1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/gcLocker.hpp"
  32 #include "libadt/dict.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifdef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  69   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  70 #elif defined(PPC64)
  71   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  72   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  73   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  74   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  75   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  82 #endif
  83   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  84   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  85   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  86   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  87   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  88   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  89   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  90   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  91   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  92   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  93   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  94   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  95   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  96   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  97   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  98   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  99   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 100   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 101 };
 102 
 103 // Map ideal registers (machine types) to ideal types
 104 const Type *Type::mreg2type[_last_machine_leaf];
 105 
 106 // Map basic types to canonical Type* pointers.
 107 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 108 
 109 // Map basic types to constant-zero Types.
 110 const Type* Type::            _zero_type[T_CONFLICT+1];
 111 
 112 // Map basic types to array-body alias types.
 113 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 114 
 115 //=============================================================================
 116 // Convenience common pre-built types.
 117 const Type *Type::ABIO;         // State-of-machine only
 118 const Type *Type::BOTTOM;       // All values
 119 const Type *Type::CONTROL;      // Control only
 120 const Type *Type::DOUBLE;       // All doubles
 121 const Type *Type::FLOAT;        // All floats
 122 const Type *Type::HALF;         // Placeholder half of doublewide type
 123 const Type *Type::MEMORY;       // Abstract store only
 124 const Type *Type::RETURN_ADDRESS;
 125 const Type *Type::TOP;          // No values in set
 126 
 127 //------------------------------get_const_type---------------------------
 128 const Type* Type::get_const_type(ciType* type) {
 129   if (type == NULL) {
 130     return NULL;
 131   } else if (type->is_primitive_type()) {
 132     return get_const_basic_type(type->basic_type());
 133   } else {
 134     return TypeOopPtr::make_from_klass(type->as_klass());
 135   }
 136 }
 137 
 138 //---------------------------array_element_basic_type---------------------------------
 139 // Mapping to the array element's basic type.
 140 BasicType Type::array_element_basic_type() const {
 141   BasicType bt = basic_type();
 142   if (bt == T_INT) {
 143     if (this == TypeInt::INT)   return T_INT;
 144     if (this == TypeInt::CHAR)  return T_CHAR;
 145     if (this == TypeInt::BYTE)  return T_BYTE;
 146     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 147     if (this == TypeInt::SHORT) return T_SHORT;
 148     return T_VOID;
 149   }
 150   return bt;
 151 }
 152 
 153 //---------------------------get_typeflow_type---------------------------------
 154 // Import a type produced by ciTypeFlow.
 155 const Type* Type::get_typeflow_type(ciType* type) {
 156   switch (type->basic_type()) {
 157 
 158   case ciTypeFlow::StateVector::T_BOTTOM:
 159     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 160     return Type::BOTTOM;
 161 
 162   case ciTypeFlow::StateVector::T_TOP:
 163     assert(type == ciTypeFlow::StateVector::top_type(), "");
 164     return Type::TOP;
 165 
 166   case ciTypeFlow::StateVector::T_NULL:
 167     assert(type == ciTypeFlow::StateVector::null_type(), "");
 168     return TypePtr::NULL_PTR;
 169 
 170   case ciTypeFlow::StateVector::T_LONG2:
 171     // The ciTypeFlow pass pushes a long, then the half.
 172     // We do the same.
 173     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 174     return TypeInt::TOP;
 175 
 176   case ciTypeFlow::StateVector::T_DOUBLE2:
 177     // The ciTypeFlow pass pushes double, then the half.
 178     // Our convention is the same.
 179     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 180     return Type::TOP;
 181 
 182   case T_ADDRESS:
 183     assert(type->is_return_address(), "");
 184     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 185 
 186   default:
 187     // make sure we did not mix up the cases:
 188     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 189     assert(type != ciTypeFlow::StateVector::top_type(), "");
 190     assert(type != ciTypeFlow::StateVector::null_type(), "");
 191     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 192     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 193     assert(!type->is_return_address(), "");
 194 
 195     return Type::get_const_type(type);
 196   }
 197 }
 198 
 199 
 200 //-----------------------make_from_constant------------------------------------
 201 const Type* Type::make_from_constant(ciConstant constant, bool require_constant) {
 202   switch (constant.basic_type()) {
 203   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 204   case T_CHAR:     return TypeInt::make(constant.as_char());
 205   case T_BYTE:     return TypeInt::make(constant.as_byte());
 206   case T_SHORT:    return TypeInt::make(constant.as_short());
 207   case T_INT:      return TypeInt::make(constant.as_int());
 208   case T_LONG:     return TypeLong::make(constant.as_long());
 209   case T_FLOAT:    return TypeF::make(constant.as_float());
 210   case T_DOUBLE:   return TypeD::make(constant.as_double());
 211   case T_ARRAY:
 212   case T_OBJECT:
 213     {
 214       // cases:
 215       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 216       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 217       // An oop is not scavengable if it is in the perm gen.
 218       ciObject* oop_constant = constant.as_object();
 219       if (oop_constant->is_null_object()) {
 220         return Type::get_zero_type(T_OBJECT);
 221       } else if (require_constant || oop_constant->should_be_constant()) {
 222         return TypeOopPtr::make_from_constant(oop_constant, require_constant);
 223       }
 224     }
 225   case T_ILLEGAL:
 226     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 227     assert(Compile::current()->env()->failing(), "otherwise should not see this");
 228     return NULL;
 229   }
 230   // Fall through to failure
 231   return NULL;
 232 }
 233 
 234 
 235 const Type* Type::make_constant(ciField* field, Node* obj) {
 236   if (!field->is_constant())  return NULL;
 237 
 238   const Type* con_type = NULL;
 239   if (field->is_static()) {
 240     // final static field
 241     con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true);
 242     if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) {
 243       con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 244     }
 245   } else {
 246     // final or stable non-static field
 247     // Treat final non-static fields of trusted classes (classes in
 248     // java.lang.invoke and sun.invoke packages and subpackages) as
 249     // compile time constants.
 250     if (obj->is_Con()) {
 251       const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 252       ciObject* constant_oop = oop_ptr->const_oop();
 253       ciConstant constant = field->constant_value_of(constant_oop);
 254       con_type = Type::make_from_constant(constant, /*require_const=*/true);
 255     }
 256   }
 257   if (FoldStableValues && field->is_stable() && con_type != NULL) {
 258     if (con_type->is_zero_type()) {
 259       return NULL; // the field hasn't been initialized yet
 260     } else if (con_type->isa_oopptr()) {
 261       const Type* stable_type = Type::get_const_type(field->type());
 262       if (field->type()->is_array_klass()) {
 263         int stable_dimension = field->type()->as_array_klass()->dimension();
 264         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 265       }
 266       if (stable_type != NULL) {
 267         con_type = con_type->join_speculative(stable_type);
 268       }
 269     }
 270   }
 271   return con_type;
 272 }
 273 
 274 //------------------------------make-------------------------------------------
 275 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 276 // and look for an existing copy in the type dictionary.
 277 const Type *Type::make( enum TYPES t ) {
 278   return (new Type(t))->hashcons();
 279 }
 280 
 281 //------------------------------cmp--------------------------------------------
 282 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 283   if( t1->_base != t2->_base )
 284     return 1;                   // Missed badly
 285   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 286   return !t1->eq(t2);           // Return ZERO if equal
 287 }
 288 
 289 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 290   if (!include_speculative) {
 291     return remove_speculative();
 292   }
 293   return this;
 294 }
 295 
 296 //------------------------------hash-------------------------------------------
 297 int Type::uhash( const Type *const t ) {
 298   return t->hash();
 299 }
 300 
 301 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 302 
 303 //--------------------------Initialize_shared----------------------------------
 304 void Type::Initialize_shared(Compile* current) {
 305   // This method does not need to be locked because the first system
 306   // compilations (stub compilations) occur serially.  If they are
 307   // changed to proceed in parallel, then this section will need
 308   // locking.
 309 
 310   Arena* save = current->type_arena();
 311   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 312 
 313   current->set_type_arena(shared_type_arena);
 314   _shared_type_dict =
 315     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 316                                   shared_type_arena, 128 );
 317   current->set_type_dict(_shared_type_dict);
 318 
 319   // Make shared pre-built types.
 320   CONTROL = make(Control);      // Control only
 321   TOP     = make(Top);          // No values in set
 322   MEMORY  = make(Memory);       // Abstract store only
 323   ABIO    = make(Abio);         // State-of-machine only
 324   RETURN_ADDRESS=make(Return_Address);
 325   FLOAT   = make(FloatBot);     // All floats
 326   DOUBLE  = make(DoubleBot);    // All doubles
 327   BOTTOM  = make(Bottom);       // Everything
 328   HALF    = make(Half);         // Placeholder half of doublewide type
 329 
 330   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 331   TypeF::ONE  = TypeF::make(1.0); // Float 1
 332 
 333   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 334   TypeD::ONE  = TypeD::make(1.0); // Double 1
 335 
 336   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 337   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 338   TypeInt::ONE     = TypeInt::make( 1);  //  1
 339   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 340   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 341   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 342   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 343   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 344   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 345   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 346   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 347   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 348   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 349   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 350   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 351   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 352   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 353   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 354   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 355   // CmpL is overloaded both as the bytecode computation returning
 356   // a trinary (-1,0,+1) integer result AND as an efficient long
 357   // compare returning optimizer ideal-type flags.
 358   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 359   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 360   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 361   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 362   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 363 
 364   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 365   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 366   TypeLong::ONE     = TypeLong::make( 1);        //  1
 367   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 368   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 369   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 370   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 371   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 372 
 373   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 374   fboth[0] = Type::CONTROL;
 375   fboth[1] = Type::CONTROL;
 376   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 377 
 378   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 379   ffalse[0] = Type::CONTROL;
 380   ffalse[1] = Type::TOP;
 381   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 382 
 383   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 384   fneither[0] = Type::TOP;
 385   fneither[1] = Type::TOP;
 386   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 387 
 388   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 389   ftrue[0] = Type::TOP;
 390   ftrue[1] = Type::CONTROL;
 391   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 392 
 393   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 394   floop[0] = Type::CONTROL;
 395   floop[1] = TypeInt::INT;
 396   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 397 
 398   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 399   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 400   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 401 
 402   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 403   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 404 
 405   const Type **fmembar = TypeTuple::fields(0);
 406   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 407 
 408   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 409   fsc[0] = TypeInt::CC;
 410   fsc[1] = Type::MEMORY;
 411   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 412 
 413   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 414   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 415   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 416   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 417                                            false, 0, oopDesc::mark_offset_in_bytes());
 418   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 419                                            false, 0, oopDesc::klass_offset_in_bytes());
 420   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 421 
 422   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 423 
 424   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 425   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 426 
 427   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 428 
 429   mreg2type[Op_Node] = Type::BOTTOM;
 430   mreg2type[Op_Set ] = 0;
 431   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 432   mreg2type[Op_RegI] = TypeInt::INT;
 433   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 434   mreg2type[Op_RegF] = Type::FLOAT;
 435   mreg2type[Op_RegD] = Type::DOUBLE;
 436   mreg2type[Op_RegL] = TypeLong::LONG;
 437   mreg2type[Op_RegFlags] = TypeInt::CC;
 438 
 439   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 440 
 441   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 442 
 443 #ifdef _LP64
 444   if (UseCompressedOops) {
 445     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 446     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 447   } else
 448 #endif
 449   {
 450     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 451     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 452   }
 453   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 454   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 455   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 456   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 457   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 458   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 459   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 460 
 461   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 462   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 463   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 464   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 465   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 466   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 467   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 468   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 469   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 470   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 471   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 472   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 473 
 474   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 475   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 476 
 477   const Type **fi2c = TypeTuple::fields(2);
 478   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 479   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 480   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 481 
 482   const Type **intpair = TypeTuple::fields(2);
 483   intpair[0] = TypeInt::INT;
 484   intpair[1] = TypeInt::INT;
 485   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 486 
 487   const Type **longpair = TypeTuple::fields(2);
 488   longpair[0] = TypeLong::LONG;
 489   longpair[1] = TypeLong::LONG;
 490   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 491 
 492   const Type **intccpair = TypeTuple::fields(2);
 493   intccpair[0] = TypeInt::INT;
 494   intccpair[1] = TypeInt::CC;
 495   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 496 
 497   const Type **longccpair = TypeTuple::fields(2);
 498   longccpair[0] = TypeLong::LONG;
 499   longccpair[1] = TypeInt::CC;
 500   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 501 
 502   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 503   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 504   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 505   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 506   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 507   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 508   _const_basic_type[T_INT]         = TypeInt::INT;
 509   _const_basic_type[T_LONG]        = TypeLong::LONG;
 510   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 511   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 512   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 513   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 514   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 515   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 516   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 517 
 518   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 519   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 520   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 521   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 522   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 523   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 524   _zero_type[T_INT]         = TypeInt::ZERO;
 525   _zero_type[T_LONG]        = TypeLong::ZERO;
 526   _zero_type[T_FLOAT]       = TypeF::ZERO;
 527   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 528   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 529   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 530   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 531   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 532 
 533   // get_zero_type() should not happen for T_CONFLICT
 534   _zero_type[T_CONFLICT]= NULL;
 535 
 536   // Vector predefined types, it needs initialized _const_basic_type[].
 537   if (Matcher::vector_size_supported(T_BYTE,4)) {
 538     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 539   }
 540   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 541     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 542   }
 543   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 544     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 545   }
 546   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 547     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 548   }
 549   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 550     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 551   }
 552   mreg2type[Op_VecS] = TypeVect::VECTS;
 553   mreg2type[Op_VecD] = TypeVect::VECTD;
 554   mreg2type[Op_VecX] = TypeVect::VECTX;
 555   mreg2type[Op_VecY] = TypeVect::VECTY;
 556   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 557 
 558   // Restore working type arena.
 559   current->set_type_arena(save);
 560   current->set_type_dict(NULL);
 561 }
 562 
 563 //------------------------------Initialize-------------------------------------
 564 void Type::Initialize(Compile* current) {
 565   assert(current->type_arena() != NULL, "must have created type arena");
 566 
 567   if (_shared_type_dict == NULL) {
 568     Initialize_shared(current);
 569   }
 570 
 571   Arena* type_arena = current->type_arena();
 572 
 573   // Create the hash-cons'ing dictionary with top-level storage allocation
 574   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 575   current->set_type_dict(tdic);
 576 
 577   // Transfer the shared types.
 578   DictI i(_shared_type_dict);
 579   for( ; i.test(); ++i ) {
 580     Type* t = (Type*)i._value;
 581     tdic->Insert(t,t);  // New Type, insert into Type table
 582   }
 583 }
 584 
 585 //------------------------------hashcons---------------------------------------
 586 // Do the hash-cons trick.  If the Type already exists in the type table,
 587 // delete the current Type and return the existing Type.  Otherwise stick the
 588 // current Type in the Type table.
 589 const Type *Type::hashcons(void) {
 590   debug_only(base());           // Check the assertion in Type::base().
 591   // Look up the Type in the Type dictionary
 592   Dict *tdic = type_dict();
 593   Type* old = (Type*)(tdic->Insert(this, this, false));
 594   if( old ) {                   // Pre-existing Type?
 595     if( old != this )           // Yes, this guy is not the pre-existing?
 596       delete this;              // Yes, Nuke this guy
 597     assert( old->_dual, "" );
 598     return old;                 // Return pre-existing
 599   }
 600 
 601   // Every type has a dual (to make my lattice symmetric).
 602   // Since we just discovered a new Type, compute its dual right now.
 603   assert( !_dual, "" );         // No dual yet
 604   _dual = xdual();              // Compute the dual
 605   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 606     _dual = this;
 607     return this;
 608   }
 609   assert( !_dual->_dual, "" );  // No reverse dual yet
 610   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 611   // New Type, insert into Type table
 612   tdic->Insert((void*)_dual,(void*)_dual);
 613   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 614 #ifdef ASSERT
 615   Type *dual_dual = (Type*)_dual->xdual();
 616   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 617   delete dual_dual;
 618 #endif
 619   return this;                  // Return new Type
 620 }
 621 
 622 //------------------------------eq---------------------------------------------
 623 // Structural equality check for Type representations
 624 bool Type::eq( const Type * ) const {
 625   return true;                  // Nothing else can go wrong
 626 }
 627 
 628 //------------------------------hash-------------------------------------------
 629 // Type-specific hashing function.
 630 int Type::hash(void) const {
 631   return _base;
 632 }
 633 
 634 //------------------------------is_finite--------------------------------------
 635 // Has a finite value
 636 bool Type::is_finite() const {
 637   return false;
 638 }
 639 
 640 //------------------------------is_nan-----------------------------------------
 641 // Is not a number (NaN)
 642 bool Type::is_nan()    const {
 643   return false;
 644 }
 645 
 646 //----------------------interface_vs_oop---------------------------------------
 647 #ifdef ASSERT
 648 bool Type::interface_vs_oop_helper(const Type *t) const {
 649   bool result = false;
 650 
 651   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 652   const TypePtr*    t_ptr =    t->make_ptr();
 653   if( this_ptr == NULL || t_ptr == NULL )
 654     return result;
 655 
 656   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 657   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 658   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 659     bool this_interface = this_inst->klass()->is_interface();
 660     bool    t_interface =    t_inst->klass()->is_interface();
 661     result = this_interface ^ t_interface;
 662   }
 663 
 664   return result;
 665 }
 666 
 667 bool Type::interface_vs_oop(const Type *t) const {
 668   if (interface_vs_oop_helper(t)) {
 669     return true;
 670   }
 671   // Now check the speculative parts as well
 672   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 673   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 674   if (this_spec != NULL && t_spec != NULL) {
 675     if (this_spec->interface_vs_oop_helper(t_spec)) {
 676       return true;
 677     }
 678     return false;
 679   }
 680   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 681     return true;
 682   }
 683   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 684     return true;
 685   }
 686   return false;
 687 }
 688 
 689 #endif
 690 
 691 //------------------------------meet-------------------------------------------
 692 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 693 // commutative and the lattice is symmetric.
 694 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 695   if (isa_narrowoop() && t->isa_narrowoop()) {
 696     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 697     return result->make_narrowoop();
 698   }
 699   if (isa_narrowklass() && t->isa_narrowklass()) {
 700     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 701     return result->make_narrowklass();
 702   }
 703 
 704   const Type *this_t = maybe_remove_speculative(include_speculative);
 705   t = t->maybe_remove_speculative(include_speculative);
 706 
 707   const Type *mt = this_t->xmeet(t);
 708   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 709   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 710 #ifdef ASSERT
 711   if (mt != t->xmeet(this_t)) {
 712     // Array of Interface meet Array of Oop is Not Commutative.
 713     if (!(this_t->make_ptr() && this_t->make_ptr()->isa_aryptr() &&
 714         t->make_ptr() && t->make_ptr()->isa_aryptr() &&
 715         interface_vs_oop(t))) {
 716       fatal("meet not commutative");
 717     }
 718   }
 719   const Type* dual_join = mt->_dual;
 720   const Type *t2t    = dual_join->xmeet(t->_dual);
 721   const Type *t2this = dual_join->xmeet(this_t->_dual);
 722 
 723   // Interface meet Oop is Not Symmetric:
 724   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 725   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 726   // Array of Interface meet Array of Oop is also Not Symmetric.
 727 
 728   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 729     tty->print_cr("=== Meet Not Symmetric ===");
 730     tty->print("t   =                   ");              t->dump(); tty->cr();
 731     tty->print("this=                   ");         this_t->dump(); tty->cr();
 732     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 733 
 734     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 735     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 736     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 737 
 738     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 739     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 740 
 741     fatal("meet not symmetric" );
 742   }
 743 #endif
 744   return mt;
 745 }
 746 
 747 //------------------------------xmeet------------------------------------------
 748 // Compute the MEET of two types.  It returns a new Type object.
 749 const Type *Type::xmeet( const Type *t ) const {
 750   // Perform a fast test for common case; meeting the same types together.
 751   if( this == t ) return this;  // Meeting same type-rep?
 752 
 753   // Meeting TOP with anything?
 754   if( _base == Top ) return t;
 755 
 756   // Meeting BOTTOM with anything?
 757   if( _base == Bottom ) return BOTTOM;
 758 
 759   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 760   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 761   switch (t->base()) {  // Switch on original type
 762 
 763   // Cut in half the number of cases I must handle.  Only need cases for when
 764   // the given enum "t->type" is less than or equal to the local enum "type".
