1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/countbitsnode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/mathexactnode.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "trace/traceMacros.hpp"
  53 
  54 class LibraryIntrinsic : public InlineCallGenerator {
  55   // Extend the set of intrinsics known to the runtime:
  56  public:
  57  private:
  58   bool             _is_virtual;
  59   bool             _does_virtual_dispatch;
  60   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  61   int8_t           _last_predicate; // Last generated predicate
  62   vmIntrinsics::ID _intrinsic_id;
  63 
  64  public:
  65   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  66     : InlineCallGenerator(m),
  67       _is_virtual(is_virtual),
  68       _does_virtual_dispatch(does_virtual_dispatch),
  69       _predicates_count((int8_t)predicates_count),
  70       _last_predicate((int8_t)-1),
  71       _intrinsic_id(id)
  72   {
  73   }
  74   virtual bool is_intrinsic() const { return true; }
  75   virtual bool is_virtual()   const { return _is_virtual; }
  76   virtual bool is_predicated() const { return _predicates_count > 0; }
  77   virtual int  predicates_count() const { return _predicates_count; }
  78   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  79   virtual JVMState* generate(JVMState* jvms);
  80   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  81   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  82 };
  83 
  84 
  85 // Local helper class for LibraryIntrinsic:
  86 class LibraryCallKit : public GraphKit {
  87  private:
  88   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  89   Node*             _result;        // the result node, if any
  90   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  91 
  92   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  93 
  94  public:
  95   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  96     : GraphKit(jvms),
  97       _intrinsic(intrinsic),
  98       _result(NULL)
  99   {
 100     // Check if this is a root compile.  In that case we don't have a caller.
 101     if (!jvms->has_method()) {
 102       _reexecute_sp = sp();
 103     } else {
 104       // Find out how many arguments the interpreter needs when deoptimizing
 105       // and save the stack pointer value so it can used by uncommon_trap.
 106       // We find the argument count by looking at the declared signature.
 107       bool ignored_will_link;
 108       ciSignature* declared_signature = NULL;
 109       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 110       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 111       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 112     }
 113   }
 114 
 115   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 116 
 117   ciMethod*         caller()    const    { return jvms()->method(); }
 118   int               bci()       const    { return jvms()->bci(); }
 119   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 120   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 121   ciMethod*         callee()    const    { return _intrinsic->method(); }
 122 
 123   bool  try_to_inline(int predicate);
 124   Node* try_to_predicate(int predicate);
 125 
 126   void push_result() {
 127     // Push the result onto the stack.
 128     if (!stopped() && result() != NULL) {
 129       BasicType bt = result()->bottom_type()->basic_type();
 130       push_node(bt, result());
 131     }
 132   }
 133 
 134  private:
 135   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 136     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 137   }
 138 
 139   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 140   void  set_result(RegionNode* region, PhiNode* value);
 141   Node*     result() { return _result; }
 142 
 143   virtual int reexecute_sp() { return _reexecute_sp; }
 144 
 145   // Helper functions to inline natives
 146   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 147   Node* generate_slow_guard(Node* test, RegionNode* region);
 148   Node* generate_fair_guard(Node* test, RegionNode* region);
 149   Node* generate_negative_guard(Node* index, RegionNode* region,
 150                                 // resulting CastII of index:
 151                                 Node* *pos_index = NULL);
 152   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 153                              Node* array_length,
 154                              RegionNode* region);
 155   void  generate_string_range_check(Node* array, Node* offset,
 156                                     Node* length, bool char_count);
 157   Node* generate_current_thread(Node* &tls_output);
 158   Node* load_mirror_from_klass(Node* klass);
 159   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 160                                       RegionNode* region, int null_path,
 161                                       int offset);
 162   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 163                                RegionNode* region, int null_path) {
 164     int offset = java_lang_Class::klass_offset_in_bytes();
 165     return load_klass_from_mirror_common(mirror, never_see_null,
 166                                          region, null_path,
 167                                          offset);
 168   }
 169   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 170                                      RegionNode* region, int null_path) {
 171     int offset = java_lang_Class::array_klass_offset_in_bytes();
 172     return load_klass_from_mirror_common(mirror, never_see_null,
 173                                          region, null_path,
 174                                          offset);
 175   }
 176   Node* generate_access_flags_guard(Node* kls,
 177                                     int modifier_mask, int modifier_bits,
 178                                     RegionNode* region);
 179   Node* generate_interface_guard(Node* kls, RegionNode* region);
 180   Node* generate_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, false);
 182   }
 183   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, false, true);
 185   }
 186   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, false);
 188   }
 189   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, true, true);
 191   }
 192   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 193                                     bool obj_array, bool not_array);
 194   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 195   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 196                                      bool is_virtual = false, bool is_static = false);
 197   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, false, true);
 199   }
 200   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 201     return generate_method_call(method_id, true, false);
 202   }
 203   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 204   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 205 
 206   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 207   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 208   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 209   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 210   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 211                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_indexOfChar();
 213   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 214   bool inline_string_toBytesU();
 215   bool inline_string_getCharsU();
 216   bool inline_string_copy(bool compress);
 217   bool inline_string_char_access(bool is_store);
 218   Node* round_double_node(Node* n);
 219   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 220   bool inline_math_native(vmIntrinsics::ID id);
 221   bool inline_trig(vmIntrinsics::ID id);
 222   bool inline_math(vmIntrinsics::ID id);
 223   template <typename OverflowOp>
 224   bool inline_math_overflow(Node* arg1, Node* arg2);
 225   void inline_math_mathExact(Node* math, Node* test);
 226   bool inline_math_addExactI(bool is_increment);
 227   bool inline_math_addExactL(bool is_increment);
 228   bool inline_math_multiplyExactI();
 229   bool inline_math_multiplyExactL();
 230   bool inline_math_negateExactI();
 231   bool inline_math_negateExactL();
 232   bool inline_math_subtractExactI(bool is_decrement);
 233   bool inline_math_subtractExactL(bool is_decrement);
 234   bool inline_min_max(vmIntrinsics::ID id);
 235   bool inline_notify(vmIntrinsics::ID id);
 236   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 237   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 238   int classify_unsafe_addr(Node* &base, Node* &offset);
 239   Node* make_unsafe_address(Node* base, Node* offset);
 240   // Helper for inline_unsafe_access.
 241   // Generates the guards that check whether the result of
 242   // Unsafe.getObject should be recorded in an SATB log buffer.
 243   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 244   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool is_unaligned);
 245   static bool klass_needs_init_guard(Node* kls);
 246   bool inline_unsafe_allocate();
 247   bool inline_unsafe_copyMemory();
 248   bool inline_native_currentThread();
 249 #ifdef TRACE_HAVE_INTRINSICS
 250   bool inline_native_classID();
 251   bool inline_native_threadID();
 252 #endif
 253   bool inline_native_time_funcs(address method, const char* funcName);
 254   bool inline_native_isInterrupted();
 255   bool inline_native_Class_query(vmIntrinsics::ID id);
 256   bool inline_native_subtype_check();
 257 
 258   bool inline_native_newArray();
 259   bool inline_native_getLength();
 260   bool inline_array_copyOf(bool is_copyOfRange);
 261   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 262   bool inline_objects_checkIndex();
 263   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 264   bool inline_native_clone(bool is_virtual);
 265   bool inline_native_Reflection_getCallerClass();
 266   // Helper function for inlining native object hash method
 267   bool inline_native_hashcode(bool is_virtual, bool is_static);
 268   bool inline_native_getClass();
 269 
 270   // Helper functions for inlining arraycopy
 271   bool inline_arraycopy();
 272   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 273                                                 RegionNode* slow_region);
 274   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 275   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 276 
 277   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 278   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 279   bool inline_unsafe_ordered_store(BasicType type);
 280   bool inline_unsafe_fence(vmIntrinsics::ID id);
 281   bool inline_fp_conversions(vmIntrinsics::ID id);
 282   bool inline_number_methods(vmIntrinsics::ID id);
 283   bool inline_reference_get();
 284   bool inline_Class_cast();
 285   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 286   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 287   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 288   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 289   Node* inline_counterMode_AESCrypt_predicate();
 290   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 291   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 292   bool inline_ghash_processBlocks();
 293   bool inline_sha_implCompress(vmIntrinsics::ID id);
 294   bool inline_digestBase_implCompressMB(int predicate);
 295   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 296                                  bool long_state, address stubAddr, const char *stubName,
 297                                  Node* src_start, Node* ofs, Node* limit);
 298   Node* get_state_from_sha_object(Node *sha_object);
 299   Node* get_state_from_sha5_object(Node *sha_object);
 300   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 301   bool inline_encodeISOArray();
 302   bool inline_updateCRC32();
 303   bool inline_updateBytesCRC32();
 304   bool inline_updateByteBufferCRC32();
 305   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 306   bool inline_updateBytesCRC32C();
 307   bool inline_updateDirectByteBufferCRC32C();
 308   bool inline_updateBytesAdler32();
 309   bool inline_updateByteBufferAdler32();
 310   bool inline_multiplyToLen();
 311   bool inline_hasNegatives();
 312   bool inline_squareToLen();
 313   bool inline_mulAdd();
 314   bool inline_montgomeryMultiply();
 315   bool inline_montgomerySquare();
 316   bool inline_vectorizedMismatch();
 317 
 318   bool inline_profileBoolean();
 319   bool inline_isCompileConstant();
 320 
 321   bool inline_deoptimize();
 322 };
 323 
 324 //---------------------------make_vm_intrinsic----------------------------
 325 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 326   vmIntrinsics::ID id = m->intrinsic_id();
 327   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 328 
 329   if (!m->is_loaded()) {
 330     // Do not attempt to inline unloaded methods.
 331     return NULL;
 332   }
 333 
 334   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 335   bool is_available = false;
 336 
 337   {
 338     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 339     // the compiler must transition to '_thread_in_vm' state because both
 340     // methods access VM-internal data.
 341     VM_ENTRY_MARK;
 342     methodHandle mh(THREAD, m->get_Method());
 343     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 344                    !C->directive()->is_intrinsic_disabled(mh) &&
 345                    !vmIntrinsics::is_disabled_by_flags(mh);
 346 
 347   }
 348 
 349   if (is_available) {
 350     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 351     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 352     return new LibraryIntrinsic(m, is_virtual,
 353                                 vmIntrinsics::predicates_needed(id),
 354                                 vmIntrinsics::does_virtual_dispatch(id),
 355                                 (vmIntrinsics::ID) id);
 356   } else {
 357     return NULL;
 358   }
 359 }
 360 
 361 //----------------------register_library_intrinsics-----------------------
 362 // Initialize this file's data structures, for each Compile instance.
 363 void Compile::register_library_intrinsics() {
 364   // Nothing to do here.
 365 }
 366 
 367 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 368   LibraryCallKit kit(jvms, this);
 369   Compile* C = kit.C;
 370   int nodes = C->unique();
 371 #ifndef PRODUCT
 372   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 373     char buf[1000];
 374     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 375     tty->print_cr("Intrinsic %s", str);
 376   }
 377 #endif
 378   ciMethod* callee = kit.callee();
 379   const int bci    = kit.bci();
 380 
 381   // Try to inline the intrinsic.
 382   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 383       kit.try_to_inline(_last_predicate)) {
 384     if (C->print_intrinsics() || C->print_inlining()) {
 385       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 386     }
 387     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 388     if (C->log()) {
 389       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 390                      vmIntrinsics::name_at(intrinsic_id()),
 391                      (is_virtual() ? " virtual='1'" : ""),
 392                      C->unique() - nodes);
 393     }
 394     // Push the result from the inlined method onto the stack.
 395     kit.push_result();
 396     C->print_inlining_update(this);
 397     return kit.transfer_exceptions_into_jvms();
 398   }
 399 
 400   // The intrinsic bailed out
 401   if (C->print_intrinsics() || C->print_inlining()) {
 402     if (jvms->has_method()) {
 403       // Not a root compile.
 404       const char* msg;
 405       if (callee->intrinsic_candidate()) {
 406         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 407       } else {
 408         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 409                            : "failed to inline (intrinsic), method not annotated";
 410       }
 411       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 412     } else {
 413       // Root compile
 414       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 415                vmIntrinsics::name_at(intrinsic_id()),
 416                (is_virtual() ? " (virtual)" : ""), bci);
 417     }
 418   }
 419   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 420   C->print_inlining_update(this);
 421   return NULL;
 422 }
 423 
 424 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 425   LibraryCallKit kit(jvms, this);
 426   Compile* C = kit.C;
 427   int nodes = C->unique();
 428   _last_predicate = predicate;
 429 #ifndef PRODUCT
 430   assert(is_predicated() && predicate < predicates_count(), "sanity");
 431   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 432     char buf[1000];
 433     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 434     tty->print_cr("Predicate for intrinsic %s", str);
 435   }
 436 #endif
 437   ciMethod* callee = kit.callee();
 438   const int bci    = kit.bci();
 439 
 440   Node* slow_ctl = kit.try_to_predicate(predicate);
 441   if (!kit.failing()) {
 442     if (C->print_intrinsics() || C->print_inlining()) {
 443       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 444     }
 445     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 446     if (C->log()) {
 447       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 448                      vmIntrinsics::name_at(intrinsic_id()),
 449                      (is_virtual() ? " virtual='1'" : ""),
 450                      C->unique() - nodes);
 451     }
 452     return slow_ctl; // Could be NULL if the check folds.
 453   }
 454 
 455   // The intrinsic bailed out
 456   if (C->print_intrinsics() || C->print_inlining()) {
 457     if (jvms->has_method()) {
 458       // Not a root compile.
 459       const char* msg = "failed to generate predicate for intrinsic";
 460       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 461     } else {
 462       // Root compile
 463       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 464                                         vmIntrinsics::name_at(intrinsic_id()),
 465                                         (is_virtual() ? " (virtual)" : ""), bci);
 466     }
 467   }
 468   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 469   return NULL;
 470 }
 471 
 472 bool LibraryCallKit::try_to_inline(int predicate) {
 473   // Handle symbolic names for otherwise undistinguished boolean switches:
 474   const bool is_store       = true;
 475   const bool is_compress    = true;
 476   const bool is_native_ptr  = true;
 477   const bool is_static      = true;
 478   const bool is_volatile    = true;
 479 
 480   if (!jvms()->has_method()) {
 481     // Root JVMState has a null method.
 482     assert(map()->memory()->Opcode() == Op_Parm, "");
 483     // Insert the memory aliasing node
 484     set_all_memory(reset_memory());
 485   }
 486   assert(merged_memory(), "");
 487 
 488 
 489   switch (intrinsic_id()) {
 490   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 491   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 492   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 493 
 494   case vmIntrinsics::_dsin:
 495   case vmIntrinsics::_dcos:
 496   case vmIntrinsics::_dtan:
 497   case vmIntrinsics::_dabs:
 498   case vmIntrinsics::_datan2:
 499   case vmIntrinsics::_dsqrt:
 500   case vmIntrinsics::_dexp:
 501   case vmIntrinsics::_dlog:
 502   case vmIntrinsics::_dlog10:
 503   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 504 
 505   case vmIntrinsics::_min:
 506   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 507 
 508   case vmIntrinsics::_notify:
 509   case vmIntrinsics::_notifyAll:
 510     if (InlineNotify) {
 511       return inline_notify(intrinsic_id());
 512     }
 513     return false;
 514 
 515   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 516   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 517   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 518   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 519   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 520   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 521   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 522   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 523   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 524   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 525   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 526   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 527 
 528   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 529 
 530   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 531   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 532   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 533   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 534 
 535   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 536   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 537   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 538   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 539   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 540   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 541   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 542 
 543   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 544   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 545 
 546   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 547   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 548   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 549   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 550 
 551   case vmIntrinsics::_compressStringC:
 552   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 553   case vmIntrinsics::_inflateStringC:
 554   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 555 
 556   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile, false);
 557   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile, false);
 558   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 559   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 560   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 561   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 562   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 563   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 564   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 565   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile, false);
 566   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile, false);
 567   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 568   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 569   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 570   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 571   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 572   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 573   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 574 
 575   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 576   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 577   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 578   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 579   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 580   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 581   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 582   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile, false);
 583 
 584   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 585   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 586   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 587   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 588   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 589   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 590   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 591   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile, false);
 592 
 593   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile, false);
 594   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile, false);
 595   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile, false);
 596   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile, false);
 597   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile, false);
 598   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile, false);
 599   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile, false);
 600   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile, false);
 601   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile, false);
 602 
 603   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile, false);
 604   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile, false);
 605   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile, false);
 606   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile, false);
 607   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile, false);
 608   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile, false);
 609   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile, false);
 610   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile, false);
 611   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile, false);
 612 
 613   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, true);
 614   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, true);
 615   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, true);
 616   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, true);
 617 
 618   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, true);
 619   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, true);
 620   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, true);
 621   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, true);
 622 
 623   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 624   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 625   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 626 
 627   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 628   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 629   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 630 
 631   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 632   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 633   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 634   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 635   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 636 
 637   case vmIntrinsics::_loadFence:
 638   case vmIntrinsics::_storeFence:
 639   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 640 
 641   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 642   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 643 
 644 #ifdef TRACE_HAVE_INTRINSICS
 645   case vmIntrinsics::_classID:                  return inline_native_classID();
 646   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 647   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 648 #endif
 649   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 650   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 651   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 652   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 653   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 654   case vmIntrinsics::_getLength:                return inline_native_getLength();
 655   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 656   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 657   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 658   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 659   case vmIntrinsics::_Objects_checkIndex:       return inline_objects_checkIndex();
 660   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 661 
 662   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 663 
 664   case vmIntrinsics::_isInstance:
 665   case vmIntrinsics::_getModifiers:
 666   case vmIntrinsics::_isInterface:
 667   case vmIntrinsics::_isArray:
 668   case vmIntrinsics::_isPrimitive:
 669   case vmIntrinsics::_getSuperclass:
 670   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 671 
 672   case vmIntrinsics::_floatToRawIntBits:
 673   case vmIntrinsics::_floatToIntBits:
 674   case vmIntrinsics::_intBitsToFloat:
 675   case vmIntrinsics::_doubleToRawLongBits:
 676   case vmIntrinsics::_doubleToLongBits:
 677   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 678 
 679   case vmIntrinsics::_numberOfLeadingZeros_i:
 680   case vmIntrinsics::_numberOfLeadingZeros_l:
 681   case vmIntrinsics::_numberOfTrailingZeros_i:
 682   case vmIntrinsics::_numberOfTrailingZeros_l:
 683   case vmIntrinsics::_bitCount_i:
 684   case vmIntrinsics::_bitCount_l:
 685   case vmIntrinsics::_reverseBytes_i:
 686   case vmIntrinsics::_reverseBytes_l:
 687   case vmIntrinsics::_reverseBytes_s:
 688   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 689 
 690   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 691 
 692   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 693 
 694   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 695 
 696   case vmIntrinsics::_aescrypt_encryptBlock:
 697   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 698 
 699   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 700   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 701     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 702 
 703   case vmIntrinsics::_counterMode_AESCrypt:
 704     return inline_counterMode_AESCrypt(intrinsic_id());
 705 
 706   case vmIntrinsics::_sha_implCompress:
 707   case vmIntrinsics::_sha2_implCompress:
 708   case vmIntrinsics::_sha5_implCompress:
 709     return inline_sha_implCompress(intrinsic_id());
 710 
 711   case vmIntrinsics::_digestBase_implCompressMB:
 712     return inline_digestBase_implCompressMB(predicate);
 713 
 714   case vmIntrinsics::_multiplyToLen:
 715     return inline_multiplyToLen();
 716 
 717   case vmIntrinsics::_squareToLen:
 718     return inline_squareToLen();
 719 
 720   case vmIntrinsics::_mulAdd:
 721     return inline_mulAdd();
 722 
 723   case vmIntrinsics::_montgomeryMultiply:
 724     return inline_montgomeryMultiply();
 725   case vmIntrinsics::_montgomerySquare:
 726     return inline_montgomerySquare();
 727 
 728   case vmIntrinsics::_vectorizedMismatch:
 729     return inline_vectorizedMismatch();
 730 
 731   case vmIntrinsics::_ghash_processBlocks:
 732     return inline_ghash_processBlocks();
 733 
 734   case vmIntrinsics::_encodeISOArray:
 735   case vmIntrinsics::_encodeByteISOArray:
 736     return inline_encodeISOArray();
 737 
 738   case vmIntrinsics::_updateCRC32:
 739     return inline_updateCRC32();
 740   case vmIntrinsics::_updateBytesCRC32:
 741     return inline_updateBytesCRC32();
 742   case vmIntrinsics::_updateByteBufferCRC32:
 743     return inline_updateByteBufferCRC32();
 744 
 745   case vmIntrinsics::_updateBytesCRC32C:
 746     return inline_updateBytesCRC32C();
 747   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 748     return inline_updateDirectByteBufferCRC32C();
 749 
 750   case vmIntrinsics::_updateBytesAdler32:
 751     return inline_updateBytesAdler32();
 752   case vmIntrinsics::_updateByteBufferAdler32:
 753     return inline_updateByteBufferAdler32();
 754 
 755   case vmIntrinsics::_profileBoolean:
 756     return inline_profileBoolean();
 757   case vmIntrinsics::_isCompileConstant:
 758     return inline_isCompileConstant();
 759 
 760   case vmIntrinsics::_hasNegatives:
 761     return inline_hasNegatives();
 762 
 763   case vmIntrinsics::_deoptimize:
 764     return inline_deoptimize();
 765 
 766   default:
 767     // If you get here, it may be that someone has added a new intrinsic
 768     // to the list in vmSymbols.hpp without implementing it here.
 769 #ifndef PRODUCT
 770     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 771       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 772                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 773     }
 774 #endif
 775     return false;
 776   }
 777 }
 778 
 779 Node* LibraryCallKit::try_to_predicate(int predicate) {
 780   if (!jvms()->has_method()) {
 781     // Root JVMState has a null method.
 782     assert(map()->memory()->Opcode() == Op_Parm, "");
 783     // Insert the memory aliasing node
 784     set_all_memory(reset_memory());
 785   }
 786   assert(merged_memory(), "");
 787 
 788   switch (intrinsic_id()) {
 789   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 790     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 791   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 792     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 793   case vmIntrinsics::_counterMode_AESCrypt:
 794     return inline_counterMode_AESCrypt_predicate();
 795   case vmIntrinsics::_digestBase_implCompressMB:
 796     return inline_digestBase_implCompressMB_predicate(predicate);
 797 
 798   default:
 799     // If you get here, it may be that someone has added a new intrinsic
 800     // to the list in vmSymbols.hpp without implementing it here.
 801 #ifndef PRODUCT
 802     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 803       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 804                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 805     }
 806 #endif
 807     Node* slow_ctl = control();
 808     set_control(top()); // No fast path instrinsic
 809     return slow_ctl;
 810   }
 811 }
 812 
 813 //------------------------------set_result-------------------------------
 814 // Helper function for finishing intrinsics.
 815 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 816   record_for_igvn(region);
 817   set_control(_gvn.transform(region));
 818   set_result( _gvn.transform(value));
 819   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 820 }
 821 
 822 //------------------------------generate_guard---------------------------
 823 // Helper function for generating guarded fast-slow graph structures.
 824 // The given 'test', if true, guards a slow path.  If the test fails
 825 // then a fast path can be taken.  (We generally hope it fails.)
 826 // In all cases, GraphKit::control() is updated to the fast path.
 827 // The returned value represents the control for the slow path.
 828 // The return value is never 'top'; it is either a valid control
 829 // or NULL if it is obvious that the slow path can never be taken.
 830 // Also, if region and the slow control are not NULL, the slow edge
 831 // is appended to the region.
 832 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 833   if (stopped()) {
 834     // Already short circuited.
 835     return NULL;
 836   }
 837 
 838   // Build an if node and its projections.
 839   // If test is true we take the slow path, which we assume is uncommon.
 840   if (_gvn.type(test) == TypeInt::ZERO) {
 841     // The slow branch is never taken.  No need to build this guard.
 842     return NULL;
 843   }
 844 
 845   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 846 
 847   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 848   if (if_slow == top()) {
 849     // The slow branch is never taken.  No need to build this guard.
 850     return NULL;
 851   }
 852 
 853   if (region != NULL)
 854     region->add_req(if_slow);
 855 
 856   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 857   set_control(if_fast);
 858 
 859   return if_slow;
 860 }
 861 
 862 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 863   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 864 }
 865 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 866   return generate_guard(test, region, PROB_FAIR);
 867 }
 868 
 869 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 870                                                      Node* *pos_index) {
 871   if (stopped())
 872     return NULL;                // already stopped
 873   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 874     return NULL;                // index is already adequately typed
 875   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 876   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 877   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 878   if (is_neg != NULL && pos_index != NULL) {
 879     // Emulate effect of Parse::adjust_map_after_if.
 880     Node* ccast = new CastIINode(index, TypeInt::POS);
 881     ccast->set_req(0, control());
 882     (*pos_index) = _gvn.transform(ccast);
 883   }
 884   return is_neg;
 885 }
 886 
 887 // Make sure that 'position' is a valid limit index, in [0..length].
 888 // There are two equivalent plans for checking this:
 889 //   A. (offset + copyLength)  unsigned<=  arrayLength
 890 //   B. offset  <=  (arrayLength - copyLength)
 891 // We require that all of the values above, except for the sum and
 892 // difference, are already known to be non-negative.
