, USE op1, USE op2 );
8986 
8987   size(4);
8988   format %{ "BTST   $op1,$op2\t\t! long" %}
8989   opcode(Assembler::andcc_op3, Assembler::arith_op);
8990   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8991   ins_pipe(ialu_cconly_reg_reg);
8992 %}
8993 
8994 // useful for checking the alignment of a pointer:
8995 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8996   match(Set xcc (CmpL (AndL op1 con) zero));
8997   effect( DEF xcc, USE op1, USE con );
8998 
8999   size(4);
9000   format %{ "BTST   $op1,$con\t\t! long" %}
9001   opcode(Assembler::andcc_op3, Assembler::arith_op);
9002   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9003   ins_pipe(ialu_cconly_reg_reg);
9004 %}
9005 
9006 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
9007   match(Set icc (CmpU op1 op2));
9008 
9009   size(4);
9010   format %{ "CMP    $op1,$op2\t! unsigned" %}
9011   opcode(Assembler::subcc_op3, Assembler::arith_op);
9012   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9013   ins_pipe(ialu_cconly_reg_imm);
9014 %}
9015 
9016 // Compare Pointers
9017 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9018   match(Set pcc (CmpP op1 op2));
9019 
9020   size(4);
9021   format %{ "CMP    $op1,$op2\t! ptr" %}
9022   opcode(Assembler::subcc_op3, Assembler::arith_op);
9023   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9024   ins_pipe(ialu_cconly_reg_reg);
9025 %}
9026 
9027 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9028   match(Set pcc (CmpP op1 op2));
9029 
9030   size(4);
9031   format %{ "CMP    $op1,$op2\t! ptr" %}
9032   opcode(Assembler::subcc_op3, Assembler::arith_op);
9033   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9034   ins_pipe(ialu_cconly_reg_imm);
9035 %}
9036 
9037 // Compare Narrow oops
9038 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9039   match(Set icc (CmpN op1 op2));
9040 
9041   size(4);
9042   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9043   opcode(Assembler::subcc_op3, Assembler::arith_op);
9044   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9045   ins_pipe(ialu_cconly_reg_reg);
9046 %}
9047 
9048 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9049   match(Set icc (CmpN op1 op2));
9050 
9051   size(4);
9052   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9053   opcode(Assembler::subcc_op3, Assembler::arith_op);
9054   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9055   ins_pipe(ialu_cconly_reg_imm);
9056 %}
9057 
9058 //----------Max and Min--------------------------------------------------------
9059 // Min Instructions
9060 // Conditional move for min
9061 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9062   effect( USE_DEF op2, USE op1, USE icc );
9063 
9064   size(4);
9065   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9066   opcode(Assembler::less);
9067   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9068   ins_pipe(ialu_reg_flags);
9069 %}
9070 
9071 // Min Register with Register.
9072 instruct minI_eReg(iRegI op1, iRegI op2) %{
9073   match(Set op2 (MinI op1 op2));
9074   ins_cost(DEFAULT_COST*2);
9075   expand %{
9076     flagsReg icc;
9077     compI_iReg(icc,op1,op2);
9078     cmovI_reg_lt(op2,op1,icc);
9079   %}
9080 %}
9081 
9082 // Max Instructions
9083 // Conditional move for max
9084 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9085   effect( USE_DEF op2, USE op1, USE icc );
9086   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9087   opcode(Assembler::greater);
9088   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9089   ins_pipe(ialu_reg_flags);
9090 %}
9091 
9092 // Max Register with Register
9093 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9094   match(Set op2 (MaxI op1 op2));
9095   ins_cost(DEFAULT_COST*2);
9096   expand %{
9097     flagsReg icc;
9098     compI_iReg(icc,op1,op2);
9099     cmovI_reg_gt(op2,op1,icc);
9100   %}
9101 %}
9102 
9103 
9104 //----------Float Compares----------------------------------------------------
9105 // Compare floating, generate condition code
9106 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9107   match(Set fcc (CmpF src1 src2));
9108 
9109   size(4);
9110   format %{ "FCMPs  $fcc,$src1,$src2" %}
9111   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9112   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9113   ins_pipe(faddF_fcc_reg_reg_zero);
9114 %}
9115 
9116 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9117   match(Set fcc (CmpD src1 src2));
9118 
9119   size(4);
9120   format %{ "FCMPd  $fcc,$src1,$src2" %}
9121   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9122   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9123   ins_pipe(faddD_fcc_reg_reg_zero);
9124 %}
9125 
9126 
9127 // Compare floating, generate -1,0,1
9128 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9129   match(Set dst (CmpF3 src1 src2));
9130   effect(KILL fcc0);
9131   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9132   format %{ "fcmpl  $dst,$src1,$src2" %}
9133   // Primary = float
9134   opcode( true );
9135   ins_encode( floating_cmp( dst, src1, src2 ) );
9136   ins_pipe( floating_cmp );
9137 %}
9138 
9139 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9140   match(Set dst (CmpD3 src1 src2));
9141   effect(KILL fcc0);
9142   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9143   format %{ "dcmpl  $dst,$src1,$src2" %}
9144   // Primary = double (not float)
9145   opcode( false );
9146   ins_encode( floating_cmp( dst, src1, src2 ) );
9147   ins_pipe( floating_cmp );
9148 %}
9149 
9150 //----------Branches---------------------------------------------------------
9151 // Jump
9152 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9153 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9154   match(Jump switch_val);
9155   effect(TEMP table);
9156 
9157   ins_cost(350);
9158 
9159   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9160              "LD     [O7 + $switch_val], O7\n\t"
9161              "JUMP   O7" %}
9162   ins_encode %{
9163     // Calculate table address into a register.
9164     Register table_reg;
9165     Register label_reg = O7;
9166     // If we are calculating the size of this instruction don't trust
9167     // zero offsets because they might change when
9168     // MachConstantBaseNode decides to optimize the constant table
9169     // base.
9170     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9171       table_reg = $constanttablebase;
9172     } else {
9173       table_reg = O7;
9174       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9175       __ add($constanttablebase, con_offset, table_reg);
9176     }
9177 
9178     // Jump to base address + switch value
9179     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9180     __ jmp(label_reg, G0);
9181     __ delayed()->nop();
9182   %}
9183   ins_pipe(ialu_reg_reg);
9184 %}
9185 
9186 // Direct Branch.  Use V8 version with longer range.