 765   case FloatCon:
 766   case DoubleCon:
 767   case Int:
 768   case Long:
 769     return t->xmeet(this);
 770 
 771   case OopPtr:
 772     return t->xmeet(this);
 773 
 774   case InstPtr:
 775     return t->xmeet(this);
 776 
 777   case MetadataPtr:
 778   case KlassPtr:
 779     return t->xmeet(this);
 780 
 781   case AryPtr:
 782     return t->xmeet(this);
 783 
 784   case NarrowOop:
 785     return t->xmeet(this);
 786 
 787   case NarrowKlass:
 788     return t->xmeet(this);
 789 
 790   case Bad:                     // Type check
 791   default:                      // Bogus type not in lattice
 792     typerr(t);
 793     return Type::BOTTOM;
 794 
 795   case Bottom:                  // Ye Olde Default
 796     return t;
 797 
 798   case FloatTop:
 799     if( _base == FloatTop ) return this;
 800   case FloatBot:                // Float
 801     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 802     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 803     typerr(t);
 804     return Type::BOTTOM;
 805 
 806   case DoubleTop:
 807     if( _base == DoubleTop ) return this;
 808   case DoubleBot:               // Double
 809     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 810     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 811     typerr(t);
 812     return Type::BOTTOM;
 813 
 814   // These next few cases must match exactly or it is a compile-time error.
 815   case Control:                 // Control of code
 816   case Abio:                    // State of world outside of program
 817   case Memory:
 818     if( _base == t->_base )  return this;
 819     typerr(t);
 820     return Type::BOTTOM;
 821 
 822   case Top:                     // Top of the lattice
 823     return this;
 824   }
 825 
 826   // The type is unchanged
 827   return this;
 828 }
 829 
 830 //-----------------------------filter------------------------------------------
 831 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 832   const Type* ft = join_helper(kills, include_speculative);
 833   if (ft->empty())
 834     return Type::TOP;           // Canonical empty value
 835   return ft;
 836 }
 837 
 838 //------------------------------xdual------------------------------------------
 839 // Compute dual right now.
 840 const Type::TYPES Type::dual_type[Type::lastype] = {
 841   Bad,          // Bad
 842   Control,      // Control
 843   Bottom,       // Top
 844   Bad,          // Int - handled in v-call
 845   Bad,          // Long - handled in v-call
 846   Half,         // Half
 847   Bad,          // NarrowOop - handled in v-call
 848   Bad,          // NarrowKlass - handled in v-call
 849 
 850   Bad,          // Tuple - handled in v-call
 851   Bad,          // Array - handled in v-call
 852   Bad,          // VectorS - handled in v-call
 853   Bad,          // VectorD - handled in v-call
 854   Bad,          // VectorX - handled in v-call
 855   Bad,          // VectorY - handled in v-call
 856   Bad,          // VectorZ - handled in v-call
 857 
 858   Bad,          // AnyPtr - handled in v-call
 859   Bad,          // RawPtr - handled in v-call
 860   Bad,          // OopPtr - handled in v-call
 861   Bad,          // InstPtr - handled in v-call
 862   Bad,          // AryPtr - handled in v-call
 863 
 864   Bad,          //  MetadataPtr - handled in v-call
 865   Bad,          // KlassPtr - handled in v-call
 866 
 867   Bad,          // Function - handled in v-call
 868   Abio,         // Abio
 869   Return_Address,// Return_Address
 870   Memory,       // Memory
 871   FloatBot,     // FloatTop
 872   FloatCon,     // FloatCon
 873   FloatTop,     // FloatBot
 874   DoubleBot,    // DoubleTop
 875   DoubleCon,    // DoubleCon
 876   DoubleTop,    // DoubleBot
 877   Top           // Bottom
 878 };
 879 
 880 const Type *Type::xdual() const {
 881   // Note: the base() accessor asserts the sanity of _base.
 882   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 883   return new Type(_type_info[_base].dual_type);
 884 }
 885 
 886 //------------------------------has_memory-------------------------------------
 887 bool Type::has_memory() const {
 888   Type::TYPES tx = base();
 889   if (tx == Memory) return true;
 890   if (tx == Tuple) {
 891     const TypeTuple *t = is_tuple();
 892     for (uint i=0; i < t->cnt(); i++) {
 893       tx = t->field_at(i)->base();
 894       if (tx == Memory)  return true;
 895     }
 896   }
 897   return false;
 898 }
 899 
 900 #ifndef PRODUCT
 901 //------------------------------dump2------------------------------------------
 902 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 903   st->print("%s", _type_info[_base].msg);
 904 }
 905 
 906 //------------------------------dump-------------------------------------------
 907 void Type::dump_on(outputStream *st) const {
 908   ResourceMark rm;
 909   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 910   dump2(d,1, st);
 911   if (is_ptr_to_narrowoop()) {
 912     st->print(" [narrow]");
 913   } else if (is_ptr_to_narrowklass()) {
 914     st->print(" [narrowklass]");
 915   }
 916 }
 917 #endif
 918 
 919 //------------------------------singleton--------------------------------------
 920 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 921 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 922 bool Type::singleton(void) const {
 923   return _base == Top || _base == Half;
 924 }
 925 
 926 //------------------------------empty------------------------------------------
 927 // TRUE if Type is a type with no values, FALSE otherwise.
 928 bool Type::empty(void) const {
 929   switch (_base) {
 930   case DoubleTop:
 931   case FloatTop:
 932   case Top:
 933     return true;
 934 
 935   case Half:
 936   case Abio:
 937   case Return_Address:
 938   case Memory:
 939   case Bottom:
 940   case FloatBot:
 941   case DoubleBot:
 942     return false;  // never a singleton, therefore never empty
 943   }
 944 
 945   ShouldNotReachHere();
 946   return false;
 947 }
 948 
 949 //------------------------------dump_stats-------------------------------------
 950 // Dump collected statistics to stderr
 951 #ifndef PRODUCT
 952 void Type::dump_stats() {
 953   tty->print("Types made: %d\n", type_dict()->Size());
 954 }
 955 #endif
 956 
 957 //------------------------------typerr-----------------------------------------
 958 void Type::typerr( const Type *t ) const {
 959 #ifndef PRODUCT
 960   tty->print("\nError mixing types: ");
 961   dump();
 962   tty->print(" and ");
 963   t->dump();
 964   tty->print("\n");
 965 #endif
 966   ShouldNotReachHere();
 967 }
 968 
 969 
 970 //=============================================================================
 971 // Convenience common pre-built types.
 972 const TypeF *TypeF::ZERO;       // Floating point zero
 973 const TypeF *TypeF::ONE;        // Floating point one
 974 
 975 //------------------------------make-------------------------------------------
 976 // Create a float constant
 977 const TypeF *TypeF::make(float f) {
 978   return (TypeF*)(new TypeF(f))->hashcons();
 979 }
 980 
 981 //------------------------------meet-------------------------------------------
 982 // Compute the MEET of two types.  It returns a new Type object.
 983 const Type *TypeF::xmeet( const Type *t ) const {
 984   // Perform a fast test for common case; meeting the same types together.
 985   if( this == t ) return this;  // Meeting same type-rep?
 986 
 987   // Current "this->_base" is FloatCon
 988   switch (t->base()) {          // Switch on original type
 989   case AnyPtr:                  // Mixing with oops happens when javac
 990   case RawPtr:                  // reuses local variables
 991   case OopPtr:
 992   case InstPtr:
 993   case AryPtr:
 994   case MetadataPtr:
 995   case KlassPtr:
 996   case NarrowOop:
 997   case NarrowKlass:
 998   case Int:
 999   case Long:
1000   case DoubleTop:
1001   case DoubleCon:
1002   case DoubleBot:
1003   case Bottom:                  // Ye Olde Default
1004     return Type::BOTTOM;
1005 
1006   case FloatBot:
1007     return t;
1008 
1009   default:                      // All else is a mistake
1010     typerr(t);
1011 
1012   case FloatCon:                // Float-constant vs Float-constant?
1013     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1014                                 // must compare bitwise as positive zero, negative zero and NaN have
1015                                 // all the same representation in C++
1016       return FLOAT;             // Return generic float
1017                                 // Equal constants
1018   case Top:
1019   case FloatTop:
1020     break;                      // Return the float constant
1021   }
1022   return this;                  // Return the float constant
1023 }
1024 
1025 //------------------------------xdual------------------------------------------
1026 // Dual: symmetric
1027 const Type *TypeF::xdual() const {
1028   return this;
1029 }
1030 
1031 //------------------------------eq---------------------------------------------
1032 // Structural equality check for Type representations
1033 bool TypeF::eq(const Type *t) const {
1034   // Bitwise comparison to distinguish between +/-0. These values must be treated
1035   // as different to be consistent with C1 and the interpreter.
1036   return (jint_cast(_f) == jint_cast(t->getf()));
1037 }
1038 
1039 //------------------------------hash-------------------------------------------
1040 // Type-specific hashing function.
1041 int TypeF::hash(void) const {
1042   return *(int*)(&_f);
1043 }
1044 
1045 //------------------------------is_finite--------------------------------------
1046 // Has a finite value
1047 bool TypeF::is_finite() const {
1048   return g_isfinite(getf()) != 0;
1049 }
1050 
1051 //------------------------------is_nan-----------------------------------------
1052 // Is not a number (NaN)
1053 bool TypeF::is_nan()    const {
1054   return g_isnan(getf()) != 0;
1055 }
1056 
1057 //------------------------------dump2------------------------------------------
1058 // Dump float constant Type
1059 #ifndef PRODUCT
1060 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1061   Type::dump2(d,depth, st);
1062   st->print("%f", _f);
1063 }
1064 #endif
1065 
1066 //------------------------------singleton--------------------------------------
1067 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1068 // constants (Ldi nodes).  Singletons are integer, float or double constants
1069 // or a single symbol.
1070 bool TypeF::singleton(void) const {
1071   return true;                  // Always a singleton
1072 }
1073 
1074 bool TypeF::empty(void) const {
1075   return false;                 // always exactly a singleton
1076 }
1077 
1078 //=============================================================================
1079 // Convenience common pre-built types.
1080 const TypeD *TypeD::ZERO;       // Floating point zero
1081 const TypeD *TypeD::ONE;        // Floating point one
1082 
1083 //------------------------------make-------------------------------------------
1084 const TypeD *TypeD::make(double d) {
1085   return (TypeD*)(new TypeD(d))->hashcons();
1086 }
1087 
1088 //------------------------------meet-------------------------------------------
1089 // Compute the MEET of two types.  It returns a new Type object.
1090 const Type *TypeD::xmeet( const Type *t ) const {
1091   // Perform a fast test for common case; meeting the same types together.
1092   if( this == t ) return this;  // Meeting same type-rep?
1093 
1094   // Current "this->_base" is DoubleCon
1095   switch (t->base()) {          // Switch on original type
1096   case AnyPtr:                  // Mixing with oops happens when javac
1097   case RawPtr:                  // reuses local variables
1098   case OopPtr:
1099   case InstPtr:
1100   case AryPtr:
1101   case MetadataPtr:
1102   case KlassPtr:
1103   case NarrowOop:
1104   case NarrowKlass:
1105   case Int:
1106   case Long:
1107   case FloatTop:
1108   case FloatCon:
1109   case FloatBot:
1110   case Bottom:                  // Ye Olde Default
1111     return Type::BOTTOM;
1112 
1113   case DoubleBot:
1114     return t;
1115 
1116   default:                      // All else is a mistake
1117     typerr(t);
1118 
1119   case DoubleCon:               // Double-constant vs Double-constant?
1120     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1121       return DOUBLE;            // Return generic double
1122   case Top:
1123   case DoubleTop:
1124     break;
1125   }
1126   return this;                  // Return the double constant
1127 }
1128 
1129 //------------------------------xdual------------------------------------------
1130 // Dual: symmetric
1131 const Type *TypeD::xdual() const {
1132   return this;
1133 }
1134 
1135 //------------------------------eq---------------------------------------------
1136 // Structural equality check for Type representations
1137 bool TypeD::eq(const Type *t) const {
1138   // Bitwise comparison to distinguish between +/-0. These values must be treated
1139   // as different to be consistent with C1 and the interpreter.
1140   return (jlong_cast(_d) == jlong_cast(t->getd()));
1141 }
1142 
1143 //------------------------------hash-------------------------------------------
1144 // Type-specific hashing function.
1145 int TypeD::hash(void) const {
1146   return *(int*)(&_d);
1147 }
1148 
1149 //------------------------------is_finite--------------------------------------
1150 // Has a finite value
1151 bool TypeD::is_finite() const {
1152   return g_isfinite(getd()) != 0;
1153 }
1154 
1155 //------------------------------is_nan-----------------------------------------
1156 // Is not a number (NaN)
1157 bool TypeD::is_nan()    const {
1158   return g_isnan(getd()) != 0;
1159 }
1160 
1161 //------------------------------dump2------------------------------------------
1162 // Dump double constant Type
1163 #ifndef PRODUCT
1164 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1165   Type::dump2(d,depth,st);
1166   st->print("%f", _d);
1167 }
1168 #endif
1169 
1170 //------------------------------singleton--------------------------------------
1171 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1172 // constants (Ldi nodes).  Singletons are integer, float or double constants
1173 // or a single symbol.
1174 bool TypeD::singleton(void) const {
1175   return true;                  // Always a singleton
1176 }
1177 
1178 bool TypeD::empty(void) const {
1179   return false;                 // always exactly a singleton
1180 }
1181 
1182 //=============================================================================
1183 // Convience common pre-built types.
1184 const TypeInt *TypeInt::MINUS_1;// -1
1185 const TypeInt *TypeInt::ZERO;   // 0
1186 const TypeInt *TypeInt::ONE;    // 1
1187 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1188 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1189 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1190 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1191 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1192 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1193 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1194 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1195 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1196 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1197 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1198 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1199 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1200 const TypeInt *TypeInt::INT;    // 32-bit integers
1201 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1202 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1203 
1204 //------------------------------TypeInt----------------------------------------
1205 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1206 }
1207 
1208 //------------------------------make-------------------------------------------
1209 const TypeInt *TypeInt::make( jint lo ) {
1210   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1211 }
1212 
1213 static int normalize_int_widen( jint lo, jint hi, int w ) {
1214   // Certain normalizations keep us sane when comparing types.
1215   // The 'SMALLINT' covers constants and also CC and its relatives.
1216   if (lo <= hi) {
1217     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1218     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1219   } else {
1220     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1221     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1222   }
1223   return w;
1224 }
1225 
1226 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1227   w = normalize_int_widen(lo, hi, w);
1228   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1229 }
1230 
1231 //------------------------------meet-------------------------------------------
1232 // Compute the MEET of two types.  It returns a new Type representation object
1233 // with reference count equal to the number of Types pointing at it.
1234 // Caller should wrap a Types around it.
1235 const Type *TypeInt::xmeet( const Type *t ) const {
1236   // Perform a fast test for common case; meeting the same types together.
1237   if( this == t ) return this;  // Meeting same type?
1238 
1239   // Currently "this->_base" is a TypeInt
1240   switch (t->base()) {          // Switch on original type
1241   case AnyPtr:                  // Mixing with oops happens when javac
1242   case RawPtr:                  // reuses local variables
1243   case OopPtr:
1244   case InstPtr:
1245   case AryPtr:
1246   case MetadataPtr:
1247   case KlassPtr:
1248   case NarrowOop:
1249   case NarrowKlass:
1250   case Long:
1251   case FloatTop:
1252   case FloatCon:
1253   case FloatBot:
1254   case DoubleTop:
1255   case DoubleCon:
1256   case DoubleBot:
1257   case Bottom:                  // Ye Olde Default
1258     return Type::BOTTOM;
1259   default:                      // All else is a mistake
1260     typerr(t);
1261   case Top:                     // No change
1262     return this;
1263   case Int:                     // Int vs Int?
1264     break;
1265   }
1266 
1267   // Expand covered set
1268   const TypeInt *r = t->is_int();
1269   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1270 }
1271 
1272 //------------------------------xdual------------------------------------------
1273 // Dual: reverse hi & lo; flip widen
1274 const Type *TypeInt::xdual() const {
1275   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1276   return new TypeInt(_hi,_lo,w);
1277 }
1278 
1279 //------------------------------widen------------------------------------------
1280 // Only happens for optimistic top-down optimizations.
1281 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1282   // Coming from TOP or such; no widening
1283   if( old->base() != Int ) return this;
1284   const TypeInt *ot = old->is_int();
1285 
1286   // If new guy is equal to old guy, no widening
1287   if( _lo == ot->_lo && _hi == ot->_hi )
1288     return old;
1289 
1290   // If new guy contains old, then we widened
1291   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1292     // New contains old
1293     // If new guy is already wider than old, no widening
1294     if( _widen > ot->_widen ) return this;
1295     // If old guy was a constant, do not bother
1296     if (ot->_lo == ot->_hi)  return this;
1297     // Now widen new guy.
1298     // Check for widening too far
1299     if (_widen == WidenMax) {
1300       int max = max_jint;
1301       int min = min_jint;
1302       if (limit->isa_int()) {
1303         max = limit->is_int()->_hi;
1304         min = limit->is_int()->_lo;
1305       }
1306       if (min < _lo && _hi < max) {
1307         // If neither endpoint is extremal yet, push out the endpoint
1308         // which is closer to its respective limit.
1309         if (_lo >= 0 ||                 // easy common case
1310             (juint)(_lo - min) >= (juint)(max - _hi)) {
1311           // Try to widen to an unsigned range type of 31 bits:
1312           return make(_lo, max, WidenMax);
1313         } else {
1314           return make(min, _hi, WidenMax);
1315         }
1316       }
1317       return TypeInt::INT;
1318     }
1319     // Returned widened new guy
1320     return make(_lo,_hi,_widen+1);
1321   }
1322 
1323   // If old guy contains new, then we probably widened too far & dropped to
1324   // bottom.  Return the wider fellow.
1325   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1326     return old;
1327 
1328   //fatal("Integer value range is not subset");
1329   //return this;
1330   return TypeInt::INT;
1331 }
1332 
1333 //------------------------------narrow---------------------------------------
1334 // Only happens for pessimistic optimizations.
1335 const Type *TypeInt::narrow( const Type *old ) const {
1336   if (_lo >= _hi)  return this;   // already narrow enough
1337   if (old == NULL)  return this;
1338   const TypeInt* ot = old->isa_int();
1339   if (ot == NULL)  return this;
1340   jint olo = ot->_lo;
1341   jint ohi = ot->_hi;
1342 
1343   // If new guy is equal to old guy, no narrowing
1344   if (_lo == olo && _hi == ohi)  return old;
1345 
1346   // If old guy was maximum range, allow the narrowing
1347   if (olo == min_jint && ohi == max_jint)  return this;
1348 
1349   if (_lo < olo || _hi > ohi)
1350     return this;                // doesn't narrow; pretty wierd
1351 
1352   // The new type narrows the old type, so look for a "death march".
1353   // See comments on PhaseTransform::saturate.
1354   juint nrange = _hi - _lo;
1355   juint orange = ohi - olo;
1356   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1357     // Use the new type only if the range shrinks a lot.
1358     // We do not want the optimizer computing 2^31 point by point.
1359     return old;
1360   }
1361 
1362   return this;
1363 }
1364 
1365 //-----------------------------filter------------------------------------------
1366 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1367   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1368   if (ft == NULL || ft->empty())
1369     return Type::TOP;           // Canonical empty value
1370   if (ft->_widen < this->_widen) {
1371     // Do not allow the value of kill->_widen to affect the outcome.
1372     // The widen bits must be allowed to run freely through the graph.
1373     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1374   }
1375   return ft;
1376 }
1377 
1378 //------------------------------eq---------------------------------------------
1379 // Structural equality check for Type representations
1380 bool TypeInt::eq( const Type *t ) const {
1381   const TypeInt *r = t->is_int(); // Handy access
1382   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1383 }
1384 
1385 //------------------------------hash-------------------------------------------
1386 // Type-specific hashing function.
1387 int TypeInt::hash(void) const {
1388   return _lo+_hi+_widen+(int)Type::Int;
1389 }
1390 
1391 //------------------------------is_finite--------------------------------------
1392 // Has a finite value
1393 bool TypeInt::is_finite() const {
1394   return true;
1395 }
1396 
1397 //------------------------------dump2------------------------------------------
1398 // Dump TypeInt
1399 #ifndef PRODUCT
1400 static const char* intname(char* buf, jint n) {
1401   if (n == min_jint)
1402     return "min";
1403   else if (n < min_jint + 10000)
1404     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1405   else if (n == max_jint)
1406     return "max";
1407   else if (n > max_jint - 10000)
1408     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1409   else
1410     sprintf(buf, INT32_FORMAT, n);
1411   return buf;
1412 }
1413 
1414 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1415   char buf[40], buf2[40];
1416   if (_lo == min_jint && _hi == max_jint)
1417     st->print("int");
1418   else if (is_con())
1419     st->print("int:%s", intname(buf, get_con()));
1420   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1421     st->print("bool");
1422   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1423     st->print("byte");
1424   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1425     st->print("char");
1426   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1427     st->print("short");
1428   else if (_hi == max_jint)
1429     st->print("int:>=%s", intname(buf, _lo));
1430   else if (_lo == min_jint)
1431     st->print("int:<=%s", intname(buf, _hi));
1432   else
1433     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1434 
1435   if (_widen != 0 && this != TypeInt::INT)
1436     st->print(":%.*s", _widen, "wwww");
1437 }
1438 #endif
1439 
1440 //------------------------------singleton--------------------------------------
1441 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1442 // constants.