 893 // Plan A is robust in the face of overflow, if offset and copyLength
 894 // are both hugely positive.
 895 //
 896 // Plan B is less direct and intuitive, but it does not overflow at
 897 // all, since the difference of two non-negatives is always
 898 // representable.  Whenever Java methods must perform the equivalent
 899 // check they generally use Plan B instead of Plan A.
 900 // For the moment we use Plan A.
 901 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 902                                                   Node* subseq_length,
 903                                                   Node* array_length,
 904                                                   RegionNode* region) {
 905   if (stopped())
 906     return NULL;                // already stopped
 907   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 908   if (zero_offset && subseq_length->eqv_uncast(array_length))
 909     return NULL;                // common case of whole-array copy
 910   Node* last = subseq_length;
 911   if (!zero_offset)             // last += offset
 912     last = _gvn.transform(new AddINode(last, offset));
 913   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 914   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 915   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 916   return is_over;
 917 }
 918 
 919 // Emit range checks for the given String.value byte array
 920 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 921   if (stopped()) {
 922     return; // already stopped
 923   }
 924   RegionNode* bailout = new RegionNode(1);
 925   record_for_igvn(bailout);
 926   if (char_count) {
 927     // Convert char count to byte count
 928     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 929   }
 930 
 931   // Offset and count must not be negative
 932   generate_negative_guard(offset, bailout);
 933   generate_negative_guard(count, bailout);
 934   // Offset + count must not exceed length of array
 935   generate_limit_guard(offset, count, load_array_length(array), bailout);
 936 
 937   if (bailout->req() > 1) {
 938     PreserveJVMState pjvms(this);
 939     set_control(_gvn.transform(bailout));
 940     uncommon_trap(Deoptimization::Reason_intrinsic,
 941                   Deoptimization::Action_maybe_recompile);
 942   }
 943 }
 944 
 945 //--------------------------generate_current_thread--------------------
 946 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 947   ciKlass*    thread_klass = env()->Thread_klass();
 948   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 949   Node* thread = _gvn.transform(new ThreadLocalNode());
 950   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 951   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
 952   tls_output = thread;
 953   return threadObj;
 954 }
 955 
 956 
 957 //------------------------------make_string_method_node------------------------
 958 // Helper method for String intrinsic functions. This version is called with
 959 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 960 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 961 // containing the lengths of str1 and str2.
 962 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 963   Node* result = NULL;
 964   switch (opcode) {
 965   case Op_StrIndexOf:
 966     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 967                                 str1_start, cnt1, str2_start, cnt2, ae);
 968     break;
 969   case Op_StrComp:
 970     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 971                              str1_start, cnt1, str2_start, cnt2, ae);
 972     break;
 973   case Op_StrEquals:
 974     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
 975                                str1_start, str2_start, cnt1, ae);
 976     break;
 977   default:
 978     ShouldNotReachHere();
 979     return NULL;
 980   }
 981 
 982   // All these intrinsics have checks.
 983   C->set_has_split_ifs(true); // Has chance for split-if optimization
 984 
 985   return _gvn.transform(result);
 986 }
 987 
 988 //------------------------------inline_string_compareTo------------------------
 989 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
 990   Node* arg1 = argument(0);
 991   Node* arg2 = argument(1);
 992 
 993   // Get start addr and length of first argument
 994   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 995   Node* arg1_cnt    = load_array_length(arg1);
 996 
 997   // Get start addr and length of second argument
 998   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
 999   Node* arg2_cnt    = load_array_length(arg2);
1000 
1001   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1002   set_result(result);
1003   return true;
1004 }
1005 
1006 //------------------------------inline_string_equals------------------------
1007 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1008   Node* arg1 = argument(0);
1009   Node* arg2 = argument(1);
1010 
1011   // paths (plus control) merge
1012   RegionNode* region = new RegionNode(3);
1013   Node* phi = new PhiNode(region, TypeInt::BOOL);
1014 
1015   if (!stopped()) {
1016     // Get start addr and length of first argument
1017     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1018     Node* arg1_cnt    = load_array_length(arg1);
1019 
1020     // Get start addr and length of second argument
1021     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1022     Node* arg2_cnt    = load_array_length(arg2);
1023 
1024     // Check for arg1_cnt != arg2_cnt
1025     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1026     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1027     Node* if_ne = generate_slow_guard(bol, NULL);
1028     if (if_ne != NULL) {
1029       phi->init_req(2, intcon(0));
1030       region->init_req(2, if_ne);
1031     }
1032 
1033     // Check for count == 0 is done by assembler code for StrEquals.
1034 
1035     if (!stopped()) {
1036       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1037       phi->init_req(1, equals);
1038       region->init_req(1, control());
1039     }
1040   }
1041 
1042   // post merge
1043   set_control(_gvn.transform(region));
1044   record_for_igvn(region);
1045 
1046   set_result(_gvn.transform(phi));
1047   return true;
1048 }
1049 
1050 //------------------------------inline_array_equals----------------------------
1051 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1052   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1053   Node* arg1 = argument(0);
1054   Node* arg2 = argument(1);
1055 
1056   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1057   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1058   return true;
1059 }
1060 
1061 //------------------------------inline_hasNegatives------------------------------
1062 bool LibraryCallKit::inline_hasNegatives() {
1063   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1064     return false;
1065   }
1066 
1067   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1068   // no receiver since it is static method
1069   Node* ba         = argument(0);
1070   Node* offset     = argument(1);
1071   Node* len        = argument(2);
1072 
1073   // Range checks
1074   generate_string_range_check(ba, offset, len, false);
1075   if (stopped()) {
1076     return true;
1077   }
1078   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1079   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1080   set_result(_gvn.transform(result));
1081   return true;
1082 }
1083 
1084 bool LibraryCallKit::inline_objects_checkIndex() {
1085   Node* index = argument(0);
1086   Node* length = argument(1);
1087   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1088     return false;
1089   }
1090 
1091   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1092   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1093 
1094   {
1095     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1096     uncommon_trap(Deoptimization::Reason_intrinsic,
1097                   Deoptimization::Action_make_not_entrant);
1098   }
1099 
1100   if (stopped()) {
1101     return false;
1102   }
1103 
1104   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1105   BoolTest::mask btest = BoolTest::lt;
1106   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1107   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1108   _gvn.set_type(rc, rc->Value(&_gvn));
1109   if (!rc_bool->is_Con()) {
1110     record_for_igvn(rc);
1111   }
1112   set_control(_gvn.transform(new IfTrueNode(rc)));
1113   {
1114     PreserveJVMState pjvms(this);
1115     set_control(_gvn.transform(new IfFalseNode(rc)));
1116     uncommon_trap(Deoptimization::Reason_range_check,
1117                   Deoptimization::Action_make_not_entrant);
1118   }
1119 
1120   if (stopped()) {
1121     return false;
1122   }
1123 
1124   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1125   result->set_req(0, control());
1126   result = _gvn.transform(result);
1127   set_result(result);
1128   replace_in_map(index, result);
1129   return true;
1130 }
1131 
1132 //------------------------------inline_string_indexOf------------------------
1133 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1134   if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1135     return false;
1136   }
1137   Node* src = argument(0);
1138   Node* tgt = argument(1);
1139 
1140   // Make the merge point
1141   RegionNode* result_rgn = new RegionNode(4);
1142   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1143 
1144   // Get start addr and length of source string
1145   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1146   Node* src_count = load_array_length(src);
1147 
1148   // Get start addr and length of substring
1149   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1150   Node* tgt_count = load_array_length(tgt);
1151 
1152   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1153     // Divide src size by 2 if String is UTF16 encoded
1154     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1155   }
1156   if (ae == StrIntrinsicNode::UU) {
1157     // Divide substring size by 2 if String is UTF16 encoded
1158     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1159   }
1160 
1161   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1162   if (result != NULL) {
1163     result_phi->init_req(3, result);
1164     result_rgn->init_req(3, control());
1165   }
1166   set_control(_gvn.transform(result_rgn));
1167   record_for_igvn(result_rgn);
1168   set_result(_gvn.transform(result_phi));
1169 
1170   return true;
1171 }
1172 
1173 //-----------------------------inline_string_indexOf-----------------------
1174 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1175   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1176     return false;
1177   }
1178   if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1179     return false;
1180   }
1181   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1182   Node* src         = argument(0); // byte[]
1183   Node* src_count   = argument(1); // char count
1184   Node* tgt         = argument(2); // byte[]
1185   Node* tgt_count   = argument(3); // char count
1186   Node* from_index  = argument(4); // char index
1187 
1188   // Multiply byte array index by 2 if String is UTF16 encoded
1189   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1190   src_count = _gvn.transform(new SubINode(src_count, from_index));
1191   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1192   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1193 
1194   // Range checks
1195   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1196   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1197   if (stopped()) {
1198     return true;
1199   }
1200 
1201   RegionNode* region = new RegionNode(5);
1202   Node* phi = new PhiNode(region, TypeInt::INT);
1203 
1204   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1205   if (result != NULL) {
1206     // The result is index relative to from_index if substring was found, -1 otherwise.
1207     // Generate code which will fold into cmove.
1208     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1209     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1210 
1211     Node* if_lt = generate_slow_guard(bol, NULL);
1212     if (if_lt != NULL) {
1213       // result == -1
1214       phi->init_req(3, result);
1215       region->init_req(3, if_lt);
1216     }
1217     if (!stopped()) {
1218       result = _gvn.transform(new AddINode(result, from_index));
1219       phi->init_req(4, result);
1220       region->init_req(4, control());
1221     }
1222   }
1223 
1224   set_control(_gvn.transform(region));
1225   record_for_igvn(region);
1226   set_result(_gvn.transform(phi));
1227 
1228   return true;
1229 }
1230 
1231 // Create StrIndexOfNode with fast path checks
1232 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1233                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1234   // Check for substr count > string count
1235   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1236   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1237   Node* if_gt = generate_slow_guard(bol, NULL);
1238   if (if_gt != NULL) {
1239     phi->init_req(1, intcon(-1));
1240     region->init_req(1, if_gt);
1241   }
1242   if (!stopped()) {
1243     // Check for substr count == 0
1244     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1245     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1246     Node* if_zero = generate_slow_guard(bol, NULL);
1247     if (if_zero != NULL) {
1248       phi->init_req(2, intcon(0));
1249       region->init_req(2, if_zero);
1250     }
1251   }
1252   if (!stopped()) {
1253     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1254   }
1255   return NULL;
1256 }
1257 
1258 //-----------------------------inline_string_indexOfChar-----------------------
1259 bool LibraryCallKit::inline_string_indexOfChar() {
1260   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1261     return false;
1262   }
1263   if (!Matcher::has_match_rule(Op_StrIndexOfChar) || !(UseSSE > 4)) {
1264     return false;
1265   }
1266   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1267   Node* src         = argument(0); // byte[]
1268   Node* tgt         = argument(1); // tgt is int ch
1269   Node* from_index  = argument(2);
1270   Node* max         = argument(3);
1271 
1272   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1273   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1274   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1275 
1276   // Range checks
1277   generate_string_range_check(src, src_offset, src_count, true);
1278   if (stopped()) {
1279     return true;
1280   }
1281 
1282   RegionNode* region = new RegionNode(3);
1283   Node* phi = new PhiNode(region, TypeInt::INT);
1284 
1285   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1286   C->set_has_split_ifs(true); // Has chance for split-if optimization
1287   _gvn.transform(result);
1288 
1289   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1290   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1291 
1292   Node* if_lt = generate_slow_guard(bol, NULL);
1293   if (if_lt != NULL) {
1294     // result == -1
1295     phi->init_req(2, result);
1296     region->init_req(2, if_lt);
1297   }
1298   if (!stopped()) {
1299     result = _gvn.transform(new AddINode(result, from_index));
1300     phi->init_req(1, result);
1301     region->init_req(1, control());
1302   }
1303   set_control(_gvn.transform(region));
1304   record_for_igvn(region);
1305   set_result(_gvn.transform(phi));
1306 
1307   return true;
1308 }
1309 //---------------------------inline_string_copy---------------------
1310 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1311 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1312 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1313 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1314 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1315 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1316 bool LibraryCallKit::inline_string_copy(bool compress) {
1317   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1318     return false;
1319   }
1320   int nargs = 5;  // 2 oops, 3 ints
1321   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1322 
1323   Node* src         = argument(0);
1324   Node* src_offset  = argument(1);
1325   Node* dst         = argument(2);
1326   Node* dst_offset  = argument(3);
1327   Node* length      = argument(4);
1328 
1329   // Check for allocation before we add nodes that would confuse
1330   // tightly_coupled_allocation()
1331   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1332 
1333   // Figure out the size and type of the elements we will be copying.
1334   const Type* src_type = src->Value(&_gvn);
1335   const Type* dst_type = dst->Value(&_gvn);
1336   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1337   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1338   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1339          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1340          "Unsupported array types for inline_string_copy");
1341 
1342   // Range checks
1343   generate_string_range_check(src, src_offset, length, compress && src_elem == T_BYTE);
1344   generate_string_range_check(dst, dst_offset, length, !compress && dst_elem == T_BYTE);
1345   if (stopped()) {
1346     return true;
1347   }
1348 
1349   // Convert char[] offsets to byte[] offsets
1350   if (compress && src_elem == T_BYTE) {
1351     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1352   } else if (!compress && dst_elem == T_BYTE) {
1353     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1354   }
1355 
1356   Node* src_start = array_element_address(src, src_offset, src_elem);
1357   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1358   // 'src_start' points to src array + scaled offset
1359   // 'dst_start' points to dst array + scaled offset
1360   Node* count = NULL;
1361   if (compress) {
1362     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1363   } else {
1364     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1365   }
1366 
1367   if (alloc != NULL) {
1368     if (alloc->maybe_set_complete(&_gvn)) {
1369       // "You break it, you buy it."
1370       InitializeNode* init = alloc->initialization();
1371       assert(init->is_complete(), "we just did this");
1372       init->set_complete_with_arraycopy();
1373       assert(dst->is_CheckCastPP(), "sanity");
1374       assert(dst->in(0)->in(0) == init, "dest pinned");
1375     }
1376     // Do not let stores that initialize this object be reordered with
1377     // a subsequent store that would make this object accessible by
1378     // other threads.
1379     // Record what AllocateNode this StoreStore protects so that
1380     // escape analysis can go from the MemBarStoreStoreNode to the
1381     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1382     // based on the escape status of the AllocateNode.
1383     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1384   }
1385   if (compress) {
1386     set_result(_gvn.transform(count));
1387   }
1388   return true;
1389 }
1390 
1391 #ifdef _LP64
1392 #define XTOP ,top() /*additional argument*/
1393 #else  //_LP64
1394 #define XTOP        /*no additional argument*/
1395 #endif //_LP64
1396 
1397 //------------------------inline_string_toBytesU--------------------------
1398 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1399 bool LibraryCallKit::inline_string_toBytesU() {
1400   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1401     return false;
1402   }
1403   // Get the arguments.
1404   Node* value     = argument(0);
1405   Node* offset    = argument(1);
1406   Node* length    = argument(2);
1407 
1408   Node* newcopy = NULL;
1409 
1410   // Set the original stack and the reexecute bit for the interpreter to reexecute
1411   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1412   { PreserveReexecuteState preexecs(this);
1413     jvms()->set_should_reexecute(true);
1414 
1415     // Check if a null path was taken unconditionally.
1416     value = null_check(value);
1417 
1418     RegionNode* bailout = new RegionNode(1);
1419     record_for_igvn(bailout);
1420 
1421     // Range checks
1422     generate_negative_guard(offset, bailout);
1423     generate_negative_guard(length, bailout);
1424     generate_limit_guard(offset, length, load_array_length(value), bailout);
1425     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1426     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1427 
1428     if (bailout->req() > 1) {
1429       PreserveJVMState pjvms(this);
1430       set_control(_gvn.transform(bailout));
1431       uncommon_trap(Deoptimization::Reason_intrinsic,
1432                     Deoptimization::Action_maybe_recompile);
1433     }
1434     if (stopped()) {
1435       return true;
1436     }
1437 
1438     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1439     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1440     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1441     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1442 
1443     // Calculate starting addresses.
1444     Node* src_start = array_element_address(value, offset, T_CHAR);
1445     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1446 
1447     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1448     const TypeInt* toffset = gvn().type(offset)->is_int();
1449     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1450 
1451     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1452     const char* copyfunc_name = "arraycopy";
1453     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1454     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1455                       OptoRuntime::fast_arraycopy_Type(),
1456                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1457                       src_start, dst_start, ConvI2X(length) XTOP);
1458     // Do not let reads from the cloned object float above the arraycopy.
1459     if (alloc != NULL) {
1460       if (alloc->maybe_set_complete(&_gvn)) {
1461         // "You break it, you buy it."
1462         InitializeNode* init = alloc->initialization();
1463         assert(init->is_complete(), "we just did this");
1464         init->set_complete_with_arraycopy();
1465         assert(newcopy->is_CheckCastPP(), "sanity");
1466         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1467       }
1468       // Do not let stores that initialize this object be reordered with
1469       // a subsequent store that would make this object accessible by
1470       // other threads.
1471       // Record what AllocateNode this StoreStore protects so that
1472       // escape analysis can go from the MemBarStoreStoreNode to the
1473       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1474       // based on the escape status of the AllocateNode.
1475       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1476     } else {
1477       insert_mem_bar(Op_MemBarCPUOrder);
1478     }
1479   } // original reexecute is set back here
1480 
1481   C->set_has_split_ifs(true); // Has chance for split-if optimization
1482   if (!stopped()) {
1483     set_result(newcopy);
1484   }
1485   return true;
1486 }
1487 
1488 //------------------------inline_string_getCharsU--------------------------
1489 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1490 bool LibraryCallKit::inline_string_getCharsU() {
1491   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1492     return false;
1493   }
1494 
1495   // Get the arguments.
1496   Node* src       = argument(0);
1497   Node* src_begin = argument(1);
1498   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1499   Node* dst       = argument(3);
1500   Node* dst_begin = argument(4);
1501 
1502   // Check for allocation before we add nodes that would confuse
1503   // tightly_coupled_allocation()
1504   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1505 
1506   // Check if a null path was taken unconditionally.
1507   src = null_check(src);
1508   dst = null_check(dst);
1509   if (stopped()) {
1510     return true;
1511   }
1512 
1513   // Get length and convert char[] offset to byte[] offset
1514   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1515   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1516 
1517   // Range checks
1518   generate_string_range_check(src, src_begin, length, true);
1519   generate_string_range_check(dst, dst_begin, length, false);
1520   if (stopped()) {
1521     return true;
1522   }
1523 
1524   if (!stopped()) {
1525     // Calculate starting addresses.
1526     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1527     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1528 
1529     // Check if array addresses are aligned to HeapWordSize
1530     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1531     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1532     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1533                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1534 
1535     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1536     const char* copyfunc_name = "arraycopy";
1537     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1538     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1539                       OptoRuntime::fast_arraycopy_Type(),
1540                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1541                       src_start, dst_start, ConvI2X(length) XTOP);
1542     // Do not let reads from the cloned object float above the arraycopy.
1543     if (alloc != NULL) {
1544       if (alloc->maybe_set_complete(&_gvn)) {
1545         // "You break it, you buy it."
1546         InitializeNode* init = alloc->initialization();
1547         assert(init->is_complete(), "we just did this");
1548         init->set_complete_with_arraycopy();
1549         assert(dst->is_CheckCastPP(), "sanity");
1550         assert(dst->in(0)->in(0) == init, "dest pinned");
1551       }
1552       // Do not let stores that initialize this object be reordered with
1553       // a subsequent store that would make this object accessible by
1554       // other threads.
1555       // Record what AllocateNode this StoreStore protects so that
1556       // escape analysis can go from the MemBarStoreStoreNode to the
1557       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1558       // based on the escape status of the AllocateNode.
1559       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1560     } else {
1561       insert_mem_bar(Op_MemBarCPUOrder);
1562     }
1563   }
1564 
1565   C->set_has_split_ifs(true); // Has chance for split-if optimization
1566   return true;
1567 }
1568 
1569 //----------------------inline_string_char_access----------------------------
1570 // Store/Load char to/from byte[] array.
1571 // static void StringUTF16.putChar(byte[] val, int index, int c)
1572 // static char StringUTF16.getChar(byte[] val, int index)
1573 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1574   Node* value  = argument(0);
1575   Node* index  = argument(1);
1576   Node* ch = is_store ? argument(2) : NULL;
1577 
1578   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1579   // correctly requires matched array shapes.
1580   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1581           "sanity: byte[] and char[] bases agree");
1582   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1583           "sanity: byte[] and char[] scales agree");
1584 
1585   Node* adr = array_element_address(value, index, T_CHAR);
1586   if (is_store) {
1587     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1588                            false, false, true /* mismatched */);
1589   } else {
1590     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1591                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1592     set_result(ch);
1593   }
1594   return true;
1595 }
1596 
1597 //--------------------------round_double_node--------------------------------
1598 // Round a double node if necessary.
1599 Node* LibraryCallKit::round_double_node(Node* n) {
1600   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1601     n = _gvn.transform(new RoundDoubleNode(0, n));
1602   return n;
1603 }
1604 
1605 //------------------------------inline_math-----------------------------------
1606 // public static double Math.abs(double)
1607 // public static double Math.sqrt(double)
1608 // public static double Math.log(double)
1609 // public static double Math.log10(double)
1610 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1611   Node* arg = round_double_node(argument(0));
1612   Node* n = NULL;
1613   switch (id) {
1614   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1615   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1616   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1617   default:  fatal_unexpected_iid(id);  break;
1618   }
1619   set_result(_gvn.transform(n));
1620   return true;
1621 }
1622 
1623 //------------------------------inline_trig----------------------------------
1624 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1625 // argument reduction which will turn into a fast/slow diamond.
1626 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1627   Node* arg = round_double_node(argument(0));
1628   Node* n = NULL;
1629 
1630   switch (id) {
1631   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1632   default:  fatal_unexpected_iid(id);  break;
1633   }
1634   n = _gvn.transform(n);
1635 
1636   // Rounding required?  Check for argument reduction!
1637   if (Matcher::strict_fp_requires_explicit_rounding) {
1638     static const double     pi_4 =  0.7853981633974483;
1639     static const double neg_pi_4 = -0.7853981633974483;
1640     // pi/2 in 80-bit extended precision
1641     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1642     // -pi/2 in 80-bit extended precision
1643     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1644     // Cutoff value for using this argument reduction technique
1645     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1646     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1647 
1648     // Pseudocode for sin:
1649     // if (x <= Math.PI / 4.0) {
1650     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1651     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1652     // } else {
1653     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1654     // }
1655     // return StrictMath.sin(x);
1656 
1657     // Pseudocode for cos:
1658     // if (x <= Math.PI / 4.0) {
1659     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1660     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1661     // } else {
1662     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1663     // }
1664     // return StrictMath.cos(x);
1665 
1666     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1667     // requires a special machine instruction to load it.  Instead we'll try
1668     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1669     // probably do the math inside the SIN encoding.
1670 
1671     // Make the merge point
1672     RegionNode* r = new RegionNode(3);
1673     Node* phi = new PhiNode(r, Type::DOUBLE);
1674 
1675     // Flatten arg so we need only 1 test
1676     Node *abs = _gvn.transform(new AbsDNode(arg));
1677     // Node for PI/4 constant
1678     Node *pi4 = makecon(TypeD::make(pi_4));
1679     // Check PI/4 : abs(arg)
1680     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1681     // Check: If PI/4 < abs(arg) then go slow
1682     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1683     // Branch either way
1684     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1685     set_control(opt_iff(r,iff));
1686 
1687     // Set fast path result
1688     phi->init_req(2, n);
1689 
1690     // Slow path - non-blocking leaf call
1691     Node* call = NULL;
1692     switch (id) {
1693     case vmIntrinsics::_dtan:
1694       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1695                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1696                                "Tan", NULL, arg, top());
1697       break;
1698     }
1699     assert(control()->in(0) == call, "");
1700     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1701     r->init_req(1, control());
1702     phi->init_req(1, slow_result);
1703 
1704     // Post-merge
1705     set_control(_gvn.transform(r));
1706     record_for_igvn(r);
1707     n = _gvn.transform(phi);
1708 
1709     C->set_has_split_ifs(true); // Has chance for split-if optimization
1710   }
1711   set_result(n);
1712   return true;
1713 }
1714 
1715 //------------------------------runtime_math-----------------------------
1716 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1717   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1718          "must be (DD)D or (D)D type");
1719 
1720   // Inputs
1721   Node* a = round_double_node(argument(0));
1722   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1723 
1724   const TypePtr* no_memory_effects = NULL;
1725   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1726                                  no_memory_effects,
1727                                  a, top(), b, b ? top() : NULL);
1728   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1729 #ifdef ASSERT
1730   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1731   assert(value_top == top(), "second value must be top");
1732 #endif
1733 
1734   set_result(value);
1735   return true;
1736 }
1737 
1738 //------------------------------inline_math_native-----------------------------
1739 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1740 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1741   switch (id) {
1742     // These intrinsics are not properly supported on all hardware
1743   case vmIntrinsics::_dsin:
1744     return StubRoutines::dsin() != NULL ?
1745       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1746       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1747   case vmIntrinsics::_dcos:
1748     return StubRoutines::dcos() != NULL ?