9187 instruct branch(label labl) %{
9188   match(Goto);
9189   effect(USE labl);
9190 
9191   size(8);
9192   ins_cost(BRANCH_COST);
9193   format %{ "BA     $labl" %}
9194   ins_encode %{
9195     Label* L = $labl$$label;
9196     __ ba(*L);
9197     __ delayed()->nop();
9198   %}
9199   ins_avoid_back_to_back(AVOID_BEFORE);
9200   ins_pipe(br);
9201 %}
9202 
9203 // Direct Branch, short with no delay slot
9204 instruct branch_short(label labl) %{
9205   match(Goto);
9206   predicate(UseCBCond);
9207   effect(USE labl);
9208 
9209   size(4);
9210   ins_cost(BRANCH_COST);
9211   format %{ "BA     $labl\t! short branch" %}
9212   ins_encode %{
9213     Label* L = $labl$$label;
9214     assert(__ use_cbcond(*L), "back to back cbcond");
9215     __ ba_short(*L);
9216   %}
9217   ins_short_branch(1);
9218   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9219   ins_pipe(cbcond_reg_imm);
9220 %}
9221 
9222 // Conditional Direct Branch
9223 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9224   match(If cmp icc);
9225   effect(USE labl);
9226 
9227   size(8);
9228   ins_cost(BRANCH_COST);
9229   format %{ "BP$cmp   $icc,$labl" %}
9230   // Prim = bits 24-22, Secnd = bits 31-30
9231   ins_encode( enc_bp( labl, cmp, icc ) );
9232   ins_avoid_back_to_back(AVOID_BEFORE);
9233   ins_pipe(br_cc);
9234 %}
9235 
9236 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9237   match(If cmp icc);
9238   effect(USE labl);
9239 
9240   ins_cost(BRANCH_COST);
9241   format %{ "BP$cmp  $icc,$labl" %}
9242   // Prim = bits 24-22, Secnd = bits 31-30
9243   ins_encode( enc_bp( labl, cmp, icc ) );
9244   ins_avoid_back_to_back(AVOID_BEFORE);
9245   ins_pipe(br_cc);
9246 %}
9247 
9248 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9249   match(If cmp pcc);
9250   effect(USE labl);
9251 
9252   size(8);
9253   ins_cost(BRANCH_COST);
9254   format %{ "BP$cmp  $pcc,$labl" %}
9255   ins_encode %{
9256     Label* L = $labl$$label;
9257     Assembler::Predict predict_taken =
9258       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9259 
9260     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9261     __ delayed()->nop();
9262   %}
9263   ins_avoid_back_to_back(AVOID_BEFORE);
9264   ins_pipe(br_cc);
9265 %}
9266 
9267 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9268   match(If cmp fcc);
9269   effect(USE labl);
9270 
9271   size(8);
9272   ins_cost(BRANCH_COST);
9273   format %{ "FBP$cmp $fcc,$labl" %}
9274   ins_encode %{
9275     Label* L = $labl$$label;
9276     Assembler::Predict predict_taken =
9277       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9278 
9279     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9280     __ delayed()->nop();
9281   %}
9282   ins_avoid_back_to_back(AVOID_BEFORE);
9283   ins_pipe(br_fcc);
9284 %}
9285 
9286 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9287   match(CountedLoopEnd cmp icc);
9288   effect(USE labl);
9289 
9290   size(8);
9291   ins_cost(BRANCH_COST);
9292   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9293   // Prim = bits 24-22, Secnd = bits 31-30
9294   ins_encode( enc_bp( labl, cmp, icc ) );
9295   ins_avoid_back_to_back(AVOID_BEFORE);
9296   ins_pipe(br_cc);
9297 %}
9298 
9299 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9300   match(CountedLoopEnd cmp icc);
9301   effect(USE labl);
9302 
9303   size(8);
9304   ins_cost(BRANCH_COST);
9305   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9306   // Prim = bits 24-22, Secnd = bits 31-30
9307   ins_encode( enc_bp( labl, cmp, icc ) );
9308   ins_avoid_back_to_back(AVOID_BEFORE);
9309   ins_pipe(br_cc);
9310 %}
9311 
9312 // Compare and branch instructions
9313 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9314   match(If cmp (CmpI op1 op2));
9315   effect(USE labl, KILL icc);
9316 
9317   size(12);
9318   ins_cost(BRANCH_COST);
9319   format %{ "CMP    $op1,$op2\t! int\n\t"
9320             "BP$cmp   $labl" %}
9321   ins_encode %{
9322     Label* L = $labl$$label;
9323     Assembler::Predict predict_taken =
9324       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9325     __ cmp($op1$$Register, $op2$$Register);
9326     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9327     __ delayed()->nop();
9328   %}
9329   ins_pipe(cmp_br_reg_reg);
9330 %}
9331 
9332 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9333   match(If cmp (CmpI op1 op2));
9334   effect(USE labl, KILL icc);
9335 
9336   size(12);
9337   ins_cost(BRANCH_COST);
9338   format %{ "CMP    $op1,$op2\t! int\n\t"
9339             "BP$cmp   $labl" %}
9340   ins_encode %{
9341     Label* L = $labl$$label;
9342     Assembler::Predict predict_taken =
9343       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9344     __ cmp($op1$$Register, $op2$$constant);
9345     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9346     __ delayed()->nop();
9347   %}
9348   ins_pipe(cmp_br_reg_imm);
9349 %}
9350 
9351 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9352   match(If cmp (CmpU op1 op2));
9353   effect(USE labl, KILL icc);
9354 
9355   size(12);
9356   ins_cost(BRANCH_COST);
9357   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9358             "BP$cmp  $labl" %}
9359   ins_encode %{
9360     Label* L = $labl$$label;
9361     Assembler::Predict predict_taken =
9362       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9363     __ cmp($op1$$Register, $op2$$Register);
9364     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9365     __ delayed()->nop();
9366   %}
9367   ins_pipe(cmp_br_reg_reg);
9368 %}
9369 
9370 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9371   match(If cmp (CmpU op1 op2));
9372   effect(USE labl, KILL icc);
9373 
9374   size(12);
9375   ins_cost(BRANCH_COST);
9376   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9377             "BP$cmp  $labl" %}
9378   ins_encode %{
9379     Label* L = $labl$$label;
9380     Assembler::Predict predict_taken =
9381       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9382     __ cmp($op1$$Register, $op2$$constant);
9383     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9384     __ delayed()->nop();
9385   %}
9386   ins_pipe(cmp_br_reg_imm);
9387 %}
9388 
9389 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9390   match(If cmp (CmpL op1 op2));
9391   effect(USE labl, KILL xcc);
9392 
9393   size(12);
9394   ins_cost(BRANCH_COST);
9395   format %{ "CMP    $op1,$op2\t! long\n\t"
9396             "BP$cmp   $labl" %}
9397   ins_encode %{
9398     Label* L = $labl$$label;
9399     Assembler::Predict predict_taken =
9400       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9401     __ cmp($op1$$Register, $op2$$Register);
9402     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9403     __ delayed()->nop();
9404   %}
9405   ins_pipe(cmp_br_reg_reg);
9406 %}
9407 
9408 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9409   match(If cmp (CmpL op1 op2));
9410   effect(USE labl, KILL xcc);
9411 
9412   size(12);
9413   ins_cost(BRANCH_COST);
9414   format %{ "CMP    $op1,$op2\t! long\n\t"
9415             "BP$cmp   $labl" %}
9416   ins_encode %{
9417     Label* L = $labl$$label;
9418     Assembler::Predict predict_taken =
9419       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9420     __ cmp($op1$$Register, $op2$$constant);
9421     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9422     __ delayed()->nop();
9423   %}
9424   ins_pipe(cmp_br_reg_imm);
9425 %}
9426 
9427 // Compare Pointers and branch
9428 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9429   match(If cmp (CmpP op1 op2));
9430   effect(USE labl, KILL pcc);
9431 
9432   size(12);
9433   ins_cost(BRANCH_COST);
9434   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9435             "B$cmp   $labl" %}
9436   ins_encode %{
9437     Label* L = $labl$$label;
9438     Assembler::Predict predict_taken =
9439       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9440     __ cmp($op1$$Register, $op2$$Register);
9441     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9442     __ delayed()->nop();
9443   %}
9444   ins_pipe(cmp_br_reg_reg);
9445 %}
9446 
9447 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9448   match(If cmp (CmpP op1 null));
9449   effect(USE labl, KILL pcc);
9450 
9451   size(12);
9452   ins_cost(BRANCH_COST);
9453   format %{ "CMP    $op1,0\t! ptr\n\t"
9454             "B$cmp   $labl" %}
9455   ins_encode %{
9456     Label* L = $labl$$label;
9457     Assembler::Predict predict_taken =
9458       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9459     __ cmp($op1$$Register, G0);
9460     // bpr() is not used here since it has shorter distance.