1443 bool TypeInt::singleton(void) const {
1444   return _lo >= _hi;
1445 }
1446 
1447 bool TypeInt::empty(void) const {
1448   return _lo > _hi;
1449 }
1450 
1451 //=============================================================================
1452 // Convenience common pre-built types.
1453 const TypeLong *TypeLong::MINUS_1;// -1
1454 const TypeLong *TypeLong::ZERO; // 0
1455 const TypeLong *TypeLong::ONE;  // 1
1456 const TypeLong *TypeLong::POS;  // >=0
1457 const TypeLong *TypeLong::LONG; // 64-bit integers
1458 const TypeLong *TypeLong::INT;  // 32-bit subrange
1459 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1460 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1461 
1462 //------------------------------TypeLong---------------------------------------
1463 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1464 }
1465 
1466 //------------------------------make-------------------------------------------
1467 const TypeLong *TypeLong::make( jlong lo ) {
1468   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1469 }
1470 
1471 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1472   // Certain normalizations keep us sane when comparing types.
1473   // The 'SMALLINT' covers constants.
1474   if (lo <= hi) {
1475     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1476     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1477   } else {
1478     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1479     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1480   }
1481   return w;
1482 }
1483 
1484 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1485   w = normalize_long_widen(lo, hi, w);
1486   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1487 }
1488 
1489 
1490 //------------------------------meet-------------------------------------------
1491 // Compute the MEET of two types.  It returns a new Type representation object
1492 // with reference count equal to the number of Types pointing at it.
1493 // Caller should wrap a Types around it.
1494 const Type *TypeLong::xmeet( const Type *t ) const {
1495   // Perform a fast test for common case; meeting the same types together.
1496   if( this == t ) return this;  // Meeting same type?
1497 
1498   // Currently "this->_base" is a TypeLong
1499   switch (t->base()) {          // Switch on original type
1500   case AnyPtr:                  // Mixing with oops happens when javac
1501   case RawPtr:                  // reuses local variables
1502   case OopPtr:
1503   case InstPtr:
1504   case AryPtr:
1505   case MetadataPtr:
1506   case KlassPtr:
1507   case NarrowOop:
1508   case NarrowKlass:
1509   case Int:
1510   case FloatTop:
1511   case FloatCon:
1512   case FloatBot:
1513   case DoubleTop:
1514   case DoubleCon:
1515   case DoubleBot:
1516   case Bottom:                  // Ye Olde Default
1517     return Type::BOTTOM;
1518   default:                      // All else is a mistake
1519     typerr(t);
1520   case Top:                     // No change
1521     return this;
1522   case Long:                    // Long vs Long?
1523     break;
1524   }
1525 
1526   // Expand covered set
1527   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1528   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1529 }
1530 
1531 //------------------------------xdual------------------------------------------
1532 // Dual: reverse hi & lo; flip widen
1533 const Type *TypeLong::xdual() const {
1534   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1535   return new TypeLong(_hi,_lo,w);
1536 }
1537 
1538 //------------------------------widen------------------------------------------
1539 // Only happens for optimistic top-down optimizations.
1540 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1541   // Coming from TOP or such; no widening
1542   if( old->base() != Long ) return this;
1543   const TypeLong *ot = old->is_long();
1544 
1545   // If new guy is equal to old guy, no widening
1546   if( _lo == ot->_lo && _hi == ot->_hi )
1547     return old;
1548 
1549   // If new guy contains old, then we widened
1550   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1551     // New contains old
1552     // If new guy is already wider than old, no widening
1553     if( _widen > ot->_widen ) return this;
1554     // If old guy was a constant, do not bother
1555     if (ot->_lo == ot->_hi)  return this;
1556     // Now widen new guy.
1557     // Check for widening too far
1558     if (_widen == WidenMax) {
1559       jlong max = max_jlong;
1560       jlong min = min_jlong;
1561       if (limit->isa_long()) {
1562         max = limit->is_long()->_hi;
1563         min = limit->is_long()->_lo;
1564       }
1565       if (min < _lo && _hi < max) {
1566         // If neither endpoint is extremal yet, push out the endpoint
1567         // which is closer to its respective limit.
1568         if (_lo >= 0 ||                 // easy common case
1569             (julong)(_lo - min) >= (julong)(max - _hi)) {
1570           // Try to widen to an unsigned range type of 32/63 bits:
1571           if (max >= max_juint && _hi < max_juint)
1572             return make(_lo, max_juint, WidenMax);
1573           else
1574             return make(_lo, max, WidenMax);
1575         } else {
1576           return make(min, _hi, WidenMax);
1577         }
1578       }
1579       return TypeLong::LONG;
1580     }
1581     // Returned widened new guy
1582     return make(_lo,_hi,_widen+1);
1583   }
1584 
1585   // If old guy contains new, then we probably widened too far & dropped to
1586   // bottom.  Return the wider fellow.
1587   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1588     return old;
1589 
1590   //  fatal("Long value range is not subset");
1591   // return this;
1592   return TypeLong::LONG;
1593 }
1594 
1595 //------------------------------narrow----------------------------------------
1596 // Only happens for pessimistic optimizations.
1597 const Type *TypeLong::narrow( const Type *old ) const {
1598   if (_lo >= _hi)  return this;   // already narrow enough
1599   if (old == NULL)  return this;
1600   const TypeLong* ot = old->isa_long();
1601   if (ot == NULL)  return this;
1602   jlong olo = ot->_lo;
1603   jlong ohi = ot->_hi;
1604 
1605   // If new guy is equal to old guy, no narrowing
1606   if (_lo == olo && _hi == ohi)  return old;
1607 
1608   // If old guy was maximum range, allow the narrowing
1609   if (olo == min_jlong && ohi == max_jlong)  return this;
1610 
1611   if (_lo < olo || _hi > ohi)
1612     return this;                // doesn't narrow; pretty wierd
1613 
1614   // The new type narrows the old type, so look for a "death march".
1615   // See comments on PhaseTransform::saturate.
1616   julong nrange = _hi - _lo;
1617   julong orange = ohi - olo;
1618   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1619     // Use the new type only if the range shrinks a lot.
1620     // We do not want the optimizer computing 2^31 point by point.
1621     return old;
1622   }
1623 
1624   return this;
1625 }
1626 
1627 //-----------------------------filter------------------------------------------
1628 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1629   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1630   if (ft == NULL || ft->empty())
1631     return Type::TOP;           // Canonical empty value
1632   if (ft->_widen < this->_widen) {
1633     // Do not allow the value of kill->_widen to affect the outcome.
1634     // The widen bits must be allowed to run freely through the graph.
1635     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1636   }
1637   return ft;
1638 }
1639 
1640 //------------------------------eq---------------------------------------------
1641 // Structural equality check for Type representations
1642 bool TypeLong::eq( const Type *t ) const {
1643   const TypeLong *r = t->is_long(); // Handy access
1644   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1645 }
1646 
1647 //------------------------------hash-------------------------------------------
1648 // Type-specific hashing function.
1649 int TypeLong::hash(void) const {
1650   return (int)(_lo+_hi+_widen+(int)Type::Long);
1651 }
1652 
1653 //------------------------------is_finite--------------------------------------
1654 // Has a finite value
1655 bool TypeLong::is_finite() const {
1656   return true;
1657 }
1658 
1659 //------------------------------dump2------------------------------------------
1660 // Dump TypeLong
1661 #ifndef PRODUCT
1662 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1663   if (n > x) {
1664     if (n >= x + 10000)  return NULL;
1665     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1666   } else if (n < x) {
1667     if (n <= x - 10000)  return NULL;
1668     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1669   } else {
1670     return xname;
1671   }
1672   return buf;
1673 }
1674 
1675 static const char* longname(char* buf, jlong n) {
1676   const char* str;
1677   if (n == min_jlong)
1678     return "min";
1679   else if (n < min_jlong + 10000)
1680     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1681   else if (n == max_jlong)
1682     return "max";
1683   else if (n > max_jlong - 10000)
1684     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1685   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1686     return str;
1687   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1688     return str;
1689   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1690     return str;
1691   else
1692     sprintf(buf, JLONG_FORMAT, n);
1693   return buf;
1694 }
1695 
1696 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1697   char buf[80], buf2[80];
1698   if (_lo == min_jlong && _hi == max_jlong)
1699     st->print("long");
1700   else if (is_con())
1701     st->print("long:%s", longname(buf, get_con()));
1702   else if (_hi == max_jlong)
1703     st->print("long:>=%s", longname(buf, _lo));
1704   else if (_lo == min_jlong)
1705     st->print("long:<=%s", longname(buf, _hi));
1706   else
1707     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1708 
1709   if (_widen != 0 && this != TypeLong::LONG)
1710     st->print(":%.*s", _widen, "wwww");
1711 }
1712 #endif
1713 
1714 //------------------------------singleton--------------------------------------
1715 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1716 // constants
1717 bool TypeLong::singleton(void) const {
1718   return _lo >= _hi;
1719 }
1720 
1721 bool TypeLong::empty(void) const {
1722   return _lo > _hi;
1723 }
1724 
1725 //=============================================================================
1726 // Convenience common pre-built types.
1727 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1728 const TypeTuple *TypeTuple::IFFALSE;
1729 const TypeTuple *TypeTuple::IFTRUE;
1730 const TypeTuple *TypeTuple::IFNEITHER;
1731 const TypeTuple *TypeTuple::LOOPBODY;
1732 const TypeTuple *TypeTuple::MEMBAR;
1733 const TypeTuple *TypeTuple::STORECONDITIONAL;
1734 const TypeTuple *TypeTuple::START_I2C;
1735 const TypeTuple *TypeTuple::INT_PAIR;
1736 const TypeTuple *TypeTuple::LONG_PAIR;
1737 const TypeTuple *TypeTuple::INT_CC_PAIR;
1738 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1739 
1740 
1741 //------------------------------make-------------------------------------------
1742 // Make a TypeTuple from the range of a method signature
1743 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1744   ciType* return_type = sig->return_type();
1745   uint arg_cnt = return_type->size();
1746   const Type **field_array = fields(arg_cnt);
1747   switch (return_type->basic_type()) {
1748   case T_LONG:
1749     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1750     field_array[TypeFunc::Parms+1] = Type::HALF;
1751     break;
1752   case T_DOUBLE:
1753     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1754     field_array[TypeFunc::Parms+1] = Type::HALF;
1755     break;
1756   case T_OBJECT:
1757   case T_ARRAY:
1758   case T_BOOLEAN:
1759   case T_CHAR:
1760   case T_FLOAT:
1761   case T_BYTE:
1762   case T_SHORT:
1763   case T_INT:
1764     field_array[TypeFunc::Parms] = get_const_type(return_type);
1765     break;
1766   case T_VOID:
1767     break;
1768   default:
1769     ShouldNotReachHere();
1770   }
1771   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1772 }
1773 
1774 // Make a TypeTuple from the domain of a method signature
1775 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1776   uint arg_cnt = sig->size();
1777 
1778   uint pos = TypeFunc::Parms;
1779   const Type **field_array;
1780   if (recv != NULL) {
1781     arg_cnt++;
1782     field_array = fields(arg_cnt);
1783     // Use get_const_type here because it respects UseUniqueSubclasses:
1784     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1785   } else {
1786     field_array = fields(arg_cnt);
1787   }
1788 
1789   int i = 0;
1790   while (pos < TypeFunc::Parms + arg_cnt) {
1791     ciType* type = sig->type_at(i);
1792 
1793     switch (type->basic_type()) {
1794     case T_LONG:
1795       field_array[pos++] = TypeLong::LONG;
1796       field_array[pos++] = Type::HALF;
1797       break;
1798     case T_DOUBLE:
1799       field_array[pos++] = Type::DOUBLE;
1800       field_array[pos++] = Type::HALF;
1801       break;
1802     case T_OBJECT:
1803     case T_ARRAY:
1804     case T_BOOLEAN:
1805     case T_CHAR:
1806     case T_FLOAT:
1807     case T_BYTE:
1808     case T_SHORT:
1809     case T_INT:
1810       field_array[pos++] = get_const_type(type);
1811       break;
1812     default:
1813       ShouldNotReachHere();
1814     }
1815     i++;
1816   }
1817 
1818   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1819 }
1820 
1821 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1822   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1823 }
1824 
1825 //------------------------------fields-----------------------------------------
1826 // Subroutine call type with space allocated for argument types
1827 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1828 const Type **TypeTuple::fields( uint arg_cnt ) {
1829   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1830   flds[TypeFunc::Control  ] = Type::CONTROL;
1831   flds[TypeFunc::I_O      ] = Type::ABIO;
1832   flds[TypeFunc::Memory   ] = Type::MEMORY;
1833   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1834   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1835 
1836   return flds;
1837 }
1838 
1839 //------------------------------meet-------------------------------------------
1840 // Compute the MEET of two types.  It returns a new Type object.
1841 const Type *TypeTuple::xmeet( const Type *t ) const {
1842   // Perform a fast test for common case; meeting the same types together.
1843   if( this == t ) return this;  // Meeting same type-rep?
1844 
1845   // Current "this->_base" is Tuple
1846   switch (t->base()) {          // switch on original type
1847 
1848   case Bottom:                  // Ye Olde Default
1849     return t;
1850 
1851   default:                      // All else is a mistake
1852     typerr(t);
1853 
1854   case Tuple: {                 // Meeting 2 signatures?
1855     const TypeTuple *x = t->is_tuple();
1856     assert( _cnt == x->_cnt, "" );
1857     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1858     for( uint i=0; i<_cnt; i++ )
1859       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1860     return TypeTuple::make(_cnt,fields);
1861   }
1862   case Top:
1863     break;
1864   }
1865   return this;                  // Return the double constant
1866 }
1867 
1868 //------------------------------xdual------------------------------------------
1869 // Dual: compute field-by-field dual
1870 const Type *TypeTuple::xdual() const {
1871   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1872   for( uint i=0; i<_cnt; i++ )
1873     fields[i] = _fields[i]->dual();
1874   return new TypeTuple(_cnt,fields);
1875 }
1876 
1877 //------------------------------eq---------------------------------------------
1878 // Structural equality check for Type representations
1879 bool TypeTuple::eq( const Type *t ) const {
1880   const TypeTuple *s = (const TypeTuple *)t;
1881   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1882   for (uint i = 0; i < _cnt; i++)
1883     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1884       return false;             // Missed
1885   return true;
1886 }
1887 
1888 //------------------------------hash-------------------------------------------
1889 // Type-specific hashing function.
1890 int TypeTuple::hash(void) const {
1891   intptr_t sum = _cnt;
1892   for( uint i=0; i<_cnt; i++ )
1893     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1894   return sum;
1895 }
1896 
1897 //------------------------------dump2------------------------------------------
1898 // Dump signature Type
1899 #ifndef PRODUCT
1900 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1901   st->print("{");
1902   if( !depth || d[this] ) {     // Check for recursive print
1903     st->print("...}");
1904     return;
1905   }
1906   d.Insert((void*)this, (void*)this);   // Stop recursion
1907   if( _cnt ) {
1908     uint i;
1909     for( i=0; i<_cnt-1; i++ ) {
1910       st->print("%d:", i);
1911       _fields[i]->dump2(d, depth-1, st);
1912       st->print(", ");
1913     }
1914     st->print("%d:", i);
1915     _fields[i]->dump2(d, depth-1, st);
1916   }
1917   st->print("}");
1918 }
1919 #endif
1920 
1921 //------------------------------singleton--------------------------------------
1922 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1923 // constants (Ldi nodes).  Singletons are integer, float or double constants
1924 // or a single symbol.
1925 bool TypeTuple::singleton(void) const {
1926   return false;                 // Never a singleton
1927 }
1928 
1929 bool TypeTuple::empty(void) const {
1930   for( uint i=0; i<_cnt; i++ ) {
1931     if (_fields[i]->empty())  return true;
1932   }
1933   return false;
1934 }
1935 
1936 //=============================================================================
1937 // Convenience common pre-built types.
1938 
1939 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1940   // Certain normalizations keep us sane when comparing types.
1941   // We do not want arrayOop variables to differ only by the wideness
1942   // of their index types.  Pick minimum wideness, since that is the
1943   // forced wideness of small ranges anyway.
1944   if (size->_widen != Type::WidenMin)
1945     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1946   else
1947     return size;
1948 }
1949 
1950 //------------------------------make-------------------------------------------
1951 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1952   if (UseCompressedOops && elem->isa_oopptr()) {
1953     elem = elem->make_narrowoop();
1954   }
1955   size = normalize_array_size(size);
1956   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1957 }
1958 
1959 //------------------------------meet-------------------------------------------
1960 // Compute the MEET of two types.  It returns a new Type object.
1961 const Type *TypeAry::xmeet( const Type *t ) const {
1962   // Perform a fast test for common case; meeting the same types together.
1963   if( this == t ) return this;  // Meeting same type-rep?
1964 
1965   // Current "this->_base" is Ary
1966   switch (t->base()) {          // switch on original type
1967 
1968   case Bottom:                  // Ye Olde Default
1969     return t;
1970 
1971   default:                      // All else is a mistake
1972     typerr(t);
1973 
1974   case Array: {                 // Meeting 2 arrays?
1975     const TypeAry *a = t->is_ary();
1976     return TypeAry::make(_elem->meet_speculative(a->_elem),
1977                          _size->xmeet(a->_size)->is_int(),
1978                          _stable & a->_stable);
1979   }
1980   case Top:
1981     break;
1982   }
1983   return this;                  // Return the double constant
1984 }
1985 
1986 //------------------------------xdual------------------------------------------
1987 // Dual: compute field-by-field dual
1988 const Type *TypeAry::xdual() const {
1989   const TypeInt* size_dual = _size->dual()->is_int();
1990   size_dual = normalize_array_size(size_dual);
1991   return new TypeAry(_elem->dual(), size_dual, !_stable);
1992 }
1993 
1994 //------------------------------eq---------------------------------------------
1995 // Structural equality check for Type representations
1996 bool TypeAry::eq( const Type *t ) const {
1997   const TypeAry *a = (const TypeAry*)t;
1998   return _elem == a->_elem &&
1999     _stable == a->_stable &&
2000     _size == a->_size;
2001 }
2002 
2003 //------------------------------hash-------------------------------------------
2004 // Type-specific hashing function.
2005 int TypeAry::hash(void) const {
2006   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2007 }
2008 
2009 /**
2010  * Return same type without a speculative part in the element
2011  */
2012 const Type* TypeAry::remove_speculative() const {
2013   return make(_elem->remove_speculative(), _size, _stable);
2014 }
2015 
2016 /**
2017  * Return same type with cleaned up speculative part of element
2018  */
2019 const Type* TypeAry::cleanup_speculative() const {
2020   return make(_elem->cleanup_speculative(), _size, _stable);
2021 }
2022 
2023 /**
2024  * Return same type but with a different inline depth (used for speculation)
2025  *
2026  * @param depth  depth to meet with
2027  */
2028 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2029   if (!UseInlineDepthForSpeculativeTypes) {
2030     return this;
2031   }
2032   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2033 }
2034 
2035 //----------------------interface_vs_oop---------------------------------------
2036 #ifdef ASSERT
2037 bool TypeAry::interface_vs_oop(const Type *t) const {
2038   const TypeAry* t_ary = t->is_ary();
2039   if (t_ary) {
2040     const TypePtr* this_ptr = _elem->make_ptr(); // In case it is narrow_oop
2041     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2042     if(this_ptr != NULL && t_ptr != NULL) {
2043       return this_ptr->interface_vs_oop(t_ptr);
2044     }
2045   }
2046   return false;
2047 }
2048 #endif
2049 
2050 //------------------------------dump2------------------------------------------
2051 #ifndef PRODUCT
2052 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2053   if (_stable)  st->print("stable:");
2054   _elem->dump2(d, depth, st);
2055   st->print("[");
2056   _size->dump2(d, depth, st);
2057   st->print("]");
2058 }
2059 #endif
2060 
2061 //------------------------------singleton--------------------------------------
2062 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2063 // constants (Ldi nodes).  Singletons are integer, float or double constants
2064 // or a single symbol.
2065 bool TypeAry::singleton(void) const {
2066   return false;                 // Never a singleton
2067 }
2068 
2069 bool TypeAry::empty(void) const {
2070   return _elem->empty() || _size->empty();
2071 }
2072 
2073 //--------------------------ary_must_be_exact----------------------------------
2074 bool TypeAry::ary_must_be_exact() const {
2075   if (!UseExactTypes)       return false;
2076   // This logic looks at the element type of an array, and returns true
2077   // if the element type is either a primitive or a final instance class.