1749       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1750       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1751   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1752     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1753 
1754   case vmIntrinsics::_dlog:
1755     return StubRoutines::dlog() != NULL ?
1756       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1757       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1758   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1759     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1760 
1761     // These intrinsics are supported on all hardware
1762   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1763   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1764 
1765   case vmIntrinsics::_dexp:
1766     return StubRoutines::dexp() != NULL ?
1767       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1768       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1769   case vmIntrinsics::_dpow:
1770     return StubRoutines::dpow() != NULL ?
1771       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1772       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1773 #undef FN_PTR
1774 
1775    // These intrinsics are not yet correctly implemented
1776   case vmIntrinsics::_datan2:
1777     return false;
1778 
1779   default:
1780     fatal_unexpected_iid(id);
1781     return false;
1782   }
1783 }
1784 
1785 static bool is_simple_name(Node* n) {
1786   return (n->req() == 1         // constant
1787           || (n->is_Type() && n->as_Type()->type()->singleton())
1788           || n->is_Proj()       // parameter or return value
1789           || n->is_Phi()        // local of some sort
1790           );
1791 }
1792 
1793 //----------------------------inline_notify-----------------------------------*
1794 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1795   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1796   address func;
1797   if (id == vmIntrinsics::_notify) {
1798     func = OptoRuntime::monitor_notify_Java();
1799   } else {
1800     func = OptoRuntime::monitor_notifyAll_Java();
1801   }
1802   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1803   make_slow_call_ex(call, env()->Throwable_klass(), false);
1804   return true;
1805 }
1806 
1807 
1808 //----------------------------inline_min_max-----------------------------------
1809 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1810   set_result(generate_min_max(id, argument(0), argument(1)));
1811   return true;
1812 }
1813 
1814 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1815   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1816   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1817   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1818   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1819 
1820   {
1821     PreserveJVMState pjvms(this);
1822     PreserveReexecuteState preexecs(this);
1823     jvms()->set_should_reexecute(true);
1824 
1825     set_control(slow_path);
1826     set_i_o(i_o());
1827 
1828     uncommon_trap(Deoptimization::Reason_intrinsic,
1829                   Deoptimization::Action_none);
1830   }
1831 
1832   set_control(fast_path);
1833   set_result(math);
1834 }
1835 
1836 template <typename OverflowOp>
1837 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1838   typedef typename OverflowOp::MathOp MathOp;
1839 
1840   MathOp* mathOp = new MathOp(arg1, arg2);
1841   Node* operation = _gvn.transform( mathOp );
1842   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1843   inline_math_mathExact(operation, ofcheck);
1844   return true;
1845 }
1846 
1847 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1848   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1849 }
1850 
1851 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1852   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1853 }
1854 
1855 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1856   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1857 }
1858 
1859 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1860   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1861 }
1862 
1863 bool LibraryCallKit::inline_math_negateExactI() {
1864   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1865 }
1866 
1867 bool LibraryCallKit::inline_math_negateExactL() {
1868   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1869 }
1870 
1871 bool LibraryCallKit::inline_math_multiplyExactI() {
1872   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1873 }
1874 
1875 bool LibraryCallKit::inline_math_multiplyExactL() {
1876   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1877 }
1878 
1879 Node*
1880 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1881   // These are the candidate return value:
1882   Node* xvalue = x0;
1883   Node* yvalue = y0;
1884 
1885   if (xvalue == yvalue) {
1886     return xvalue;
1887   }
1888 
1889   bool want_max = (id == vmIntrinsics::_max);
1890 
1891   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1892   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1893   if (txvalue == NULL || tyvalue == NULL)  return top();
1894   // This is not really necessary, but it is consistent with a
1895   // hypothetical MaxINode::Value method:
1896   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1897 
1898   // %%% This folding logic should (ideally) be in a different place.
1899   // Some should be inside IfNode, and there to be a more reliable
1900   // transformation of ?: style patterns into cmoves.  We also want
1901   // more powerful optimizations around cmove and min/max.
1902 
1903   // Try to find a dominating comparison of these guys.
1904   // It can simplify the index computation for Arrays.copyOf
1905   // and similar uses of System.arraycopy.
1906   // First, compute the normalized version of CmpI(x, y).
1907   int   cmp_op = Op_CmpI;
1908   Node* xkey = xvalue;
1909   Node* ykey = yvalue;
1910   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1911   if (ideal_cmpxy->is_Cmp()) {
1912     // E.g., if we have CmpI(length - offset, count),
1913     // it might idealize to CmpI(length, count + offset)
1914     cmp_op = ideal_cmpxy->Opcode();
1915     xkey = ideal_cmpxy->in(1);
1916     ykey = ideal_cmpxy->in(2);
1917   }
1918 
1919   // Start by locating any relevant comparisons.
1920   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1921   Node* cmpxy = NULL;
1922   Node* cmpyx = NULL;
1923   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1924     Node* cmp = start_from->fast_out(k);
1925     if (cmp->outcnt() > 0 &&            // must have prior uses
1926         cmp->in(0) == NULL &&           // must be context-independent
1927         cmp->Opcode() == cmp_op) {      // right kind of compare
1928       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1929       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1930     }
1931   }
1932 
1933   const int NCMPS = 2;
1934   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1935   int cmpn;
1936   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1937     if (cmps[cmpn] != NULL)  break;     // find a result
1938   }
1939   if (cmpn < NCMPS) {
1940     // Look for a dominating test that tells us the min and max.
1941     int depth = 0;                // Limit search depth for speed
1942     Node* dom = control();
1943     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1944       if (++depth >= 100)  break;
1945       Node* ifproj = dom;
1946       if (!ifproj->is_Proj())  continue;
1947       Node* iff = ifproj->in(0);
1948       if (!iff->is_If())  continue;
1949       Node* bol = iff->in(1);
1950       if (!bol->is_Bool())  continue;
1951       Node* cmp = bol->in(1);
1952       if (cmp == NULL)  continue;
1953       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1954         if (cmps[cmpn] == cmp)  break;
1955       if (cmpn == NCMPS)  continue;
1956       BoolTest::mask btest = bol->as_Bool()->_test._test;
1957       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1958       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1959       // At this point, we know that 'x btest y' is true.
1960       switch (btest) {
1961       case BoolTest::eq:
1962         // They are proven equal, so we can collapse the min/max.
1963         // Either value is the answer.  Choose the simpler.
1964         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1965           return yvalue;
1966         return xvalue;
1967       case BoolTest::lt:          // x < y
1968       case BoolTest::le:          // x <= y
1969         return (want_max ? yvalue : xvalue);
1970       case BoolTest::gt:          // x > y
1971       case BoolTest::ge:          // x >= y
1972         return (want_max ? xvalue : yvalue);
1973       }
1974     }
1975   }
1976 
1977   // We failed to find a dominating test.
1978   // Let's pick a test that might GVN with prior tests.
1979   Node*          best_bol   = NULL;
1980   BoolTest::mask best_btest = BoolTest::illegal;
1981   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1982     Node* cmp = cmps[cmpn];
1983     if (cmp == NULL)  continue;
1984     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1985       Node* bol = cmp->fast_out(j);
1986       if (!bol->is_Bool())  continue;
1987       BoolTest::mask btest = bol->as_Bool()->_test._test;
1988       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1989       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1990       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1991         best_bol   = bol->as_Bool();
1992         best_btest = btest;
1993       }
1994     }
1995   }
1996 
1997   Node* answer_if_true  = NULL;
1998   Node* answer_if_false = NULL;
1999   switch (best_btest) {
2000   default:
2001     if (cmpxy == NULL)
2002       cmpxy = ideal_cmpxy;
2003     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2004     // and fall through:
2005   case BoolTest::lt:          // x < y
2006   case BoolTest::le:          // x <= y
2007     answer_if_true  = (want_max ? yvalue : xvalue);
2008     answer_if_false = (want_max ? xvalue : yvalue);
2009     break;
2010   case BoolTest::gt:          // x > y
2011   case BoolTest::ge:          // x >= y
2012     answer_if_true  = (want_max ? xvalue : yvalue);
2013     answer_if_false = (want_max ? yvalue : xvalue);
2014     break;
2015   }
2016 
2017   jint hi, lo;
2018   if (want_max) {
2019     // We can sharpen the minimum.
2020     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2021     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2022   } else {
2023     // We can sharpen the maximum.
2024     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2025     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2026   }
2027 
2028   // Use a flow-free graph structure, to avoid creating excess control edges
2029   // which could hinder other optimizations.
2030   // Since Math.min/max is often used with arraycopy, we want
2031   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2032   Node* cmov = CMoveNode::make(NULL, best_bol,
2033                                answer_if_false, answer_if_true,
2034                                TypeInt::make(lo, hi, widen));
2035 
2036   return _gvn.transform(cmov);
2037 
2038   /*
2039   // This is not as desirable as it may seem, since Min and Max
2040   // nodes do not have a full set of optimizations.
2041   // And they would interfere, anyway, with 'if' optimizations
2042   // and with CMoveI canonical forms.
2043   switch (id) {
2044   case vmIntrinsics::_min:
2045     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2046   case vmIntrinsics::_max:
2047     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2048   default:
2049     ShouldNotReachHere();
2050   }
2051   */
2052 }
2053 
2054 inline int
2055 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2056   const TypePtr* base_type = TypePtr::NULL_PTR;
2057   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2058   if (base_type == NULL) {
2059     // Unknown type.
2060     return Type::AnyPtr;
2061   } else if (base_type == TypePtr::NULL_PTR) {
2062     // Since this is a NULL+long form, we have to switch to a rawptr.
2063     base   = _gvn.transform(new CastX2PNode(offset));
2064     offset = MakeConX(0);
2065     return Type::RawPtr;
2066   } else if (base_type->base() == Type::RawPtr) {
2067     return Type::RawPtr;
2068   } else if (base_type->isa_oopptr()) {
2069     // Base is never null => always a heap address.
2070     if (base_type->ptr() == TypePtr::NotNull) {
2071       return Type::OopPtr;
2072     }
2073     // Offset is small => always a heap address.
2074     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2075     if (offset_type != NULL &&
2076         base_type->offset() == 0 &&     // (should always be?)
2077         offset_type->_lo >= 0 &&
2078         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2079       return Type::OopPtr;
2080     }
2081     // Otherwise, it might either be oop+off or NULL+addr.
2082     return Type::AnyPtr;
2083   } else {
2084     // No information:
2085     return Type::AnyPtr;
2086   }
2087 }
2088 
2089 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2090   int kind = classify_unsafe_addr(base, offset);
2091   if (kind == Type::RawPtr) {
2092     return basic_plus_adr(top(), base, offset);
2093   } else {
2094     return basic_plus_adr(base, offset);
2095   }
2096 }
2097 
2098 //--------------------------inline_number_methods-----------------------------
2099 // inline int     Integer.numberOfLeadingZeros(int)
2100 // inline int        Long.numberOfLeadingZeros(long)
2101 //
2102 // inline int     Integer.numberOfTrailingZeros(int)
2103 // inline int        Long.numberOfTrailingZeros(long)
2104 //
2105 // inline int     Integer.bitCount(int)
2106 // inline int        Long.bitCount(long)
2107 //
2108 // inline char  Character.reverseBytes(char)
2109 // inline short     Short.reverseBytes(short)
2110 // inline int     Integer.reverseBytes(int)
2111 // inline long       Long.reverseBytes(long)
2112 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2113   Node* arg = argument(0);
2114   Node* n = NULL;
2115   switch (id) {
2116   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2117   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2118   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2119   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2120   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2121   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2122   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2123   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2124   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2125   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2126   default:  fatal_unexpected_iid(id);  break;
2127   }
2128   set_result(_gvn.transform(n));
2129   return true;
2130 }
2131 
2132 //----------------------------inline_unsafe_access----------------------------
2133 
2134 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2135 
2136 // Helper that guards and inserts a pre-barrier.
2137 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2138                                         Node* pre_val, bool need_mem_bar) {
2139   // We could be accessing the referent field of a reference object. If so, when G1
2140   // is enabled, we need to log the value in the referent field in an SATB buffer.
2141   // This routine performs some compile time filters and generates suitable
2142   // runtime filters that guard the pre-barrier code.
2143   // Also add memory barrier for non volatile load from the referent field
2144   // to prevent commoning of loads across safepoint.
2145   if (!UseG1GC && !need_mem_bar)
2146     return;
2147 
2148   // Some compile time checks.
2149 
2150   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2151   const TypeX* otype = offset->find_intptr_t_type();
2152   if (otype != NULL && otype->is_con() &&
2153       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2154     // Constant offset but not the reference_offset so just return
2155     return;
2156   }
2157 
2158   // We only need to generate the runtime guards for instances.
2159   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2160   if (btype != NULL) {
2161     if (btype->isa_aryptr()) {
2162       // Array type so nothing to do
2163       return;
2164     }
2165 
2166     const TypeInstPtr* itype = btype->isa_instptr();
2167     if (itype != NULL) {
2168       // Can the klass of base_oop be statically determined to be
2169       // _not_ a sub-class of Reference and _not_ Object?
2170       ciKlass* klass = itype->klass();
2171       if ( klass->is_loaded() &&
2172           !klass->is_subtype_of(env()->Reference_klass()) &&
2173           !env()->Object_klass()->is_subtype_of(klass)) {
2174         return;
2175       }
2176     }
2177   }
2178 
2179   // The compile time filters did not reject base_oop/offset so
2180   // we need to generate the following runtime filters
2181   //
2182   // if (offset == java_lang_ref_Reference::_reference_offset) {
2183   //   if (instance_of(base, java.lang.ref.Reference)) {
2184   //     pre_barrier(_, pre_val, ...);
2185   //   }
2186   // }
2187 
2188   float likely   = PROB_LIKELY(  0.999);
2189   float unlikely = PROB_UNLIKELY(0.999);
2190 
2191   IdealKit ideal(this);
2192 #define __ ideal.
2193 
2194   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2195 
2196   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2197       // Update graphKit memory and control from IdealKit.
2198       sync_kit(ideal);
2199 
2200       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2201       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2202 
2203       // Update IdealKit memory and control from graphKit.
2204       __ sync_kit(this);
2205 
2206       Node* one = __ ConI(1);
2207       // is_instof == 0 if base_oop == NULL
2208       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2209 
2210         // Update graphKit from IdeakKit.
2211         sync_kit(ideal);
2212 
2213         // Use the pre-barrier to record the value in the referent field
2214         pre_barrier(false /* do_load */,
2215                     __ ctrl(),
2216                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2217                     pre_val /* pre_val */,
2218                     T_OBJECT);
2219         if (need_mem_bar) {
2220           // Add memory barrier to prevent commoning reads from this field
2221           // across safepoint since GC can change its value.
2222           insert_mem_bar(Op_MemBarCPUOrder);
2223         }
2224         // Update IdealKit from graphKit.
2225         __ sync_kit(this);
2226 
2227       } __ end_if(); // _ref_type != ref_none
2228   } __ end_if(); // offset == referent_offset
2229 
2230   // Final sync IdealKit and GraphKit.
2231   final_sync(ideal);
2232 #undef __
2233 }
2234 
2235 
2236 // Interpret Unsafe.fieldOffset cookies correctly:
2237 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2238 
2239 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2240   // Attempt to infer a sharper value type from the offset and base type.
2241   ciKlass* sharpened_klass = NULL;
2242 
2243   // See if it is an instance field, with an object type.
2244   if (alias_type->field() != NULL) {
2245     assert(!is_native_ptr, "native pointer op cannot use a java address");
2246     if (alias_type->field()->type()->is_klass()) {
2247       sharpened_klass = alias_type->field()->type()->as_klass();
2248     }
2249   }
2250 
2251   // See if it is a narrow oop array.
2252   if (adr_type->isa_aryptr()) {
2253     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2254       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2255       if (elem_type != NULL) {
2256         sharpened_klass = elem_type->klass();
2257       }
2258     }
2259   }
2260 
2261   // The sharpened class might be unloaded if there is no class loader
2262   // contraint in place.
2263   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2264     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2265 
2266 #ifndef PRODUCT
2267     if (C->print_intrinsics() || C->print_inlining()) {
2268       tty->print("  from base type: ");  adr_type->dump();
2269       tty->print("  sharpened value: ");  tjp->dump();
2270     }
2271 #endif
2272     // Sharpen the value type.
2273     return tjp;
2274   }
2275   return NULL;
2276 }
2277 
2278 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool unaligned) {
2279   if (callee()->is_static())  return false;  // caller must have the capability!
2280 
2281 #ifndef PRODUCT
2282   {
2283     ResourceMark rm;
2284     // Check the signatures.
2285     ciSignature* sig = callee()->signature();
2286 #ifdef ASSERT
2287     if (!is_store) {
2288       // Object getObject(Object base, int/long offset), etc.
2289       BasicType rtype = sig->return_type()->basic_type();
2290       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2291           rtype = T_ADDRESS;  // it is really a C void*
2292       assert(rtype == type, "getter must return the expected value");
2293       if (!is_native_ptr) {
2294         assert(sig->count() == 2, "oop getter has 2 arguments");
2295         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2296         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2297       } else {
2298         assert(sig->count() == 1, "native getter has 1 argument");
2299         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2300       }
2301     } else {
2302       // void putObject(Object base, int/long offset, Object x), etc.
2303       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2304       if (!is_native_ptr) {
2305         assert(sig->count() == 3, "oop putter has 3 arguments");
2306         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2307         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2308       } else {
2309         assert(sig->count() == 2, "native putter has 2 arguments");
2310         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2311       }
2312       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2313       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2314         vtype = T_ADDRESS;  // it is really a C void*
2315       assert(vtype == type, "putter must accept the expected value");
2316     }
2317 #endif // ASSERT
2318  }
2319 #endif //PRODUCT
2320 
2321   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2322 
2323   Node* receiver = argument(0);  // type: oop
2324 
2325   // Build address expression.
2326   Node* adr;
2327   Node* heap_base_oop = top();
2328   Node* offset = top();
2329   Node* val;
2330 
2331   if (!is_native_ptr) {
2332     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2333     Node* base = argument(1);  // type: oop
2334     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2335     offset = argument(2);  // type: long
2336     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2337     // to be plain byte offsets, which are also the same as those accepted
2338     // by oopDesc::field_base.
2339     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2340            "fieldOffset must be byte-scaled");
2341     // 32-bit machines ignore the high half!
2342     offset = ConvL2X(offset);
2343     adr = make_unsafe_address(base, offset);
2344     heap_base_oop = base;
2345     val = is_store ? argument(4) : NULL;
2346   } else {
2347     Node* ptr = argument(1);  // type: long
2348     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2349     adr = make_unsafe_address(NULL, ptr);
2350     val = is_store ? argument(3) : NULL;
2351   }
2352 
2353   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2354 
2355   // First guess at the value type.
2356   const Type *value_type = Type::get_const_basic_type(type);
2357 
2358   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2359   // there was not enough information to nail it down.
2360   Compile::AliasType* alias_type = C->alias_type(adr_type);
2361   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2362 
2363   // We will need memory barriers unless we can determine a unique
2364   // alias category for this reference.  (Note:  If for some reason
2365   // the barriers get omitted and the unsafe reference begins to "pollute"
2366   // the alias analysis of the rest of the graph, either Compile::can_alias
2367   // or Compile::must_alias will throw a diagnostic assert.)
2368   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2369 
2370   // If we are reading the value of the referent field of a Reference
2371   // object (either by using Unsafe directly or through reflection)
2372   // then, if G1 is enabled, we need to record the referent in an
2373   // SATB log buffer using the pre-barrier mechanism.
2374   // Also we need to add memory barrier to prevent commoning reads
2375   // from this field across safepoint since GC can change its value.
2376   bool need_read_barrier = !is_native_ptr && !is_store &&
2377                            offset != top() && heap_base_oop != top();
2378 
2379   if (!is_store && type == T_OBJECT) {
2380     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2381     if (tjp != NULL) {
2382       value_type = tjp;
2383     }
2384   }
2385 
2386   receiver = null_check(receiver);
2387   if (stopped()) {
2388     return true;
2389   }
2390   // Heap pointers get a null-check from the interpreter,
2391   // as a courtesy.  However, this is not guaranteed by Unsafe,
2392   // and it is not possible to fully distinguish unintended nulls
2393   // from intended ones in this API.
2394 
2395   if (is_volatile) {
2396     // We need to emit leading and trailing CPU membars (see below) in
2397     // addition to memory membars when is_volatile. This is a little
2398     // too strong, but avoids the need to insert per-alias-type
2399     // volatile membars (for stores; compare Parse::do_put_xxx), which
2400     // we cannot do effectively here because we probably only have a
2401     // rough approximation of type.
2402     need_mem_bar = true;
2403     // For Stores, place a memory ordering barrier now.
2404     if (is_store) {
2405       insert_mem_bar(Op_MemBarRelease);
2406     } else {
2407       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2408         insert_mem_bar(Op_MemBarVolatile);
2409       }
2410     }
2411   }
2412 
2413   // Memory barrier to prevent normal and 'unsafe' accesses from
2414   // bypassing each other.  Happens after null checks, so the
2415   // exception paths do not take memory state from the memory barrier,
2416   // so there's no problems making a strong assert about mixing users
2417   // of safe & unsafe memory.
2418   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2419 
2420   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2421          alias_type->field() != NULL || alias_type->element() != NULL, "field, array element or unknown");
2422   bool mismatched = false;
2423   if (alias_type->element() != NULL || alias_type->field() != NULL) {
2424     BasicType bt;
2425     if (alias_type->element() != NULL) {
2426       const Type* element = alias_type->element();
2427       bt = element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
2428     } else {
2429       bt = alias_type->field()->type()->basic_type();
2430     }
2431     if (bt == T_ARRAY) {
2432       // accessing an array field with getObject is not a mismatch
2433       bt = T_OBJECT;
2434     }
2435     if (bt != type) {
2436       mismatched = true;
2437     }
2438   }
2439   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2440 
2441   if (!is_store) {
2442     Node* p = NULL;
2443     // Try to constant fold a load from a constant field
2444     ciField* field = alias_type->field();
2445     if (heap_base_oop != top() &&
2446         field != NULL && field->is_constant() && field->layout_type() == type) {
2447       // final or stable field
2448       const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2449       if (con_type != NULL) {
2450         p = makecon(con_type);
2451       }
2452     }
2453     if (p == NULL) {
2454       MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2455       // To be valid, unsafe loads may depend on other conditions than
2456       // the one that guards them: pin the Load node
2457       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile, unaligned, mismatched);
2458       // load value
2459       switch (type) {
2460       case T_BOOLEAN:
2461       case T_CHAR:
2462       case T_BYTE:
2463       case T_SHORT:
2464       case T_INT:
2465       case T_LONG:
2466       case T_FLOAT:
2467       case T_DOUBLE:
2468         break;
2469       case T_OBJECT:
2470         if (need_read_barrier) {
2471           insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2472         }
2473         break;
2474       case T_ADDRESS:
2475         // Cast to an int type.
2476         p = _gvn.transform(new CastP2XNode(NULL, p));
2477         p = ConvX2UL(p);
2478         break;
2479       default:
2480         fatal("unexpected type %d: %s", type, type2name(type));
2481         break;
2482       }
2483     }
2484     // The load node has the control of the preceding MemBarCPUOrder.  All
2485     // following nodes will have the control of the MemBarCPUOrder inserted at
2486     // the end of this method.  So, pushing the load onto the stack at a later
2487     // point is fine.
2488     set_result(p);
2489   } else {
2490     // place effect of store into memory
2491     switch (type) {
2492     case T_DOUBLE:
2493       val = dstore_rounding(val);
2494       break;
2495     case T_ADDRESS:
2496       // Repackage the long as a pointer.
2497       val = ConvL2X(val);
2498       val = _gvn.transform(new CastX2PNode(val));
2499       break;
2500     }
2501 
2502     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2503     if (type != T_OBJECT ) {
2504       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile, unaligned, mismatched);
2505     } else {
2506       // Possibly an oop being stored to Java heap or native memory
2507       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2508         // oop to Java heap.
2509         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2510       } else {
2511         // We can't tell at compile time if we are storing in the Java heap or outside
2512         // of it. So we need to emit code to conditionally do the proper type of
2513         // store.
2514 
2515         IdealKit ideal(this);
2516 #define __ ideal.
2517         // QQQ who knows what probability is here??
2518         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2519           // Sync IdealKit and graphKit.
2520           sync_kit(ideal);
2521           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2522           // Update IdealKit memory.
2523           __ sync_kit(this);
2524         } __ else_(); {
2525           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile, mismatched);
2526         } __ end_if();
2527         // Final sync IdealKit and GraphKit.