9461     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9462     __ delayed()->nop();
9463   %}
9464   ins_pipe(cmp_br_reg_reg);
9465 %}
9466 
9467 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9468   match(If cmp (CmpN op1 op2));
9469   effect(USE labl, KILL icc);
9470 
9471   size(12);
9472   ins_cost(BRANCH_COST);
9473   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9474             "BP$cmp   $labl" %}
9475   ins_encode %{
9476     Label* L = $labl$$label;
9477     Assembler::Predict predict_taken =
9478       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9479     __ cmp($op1$$Register, $op2$$Register);
9480     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9481     __ delayed()->nop();
9482   %}
9483   ins_pipe(cmp_br_reg_reg);
9484 %}
9485 
9486 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9487   match(If cmp (CmpN op1 null));
9488   effect(USE labl, KILL icc);
9489 
9490   size(12);
9491   ins_cost(BRANCH_COST);
9492   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9493             "BP$cmp   $labl" %}
9494   ins_encode %{
9495     Label* L = $labl$$label;
9496     Assembler::Predict predict_taken =
9497       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9498     __ cmp($op1$$Register, G0);
9499     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9500     __ delayed()->nop();
9501   %}
9502   ins_pipe(cmp_br_reg_reg);
9503 %}
9504 
9505 // Loop back branch
9506 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9507   match(CountedLoopEnd cmp (CmpI op1 op2));
9508   effect(USE labl, KILL icc);
9509 
9510   size(12);
9511   ins_cost(BRANCH_COST);
9512   format %{ "CMP    $op1,$op2\t! int\n\t"
9513             "BP$cmp   $labl\t! Loop end" %}
9514   ins_encode %{
9515     Label* L = $labl$$label;
9516     Assembler::Predict predict_taken =
9517       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9518     __ cmp($op1$$Register, $op2$$Register);
9519     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9520     __ delayed()->nop();
9521   %}
9522   ins_pipe(cmp_br_reg_reg);
9523 %}
9524 
9525 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9526   match(CountedLoopEnd cmp (CmpI op1 op2));
9527   effect(USE labl, KILL icc);
9528 
9529   size(12);
9530   ins_cost(BRANCH_COST);
9531   format %{ "CMP    $op1,$op2\t! int\n\t"
9532             "BP$cmp   $labl\t! Loop end" %}
9533   ins_encode %{
9534     Label* L = $labl$$label;
9535     Assembler::Predict predict_taken =
9536       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9537     __ cmp($op1$$Register, $op2$$constant);
9538     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9539     __ delayed()->nop();
9540   %}
9541   ins_pipe(cmp_br_reg_imm);
9542 %}
9543 
9544 // Short compare and branch instructions
9545 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9546   match(If cmp (CmpI op1 op2));
9547   predicate(UseCBCond);
9548   effect(USE labl, KILL icc);
9549 
9550   size(4);
9551   ins_cost(BRANCH_COST);
9552   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9553   ins_encode %{
9554     Label* L = $labl$$label;
9555     assert(__ use_cbcond(*L), "back to back cbcond");
9556     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9557   %}
9558   ins_short_branch(1);
9559   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9560   ins_pipe(cbcond_reg_reg);
9561 %}
9562 
9563 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9564   match(If cmp (CmpI op1 op2));
9565   predicate(UseCBCond);
9566   effect(USE labl, KILL icc);
9567 
9568   size(4);
9569   ins_cost(BRANCH_COST);
9570   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9571   ins_encode %{
9572     Label* L = $labl$$label;
9573     assert(__ use_cbcond(*L), "back to back cbcond");
9574     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9575   %}
9576   ins_short_branch(1);
9577   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9578   ins_pipe(cbcond_reg_imm);
9579 %}
9580 
9581 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9582   match(If cmp (CmpU op1 op2));
9583   predicate(UseCBCond);
9584   effect(USE labl, KILL icc);
9585 
9586   size(4);
9587   ins_cost(BRANCH_COST);
9588   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9589   ins_encode %{
9590     Label* L = $labl$$label;
9591     assert(__ use_cbcond(*L), "back to back cbcond");
9592     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9593   %}
9594   ins_short_branch(1);
9595   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9596   ins_pipe(cbcond_reg_reg);
9597 %}
9598 
9599 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9600   match(If cmp (CmpU op1 op2));
9601   predicate(UseCBCond);
9602   effect(USE labl, KILL icc);
9603 
9604   size(4);
9605   ins_cost(BRANCH_COST);
9606   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9607   ins_encode %{
9608     Label* L = $labl$$label;
9609     assert(__ use_cbcond(*L), "back to back cbcond");
9610     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9611   %}
9612   ins_short_branch(1);
9613   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9614   ins_pipe(cbcond_reg_imm);
9615 %}
9616 
9617 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9618   match(If cmp (CmpL op1 op2));
9619   predicate(UseCBCond);
9620   effect(USE labl, KILL xcc);
9621 
9622   size(4);
9623   ins_cost(BRANCH_COST);
9624   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9625   ins_encode %{
9626     Label* L = $labl$$label;
9627     assert(__ use_cbcond(*L), "back to back cbcond");
9628     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9629   %}
9630   ins_short_branch(1);
9631   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9632   ins_pipe(cbcond_reg_reg);
9633 %}
9634 
9635 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9636   match(If cmp (CmpL op1 op2));
9637   predicate(UseCBCond);
9638   effect(USE labl, KILL xcc);
9639 
9640   size(4);
9641   ins_cost(BRANCH_COST);
9642   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9643   ins_encode %{
9644     Label* L = $labl$$label;
9645     assert(__ use_cbcond(*L), "back to back cbcond");
9646     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9647   %}
9648   ins_short_branch(1);
9649   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9650   ins_pipe(cbcond_reg_imm);
9651 %}
9652 
9653 // Compare Pointers and branch
9654 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9655   match(If cmp (CmpP op1 op2));
9656   predicate(UseCBCond);
9657   effect(USE labl, KILL pcc);
9658 
9659   size(4);
9660   ins_cost(BRANCH_COST);
9661 #ifdef _LP64
9662   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9663 #else
9664   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9665 #endif
9666   ins_encode %{
9667     Label* L = $labl$$label;
9668     assert(__ use_cbcond(*L), "back to back cbcond");
9669     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9670   %}
9671   ins_short_branch(1);
9672   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9673   ins_pipe(cbcond_reg_reg);
9674 %}
9675 
9676 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9677   match(If cmp (CmpP op1 null));
9678   predicate(UseCBCond);
9679   effect(USE labl, KILL pcc);
9680 
9681   size(4);
9682   ins_cost(BRANCH_COST);
9683 #ifdef _LP64
9684   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9685 #else
9686   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9687 #endif
9688   ins_encode %{
9689     Label* L = $labl$$label;
9690     assert(__ use_cbcond(*L), "back to back cbcond");
9691     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9692   %}
9693   ins_short_branch(1);
9694   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9695   ins_pipe(cbcond_reg_reg);
9696 %}
9697 
9698 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9699   match(If cmp (CmpN op1 op2));
9700   predicate(UseCBCond);
9701   effect(USE labl, KILL icc);
9702 
9703   size(4);
9704   ins_cost(BRANCH_COST);
9705   format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9706   ins_encode %{
9707     Label* L = $labl$$label;
9708     assert(__ use_cbcond(*L), "back to back cbcond");
9709     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9710   %}
9711   ins_short_branch(1);
9712   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9713   ins_pipe(cbcond_reg_reg);
9714 %}
9715 
9716 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9717   match(If cmp (CmpN op1 null));
9718   predicate(UseCBCond);
9719   effect(USE labl, KILL icc);
9720 
9721   size(4);
9722   ins_cost(BRANCH_COST);
9723   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9724   ins_encode %{
9725     Label* L = $labl$$label;
9726     assert(__ use_cbcond(*L), "back to back cbcond");
9727     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9728   %}
9729   ins_short_branch(1);
9730   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9731   ins_pipe(cbcond_reg_reg);
9732 %}
9733 
9734 // Loop back branch
9735 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9736   match(CountedLoopEnd cmp (CmpI op1 op2));
9737   predicate(UseCBCond);
9738   effect(USE labl, KILL icc);
9739 
9740   size(4);
9741   ins_cost(BRANCH_COST);
9742   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9743   ins_encode %{
9744     Label* L = $labl$$label;
9745     assert(__ use_cbcond(*L), "back to back cbcond");
9746     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9747   %}
9748   ins_short_branch(1);
9749   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9750   ins_pipe(cbcond_reg_reg);
9751 %}
9752 
9753 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9754   match(CountedLoopEnd cmp (CmpI op1 op2));
9755   predicate(UseCBCond);
9756   effect(USE labl, KILL icc);
9757 
9758   size(4);
9759   ins_cost(BRANCH_COST);
9760   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9761   ins_encode %{
9762     Label* L = $labl$$label;
9763     assert(__ use_cbcond(*L), "back to back cbcond");
9764     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9765   %}
9766   ins_short_branch(1);
9767   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9768   ins_pipe(cbcond_reg_imm);
9769 %}
9770 
9771 // Branch-on-register tests all 64 bits.  We assume that values
9772 // in 64-bit registers always remains zero or sign extended
9773 // unless our code munges the high bits.  Interrupts can chop
9774 // the high order bits to zero or sign at any time.