2078   // In such cases, an array built on this ary must have no subclasses.
2079   if (_elem == BOTTOM)      return false;  // general array not exact
2080   if (_elem == TOP   )      return false;  // inverted general array not exact
2081   const TypeOopPtr*  toop = NULL;
2082   if (UseCompressedOops && _elem->isa_narrowoop()) {
2083     toop = _elem->make_ptr()->isa_oopptr();
2084   } else {
2085     toop = _elem->isa_oopptr();
2086   }
2087   if (!toop)                return true;   // a primitive type, like int
2088   ciKlass* tklass = toop->klass();
2089   if (tklass == NULL)       return false;  // unloaded class
2090   if (!tklass->is_loaded()) return false;  // unloaded class
2091   const TypeInstPtr* tinst;
2092   if (_elem->isa_narrowoop())
2093     tinst = _elem->make_ptr()->isa_instptr();
2094   else
2095     tinst = _elem->isa_instptr();
2096   if (tinst)
2097     return tklass->as_instance_klass()->is_final();
2098   const TypeAryPtr*  tap;
2099   if (_elem->isa_narrowoop())
2100     tap = _elem->make_ptr()->isa_aryptr();
2101   else
2102     tap = _elem->isa_aryptr();
2103   if (tap)
2104     return tap->ary()->ary_must_be_exact();
2105   return false;
2106 }
2107 
2108 //==============================TypeVect=======================================
2109 // Convenience common pre-built types.
2110 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2111 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2112 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2113 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2114 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2115 
2116 //------------------------------make-------------------------------------------
2117 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2118   BasicType elem_bt = elem->array_element_basic_type();
2119   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2120   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2121   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2122   int size = length * type2aelembytes(elem_bt);
2123   switch (Matcher::vector_ideal_reg(size)) {
2124   case Op_VecS:
2125     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2126   case Op_RegL:
2127   case Op_VecD:
2128   case Op_RegD:
2129     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2130   case Op_VecX:
2131     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2132   case Op_VecY:
2133     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2134   case Op_VecZ:
2135     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2136   }
2137  ShouldNotReachHere();
2138   return NULL;
2139 }
2140 
2141 //------------------------------meet-------------------------------------------
2142 // Compute the MEET of two types.  It returns a new Type object.
2143 const Type *TypeVect::xmeet( const Type *t ) const {
2144   // Perform a fast test for common case; meeting the same types together.
2145   if( this == t ) return this;  // Meeting same type-rep?
2146 
2147   // Current "this->_base" is Vector
2148   switch (t->base()) {          // switch on original type
2149 
2150   case Bottom:                  // Ye Olde Default
2151     return t;
2152 
2153   default:                      // All else is a mistake
2154     typerr(t);
2155 
2156   case VectorS:
2157   case VectorD:
2158   case VectorX:
2159   case VectorY:
2160   case VectorZ: {                // Meeting 2 vectors?
2161     const TypeVect* v = t->is_vect();
2162     assert(  base() == v->base(), "");
2163     assert(length() == v->length(), "");
2164     assert(element_basic_type() == v->element_basic_type(), "");
2165     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2166   }
2167   case Top:
2168     break;
2169   }
2170   return this;
2171 }
2172 
2173 //------------------------------xdual------------------------------------------
2174 // Dual: compute field-by-field dual
2175 const Type *TypeVect::xdual() const {
2176   return new TypeVect(base(), _elem->dual(), _length);
2177 }
2178 
2179 //------------------------------eq---------------------------------------------
2180 // Structural equality check for Type representations
2181 bool TypeVect::eq(const Type *t) const {
2182   const TypeVect *v = t->is_vect();
2183   return (_elem == v->_elem) && (_length == v->_length);
2184 }
2185 
2186 //------------------------------hash-------------------------------------------
2187 // Type-specific hashing function.
2188 int TypeVect::hash(void) const {
2189   return (intptr_t)_elem + (intptr_t)_length;
2190 }
2191 
2192 //------------------------------singleton--------------------------------------
2193 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2194 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2195 // constant value (when vector is created with Replicate code).
2196 bool TypeVect::singleton(void) const {
2197 // There is no Con node for vectors yet.
2198 //  return _elem->singleton();
2199   return false;
2200 }
2201 
2202 bool TypeVect::empty(void) const {
2203   return _elem->empty();
2204 }
2205 
2206 //------------------------------dump2------------------------------------------
2207 #ifndef PRODUCT
2208 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2209   switch (base()) {
2210   case VectorS:
2211     st->print("vectors["); break;
2212   case VectorD:
2213     st->print("vectord["); break;
2214   case VectorX:
2215     st->print("vectorx["); break;
2216   case VectorY:
2217     st->print("vectory["); break;
2218   case VectorZ:
2219     st->print("vectorz["); break;
2220   default:
2221     ShouldNotReachHere();
2222   }
2223   st->print("%d]:{", _length);
2224   _elem->dump2(d, depth, st);
2225   st->print("}");
2226 }
2227 #endif
2228 
2229 
2230 //=============================================================================
2231 // Convenience common pre-built types.
2232 const TypePtr *TypePtr::NULL_PTR;
2233 const TypePtr *TypePtr::NOTNULL;
2234 const TypePtr *TypePtr::BOTTOM;
2235 
2236 //------------------------------meet-------------------------------------------
2237 // Meet over the PTR enum
2238 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2239   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2240   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2241   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2242   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2243   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2244   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2245   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2246 };
2247 
2248 //------------------------------make-------------------------------------------
2249 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2250   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2251 }
2252 
2253 //------------------------------cast_to_ptr_type-------------------------------
2254 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2255   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2256   if( ptr == _ptr ) return this;
2257   return make(_base, ptr, _offset, _speculative, _inline_depth);
2258 }
2259 
2260 //------------------------------get_con----------------------------------------
2261 intptr_t TypePtr::get_con() const {
2262   assert( _ptr == Null, "" );
2263   return _offset;
2264 }
2265 
2266 //------------------------------meet-------------------------------------------
2267 // Compute the MEET of two types.  It returns a new Type object.
2268 const Type *TypePtr::xmeet(const Type *t) const {
2269   const Type* res = xmeet_helper(t);
2270   if (res->isa_ptr() == NULL) {
2271     return res;
2272   }
2273 
2274   const TypePtr* res_ptr = res->is_ptr();
2275   if (res_ptr->speculative() != NULL) {
2276     // type->speculative() == NULL means that speculation is no better
2277     // than type, i.e. type->speculative() == type. So there are 2
2278     // ways to represent the fact that we have no useful speculative
2279     // data and we should use a single one to be able to test for
2280     // equality between types. Check whether type->speculative() ==
2281     // type and set speculative to NULL if it is the case.
2282     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2283       return res_ptr->remove_speculative();
2284     }
2285   }
2286 
2287   return res;
2288 }
2289 
2290 const Type *TypePtr::xmeet_helper(const Type *t) const {
2291   // Perform a fast test for common case; meeting the same types together.
2292   if( this == t ) return this;  // Meeting same type-rep?
2293 
2294   // Current "this->_base" is AnyPtr
2295   switch (t->base()) {          // switch on original type
2296   case Int:                     // Mixing ints & oops happens when javac
2297   case Long:                    // reuses local variables
2298   case FloatTop:
2299   case FloatCon:
2300   case FloatBot:
2301   case DoubleTop:
2302   case DoubleCon:
2303   case DoubleBot:
2304   case NarrowOop:
2305   case NarrowKlass:
2306   case Bottom:                  // Ye Olde Default
2307     return Type::BOTTOM;
2308   case Top:
2309     return this;
2310 
2311   case AnyPtr: {                // Meeting to AnyPtrs
2312     const TypePtr *tp = t->is_ptr();
2313     const TypePtr* speculative = xmeet_speculative(tp);
2314     int depth = meet_inline_depth(tp->inline_depth());
2315     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2316   }
2317   case RawPtr:                  // For these, flip the call around to cut down
2318   case OopPtr:
2319   case InstPtr:                 // on the cases I have to handle.
2320   case AryPtr:
2321   case MetadataPtr:
2322   case KlassPtr:
2323     return t->xmeet(this);      // Call in reverse direction
2324   default:                      // All else is a mistake
2325     typerr(t);
2326 
2327   }
2328   return this;
2329 }
2330 
2331 //------------------------------meet_offset------------------------------------
2332 int TypePtr::meet_offset( int offset ) const {
2333   // Either is 'TOP' offset?  Return the other offset!
2334   if( _offset == OffsetTop ) return offset;
2335   if( offset == OffsetTop ) return _offset;
2336   // If either is different, return 'BOTTOM' offset
2337   if( _offset != offset ) return OffsetBot;
2338   return _offset;
2339 }
2340 
2341 //------------------------------dual_offset------------------------------------
2342 int TypePtr::dual_offset( ) const {
2343   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2344   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2345   return _offset;               // Map everything else into self
2346 }
2347 
2348 //------------------------------xdual------------------------------------------
2349 // Dual: compute field-by-field dual
2350 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2351   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2352 };
2353 const Type *TypePtr::xdual() const {
2354   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2355 }
2356 
2357 //------------------------------xadd_offset------------------------------------
2358 int TypePtr::xadd_offset( intptr_t offset ) const {
2359   // Adding to 'TOP' offset?  Return 'TOP'!
2360   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2361   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2362   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2363   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2364   offset += (intptr_t)_offset;
2365   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2366 
2367   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2368   // It is possible to construct a negative offset during PhaseCCP
2369 
2370   return (int)offset;        // Sum valid offsets
2371 }
2372 
2373 //------------------------------add_offset-------------------------------------
2374 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2375   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2376 }
2377 
2378 //------------------------------eq---------------------------------------------
2379 // Structural equality check for Type representations
2380 bool TypePtr::eq( const Type *t ) const {
2381   const TypePtr *a = (const TypePtr*)t;
2382   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2383 }
2384 
2385 //------------------------------hash-------------------------------------------
2386 // Type-specific hashing function.
2387 int TypePtr::hash(void) const {
2388   return _ptr + _offset + hash_speculative() + _inline_depth;
2389 ;
2390 }
2391 
2392 /**
2393  * Return same type without a speculative part
2394  */
2395 const Type* TypePtr::remove_speculative() const {
2396   if (_speculative == NULL) {
2397     return this;
2398   }
2399   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2400   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2401 }
2402 
2403 /**
2404  * Return same type but drop speculative part if we know we won't use
2405  * it
2406  */
2407 const Type* TypePtr::cleanup_speculative() const {
2408   if (speculative() == NULL) {
2409     return this;
2410   }
2411   const Type* no_spec = remove_speculative();
2412   // If this is NULL_PTR then we don't need the speculative type
2413   // (with_inline_depth in case the current type inline depth is
2414   // InlineDepthTop)
2415   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2416     return no_spec;
2417   }
2418   if (above_centerline(speculative()->ptr())) {
2419     return no_spec;
2420   }
2421   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2422   // If the speculative may be null and is an inexact klass then it
2423   // doesn't help
2424   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2425     return no_spec;
2426   }
2427   return this;
2428 }
2429 
2430 /**
2431  * dual of the speculative part of the type
2432  */
2433 const TypePtr* TypePtr::dual_speculative() const {
2434   if (_speculative == NULL) {
2435     return NULL;
2436   }
2437   return _speculative->dual()->is_ptr();
2438 }
2439 
2440 /**
2441  * meet of the speculative parts of 2 types
2442  *
2443  * @param other  type to meet with
2444  */
2445 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2446   bool this_has_spec = (_speculative != NULL);
2447   bool other_has_spec = (other->speculative() != NULL);
2448 
2449   if (!this_has_spec && !other_has_spec) {
2450     return NULL;
2451   }
2452 
2453   // If we are at a point where control flow meets and one branch has
2454   // a speculative type and the other has not, we meet the speculative
2455   // type of one branch with the actual type of the other. If the
2456   // actual type is exact and the speculative is as well, then the
2457   // result is a speculative type which is exact and we can continue
2458   // speculation further.
2459   const TypePtr* this_spec = _speculative;
2460   const TypePtr* other_spec = other->speculative();
2461 
2462   if (!this_has_spec) {
2463     this_spec = this;
2464   }
2465 
2466   if (!other_has_spec) {
2467     other_spec = other;
2468   }
2469 
2470   return this_spec->meet(other_spec)->is_ptr();
2471 }
2472 
2473 /**
2474  * dual of the inline depth for this type (used for speculation)
2475  */
2476 int TypePtr::dual_inline_depth() const {
2477   return -inline_depth();
2478 }
2479 
2480 /**
2481  * meet of 2 inline depths (used for speculation)
2482  *
2483  * @param depth  depth to meet with
2484  */
2485 int TypePtr::meet_inline_depth(int depth) const {
2486   return MAX2(inline_depth(), depth);
2487 }
2488 
2489 /**
2490  * Are the speculative parts of 2 types equal?
2491  *
2492  * @param other  type to compare this one to
2493  */
2494 bool TypePtr::eq_speculative(const TypePtr* other) const {
2495   if (_speculative == NULL || other->speculative() == NULL) {
2496     return _speculative == other->speculative();
2497   }
2498 
2499   if (_speculative->base() != other->speculative()->base()) {
2500     return false;
2501   }
2502 
2503   return _speculative->eq(other->speculative());
2504 }
2505 
2506 /**
2507  * Hash of the speculative part of the type
2508  */
2509 int TypePtr::hash_speculative() const {
2510   if (_speculative == NULL) {
2511     return 0;
2512   }
2513 
2514   return _speculative->hash();
2515 }
2516 
2517 /**
2518  * add offset to the speculative part of the type
2519  *
2520  * @param offset  offset to add
2521  */
2522 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2523   if (_speculative == NULL) {
2524     return NULL;
2525   }
2526   return _speculative->add_offset(offset)->is_ptr();
2527 }
2528 
2529 /**
2530  * return exact klass from the speculative type if there's one
2531  */
2532 ciKlass* TypePtr::speculative_type() const {
2533   if (_speculative != NULL && _speculative->isa_oopptr()) {
2534     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2535     if (speculative->klass_is_exact()) {
2536       return speculative->klass();
2537     }
2538   }
2539   return NULL;
2540 }
2541 
2542 /**
2543  * return true if speculative type may be null
2544  */
2545 bool TypePtr::speculative_maybe_null() const {
2546   if (_speculative != NULL) {
2547     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2548     return speculative->maybe_null();
2549   }
2550   return true;
2551 }
2552 
2553 /**
2554  * Same as TypePtr::speculative_type() but return the klass only if
2555  * the speculative tells us is not null
2556  */
2557 ciKlass* TypePtr::speculative_type_not_null() const {
2558   if (speculative_maybe_null()) {
2559     return NULL;
2560   }
2561   return speculative_type();
2562 }
2563 
2564 /**
2565  * Check whether new profiling would improve speculative type
2566  *
2567  * @param   exact_kls    class from profiling
2568  * @param   inline_depth inlining depth of profile point
2569  *
2570  * @return  true if type profile is valuable
2571  */
2572 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2573   // no profiling?
2574   if (exact_kls == NULL) {
2575     return false;
2576   }
2577   // no speculative type or non exact speculative type?
2578   if (speculative_type() == NULL) {
2579     return true;
2580   }
2581   // If the node already has an exact speculative type keep it,
2582   // unless it was provided by profiling that is at a deeper
2583   // inlining level. Profiling at a higher inlining depth is
2584   // expected to be less accurate.
2585   if (_speculative->inline_depth() == InlineDepthBottom) {
2586     return false;
2587   }
2588   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2589   return inline_depth < _speculative->inline_depth();
2590 }
2591 
2592 /**
2593  * Check whether new profiling would improve ptr (= tells us it is non
2594  * null)
2595  *
2596  * @param   maybe_null true if profiling tells the ptr may be null
2597  *
2598  * @return  true if ptr profile is valuable
2599  */
2600 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2601   // profiling doesn't tell us anything useful
2602   if (maybe_null) {
2603     return false;
2604   }
2605   // We already know this is not be null
2606   if (!this->maybe_null()) {
2607     return false;
2608   }
2609   // We already know the speculative type cannot be null
2610   if (!speculative_maybe_null()) {
2611     return false;
2612   }
2613   return true;
2614 }
2615 
2616 //------------------------------dump2------------------------------------------
2617 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2618   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2619 };
2620 
2621 #ifndef PRODUCT
2622 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2623   if( _ptr == Null ) st->print("NULL");
2624   else st->print("%s *", ptr_msg[_ptr]);
2625   if( _offset == OffsetTop ) st->print("+top");
2626   else if( _offset == OffsetBot ) st->print("+bot");
2627   else if( _offset ) st->print("+%d", _offset);
2628   dump_inline_depth(st);
2629   dump_speculative(st);
2630 }
2631 
2632 /**
2633  *dump the speculative part of the type
2634  */
2635 void TypePtr::dump_speculative(outputStream *st) const {
2636   if (_speculative != NULL) {
2637     st->print(" (speculative=");
2638     _speculative->dump_on(st);
2639     st->print(")");
2640   }
2641 }
2642 
2643 /**
2644  *dump the inline depth of the type
2645  */
2646 void TypePtr::dump_inline_depth(outputStream *st) const {
2647   if (_inline_depth != InlineDepthBottom) {
2648     if (_inline_depth == InlineDepthTop) {
2649       st->print(" (inline_depth=InlineDepthTop)");
2650     } else {
2651       st->print(" (inline_depth=%d)", _inline_depth);
2652     }
2653   }
2654 }
2655 #endif
2656 
2657 //------------------------------singleton--------------------------------------
2658 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2659 // constants
2660 bool TypePtr::singleton(void) const {
2661   // TopPTR, Null, AnyNull, Constant are all singletons
2662   return (_offset != OffsetBot) && !below_centerline(_ptr);
2663 }
2664 
2665 bool TypePtr::empty(void) const {
2666   return (_offset == OffsetTop) || above_centerline(_ptr);
2667 }
2668 
2669 //=============================================================================
2670 // Convenience common pre-built types.
2671 const TypeRawPtr *TypeRawPtr::BOTTOM;
2672 const TypeRawPtr *TypeRawPtr::NOTNULL;
2673 
2674 //------------------------------make-------------------------------------------
2675 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2676   assert( ptr != Constant, "what is the constant?" );
2677   assert( ptr != Null, "Use TypePtr for NULL" );
2678   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2679 }
2680 
2681 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2682   assert( bits, "Use TypePtr for NULL" );
2683   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2684 }
2685 
2686 //------------------------------cast_to_ptr_type-------------------------------
2687 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2688   assert( ptr != Constant, "what is the constant?" );
2689   assert( ptr != Null, "Use TypePtr for NULL" );
2690   assert( _bits==0, "Why cast a constant address?");
2691   if( ptr == _ptr ) return this;
2692   return make(ptr);
2693 }
2694 
2695 //------------------------------get_con----------------------------------------
2696 intptr_t TypeRawPtr::get_con() const {
2697   assert( _ptr == Null || _ptr == Constant, "" );
2698   return (intptr_t)_bits;
2699 }
2700 
2701 //------------------------------meet-------------------------------------------
2702 // Compute the MEET of two types.  It returns a new Type object.
2703 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2704   // Perform a fast test for common case; meeting the same types together.
2705   if( this == t ) return this;  // Meeting same type-rep?
2706 
2707   // Current "this->_base" is RawPtr
2708   switch( t->base() ) {         // switch on original type
2709   case Bottom:                  // Ye Olde Default
2710     return t;
2711   case Top:
2712     return this;
2713   case AnyPtr:                  // Meeting to AnyPtrs
2714     break;
2715   case RawPtr: {                // might be top, bot, any/not or constant
2716     enum PTR tptr = t->is_ptr()->ptr();
2717     enum PTR ptr = meet_ptr( tptr );
2718     if( ptr == Constant ) {     // Cannot be equal constants, so...