2528         final_sync(ideal);
2529 #undef __
2530       }
2531     }
2532   }
2533 
2534   if (is_volatile) {
2535     if (!is_store) {
2536       insert_mem_bar(Op_MemBarAcquire);
2537     } else {
2538       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2539         insert_mem_bar(Op_MemBarVolatile);
2540       }
2541     }
2542   }
2543 
2544   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2545 
2546   return true;
2547 }
2548 
2549 //----------------------------inline_unsafe_load_store----------------------------
2550 // This method serves a couple of different customers (depending on LoadStoreKind):
2551 //
2552 // LS_cmpxchg:
2553 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2554 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2555 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2556 //
2557 // LS_xadd:
2558 //   public int  getAndAddInt( Object o, long offset, int  delta)
2559 //   public long getAndAddLong(Object o, long offset, long delta)
2560 //
2561 // LS_xchg:
2562 //   int    getAndSet(Object o, long offset, int    newValue)
2563 //   long   getAndSet(Object o, long offset, long   newValue)
2564 //   Object getAndSet(Object o, long offset, Object newValue)
2565 //
2566 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2567   // This basic scheme here is the same as inline_unsafe_access, but
2568   // differs in enough details that combining them would make the code
2569   // overly confusing.  (This is a true fact! I originally combined
2570   // them, but even I was confused by it!) As much code/comments as
2571   // possible are retained from inline_unsafe_access though to make
2572   // the correspondences clearer. - dl
2573 
2574   if (callee()->is_static())  return false;  // caller must have the capability!
2575 
2576 #ifndef PRODUCT
2577   BasicType rtype;
2578   {
2579     ResourceMark rm;
2580     // Check the signatures.
2581     ciSignature* sig = callee()->signature();
2582     rtype = sig->return_type()->basic_type();
2583     if (kind == LS_xadd || kind == LS_xchg) {
2584       // Check the signatures.
2585 #ifdef ASSERT
2586       assert(rtype == type, "get and set must return the expected type");
2587       assert(sig->count() == 3, "get and set has 3 arguments");
2588       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2589       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2590       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2591 #endif // ASSERT
2592     } else if (kind == LS_cmpxchg) {
2593       // Check the signatures.
2594 #ifdef ASSERT
2595       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2596       assert(sig->count() == 4, "CAS has 4 arguments");
2597       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2598       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2599 #endif // ASSERT
2600     } else {
2601       ShouldNotReachHere();
2602     }
2603   }
2604 #endif //PRODUCT
2605 
2606   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2607 
2608   // Get arguments:
2609   Node* receiver = NULL;
2610   Node* base     = NULL;
2611   Node* offset   = NULL;
2612   Node* oldval   = NULL;
2613   Node* newval   = NULL;
2614   if (kind == LS_cmpxchg) {
2615     const bool two_slot_type = type2size[type] == 2;
2616     receiver = argument(0);  // type: oop
2617     base     = argument(1);  // type: oop
2618     offset   = argument(2);  // type: long
2619     oldval   = argument(4);  // type: oop, int, or long
2620     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2621   } else if (kind == LS_xadd || kind == LS_xchg){
2622     receiver = argument(0);  // type: oop
2623     base     = argument(1);  // type: oop
2624     offset   = argument(2);  // type: long
2625     oldval   = NULL;
2626     newval   = argument(4);  // type: oop, int, or long
2627   }
2628 
2629   // Null check receiver.
2630   receiver = null_check(receiver);
2631   if (stopped()) {
2632     return true;
2633   }
2634 
2635   // Build field offset expression.
2636   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2637   // to be plain byte offsets, which are also the same as those accepted
2638   // by oopDesc::field_base.
2639   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2640   // 32-bit machines ignore the high half of long offsets
2641   offset = ConvL2X(offset);
2642   Node* adr = make_unsafe_address(base, offset);
2643   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2644 
2645   // For CAS, unlike inline_unsafe_access, there seems no point in
2646   // trying to refine types. Just use the coarse types here.
2647   const Type *value_type = Type::get_const_basic_type(type);
2648   Compile::AliasType* alias_type = C->alias_type(adr_type);
2649   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2650 
2651   if (kind == LS_xchg && type == T_OBJECT) {
2652     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2653     if (tjp != NULL) {
2654       value_type = tjp;
2655     }
2656   }
2657 
2658   int alias_idx = C->get_alias_index(adr_type);
2659 
2660   // Memory-model-wise, a LoadStore acts like a little synchronized
2661   // block, so needs barriers on each side.  These don't translate
2662   // into actual barriers on most machines, but we still need rest of
2663   // compiler to respect ordering.
2664 
2665   insert_mem_bar(Op_MemBarRelease);
2666   insert_mem_bar(Op_MemBarCPUOrder);
2667 
2668   // 4984716: MemBars must be inserted before this
2669   //          memory node in order to avoid a false
2670   //          dependency which will confuse the scheduler.
2671   Node *mem = memory(alias_idx);
2672 
2673   // For now, we handle only those cases that actually exist: ints,
2674   // longs, and Object. Adding others should be straightforward.
2675   Node* load_store = NULL;
2676   switch(type) {
2677   case T_INT:
2678     if (kind == LS_xadd) {
2679       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2680     } else if (kind == LS_xchg) {
2681       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2682     } else if (kind == LS_cmpxchg) {
2683       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2684     } else {
2685       ShouldNotReachHere();
2686     }
2687     break;
2688   case T_LONG:
2689     if (kind == LS_xadd) {
2690       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2691     } else if (kind == LS_xchg) {
2692       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2693     } else if (kind == LS_cmpxchg) {
2694       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2695     } else {
2696       ShouldNotReachHere();
2697     }
2698     break;
2699   case T_OBJECT:
2700     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2701     // could be delayed during Parse (for example, in adjust_map_after_if()).
2702     // Execute transformation here to avoid barrier generation in such case.
2703     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2704       newval = _gvn.makecon(TypePtr::NULL_PTR);
2705 
2706     // Reference stores need a store barrier.
2707     if (kind == LS_xchg) {
2708       // If pre-barrier must execute before the oop store, old value will require do_load here.
2709       if (!can_move_pre_barrier()) {
2710         pre_barrier(true /* do_load*/,
2711                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2712                     NULL /* pre_val*/,
2713                     T_OBJECT);
2714       } // Else move pre_barrier to use load_store value, see below.
2715     } else if (kind == LS_cmpxchg) {
2716       // Same as for newval above:
2717       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2718         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2719       }
2720       // The only known value which might get overwritten is oldval.
2721       pre_barrier(false /* do_load */,
2722                   control(), NULL, NULL, max_juint, NULL, NULL,
2723                   oldval /* pre_val */,
2724                   T_OBJECT);
2725     } else {
2726       ShouldNotReachHere();
2727     }
2728 
2729 #ifdef _LP64
2730     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2731       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2732       if (kind == LS_xchg) {
2733         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2734                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2735       } else {
2736         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2737         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2738         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2739                                                                 newval_enc, oldval_enc));
2740       }
2741     } else
2742 #endif
2743     {
2744       if (kind == LS_xchg) {
2745         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2746       } else {
2747         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2748         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2749       }
2750     }
2751     if (kind == LS_cmpxchg) {
2752       // Emit the post barrier only when the actual store happened.
2753       // This makes sense to check only for compareAndSet that can fail to set the value.
2754       // CAS success path is marked more likely since we anticipate this is a performance
2755       // critical path, while CAS failure path can use the penalty for going through unlikely
2756       // path as backoff. Which is still better than doing a store barrier there.
2757       IdealKit ideal(this);
2758       ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2759         sync_kit(ideal);
2760         post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2761         ideal.sync_kit(this);
2762       } ideal.end_if();
2763       final_sync(ideal);
2764     } else {
2765       post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2766     }
2767     break;
2768   default:
2769     fatal("unexpected type %d: %s", type, type2name(type));
2770     break;
2771   }
2772 
2773   // SCMemProjNodes represent the memory state of a LoadStore. Their
2774   // main role is to prevent LoadStore nodes from being optimized away
2775   // when their results aren't used.
2776   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2777   set_memory(proj, alias_idx);
2778 
2779   if (type == T_OBJECT && kind == LS_xchg) {
2780 #ifdef _LP64
2781     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2782       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2783     }
2784 #endif
2785     if (can_move_pre_barrier()) {
2786       // Don't need to load pre_val. The old value is returned by load_store.
2787       // The pre_barrier can execute after the xchg as long as no safepoint
2788       // gets inserted between them.
2789       pre_barrier(false /* do_load */,
2790                   control(), NULL, NULL, max_juint, NULL, NULL,
2791                   load_store /* pre_val */,
2792                   T_OBJECT);
2793     }
2794   }
2795 
2796   // Add the trailing membar surrounding the access
2797   insert_mem_bar(Op_MemBarCPUOrder);
2798   insert_mem_bar(Op_MemBarAcquire);
2799 
2800   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2801   set_result(load_store);
2802   return true;
2803 }
2804 
2805 //----------------------------inline_unsafe_ordered_store----------------------
2806 // public native void Unsafe.putOrderedObject(Object o, long offset, Object x);
2807 // public native void Unsafe.putOrderedInt(Object o, long offset, int x);
2808 // public native void Unsafe.putOrderedLong(Object o, long offset, long x);
2809 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2810   // This is another variant of inline_unsafe_access, differing in
2811   // that it always issues store-store ("release") barrier and ensures
2812   // store-atomicity (which only matters for "long").
2813 
2814   if (callee()->is_static())  return false;  // caller must have the capability!
2815 
2816 #ifndef PRODUCT
2817   {
2818     ResourceMark rm;
2819     // Check the signatures.
2820     ciSignature* sig = callee()->signature();
2821 #ifdef ASSERT
2822     BasicType rtype = sig->return_type()->basic_type();
2823     assert(rtype == T_VOID, "must return void");
2824     assert(sig->count() == 3, "has 3 arguments");
2825     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2826     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2827 #endif // ASSERT
2828   }
2829 #endif //PRODUCT
2830 
2831   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2832 
2833   // Get arguments:
2834   Node* receiver = argument(0);  // type: oop
2835   Node* base     = argument(1);  // type: oop
2836   Node* offset   = argument(2);  // type: long
2837   Node* val      = argument(4);  // type: oop, int, or long
2838 
2839   // Null check receiver.
2840   receiver = null_check(receiver);
2841   if (stopped()) {
2842     return true;
2843   }
2844 
2845   // Build field offset expression.
2846   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2847   // 32-bit machines ignore the high half of long offsets
2848   offset = ConvL2X(offset);
2849   Node* adr = make_unsafe_address(base, offset);
2850   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2851   const Type *value_type = Type::get_const_basic_type(type);
2852   Compile::AliasType* alias_type = C->alias_type(adr_type);
2853 
2854   insert_mem_bar(Op_MemBarRelease);
2855   insert_mem_bar(Op_MemBarCPUOrder);
2856   // Ensure that the store is atomic for longs:
2857   const bool require_atomic_access = true;
2858   Node* store;
2859   if (type == T_OBJECT) // reference stores need a store barrier.
2860     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
2861   else {
2862     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
2863   }
2864   insert_mem_bar(Op_MemBarCPUOrder);
2865   return true;
2866 }
2867 
2868 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2869   // Regardless of form, don't allow previous ld/st to move down,
2870   // then issue acquire, release, or volatile mem_bar.
2871   insert_mem_bar(Op_MemBarCPUOrder);
2872   switch(id) {
2873     case vmIntrinsics::_loadFence:
2874       insert_mem_bar(Op_LoadFence);
2875       return true;
2876     case vmIntrinsics::_storeFence:
2877       insert_mem_bar(Op_StoreFence);
2878       return true;
2879     case vmIntrinsics::_fullFence:
2880       insert_mem_bar(Op_MemBarVolatile);
2881       return true;
2882     default:
2883       fatal_unexpected_iid(id);
2884       return false;
2885   }
2886 }
2887 
2888 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2889   if (!kls->is_Con()) {
2890     return true;
2891   }
2892   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2893   if (klsptr == NULL) {
2894     return true;
2895   }
2896   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2897   // don't need a guard for a klass that is already initialized
2898   return !ik->is_initialized();
2899 }
2900 
2901 //----------------------------inline_unsafe_allocate---------------------------
2902 // public native Object Unsafe.allocateInstance(Class<?> cls);
2903 bool LibraryCallKit::inline_unsafe_allocate() {
2904   if (callee()->is_static())  return false;  // caller must have the capability!
2905 
2906   null_check_receiver();  // null-check, then ignore
2907   Node* cls = null_check(argument(1));
2908   if (stopped())  return true;
2909 
2910   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2911   kls = null_check(kls);
2912   if (stopped())  return true;  // argument was like int.class
2913 
2914   Node* test = NULL;
2915   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2916     // Note:  The argument might still be an illegal value like
2917     // Serializable.class or Object[].class.   The runtime will handle it.
2918     // But we must make an explicit check for initialization.
2919     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2920     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2921     // can generate code to load it as unsigned byte.
2922     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2923     Node* bits = intcon(InstanceKlass::fully_initialized);
2924     test = _gvn.transform(new SubINode(inst, bits));
2925     // The 'test' is non-zero if we need to take a slow path.
2926   }
2927 
2928   Node* obj = new_instance(kls, test);
2929   set_result(obj);
2930   return true;
2931 }
2932 
2933 #ifdef TRACE_HAVE_INTRINSICS
2934 /*
2935  * oop -> myklass
2936  * myklass->trace_id |= USED
2937  * return myklass->trace_id & ~0x3
2938  */
2939 bool LibraryCallKit::inline_native_classID() {
2940   null_check_receiver();  // null-check, then ignore
2941   Node* cls = null_check(argument(1), T_OBJECT);
2942   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2943   kls = null_check(kls, T_OBJECT);
2944   ByteSize offset = TRACE_ID_OFFSET;
2945   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2946   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
2947   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2948   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
2949   Node* clsused = longcon(0x01l); // set the class bit
2950   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
2951 
2952   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2953   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
2954   set_result(andl);
2955   return true;
2956 }
2957 
2958 bool LibraryCallKit::inline_native_threadID() {
2959   Node* tls_ptr = NULL;
2960   Node* cur_thr = generate_current_thread(tls_ptr);
2961   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2962   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
2963   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2964 
2965   Node* threadid = NULL;
2966   size_t thread_id_size = OSThread::thread_id_size();
2967   if (thread_id_size == (size_t) BytesPerLong) {
2968     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
2969   } else if (thread_id_size == (size_t) BytesPerInt) {
2970     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
2971   } else {
2972     ShouldNotReachHere();
2973   }
2974   set_result(threadid);
2975   return true;
2976 }
2977 #endif
2978 
2979 //------------------------inline_native_time_funcs--------------
2980 // inline code for System.currentTimeMillis() and System.nanoTime()
2981 // these have the same type and signature
2982 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2983   const TypeFunc* tf = OptoRuntime::void_long_Type();
2984   const TypePtr* no_memory_effects = NULL;
2985   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2986   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2987 #ifdef ASSERT
2988   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2989   assert(value_top == top(), "second value must be top");
2990 #endif
2991   set_result(value);
2992   return true;
2993 }
2994 
2995 //------------------------inline_native_currentThread------------------
2996 bool LibraryCallKit::inline_native_currentThread() {
2997   Node* junk = NULL;
2998   set_result(generate_current_thread(junk));
2999   return true;
3000 }
3001 
3002 //------------------------inline_native_isInterrupted------------------
3003 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3004 bool LibraryCallKit::inline_native_isInterrupted() {
3005   // Add a fast path to t.isInterrupted(clear_int):
3006   //   (t == Thread.current() &&
3007   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3008   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3009   // So, in the common case that the interrupt bit is false,
3010   // we avoid making a call into the VM.  Even if the interrupt bit
3011   // is true, if the clear_int argument is false, we avoid the VM call.
3012   // However, if the receiver is not currentThread, we must call the VM,
3013   // because there must be some locking done around the operation.
3014 
3015   // We only go to the fast case code if we pass two guards.
3016   // Paths which do not pass are accumulated in the slow_region.
3017 
3018   enum {
3019     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3020     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3021     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3022     PATH_LIMIT
3023   };
3024 
3025   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3026   // out of the function.
3027   insert_mem_bar(Op_MemBarCPUOrder);
3028 
3029   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3030   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3031 
3032   RegionNode* slow_region = new RegionNode(1);
3033   record_for_igvn(slow_region);
3034 
3035   // (a) Receiving thread must be the current thread.
3036   Node* rec_thr = argument(0);
3037   Node* tls_ptr = NULL;
3038   Node* cur_thr = generate_current_thread(tls_ptr);
3039   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3040   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3041 
3042   generate_slow_guard(bol_thr, slow_region);
3043 
3044   // (b) Interrupt bit on TLS must be false.
3045   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3046   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3047   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3048 
3049   // Set the control input on the field _interrupted read to prevent it floating up.
3050   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3051   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3052   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3053 
3054   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3055 
3056   // First fast path:  if (!TLS._interrupted) return false;
3057   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3058   result_rgn->init_req(no_int_result_path, false_bit);
3059   result_val->init_req(no_int_result_path, intcon(0));
3060 
3061   // drop through to next case
3062   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3063 
3064 #ifndef TARGET_OS_FAMILY_windows
3065   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3066   Node* clr_arg = argument(1);
3067   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3068   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3069   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3070 
3071   // Second fast path:  ... else if (!clear_int) return true;
3072   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3073   result_rgn->init_req(no_clear_result_path, false_arg);
3074   result_val->init_req(no_clear_result_path, intcon(1));
3075 
3076   // drop through to next case
3077   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3078 #else
3079   // To return true on Windows you must read the _interrupted field
3080   // and check the event state i.e. take the slow path.
3081 #endif // TARGET_OS_FAMILY_windows
3082 
3083   // (d) Otherwise, go to the slow path.
3084   slow_region->add_req(control());
3085   set_control( _gvn.transform(slow_region));
3086 
3087   if (stopped()) {
3088     // There is no slow path.
3089     result_rgn->init_req(slow_result_path, top());
3090     result_val->init_req(slow_result_path, top());
3091   } else {
3092     // non-virtual because it is a private non-static
3093     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3094 
3095     Node* slow_val = set_results_for_java_call(slow_call);
3096     // this->control() comes from set_results_for_java_call
3097 
3098     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3099     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3100 
3101     // These two phis are pre-filled with copies of of the fast IO and Memory
3102     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3103     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3104 
3105     result_rgn->init_req(slow_result_path, control());
3106     result_io ->init_req(slow_result_path, i_o());
3107     result_mem->init_req(slow_result_path, reset_memory());
3108     result_val->init_req(slow_result_path, slow_val);
3109 
3110     set_all_memory(_gvn.transform(result_mem));
3111     set_i_o(       _gvn.transform(result_io));
3112   }
3113 
3114   C->set_has_split_ifs(true); // Has chance for split-if optimization
3115   set_result(result_rgn, result_val);
3116   return true;
3117 }
3118 
3119 //---------------------------load_mirror_from_klass----------------------------
3120 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3121 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3122   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3123   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3124 }
3125 
3126 //-----------------------load_klass_from_mirror_common-------------------------
3127 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3128 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3129 // and branch to the given path on the region.
3130 // If never_see_null, take an uncommon trap on null, so we can optimistically
3131 // compile for the non-null case.
3132 // If the region is NULL, force never_see_null = true.
3133 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3134                                                     bool never_see_null,
3135                                                     RegionNode* region,
3136                                                     int null_path,
3137                                                     int offset) {
3138   if (region == NULL)  never_see_null = true;
3139   Node* p = basic_plus_adr(mirror, offset);
3140   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3141   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3142   Node* null_ctl = top();
3143   kls = null_check_oop(kls, &null_ctl, never_see_null);
3144   if (region != NULL) {
3145     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3146     region->init_req(null_path, null_ctl);
3147   } else {
3148     assert(null_ctl == top(), "no loose ends");
3149   }
3150   return kls;
3151 }
3152 
3153 //--------------------(inline_native_Class_query helpers)---------------------
3154 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3155 // Fall through if (mods & mask) == bits, take the guard otherwise.
3156 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3157   // Branch around if the given klass has the given modifier bit set.
3158   // Like generate_guard, adds a new path onto the region.
3159   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3160   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3161   Node* mask = intcon(modifier_mask);
3162   Node* bits = intcon(modifier_bits);
3163   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3164   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3165   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3166   return generate_fair_guard(bol, region);
3167 }
3168 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3169   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3170 }
3171 
3172 //-------------------------inline_native_Class_query-------------------
3173 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3174   const Type* return_type = TypeInt::BOOL;
3175   Node* prim_return_value = top();  // what happens if it's a primitive class?
3176   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3177   bool expect_prim = false;     // most of these guys expect to work on refs
3178 
3179   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3180 
3181   Node* mirror = argument(0);
3182   Node* obj    = top();
3183 
3184   switch (id) {
3185   case vmIntrinsics::_isInstance:
3186     // nothing is an instance of a primitive type
3187     prim_return_value = intcon(0);
3188     obj = argument(1);
3189     break;
3190   case vmIntrinsics::_getModifiers:
3191     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3192     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3193     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3194     break;
3195   case vmIntrinsics::_isInterface:
3196     prim_return_value = intcon(0);
3197     break;
3198   case vmIntrinsics::_isArray:
3199     prim_return_value = intcon(0);
3200     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3201     break;
3202   case vmIntrinsics::_isPrimitive:
3203     prim_return_value = intcon(1);
3204     expect_prim = true;  // obviously
3205     break;
3206   case vmIntrinsics::_getSuperclass:
3207     prim_return_value = null();
3208     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3209     break;
3210   case vmIntrinsics::_getClassAccessFlags:
3211     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3212     return_type = TypeInt::INT;  // not bool!  6297094
3213     break;
3214   default:
3215     fatal_unexpected_iid(id);
3216     break;
3217   }
3218 
3219   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3220   if (mirror_con == NULL)  return false;  // cannot happen?
3221 
3222 #ifndef PRODUCT
3223   if (C->print_intrinsics() || C->print_inlining()) {
3224     ciType* k = mirror_con->java_mirror_type();
3225     if (k) {
3226       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3227       k->print_name();
3228       tty->cr();
3229     }
3230   }
3231 #endif
3232 
3233   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3234   RegionNode* region = new RegionNode(PATH_LIMIT);
3235   record_for_igvn(region);
3236   PhiNode* phi = new PhiNode(region, return_type);
3237 
3238   // The mirror will never be null of Reflection.getClassAccessFlags, however
3239   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3240   // if it is. See bug 4774291.
3241 
3242   // For Reflection.getClassAccessFlags(), the null check occurs in
3243   // the wrong place; see inline_unsafe_access(), above, for a similar
3244   // situation.
3245   mirror = null_check(mirror);
3246   // If mirror or obj is dead, only null-path is taken.
3247   if (stopped())  return true;
3248 
3249   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3250 
3251   // Now load the mirror's klass metaobject, and null-check it.
3252   // Side-effects region with the control path if the klass is null.
3253   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3254   // If kls is null, we have a primitive mirror.
3255   phi->init_req(_prim_path, prim_return_value);
3256   if (stopped()) { set_result(region, phi); return true; }
3257   bool safe_for_replace = (region->in(_prim_path) == top());
3258 
3259   Node* p;  // handy temp
3260   Node* null_ctl;
3261 
3262   // Now that we have the non-null klass, we can perform the real query.
3263   // For constant classes, the query will constant-fold in LoadNode::Value.
3264   Node* query_value = top();
3265   switch (id) {
3266   case vmIntrinsics::_isInstance:
3267     // nothing is an instance of a primitive type
3268     query_value = gen_instanceof(obj, kls, safe_for_replace);
3269     break;
3270 
3271   case vmIntrinsics::_getModifiers:
3272     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3273     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3274     break;
3275 
3276   case vmIntrinsics::_isInterface:
3277     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3278     if (generate_interface_guard(kls, region) != NULL)
3279       // A guard was added.  If the guard is taken, it was an interface.
3280       phi->add_req(intcon(1));
3281     // If we fall through, it's a plain class.
3282     query_value = intcon(0);
3283     break;
3284 
3285   case vmIntrinsics::_isArray:
3286     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3287     if (generate_array_guard(kls, region) != NULL)
3288       // A guard was added.  If the guard is taken, it was an array.
3289       phi->add_req(intcon(1));
3290     // If we fall through, it's a plain class.
3291     query_value = intcon(0);
3292     break;
3293 
3294   case vmIntrinsics::_isPrimitive:
3295     query_value = intcon(0); // "normal" path produces false
3296     break;
3297 
3298   case vmIntrinsics::_getSuperclass:
3299     // The rules here are somewhat unfortunate, but we can still do better
3300     // with random logic than with a JNI call.
3301     // Interfaces store null or Object as _super, but must report null.
3302     // Arrays store an intermediate super as _super, but must report Object.
3303     // Other types can report the actual _super.
3304     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3305     if (generate_interface_guard(kls, region) != NULL)
3306       // A guard was added.  If the guard is taken, it was an interface.
3307       phi->add_req(null());
3308     if (generate_array_guard(kls, region) != NULL)
3309       // A guard was added.  If the guard is taken, it was an array.
3310       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3311     // If we fall through, it's a plain class.  Get its _super.
3312     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3313     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3314     null_ctl = top();
3315     kls = null_check_oop(kls, &null_ctl);
3316     if (null_ctl != top()) {
3317       // If the guard is taken, Object.superClass is null (both klass and mirror).
3318       region->add_req(null_ctl);
3319       phi   ->add_req(null());
3320     }
3321     if (!stopped()) {
3322       query_value = load_mirror_from_klass(kls);
3323     }
3324     break;
3325 
3326   case vmIntrinsics::_getClassAccessFlags:
3327     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3328     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3329     break;
3330 
3331   default:
3332     fatal_unexpected_iid(id);
3333     break;
3334   }
3335 
3336   // Fall-through is the normal case of a query to a real class.