9775 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9776   match(If cmp (CmpI op1 zero));
9777   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9778   effect(USE labl);
9779 
9780   size(8);
9781   ins_cost(BRANCH_COST);
9782   format %{ "BR$cmp   $op1,$labl" %}
9783   ins_encode( enc_bpr( labl, cmp, op1 ) );
9784   ins_avoid_back_to_back(AVOID_BEFORE);
9785   ins_pipe(br_reg);
9786 %}
9787 
9788 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9789   match(If cmp (CmpP op1 null));
9790   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9791   effect(USE labl);
9792 
9793   size(8);
9794   ins_cost(BRANCH_COST);
9795   format %{ "BR$cmp   $op1,$labl" %}
9796   ins_encode( enc_bpr( labl, cmp, op1 ) );
9797   ins_avoid_back_to_back(AVOID_BEFORE);
9798   ins_pipe(br_reg);
9799 %}
9800 
9801 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9802   match(If cmp (CmpL op1 zero));
9803   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9804   effect(USE labl);
9805 
9806   size(8);
9807   ins_cost(BRANCH_COST);
9808   format %{ "BR$cmp   $op1,$labl" %}
9809   ins_encode( enc_bpr( labl, cmp, op1 ) );
9810   ins_avoid_back_to_back(AVOID_BEFORE);
9811   ins_pipe(br_reg);
9812 %}
9813 
9814 
9815 // ============================================================================
9816 // Long Compare
9817 //
9818 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9819 // is tricky.  The flavor of compare used depends on whether we are testing
9820 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9821 // The GE test is the negated LT test.  The LE test can be had by commuting
9822 // the operands (yielding a GE test) and then negating; negate again for the
9823 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9824 // NE test is negated from that.
9825 
9826 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9827 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9828 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9829 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9830 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9831 // foo match ends up with the wrong leaf.  One fix is to not match both
9832 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9833 // both forms beat the trinary form of long-compare and both are very useful
9834 // on Intel which has so few registers.
9835 
9836 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9837   match(If cmp xcc);
9838   effect(USE labl);
9839 
9840   size(8);
9841   ins_cost(BRANCH_COST);
9842   format %{ "BP$cmp   $xcc,$labl" %}
9843   ins_encode %{
9844     Label* L = $labl$$label;
9845     Assembler::Predict predict_taken =
9846       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9847 
9848     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9849     __ delayed()->nop();
9850   %}
9851   ins_avoid_back_to_back(AVOID_BEFORE);
9852   ins_pipe(br_cc);
9853 %}
9854 
9855 // Manifest a CmpL3 result in an integer register.  Very painful.
9856 // This is the test to avoid.
9857 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9858   match(Set dst (CmpL3 src1 src2) );
9859   effect( KILL ccr );
9860   ins_cost(6*DEFAULT_COST);
9861   size(24);
9862   format %{ "CMP    $src1,$src2\t\t! long\n"
9863           "\tBLT,a,pn done\n"
9864           "\tMOV    -1,$dst\t! delay slot\n"
9865           "\tBGT,a,pn done\n"
9866           "\tMOV    1,$dst\t! delay slot\n"
9867           "\tCLR    $dst\n"
9868     "done:"     %}
9869   ins_encode( cmpl_flag(src1,src2,dst) );
9870   ins_pipe(cmpL_reg);
9871 %}
9872 
9873 // Conditional move
9874 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9875   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9876   ins_cost(150);
9877   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9878   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9879   ins_pipe(ialu_reg);
9880 %}
9881 
9882 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9883   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9884   ins_cost(140);
9885   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9886   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9887   ins_pipe(ialu_imm);
9888 %}
9889 
9890 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9891   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9892   ins_cost(150);
9893   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9894   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9895   ins_pipe(ialu_reg);
9896 %}
9897 
9898 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9899   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9900   ins_cost(140);
9901   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9902   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9903   ins_pipe(ialu_imm);
9904 %}
9905 
9906 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9907   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9908   ins_cost(150);
9909   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9910   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9911   ins_pipe(ialu_reg);
9912 %}
9913 
9914 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9915   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9916   ins_cost(150);
9917   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9918   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9919   ins_pipe(ialu_reg);
9920 %}
9921 
9922 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9923   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9924   ins_cost(140);
9925   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9926   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9927   ins_pipe(ialu_imm);
9928 %}
9929 
9930 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9931   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9932   ins_cost(150);
9933   opcode(0x101);
9934   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9935   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9936   ins_pipe(int_conditional_float_move);
9937 %}
9938 
9939 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9940   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9941   ins_cost(150);
9942   opcode(0x102);
9943   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9944   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9945   ins_pipe(int_conditional_float_move);
9946 %}
9947 
9948 // ============================================================================
9949 // Safepoint Instruction
9950 instruct safePoint_poll(iRegP poll) %{
9951   match(SafePoint poll);
9952   effect(USE poll);
9953 
9954   size(4);
9955 #ifdef _LP64
9956   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9957 #else
9958   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9959 #endif
9960   ins_encode %{
9961     __ relocate(relocInfo::poll_type);
9962     __ ld_ptr($poll$$Register, 0, G0);
9963   %}
9964   ins_pipe(loadPollP);
9965 %}
9966 
9967 // ============================================================================
9968 // Call Instructions
9969 // Call Java Static Instruction
9970 instruct CallStaticJavaDirect( method meth ) %{
9971   match(CallStaticJava);
9972   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9973   effect(USE meth);
9974 
9975   size(8);
9976   ins_cost(CALL_COST);
9977   format %{ "CALL,static  ; NOP ==> " %}
9978   ins_encode( Java_Static_Call( meth ), call_epilog );
9979   ins_avoid_back_to_back(AVOID_BEFORE);
9980   ins_pipe(simple_call);
9981 %}
9982 
9983 // Call Java Static Instruction (method handle version)
9984 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9985   match(CallStaticJava);
9986   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9987   effect(USE meth, KILL l7_mh_SP_save);
9988 
9989   size(16);
9990   ins_cost(CALL_COST);
9991   format %{ "CALL,static/MethodHandle" %}
9992   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9993   ins_pipe(simple_call);
9994 %}
9995 
9996 // Call Java Dynamic Instruction
9997 instruct CallDynamicJavaDirect( method meth ) %{
9998   match(CallDynamicJava);
9999   effect(USE meth);
10000 
10001   ins_cost(CALL_COST);
10002   format %{ "SET    (empty),R_G5\n\t"
10003             "CALL,dynamic  ; NOP ==> " %}
10004   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
10005   ins_pipe(call);
10006 %}
10007 
10008 // Call Runtime Instruction
10009 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
10010   match(CallRuntime);
10011   effect(USE meth, KILL l7);
10012   ins_cost(CALL_COST);
10013   format %{ "CALL,runtime" %}
10014   ins_encode( Java_To_Runtime( meth ),
10015               call_epilog, adjust_long_from_native_call );
10016   ins_avoid_back_to_back(AVOID_BEFORE);
10017   ins_pipe(simple_call);
10018 %}
10019 
10020 // Call runtime without safepoint - same as CallRuntime
10021 instruct CallLeafDirect(method meth, l7RegP l7) %{
10022   match(CallLeaf);
10023   effect(USE meth, KILL l7);
10024   ins_cost(CALL_COST);
10025   format %{ "CALL,runtime leaf" %}
10026   ins_encode( Java_To_Runtime( meth ),
10027               call_epilog,
10028               adjust_long_from_native_call );
10029   ins_avoid_back_to_back(AVOID_BEFORE);
10030   ins_pipe(simple_call);
10031 %}
10032 
10033 // Call runtime without safepoint - same as CallLeaf
10034 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
10035   match(CallLeafNoFP);
10036   effect(USE meth, KILL l7);
10037   ins_cost(CALL_COST);
10038   format %{ "CALL,runtime leaf nofp" %}
10039   ins_encode( Java_To_Runtime( meth ),
10040               call_epilog,
10041               adjust_long_from_native_call );
10042   ins_avoid_back_to_back(AVOID_BEFORE);
10043   ins_pipe(simple_call);
10044 %}
10045 
10046 // Tail Call; Jump from runtime stub to Java code.
10047 // Also known as an 'interprocedural jump'.
10048 // Target of jump will eventually return to caller.
10049 // TailJump below removes the return address.