2719       if( tptr == Constant && _ptr != Constant)  return t;
2720       if( _ptr == Constant && tptr != Constant)  return this;
2721       ptr = NotNull;            // Fall down in lattice
2722     }
2723     return make( ptr );
2724   }
2725 
2726   case OopPtr:
2727   case InstPtr:
2728   case AryPtr:
2729   case MetadataPtr:
2730   case KlassPtr:
2731     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2732   default:                      // All else is a mistake
2733     typerr(t);
2734   }
2735 
2736   // Found an AnyPtr type vs self-RawPtr type
2737   const TypePtr *tp = t->is_ptr();
2738   switch (tp->ptr()) {
2739   case TypePtr::TopPTR:  return this;
2740   case TypePtr::BotPTR:  return t;
2741   case TypePtr::Null:
2742     if( _ptr == TypePtr::TopPTR ) return t;
2743     return TypeRawPtr::BOTTOM;
2744   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2745   case TypePtr::AnyNull:
2746     if( _ptr == TypePtr::Constant) return this;
2747     return make( meet_ptr(TypePtr::AnyNull) );
2748   default: ShouldNotReachHere();
2749   }
2750   return this;
2751 }
2752 
2753 //------------------------------xdual------------------------------------------
2754 // Dual: compute field-by-field dual
2755 const Type *TypeRawPtr::xdual() const {
2756   return new TypeRawPtr( dual_ptr(), _bits );
2757 }
2758 
2759 //------------------------------add_offset-------------------------------------
2760 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2761   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2762   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2763   if( offset == 0 ) return this; // No change
2764   switch (_ptr) {
2765   case TypePtr::TopPTR:
2766   case TypePtr::BotPTR:
2767   case TypePtr::NotNull:
2768     return this;
2769   case TypePtr::Null:
2770   case TypePtr::Constant: {
2771     address bits = _bits+offset;
2772     if ( bits == 0 ) return TypePtr::NULL_PTR;
2773     return make( bits );
2774   }
2775   default:  ShouldNotReachHere();
2776   }
2777   return NULL;                  // Lint noise
2778 }
2779 
2780 //------------------------------eq---------------------------------------------
2781 // Structural equality check for Type representations
2782 bool TypeRawPtr::eq( const Type *t ) const {
2783   const TypeRawPtr *a = (const TypeRawPtr*)t;
2784   return _bits == a->_bits && TypePtr::eq(t);
2785 }
2786 
2787 //------------------------------hash-------------------------------------------
2788 // Type-specific hashing function.
2789 int TypeRawPtr::hash(void) const {
2790   return (intptr_t)_bits + TypePtr::hash();
2791 }
2792 
2793 //------------------------------dump2------------------------------------------
2794 #ifndef PRODUCT
2795 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2796   if( _ptr == Constant )
2797     st->print(INTPTR_FORMAT, p2i(_bits));
2798   else
2799     st->print("rawptr:%s", ptr_msg[_ptr]);
2800 }
2801 #endif
2802 
2803 //=============================================================================
2804 // Convenience common pre-built type.
2805 const TypeOopPtr *TypeOopPtr::BOTTOM;
2806 
2807 //------------------------------TypeOopPtr-------------------------------------
2808 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2809                        int instance_id, const TypePtr* speculative, int inline_depth)
2810   : TypePtr(t, ptr, offset, speculative, inline_depth),
2811     _const_oop(o), _klass(k),
2812     _klass_is_exact(xk),
2813     _is_ptr_to_narrowoop(false),
2814     _is_ptr_to_narrowklass(false),
2815     _is_ptr_to_boxed_value(false),
2816     _instance_id(instance_id) {
2817   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2818       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2819     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2820   }
2821 #ifdef _LP64
2822   if (_offset != 0) {
2823     if (_offset == oopDesc::klass_offset_in_bytes()) {
2824       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2825     } else if (klass() == NULL) {
2826       // Array with unknown body type
2827       assert(this->isa_aryptr(), "only arrays without klass");
2828       _is_ptr_to_narrowoop = UseCompressedOops;
2829     } else if (this->isa_aryptr()) {
2830       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2831                              _offset != arrayOopDesc::length_offset_in_bytes());
2832     } else if (klass()->is_instance_klass()) {
2833       ciInstanceKlass* ik = klass()->as_instance_klass();
2834       ciField* field = NULL;
2835       if (this->isa_klassptr()) {
2836         // Perm objects don't use compressed references
2837       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2838         // unsafe access
2839         _is_ptr_to_narrowoop = UseCompressedOops;
2840       } else { // exclude unsafe ops
2841         assert(this->isa_instptr(), "must be an instance ptr.");
2842 
2843         if (klass() == ciEnv::current()->Class_klass() &&
2844             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2845              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2846           // Special hidden fields from the Class.
2847           assert(this->isa_instptr(), "must be an instance ptr.");
2848           _is_ptr_to_narrowoop = false;
2849         } else if (klass() == ciEnv::current()->Class_klass() &&
2850                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2851           // Static fields
2852           assert(o != NULL, "must be constant");
2853           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2854           ciField* field = k->get_field_by_offset(_offset, true);
2855           assert(field != NULL, "missing field");
2856           BasicType basic_elem_type = field->layout_type();
2857           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2858                                                        basic_elem_type == T_ARRAY);
2859         } else {
2860           // Instance fields which contains a compressed oop references.
2861           field = ik->get_field_by_offset(_offset, false);
2862           if (field != NULL) {
2863             BasicType basic_elem_type = field->layout_type();
2864             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2865                                                          basic_elem_type == T_ARRAY);
2866           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2867             // Compile::find_alias_type() cast exactness on all types to verify
2868             // that it does not affect alias type.
2869             _is_ptr_to_narrowoop = UseCompressedOops;
2870           } else {
2871             // Type for the copy start in LibraryCallKit::inline_native_clone().
2872             _is_ptr_to_narrowoop = UseCompressedOops;
2873           }
2874         }
2875       }
2876     }
2877   }
2878 #endif
2879 }
2880 
2881 //------------------------------make-------------------------------------------
2882 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2883                                      const TypePtr* speculative, int inline_depth) {
2884   assert(ptr != Constant, "no constant generic pointers");
2885   ciKlass*  k = Compile::current()->env()->Object_klass();
2886   bool      xk = false;
2887   ciObject* o = NULL;
2888   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2889 }
2890 
2891 
2892 //------------------------------cast_to_ptr_type-------------------------------
2893 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2894   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2895   if( ptr == _ptr ) return this;
2896   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2897 }
2898 
2899 //-----------------------------cast_to_instance_id----------------------------
2900 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2901   // There are no instances of a general oop.
2902   // Return self unchanged.
2903   return this;
2904 }
2905 
2906 //-----------------------------cast_to_exactness-------------------------------
2907 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2908   // There is no such thing as an exact general oop.
2909   // Return self unchanged.
2910   return this;
2911 }
2912 
2913 
2914 //------------------------------as_klass_type----------------------------------
2915 // Return the klass type corresponding to this instance or array type.
2916 // It is the type that is loaded from an object of this type.
2917 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2918   ciKlass* k = klass();
2919   bool    xk = klass_is_exact();
2920   if (k == NULL)
2921     return TypeKlassPtr::OBJECT;
2922   else
2923     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2924 }
2925 
2926 //------------------------------meet-------------------------------------------
2927 // Compute the MEET of two types.  It returns a new Type object.
2928 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2929   // Perform a fast test for common case; meeting the same types together.
2930   if( this == t ) return this;  // Meeting same type-rep?
2931 
2932   // Current "this->_base" is OopPtr
2933   switch (t->base()) {          // switch on original type
2934 
2935   case Int:                     // Mixing ints & oops happens when javac
2936   case Long:                    // reuses local variables
2937   case FloatTop:
2938   case FloatCon:
2939   case FloatBot:
2940   case DoubleTop:
2941   case DoubleCon:
2942   case DoubleBot:
2943   case NarrowOop:
2944   case NarrowKlass:
2945   case Bottom:                  // Ye Olde Default
2946     return Type::BOTTOM;
2947   case Top:
2948     return this;
2949 
2950   default:                      // All else is a mistake
2951     typerr(t);
2952 
2953   case RawPtr:
2954   case MetadataPtr:
2955   case KlassPtr:
2956     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2957 
2958   case AnyPtr: {
2959     // Found an AnyPtr type vs self-OopPtr type
2960     const TypePtr *tp = t->is_ptr();
2961     int offset = meet_offset(tp->offset());
2962     PTR ptr = meet_ptr(tp->ptr());
2963     const TypePtr* speculative = xmeet_speculative(tp);
2964     int depth = meet_inline_depth(tp->inline_depth());
2965     switch (tp->ptr()) {
2966     case Null:
2967       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2968       // else fall through:
2969     case TopPTR:
2970     case AnyNull: {
2971       int instance_id = meet_instance_id(InstanceTop);
2972       return make(ptr, offset, instance_id, speculative, depth);
2973     }
2974     case BotPTR:
2975     case NotNull:
2976       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2977     default: typerr(t);
2978     }
2979   }
2980 
2981   case OopPtr: {                 // Meeting to other OopPtrs
2982     const TypeOopPtr *tp = t->is_oopptr();
2983     int instance_id = meet_instance_id(tp->instance_id());
2984     const TypePtr* speculative = xmeet_speculative(tp);
2985     int depth = meet_inline_depth(tp->inline_depth());
2986     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2987   }
2988 
2989   case InstPtr:                  // For these, flip the call around to cut down
2990   case AryPtr:
2991     return t->xmeet(this);      // Call in reverse direction
2992 
2993   } // End of switch
2994   return this;                  // Return the double constant
2995 }
2996 
2997 
2998 //------------------------------xdual------------------------------------------
2999 // Dual of a pure heap pointer.  No relevant klass or oop information.
3000 const Type *TypeOopPtr::xdual() const {
3001   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3002   assert(const_oop() == NULL,             "no constants here");
3003   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3004 }
3005 
3006 //--------------------------make_from_klass_common-----------------------------
3007 // Computes the element-type given a klass.
3008 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3009   if (klass->is_instance_klass()) {
3010     Compile* C = Compile::current();
3011     Dependencies* deps = C->dependencies();
3012     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3013     // Element is an instance
3014     bool klass_is_exact = false;
3015     if (klass->is_loaded()) {
3016       // Try to set klass_is_exact.
3017       ciInstanceKlass* ik = klass->as_instance_klass();
3018       klass_is_exact = ik->is_final();
3019       if (!klass_is_exact && klass_change
3020           && deps != NULL && UseUniqueSubclasses) {
3021         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3022         if (sub != NULL) {
3023           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3024           klass = ik = sub;
3025           klass_is_exact = sub->is_final();
3026         }
3027       }
3028       if (!klass_is_exact && try_for_exact
3029           && deps != NULL && UseExactTypes) {
3030         if (!ik->is_interface() && !ik->has_subklass()) {
3031           // Add a dependence; if concrete subclass added we need to recompile
3032           deps->assert_leaf_type(ik);
3033           klass_is_exact = true;
3034         }
3035       }
3036     }
3037     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3038   } else if (klass->is_obj_array_klass()) {
3039     // Element is an object array. Recursively call ourself.
3040     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3041     bool xk = etype->klass_is_exact();
3042     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3043     // We used to pass NotNull in here, asserting that the sub-arrays
3044     // are all not-null.  This is not true in generally, as code can
3045     // slam NULLs down in the subarrays.
3046     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3047     return arr;
3048   } else if (klass->is_type_array_klass()) {
3049     // Element is an typeArray
3050     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3051     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3052     // We used to pass NotNull in here, asserting that the array pointer
3053     // is not-null. That was not true in general.
3054     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3055     return arr;
3056   } else {
3057     ShouldNotReachHere();
3058     return NULL;
3059   }
3060 }
3061 
3062 //------------------------------make_from_constant-----------------------------
3063 // Make a java pointer from an oop constant
3064 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3065   assert(!o->is_null_object(), "null object not yet handled here.");
3066   ciKlass* klass = o->klass();
3067   if (klass->is_instance_klass()) {
3068     // Element is an instance
3069     if (require_constant) {
3070       if (!o->can_be_constant())  return NULL;
3071     } else if (!o->should_be_constant()) {
3072       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3073     }
3074     return TypeInstPtr::make(o);
3075   } else if (klass->is_obj_array_klass()) {
3076     // Element is an object array. Recursively call ourself.
3077     const TypeOopPtr *etype =
3078       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3079     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3080     // We used to pass NotNull in here, asserting that the sub-arrays
3081     // are all not-null.  This is not true in generally, as code can
3082     // slam NULLs down in the subarrays.
3083     if (require_constant) {
3084       if (!o->can_be_constant())  return NULL;
3085     } else if (!o->should_be_constant()) {
3086       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3087     }
3088     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3089     return arr;
3090   } else if (klass->is_type_array_klass()) {
3091     // Element is an typeArray
3092     const Type* etype =
3093       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3094     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3095     // We used to pass NotNull in here, asserting that the array pointer
3096     // is not-null. That was not true in general.
3097     if (require_constant) {
3098       if (!o->can_be_constant())  return NULL;
3099     } else if (!o->should_be_constant()) {
3100       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3101     }
3102     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3103     return arr;
3104   }
3105 
3106   fatal("unhandled object type");
3107   return NULL;
3108 }
3109 
3110 //------------------------------get_con----------------------------------------
3111 intptr_t TypeOopPtr::get_con() const {
3112   assert( _ptr == Null || _ptr == Constant, "" );
3113   assert( _offset >= 0, "" );
3114 
3115   if (_offset != 0) {
3116     // After being ported to the compiler interface, the compiler no longer
3117     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3118     // to a handle at compile time.  This handle is embedded in the generated
3119     // code and dereferenced at the time the nmethod is made.  Until that time,
3120     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3121     // have access to the addresses!).  This does not seem to currently happen,
3122     // but this assertion here is to help prevent its occurence.
3123     tty->print_cr("Found oop constant with non-zero offset");
3124     ShouldNotReachHere();
3125   }
3126 
3127   return (intptr_t)const_oop()->constant_encoding();
3128 }
3129 
3130 
3131 //-----------------------------filter------------------------------------------
3132 // Do not allow interface-vs.-noninterface joins to collapse to top.
3133 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3134 
3135   const Type* ft = join_helper(kills, include_speculative);
3136   const TypeInstPtr* ftip = ft->isa_instptr();
3137   const TypeInstPtr* ktip = kills->isa_instptr();
3138 
3139   if (ft->empty()) {
3140     // Check for evil case of 'this' being a class and 'kills' expecting an
3141     // interface.  This can happen because the bytecodes do not contain
3142     // enough type info to distinguish a Java-level interface variable
3143     // from a Java-level object variable.  If we meet 2 classes which
3144     // both implement interface I, but their meet is at 'j/l/O' which
3145     // doesn't implement I, we have no way to tell if the result should
3146     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3147     // into a Phi which "knows" it's an Interface type we'll have to
3148     // uplift the type.
3149     if (!empty()) {
3150       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3151         return kills;           // Uplift to interface
3152       }
3153       const TypeAryPtr* ftap = ft->isa_aryptr();
3154       const TypeAryPtr* ktap = kills->isa_aryptr();
3155       if (ftap != NULL && ktap != NULL) {
3156         // Handle multidimensional arrays
3157         const TypePtr* ftp = ftap->elem()->make_ptr();
3158         const TypePtr* ktp = ktap->elem()->make_ptr();
3159         while (ftp && ftp->isa_aryptr() && ktp && ktp->isa_aryptr()) {
3160           ftap = ftp->is_aryptr();
3161           ktap = ktp->is_aryptr();
3162           ftp = ftap->elem()->make_ptr();
3163           ktp = ktap->elem()->make_ptr();
3164         }
3165         ktip = ktp ? ktp->isa_instptr() : NULL;
3166         if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3167           return kills;         // Uplift to array of interface
3168         }
3169       }
3170     }
3171 
3172     return Type::TOP;           // Canonical empty value
3173   }
3174 
3175   // If we have an interface-typed Phi or cast and we narrow to a class type,
3176   // the join should report back the class.  However, if we have a J/L/Object
3177   // class-typed Phi and an interface flows in, it's possible that the meet &
3178   // join report an interface back out.  This isn't possible but happens
3179   // because the type system doesn't interact well with interfaces.
3180   if (ftip != NULL && ktip != NULL &&
3181       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3182       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3183     assert(!ftip->klass_is_exact(), "interface could not be exact");
3184     return ktip->cast_to_ptr_type(ftip->ptr());
3185   }
3186 
3187   return ft;
3188 }
3189 
3190 //------------------------------eq---------------------------------------------
3191 // Structural equality check for Type representations
3192 bool TypeOopPtr::eq( const Type *t ) const {
3193   const TypeOopPtr *a = (const TypeOopPtr*)t;
3194   if (_klass_is_exact != a->_klass_is_exact ||
3195       _instance_id != a->_instance_id)  return false;
3196   ciObject* one = const_oop();
3197   ciObject* two = a->const_oop();
3198   if (one == NULL || two == NULL) {
3199     return (one == two) && TypePtr::eq(t);
3200   } else {
3201     return one->equals(two) && TypePtr::eq(t);
3202   }
3203 }
3204 
3205 //------------------------------hash-------------------------------------------
3206 // Type-specific hashing function.
3207 int TypeOopPtr::hash(void) const {
3208   return
3209     (const_oop() ? const_oop()->hash() : 0) +
3210     _klass_is_exact +
3211     _instance_id +
3212     TypePtr::hash();
3213 }
3214 
3215 //------------------------------dump2------------------------------------------
3216 #ifndef PRODUCT
3217 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3218   st->print("oopptr:%s", ptr_msg[_ptr]);
3219   if( _klass_is_exact ) st->print(":exact");
3220   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3221   switch( _offset ) {
3222   case OffsetTop: st->print("+top"); break;
3223   case OffsetBot: st->print("+any"); break;
3224   case         0: break;
3225   default:        st->print("+%d",_offset); break;
3226   }
3227   if (_instance_id == InstanceTop)
3228     st->print(",iid=top");
3229   else if (_instance_id != InstanceBot)
3230     st->print(",iid=%d",_instance_id);
3231 
3232   dump_inline_depth(st);
3233   dump_speculative(st);
3234 }
3235 #endif
3236 
3237 //------------------------------singleton--------------------------------------
3238 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3239 // constants
3240 bool TypeOopPtr::singleton(void) const {
3241   // detune optimizer to not generate constant oop + constant offset as a constant!
3242   // TopPTR, Null, AnyNull, Constant are all singletons
3243   return (_offset == 0) && !below_centerline(_ptr);
3244 }
3245 
3246 //------------------------------add_offset-------------------------------------
3247 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3248   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3249 }
3250 
3251 /**
3252  * Return same type without a speculative part
3253  */
3254 const Type* TypeOopPtr::remove_speculative() const {
3255   if (_speculative == NULL) {
3256     return this;
3257   }
3258   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3259   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3260 }
3261 
3262 /**
3263  * Return same type but drop speculative part if we know we won't use
3264  * it
3265  */
3266 const Type* TypeOopPtr::cleanup_speculative() const {
3267   // If the klass is exact and the ptr is not null then there's
3268   // nothing that the speculative type can help us with
3269   if (klass_is_exact() && !maybe_null()) {
3270     return remove_speculative();
3271   }
3272   return TypePtr::cleanup_speculative();
3273 }
3274 
3275 /**
3276  * Return same type but with a different inline depth (used for speculation)
3277  *
3278  * @param depth  depth to meet with
3279  */
3280 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3281   if (!UseInlineDepthForSpeculativeTypes) {
3282     return this;
3283   }
3284   return make(_ptr, _offset, _instance_id, _speculative, depth);
3285 }
3286 
3287 //------------------------------meet_instance_id--------------------------------
3288 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3289   // Either is 'TOP' instance?  Return the other instance!
3290   if( _instance_id == InstanceTop ) return  instance_id;
3291   if(  instance_id == InstanceTop ) return _instance_id;
3292   // If either is different, return 'BOTTOM' instance
3293   if( _instance_id != instance_id ) return InstanceBot;
3294   return _instance_id;
3295 }
3296 
3297 //------------------------------dual_instance_id--------------------------------
3298 int TypeOopPtr::dual_instance_id( ) const {
3299   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3300   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3301   return _instance_id;              // Map everything else into self
3302 }
3303 
3304 /**
3305  * Check whether new profiling would improve speculative type
3306  *
3307  * @param   exact_kls    class from profiling
3308  * @param   inline_depth inlining depth of profile point
3309  *
3310  * @return  true if type profile is valuable
3311  */
3312 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3313   // no way to improve an already exact type
3314   if (klass_is_exact()) {
3315     return false;
3316   }
3317   return TypePtr::would_improve_type(exact_kls, inline_depth);
3318 }
3319 
3320 //=============================================================================
3321 // Convenience common pre-built types.
3322 const TypeInstPtr *TypeInstPtr::NOTNULL;
3323 const TypeInstPtr *TypeInstPtr::BOTTOM;
3324 const TypeInstPtr *TypeInstPtr::MIRROR;
3325 const TypeInstPtr *TypeInstPtr::MARK;
3326 const TypeInstPtr *TypeInstPtr::KLASS;
3327 
3328 //------------------------------TypeInstPtr-------------------------------------
3329 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3330                          int instance_id, const TypePtr* speculative, int inline_depth)
3331   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3332     _name(k->name()) {
3333    assert(k != NULL &&
3334           (k->is_loaded() || o == NULL),
3335           "cannot have constants with non-loaded klass");
3336 };
3337 
3338 //------------------------------make-------------------------------------------
3339 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3340                                      ciKlass* k,
3341                                      bool xk,
3342                                      ciObject* o,
3343                                      int offset,
3344                                      int instance_id,
3345                                      const TypePtr* speculative,
3346                                      int inline_depth) {
3347   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3348   // Either const_oop() is NULL or else ptr is Constant
3349   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3350           "constant pointers must have a value supplied" );
3351   // Ptr is never Null
3352   assert( ptr != Null, "NULL pointers are not typed" );
3353 
3354   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3355   if (!UseExactTypes)  xk = false;
3356   if (ptr == Constant) {
3357     // Note:  This case includes meta-object constants, such as methods.