3337   phi->init_req(1, query_value);
3338   region->init_req(1, control());
3339 
3340   C->set_has_split_ifs(true); // Has chance for split-if optimization
3341   set_result(region, phi);
3342   return true;
3343 }
3344 
3345 //-------------------------inline_Class_cast-------------------
3346 bool LibraryCallKit::inline_Class_cast() {
3347   Node* mirror = argument(0); // Class
3348   Node* obj    = argument(1);
3349   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3350   if (mirror_con == NULL) {
3351     return false;  // dead path (mirror->is_top()).
3352   }
3353   if (obj == NULL || obj->is_top()) {
3354     return false;  // dead path
3355   }
3356   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3357 
3358   // First, see if Class.cast() can be folded statically.
3359   // java_mirror_type() returns non-null for compile-time Class constants.
3360   ciType* tm = mirror_con->java_mirror_type();
3361   if (tm != NULL && tm->is_klass() &&
3362       tp != NULL && tp->klass() != NULL) {
3363     if (!tp->klass()->is_loaded()) {
3364       // Don't use intrinsic when class is not loaded.
3365       return false;
3366     } else {
3367       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3368       if (static_res == Compile::SSC_always_true) {
3369         // isInstance() is true - fold the code.
3370         set_result(obj);
3371         return true;
3372       } else if (static_res == Compile::SSC_always_false) {
3373         // Don't use intrinsic, have to throw ClassCastException.
3374         // If the reference is null, the non-intrinsic bytecode will
3375         // be optimized appropriately.
3376         return false;
3377       }
3378     }
3379   }
3380 
3381   // Bailout intrinsic and do normal inlining if exception path is frequent.
3382   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3383     return false;
3384   }
3385 
3386   // Generate dynamic checks.
3387   // Class.cast() is java implementation of _checkcast bytecode.
3388   // Do checkcast (Parse::do_checkcast()) optimizations here.
3389 
3390   mirror = null_check(mirror);
3391   // If mirror is dead, only null-path is taken.
3392   if (stopped()) {
3393     return true;
3394   }
3395 
3396   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3397   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3398   RegionNode* region = new RegionNode(PATH_LIMIT);
3399   record_for_igvn(region);
3400 
3401   // Now load the mirror's klass metaobject, and null-check it.
3402   // If kls is null, we have a primitive mirror and
3403   // nothing is an instance of a primitive type.
3404   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3405 
3406   Node* res = top();
3407   if (!stopped()) {
3408     Node* bad_type_ctrl = top();
3409     // Do checkcast optimizations.
3410     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3411     region->init_req(_bad_type_path, bad_type_ctrl);
3412   }
3413   if (region->in(_prim_path) != top() ||
3414       region->in(_bad_type_path) != top()) {
3415     // Let Interpreter throw ClassCastException.
3416     PreserveJVMState pjvms(this);
3417     set_control(_gvn.transform(region));
3418     uncommon_trap(Deoptimization::Reason_intrinsic,
3419                   Deoptimization::Action_maybe_recompile);
3420   }
3421   if (!stopped()) {
3422     set_result(res);
3423   }
3424   return true;
3425 }
3426 
3427 
3428 //--------------------------inline_native_subtype_check------------------------
3429 // This intrinsic takes the JNI calls out of the heart of
3430 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3431 bool LibraryCallKit::inline_native_subtype_check() {
3432   // Pull both arguments off the stack.
3433   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3434   args[0] = argument(0);
3435   args[1] = argument(1);
3436   Node* klasses[2];             // corresponding Klasses: superk, subk
3437   klasses[0] = klasses[1] = top();
3438 
3439   enum {
3440     // A full decision tree on {superc is prim, subc is prim}:
3441     _prim_0_path = 1,           // {P,N} => false
3442                                 // {P,P} & superc!=subc => false
3443     _prim_same_path,            // {P,P} & superc==subc => true
3444     _prim_1_path,               // {N,P} => false
3445     _ref_subtype_path,          // {N,N} & subtype check wins => true
3446     _both_ref_path,             // {N,N} & subtype check loses => false
3447     PATH_LIMIT
3448   };
3449 
3450   RegionNode* region = new RegionNode(PATH_LIMIT);
3451   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3452   record_for_igvn(region);
3453 
3454   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3455   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3456   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3457 
3458   // First null-check both mirrors and load each mirror's klass metaobject.
3459   int which_arg;
3460   for (which_arg = 0; which_arg <= 1; which_arg++) {
3461     Node* arg = args[which_arg];
3462     arg = null_check(arg);
3463     if (stopped())  break;
3464     args[which_arg] = arg;
3465 
3466     Node* p = basic_plus_adr(arg, class_klass_offset);
3467     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3468     klasses[which_arg] = _gvn.transform(kls);
3469   }
3470 
3471   // Having loaded both klasses, test each for null.
3472   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3473   for (which_arg = 0; which_arg <= 1; which_arg++) {
3474     Node* kls = klasses[which_arg];
3475     Node* null_ctl = top();
3476     kls = null_check_oop(kls, &null_ctl, never_see_null);
3477     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3478     region->init_req(prim_path, null_ctl);
3479     if (stopped())  break;
3480     klasses[which_arg] = kls;
3481   }
3482 
3483   if (!stopped()) {
3484     // now we have two reference types, in klasses[0..1]
3485     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3486     Node* superk = klasses[0];  // the receiver
3487     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3488     // now we have a successful reference subtype check
3489     region->set_req(_ref_subtype_path, control());
3490   }
3491 
3492   // If both operands are primitive (both klasses null), then
3493   // we must return true when they are identical primitives.
3494   // It is convenient to test this after the first null klass check.
3495   set_control(region->in(_prim_0_path)); // go back to first null check
3496   if (!stopped()) {
3497     // Since superc is primitive, make a guard for the superc==subc case.
3498     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3499     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3500     generate_guard(bol_eq, region, PROB_FAIR);
3501     if (region->req() == PATH_LIMIT+1) {
3502       // A guard was added.  If the added guard is taken, superc==subc.
3503       region->swap_edges(PATH_LIMIT, _prim_same_path);
3504       region->del_req(PATH_LIMIT);
3505     }
3506     region->set_req(_prim_0_path, control()); // Not equal after all.
3507   }
3508 
3509   // these are the only paths that produce 'true':
3510   phi->set_req(_prim_same_path,   intcon(1));
3511   phi->set_req(_ref_subtype_path, intcon(1));
3512 
3513   // pull together the cases:
3514   assert(region->req() == PATH_LIMIT, "sane region");
3515   for (uint i = 1; i < region->req(); i++) {
3516     Node* ctl = region->in(i);
3517     if (ctl == NULL || ctl == top()) {
3518       region->set_req(i, top());
3519       phi   ->set_req(i, top());
3520     } else if (phi->in(i) == NULL) {
3521       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3522     }
3523   }
3524 
3525   set_control(_gvn.transform(region));
3526   set_result(_gvn.transform(phi));
3527   return true;
3528 }
3529 
3530 //---------------------generate_array_guard_common------------------------
3531 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3532                                                   bool obj_array, bool not_array) {
3533 
3534   if (stopped()) {
3535     return NULL;
3536   }
3537 
3538   // If obj_array/non_array==false/false:
3539   // Branch around if the given klass is in fact an array (either obj or prim).
3540   // If obj_array/non_array==false/true:
3541   // Branch around if the given klass is not an array klass of any kind.
3542   // If obj_array/non_array==true/true:
3543   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3544   // If obj_array/non_array==true/false:
3545   // Branch around if the kls is an oop array (Object[] or subtype)
3546   //
3547   // Like generate_guard, adds a new path onto the region.
3548   jint  layout_con = 0;
3549   Node* layout_val = get_layout_helper(kls, layout_con);
3550   if (layout_val == NULL) {
3551     bool query = (obj_array
3552                   ? Klass::layout_helper_is_objArray(layout_con)
3553                   : Klass::layout_helper_is_array(layout_con));
3554     if (query == not_array) {
3555       return NULL;                       // never a branch
3556     } else {                             // always a branch
3557       Node* always_branch = control();
3558       if (region != NULL)
3559         region->add_req(always_branch);
3560       set_control(top());
3561       return always_branch;
3562     }
3563   }
3564   // Now test the correct condition.
3565   jint  nval = (obj_array
3566                 ? ((jint)Klass::_lh_array_tag_type_value
3567                    <<    Klass::_lh_array_tag_shift)
3568                 : Klass::_lh_neutral_value);
3569   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3570   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3571   // invert the test if we are looking for a non-array
3572   if (not_array)  btest = BoolTest(btest).negate();
3573   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3574   return generate_fair_guard(bol, region);
3575 }
3576 
3577 
3578 //-----------------------inline_native_newArray--------------------------
3579 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3580 bool LibraryCallKit::inline_native_newArray() {
3581   Node* mirror    = argument(0);
3582   Node* count_val = argument(1);
3583 
3584   mirror = null_check(mirror);
3585   // If mirror or obj is dead, only null-path is taken.
3586   if (stopped())  return true;
3587 
3588   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3589   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3590   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3591   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3592   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3593 
3594   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3595   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3596                                                   result_reg, _slow_path);
3597   Node* normal_ctl   = control();
3598   Node* no_array_ctl = result_reg->in(_slow_path);
3599 
3600   // Generate code for the slow case.  We make a call to newArray().
3601   set_control(no_array_ctl);
3602   if (!stopped()) {
3603     // Either the input type is void.class, or else the
3604     // array klass has not yet been cached.  Either the
3605     // ensuing call will throw an exception, or else it
3606     // will cache the array klass for next time.
3607     PreserveJVMState pjvms(this);
3608     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3609     Node* slow_result = set_results_for_java_call(slow_call);
3610     // this->control() comes from set_results_for_java_call
3611     result_reg->set_req(_slow_path, control());
3612     result_val->set_req(_slow_path, slow_result);
3613     result_io ->set_req(_slow_path, i_o());
3614     result_mem->set_req(_slow_path, reset_memory());
3615   }
3616 
3617   set_control(normal_ctl);
3618   if (!stopped()) {
3619     // Normal case:  The array type has been cached in the java.lang.Class.
3620     // The following call works fine even if the array type is polymorphic.
3621     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3622     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3623     result_reg->init_req(_normal_path, control());
3624     result_val->init_req(_normal_path, obj);
3625     result_io ->init_req(_normal_path, i_o());
3626     result_mem->init_req(_normal_path, reset_memory());
3627   }
3628 
3629   // Return the combined state.
3630   set_i_o(        _gvn.transform(result_io)  );
3631   set_all_memory( _gvn.transform(result_mem));
3632 
3633   C->set_has_split_ifs(true); // Has chance for split-if optimization
3634   set_result(result_reg, result_val);
3635   return true;
3636 }
3637 
3638 //----------------------inline_native_getLength--------------------------
3639 // public static native int java.lang.reflect.Array.getLength(Object array);
3640 bool LibraryCallKit::inline_native_getLength() {
3641   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3642 
3643   Node* array = null_check(argument(0));
3644   // If array is dead, only null-path is taken.
3645   if (stopped())  return true;
3646 
3647   // Deoptimize if it is a non-array.
3648   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3649 
3650   if (non_array != NULL) {
3651     PreserveJVMState pjvms(this);
3652     set_control(non_array);
3653     uncommon_trap(Deoptimization::Reason_intrinsic,
3654                   Deoptimization::Action_maybe_recompile);
3655   }
3656 
3657   // If control is dead, only non-array-path is taken.
3658   if (stopped())  return true;
3659 
3660   // The works fine even if the array type is polymorphic.
3661   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3662   Node* result = load_array_length(array);
3663 
3664   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3665   set_result(result);
3666   return true;
3667 }
3668 
3669 //------------------------inline_array_copyOf----------------------------
3670 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3671 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3672 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3673   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3674 
3675   // Get the arguments.
3676   Node* original          = argument(0);
3677   Node* start             = is_copyOfRange? argument(1): intcon(0);
3678   Node* end               = is_copyOfRange? argument(2): argument(1);
3679   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3680 
3681   Node* newcopy = NULL;
3682 
3683   // Set the original stack and the reexecute bit for the interpreter to reexecute
3684   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3685   { PreserveReexecuteState preexecs(this);
3686     jvms()->set_should_reexecute(true);
3687 
3688     array_type_mirror = null_check(array_type_mirror);
3689     original          = null_check(original);
3690 
3691     // Check if a null path was taken unconditionally.
3692     if (stopped())  return true;
3693 
3694     Node* orig_length = load_array_length(original);
3695 
3696     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3697     klass_node = null_check(klass_node);
3698 
3699     RegionNode* bailout = new RegionNode(1);
3700     record_for_igvn(bailout);
3701 
3702     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3703     // Bail out if that is so.
3704     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3705     if (not_objArray != NULL) {
3706       // Improve the klass node's type from the new optimistic assumption:
3707       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3708       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3709       Node* cast = new CastPPNode(klass_node, akls);
3710       cast->init_req(0, control());
3711       klass_node = _gvn.transform(cast);
3712     }
3713 
3714     // Bail out if either start or end is negative.
3715     generate_negative_guard(start, bailout, &start);
3716     generate_negative_guard(end,   bailout, &end);
3717 
3718     Node* length = end;
3719     if (_gvn.type(start) != TypeInt::ZERO) {
3720       length = _gvn.transform(new SubINode(end, start));
3721     }
3722 
3723     // Bail out if length is negative.
3724     // Without this the new_array would throw
3725     // NegativeArraySizeException but IllegalArgumentException is what
3726     // should be thrown
3727     generate_negative_guard(length, bailout, &length);
3728 
3729     if (bailout->req() > 1) {
3730       PreserveJVMState pjvms(this);
3731       set_control(_gvn.transform(bailout));
3732       uncommon_trap(Deoptimization::Reason_intrinsic,
3733                     Deoptimization::Action_maybe_recompile);
3734     }
3735 
3736     if (!stopped()) {
3737       // How many elements will we copy from the original?
3738       // The answer is MinI(orig_length - start, length).
3739       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3740       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3741 
3742       // Generate a direct call to the right arraycopy function(s).
3743       // We know the copy is disjoint but we might not know if the
3744       // oop stores need checking.
3745       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3746       // This will fail a store-check if x contains any non-nulls.
3747 
3748       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3749       // loads/stores but it is legal only if we're sure the
3750       // Arrays.copyOf would succeed. So we need all input arguments
3751       // to the copyOf to be validated, including that the copy to the
3752       // new array won't trigger an ArrayStoreException. That subtype
3753       // check can be optimized if we know something on the type of
3754       // the input array from type speculation.
3755       if (_gvn.type(klass_node)->singleton()) {
3756         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3757         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3758 
3759         int test = C->static_subtype_check(superk, subk);
3760         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3761           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3762           if (t_original->speculative_type() != NULL) {
3763             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3764           }
3765         }
3766       }
3767 
3768       bool validated = false;
3769       // Reason_class_check rather than Reason_intrinsic because we
3770       // want to intrinsify even if this traps.
3771       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3772         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3773                                                    klass_node);
3774 
3775         if (not_subtype_ctrl != top()) {
3776           PreserveJVMState pjvms(this);
3777           set_control(not_subtype_ctrl);
3778           uncommon_trap(Deoptimization::Reason_class_check,
3779                         Deoptimization::Action_make_not_entrant);
3780           assert(stopped(), "Should be stopped");
3781         }
3782         validated = true;
3783       }
3784 
3785       if (!stopped()) {
3786         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3787 
3788         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3789                                                 load_object_klass(original), klass_node);
3790         if (!is_copyOfRange) {
3791           ac->set_copyof(validated);
3792         } else {
3793           ac->set_copyofrange(validated);
3794         }
3795         Node* n = _gvn.transform(ac);
3796         if (n == ac) {
3797           ac->connect_outputs(this);
3798         } else {
3799           assert(validated, "shouldn't transform if all arguments not validated");
3800           set_all_memory(n);
3801         }
3802       }
3803     }
3804   } // original reexecute is set back here
3805 
3806   C->set_has_split_ifs(true); // Has chance for split-if optimization
3807   if (!stopped()) {
3808     set_result(newcopy);
3809   }
3810   return true;
3811 }
3812 
3813 
3814 //----------------------generate_virtual_guard---------------------------
3815 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3816 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3817                                              RegionNode* slow_region) {
3818   ciMethod* method = callee();
3819   int vtable_index = method->vtable_index();
3820   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3821          "bad index %d", vtable_index);
3822   // Get the Method* out of the appropriate vtable entry.
3823   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3824                      vtable_index*vtableEntry::size()) * wordSize +
3825                      vtableEntry::method_offset_in_bytes();
3826   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3827   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3828 
3829   // Compare the target method with the expected method (e.g., Object.hashCode).
3830   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3831 
3832   Node* native_call = makecon(native_call_addr);
3833   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3834   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3835 
3836   return generate_slow_guard(test_native, slow_region);
3837 }
3838 
3839 //-----------------------generate_method_call----------------------------
3840 // Use generate_method_call to make a slow-call to the real
3841 // method if the fast path fails.  An alternative would be to
3842 // use a stub like OptoRuntime::slow_arraycopy_Java.
3843 // This only works for expanding the current library call,
3844 // not another intrinsic.  (E.g., don't use this for making an
3845 // arraycopy call inside of the copyOf intrinsic.)
3846 CallJavaNode*
3847 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3848   // When compiling the intrinsic method itself, do not use this technique.
3849   guarantee(callee() != C->method(), "cannot make slow-call to self");
3850 
3851   ciMethod* method = callee();
3852   // ensure the JVMS we have will be correct for this call
3853   guarantee(method_id == method->intrinsic_id(), "must match");
3854 
3855   const TypeFunc* tf = TypeFunc::make(method);
3856   CallJavaNode* slow_call;
3857   if (is_static) {
3858     assert(!is_virtual, "");
3859     slow_call = new CallStaticJavaNode(C, tf,
3860                            SharedRuntime::get_resolve_static_call_stub(),
3861                            method, bci());
3862   } else if (is_virtual) {
3863     null_check_receiver();
3864     int vtable_index = Method::invalid_vtable_index;
3865     if (UseInlineCaches) {
3866       // Suppress the vtable call
3867     } else {
3868       // hashCode and clone are not a miranda methods,
3869       // so the vtable index is fixed.
3870       // No need to use the linkResolver to get it.
3871        vtable_index = method->vtable_index();
3872        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3873               "bad index %d", vtable_index);
3874     }
3875     slow_call = new CallDynamicJavaNode(tf,
3876                           SharedRuntime::get_resolve_virtual_call_stub(),
3877                           method, vtable_index, bci());
3878   } else {  // neither virtual nor static:  opt_virtual
3879     null_check_receiver();
3880     slow_call = new CallStaticJavaNode(C, tf,
3881                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3882                                 method, bci());
3883     slow_call->set_optimized_virtual(true);
3884   }
3885   set_arguments_for_java_call(slow_call);
3886   set_edges_for_java_call(slow_call);
3887   return slow_call;
3888 }
3889 
3890 
3891 /**
3892  * Build special case code for calls to hashCode on an object. This call may
3893  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3894  * slightly different code.
3895  */
3896 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3897   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3898   assert(!(is_virtual && is_static), "either virtual, special, or static");
3899 
3900   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3901 
3902   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3903   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3904   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3905   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3906   Node* obj = NULL;
3907   if (!is_static) {
3908     // Check for hashing null object
3909     obj = null_check_receiver();
3910     if (stopped())  return true;        // unconditionally null
3911     result_reg->init_req(_null_path, top());
3912     result_val->init_req(_null_path, top());
3913   } else {
3914     // Do a null check, and return zero if null.
3915     // System.identityHashCode(null) == 0
3916     obj = argument(0);
3917     Node* null_ctl = top();
3918     obj = null_check_oop(obj, &null_ctl);
3919     result_reg->init_req(_null_path, null_ctl);
3920     result_val->init_req(_null_path, _gvn.intcon(0));
3921   }
3922 
3923   // Unconditionally null?  Then return right away.
3924   if (stopped()) {
3925     set_control( result_reg->in(_null_path));
3926     if (!stopped())
3927       set_result(result_val->in(_null_path));
3928     return true;
3929   }
3930 
3931   // We only go to the fast case code if we pass a number of guards.  The
3932   // paths which do not pass are accumulated in the slow_region.
3933   RegionNode* slow_region = new RegionNode(1);
3934   record_for_igvn(slow_region);
3935 
3936   // If this is a virtual call, we generate a funny guard.  We pull out
3937   // the vtable entry corresponding to hashCode() from the target object.
3938   // If the target method which we are calling happens to be the native
3939   // Object hashCode() method, we pass the guard.  We do not need this
3940   // guard for non-virtual calls -- the caller is known to be the native
3941   // Object hashCode().
3942   if (is_virtual) {
3943     // After null check, get the object's klass.
3944     Node* obj_klass = load_object_klass(obj);
3945     generate_virtual_guard(obj_klass, slow_region);
3946   }
3947 
3948   // Get the header out of the object, use LoadMarkNode when available
3949   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3950   // The control of the load must be NULL. Otherwise, the load can move before
3951   // the null check after castPP removal.
3952   Node* no_ctrl = NULL;
3953   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3954 
3955   // Test the header to see if it is unlocked.
3956   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3957   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
3958   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3959   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
3960   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
3961 
3962   generate_slow_guard(test_unlocked, slow_region);
3963 
3964   // Get the hash value and check to see that it has been properly assigned.
3965   // We depend on hash_mask being at most 32 bits and avoid the use of
3966   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3967   // vm: see markOop.hpp.
3968   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3969   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3970   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
3971   // This hack lets the hash bits live anywhere in the mark object now, as long
3972   // as the shift drops the relevant bits into the low 32 bits.  Note that
3973   // Java spec says that HashCode is an int so there's no point in capturing
3974   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3975   hshifted_header      = ConvX2I(hshifted_header);
3976   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
3977 
3978   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3979   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
3980   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
3981 
3982   generate_slow_guard(test_assigned, slow_region);
3983 
3984   Node* init_mem = reset_memory();
3985   // fill in the rest of the null path:
3986   result_io ->init_req(_null_path, i_o());
3987   result_mem->init_req(_null_path, init_mem);
3988 
3989   result_val->init_req(_fast_path, hash_val);
3990   result_reg->init_req(_fast_path, control());
3991   result_io ->init_req(_fast_path, i_o());
3992   result_mem->init_req(_fast_path, init_mem);
3993 
3994   // Generate code for the slow case.  We make a call to hashCode().
3995   set_control(_gvn.transform(slow_region));
3996   if (!stopped()) {
3997     // No need for PreserveJVMState, because we're using up the present state.
3998     set_all_memory(init_mem);
3999     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4000     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4001     Node* slow_result = set_results_for_java_call(slow_call);
4002     // this->control() comes from set_results_for_java_call
4003     result_reg->init_req(_slow_path, control());
4004     result_val->init_req(_slow_path, slow_result);
4005     result_io  ->set_req(_slow_path, i_o());
4006     result_mem ->set_req(_slow_path, reset_memory());
4007   }
4008 
4009   // Return the combined state.
4010   set_i_o(        _gvn.transform(result_io)  );
4011   set_all_memory( _gvn.transform(result_mem));
4012 
4013   set_result(result_reg, result_val);
4014   return true;
4015 }
4016 
4017 //---------------------------inline_native_getClass----------------------------
4018 // public final native Class<?> java.lang.Object.getClass();
4019 //
4020 // Build special case code for calls to getClass on an object.
4021 bool LibraryCallKit::inline_native_getClass() {
4022   Node* obj = null_check_receiver();
4023   if (stopped())  return true;
4024   set_result(load_mirror_from_klass(load_object_klass(obj)));
4025   return true;
4026 }
4027 
4028 //-----------------inline_native_Reflection_getCallerClass---------------------
4029 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4030 //
4031 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4032 //
4033 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4034 // in that it must skip particular security frames and checks for
4035 // caller sensitive methods.
4036 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4037 #ifndef PRODUCT
4038   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4039     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4040   }
4041 #endif
4042 
4043   if (!jvms()->has_method()) {
4044 #ifndef PRODUCT
4045     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4046       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4047     }
4048 #endif
4049     return false;
4050   }
4051 
4052   // Walk back up the JVM state to find the caller at the required
4053   // depth.
4054   JVMState* caller_jvms = jvms();
4055 
4056   // Cf. JVM_GetCallerClass
4057   // NOTE: Start the loop at depth 1 because the current JVM state does
4058   // not include the Reflection.getCallerClass() frame.
4059   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4060     ciMethod* m = caller_jvms->method();
4061     switch (n) {
4062     case 0:
4063       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4064       break;
4065     case 1:
4066       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4067       if (!m->caller_sensitive()) {
4068 #ifndef PRODUCT
4069         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4070           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4071         }
4072 #endif
4073         return false;  // bail-out; let JVM_GetCallerClass do the work
4074       }
4075       break;
4076     default:
4077       if (!m->is_ignored_by_security_stack_walk()) {
4078         // We have reached the desired frame; return the holder class.
4079         // Acquire method holder as java.lang.Class and push as constant.