10050 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10051   match(TailCall jump_target method_oop );
10052 
10053   ins_cost(CALL_COST);
10054   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10055   ins_encode(form_jmpl(jump_target));
10056   ins_avoid_back_to_back(AVOID_BEFORE);
10057   ins_pipe(tail_call);
10058 %}
10059 
10060 
10061 // Return Instruction
10062 instruct Ret() %{
10063   match(Return);
10064 
10065   // The epilogue node did the ret already.
10066   size(0);
10067   format %{ "! return" %}
10068   ins_encode();
10069   ins_pipe(empty);
10070 %}
10071 
10072 
10073 // Tail Jump; remove the return address; jump to target.
10074 // TailCall above leaves the return address around.
10075 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10076 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10077 // "restore" before this instruction (in Epilogue), we need to materialize it
10078 // in %i0.
10079 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10080   match( TailJump jump_target ex_oop );
10081   ins_cost(CALL_COST);
10082   format %{ "! discard R_O7\n\t"
10083             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10084   ins_encode(form_jmpl_set_exception_pc(jump_target));
10085   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10086   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10087   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10088   ins_avoid_back_to_back(AVOID_BEFORE);
10089   ins_pipe(tail_call);
10090 %}
10091 
10092 // Create exception oop: created by stack-crawling runtime code.
10093 // Created exception is now available to this handler, and is setup
10094 // just prior to jumping to this handler.  No code emitted.
10095 instruct CreateException( o0RegP ex_oop )
10096 %{
10097   match(Set ex_oop (CreateEx));
10098   ins_cost(0);
10099 
10100   size(0);
10101   // use the following format syntax
10102   format %{ "! exception oop is in R_O0; no code emitted" %}
10103   ins_encode();
10104   ins_pipe(empty);
10105 %}
10106 
10107 
10108 // Rethrow exception:
10109 // The exception oop will come in the first argument position.
10110 // Then JUMP (not call) to the rethrow stub code.
10111 instruct RethrowException()
10112 %{
10113   match(Rethrow);
10114   ins_cost(CALL_COST);
10115 
10116   // use the following format syntax
10117   format %{ "Jmp    rethrow_stub" %}
10118   ins_encode(enc_rethrow);
10119   ins_avoid_back_to_back(AVOID_BEFORE);
10120   ins_pipe(tail_call);
10121 %}
10122 
10123 
10124 // Die now
10125 instruct ShouldNotReachHere( )
10126 %{
10127   match(Halt);
10128   ins_cost(CALL_COST);
10129 
10130   size(4);
10131   // Use the following format syntax
10132   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10133   ins_encode( form2_illtrap() );
10134   ins_pipe(tail_call);
10135 %}
10136 
10137 // ============================================================================
10138 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10139 // array for an instance of the superklass.  Set a hidden internal cache on a
10140 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10141 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10142 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10143   match(Set index (PartialSubtypeCheck sub super));
10144   effect( KILL pcc, KILL o7 );
10145   ins_cost(DEFAULT_COST*10);
10146   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10147   ins_encode( enc_PartialSubtypeCheck() );
10148   ins_avoid_back_to_back(AVOID_BEFORE);
10149   ins_pipe(partial_subtype_check_pipe);
10150 %}
10151 
10152 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10153   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10154   effect( KILL idx, KILL o7 );
10155   ins_cost(DEFAULT_COST*10);
10156   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10157   ins_encode( enc_PartialSubtypeCheck() );
10158   ins_avoid_back_to_back(AVOID_BEFORE);
10159   ins_pipe(partial_subtype_check_pipe);
10160 %}
10161 
10162 
10163 // ============================================================================
10164 // inlined locking and unlocking
10165 
10166 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10167   match(Set pcc (FastLock object box));
10168 
10169   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10170   ins_cost(100);
10171 
10172   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10173   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10174   ins_pipe(long_memory_op);
10175 %}
10176 
10177 
10178 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10179   match(Set pcc (FastUnlock object box));
10180   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10181   ins_cost(100);
10182 
10183   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10184   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10185   ins_pipe(long_memory_op);
10186 %}
10187 
10188 // The encodings are generic.
10189 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10190   predicate(!use_block_zeroing(n->in(2)) );
10191   match(Set dummy (ClearArray cnt base));
10192   effect(TEMP temp, KILL ccr);
10193   ins_cost(300);
10194   format %{ "MOV    $cnt,$temp\n"
10195     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10196     "        BRge   loop\t\t! Clearing loop\n"
10197     "        STX    G0,[$base+$temp]\t! delay slot" %}
10198 
10199   ins_encode %{
10200     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10201     Register nof_bytes_arg    = $cnt$$Register;
10202     Register nof_bytes_tmp    = $temp$$Register;
10203     Register base_pointer_arg = $base$$Register;
10204 
10205     Label loop;
10206     __ mov(nof_bytes_arg, nof_bytes_tmp);
10207 
10208     // Loop and clear, walking backwards through the array.
10209     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10210     __ bind(loop);
10211     __ deccc(nof_bytes_tmp, 8);
10212     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10213     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10214     // %%%% this mini-loop must not cross a cache boundary!
10215   %}
10216   ins_pipe(long_memory_op);
10217 %}
10218 
10219 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10220   predicate(use_block_zeroing(n->in(2)));
10221   match(Set dummy (ClearArray cnt base));
10222   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10223   ins_cost(300);
10224   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10225 
10226   ins_encode %{
10227 
10228     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10229     Register to    = $base$$Register;
10230     Register count = $cnt$$Register;
10231 
10232     Label Ldone;
10233     __ nop(); // Separate short branches
10234     // Use BIS for zeroing (temp is not used).
10235     __ bis_zeroing(to, count, G0, Ldone);
10236     __ bind(Ldone);
10237 
10238   %}
10239   ins_pipe(long_memory_op);
10240 %}
10241 
10242 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10243   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10244   match(Set dummy (ClearArray cnt base));
10245   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10246   ins_cost(300);
10247   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10248 
10249   ins_encode %{
10250 
10251     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10252     Register to    = $base$$Register;
10253     Register count = $cnt$$Register;
10254     Register temp  = $tmp$$Register;
10255 
10256     Label Ldone;
10257     __ nop(); // Separate short branches
10258     // Use BIS for zeroing
10259     __ bis_zeroing(to, count, temp, Ldone);
10260     __ bind(Ldone);
10261 
10262   %}
10263   ins_pipe(long_memory_op);
10264 %}
10265 
10266 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10267                         o7RegI tmp, flagsReg ccr) %{
10268   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10269   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10270   ins_cost(300);
10271   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10272   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10273   ins_pipe(long_memory_op);
10274 %}
10275 
10276 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10277                        o7RegI tmp, flagsReg ccr) %{
10278   match(Set result (StrEquals (Binary str1 str2) cnt));
10279   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10280   ins_cost(300);
10281   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10282   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10283   ins_pipe(long_memory_op);
10284 %}
10285 
10286 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10287                       o7RegI tmp2, flagsReg ccr) %{