3358     xk = true;
3359   } else if (k->is_loaded()) {
3360     ciInstanceKlass* ik = k->as_instance_klass();
3361     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3362     if (xk && ik->is_interface())  xk = false;  // no exact interface
3363   }
3364 
3365   // Now hash this baby
3366   TypeInstPtr *result =
3367     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3368 
3369   return result;
3370 }
3371 
3372 /**
3373  *  Create constant type for a constant boxed value
3374  */
3375 const Type* TypeInstPtr::get_const_boxed_value() const {
3376   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3377   assert((const_oop() != NULL), "should be called only for constant object");
3378   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3379   BasicType bt = constant.basic_type();
3380   switch (bt) {
3381     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3382     case T_INT:      return TypeInt::make(constant.as_int());
3383     case T_CHAR:     return TypeInt::make(constant.as_char());
3384     case T_BYTE:     return TypeInt::make(constant.as_byte());
3385     case T_SHORT:    return TypeInt::make(constant.as_short());
3386     case T_FLOAT:    return TypeF::make(constant.as_float());
3387     case T_DOUBLE:   return TypeD::make(constant.as_double());
3388     case T_LONG:     return TypeLong::make(constant.as_long());
3389     default:         break;
3390   }
3391   fatal("Invalid boxed value type '%s'", type2name(bt));
3392   return NULL;
3393 }
3394 
3395 //------------------------------cast_to_ptr_type-------------------------------
3396 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3397   if( ptr == _ptr ) return this;
3398   // Reconstruct _sig info here since not a problem with later lazy
3399   // construction, _sig will show up on demand.
3400   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3401 }
3402 
3403 
3404 //-----------------------------cast_to_exactness-------------------------------
3405 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3406   if( klass_is_exact == _klass_is_exact ) return this;
3407   if (!UseExactTypes)  return this;
3408   if (!_klass->is_loaded())  return this;
3409   ciInstanceKlass* ik = _klass->as_instance_klass();
3410   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3411   if( ik->is_interface() )              return this;  // cannot set xk
3412   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3413 }
3414 
3415 //-----------------------------cast_to_instance_id----------------------------
3416 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3417   if( instance_id == _instance_id ) return this;
3418   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3419 }
3420 
3421 //------------------------------xmeet_unloaded---------------------------------
3422 // Compute the MEET of two InstPtrs when at least one is unloaded.
3423 // Assume classes are different since called after check for same name/class-loader
3424 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3425     int off = meet_offset(tinst->offset());
3426     PTR ptr = meet_ptr(tinst->ptr());
3427     int instance_id = meet_instance_id(tinst->instance_id());
3428     const TypePtr* speculative = xmeet_speculative(tinst);
3429     int depth = meet_inline_depth(tinst->inline_depth());
3430 
3431     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3432     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3433     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3434       //
3435       // Meet unloaded class with java/lang/Object
3436       //
3437       // Meet
3438       //          |                     Unloaded Class
3439       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3440       //  ===================================================================
3441       //   TOP    | ..........................Unloaded......................|
3442       //  AnyNull |  U-AN    |................Unloaded......................|
3443       // Constant | ... O-NN .................................. |   O-BOT   |
3444       //  NotNull | ... O-NN .................................. |   O-BOT   |
3445       //  BOTTOM  | ........................Object-BOTTOM ..................|
3446       //
3447       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3448       //
3449       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3450       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3451       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3452       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3453         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3454         else                                      { return TypeInstPtr::NOTNULL; }
3455       }
3456       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3457 
3458       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3459     }
3460 
3461     // Both are unloaded, not the same class, not Object
3462     // Or meet unloaded with a different loaded class, not java/lang/Object
3463     if( ptr != TypePtr::BotPTR ) {
3464       return TypeInstPtr::NOTNULL;
3465     }
3466     return TypeInstPtr::BOTTOM;
3467 }
3468 
3469 
3470 //------------------------------meet-------------------------------------------
3471 // Compute the MEET of two types.  It returns a new Type object.
3472 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3473   // Perform a fast test for common case; meeting the same types together.
3474   if( this == t ) return this;  // Meeting same type-rep?
3475 
3476   // Current "this->_base" is Pointer
3477   switch (t->base()) {          // switch on original type
3478 
3479   case Int:                     // Mixing ints & oops happens when javac
3480   case Long:                    // reuses local variables
3481   case FloatTop:
3482   case FloatCon:
3483   case FloatBot:
3484   case DoubleTop:
3485   case DoubleCon:
3486   case DoubleBot:
3487   case NarrowOop:
3488   case NarrowKlass:
3489   case Bottom:                  // Ye Olde Default
3490     return Type::BOTTOM;
3491   case Top:
3492     return this;
3493 
3494   default:                      // All else is a mistake
3495     typerr(t);
3496 
3497   case MetadataPtr:
3498   case KlassPtr:
3499   case RawPtr: return TypePtr::BOTTOM;
3500 
3501   case AryPtr: {                // All arrays inherit from Object class
3502     const TypeAryPtr *tp = t->is_aryptr();
3503     int offset = meet_offset(tp->offset());
3504     PTR ptr = meet_ptr(tp->ptr());
3505     int instance_id = meet_instance_id(tp->instance_id());
3506     const TypePtr* speculative = xmeet_speculative(tp);
3507     int depth = meet_inline_depth(tp->inline_depth());
3508     switch (ptr) {
3509     case TopPTR:
3510     case AnyNull:                // Fall 'down' to dual of object klass
3511       // For instances when a subclass meets a superclass we fall
3512       // below the centerline when the superclass is exact. We need to
3513       // do the same here.
3514       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3515         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3516       } else {
3517         // cannot subclass, so the meet has to fall badly below the centerline
3518         ptr = NotNull;
3519         instance_id = InstanceBot;
3520         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3521       }
3522     case Constant:
3523     case NotNull:
3524     case BotPTR:                // Fall down to object klass
3525       // LCA is object_klass, but if we subclass from the top we can do better
3526       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3527         // If 'this' (InstPtr) is above the centerline and it is Object class
3528         // then we can subclass in the Java class hierarchy.
3529         // For instances when a subclass meets a superclass we fall
3530         // below the centerline when the superclass is exact. We need
3531         // to do the same here.
3532         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3533           // that is, tp's array type is a subtype of my klass
3534           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3535                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3536         }
3537       }
3538       // The other case cannot happen, since I cannot be a subtype of an array.
3539       // The meet falls down to Object class below centerline.
3540       if( ptr == Constant )
3541          ptr = NotNull;
3542       instance_id = InstanceBot;
3543       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3544     default: typerr(t);
3545     }
3546   }
3547 
3548   case OopPtr: {                // Meeting to OopPtrs
3549     // Found a OopPtr type vs self-InstPtr type
3550     const TypeOopPtr *tp = t->is_oopptr();
3551     int offset = meet_offset(tp->offset());
3552     PTR ptr = meet_ptr(tp->ptr());
3553     switch (tp->ptr()) {
3554     case TopPTR:
3555     case AnyNull: {
3556       int instance_id = meet_instance_id(InstanceTop);
3557       const TypePtr* speculative = xmeet_speculative(tp);
3558       int depth = meet_inline_depth(tp->inline_depth());
3559       return make(ptr, klass(), klass_is_exact(),
3560                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3561     }
3562     case NotNull:
3563     case BotPTR: {
3564       int instance_id = meet_instance_id(tp->instance_id());
3565       const TypePtr* speculative = xmeet_speculative(tp);
3566       int depth = meet_inline_depth(tp->inline_depth());
3567       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3568     }
3569     default: typerr(t);
3570     }
3571   }
3572 
3573   case AnyPtr: {                // Meeting to AnyPtrs
3574     // Found an AnyPtr type vs self-InstPtr type
3575     const TypePtr *tp = t->is_ptr();
3576     int offset = meet_offset(tp->offset());
3577     PTR ptr = meet_ptr(tp->ptr());
3578     int instance_id = meet_instance_id(InstanceTop);
3579     const TypePtr* speculative = xmeet_speculative(tp);
3580     int depth = meet_inline_depth(tp->inline_depth());
3581     switch (tp->ptr()) {
3582     case Null:
3583       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3584       // else fall through to AnyNull
3585     case TopPTR:
3586     case AnyNull: {
3587       return make(ptr, klass(), klass_is_exact(),
3588                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3589     }
3590     case NotNull:
3591     case BotPTR:
3592       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3593     default: typerr(t);
3594     }
3595   }
3596 
3597   /*
3598                  A-top         }
3599                /   |   \       }  Tops
3600            B-top A-any C-top   }
3601               | /  |  \ |      }  Any-nulls
3602            B-any   |   C-any   }
3603               |    |    |
3604            B-con A-con C-con   } constants; not comparable across classes
3605               |    |    |
3606            B-not   |   C-not   }
3607               | \  |  / |      }  not-nulls
3608            B-bot A-not C-bot   }
3609                \   |   /       }  Bottoms
3610                  A-bot         }
3611   */
3612 
3613   case InstPtr: {                // Meeting 2 Oops?
3614     // Found an InstPtr sub-type vs self-InstPtr type
3615     const TypeInstPtr *tinst = t->is_instptr();
3616     int off = meet_offset( tinst->offset() );
3617     PTR ptr = meet_ptr( tinst->ptr() );
3618     int instance_id = meet_instance_id(tinst->instance_id());
3619     const TypePtr* speculative = xmeet_speculative(tinst);
3620     int depth = meet_inline_depth(tinst->inline_depth());
3621 
3622     // Check for easy case; klasses are equal (and perhaps not loaded!)
3623     // If we have constants, then we created oops so classes are loaded
3624     // and we can handle the constants further down.  This case handles
3625     // both-not-loaded or both-loaded classes
3626     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3627       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3628     }
3629 
3630     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3631     ciKlass* tinst_klass = tinst->klass();
3632     ciKlass* this_klass  = this->klass();
3633     bool tinst_xk = tinst->klass_is_exact();
3634     bool this_xk  = this->klass_is_exact();
3635     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3636       // One of these classes has not been loaded
3637       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3638 #ifndef PRODUCT
3639       if( PrintOpto && Verbose ) {
3640         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3641         tty->print("  this == "); this->dump(); tty->cr();
3642         tty->print(" tinst == "); tinst->dump(); tty->cr();
3643       }
3644 #endif
3645       return unloaded_meet;
3646     }
3647 
3648     // Handle mixing oops and interfaces first.
3649     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3650                                         tinst_klass == ciEnv::current()->Object_klass())) {
3651       ciKlass *tmp = tinst_klass; // Swap interface around
3652       tinst_klass = this_klass;
3653       this_klass = tmp;
3654       bool tmp2 = tinst_xk;
3655       tinst_xk = this_xk;
3656       this_xk = tmp2;
3657     }
3658     if (tinst_klass->is_interface() &&
3659         !(this_klass->is_interface() ||
3660           // Treat java/lang/Object as an honorary interface,
3661           // because we need a bottom for the interface hierarchy.
3662           this_klass == ciEnv::current()->Object_klass())) {
3663       // Oop meets interface!
3664 
3665       // See if the oop subtypes (implements) interface.
3666       ciKlass *k;
3667       bool xk;
3668       if( this_klass->is_subtype_of( tinst_klass ) ) {
3669         // Oop indeed subtypes.  Now keep oop or interface depending
3670         // on whether we are both above the centerline or either is
3671         // below the centerline.  If we are on the centerline
3672         // (e.g., Constant vs. AnyNull interface), use the constant.
3673         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3674         // If we are keeping this_klass, keep its exactness too.
3675         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3676       } else {                  // Does not implement, fall to Object
3677         // Oop does not implement interface, so mixing falls to Object
3678         // just like the verifier does (if both are above the
3679         // centerline fall to interface)
3680         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3681         xk = above_centerline(ptr) ? tinst_xk : false;
3682         // Watch out for Constant vs. AnyNull interface.
3683         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3684         instance_id = InstanceBot;
3685       }
3686       ciObject* o = NULL;  // the Constant value, if any
3687       if (ptr == Constant) {
3688         // Find out which constant.
3689         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3690       }
3691       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3692     }
3693 
3694     // Either oop vs oop or interface vs interface or interface vs Object
3695 
3696     // !!! Here's how the symmetry requirement breaks down into invariants:
3697     // If we split one up & one down AND they subtype, take the down man.
3698     // If we split one up & one down AND they do NOT subtype, "fall hard".
3699     // If both are up and they subtype, take the subtype class.
3700     // If both are up and they do NOT subtype, "fall hard".
3701     // If both are down and they subtype, take the supertype class.
3702     // If both are down and they do NOT subtype, "fall hard".
3703     // Constants treated as down.
3704 
3705     // Now, reorder the above list; observe that both-down+subtype is also
3706     // "fall hard"; "fall hard" becomes the default case:
3707     // If we split one up & one down AND they subtype, take the down man.
3708     // If both are up and they subtype, take the subtype class.
3709 
3710     // If both are down and they subtype, "fall hard".
3711     // If both are down and they do NOT subtype, "fall hard".
3712     // If both are up and they do NOT subtype, "fall hard".
3713     // If we split one up & one down AND they do NOT subtype, "fall hard".
3714 
3715     // If a proper subtype is exact, and we return it, we return it exactly.
3716     // If a proper supertype is exact, there can be no subtyping relationship!
3717     // If both types are equal to the subtype, exactness is and-ed below the
3718     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3719 
3720     // Check for subtyping:
3721     ciKlass *subtype = NULL;
3722     bool subtype_exact = false;
3723     if( tinst_klass->equals(this_klass) ) {
3724       subtype = this_klass;
3725       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3726     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3727       subtype = this_klass;     // Pick subtyping class
3728       subtype_exact = this_xk;
3729     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3730       subtype = tinst_klass;    // Pick subtyping class
3731       subtype_exact = tinst_xk;
3732     }
3733 
3734     if( subtype ) {
3735       if( above_centerline(ptr) ) { // both are up?
3736         this_klass = tinst_klass = subtype;
3737         this_xk = tinst_xk = subtype_exact;
3738       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3739         this_klass = tinst_klass; // tinst is down; keep down man
3740         this_xk = tinst_xk;
3741       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3742         tinst_klass = this_klass; // this is down; keep down man
3743         tinst_xk = this_xk;
3744       } else {
3745         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3746       }
3747     }
3748 
3749     // Check for classes now being equal
3750     if (tinst_klass->equals(this_klass)) {
3751       // If the klasses are equal, the constants may still differ.  Fall to
3752       // NotNull if they do (neither constant is NULL; that is a special case
3753       // handled elsewhere).
3754       ciObject* o = NULL;             // Assume not constant when done
3755       ciObject* this_oop  = const_oop();
3756       ciObject* tinst_oop = tinst->const_oop();
3757       if( ptr == Constant ) {
3758         if (this_oop != NULL && tinst_oop != NULL &&
3759             this_oop->equals(tinst_oop) )
3760           o = this_oop;
3761         else if (above_centerline(this ->_ptr))
3762           o = tinst_oop;
3763         else if (above_centerline(tinst ->_ptr))
3764           o = this_oop;
3765         else
3766           ptr = NotNull;
3767       }
3768       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3769     } // Else classes are not equal
3770 
3771     // Since klasses are different, we require a LCA in the Java
3772     // class hierarchy - which means we have to fall to at least NotNull.
3773     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3774       ptr = NotNull;
3775 
3776     instance_id = InstanceBot;
3777 
3778     // Now we find the LCA of Java classes
3779     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3780     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3781   } // End of case InstPtr
3782 
3783   } // End of switch
3784   return this;                  // Return the double constant
3785 }
3786 
3787 
3788 //------------------------java_mirror_type--------------------------------------
3789 ciType* TypeInstPtr::java_mirror_type() const {
3790   // must be a singleton type
3791   if( const_oop() == NULL )  return NULL;
3792 
3793   // must be of type java.lang.Class
3794   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3795 
3796   return const_oop()->as_instance()->java_mirror_type();
3797 }
3798 
3799 
3800 //------------------------------xdual------------------------------------------
3801 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3802 // inheritance mechanism.
3803 const Type *TypeInstPtr::xdual() const {
3804   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3805 }
3806 
3807 //------------------------------eq---------------------------------------------
3808 // Structural equality check for Type representations
3809 bool TypeInstPtr::eq( const Type *t ) const {
3810   const TypeInstPtr *p = t->is_instptr();
3811   return
3812     klass()->equals(p->klass()) &&
3813     TypeOopPtr::eq(p);          // Check sub-type stuff
3814 }
3815 
3816 //------------------------------hash-------------------------------------------
3817 // Type-specific hashing function.
3818 int TypeInstPtr::hash(void) const {
3819   int hash = klass()->hash() + TypeOopPtr::hash();
3820   return hash;
3821 }
3822 
3823 //------------------------------dump2------------------------------------------
3824 // Dump oop Type
3825 #ifndef PRODUCT
3826 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3827   // Print the name of the klass.
3828   klass()->print_name_on(st);
3829 
3830   switch( _ptr ) {
3831   case Constant:
3832     // TO DO: Make CI print the hex address of the underlying oop.
3833     if (WizardMode || Verbose) {
3834       const_oop()->print_oop(st);
3835     }
3836   case BotPTR:
3837     if (!WizardMode && !Verbose) {
3838       if( _klass_is_exact ) st->print(":exact");
3839       break;
3840     }
3841   case TopPTR:
3842   case AnyNull:
3843   case NotNull:
3844     st->print(":%s", ptr_msg[_ptr]);
3845     if( _klass_is_exact ) st->print(":exact");
3846     break;
3847   }
3848 
3849   if( _offset ) {               // Dump offset, if any
3850     if( _offset == OffsetBot )      st->print("+any");
3851     else if( _offset == OffsetTop ) st->print("+unknown");
3852     else st->print("+%d", _offset);
3853   }
3854 
3855   st->print(" *");
3856   if (_instance_id == InstanceTop)
3857     st->print(",iid=top");
3858   else if (_instance_id != InstanceBot)
3859     st->print(",iid=%d",_instance_id);
3860 
3861   dump_inline_depth(st);
3862   dump_speculative(st);
3863 }
3864 #endif
3865 
3866 //------------------------------add_offset-------------------------------------
3867 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3868   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3869               _instance_id, add_offset_speculative(offset), _inline_depth);
3870 }
3871 
3872 const Type *TypeInstPtr::remove_speculative() const {
3873   if (_speculative == NULL) {
3874     return this;
3875   }
3876   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3877   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3878               _instance_id, NULL, _inline_depth);
3879 }
3880 
3881 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3882   if (!UseInlineDepthForSpeculativeTypes) {
3883     return this;
3884   }
3885   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3886 }
3887 
3888 //=============================================================================
3889 // Convenience common pre-built types.
3890 const TypeAryPtr *TypeAryPtr::RANGE;
3891 const TypeAryPtr *TypeAryPtr::OOPS;
3892 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3893 const TypeAryPtr *TypeAryPtr::BYTES;
3894 const TypeAryPtr *TypeAryPtr::SHORTS;
3895 const TypeAryPtr *TypeAryPtr::CHARS;
3896 const TypeAryPtr *TypeAryPtr::INTS;
3897 const TypeAryPtr *TypeAryPtr::LONGS;
3898 const TypeAryPtr *TypeAryPtr::FLOATS;
3899 const TypeAryPtr *TypeAryPtr::DOUBLES;
3900 
3901 //------------------------------make-------------------------------------------
3902 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3903                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3904   assert(!(k == NULL && ary->_elem->isa_int()),
3905          "integral arrays must be pre-equipped with a class");
3906   if (!xk)  xk = ary->ary_must_be_exact();
3907   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3908   if (!UseExactTypes)  xk = (ptr == Constant);
3909   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3910 }
3911 
3912 //------------------------------make-------------------------------------------
3913 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3914                                    int instance_id, const TypePtr* speculative, int inline_depth,
3915                                    bool is_autobox_cache) {
3916   assert(!(k == NULL && ary->_elem->isa_int()),
3917          "integral arrays must be pre-equipped with a class");
3918   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3919   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3920   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3921   if (!UseExactTypes)  xk = (ptr == Constant);
3922   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3923 }
3924 
3925 //------------------------------cast_to_ptr_type-------------------------------
3926 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3927   if( ptr == _ptr ) return this;
3928   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3929 }
3930 
3931 
3932 //-----------------------------cast_to_exactness-------------------------------
3933 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3934   if( klass_is_exact == _klass_is_exact ) return this;
3935   if (!UseExactTypes)  return this;
3936   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3937   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3938 }
3939 
3940 //-----------------------------cast_to_instance_id----------------------------
3941 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3942   if( instance_id == _instance_id ) return this;
3943   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3944 }
3945 
3946 //-----------------------------narrow_size_type-------------------------------
3947 // Local cache for arrayOopDesc::max_array_length(etype),
3948 // which is kind of slow (and cached elsewhere by other users).