4080         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4081         ciInstance* caller_mirror = caller_klass->java_mirror();
4082         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4083 
4084 #ifndef PRODUCT
4085         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4086           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4087           tty->print_cr("  JVM state at this point:");
4088           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4089             ciMethod* m = jvms()->of_depth(i)->method();
4090             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4091           }
4092         }
4093 #endif
4094         return true;
4095       }
4096       break;
4097     }
4098   }
4099 
4100 #ifndef PRODUCT
4101   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4102     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4103     tty->print_cr("  JVM state at this point:");
4104     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4105       ciMethod* m = jvms()->of_depth(i)->method();
4106       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4107     }
4108   }
4109 #endif
4110 
4111   return false;  // bail-out; let JVM_GetCallerClass do the work
4112 }
4113 
4114 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4115   Node* arg = argument(0);
4116   Node* result = NULL;
4117 
4118   switch (id) {
4119   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4120   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4121   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4122   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4123 
4124   case vmIntrinsics::_doubleToLongBits: {
4125     // two paths (plus control) merge in a wood
4126     RegionNode *r = new RegionNode(3);
4127     Node *phi = new PhiNode(r, TypeLong::LONG);
4128 
4129     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4130     // Build the boolean node
4131     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4132 
4133     // Branch either way.
4134     // NaN case is less traveled, which makes all the difference.
4135     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4136     Node *opt_isnan = _gvn.transform(ifisnan);
4137     assert( opt_isnan->is_If(), "Expect an IfNode");
4138     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4139     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4140 
4141     set_control(iftrue);
4142 
4143     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4144     Node *slow_result = longcon(nan_bits); // return NaN
4145     phi->init_req(1, _gvn.transform( slow_result ));
4146     r->init_req(1, iftrue);
4147 
4148     // Else fall through
4149     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4150     set_control(iffalse);
4151 
4152     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4153     r->init_req(2, iffalse);
4154 
4155     // Post merge
4156     set_control(_gvn.transform(r));
4157     record_for_igvn(r);
4158 
4159     C->set_has_split_ifs(true); // Has chance for split-if optimization
4160     result = phi;
4161     assert(result->bottom_type()->isa_long(), "must be");
4162     break;
4163   }
4164 
4165   case vmIntrinsics::_floatToIntBits: {
4166     // two paths (plus control) merge in a wood
4167     RegionNode *r = new RegionNode(3);
4168     Node *phi = new PhiNode(r, TypeInt::INT);
4169 
4170     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4171     // Build the boolean node
4172     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4173 
4174     // Branch either way.
4175     // NaN case is less traveled, which makes all the difference.
4176     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4177     Node *opt_isnan = _gvn.transform(ifisnan);
4178     assert( opt_isnan->is_If(), "Expect an IfNode");
4179     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4180     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4181 
4182     set_control(iftrue);
4183 
4184     static const jint nan_bits = 0x7fc00000;
4185     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4186     phi->init_req(1, _gvn.transform( slow_result ));
4187     r->init_req(1, iftrue);
4188 
4189     // Else fall through
4190     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4191     set_control(iffalse);
4192 
4193     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4194     r->init_req(2, iffalse);
4195 
4196     // Post merge
4197     set_control(_gvn.transform(r));
4198     record_for_igvn(r);
4199 
4200     C->set_has_split_ifs(true); // Has chance for split-if optimization
4201     result = phi;
4202     assert(result->bottom_type()->isa_int(), "must be");
4203     break;
4204   }
4205 
4206   default:
4207     fatal_unexpected_iid(id);
4208     break;
4209   }
4210   set_result(_gvn.transform(result));
4211   return true;
4212 }
4213 
4214 //----------------------inline_unsafe_copyMemory-------------------------
4215 // public native void Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4216 bool LibraryCallKit::inline_unsafe_copyMemory() {
4217   if (callee()->is_static())  return false;  // caller must have the capability!
4218   null_check_receiver();  // null-check receiver
4219   if (stopped())  return true;
4220 
4221   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4222 
4223   Node* src_ptr =         argument(1);   // type: oop
4224   Node* src_off = ConvL2X(argument(2));  // type: long
4225   Node* dst_ptr =         argument(4);   // type: oop
4226   Node* dst_off = ConvL2X(argument(5));  // type: long
4227   Node* size    = ConvL2X(argument(7));  // type: long
4228 
4229   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4230          "fieldOffset must be byte-scaled");
4231 
4232   Node* src = make_unsafe_address(src_ptr, src_off);
4233   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4234 
4235   // Conservatively insert a memory barrier on all memory slices.
4236   // Do not let writes of the copy source or destination float below the copy.
4237   insert_mem_bar(Op_MemBarCPUOrder);
4238 
4239   // Call it.  Note that the length argument is not scaled.
4240   make_runtime_call(RC_LEAF|RC_NO_FP,
4241                     OptoRuntime::fast_arraycopy_Type(),
4242                     StubRoutines::unsafe_arraycopy(),
4243                     "unsafe_arraycopy",
4244                     TypeRawPtr::BOTTOM,
4245                     src, dst, size XTOP);
4246 
4247   // Do not let reads of the copy destination float above the copy.
4248   insert_mem_bar(Op_MemBarCPUOrder);
4249 
4250   return true;
4251 }
4252 
4253 //------------------------clone_coping-----------------------------------
4254 // Helper function for inline_native_clone.
4255 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4256   assert(obj_size != NULL, "");
4257   Node* raw_obj = alloc_obj->in(1);
4258   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4259 
4260   AllocateNode* alloc = NULL;
4261   if (ReduceBulkZeroing) {
4262     // We will be completely responsible for initializing this object -
4263     // mark Initialize node as complete.
4264     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4265     // The object was just allocated - there should be no any stores!
4266     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4267     // Mark as complete_with_arraycopy so that on AllocateNode
4268     // expansion, we know this AllocateNode is initialized by an array
4269     // copy and a StoreStore barrier exists after the array copy.
4270     alloc->initialization()->set_complete_with_arraycopy();
4271   }
4272 
4273   // Copy the fastest available way.
4274   // TODO: generate fields copies for small objects instead.
4275   Node* src  = obj;
4276   Node* dest = alloc_obj;
4277   Node* size = _gvn.transform(obj_size);
4278 
4279   // Exclude the header but include array length to copy by 8 bytes words.
4280   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4281   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4282                             instanceOopDesc::base_offset_in_bytes();
4283   // base_off:
4284   // 8  - 32-bit VM
4285   // 12 - 64-bit VM, compressed klass
4286   // 16 - 64-bit VM, normal klass
4287   if (base_off % BytesPerLong != 0) {
4288     assert(UseCompressedClassPointers, "");
4289     if (is_array) {
4290       // Exclude length to copy by 8 bytes words.
4291       base_off += sizeof(int);
4292     } else {
4293       // Include klass to copy by 8 bytes words.
4294       base_off = instanceOopDesc::klass_offset_in_bytes();
4295     }
4296     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4297   }
4298   src  = basic_plus_adr(src,  base_off);
4299   dest = basic_plus_adr(dest, base_off);
4300 
4301   // Compute the length also, if needed:
4302   Node* countx = size;
4303   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4304   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4305 
4306   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4307 
4308   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4309   ac->set_clonebasic();
4310   Node* n = _gvn.transform(ac);
4311   if (n == ac) {
4312     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4313   } else {
4314     set_all_memory(n);
4315   }
4316 
4317   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4318   if (card_mark) {
4319     assert(!is_array, "");
4320     // Put in store barrier for any and all oops we are sticking
4321     // into this object.  (We could avoid this if we could prove
4322     // that the object type contains no oop fields at all.)
4323     Node* no_particular_value = NULL;
4324     Node* no_particular_field = NULL;
4325     int raw_adr_idx = Compile::AliasIdxRaw;
4326     post_barrier(control(),
4327                  memory(raw_adr_type),
4328                  alloc_obj,
4329                  no_particular_field,
4330                  raw_adr_idx,
4331                  no_particular_value,
4332                  T_OBJECT,
4333                  false);
4334   }
4335 
4336   // Do not let reads from the cloned object float above the arraycopy.
4337   if (alloc != NULL) {
4338     // Do not let stores that initialize this object be reordered with
4339     // a subsequent store that would make this object accessible by
4340     // other threads.
4341     // Record what AllocateNode this StoreStore protects so that
4342     // escape analysis can go from the MemBarStoreStoreNode to the
4343     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4344     // based on the escape status of the AllocateNode.
4345     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4346   } else {
4347     insert_mem_bar(Op_MemBarCPUOrder);
4348   }
4349 }
4350 
4351 //------------------------inline_native_clone----------------------------
4352 // protected native Object java.lang.Object.clone();
4353 //
4354 // Here are the simple edge cases:
4355 //  null receiver => normal trap
4356 //  virtual and clone was overridden => slow path to out-of-line clone
4357 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4358 //
4359 // The general case has two steps, allocation and copying.
4360 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4361 //
4362 // Copying also has two cases, oop arrays and everything else.
4363 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4364 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4365 //
4366 // These steps fold up nicely if and when the cloned object's klass
4367 // can be sharply typed as an object array, a type array, or an instance.
4368 //
4369 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4370   PhiNode* result_val;
4371 
4372   // Set the reexecute bit for the interpreter to reexecute
4373   // the bytecode that invokes Object.clone if deoptimization happens.
4374   { PreserveReexecuteState preexecs(this);
4375     jvms()->set_should_reexecute(true);
4376 
4377     Node* obj = null_check_receiver();
4378     if (stopped())  return true;
4379 
4380     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4381 
4382     // If we are going to clone an instance, we need its exact type to
4383     // know the number and types of fields to convert the clone to
4384     // loads/stores. Maybe a speculative type can help us.
4385     if (!obj_type->klass_is_exact() &&
4386         obj_type->speculative_type() != NULL &&
4387         obj_type->speculative_type()->is_instance_klass()) {
4388       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4389       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4390           !spec_ik->has_injected_fields()) {
4391         ciKlass* k = obj_type->klass();
4392         if (!k->is_instance_klass() ||
4393             k->as_instance_klass()->is_interface() ||
4394             k->as_instance_klass()->has_subklass()) {
4395           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4396         }
4397       }
4398     }
4399 
4400     Node* obj_klass = load_object_klass(obj);
4401     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4402     const TypeOopPtr*   toop   = ((tklass != NULL)
4403                                 ? tklass->as_instance_type()
4404                                 : TypeInstPtr::NOTNULL);
4405 
4406     // Conservatively insert a memory barrier on all memory slices.
4407     // Do not let writes into the original float below the clone.
4408     insert_mem_bar(Op_MemBarCPUOrder);
4409 
4410     // paths into result_reg:
4411     enum {
4412       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4413       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4414       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4415       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4416       PATH_LIMIT
4417     };
4418     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4419     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4420     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4421     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4422     record_for_igvn(result_reg);
4423 
4424     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4425     int raw_adr_idx = Compile::AliasIdxRaw;
4426 
4427     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4428     if (array_ctl != NULL) {
4429       // It's an array.
4430       PreserveJVMState pjvms(this);
4431       set_control(array_ctl);
4432       Node* obj_length = load_array_length(obj);
4433       Node* obj_size  = NULL;
4434       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4435 
4436       if (!use_ReduceInitialCardMarks()) {
4437         // If it is an oop array, it requires very special treatment,
4438         // because card marking is required on each card of the array.
4439         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4440         if (is_obja != NULL) {
4441           PreserveJVMState pjvms2(this);
4442           set_control(is_obja);
4443           // Generate a direct call to the right arraycopy function(s).
4444           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4445           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4446           ac->set_cloneoop();
4447           Node* n = _gvn.transform(ac);
4448           assert(n == ac, "cannot disappear");
4449           ac->connect_outputs(this);
4450 
4451           result_reg->init_req(_objArray_path, control());
4452           result_val->init_req(_objArray_path, alloc_obj);
4453           result_i_o ->set_req(_objArray_path, i_o());
4454           result_mem ->set_req(_objArray_path, reset_memory());
4455         }
4456       }
4457       // Otherwise, there are no card marks to worry about.
4458       // (We can dispense with card marks if we know the allocation
4459       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4460       //  causes the non-eden paths to take compensating steps to
4461       //  simulate a fresh allocation, so that no further
4462       //  card marks are required in compiled code to initialize
4463       //  the object.)
4464 
4465       if (!stopped()) {
4466         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4467 
4468         // Present the results of the copy.
4469         result_reg->init_req(_array_path, control());
4470         result_val->init_req(_array_path, alloc_obj);
4471         result_i_o ->set_req(_array_path, i_o());
4472         result_mem ->set_req(_array_path, reset_memory());
4473       }
4474     }
4475 
4476     // We only go to the instance fast case code if we pass a number of guards.
4477     // The paths which do not pass are accumulated in the slow_region.
4478     RegionNode* slow_region = new RegionNode(1);
4479     record_for_igvn(slow_region);
4480     if (!stopped()) {
4481       // It's an instance (we did array above).  Make the slow-path tests.
4482       // If this is a virtual call, we generate a funny guard.  We grab
4483       // the vtable entry corresponding to clone() from the target object.
4484       // If the target method which we are calling happens to be the
4485       // Object clone() method, we pass the guard.  We do not need this
4486       // guard for non-virtual calls; the caller is known to be the native
4487       // Object clone().
4488       if (is_virtual) {
4489         generate_virtual_guard(obj_klass, slow_region);
4490       }
4491 
4492       // The object must be easily cloneable and must not have a finalizer.
4493       // Both of these conditions may be checked in a single test.
4494       // We could optimize the test further, but we don't care.
4495       generate_access_flags_guard(obj_klass,
4496                                   // Test both conditions:
4497                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4498                                   // Must be cloneable but not finalizer:
4499                                   JVM_ACC_IS_CLONEABLE_FAST,
4500                                   slow_region);
4501     }
4502 
4503     if (!stopped()) {
4504       // It's an instance, and it passed the slow-path tests.
4505       PreserveJVMState pjvms(this);
4506       Node* obj_size  = NULL;
4507       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4508       // is reexecuted if deoptimization occurs and there could be problems when merging
4509       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4510       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4511 
4512       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4513 
4514       // Present the results of the slow call.
4515       result_reg->init_req(_instance_path, control());
4516       result_val->init_req(_instance_path, alloc_obj);
4517       result_i_o ->set_req(_instance_path, i_o());
4518       result_mem ->set_req(_instance_path, reset_memory());
4519     }
4520 
4521     // Generate code for the slow case.  We make a call to clone().
4522     set_control(_gvn.transform(slow_region));
4523     if (!stopped()) {
4524       PreserveJVMState pjvms(this);
4525       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4526       Node* slow_result = set_results_for_java_call(slow_call);
4527       // this->control() comes from set_results_for_java_call
4528       result_reg->init_req(_slow_path, control());
4529       result_val->init_req(_slow_path, slow_result);
4530       result_i_o ->set_req(_slow_path, i_o());
4531       result_mem ->set_req(_slow_path, reset_memory());
4532     }
4533 
4534     // Return the combined state.
4535     set_control(    _gvn.transform(result_reg));
4536     set_i_o(        _gvn.transform(result_i_o));
4537     set_all_memory( _gvn.transform(result_mem));
4538   } // original reexecute is set back here
4539 
4540   set_result(_gvn.transform(result_val));
4541   return true;
4542 }
4543 
4544 // If we have a tighly coupled allocation, the arraycopy may take care
4545 // of the array initialization. If one of the guards we insert between
4546 // the allocation and the arraycopy causes a deoptimization, an
4547 // unitialized array will escape the compiled method. To prevent that
4548 // we set the JVM state for uncommon traps between the allocation and
4549 // the arraycopy to the state before the allocation so, in case of
4550 // deoptimization, we'll reexecute the allocation and the
4551 // initialization.
4552 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4553   if (alloc != NULL) {
4554     ciMethod* trap_method = alloc->jvms()->method();
4555     int trap_bci = alloc->jvms()->bci();
4556 
4557     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4558           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4559       // Make sure there's no store between the allocation and the
4560       // arraycopy otherwise visible side effects could be rexecuted
4561       // in case of deoptimization and cause incorrect execution.
4562       bool no_interfering_store = true;
4563       Node* mem = alloc->in(TypeFunc::Memory);
4564       if (mem->is_MergeMem()) {
4565         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4566           Node* n = mms.memory();
4567           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4568             assert(n->is_Store(), "what else?");
4569             no_interfering_store = false;
4570             break;
4571           }
4572         }
4573       } else {
4574         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4575           Node* n = mms.memory();
4576           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4577             assert(n->is_Store(), "what else?");
4578             no_interfering_store = false;
4579             break;
4580           }
4581         }
4582       }
4583 
4584       if (no_interfering_store) {
4585         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4586         uint size = alloc->req();
4587         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4588         old_jvms->set_map(sfpt);
4589         for (uint i = 0; i < size; i++) {
4590           sfpt->init_req(i, alloc->in(i));
4591         }
4592         // re-push array length for deoptimization
4593         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4594         old_jvms->set_sp(old_jvms->sp()+1);
4595         old_jvms->set_monoff(old_jvms->monoff()+1);
4596         old_jvms->set_scloff(old_jvms->scloff()+1);
4597         old_jvms->set_endoff(old_jvms->endoff()+1);
4598         old_jvms->set_should_reexecute(true);
4599 
4600         sfpt->set_i_o(map()->i_o());
4601         sfpt->set_memory(map()->memory());
4602         sfpt->set_control(map()->control());
4603 
4604         JVMState* saved_jvms = jvms();
4605         saved_reexecute_sp = _reexecute_sp;
4606 
4607         set_jvms(sfpt->jvms());
4608         _reexecute_sp = jvms()->sp();
4609 
4610         return saved_jvms;
4611       }
4612     }
4613   }
4614   return NULL;
4615 }
4616 
4617 // In case of a deoptimization, we restart execution at the
4618 // allocation, allocating a new array. We would leave an uninitialized
4619 // array in the heap that GCs wouldn't expect. Move the allocation
4620 // after the traps so we don't allocate the array if we
4621 // deoptimize. This is possible because tightly_coupled_allocation()
4622 // guarantees there's no observer of the allocated array at this point
4623 // and the control flow is simple enough.
4624 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4625   if (saved_jvms != NULL && !stopped()) {
4626     assert(alloc != NULL, "only with a tightly coupled allocation");
4627     // restore JVM state to the state at the arraycopy
4628     saved_jvms->map()->set_control(map()->control());
4629     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4630     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4631     // If we've improved the types of some nodes (null check) while
4632     // emitting the guards, propagate them to the current state
4633     map()->replaced_nodes().apply(saved_jvms->map());
4634     set_jvms(saved_jvms);
4635     _reexecute_sp = saved_reexecute_sp;
4636 
4637     // Remove the allocation from above the guards
4638     CallProjections callprojs;
4639     alloc->extract_projections(&callprojs, true);
4640     InitializeNode* init = alloc->initialization();
4641     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4642     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4643     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4644     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4645 
4646     // move the allocation here (after the guards)
4647     _gvn.hash_delete(alloc);
4648     alloc->set_req(TypeFunc::Control, control());
4649     alloc->set_req(TypeFunc::I_O, i_o());
4650     Node *mem = reset_memory();
4651     set_all_memory(mem);
4652     alloc->set_req(TypeFunc::Memory, mem);
4653     set_control(init->proj_out(TypeFunc::Control));
4654     set_i_o(callprojs.fallthrough_ioproj);
4655 
4656     // Update memory as done in GraphKit::set_output_for_allocation()
4657     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4658     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4659     if (ary_type->isa_aryptr() && length_type != NULL) {
4660       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4661     }
4662     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4663     int            elemidx  = C->get_alias_index(telemref);
4664     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4665     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4666 
4667     Node* allocx = _gvn.transform(alloc);
4668     assert(allocx == alloc, "where has the allocation gone?");
4669     assert(dest->is_CheckCastPP(), "not an allocation result?");
4670 
4671     _gvn.hash_delete(dest);
4672     dest->set_req(0, control());
4673     Node* destx = _gvn.transform(dest);
4674     assert(destx == dest, "where has the allocation result gone?");
4675   }
4676 }
4677 
4678 
4679 //------------------------------inline_arraycopy-----------------------
4680 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4681 //                                                      Object dest, int destPos,
4682 //                                                      int length);
4683 bool LibraryCallKit::inline_arraycopy() {
4684   // Get the arguments.
4685   Node* src         = argument(0);  // type: oop
4686   Node* src_offset  = argument(1);  // type: int
4687   Node* dest        = argument(2);  // type: oop
4688   Node* dest_offset = argument(3);  // type: int
4689   Node* length      = argument(4);  // type: int
4690 
4691 
4692   // Check for allocation before we add nodes that would confuse
4693   // tightly_coupled_allocation()
4694   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4695 
4696   int saved_reexecute_sp = -1;
4697   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4698   // See arraycopy_restore_alloc_state() comment
4699   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4700   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4701   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4702   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4703 
4704   // The following tests must be performed
4705   // (1) src and dest are arrays.
4706   // (2) src and dest arrays must have elements of the same BasicType
4707   // (3) src and dest must not be null.
4708   // (4) src_offset must not be negative.
4709   // (5) dest_offset must not be negative.
4710   // (6) length must not be negative.
4711   // (7) src_offset + length must not exceed length of src.
4712   // (8) dest_offset + length must not exceed length of dest.
4713   // (9) each element of an oop array must be assignable
4714 
4715   // (3) src and dest must not be null.
4716   // always do this here because we need the JVM state for uncommon traps
4717   Node* null_ctl = top();
4718   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4719   assert(null_ctl->is_top(), "no null control here");
4720   dest = null_check(dest, T_ARRAY);
4721 
4722   if (!can_emit_guards) {
4723     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4724     // guards but the arraycopy node could still take advantage of a
4725     // tightly allocated allocation. tightly_coupled_allocation() is
4726     // called again to make sure it takes the null check above into
4727     // account: the null check is mandatory and if it caused an
4728     // uncommon trap to be emitted then the allocation can't be
4729     // considered tightly coupled in this context.
4730     alloc = tightly_coupled_allocation(dest, NULL);
4731   }
4732 
4733   bool validated = false;
4734 
4735   const Type* src_type  = _gvn.type(src);
4736   const Type* dest_type = _gvn.type(dest);
4737   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4738   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4739 
4740   // Do we have the type of src?
4741   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4742   // Do we have the type of dest?
4743   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4744   // Is the type for src from speculation?
4745   bool src_spec = false;
4746   // Is the type for dest from speculation?
4747   bool dest_spec = false;
4748 
4749   if ((!has_src || !has_dest) && can_emit_guards) {
4750     // We don't have sufficient type information, let's see if
4751     // speculative types can help. We need to have types for both src
4752     // and dest so that it pays off.
4753 
4754     // Do we already have or could we have type information for src
4755     bool could_have_src = has_src;
4756     // Do we already have or could we have type information for dest
4757     bool could_have_dest = has_dest;
4758 
4759     ciKlass* src_k = NULL;
4760     if (!has_src) {
4761       src_k = src_type->speculative_type_not_null();
4762       if (src_k != NULL && src_k->is_array_klass()) {
4763         could_have_src = true;
4764       }
4765     }
4766 
4767     ciKlass* dest_k = NULL;
4768     if (!has_dest) {
4769       dest_k = dest_type->speculative_type_not_null();
4770       if (dest_k != NULL && dest_k->is_array_klass()) {
4771         could_have_dest = true;
4772       }
4773     }
4774 
4775     if (could_have_src && could_have_dest) {
4776       // This is going to pay off so emit the required guards
4777       if (!has_src) {
4778         src = maybe_cast_profiled_obj(src, src_k, true);
4779         src_type  = _gvn.type(src);
4780         top_src  = src_type->isa_aryptr();
4781         has_src = (top_src != NULL && top_src->klass() != NULL);
4782         src_spec = true;
4783       }
4784       if (!has_dest) {
4785         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4786         dest_type  = _gvn.type(dest);
4787         top_dest  = dest_type->isa_aryptr();
4788         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4789         dest_spec = true;
4790       }
4791     }
4792   }
4793 
4794   if (has_src && has_dest && can_emit_guards) {
4795     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4796     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4797     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4798     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4799 
4800     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4801       // If both arrays are object arrays then having the exact types
4802       // for both will remove the need for a subtype check at runtime
4803       // before the call and may make it possible to pick a faster copy
4804       // routine (without a subtype check on every element)
4805       // Do we have the exact type of src?
4806       bool could_have_src = src_spec;
4807       // Do we have the exact type of dest?
4808       bool could_have_dest = dest_spec;
4809       ciKlass* src_k = top_src->klass();
4810       ciKlass* dest_k = top_dest->klass();
4811       if (!src_spec) {
4812         src_k = src_type->speculative_type_not_null();
4813         if (src_k != NULL && src_k->is_array_klass()) {
4814           could_have_src = true;
4815         }
4816       }
4817       if (!dest_spec) {
4818         dest_k = dest_type->speculative_type_not_null();
4819         if (dest_k != NULL && dest_k->is_array_klass()) {
4820           could_have_dest = true;
4821         }
4822       }
4823       if (could_have_src && could_have_dest) {
4824         // If we can have both exact types, emit the missing guards
4825         if (could_have_src && !src_spec) {
4826           src = maybe_cast_profiled_obj(src, src_k, true);
4827         }
4828         if (could_have_dest && !dest_spec) {
4829           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4830         }
4831       }
4832     }
4833   }
4834 
4835   ciMethod* trap_method = method();
4836   int trap_bci = bci();
4837   if (saved_jvms != NULL) {
4838     trap_method = alloc->jvms()->method();
4839     trap_bci = alloc->jvms()->bci();
4840   }
4841 
4842   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4843       can_emit_guards &&
4844       !src->is_top() && !dest->is_top()) {
4845     // validate arguments: enables transformation the ArrayCopyNode
4846     validated = true;
4847 
4848     RegionNode* slow_region = new RegionNode(1);
4849     record_for_igvn(slow_region);
4850 
4851     // (1) src and dest are arrays.