10288   match(Set result (AryEq ary1 ary2));
10289   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10290   ins_cost(300);
10291   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10292   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10293   ins_pipe(long_memory_op);
10294 %}
10295 
10296 
10297 //---------- Zeros Count Instructions ------------------------------------------
10298 
10299 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10300   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10301   match(Set dst (CountLeadingZerosI src));
10302   effect(TEMP dst, TEMP tmp, KILL cr);
10303 
10304   // x |= (x >> 1);
10305   // x |= (x >> 2);
10306   // x |= (x >> 4);
10307   // x |= (x >> 8);
10308   // x |= (x >> 16);
10309   // return (WORDBITS - popc(x));
10310   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10311             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10312             "OR      $dst,$tmp,$dst\n\t"
10313             "SRL     $dst,2,$tmp\n\t"
10314             "OR      $dst,$tmp,$dst\n\t"
10315             "SRL     $dst,4,$tmp\n\t"
10316             "OR      $dst,$tmp,$dst\n\t"
10317             "SRL     $dst,8,$tmp\n\t"
10318             "OR      $dst,$tmp,$dst\n\t"
10319             "SRL     $dst,16,$tmp\n\t"
10320             "OR      $dst,$tmp,$dst\n\t"
10321             "POPC    $dst,$dst\n\t"
10322             "MOV     32,$tmp\n\t"
10323             "SUB     $tmp,$dst,$dst" %}
10324   ins_encode %{
10325     Register Rdst = $dst$$Register;
10326     Register Rsrc = $src$$Register;
10327     Register Rtmp = $tmp$$Register;
10328     __ srl(Rsrc, 1,    Rtmp);
10329     __ srl(Rsrc, 0,    Rdst);
10330     __ or3(Rdst, Rtmp, Rdst);
10331     __ srl(Rdst, 2,    Rtmp);
10332     __ or3(Rdst, Rtmp, Rdst);
10333     __ srl(Rdst, 4,    Rtmp);
10334     __ or3(Rdst, Rtmp, Rdst);
10335     __ srl(Rdst, 8,    Rtmp);
10336     __ or3(Rdst, Rtmp, Rdst);
10337     __ srl(Rdst, 16,   Rtmp);
10338     __ or3(Rdst, Rtmp, Rdst);
10339     __ popc(Rdst, Rdst);
10340     __ mov(BitsPerInt, Rtmp);
10341     __ sub(Rtmp, Rdst, Rdst);
10342   %}
10343   ins_pipe(ialu_reg);
10344 %}
10345 
10346 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10347   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10348   match(Set dst (CountLeadingZerosL src));
10349   effect(TEMP dst, TEMP tmp, KILL cr);
10350 
10351   // x |= (x >> 1);
10352   // x |= (x >> 2);
10353   // x |= (x >> 4);
10354   // x |= (x >> 8);
10355   // x |= (x >> 16);
10356   // x |= (x >> 32);
10357   // return (WORDBITS - popc(x));
10358   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10359             "OR      $src,$tmp,$dst\n\t"
10360             "SRLX    $dst,2,$tmp\n\t"
10361             "OR      $dst,$tmp,$dst\n\t"
10362             "SRLX    $dst,4,$tmp\n\t"
10363             "OR      $dst,$tmp,$dst\n\t"
10364             "SRLX    $dst,8,$tmp\n\t"
10365             "OR      $dst,$tmp,$dst\n\t"
10366             "SRLX    $dst,16,$tmp\n\t"
10367             "OR      $dst,$tmp,$dst\n\t"
10368             "SRLX    $dst,32,$tmp\n\t"
10369             "OR      $dst,$tmp,$dst\n\t"
10370             "POPC    $dst,$dst\n\t"
10371             "MOV     64,$tmp\n\t"
10372             "SUB     $tmp,$dst,$dst" %}
10373   ins_encode %{
10374     Register Rdst = $dst$$Register;
10375     Register Rsrc = $src$$Register;
10376     Register Rtmp = $tmp$$Register;
10377     __ srlx(Rsrc, 1,    Rtmp);
10378     __ or3( Rsrc, Rtmp, Rdst);
10379     __ srlx(Rdst, 2,    Rtmp);
10380     __ or3( Rdst, Rtmp, Rdst);
10381     __ srlx(Rdst, 4,    Rtmp);
10382     __ or3( Rdst, Rtmp, Rdst);
10383     __ srlx(Rdst, 8,    Rtmp);
10384     __ or3( Rdst, Rtmp, Rdst);
10385     __ srlx(Rdst, 16,   Rtmp);
10386     __ or3( Rdst, Rtmp, Rdst);
10387     __ srlx(Rdst, 32,   Rtmp);
10388     __ or3( Rdst, Rtmp, Rdst);
10389     __ popc(Rdst, Rdst);
10390     __ mov(BitsPerLong, Rtmp);
10391     __ sub(Rtmp, Rdst, Rdst);
10392   %}
10393   ins_pipe(ialu_reg);
10394 %}
10395 
10396 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10397   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10398   match(Set dst (CountTrailingZerosI src));
10399   effect(TEMP dst, KILL cr);
10400 
10401   // return popc(~x & (x - 1));
10402   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10403             "ANDN    $dst,$src,$dst\n\t"
10404             "SRL     $dst,R_G0,$dst\n\t"
10405             "POPC    $dst,$dst" %}
10406   ins_encode %{
10407     Register Rdst = $dst$$Register;
10408     Register Rsrc = $src$$Register;
10409     __ sub(Rsrc, 1, Rdst);
10410     __ andn(Rdst, Rsrc, Rdst);
10411     __ srl(Rdst, G0, Rdst);
10412     __ popc(Rdst, Rdst);
10413   %}
10414   ins_pipe(ialu_reg);
10415 %}
10416 
10417 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10418   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10419   match(Set dst (CountTrailingZerosL src));
10420   effect(TEMP dst, KILL cr);
10421 
10422   // return popc(~x & (x - 1));
10423   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10424             "ANDN    $dst,$src,$dst\n\t"
10425             "POPC    $dst,$dst" %}
10426   ins_encode %{
10427     Register Rdst = $dst$$Register;
10428     Register Rsrc = $src$$Register;
10429     __ sub(Rsrc, 1, Rdst);
10430     __ andn(Rdst, Rsrc, Rdst);
10431     __ popc(Rdst, Rdst);
10432   %}
10433   ins_pipe(ialu_reg);
10434 %}
10435 
10436 
10437 //---------- Population Count Instructions -------------------------------------
10438 
10439 instruct popCountI(iRegIsafe dst, iRegI src) %{
10440   predicate(UsePopCountInstruction);
10441   match(Set dst (PopCountI src));
10442 
10443   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10444             "POPC   $dst, $dst" %}
10445   ins_encode %{
10446     __ srl($src$$Register, G0, $dst$$Register);
10447     __ popc($dst$$Register, $dst$$Register);
10448   %}
10449   ins_pipe(ialu_reg);
10450 %}
10451 
10452 // Note: Long.bitCount(long) returns an int.
10453 instruct popCountL(iRegIsafe dst, iRegL src) %{
10454   predicate(UsePopCountInstruction);
10455   match(Set dst (PopCountL src));
10456 
10457   format %{ "POPC   $src, $dst" %}
10458   ins_encode %{
10459     __ popc($src$$Register, $dst$$Register);
10460   %}
10461   ins_pipe(ialu_reg);
10462 %}
10463 
10464 
10465 // ============================================================================
10466 //------------Bytes reverse--------------------------------------------------
10467 
10468 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10469   match(Set dst (ReverseBytesI src));
10470 
10471   // Op cost is artificially doubled to make sure that load or store
10472   // instructions are preferred over this one which requires a spill
10473   // onto a stack slot.
10474   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10475   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10476 
10477   ins_encode %{
10478     __ set($src$$disp + STACK_BIAS, O7);
10479     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10480   %}
10481   ins_pipe( iload_mem );
10482 %}
10483 
10484 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10485   match(Set dst (ReverseBytesL src));
10486 
10487   // Op cost is artificially doubled to make sure that load or store
10488   // instructions are preferred over this one which requires a spill
10489   // onto a stack slot.
10490   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10491   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10492 
10493   ins_encode %{
10494     __ set($src$$disp + STACK_BIAS, O7);
10495     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10496   %}
10497   ins_pipe( iload_mem );
10498 %}
10499 
10500 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10501   match(Set dst (ReverseBytesUS src));
10502 
10503   // Op cost is artificially doubled to make sure that load or store
10504   // instructions are preferred over this one which requires a spill
10505   // onto a stack slot.
10506   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10507   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10508 
10509   ins_encode %{
10510     // the value was spilled as an int so bias the load
10511     __ set($src$$disp + STACK_BIAS + 2, O7);
10512     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10513   %}
10514   ins_pipe( iload_mem );
10515 %}
10516 
10517 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10518   match(Set dst (ReverseBytesS src));
10519 
10520   // Op cost is artificially doubled to make sure that load or store
10521   // instructions are preferred over this one which requires a spill
10522   // onto a stack slot.