3949 static jint max_array_length_cache[T_CONFLICT+1];
3950 static jint max_array_length(BasicType etype) {
3951   jint& cache = max_array_length_cache[etype];
3952   jint res = cache;
3953   if (res == 0) {
3954     switch (etype) {
3955     case T_NARROWOOP:
3956       etype = T_OBJECT;
3957       break;
3958     case T_NARROWKLASS:
3959     case T_CONFLICT:
3960     case T_ILLEGAL:
3961     case T_VOID:
3962       etype = T_BYTE;           // will produce conservatively high value
3963     }
3964     cache = res = arrayOopDesc::max_array_length(etype);
3965   }
3966   return res;
3967 }
3968 
3969 // Narrow the given size type to the index range for the given array base type.
3970 // Return NULL if the resulting int type becomes empty.
3971 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3972   jint hi = size->_hi;
3973   jint lo = size->_lo;
3974   jint min_lo = 0;
3975   jint max_hi = max_array_length(elem()->basic_type());
3976   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3977   bool chg = false;
3978   if (lo < min_lo) {
3979     lo = min_lo;
3980     if (size->is_con()) {
3981       hi = lo;
3982     }
3983     chg = true;
3984   }
3985   if (hi > max_hi) {
3986     hi = max_hi;
3987     if (size->is_con()) {
3988       lo = hi;
3989     }
3990     chg = true;
3991   }
3992   // Negative length arrays will produce weird intermediate dead fast-path code
3993   if (lo > hi)
3994     return TypeInt::ZERO;
3995   if (!chg)
3996     return size;
3997   return TypeInt::make(lo, hi, Type::WidenMin);
3998 }
3999 
4000 //-------------------------------cast_to_size----------------------------------
4001 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4002   assert(new_size != NULL, "");
4003   new_size = narrow_size_type(new_size);
4004   if (new_size == size())  return this;
4005   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4006   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4007 }
4008 
4009 //------------------------------cast_to_stable---------------------------------
4010 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4011   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4012     return this;
4013 
4014   const Type* elem = this->elem();
4015   const TypePtr* elem_ptr = elem->make_ptr();
4016 
4017   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4018     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4019     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4020   }
4021 
4022   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4023 
4024   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4025 }
4026 
4027 //-----------------------------stable_dimension--------------------------------
4028 int TypeAryPtr::stable_dimension() const {
4029   if (!is_stable())  return 0;
4030   int dim = 1;
4031   const TypePtr* elem_ptr = elem()->make_ptr();
4032   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4033     dim += elem_ptr->is_aryptr()->stable_dimension();
4034   return dim;
4035 }
4036 
4037 //----------------------cast_to_autobox_cache-----------------------------------
4038 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4039   if (is_autobox_cache() == cache)  return this;
4040   const TypeOopPtr* etype = elem()->make_oopptr();
4041   if (etype == NULL)  return this;
4042   // The pointers in the autobox arrays are always non-null.
4043   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4044   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4045   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4046   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4047 }
4048 
4049 //------------------------------eq---------------------------------------------
4050 // Structural equality check for Type representations
4051 bool TypeAryPtr::eq( const Type *t ) const {
4052   const TypeAryPtr *p = t->is_aryptr();
4053   return
4054     _ary == p->_ary &&  // Check array
4055     TypeOopPtr::eq(p);  // Check sub-parts
4056 }
4057 
4058 //------------------------------hash-------------------------------------------
4059 // Type-specific hashing function.
4060 int TypeAryPtr::hash(void) const {
4061   return (intptr_t)_ary + TypeOopPtr::hash();
4062 }
4063 
4064 //------------------------------meet-------------------------------------------
4065 // Compute the MEET of two types.  It returns a new Type object.
4066 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4067   // Perform a fast test for common case; meeting the same types together.
4068   if( this == t ) return this;  // Meeting same type-rep?
4069   // Current "this->_base" is Pointer
4070   switch (t->base()) {          // switch on original type
4071 
4072   // Mixing ints & oops happens when javac reuses local variables
4073   case Int:
4074   case Long:
4075   case FloatTop:
4076   case FloatCon:
4077   case FloatBot:
4078   case DoubleTop:
4079   case DoubleCon:
4080   case DoubleBot:
4081   case NarrowOop:
4082   case NarrowKlass:
4083   case Bottom:                  // Ye Olde Default
4084     return Type::BOTTOM;
4085   case Top:
4086     return this;
4087 
4088   default:                      // All else is a mistake
4089     typerr(t);
4090 
4091   case OopPtr: {                // Meeting to OopPtrs
4092     // Found a OopPtr type vs self-AryPtr type
4093     const TypeOopPtr *tp = t->is_oopptr();
4094     int offset = meet_offset(tp->offset());
4095     PTR ptr = meet_ptr(tp->ptr());
4096     int depth = meet_inline_depth(tp->inline_depth());
4097     const TypePtr* speculative = xmeet_speculative(tp);
4098     switch (tp->ptr()) {
4099     case TopPTR:
4100     case AnyNull: {
4101       int instance_id = meet_instance_id(InstanceTop);
4102       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4103                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4104     }
4105     case BotPTR:
4106     case NotNull: {
4107       int instance_id = meet_instance_id(tp->instance_id());
4108       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4109     }
4110     default: ShouldNotReachHere();
4111     }
4112   }
4113 
4114   case AnyPtr: {                // Meeting two AnyPtrs
4115     // Found an AnyPtr type vs self-AryPtr type
4116     const TypePtr *tp = t->is_ptr();
4117     int offset = meet_offset(tp->offset());
4118     PTR ptr = meet_ptr(tp->ptr());
4119     const TypePtr* speculative = xmeet_speculative(tp);
4120     int depth = meet_inline_depth(tp->inline_depth());
4121     switch (tp->ptr()) {
4122     case TopPTR:
4123       return this;
4124     case BotPTR:
4125     case NotNull:
4126       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4127     case Null:
4128       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4129       // else fall through to AnyNull
4130     case AnyNull: {
4131       int instance_id = meet_instance_id(InstanceTop);
4132       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4133                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4134     }
4135     default: ShouldNotReachHere();
4136     }
4137   }
4138 
4139   case MetadataPtr:
4140   case KlassPtr:
4141   case RawPtr: return TypePtr::BOTTOM;
4142 
4143   case AryPtr: {                // Meeting 2 references?
4144     const TypeAryPtr *tap = t->is_aryptr();
4145     int off = meet_offset(tap->offset());
4146     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4147     PTR ptr = meet_ptr(tap->ptr());
4148     int instance_id = meet_instance_id(tap->instance_id());
4149     const TypePtr* speculative = xmeet_speculative(tap);
4150     int depth = meet_inline_depth(tap->inline_depth());
4151     ciKlass* lazy_klass = NULL;
4152     if (tary->_elem->isa_int()) {
4153       // Integral array element types have irrelevant lattice relations.
4154       // It is the klass that determines array layout, not the element type.
4155       if (_klass == NULL)
4156         lazy_klass = tap->_klass;
4157       else if (tap->_klass == NULL || tap->_klass == _klass) {
4158         lazy_klass = _klass;
4159       } else {
4160         // Something like byte[int+] meets char[int+].
4161         // This must fall to bottom, not (int[-128..65535])[int+].
4162         instance_id = InstanceBot;
4163         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4164       }
4165     } else // Non integral arrays.
4166       // Must fall to bottom if exact klasses in upper lattice
4167       // are not equal or super klass is exact.
4168       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4169           // meet with top[] and bottom[] are processed further down:
4170           tap->_klass != NULL  && this->_klass != NULL   &&
4171           // both are exact and not equal:
4172           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4173            // 'tap'  is exact and super or unrelated:
4174            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4175            // 'this' is exact and super or unrelated:
4176            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4177 
4178         const TypeAry* tta = tap->_ary;
4179         const TypeAry* mta = tary;
4180         // Handle multidimensional arrays
4181         const TypePtr* ftp = mta->_elem->make_ptr();
4182         const TypePtr* ktp = tta->_elem->make_ptr();
4183         while (ftp && ftp->isa_aryptr() && ktp && ktp->isa_aryptr()) {
4184           mta = ftp->is_aryptr()->_ary;
4185           tta = ktp->is_aryptr()->_ary;
4186           ftp = mta->_elem->make_ptr();
4187           ktp = tta->_elem->make_ptr();
4188         }
4189         const TypeInstPtr* ktip = ktp ? ktp->isa_instptr() : NULL;
4190         if (ktip == NULL || !ktip->is_loaded() || !ktip->klass()->is_interface()) {
4191           if (above_centerline(ptr)) {
4192             tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4193           }
4194         }
4195         return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4196     }
4197 
4198     bool xk = false;
4199     switch (tap->ptr()) {
4200     case AnyNull:
4201     case TopPTR:
4202       // Compute new klass on demand, do not use tap->_klass
4203       if (below_centerline(this->_ptr)) {
4204         xk = this->_klass_is_exact;
4205       } else {
4206         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4207       }
4208       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4209     case Constant: {
4210       ciObject* o = const_oop();
4211       if( _ptr == Constant ) {
4212         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4213           xk = (klass() == tap->klass());
4214           ptr = NotNull;
4215           o = NULL;
4216           instance_id = InstanceBot;
4217         } else {
4218           xk = true;
4219         }
4220       } else if(above_centerline(_ptr)) {
4221         o = tap->const_oop();
4222         xk = true;
4223       } else {
4224         // Only precise for identical arrays
4225         xk = this->_klass_is_exact && (klass() == tap->klass());
4226       }
4227       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4228     }
4229     case NotNull:
4230     case BotPTR:
4231       // Compute new klass on demand, do not use tap->_klass
4232       if (above_centerline(this->_ptr))
4233             xk = tap->_klass_is_exact;
4234       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4235               (klass() == tap->klass()); // Only precise for identical arrays
4236       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4237     default: ShouldNotReachHere();
4238     }
4239   }
4240 
4241   // All arrays inherit from Object class
4242   case InstPtr: {
4243     const TypeInstPtr *tp = t->is_instptr();
4244     int offset = meet_offset(tp->offset());
4245     PTR ptr = meet_ptr(tp->ptr());
4246     int instance_id = meet_instance_id(tp->instance_id());
4247     const TypePtr* speculative = xmeet_speculative(tp);
4248     int depth = meet_inline_depth(tp->inline_depth());
4249     switch (ptr) {
4250     case TopPTR:
4251     case AnyNull:                // Fall 'down' to dual of object klass
4252       // For instances when a subclass meets a superclass we fall
4253       // below the centerline when the superclass is exact. We need to
4254       // do the same here.
4255       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4256         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4257       } else {
4258         // cannot subclass, so the meet has to fall badly below the centerline
4259         ptr = NotNull;
4260         instance_id = InstanceBot;
4261         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4262       }
4263     case Constant:
4264     case NotNull:
4265     case BotPTR:                // Fall down to object klass
4266       // LCA is object_klass, but if we subclass from the top we can do better
4267       if (above_centerline(tp->ptr())) {
4268         // If 'tp'  is above the centerline and it is Object class
4269         // then we can subclass in the Java class hierarchy.
4270         // For instances when a subclass meets a superclass we fall
4271         // below the centerline when the superclass is exact. We need
4272         // to do the same here.
4273         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4274           // that is, my array type is a subtype of 'tp' klass
4275           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4276                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4277         }
4278       }
4279       // The other case cannot happen, since t cannot be a subtype of an array.
4280       // The meet falls down to Object class below centerline.
4281       if( ptr == Constant )
4282          ptr = NotNull;
4283       instance_id = InstanceBot;
4284       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4285     default: typerr(t);
4286     }
4287   }
4288   }
4289   return this;                  // Lint noise
4290 }
4291 
4292 //------------------------------xdual------------------------------------------
4293 // Dual: compute field-by-field dual
4294 const Type *TypeAryPtr::xdual() const {
4295   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4296 }
4297 
4298 //----------------------interface_vs_oop---------------------------------------
4299 #ifdef ASSERT
4300 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4301   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4302   if (t_aryptr) {
4303     return _ary->interface_vs_oop(t_aryptr->_ary);
4304   }
4305   return false;
4306 }
4307 #endif
4308 
4309 //------------------------------dump2------------------------------------------
4310 #ifndef PRODUCT
4311 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4312   _ary->dump2(d,depth,st);
4313   switch( _ptr ) {
4314   case Constant:
4315     const_oop()->print(st);
4316     break;
4317   case BotPTR:
4318     if (!WizardMode && !Verbose) {
4319       if( _klass_is_exact ) st->print(":exact");
4320       break;
4321     }
4322   case TopPTR:
4323   case AnyNull:
4324   case NotNull:
4325     st->print(":%s", ptr_msg[_ptr]);
4326     if( _klass_is_exact ) st->print(":exact");
4327     break;
4328   }
4329 
4330   if( _offset != 0 ) {
4331     int header_size = objArrayOopDesc::header_size() * wordSize;
4332     if( _offset == OffsetTop )       st->print("+undefined");
4333     else if( _offset == OffsetBot )  st->print("+any");
4334     else if( _offset < header_size ) st->print("+%d", _offset);
4335     else {
4336       BasicType basic_elem_type = elem()->basic_type();
4337       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4338       int elem_size = type2aelembytes(basic_elem_type);
4339       st->print("[%d]", (_offset - array_base)/elem_size);
4340     }
4341   }
4342   st->print(" *");
4343   if (_instance_id == InstanceTop)
4344     st->print(",iid=top");
4345   else if (_instance_id != InstanceBot)
4346     st->print(",iid=%d",_instance_id);
4347 
4348   dump_inline_depth(st);
4349   dump_speculative(st);
4350 }
4351 #endif
4352 
4353 bool TypeAryPtr::empty(void) const {
4354   if (_ary->empty())       return true;
4355   return TypeOopPtr::empty();
4356 }
4357 
4358 //------------------------------add_offset-------------------------------------
4359 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4360   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4361 }
4362 
4363 const Type *TypeAryPtr::remove_speculative() const {
4364   if (_speculative == NULL) {
4365     return this;
4366   }
4367   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4368   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4369 }
4370 
4371 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4372   if (!UseInlineDepthForSpeculativeTypes) {
4373     return this;
4374   }
4375   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4376 }
4377 
4378 //=============================================================================
4379 
4380 //------------------------------hash-------------------------------------------
4381 // Type-specific hashing function.
4382 int TypeNarrowPtr::hash(void) const {
4383   return _ptrtype->hash() + 7;
4384 }
4385 
4386 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4387   return _ptrtype->singleton();
4388 }
4389 
4390 bool TypeNarrowPtr::empty(void) const {
4391   return _ptrtype->empty();
4392 }
4393 
4394 intptr_t TypeNarrowPtr::get_con() const {
4395   return _ptrtype->get_con();
4396 }
4397 
4398 bool TypeNarrowPtr::eq( const Type *t ) const {
4399   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4400   if (tc != NULL) {
4401     if (_ptrtype->base() != tc->_ptrtype->base()) {
4402       return false;
4403     }
4404     return tc->_ptrtype->eq(_ptrtype);
4405   }
4406   return false;
4407 }
4408 
4409 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4410   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4411   return make_same_narrowptr(odual);
4412 }
4413 
4414 
4415 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4416   if (isa_same_narrowptr(kills)) {
4417     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4418     if (ft->empty())
4419       return Type::TOP;           // Canonical empty value
4420     if (ft->isa_ptr()) {
4421       return make_hash_same_narrowptr(ft->isa_ptr());
4422     }
4423     return ft;
4424   } else if (kills->isa_ptr()) {
4425     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4426     if (ft->empty())
4427       return Type::TOP;           // Canonical empty value
4428     return ft;
4429   } else {
4430     return Type::TOP;
4431   }
4432 }
4433 
4434 //------------------------------xmeet------------------------------------------
4435 // Compute the MEET of two types.  It returns a new Type object.
4436 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4437   // Perform a fast test for common case; meeting the same types together.
4438   if( this == t ) return this;  // Meeting same type-rep?
4439 
4440   if (t->base() == base()) {
4441     const Type* result = _ptrtype->xmeet(t->make_ptr());
4442     if (result->isa_ptr()) {
4443       return make_hash_same_narrowptr(result->is_ptr());
4444     }
4445     return result;
4446   }
4447 
4448   // Current "this->_base" is NarrowKlass or NarrowOop
4449   switch (t->base()) {          // switch on original type
4450 
4451   case Int:                     // Mixing ints & oops happens when javac
4452   case Long:                    // reuses local variables
4453   case FloatTop:
4454   case FloatCon:
4455   case FloatBot:
4456   case DoubleTop:
4457   case DoubleCon:
4458   case DoubleBot:
4459   case AnyPtr:
4460   case RawPtr:
4461   case OopPtr:
4462   case InstPtr:
4463   case AryPtr:
4464   case MetadataPtr:
4465   case KlassPtr:
4466   case NarrowOop:
4467   case NarrowKlass:
4468 
4469   case Bottom:                  // Ye Olde Default
4470     return Type::BOTTOM;
4471   case Top:
4472     return this;
4473 
4474   default:                      // All else is a mistake
4475     typerr(t);
4476 
4477   } // End of switch
4478 
4479   return this;
4480 }
4481 
4482 #ifndef PRODUCT
4483 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4484   _ptrtype->dump2(d, depth, st);
4485 }
4486 #endif
4487 
4488 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4489 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4490 
4491 
4492 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4493   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4494 }
4495 
4496 const Type* TypeNarrowOop::remove_speculative() const {
4497   return make(_ptrtype->remove_speculative()->is_ptr());
4498 }
4499 
4500 const Type* TypeNarrowOop::cleanup_speculative() const {
4501   return make(_ptrtype->cleanup_speculative()->is_ptr());
4502 }
4503 
4504 #ifndef PRODUCT
4505 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4506   st->print("narrowoop: ");
4507   TypeNarrowPtr::dump2(d, depth, st);
4508 }
4509 #endif
4510 
4511 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4512 
4513 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4514   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4515 }
4516 
4517 #ifndef PRODUCT
4518 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4519   st->print("narrowklass: ");
4520   TypeNarrowPtr::dump2(d, depth, st);
4521 }
4522 #endif
4523 
4524 
4525 //------------------------------eq---------------------------------------------
4526 // Structural equality check for Type representations
4527 bool TypeMetadataPtr::eq( const Type *t ) const {
4528   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4529   ciMetadata* one = metadata();
4530   ciMetadata* two = a->metadata();
4531   if (one == NULL || two == NULL) {
4532     return (one == two) && TypePtr::eq(t);
4533   } else {
4534     return one->equals(two) && TypePtr::eq(t);
4535   }
4536 }
4537 
4538 //------------------------------hash-------------------------------------------
4539 // Type-specific hashing function.
4540 int TypeMetadataPtr::hash(void) const {
4541   return
4542     (metadata() ? metadata()->hash() : 0) +
4543     TypePtr::hash();
4544 }
4545 
4546 //------------------------------singleton--------------------------------------
4547 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4548 // constants
4549 bool TypeMetadataPtr::singleton(void) const {
4550   // detune optimizer to not generate constant metadata + constant offset as a constant!
4551   // TopPTR, Null, AnyNull, Constant are all singletons
4552   return (_offset == 0) && !below_centerline(_ptr);
4553 }
4554 
4555 //------------------------------add_offset-------------------------------------
4556 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4557   return make( _ptr, _metadata, xadd_offset(offset));
4558 }
4559 
4560 //-----------------------------filter------------------------------------------
4561 // Do not allow interface-vs.-noninterface joins to collapse to top.
4562 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4563   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4564   if (ft == NULL || ft->empty())
4565     return Type::TOP;           // Canonical empty value
4566   return ft;
4567 }
4568 
4569  //------------------------------get_con----------------------------------------
4570 intptr_t TypeMetadataPtr::get_con() const {
4571   assert( _ptr == Null || _ptr == Constant, "" );
4572   assert( _offset >= 0, "" );
4573 
4574   if (_offset != 0) {
4575     // After being ported to the compiler interface, the compiler no longer
4576     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4577     // to a handle at compile time.  This handle is embedded in the generated
4578     // code and dereferenced at the time the nmethod is made.  Until that time,
4579     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4580     // have access to the addresses!).  This does not seem to currently happen,
4581     // but this assertion here is to help prevent its occurence.