4852     generate_non_array_guard(load_object_klass(src), slow_region);
4853     generate_non_array_guard(load_object_klass(dest), slow_region);
4854 
4855     // (2) src and dest arrays must have elements of the same BasicType
4856     // done at macro expansion or at Ideal transformation time
4857 
4858     // (4) src_offset must not be negative.
4859     generate_negative_guard(src_offset, slow_region);
4860 
4861     // (5) dest_offset must not be negative.
4862     generate_negative_guard(dest_offset, slow_region);
4863 
4864     // (7) src_offset + length must not exceed length of src.
4865     generate_limit_guard(src_offset, length,
4866                          load_array_length(src),
4867                          slow_region);
4868 
4869     // (8) dest_offset + length must not exceed length of dest.
4870     generate_limit_guard(dest_offset, length,
4871                          load_array_length(dest),
4872                          slow_region);
4873 
4874     // (9) each element of an oop array must be assignable
4875     Node* src_klass  = load_object_klass(src);
4876     Node* dest_klass = load_object_klass(dest);
4877     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4878 
4879     if (not_subtype_ctrl != top()) {
4880       PreserveJVMState pjvms(this);
4881       set_control(not_subtype_ctrl);
4882       uncommon_trap(Deoptimization::Reason_intrinsic,
4883                     Deoptimization::Action_make_not_entrant);
4884       assert(stopped(), "Should be stopped");
4885     }
4886     {
4887       PreserveJVMState pjvms(this);
4888       set_control(_gvn.transform(slow_region));
4889       uncommon_trap(Deoptimization::Reason_intrinsic,
4890                     Deoptimization::Action_make_not_entrant);
4891       assert(stopped(), "Should be stopped");
4892     }
4893   }
4894 
4895   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
4896 
4897   if (stopped()) {
4898     return true;
4899   }
4900 
4901   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4902                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4903                                           // so the compiler has a chance to eliminate them: during macro expansion,
4904                                           // we have to set their control (CastPP nodes are eliminated).
4905                                           load_object_klass(src), load_object_klass(dest),
4906                                           load_array_length(src), load_array_length(dest));
4907 
4908   ac->set_arraycopy(validated);
4909 
4910   Node* n = _gvn.transform(ac);
4911   if (n == ac) {
4912     ac->connect_outputs(this);
4913   } else {
4914     assert(validated, "shouldn't transform if all arguments not validated");
4915     set_all_memory(n);
4916   }
4917 
4918   return true;
4919 }
4920 
4921 
4922 // Helper function which determines if an arraycopy immediately follows
4923 // an allocation, with no intervening tests or other escapes for the object.
4924 AllocateArrayNode*
4925 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4926                                            RegionNode* slow_region) {
4927   if (stopped())             return NULL;  // no fast path
4928   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4929 
4930   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4931   if (alloc == NULL)  return NULL;
4932 
4933   Node* rawmem = memory(Compile::AliasIdxRaw);
4934   // Is the allocation's memory state untouched?
4935   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4936     // Bail out if there have been raw-memory effects since the allocation.
4937     // (Example:  There might have been a call or safepoint.)
4938     return NULL;
4939   }
4940   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4941   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4942     return NULL;
4943   }
4944 
4945   // There must be no unexpected observers of this allocation.
4946   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4947     Node* obs = ptr->fast_out(i);
4948     if (obs != this->map()) {
4949       return NULL;
4950     }
4951   }
4952 
4953   // This arraycopy must unconditionally follow the allocation of the ptr.
4954   Node* alloc_ctl = ptr->in(0);
4955   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4956 
4957   Node* ctl = control();
4958   while (ctl != alloc_ctl) {
4959     // There may be guards which feed into the slow_region.
4960     // Any other control flow means that we might not get a chance
4961     // to finish initializing the allocated object.
4962     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4963       IfNode* iff = ctl->in(0)->as_If();
4964       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4965       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4966       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4967         ctl = iff->in(0);       // This test feeds the known slow_region.
4968         continue;
4969       }
4970       // One more try:  Various low-level checks bottom out in
4971       // uncommon traps.  If the debug-info of the trap omits
4972       // any reference to the allocation, as we've already
4973       // observed, then there can be no objection to the trap.
4974       bool found_trap = false;
4975       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4976         Node* obs = not_ctl->fast_out(j);
4977         if (obs->in(0) == not_ctl && obs->is_Call() &&
4978             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4979           found_trap = true; break;
4980         }
4981       }
4982       if (found_trap) {
4983         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4984         continue;
4985       }
4986     }
4987     return NULL;
4988   }
4989 
4990   // If we get this far, we have an allocation which immediately
4991   // precedes the arraycopy, and we can take over zeroing the new object.
4992   // The arraycopy will finish the initialization, and provide
4993   // a new control state to which we will anchor the destination pointer.
4994 
4995   return alloc;
4996 }
4997 
4998 //-------------inline_encodeISOArray-----------------------------------
4999 // encode char[] to byte[] in ISO_8859_1
5000 bool LibraryCallKit::inline_encodeISOArray() {
5001   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5002   // no receiver since it is static method
5003   Node *src         = argument(0);
5004   Node *src_offset  = argument(1);
5005   Node *dst         = argument(2);
5006   Node *dst_offset  = argument(3);
5007   Node *length      = argument(4);
5008 
5009   const Type* src_type = src->Value(&_gvn);
5010   const Type* dst_type = dst->Value(&_gvn);
5011   const TypeAryPtr* top_src = src_type->isa_aryptr();
5012   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5013   if (top_src  == NULL || top_src->klass()  == NULL ||
5014       top_dest == NULL || top_dest->klass() == NULL) {
5015     // failed array check
5016     return false;
5017   }
5018 
5019   // Figure out the size and type of the elements we will be copying.
5020   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5021   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5022   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5023     return false;
5024   }
5025 
5026   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5027   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5028   // 'src_start' points to src array + scaled offset
5029   // 'dst_start' points to dst array + scaled offset
5030 
5031   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5032   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5033   enc = _gvn.transform(enc);
5034   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5035   set_memory(res_mem, mtype);
5036   set_result(enc);
5037   return true;
5038 }
5039 
5040 //-------------inline_multiplyToLen-----------------------------------
5041 bool LibraryCallKit::inline_multiplyToLen() {
5042   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5043 
5044   address stubAddr = StubRoutines::multiplyToLen();
5045   if (stubAddr == NULL) {
5046     return false; // Intrinsic's stub is not implemented on this platform
5047   }
5048   const char* stubName = "multiplyToLen";
5049 
5050   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5051 
5052   // no receiver because it is a static method
5053   Node* x    = argument(0);
5054   Node* xlen = argument(1);
5055   Node* y    = argument(2);
5056   Node* ylen = argument(3);
5057   Node* z    = argument(4);
5058 
5059   const Type* x_type = x->Value(&_gvn);
5060   const Type* y_type = y->Value(&_gvn);
5061   const TypeAryPtr* top_x = x_type->isa_aryptr();
5062   const TypeAryPtr* top_y = y_type->isa_aryptr();
5063   if (top_x  == NULL || top_x->klass()  == NULL ||
5064       top_y == NULL || top_y->klass() == NULL) {
5065     // failed array check
5066     return false;
5067   }
5068 
5069   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5070   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5071   if (x_elem != T_INT || y_elem != T_INT) {
5072     return false;
5073   }
5074 
5075   // Set the original stack and the reexecute bit for the interpreter to reexecute
5076   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5077   // on the return from z array allocation in runtime.
5078   { PreserveReexecuteState preexecs(this);
5079     jvms()->set_should_reexecute(true);
5080 
5081     Node* x_start = array_element_address(x, intcon(0), x_elem);
5082     Node* y_start = array_element_address(y, intcon(0), y_elem);
5083     // 'x_start' points to x array + scaled xlen
5084     // 'y_start' points to y array + scaled ylen
5085 
5086     // Allocate the result array
5087     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5088     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5089     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5090 
5091     IdealKit ideal(this);
5092 
5093 #define __ ideal.
5094      Node* one = __ ConI(1);
5095      Node* zero = __ ConI(0);
5096      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5097      __ set(need_alloc, zero);
5098      __ set(z_alloc, z);
5099      __ if_then(z, BoolTest::eq, null()); {
5100        __ increment (need_alloc, one);
5101      } __ else_(); {
5102        // Update graphKit memory and control from IdealKit.
5103        sync_kit(ideal);
5104        Node* zlen_arg = load_array_length(z);
5105        // Update IdealKit memory and control from graphKit.
5106        __ sync_kit(this);
5107        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5108          __ increment (need_alloc, one);
5109        } __ end_if();
5110      } __ end_if();
5111 
5112      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5113        // Update graphKit memory and control from IdealKit.
5114        sync_kit(ideal);
5115        Node * narr = new_array(klass_node, zlen, 1);
5116        // Update IdealKit memory and control from graphKit.
5117        __ sync_kit(this);
5118        __ set(z_alloc, narr);
5119      } __ end_if();
5120 
5121      sync_kit(ideal);
5122      z = __ value(z_alloc);
5123      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5124      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5125      // Final sync IdealKit and GraphKit.
5126      final_sync(ideal);
5127 #undef __
5128 
5129     Node* z_start = array_element_address(z, intcon(0), T_INT);
5130 
5131     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5132                                    OptoRuntime::multiplyToLen_Type(),
5133                                    stubAddr, stubName, TypePtr::BOTTOM,
5134                                    x_start, xlen, y_start, ylen, z_start, zlen);
5135   } // original reexecute is set back here
5136 
5137   C->set_has_split_ifs(true); // Has chance for split-if optimization
5138   set_result(z);
5139   return true;
5140 }
5141 
5142 //-------------inline_squareToLen------------------------------------
5143 bool LibraryCallKit::inline_squareToLen() {
5144   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5145 
5146   address stubAddr = StubRoutines::squareToLen();
5147   if (stubAddr == NULL) {
5148     return false; // Intrinsic's stub is not implemented on this platform
5149   }
5150   const char* stubName = "squareToLen";
5151 
5152   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5153 
5154   Node* x    = argument(0);
5155   Node* len  = argument(1);
5156   Node* z    = argument(2);
5157   Node* zlen = argument(3);
5158 
5159   const Type* x_type = x->Value(&_gvn);
5160   const Type* z_type = z->Value(&_gvn);
5161   const TypeAryPtr* top_x = x_type->isa_aryptr();
5162   const TypeAryPtr* top_z = z_type->isa_aryptr();
5163   if (top_x  == NULL || top_x->klass()  == NULL ||
5164       top_z  == NULL || top_z->klass()  == NULL) {
5165     // failed array check
5166     return false;
5167   }
5168 
5169   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5170   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5171   if (x_elem != T_INT || z_elem != T_INT) {
5172     return false;
5173   }
5174 
5175 
5176   Node* x_start = array_element_address(x, intcon(0), x_elem);
5177   Node* z_start = array_element_address(z, intcon(0), z_elem);
5178 
5179   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5180                                   OptoRuntime::squareToLen_Type(),
5181                                   stubAddr, stubName, TypePtr::BOTTOM,
5182                                   x_start, len, z_start, zlen);
5183 
5184   set_result(z);
5185   return true;
5186 }
5187 
5188 //-------------inline_mulAdd------------------------------------------
5189 bool LibraryCallKit::inline_mulAdd() {
5190   assert(UseMulAddIntrinsic, "not implemented on this platform");
5191 
5192   address stubAddr = StubRoutines::mulAdd();
5193   if (stubAddr == NULL) {
5194     return false; // Intrinsic's stub is not implemented on this platform
5195   }
5196   const char* stubName = "mulAdd";
5197 
5198   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5199 
5200   Node* out      = argument(0);
5201   Node* in       = argument(1);
5202   Node* offset   = argument(2);
5203   Node* len      = argument(3);
5204   Node* k        = argument(4);
5205 
5206   const Type* out_type = out->Value(&_gvn);
5207   const Type* in_type = in->Value(&_gvn);
5208   const TypeAryPtr* top_out = out_type->isa_aryptr();
5209   const TypeAryPtr* top_in = in_type->isa_aryptr();
5210   if (top_out  == NULL || top_out->klass()  == NULL ||
5211       top_in == NULL || top_in->klass() == NULL) {
5212     // failed array check
5213     return false;
5214   }
5215 
5216   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5217   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5218   if (out_elem != T_INT || in_elem != T_INT) {
5219     return false;
5220   }
5221 
5222   Node* outlen = load_array_length(out);
5223   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5224   Node* out_start = array_element_address(out, intcon(0), out_elem);
5225   Node* in_start = array_element_address(in, intcon(0), in_elem);
5226 
5227   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5228                                   OptoRuntime::mulAdd_Type(),
5229                                   stubAddr, stubName, TypePtr::BOTTOM,
5230                                   out_start,in_start, new_offset, len, k);
5231   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5232   set_result(result);
5233   return true;
5234 }
5235 
5236 //-------------inline_montgomeryMultiply-----------------------------------
5237 bool LibraryCallKit::inline_montgomeryMultiply() {
5238   address stubAddr = StubRoutines::montgomeryMultiply();
5239   if (stubAddr == NULL) {
5240     return false; // Intrinsic's stub is not implemented on this platform
5241   }
5242 
5243   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5244   const char* stubName = "montgomery_square";
5245 
5246   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5247 
5248   Node* a    = argument(0);
5249   Node* b    = argument(1);
5250   Node* n    = argument(2);
5251   Node* len  = argument(3);
5252   Node* inv  = argument(4);
5253   Node* m    = argument(6);
5254 
5255   const Type* a_type = a->Value(&_gvn);
5256   const TypeAryPtr* top_a = a_type->isa_aryptr();
5257   const Type* b_type = b->Value(&_gvn);
5258   const TypeAryPtr* top_b = b_type->isa_aryptr();
5259   const Type* n_type = a->Value(&_gvn);
5260   const TypeAryPtr* top_n = n_type->isa_aryptr();
5261   const Type* m_type = a->Value(&_gvn);
5262   const TypeAryPtr* top_m = m_type->isa_aryptr();
5263   if (top_a  == NULL || top_a->klass()  == NULL ||
5264       top_b == NULL || top_b->klass()  == NULL ||
5265       top_n == NULL || top_n->klass()  == NULL ||
5266       top_m == NULL || top_m->klass()  == NULL) {
5267     // failed array check
5268     return false;
5269   }
5270 
5271   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5272   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5273   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5274   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5275   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5276     return false;
5277   }
5278 
5279   // Make the call
5280   {
5281     Node* a_start = array_element_address(a, intcon(0), a_elem);
5282     Node* b_start = array_element_address(b, intcon(0), b_elem);
5283     Node* n_start = array_element_address(n, intcon(0), n_elem);
5284     Node* m_start = array_element_address(m, intcon(0), m_elem);
5285 
5286     Node* call = make_runtime_call(RC_LEAF,
5287                                    OptoRuntime::montgomeryMultiply_Type(),
5288                                    stubAddr, stubName, TypePtr::BOTTOM,
5289                                    a_start, b_start, n_start, len, inv, top(),
5290                                    m_start);
5291     set_result(m);
5292   }
5293 
5294   return true;
5295 }
5296 
5297 bool LibraryCallKit::inline_montgomerySquare() {
5298   address stubAddr = StubRoutines::montgomerySquare();
5299   if (stubAddr == NULL) {
5300     return false; // Intrinsic's stub is not implemented on this platform
5301   }
5302 
5303   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5304   const char* stubName = "montgomery_square";
5305 
5306   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5307 
5308   Node* a    = argument(0);
5309   Node* n    = argument(1);
5310   Node* len  = argument(2);
5311   Node* inv  = argument(3);
5312   Node* m    = argument(5);
5313 
5314   const Type* a_type = a->Value(&_gvn);
5315   const TypeAryPtr* top_a = a_type->isa_aryptr();
5316   const Type* n_type = a->Value(&_gvn);
5317   const TypeAryPtr* top_n = n_type->isa_aryptr();
5318   const Type* m_type = a->Value(&_gvn);
5319   const TypeAryPtr* top_m = m_type->isa_aryptr();
5320   if (top_a  == NULL || top_a->klass()  == NULL ||
5321       top_n == NULL || top_n->klass()  == NULL ||
5322       top_m == NULL || top_m->klass()  == NULL) {
5323     // failed array check
5324     return false;
5325   }
5326 
5327   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5328   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5329   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5330   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5331     return false;
5332   }
5333 
5334   // Make the call
5335   {
5336     Node* a_start = array_element_address(a, intcon(0), a_elem);
5337     Node* n_start = array_element_address(n, intcon(0), n_elem);
5338     Node* m_start = array_element_address(m, intcon(0), m_elem);
5339 
5340     Node* call = make_runtime_call(RC_LEAF,
5341                                    OptoRuntime::montgomerySquare_Type(),
5342                                    stubAddr, stubName, TypePtr::BOTTOM,
5343                                    a_start, n_start, len, inv, top(),
5344                                    m_start);
5345     set_result(m);
5346   }
5347 
5348   return true;
5349 }
5350 
5351 //-------------inline_vectorizedMismatch------------------------------
5352 bool LibraryCallKit::inline_vectorizedMismatch() {
5353   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5354 
5355   address stubAddr = StubRoutines::vectorizedMismatch();
5356   if (stubAddr == NULL) {
5357     return false; // Intrinsic's stub is not implemented on this platform
5358   }
5359   const char* stubName = "vectorizedMismatch";
5360   int size_l = callee()->signature()->size();
5361   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5362 
5363   Node* obja = argument(0);
5364   Node* aoffset = argument(1);
5365   Node* objb = argument(3);
5366   Node* boffset = argument(4);
5367   Node* length = argument(6);
5368   Node* scale = argument(7);
5369 
5370   const Type* a_type = obja->Value(&_gvn);
5371   const Type* b_type = objb->Value(&_gvn);
5372   const TypeAryPtr* top_a = a_type->isa_aryptr();
5373   const TypeAryPtr* top_b = b_type->isa_aryptr();
5374   if (top_a == NULL || top_a->klass() == NULL ||
5375     top_b == NULL || top_b->klass() == NULL) {
5376     // failed array check
5377     return false;
5378   }
5379 
5380   Node* call;
5381   jvms()->set_should_reexecute(true);
5382 
5383   Node* obja_adr = make_unsafe_address(obja, aoffset);
5384   Node* objb_adr = make_unsafe_address(objb, boffset);
5385 
5386   call = make_runtime_call(RC_LEAF,
5387     OptoRuntime::vectorizedMismatch_Type(),
5388     stubAddr, stubName, TypePtr::BOTTOM,
5389     obja_adr, objb_adr, length, scale);
5390 
5391   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5392   set_result(result);
5393   return true;
5394 }
5395 
5396 /**
5397  * Calculate CRC32 for byte.
5398  * int java.util.zip.CRC32.update(int crc, int b)
5399  */
5400 bool LibraryCallKit::inline_updateCRC32() {
5401   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5402   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5403   // no receiver since it is static method
5404   Node* crc  = argument(0); // type: int
5405   Node* b    = argument(1); // type: int
5406 
5407   /*
5408    *    int c = ~ crc;
5409    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5410    *    b = b ^ (c >>> 8);
5411    *    crc = ~b;
5412    */
5413 
5414   Node* M1 = intcon(-1);
5415   crc = _gvn.transform(new XorINode(crc, M1));
5416   Node* result = _gvn.transform(new XorINode(crc, b));
5417   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5418 
5419   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5420   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5421   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5422   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5423 
5424   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5425   result = _gvn.transform(new XorINode(crc, result));
5426   result = _gvn.transform(new XorINode(result, M1));
5427   set_result(result);
5428   return true;
5429 }
5430 
5431 /**
5432  * Calculate CRC32 for byte[] array.
5433  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5434  */
5435 bool LibraryCallKit::inline_updateBytesCRC32() {
5436   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5437   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5438   // no receiver since it is static method
5439   Node* crc     = argument(0); // type: int
5440   Node* src     = argument(1); // type: oop
5441   Node* offset  = argument(2); // type: int
5442   Node* length  = argument(3); // type: int
5443 
5444   const Type* src_type = src->Value(&_gvn);
5445   const TypeAryPtr* top_src = src_type->isa_aryptr();
5446   if (top_src  == NULL || top_src->klass()  == NULL) {
5447     // failed array check
5448     return false;
5449   }
5450 
5451   // Figure out the size and type of the elements we will be copying.
5452   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5453   if (src_elem != T_BYTE) {
5454     return false;
5455   }
5456 
5457   // 'src_start' points to src array + scaled offset
5458   Node* src_start = array_element_address(src, offset, src_elem);
5459 
5460   // We assume that range check is done by caller.
5461   // TODO: generate range check (offset+length < src.length) in debug VM.
5462 
5463   // Call the stub.
5464   address stubAddr = StubRoutines::updateBytesCRC32();
5465   const char *stubName = "updateBytesCRC32";
5466 
5467   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5468                                  stubAddr, stubName, TypePtr::BOTTOM,
5469                                  crc, src_start, length);
5470   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5471   set_result(result);
5472   return true;
5473 }
5474 
5475 /**
5476  * Calculate CRC32 for ByteBuffer.
5477  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5478  */
5479 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5480   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5481   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5482   // no receiver since it is static method
5483   Node* crc     = argument(0); // type: int
5484   Node* src     = argument(1); // type: long
5485   Node* offset  = argument(3); // type: int
5486   Node* length  = argument(4); // type: int
5487 
5488   src = ConvL2X(src);  // adjust Java long to machine word
5489   Node* base = _gvn.transform(new CastX2PNode(src));
5490   offset = ConvI2X(offset);
5491 
5492   // 'src_start' points to src array + scaled offset
5493   Node* src_start = basic_plus_adr(top(), base, offset);
5494 
5495   // Call the stub.
5496   address stubAddr = StubRoutines::updateBytesCRC32();
5497   const char *stubName = "updateBytesCRC32";
5498 
5499   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5500                                  stubAddr, stubName, TypePtr::BOTTOM,
5501                                  crc, src_start, length);
5502   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5503   set_result(result);
5504   return true;
5505 }
5506 
5507 //------------------------------get_table_from_crc32c_class-----------------------
5508 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5509   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5510   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5511 
5512   return table;
5513 }
5514 
5515 //------------------------------inline_updateBytesCRC32C-----------------------
5516 //
5517 // Calculate CRC32C for byte[] array.
5518 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5519 //
5520 bool LibraryCallKit::inline_updateBytesCRC32C() {
5521   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5522   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5523   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5524   // no receiver since it is a static method
5525   Node* crc     = argument(0); // type: int
5526   Node* src     = argument(1); // type: oop
5527   Node* offset  = argument(2); // type: int
5528   Node* end     = argument(3); // type: int
5529 
5530   Node* length = _gvn.transform(new SubINode(end, offset));
5531 
5532   const Type* src_type = src->Value(&_gvn);
5533   const TypeAryPtr* top_src = src_type->isa_aryptr();
5534   if (top_src  == NULL || top_src->klass()  == NULL) {
5535     // failed array check
5536     return false;
5537   }
5538 
5539   // Figure out the size and type of the elements we will be copying.
5540   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5541   if (src_elem != T_BYTE) {
5542     return false;
5543   }
5544 
5545   // 'src_start' points to src array + scaled offset
5546   Node* src_start = array_element_address(src, offset, src_elem);
5547 
5548   // static final int[] byteTable in class CRC32C
5549   Node* table = get_table_from_crc32c_class(callee()->holder());
5550   Node* table_start = array_element_address(table, intcon(0), T_INT);
5551 
5552   // We assume that range check is done by caller.
5553   // TODO: generate range check (offset+length < src.length) in debug VM.
5554 
5555   // Call the stub.
5556   address stubAddr = StubRoutines::updateBytesCRC32C();
5557   const char *stubName = "updateBytesCRC32C";
5558 
5559   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5560                                  stubAddr, stubName, TypePtr::BOTTOM,
5561                                  crc, src_start, length, table_start);
5562   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5563   set_result(result);
5564   return true;
5565 }
5566 
5567 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5568 //
5569 // Calculate CRC32C for DirectByteBuffer.
5570 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5571 //
5572 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5573   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5574   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5575   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5576   // no receiver since it is a static method
5577   Node* crc     = argument(0); // type: int
5578   Node* src     = argument(1); // type: long
5579   Node* offset  = argument(3); // type: int
5580   Node* end     = argument(4); // type: int
5581 
5582   Node* length = _gvn.transform(new SubINode(end, offset));
5583 
5584   src = ConvL2X(src);  // adjust Java long to machine word
5585   Node* base = _gvn.transform(new CastX2PNode(src));
5586   offset = ConvI2X(offset);
5587 
5588   // 'src_start' points to src array + scaled offset
5589   Node* src_start = basic_plus_adr(top(), base, offset);
5590 
5591   // static final int[] byteTable in class CRC32C
5592   Node* table = get_table_from_crc32c_class(callee()->holder());
5593   Node* table_start = array_element_address(table, intcon(0), T_INT);
5594 
5595   // Call the stub.
5596   address stubAddr = StubRoutines::updateBytesCRC32C();
5597   const char *stubName = "updateBytesCRC32C";
5598 
5599   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5600                                  stubAddr, stubName, TypePtr::BOTTOM,
5601                                  crc, src_start, length, table_start);
5602   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5603   set_result(result);
5604   return true;
5605 }
5606 
5607 //------------------------------inline_updateBytesAdler32----------------------
5608 //
5609 // Calculate Adler32 checksum for byte[] array.