10523   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10524   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10525 
10526   ins_encode %{
10527     // the value was spilled as an int so bias the load
10528     __ set($src$$disp + STACK_BIAS + 2, O7);
10529     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10530   %}
10531   ins_pipe( iload_mem );
10532 %}
10533 
10534 // Load Integer reversed byte order
10535 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10536   match(Set dst (ReverseBytesI (LoadI src)));
10537 
10538   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10539   size(4);
10540   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10541 
10542   ins_encode %{
10543     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10544   %}
10545   ins_pipe(iload_mem);
10546 %}
10547 
10548 // Load Long - aligned and reversed
10549 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10550   match(Set dst (ReverseBytesL (LoadL src)));
10551 
10552   ins_cost(MEMORY_REF_COST);
10553   size(4);
10554   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10555 
10556   ins_encode %{
10557     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10558   %}
10559   ins_pipe(iload_mem);
10560 %}
10561 
10562 // Load unsigned short / char reversed byte order
10563 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10564   match(Set dst (ReverseBytesUS (LoadUS src)));
10565 
10566   ins_cost(MEMORY_REF_COST);
10567   size(4);
10568   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10569 
10570   ins_encode %{
10571     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10572   %}
10573   ins_pipe(iload_mem);
10574 %}
10575 
10576 // Load short reversed byte order
10577 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10578   match(Set dst (ReverseBytesS (LoadS src)));
10579 
10580   ins_cost(MEMORY_REF_COST);
10581   size(4);
10582   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10583 
10584   ins_encode %{
10585     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10586   %}
10587   ins_pipe(iload_mem);
10588 %}
10589 
10590 // Store Integer reversed byte order
10591 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10592   match(Set dst (StoreI dst (ReverseBytesI src)));
10593 
10594   ins_cost(MEMORY_REF_COST);
10595   size(4);
10596   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10597 
10598   ins_encode %{
10599     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10600   %}
10601   ins_pipe(istore_mem_reg);
10602 %}
10603 
10604 // Store Long reversed byte order
10605 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10606   match(Set dst (StoreL dst (ReverseBytesL src)));
10607 
10608   ins_cost(MEMORY_REF_COST);
10609   size(4);
10610   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10611 
10612   ins_encode %{
10613     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10614   %}
10615   ins_pipe(istore_mem_reg);
10616 %}
10617 
10618 // Store unsighed short/char reversed byte order
10619 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10620   match(Set dst (StoreC dst (ReverseBytesUS src)));
10621 
10622   ins_cost(MEMORY_REF_COST);
10623   size(4);
10624   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10625 
10626   ins_encode %{
10627     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10628   %}
10629   ins_pipe(istore_mem_reg);
10630 %}
10631 
10632 // Store short reversed byte order
10633 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10634   match(Set dst (StoreC dst (ReverseBytesS src)));
10635 
10636   ins_cost(MEMORY_REF_COST);
10637   size(4);
10638   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10639 
10640   ins_encode %{
10641     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10642   %}
10643   ins_pipe(istore_mem_reg);
10644 %}
10645 
10646 // ====================VECTOR INSTRUCTIONS=====================================
10647 
10648 // Load Aligned Packed values into a Double Register
10649 instruct loadV8(regD dst, memory mem) %{
10650   predicate(n->as_LoadVector()->memory_size() == 8);
10651   match(Set dst (LoadVector mem));
10652   ins_cost(MEMORY_REF_COST);
10653   size(4);
10654   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10655   ins_encode %{
10656     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10657   %}
10658   ins_pipe(floadD_mem);
10659 %}
10660 
10661 // Store Vector in Double register to memory
10662 instruct storeV8(memory mem, regD src) %{
10663   predicate(n->as_StoreVector()->memory_size() == 8);
10664   match(Set mem (StoreVector mem src));
10665   ins_cost(MEMORY_REF_COST);
10666   size(4);
10667   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10668   ins_encode %{
10669     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10670   %}
10671   ins_pipe(fstoreD_mem_reg);
10672 %}
10673 
10674 // Store Zero into vector in memory
10675 instruct storeV8B_zero(memory mem, immI0 zero) %{
10676   predicate(n->as_StoreVector()->memory_size() == 8);
10677   match(Set mem (StoreVector mem (ReplicateB zero)));
10678   ins_cost(MEMORY_REF_COST);
10679   size(4);
10680   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10681   ins_encode %{
10682     __ stx(G0, $mem$$Address);
10683   %}
10684   ins_pipe(fstoreD_mem_zero);
10685 %}
10686 
10687 instruct storeV4S_zero(memory mem, immI0 zero) %{
10688   predicate(n->as_StoreVector()->memory_size() == 8);
10689   match(Set mem (StoreVector mem (ReplicateS zero)));
10690   ins_cost(MEMORY_REF_COST);
10691   size(4);
10692   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10693   ins_encode %{
10694     __ stx(G0, $mem$$Address);
10695   %}
10696   ins_pipe(fstoreD_mem_zero);
10697 %}
10698 
10699 instruct storeV2I_zero(memory mem, immI0 zero) %{
10700   predicate(n->as_StoreVector()->memory_size() == 8);
10701   match(Set mem (StoreVector mem (ReplicateI zero)));
10702   ins_cost(MEMORY_REF_COST);
10703   size(4);
10704   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10705   ins_encode %{
10706     __ stx(G0, $mem$$Address);
10707   %}
10708   ins_pipe(fstoreD_mem_zero);
10709 %}
10710 
10711 instruct storeV2F_zero(memory mem, immF0 zero) %{
10712   predicate(n->as_StoreVector()->memory_size() == 8);
10713   match(Set mem (StoreVector mem (ReplicateF zero)));
10714   ins_cost(MEMORY_REF_COST);
10715   size(4);
10716   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10717   ins_encode %{
10718     __ stx(G0, $mem$$Address);
10719   %}
10720   ins_pipe(fstoreD_mem_zero);
10721 %}
10722 
10723 // Replicate scalar to packed byte values into Double register
10724 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10725   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10726   match(Set dst (ReplicateB src));
10727   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10728   format %{ "SLLX  $src,56,$tmp\n\t"
10729             "SRLX  $tmp, 8,$tmp2\n\t"
10730             "OR    $tmp,$tmp2,$tmp\n\t"
10731             "SRLX  $tmp,16,$tmp2\n\t"
10732             "OR    $tmp,$tmp2,$tmp\n\t"
10733             "SRLX  $tmp,32,$tmp2\n\t"
10734             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10735             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10736   ins_encode %{
10737     Register Rsrc = $src$$Register;
10738     Register Rtmp = $tmp$$Register;
10739     Register Rtmp2 = $tmp2$$Register;
10740     __ sllx(Rsrc,    56, Rtmp);
10741     __ srlx(Rtmp,     8, Rtmp2);
10742     __ or3 (Rtmp, Rtmp2, Rtmp);
10743     __ srlx(Rtmp,    16, Rtmp2);
10744     __ or3 (Rtmp, Rtmp2, Rtmp);
10745     __ srlx(Rtmp,    32, Rtmp2);
10746     __ or3 (Rtmp, Rtmp2, Rtmp);
10747     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10748   %}
10749   ins_pipe(ialu_reg);
10750 %}
10751 
10752 // Replicate scalar to packed byte values into Double stack
10753 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10754   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10755   match(Set dst (ReplicateB src));
10756   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10757   format %{ "SLLX  $src,56,$tmp\n\t"
10758             "SRLX  $tmp, 8,$tmp2\n\t"
10759             "OR    $tmp,$tmp2,$tmp\n\t"
10760             "SRLX  $tmp,16,$tmp2\n\t"
10761             "OR    $tmp,$tmp2,$tmp\n\t"
10762             "SRLX  $tmp,32,$tmp2\n\t"
10763             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10764             "STX   $tmp,$dst\t! regL to stkD" %}
10765   ins_encode %{
10766     Register Rsrc = $src$$Register;
10767     Register Rtmp = $tmp$$Register;
10768     Register Rtmp2 = $tmp2$$Register;
10769     __ sllx(Rsrc,    56, Rtmp);
10770     __ srlx(Rtmp,     8, Rtmp2);
10771     __ or3 (Rtmp, Rtmp2, Rtmp);
10772     __ srlx(Rtmp,    16, Rtmp2);
10773     __ or3 (Rtmp, Rtmp2, Rtmp);
10774     __ srlx(Rtmp,    32, Rtmp2);
10775     __ or3 (Rtmp, Rtmp2, Rtmp);
10776     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10777     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10778   %}
10779   ins_pipe(ialu_reg);
10780 %}
10781 
10782 // Replicate scalar constant to packed byte values in Double register
10783 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10784   predicate(n->as_Vector()->length() == 8);
10785   match(Set dst (ReplicateB con));
10786   effect(KILL tmp);
10787   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10788   ins_encode %{
10789     // XXX This is a quick fix for 6833573.