4582     tty->print_cr("Found oop constant with non-zero offset");
4583     ShouldNotReachHere();
4584   }
4585 
4586   return (intptr_t)metadata()->constant_encoding();
4587 }
4588 
4589 //------------------------------cast_to_ptr_type-------------------------------
4590 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4591   if( ptr == _ptr ) return this;
4592   return make(ptr, metadata(), _offset);
4593 }
4594 
4595 //------------------------------meet-------------------------------------------
4596 // Compute the MEET of two types.  It returns a new Type object.
4597 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4598   // Perform a fast test for common case; meeting the same types together.
4599   if( this == t ) return this;  // Meeting same type-rep?
4600 
4601   // Current "this->_base" is OopPtr
4602   switch (t->base()) {          // switch on original type
4603 
4604   case Int:                     // Mixing ints & oops happens when javac
4605   case Long:                    // reuses local variables
4606   case FloatTop:
4607   case FloatCon:
4608   case FloatBot:
4609   case DoubleTop:
4610   case DoubleCon:
4611   case DoubleBot:
4612   case NarrowOop:
4613   case NarrowKlass:
4614   case Bottom:                  // Ye Olde Default
4615     return Type::BOTTOM;
4616   case Top:
4617     return this;
4618 
4619   default:                      // All else is a mistake
4620     typerr(t);
4621 
4622   case AnyPtr: {
4623     // Found an AnyPtr type vs self-OopPtr type
4624     const TypePtr *tp = t->is_ptr();
4625     int offset = meet_offset(tp->offset());
4626     PTR ptr = meet_ptr(tp->ptr());
4627     switch (tp->ptr()) {
4628     case Null:
4629       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4630       // else fall through:
4631     case TopPTR:
4632     case AnyNull: {
4633       return make(ptr, _metadata, offset);
4634     }
4635     case BotPTR:
4636     case NotNull:
4637       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4638     default: typerr(t);
4639     }
4640   }
4641 
4642   case RawPtr:
4643   case KlassPtr:
4644   case OopPtr:
4645   case InstPtr:
4646   case AryPtr:
4647     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4648 
4649   case MetadataPtr: {
4650     const TypeMetadataPtr *tp = t->is_metadataptr();
4651     int offset = meet_offset(tp->offset());
4652     PTR tptr = tp->ptr();
4653     PTR ptr = meet_ptr(tptr);
4654     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4655     if (tptr == TopPTR || _ptr == TopPTR ||
4656         metadata()->equals(tp->metadata())) {
4657       return make(ptr, md, offset);
4658     }
4659     // metadata is different
4660     if( ptr == Constant ) {  // Cannot be equal constants, so...
4661       if( tptr == Constant && _ptr != Constant)  return t;
4662       if( _ptr == Constant && tptr != Constant)  return this;
4663       ptr = NotNull;            // Fall down in lattice
4664     }
4665     return make(ptr, NULL, offset);
4666     break;
4667   }
4668   } // End of switch
4669   return this;                  // Return the double constant
4670 }
4671 
4672 
4673 //------------------------------xdual------------------------------------------
4674 // Dual of a pure metadata pointer.
4675 const Type *TypeMetadataPtr::xdual() const {
4676   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4677 }
4678 
4679 //------------------------------dump2------------------------------------------
4680 #ifndef PRODUCT
4681 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4682   st->print("metadataptr:%s", ptr_msg[_ptr]);
4683   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4684   switch( _offset ) {
4685   case OffsetTop: st->print("+top"); break;
4686   case OffsetBot: st->print("+any"); break;
4687   case         0: break;
4688   default:        st->print("+%d",_offset); break;
4689   }
4690 }
4691 #endif
4692 
4693 
4694 //=============================================================================
4695 // Convenience common pre-built type.
4696 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4697 
4698 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4699   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4700 }
4701 
4702 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4703   return make(Constant, m, 0);
4704 }
4705 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4706   return make(Constant, m, 0);
4707 }
4708 
4709 //------------------------------make-------------------------------------------
4710 // Create a meta data constant
4711 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4712   assert(m == NULL || !m->is_klass(), "wrong type");
4713   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4714 }
4715 
4716 
4717 //=============================================================================
4718 // Convenience common pre-built types.
4719 
4720 // Not-null object klass or below
4721 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4722 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4723 
4724 //------------------------------TypeKlassPtr-----------------------------------
4725 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4726   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4727 }
4728 
4729 //------------------------------make-------------------------------------------
4730 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4731 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4732   assert( k != NULL, "Expect a non-NULL klass");
4733   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4734   TypeKlassPtr *r =
4735     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4736 
4737   return r;
4738 }
4739 
4740 //------------------------------eq---------------------------------------------
4741 // Structural equality check for Type representations
4742 bool TypeKlassPtr::eq( const Type *t ) const {
4743   const TypeKlassPtr *p = t->is_klassptr();
4744   return
4745     klass()->equals(p->klass()) &&
4746     TypePtr::eq(p);
4747 }
4748 
4749 //------------------------------hash-------------------------------------------
4750 // Type-specific hashing function.
4751 int TypeKlassPtr::hash(void) const {
4752   return klass()->hash() + TypePtr::hash();
4753 }
4754 
4755 //------------------------------singleton--------------------------------------
4756 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4757 // constants
4758 bool TypeKlassPtr::singleton(void) const {
4759   // detune optimizer to not generate constant klass + constant offset as a constant!
4760   // TopPTR, Null, AnyNull, Constant are all singletons
4761   return (_offset == 0) && !below_centerline(_ptr);
4762 }
4763 
4764 // Do not allow interface-vs.-noninterface joins to collapse to top.
4765 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4766   // logic here mirrors the one from TypeOopPtr::filter. See comments
4767   // there.
4768   const Type* ft = join_helper(kills, include_speculative);
4769   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4770   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4771 
4772   if (ft->empty()) {
4773     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4774       return kills;             // Uplift to interface
4775 
4776     return Type::TOP;           // Canonical empty value
4777   }
4778 
4779   // Interface klass type could be exact in opposite to interface type,
4780   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4781   if (ftkp != NULL && ktkp != NULL &&
4782       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4783       !ftkp->klass_is_exact() && // Keep exact interface klass
4784       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4785     return ktkp->cast_to_ptr_type(ftkp->ptr());
4786   }
4787 
4788   return ft;
4789 }
4790 
4791 //----------------------compute_klass------------------------------------------
4792 // Compute the defining klass for this class
4793 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4794   // Compute _klass based on element type.
4795   ciKlass* k_ary = NULL;
4796   const TypeInstPtr *tinst;
4797   const TypeAryPtr *tary;
4798   const Type* el = elem();
4799   if (el->isa_narrowoop()) {
4800     el = el->make_ptr();
4801   }
4802 
4803   // Get element klass
4804   if ((tinst = el->isa_instptr()) != NULL) {
4805     // Compute array klass from element klass
4806     k_ary = ciObjArrayKlass::make(tinst->klass());
4807   } else if ((tary = el->isa_aryptr()) != NULL) {
4808     // Compute array klass from element klass
4809     ciKlass* k_elem = tary->klass();
4810     // If element type is something like bottom[], k_elem will be null.
4811     if (k_elem != NULL)
4812       k_ary = ciObjArrayKlass::make(k_elem);
4813   } else if ((el->base() == Type::Top) ||
4814              (el->base() == Type::Bottom)) {
4815     // element type of Bottom occurs from meet of basic type
4816     // and object; Top occurs when doing join on Bottom.
4817     // Leave k_ary at NULL.
4818   } else {
4819     // Cannot compute array klass directly from basic type,
4820     // since subtypes of TypeInt all have basic type T_INT.
4821 #ifdef ASSERT
4822     if (verify && el->isa_int()) {
4823       // Check simple cases when verifying klass.
4824       BasicType bt = T_ILLEGAL;
4825       if (el == TypeInt::BYTE) {
4826         bt = T_BYTE;
4827       } else if (el == TypeInt::SHORT) {
4828         bt = T_SHORT;
4829       } else if (el == TypeInt::CHAR) {
4830         bt = T_CHAR;
4831       } else if (el == TypeInt::INT) {
4832         bt = T_INT;
4833       } else {
4834         return _klass; // just return specified klass
4835       }
4836       return ciTypeArrayKlass::make(bt);
4837     }
4838 #endif
4839     assert(!el->isa_int(),
4840            "integral arrays must be pre-equipped with a class");
4841     // Compute array klass directly from basic type
4842     k_ary = ciTypeArrayKlass::make(el->basic_type());
4843   }
4844   return k_ary;
4845 }
4846 
4847 //------------------------------klass------------------------------------------
4848 // Return the defining klass for this class
4849 ciKlass* TypeAryPtr::klass() const {
4850   if( _klass ) return _klass;   // Return cached value, if possible
4851 
4852   // Oops, need to compute _klass and cache it
4853   ciKlass* k_ary = compute_klass();
4854 
4855   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4856     // The _klass field acts as a cache of the underlying
4857     // ciKlass for this array type.  In order to set the field,
4858     // we need to cast away const-ness.
4859     //
4860     // IMPORTANT NOTE: we *never* set the _klass field for the
4861     // type TypeAryPtr::OOPS.  This Type is shared between all
4862     // active compilations.  However, the ciKlass which represents
4863     // this Type is *not* shared between compilations, so caching
4864     // this value would result in fetching a dangling pointer.
4865     //
4866     // Recomputing the underlying ciKlass for each request is
4867     // a bit less efficient than caching, but calls to
4868     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4869     ((TypeAryPtr*)this)->_klass = k_ary;
4870     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4871         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4872       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4873     }
4874   }
4875   return k_ary;
4876 }
4877 
4878 
4879 //------------------------------add_offset-------------------------------------
4880 // Access internals of klass object
4881 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4882   return make( _ptr, klass(), xadd_offset(offset) );
4883 }
4884 
4885 //------------------------------cast_to_ptr_type-------------------------------
4886 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4887   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4888   if( ptr == _ptr ) return this;
4889   return make(ptr, _klass, _offset);
4890 }
4891 
4892 
4893 //-----------------------------cast_to_exactness-------------------------------
4894 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4895   if( klass_is_exact == _klass_is_exact ) return this;
4896   if (!UseExactTypes)  return this;
4897   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4898 }
4899 
4900 
4901 //-----------------------------as_instance_type--------------------------------
4902 // Corresponding type for an instance of the given class.
4903 // It will be NotNull, and exact if and only if the klass type is exact.
4904 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4905   ciKlass* k = klass();
4906   bool    xk = klass_is_exact();
4907   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4908   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4909   guarantee(toop != NULL, "need type for given klass");
4910   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4911   return toop->cast_to_exactness(xk)->is_oopptr();
4912 }
4913 
4914 
4915 //------------------------------xmeet------------------------------------------
4916 // Compute the MEET of two types, return a new Type object.
4917 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4918   // Perform a fast test for common case; meeting the same types together.
4919   if( this == t ) return this;  // Meeting same type-rep?
4920 
4921   // Current "this->_base" is Pointer
4922   switch (t->base()) {          // switch on original type
4923 
4924   case Int:                     // Mixing ints & oops happens when javac
4925   case Long:                    // reuses local variables
4926   case FloatTop:
4927   case FloatCon:
4928   case FloatBot:
4929   case DoubleTop:
4930   case DoubleCon:
4931   case DoubleBot:
4932   case NarrowOop:
4933   case NarrowKlass:
4934   case Bottom:                  // Ye Olde Default
4935     return Type::BOTTOM;
4936   case Top:
4937     return this;
4938 
4939   default:                      // All else is a mistake
4940     typerr(t);
4941 
4942   case AnyPtr: {                // Meeting to AnyPtrs
4943     // Found an AnyPtr type vs self-KlassPtr type
4944     const TypePtr *tp = t->is_ptr();
4945     int offset = meet_offset(tp->offset());
4946     PTR ptr = meet_ptr(tp->ptr());
4947     switch (tp->ptr()) {
4948     case TopPTR:
4949       return this;
4950     case Null:
4951       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4952     case AnyNull:
4953       return make( ptr, klass(), offset );
4954     case BotPTR:
4955     case NotNull:
4956       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4957     default: typerr(t);
4958     }
4959   }
4960 
4961   case RawPtr:
4962   case MetadataPtr:
4963   case OopPtr:
4964   case AryPtr:                  // Meet with AryPtr
4965   case InstPtr:                 // Meet with InstPtr
4966     return TypePtr::BOTTOM;
4967 
4968   //
4969   //             A-top         }
4970   //           /   |   \       }  Tops
4971   //       B-top A-any C-top   }
4972   //          | /  |  \ |      }  Any-nulls
4973   //       B-any   |   C-any   }
4974   //          |    |    |
4975   //       B-con A-con C-con   } constants; not comparable across classes
4976   //          |    |    |
4977   //       B-not   |   C-not   }
4978   //          | \  |  / |      }  not-nulls
4979   //       B-bot A-not C-bot   }
4980   //           \   |   /       }  Bottoms
4981   //             A-bot         }
4982   //
4983 
4984   case KlassPtr: {  // Meet two KlassPtr types
4985     const TypeKlassPtr *tkls = t->is_klassptr();
4986     int  off     = meet_offset(tkls->offset());
4987     PTR  ptr     = meet_ptr(tkls->ptr());
4988 
4989     // Check for easy case; klasses are equal (and perhaps not loaded!)
4990     // If we have constants, then we created oops so classes are loaded
4991     // and we can handle the constants further down.  This case handles
4992     // not-loaded classes
4993     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4994       return make( ptr, klass(), off );
4995     }
4996 
4997     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4998     ciKlass* tkls_klass = tkls->klass();
4999     ciKlass* this_klass = this->klass();
5000     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5001     assert( this_klass->is_loaded(), "This class should have been loaded.");
5002 
5003     // If 'this' type is above the centerline and is a superclass of the
5004     // other, we can treat 'this' as having the same type as the other.
5005     if ((above_centerline(this->ptr())) &&
5006         tkls_klass->is_subtype_of(this_klass)) {
5007       this_klass = tkls_klass;
5008     }
5009     // If 'tinst' type is above the centerline and is a superclass of the
5010     // other, we can treat 'tinst' as having the same type as the other.
5011     if ((above_centerline(tkls->ptr())) &&
5012         this_klass->is_subtype_of(tkls_klass)) {
5013       tkls_klass = this_klass;
5014     }
5015 
5016     // Check for classes now being equal
5017     if (tkls_klass->equals(this_klass)) {
5018       // If the klasses are equal, the constants may still differ.  Fall to
5019       // NotNull if they do (neither constant is NULL; that is a special case
5020       // handled elsewhere).
5021       if( ptr == Constant ) {
5022         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5023             this->klass()->equals(tkls->klass()));
5024         else if (above_centerline(this->ptr()));
5025         else if (above_centerline(tkls->ptr()));
5026         else
5027           ptr = NotNull;
5028       }
5029       return make( ptr, this_klass, off );
5030     } // Else classes are not equal
5031 
5032     // Since klasses are different, we require the LCA in the Java
5033     // class hierarchy - which means we have to fall to at least NotNull.
5034     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5035       ptr = NotNull;
5036     // Now we find the LCA of Java classes
5037     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5038     return   make( ptr, k, off );
5039   } // End of case KlassPtr
5040 
5041   } // End of switch
5042   return this;                  // Return the double constant
5043 }
5044 
5045 //------------------------------xdual------------------------------------------
5046 // Dual: compute field-by-field dual
5047 const Type    *TypeKlassPtr::xdual() const {
5048   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5049 }
5050 
5051 //------------------------------get_con----------------------------------------
5052 intptr_t TypeKlassPtr::get_con() const {
5053   assert( _ptr == Null || _ptr == Constant, "" );
5054   assert( _offset >= 0, "" );
5055 
5056   if (_offset != 0) {
5057     // After being ported to the compiler interface, the compiler no longer
5058     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5059     // to a handle at compile time.  This handle is embedded in the generated
5060     // code and dereferenced at the time the nmethod is made.  Until that time,
5061     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5062     // have access to the addresses!).  This does not seem to currently happen,
5063     // but this assertion here is to help prevent its occurence.
5064     tty->print_cr("Found oop constant with non-zero offset");
5065     ShouldNotReachHere();
5066   }
5067 
5068   return (intptr_t)klass()->constant_encoding();
5069 }
5070 //------------------------------dump2------------------------------------------
5071 // Dump Klass Type
5072 #ifndef PRODUCT
5073 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5074   switch( _ptr ) {
5075   case Constant:
5076     st->print("precise ");
5077   case NotNull:
5078     {
5079       const char *name = klass()->name()->as_utf8();
5080       if( name ) {
5081         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5082       } else {
5083         ShouldNotReachHere();
5084       }
5085     }
5086   case BotPTR:
5087     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5088   case TopPTR:
5089   case AnyNull:
5090     st->print(":%s", ptr_msg[_ptr]);
5091     if( _klass_is_exact ) st->print(":exact");
5092     break;
5093   }
5094 
5095   if( _offset ) {               // Dump offset, if any
5096     if( _offset == OffsetBot )      { st->print("+any"); }
5097     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5098     else                            { st->print("+%d", _offset); }
5099   }
5100 
5101   st->print(" *");
5102 }
5103 #endif
5104 
5105 
5106 
5107 //=============================================================================
5108 // Convenience common pre-built types.
5109 
5110 //------------------------------make-------------------------------------------
5111 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5112   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5113 }
5114 
5115 //------------------------------make-------------------------------------------
5116 const TypeFunc *TypeFunc::make(ciMethod* method) {
5117   Compile* C = Compile::current();
5118   const TypeFunc* tf = C->last_tf(method); // check cache
5119   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5120   const TypeTuple *domain;
5121   if (method->is_static()) {
5122     domain = TypeTuple::make_domain(NULL, method->signature());
5123   } else {
5124     domain = TypeTuple::make_domain(method->holder(), method->signature());
5125   }
5126   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5127   tf = TypeFunc::make(domain, range);
5128   C->set_last_tf(method, tf);  // fill cache
5129   return tf;
5130 }
5131 
5132 //------------------------------meet-------------------------------------------
5133 // Compute the MEET of two types.  It returns a new Type object.
5134 const Type *TypeFunc::xmeet( const Type *t ) const {
5135   // Perform a fast test for common case; meeting the same types together.
5136   if( this == t ) return this;  // Meeting same type-rep?
5137 
5138   // Current "this->_base" is Func
5139   switch (t->base()) {          // switch on original type
5140 
5141   case Bottom:                  // Ye Olde Default
5142     return t;
5143 
5144   default:                      // All else is a mistake
5145     typerr(t);
5146 
5147   case Top:
5148     break;
5149   }
5150   return this;                  // Return the double constant
5151 }
5152 
5153 //------------------------------xdual------------------------------------------
5154 // Dual: compute field-by-field dual
5155 const Type *TypeFunc::xdual() const {
5156   return this;
5157 }
5158 
5159 //------------------------------eq---------------------------------------------
5160 // Structural equality check for Type representations
5161 bool TypeFunc::eq( const Type *t ) const {
5162   const TypeFunc *a = (const TypeFunc*)t;
5163   return _domain == a->_domain &&
5164     _range == a->_range;
5165 }
5166 
5167 //------------------------------hash-------------------------------------------
5168 // Type-specific hashing function.
5169 int TypeFunc::hash(void) const {
5170   return (intptr_t)_domain + (intptr_t)_range;
5171 }
5172 
5173 //------------------------------dump2------------------------------------------
5174 // Dump Function Type
5175 #ifndef PRODUCT
5176 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5177   if( _range->cnt() <= Parms )
5178     st->print("void");
5179   else {
5180     uint i;
5181     for (i = Parms; i < _range->cnt()-1; i++) {
5182       _range->field_at(i)->dump2(d,depth,st);
5183       st->print("/");
5184     }
5185     _range->field_at(i)->dump2(d,depth,st);
5186   }
5187   st->print(" ");
5188   st->print("( ");
5189   if( !depth || d[this] ) {     // Check for recursive dump
5190     st->print("...)");
5191     return;
5192   }
5193   d.Insert((void*)this,(void*)this);    // Stop recursion
5194   if (Parms < _domain->cnt())
5195     _domain->field_at(Parms)->dump2(d,depth-1,st);
5196   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5197     st->print(", ");
5198     _domain->field_at(i)->dump2(d,depth-1,st);
5199   }
5200   st->print(" )");
5201 }
5202 #endif
5203 
5204 //------------------------------singleton--------------------------------------
5205 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5206 // constants (Ldi nodes).  Singletons are integer, float or double constants
5207 // or a single symbol.
5208 bool TypeFunc::singleton(void) const {
5209   return false;                 // Never a singleton
5210 }
5211 
5212 bool TypeFunc::empty(void) const {
5213   return false;                 // Never empty
5214 }
5215 
5216 
5217 BasicType TypeFunc::return_type() const{
5218   if (range()->cnt() == TypeFunc::Parms) {
5219     return T_VOID;
5220   }
5221   return range()->field_at(TypeFunc::Parms)->basic_type();
5222 }