10790     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10791     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10792     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10793   %}
10794   ins_pipe(loadConFD);
10795 %}
10796 
10797 // Replicate scalar to packed char/short values into Double register
10798 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10799   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10800   match(Set dst (ReplicateS src));
10801   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10802   format %{ "SLLX  $src,48,$tmp\n\t"
10803             "SRLX  $tmp,16,$tmp2\n\t"
10804             "OR    $tmp,$tmp2,$tmp\n\t"
10805             "SRLX  $tmp,32,$tmp2\n\t"
10806             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10807             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10808   ins_encode %{
10809     Register Rsrc = $src$$Register;
10810     Register Rtmp = $tmp$$Register;
10811     Register Rtmp2 = $tmp2$$Register;
10812     __ sllx(Rsrc,    48, Rtmp);
10813     __ srlx(Rtmp,    16, Rtmp2);
10814     __ or3 (Rtmp, Rtmp2, Rtmp);
10815     __ srlx(Rtmp,    32, Rtmp2);
10816     __ or3 (Rtmp, Rtmp2, Rtmp);
10817     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10818   %}
10819   ins_pipe(ialu_reg);
10820 %}
10821 
10822 // Replicate scalar to packed char/short values into Double stack
10823 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10824   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10825   match(Set dst (ReplicateS src));
10826   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10827   format %{ "SLLX  $src,48,$tmp\n\t"
10828             "SRLX  $tmp,16,$tmp2\n\t"
10829             "OR    $tmp,$tmp2,$tmp\n\t"
10830             "SRLX  $tmp,32,$tmp2\n\t"
10831             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10832             "STX   $tmp,$dst\t! regL to stkD" %}
10833   ins_encode %{
10834     Register Rsrc = $src$$Register;
10835     Register Rtmp = $tmp$$Register;
10836     Register Rtmp2 = $tmp2$$Register;
10837     __ sllx(Rsrc,    48, Rtmp);
10838     __ srlx(Rtmp,    16, Rtmp2);
10839     __ or3 (Rtmp, Rtmp2, Rtmp);
10840     __ srlx(Rtmp,    32, Rtmp2);
10841     __ or3 (Rtmp, Rtmp2, Rtmp);
10842     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10843     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10844   %}
10845   ins_pipe(ialu_reg);
10846 %}
10847 
10848 // Replicate scalar constant to packed char/short values in Double register
10849 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10850   predicate(n->as_Vector()->length() == 4);
10851   match(Set dst (ReplicateS con));
10852   effect(KILL tmp);
10853   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10854   ins_encode %{
10855     // XXX This is a quick fix for 6833573.
10856     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10857     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10858     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10859   %}
10860   ins_pipe(loadConFD);
10861 %}
10862 
10863 // Replicate scalar to packed int values into Double register
10864 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10865   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10866   match(Set dst (ReplicateI src));
10867   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10868   format %{ "SLLX  $src,32,$tmp\n\t"
10869             "SRLX  $tmp,32,$tmp2\n\t"
10870             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10871             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10872   ins_encode %{
10873     Register Rsrc = $src$$Register;
10874     Register Rtmp = $tmp$$Register;
10875     Register Rtmp2 = $tmp2$$Register;
10876     __ sllx(Rsrc,    32, Rtmp);
10877     __ srlx(Rtmp,    32, Rtmp2);
10878     __ or3 (Rtmp, Rtmp2, Rtmp);
10879     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10880   %}
10881   ins_pipe(ialu_reg);
10882 %}
10883 
10884 // Replicate scalar to packed int values into Double stack
10885 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10886   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10887   match(Set dst (ReplicateI src));
10888   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10889   format %{ "SLLX  $src,32,$tmp\n\t"
10890             "SRLX  $tmp,32,$tmp2\n\t"
10891             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10892             "STX   $tmp,$dst\t! regL to stkD" %}
10893   ins_encode %{
10894     Register Rsrc = $src$$Register;
10895     Register Rtmp = $tmp$$Register;
10896     Register Rtmp2 = $tmp2$$Register;
10897     __ sllx(Rsrc,    32, Rtmp);
10898     __ srlx(Rtmp,    32, Rtmp2);
10899     __ or3 (Rtmp, Rtmp2, Rtmp);
10900     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10901     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10902   %}
10903   ins_pipe(ialu_reg);
10904 %}
10905 
10906 // Replicate scalar zero constant to packed int values in Double register
10907 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10908   predicate(n->as_Vector()->length() == 2);
10909   match(Set dst (ReplicateI con));
10910   effect(KILL tmp);
10911   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10912   ins_encode %{
10913     // XXX This is a quick fix for 6833573.
10914     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10915     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10916     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10917   %}
10918   ins_pipe(loadConFD);
10919 %}
10920 
10921 // Replicate scalar to packed float values into Double stack
10922 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10923   predicate(n->as_Vector()->length() == 2);
10924   match(Set dst (ReplicateF src));
10925   ins_cost(MEMORY_REF_COST*2);
10926   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10927             "STF    $src,$dst.lo" %}
10928   opcode(Assembler::stf_op3);
10929   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10930   ins_pipe(fstoreF_stk_reg);
10931 %}
10932 
10933 // Replicate scalar zero constant to packed float values in Double register
10934 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10935   predicate(n->as_Vector()->length() == 2);
10936   match(Set dst (ReplicateF con));
10937   effect(KILL tmp);
10938   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10939   ins_encode %{
10940     // XXX This is a quick fix for 6833573.
10941     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10942     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10943     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10944   %}
10945   ins_pipe(loadConFD);
10946 %}
10947 
10948 //----------PEEPHOLE RULES-----------------------------------------------------
10949 // These must follow all instruction definitions as they use the names
10950 // defined in the instructions definitions.
10951 //
10952 // peepmatch ( root_instr_name [preceding_instruction]* );
10953 //
10954 // peepconstraint %{
10955 // (instruction_number.operand_name relational_op instruction_number.operand_name
10956 //  [, ...] );
10957 // // instruction numbers are zero-based using left to right order in peepmatch
10958 //
10959 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10960 // // provide an instruction_number.operand_name for each operand that appears
10961 // // in the replacement instruction's match rule
10962 //
10963 // ---------VM FLAGS---------------------------------------------------------
10964 //
10965 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10966 //
10967 // Each peephole rule is given an identifying number starting with zero and
10968 // increasing by one in the order seen by the parser.  An individual peephole
10969 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10970 // on the command-line.
10971 //
10972 // ---------CURRENT LIMITATIONS----------------------------------------------
10973 //
10974 // Only match adjacent instructions in same basic block
10975 // Only equality constraints
10976 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10977 // Only one replacement instruction
10978 //
10979 // ---------EXAMPLE----------------------------------------------------------
10980 //
10981 // // pertinent parts of existing instructions in architecture description
10982 // instruct movI(eRegI dst, eRegI src) %{
10983 //   match(Set dst (CopyI src));
10984 // %}
10985 //
10986 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10987 //   match(Set dst (AddI dst src));
10988 //   effect(KILL cr);
10989 // %}
10990 //
10991 // // Change (inc mov) to lea
10992 // peephole %{
10993 //   // increment preceeded by register-register move
10994 //   peepmatch ( incI_eReg movI );
10995 //   // require that the destination register of the increment
10996 //   // match the destination register of the move
10997 //   peepconstraint ( 0.dst == 1.dst );
10998 //   // construct a replacement instruction that sets
10999 //   // the destination to ( move's source register + one )
11000 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
11001 // %}
11002 //
11003 
11004 // // Change load of spilled value to only a spill
11005 // instruct storeI(memory mem, eRegI src) %{
11006 //   match(Set mem (StoreI mem src));
11007 // %}
11008 //
11009 // instruct loadI(eRegI dst, memory mem) %{
11010 //   match(Set dst (LoadI mem));
11011 // %}
11012 //
11013 // peephole %{
11014 //   peepmatch ( loadI storeI );
11015 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
11016 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
11017 // %}
11018 
11019 //----------SMARTSPILL RULES---------------------------------------------------
11020 // These must follow all instruction definitions as they use the names
11021 // defined in the instructions definitions.
11022 //
11023 // SPARC will probably not have any of these rules due to RISC instruction set.
11024 
11025 //----------PIPELINE-----------------------------------------------------------
11026 // Rules which define the behavior of the target architectures pipeline.