5610 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5611 //
5612 bool LibraryCallKit::inline_updateBytesAdler32() {
5613   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5614   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5615   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5616   // no receiver since it is static method
5617   Node* crc     = argument(0); // type: int
5618   Node* src     = argument(1); // type: oop
5619   Node* offset  = argument(2); // type: int
5620   Node* length  = argument(3); // type: int
5621 
5622   const Type* src_type = src->Value(&_gvn);
5623   const TypeAryPtr* top_src = src_type->isa_aryptr();
5624   if (top_src  == NULL || top_src->klass()  == NULL) {
5625     // failed array check
5626     return false;
5627   }
5628 
5629   // Figure out the size and type of the elements we will be copying.
5630   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5631   if (src_elem != T_BYTE) {
5632     return false;
5633   }
5634 
5635   // 'src_start' points to src array + scaled offset
5636   Node* src_start = array_element_address(src, offset, src_elem);
5637 
5638   // We assume that range check is done by caller.
5639   // TODO: generate range check (offset+length < src.length) in debug VM.
5640 
5641   // Call the stub.
5642   address stubAddr = StubRoutines::updateBytesAdler32();
5643   const char *stubName = "updateBytesAdler32";
5644 
5645   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5646                                  stubAddr, stubName, TypePtr::BOTTOM,
5647                                  crc, src_start, length);
5648   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5649   set_result(result);
5650   return true;
5651 }
5652 
5653 //------------------------------inline_updateByteBufferAdler32---------------
5654 //
5655 // Calculate Adler32 checksum for DirectByteBuffer.
5656 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5657 //
5658 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5659   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5660   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5661   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5662   // no receiver since it is static method
5663   Node* crc     = argument(0); // type: int
5664   Node* src     = argument(1); // type: long
5665   Node* offset  = argument(3); // type: int
5666   Node* length  = argument(4); // type: int
5667 
5668   src = ConvL2X(src);  // adjust Java long to machine word
5669   Node* base = _gvn.transform(new CastX2PNode(src));
5670   offset = ConvI2X(offset);
5671 
5672   // 'src_start' points to src array + scaled offset
5673   Node* src_start = basic_plus_adr(top(), base, offset);
5674 
5675   // Call the stub.
5676   address stubAddr = StubRoutines::updateBytesAdler32();
5677   const char *stubName = "updateBytesAdler32";
5678 
5679   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5680                                  stubAddr, stubName, TypePtr::BOTTOM,
5681                                  crc, src_start, length);
5682 
5683   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5684   set_result(result);
5685   return true;
5686 }
5687 
5688 //----------------------------inline_reference_get----------------------------
5689 // public T java.lang.ref.Reference.get();
5690 bool LibraryCallKit::inline_reference_get() {
5691   const int referent_offset = java_lang_ref_Reference::referent_offset;
5692   guarantee(referent_offset > 0, "should have already been set");
5693 
5694   // Get the argument:
5695   Node* reference_obj = null_check_receiver();
5696   if (stopped()) return true;
5697 
5698   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5699 
5700   ciInstanceKlass* klass = env()->Object_klass();
5701   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5702 
5703   Node* no_ctrl = NULL;
5704   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5705 
5706   // Use the pre-barrier to record the value in the referent field
5707   pre_barrier(false /* do_load */,
5708               control(),
5709               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5710               result /* pre_val */,
5711               T_OBJECT);
5712 
5713   // Add memory barrier to prevent commoning reads from this field
5714   // across safepoint since GC can change its value.
5715   insert_mem_bar(Op_MemBarCPUOrder);
5716 
5717   set_result(result);
5718   return true;
5719 }
5720 
5721 
5722 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5723                                               bool is_exact=true, bool is_static=false,
5724                                               ciInstanceKlass * fromKls=NULL) {
5725   if (fromKls == NULL) {
5726     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5727     assert(tinst != NULL, "obj is null");
5728     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5729     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5730     fromKls = tinst->klass()->as_instance_klass();
5731   } else {
5732     assert(is_static, "only for static field access");
5733   }
5734   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5735                                               ciSymbol::make(fieldTypeString),
5736                                               is_static);
5737 
5738   assert (field != NULL, "undefined field");
5739   if (field == NULL) return (Node *) NULL;
5740 
5741   if (is_static) {
5742     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5743     fromObj = makecon(tip);
5744   }
5745 
5746   // Next code  copied from Parse::do_get_xxx():
5747 
5748   // Compute address and memory type.
5749   int offset  = field->offset_in_bytes();
5750   bool is_vol = field->is_volatile();
5751   ciType* field_klass = field->type();
5752   assert(field_klass->is_loaded(), "should be loaded");
5753   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5754   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5755   BasicType bt = field->layout_type();
5756 
5757   // Build the resultant type of the load
5758   const Type *type;
5759   if (bt == T_OBJECT) {
5760     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5761   } else {
5762     type = Type::get_const_basic_type(bt);
5763   }
5764 
5765   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5766     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5767   }
5768   // Build the load.
5769   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5770   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5771   // If reference is volatile, prevent following memory ops from
5772   // floating up past the volatile read.  Also prevents commoning
5773   // another volatile read.
5774   if (is_vol) {
5775     // Memory barrier includes bogus read of value to force load BEFORE membar
5776     insert_mem_bar(Op_MemBarAcquire, loadedField);
5777   }
5778   return loadedField;
5779 }
5780 
5781 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5782                                                  bool is_exact = true, bool is_static = false,
5783                                                  ciInstanceKlass * fromKls = NULL) {
5784   if (fromKls == NULL) {
5785     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5786     assert(tinst != NULL, "obj is null");
5787     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5788     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5789     fromKls = tinst->klass()->as_instance_klass();
5790   }
5791   else {
5792     assert(is_static, "only for static field access");
5793   }
5794   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5795     ciSymbol::make(fieldTypeString),
5796     is_static);
5797 
5798   assert(field != NULL, "undefined field");
5799   assert(!field->is_volatile(), "not defined for volatile fields");
5800 
5801   if (is_static) {
5802     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5803     fromObj = makecon(tip);
5804   }
5805 
5806   // Next code  copied from Parse::do_get_xxx():
5807 
5808   // Compute address and memory type.
5809   int offset = field->offset_in_bytes();
5810   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5811 
5812   return adr;
5813 }
5814 
5815 //------------------------------inline_aescrypt_Block-----------------------
5816 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5817   address stubAddr = NULL;
5818   const char *stubName;
5819   assert(UseAES, "need AES instruction support");
5820 
5821   switch(id) {
5822   case vmIntrinsics::_aescrypt_encryptBlock:
5823     stubAddr = StubRoutines::aescrypt_encryptBlock();
5824     stubName = "aescrypt_encryptBlock";
5825     break;
5826   case vmIntrinsics::_aescrypt_decryptBlock:
5827     stubAddr = StubRoutines::aescrypt_decryptBlock();
5828     stubName = "aescrypt_decryptBlock";
5829     break;
5830   }
5831   if (stubAddr == NULL) return false;
5832 
5833   Node* aescrypt_object = argument(0);
5834   Node* src             = argument(1);
5835   Node* src_offset      = argument(2);
5836   Node* dest            = argument(3);
5837   Node* dest_offset     = argument(4);
5838 
5839   // (1) src and dest are arrays.
5840   const Type* src_type = src->Value(&_gvn);
5841   const Type* dest_type = dest->Value(&_gvn);
5842   const TypeAryPtr* top_src = src_type->isa_aryptr();
5843   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5844   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5845 
5846   // for the quick and dirty code we will skip all the checks.
5847   // we are just trying to get the call to be generated.
5848   Node* src_start  = src;
5849   Node* dest_start = dest;
5850   if (src_offset != NULL || dest_offset != NULL) {
5851     assert(src_offset != NULL && dest_offset != NULL, "");
5852     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5853     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5854   }
5855 
5856   // now need to get the start of its expanded key array
5857   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5858   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5859   if (k_start == NULL) return false;
5860 
5861   if (Matcher::pass_original_key_for_aes()) {
5862     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5863     // compatibility issues between Java key expansion and SPARC crypto instructions
5864     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5865     if (original_k_start == NULL) return false;
5866 
5867     // Call the stub.
5868     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5869                       stubAddr, stubName, TypePtr::BOTTOM,
5870                       src_start, dest_start, k_start, original_k_start);
5871   } else {
5872     // Call the stub.
5873     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5874                       stubAddr, stubName, TypePtr::BOTTOM,
5875                       src_start, dest_start, k_start);
5876   }
5877 
5878   return true;
5879 }
5880 
5881 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5882 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5883   address stubAddr = NULL;
5884   const char *stubName = NULL;
5885 
5886   assert(UseAES, "need AES instruction support");
5887 
5888   switch(id) {
5889   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5890     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5891     stubName = "cipherBlockChaining_encryptAESCrypt";
5892     break;
5893   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5894     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5895     stubName = "cipherBlockChaining_decryptAESCrypt";
5896     break;
5897   }
5898   if (stubAddr == NULL) return false;
5899 
5900   Node* cipherBlockChaining_object = argument(0);
5901   Node* src                        = argument(1);
5902   Node* src_offset                 = argument(2);
5903   Node* len                        = argument(3);
5904   Node* dest                       = argument(4);
5905   Node* dest_offset                = argument(5);
5906 
5907   // (1) src and dest are arrays.
5908   const Type* src_type = src->Value(&_gvn);
5909   const Type* dest_type = dest->Value(&_gvn);
5910   const TypeAryPtr* top_src = src_type->isa_aryptr();
5911   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5912   assert (top_src  != NULL && top_src->klass()  != NULL
5913           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5914 
5915   // checks are the responsibility of the caller
5916   Node* src_start  = src;
5917   Node* dest_start = dest;
5918   if (src_offset != NULL || dest_offset != NULL) {
5919     assert(src_offset != NULL && dest_offset != NULL, "");
5920     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5921     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5922   }
5923 
5924   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5925   // (because of the predicated logic executed earlier).
5926   // so we cast it here safely.
5927   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5928 
5929   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5930   if (embeddedCipherObj == NULL) return false;
5931 
5932   // cast it to what we know it will be at runtime
5933   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5934   assert(tinst != NULL, "CBC obj is null");
5935   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5936   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5937   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5938 
5939   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5940   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5941   const TypeOopPtr* xtype = aklass->as_instance_type();
5942   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5943   aescrypt_object = _gvn.transform(aescrypt_object);
5944 
5945   // we need to get the start of the aescrypt_object's expanded key array
5946   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5947   if (k_start == NULL) return false;
5948 
5949   // similarly, get the start address of the r vector
5950   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5951   if (objRvec == NULL) return false;
5952   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5953 
5954   Node* cbcCrypt;
5955   if (Matcher::pass_original_key_for_aes()) {
5956     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5957     // compatibility issues between Java key expansion and SPARC crypto instructions
5958     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5959     if (original_k_start == NULL) return false;
5960 
5961     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5962     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5963                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5964                                  stubAddr, stubName, TypePtr::BOTTOM,
5965                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5966   } else {
5967     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5968     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5969                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5970                                  stubAddr, stubName, TypePtr::BOTTOM,
5971                                  src_start, dest_start, k_start, r_start, len);
5972   }
5973 
5974   // return cipher length (int)
5975   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5976   set_result(retvalue);
5977   return true;
5978 }
5979 
5980 //------------------------------inline_counterMode_AESCrypt-----------------------
5981 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
5982   assert(UseAES, "need AES instruction support");
5983   if (!UseAESCTRIntrinsics) return false;
5984 
5985   address stubAddr = NULL;
5986   const char *stubName = NULL;
5987   if (id == vmIntrinsics::_counterMode_AESCrypt) {
5988     stubAddr = StubRoutines::counterMode_AESCrypt();
5989     stubName = "counterMode_AESCrypt";
5990   }
5991   if (stubAddr == NULL) return false;
5992 
5993   Node* counterMode_object = argument(0);
5994   Node* src = argument(1);
5995   Node* src_offset = argument(2);
5996   Node* len = argument(3);
5997   Node* dest = argument(4);
5998   Node* dest_offset = argument(5);
5999 
6000   // (1) src and dest are arrays.
6001   const Type* src_type = src->Value(&_gvn);
6002   const Type* dest_type = dest->Value(&_gvn);
6003   const TypeAryPtr* top_src = src_type->isa_aryptr();
6004   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6005   assert(top_src != NULL && top_src->klass() != NULL &&
6006          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6007 
6008   // checks are the responsibility of the caller
6009   Node* src_start = src;
6010   Node* dest_start = dest;
6011   if (src_offset != NULL || dest_offset != NULL) {
6012     assert(src_offset != NULL && dest_offset != NULL, "");
6013     src_start = array_element_address(src, src_offset, T_BYTE);
6014     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6015   }
6016 
6017   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6018   // (because of the predicated logic executed earlier).
6019   // so we cast it here safely.
6020   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6021   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6022   if (embeddedCipherObj == NULL) return false;
6023   // cast it to what we know it will be at runtime
6024   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6025   assert(tinst != NULL, "CTR obj is null");
6026   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6027   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6028   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6029   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6030   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6031   const TypeOopPtr* xtype = aklass->as_instance_type();
6032   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6033   aescrypt_object = _gvn.transform(aescrypt_object);
6034   // we need to get the start of the aescrypt_object's expanded key array
6035   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6036   if (k_start == NULL) return false;
6037   // similarly, get the start address of the r vector
6038   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6039   if (obj_counter == NULL) return false;
6040   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6041 
6042   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6043   if (saved_encCounter == NULL) return false;
6044   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6045   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6046 
6047   Node* ctrCrypt;
6048   if (Matcher::pass_original_key_for_aes()) {
6049     // no SPARC version for AES/CTR intrinsics now.
6050     return false;
6051   }
6052   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6053   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6054                                OptoRuntime::counterMode_aescrypt_Type(),
6055                                stubAddr, stubName, TypePtr::BOTTOM,
6056                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6057 
6058   // return cipher length (int)
6059   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6060   set_result(retvalue);
6061   return true;
6062 }
6063 
6064 //------------------------------get_key_start_from_aescrypt_object-----------------------
6065 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6066   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6067   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6068   if (objAESCryptKey == NULL) return (Node *) NULL;
6069 
6070   // now have the array, need to get the start address of the K array
6071   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6072   return k_start;
6073 }
6074 
6075 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6076 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6077   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6078   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6079   if (objAESCryptKey == NULL) return (Node *) NULL;
6080 
6081   // now have the array, need to get the start address of the lastKey array
6082   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6083   return original_k_start;
6084 }
6085 
6086 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6087 // Return node representing slow path of predicate check.
6088 // the pseudo code we want to emulate with this predicate is:
6089 // for encryption:
6090 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6091 // for decryption:
6092 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6093 //    note cipher==plain is more conservative than the original java code but that's OK
6094 //
6095 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6096   // The receiver was checked for NULL already.
6097   Node* objCBC = argument(0);
6098 
6099   // Load embeddedCipher field of CipherBlockChaining object.
6100   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6101 
6102   // get AESCrypt klass for instanceOf check
6103   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6104   // will have same classloader as CipherBlockChaining object
6105   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6106   assert(tinst != NULL, "CBCobj is null");
6107   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6108 
6109   // we want to do an instanceof comparison against the AESCrypt class
6110   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6111   if (!klass_AESCrypt->is_loaded()) {
6112     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6113     Node* ctrl = control();
6114     set_control(top()); // no regular fast path
6115     return ctrl;
6116   }
6117   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6118 
6119   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6120   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6121   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6122 
6123   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6124 
6125   // for encryption, we are done
6126   if (!decrypting)
6127     return instof_false;  // even if it is NULL
6128 
6129   // for decryption, we need to add a further check to avoid
6130   // taking the intrinsic path when cipher and plain are the same
6131   // see the original java code for why.
6132   RegionNode* region = new RegionNode(3);
6133   region->init_req(1, instof_false);
6134   Node* src = argument(1);
6135   Node* dest = argument(4);
6136   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6137   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6138   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6139   region->init_req(2, src_dest_conjoint);
6140 
6141   record_for_igvn(region);
6142   return _gvn.transform(region);
6143 }
6144 
6145 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6146 // Return node representing slow path of predicate check.
6147 // the pseudo code we want to emulate with this predicate is:
6148 // for encryption:
6149 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6150 // for decryption:
6151 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6152 //    note cipher==plain is more conservative than the original java code but that's OK
6153 //
6154 
6155 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6156   // The receiver was checked for NULL already.
6157   Node* objCTR = argument(0);
6158 
6159   // Load embeddedCipher field of CipherBlockChaining object.
6160   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6161 
6162   // get AESCrypt klass for instanceOf check
6163   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6164   // will have same classloader as CipherBlockChaining object
6165   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6166   assert(tinst != NULL, "CTRobj is null");
6167   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6168 
6169   // we want to do an instanceof comparison against the AESCrypt class
6170   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6171   if (!klass_AESCrypt->is_loaded()) {
6172     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6173     Node* ctrl = control();
6174     set_control(top()); // no regular fast path
6175     return ctrl;
6176   }
6177 
6178   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6179   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6180   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6181   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6182   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6183 
6184   return instof_false; // even if it is NULL
6185 }
6186 
6187 //------------------------------inline_ghash_processBlocks
6188 bool LibraryCallKit::inline_ghash_processBlocks() {
6189   address stubAddr;
6190   const char *stubName;
6191   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6192 
6193   stubAddr = StubRoutines::ghash_processBlocks();
6194   stubName = "ghash_processBlocks";
6195 
6196   Node* data           = argument(0);
6197   Node* offset         = argument(1);
6198   Node* len            = argument(2);
6199   Node* state          = argument(3);
6200   Node* subkeyH        = argument(4);
6201 
6202   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6203   assert(state_start, "state is NULL");
6204   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6205   assert(subkeyH_start, "subkeyH is NULL");
6206   Node* data_start  = array_element_address(data, offset, T_BYTE);
6207   assert(data_start, "data is NULL");
6208 
6209   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6210                                   OptoRuntime::ghash_processBlocks_Type(),
6211                                   stubAddr, stubName, TypePtr::BOTTOM,
6212                                   state_start, subkeyH_start, data_start, len);
6213   return true;
6214 }
6215 
6216 //------------------------------inline_sha_implCompress-----------------------
6217 //
6218 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6219 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6220 //
6221 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6222 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6223 //
6224 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6225 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6226 //
6227 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6228   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6229 
6230   Node* sha_obj = argument(0);
6231   Node* src     = argument(1); // type oop
6232   Node* ofs     = argument(2); // type int
6233 
6234   const Type* src_type = src->Value(&_gvn);
6235   const TypeAryPtr* top_src = src_type->isa_aryptr();
6236   if (top_src  == NULL || top_src->klass()  == NULL) {
6237     // failed array check
6238     return false;
6239   }
6240   // Figure out the size and type of the elements we will be copying.
6241   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6242   if (src_elem != T_BYTE) {
6243     return false;
6244   }
6245   // 'src_start' points to src array + offset
6246   Node* src_start = array_element_address(src, ofs, src_elem);
6247   Node* state = NULL;
6248   address stubAddr;
6249   const char *stubName;
6250 
6251   switch(id) {
6252   case vmIntrinsics::_sha_implCompress:
6253     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6254     state = get_state_from_sha_object(sha_obj);
6255     stubAddr = StubRoutines::sha1_implCompress();
6256     stubName = "sha1_implCompress";
6257     break;
6258   case vmIntrinsics::_sha2_implCompress:
6259     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6260     state = get_state_from_sha_object(sha_obj);
6261     stubAddr = StubRoutines::sha256_implCompress();
6262     stubName = "sha256_implCompress";
6263     break;
6264   case vmIntrinsics::_sha5_implCompress:
6265     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6266     state = get_state_from_sha5_object(sha_obj);
6267     stubAddr = StubRoutines::sha512_implCompress();
6268     stubName = "sha512_implCompress";
6269     break;
6270   default:
6271     fatal_unexpected_iid(id);
6272     return false;
6273   }
6274   if (state == NULL) return false;
6275 
6276   // Call the stub.
6277   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6278                                  stubAddr, stubName, TypePtr::BOTTOM,
6279                                  src_start, state);
6280 
6281   return true;
6282 }
6283 
6284 //------------------------------inline_digestBase_implCompressMB-----------------------
6285 //
6286 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6287 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6288 //
6289 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6290   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6291          "need SHA1/SHA256/SHA512 instruction support");
6292   assert((uint)predicate < 3, "sanity");
6293   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6294 
6295   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6296   Node* src            = argument(1); // byte[] array
6297   Node* ofs            = argument(2); // type int
6298   Node* limit          = argument(3); // type int
6299 
6300   const Type* src_type = src->Value(&_gvn);
6301   const TypeAryPtr* top_src = src_type->isa_aryptr();
6302   if (top_src  == NULL || top_src->klass()  == NULL) {
6303     // failed array check
6304     return false;
6305   }
6306   // Figure out the size and type of the elements we will be copying.
6307   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6308   if (src_elem != T_BYTE) {
6309     return false;
6310   }
6311   // 'src_start' points to src array + offset
6312   Node* src_start = array_element_address(src, ofs, src_elem);
6313 
6314   const char* klass_SHA_name = NULL;
6315   const char* stub_name = NULL;
6316   address     stub_addr = NULL;
6317   bool        long_state = false;
6318 
6319   switch (predicate) {
6320   case 0:
6321     if (UseSHA1Intrinsics) {
6322       klass_SHA_name = "sun/security/provider/SHA";
6323       stub_name = "sha1_implCompressMB";
6324       stub_addr = StubRoutines::sha1_implCompressMB();
6325     }
6326     break;
6327   case 1:
6328     if (UseSHA256Intrinsics) {
6329       klass_SHA_name = "sun/security/provider/SHA2";
6330       stub_name = "sha256_implCompressMB";
6331       stub_addr = StubRoutines::sha256_implCompressMB();
6332     }
6333     break;
6334   case 2:
6335     if (UseSHA512Intrinsics) {
6336       klass_SHA_name = "sun/security/provider/SHA5";
6337       stub_name = "sha512_implCompressMB";
6338       stub_addr = StubRoutines::sha512_implCompressMB();
6339       long_state = true;
6340     }
6341     break;
6342   default:
6343     fatal("unknown SHA intrinsic predicate: %d", predicate);
6344   }
6345   if (klass_SHA_name != NULL) {
6346     // get DigestBase klass to lookup for SHA klass
6347     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6348     assert(tinst != NULL, "digestBase_obj is not instance???");
6349     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6350 
6351     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6352     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6353     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6354     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6355   }
6356   return false;
6357 }
6358 //------------------------------inline_sha_implCompressMB-----------------------
6359 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6360                                                bool long_state, address stubAddr, const char *stubName,
6361                                                Node* src_start, Node* ofs, Node* limit) {
6362   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6363   const TypeOopPtr* xtype = aklass->as_instance_type();
6364   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6365   sha_obj = _gvn.transform(sha_obj);
6366 
6367   Node* state;
6368   if (long_state) {
6369     state = get_state_from_sha5_object(sha_obj);
6370   } else {
6371     state = get_state_from_sha_object(sha_obj);
6372   }
6373   if (state == NULL) return false;
6374 
6375   // Call the stub.
6376   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6377                                  OptoRuntime::digestBase_implCompressMB_Type(),
6378                                  stubAddr, stubName, TypePtr::BOTTOM,
6379                                  src_start, state, ofs, limit);
6380   // return ofs (int)
6381   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6382   set_result(result);
6383 
6384   return true;
6385 }
6386 
6387 //------------------------------get_state_from_sha_object-----------------------
6388 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6389   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6390   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6391   if (sha_state == NULL) return (Node *) NULL;
6392 
6393   // now have the array, need to get the start address of the state array
6394   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6395   return state;
6396 }
6397 
6398 //------------------------------get_state_from_sha5_object-----------------------
6399 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6400   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6401   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6402   if (sha_state == NULL) return (Node *) NULL;
6403 
6404   // now have the array, need to get the start address of the state array
6405   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6406   return state;
6407 }
6408 
6409 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6410 // Return node representing slow path of predicate check.
6411 // the pseudo code we want to emulate with this predicate is:
6412 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6413 //
6414 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6415   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6416          "need SHA1/SHA256/SHA512 instruction support");
6417   assert((uint)predicate < 3, "sanity");
6418 
6419   // The receiver was checked for NULL already.
6420   Node* digestBaseObj = argument(0);
6421 
6422   // get DigestBase klass for instanceOf check
6423   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6424   assert(tinst != NULL, "digestBaseObj is null");
6425   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6426 
6427   const char* klass_SHA_name = NULL;
6428   switch (predicate) {
6429   case 0:
6430     if (UseSHA1Intrinsics) {
6431       // we want to do an instanceof comparison against the SHA class
6432       klass_SHA_name = "sun/security/provider/SHA";
6433     }
6434     break;
6435   case 1:
6436     if (UseSHA256Intrinsics) {
6437       // we want to do an instanceof comparison against the SHA2 class
6438       klass_SHA_name = "sun/security/provider/SHA2";
6439     }
6440     break;
6441   case 2:
6442     if (UseSHA512Intrinsics) {
6443       // we want to do an instanceof comparison against the SHA5 class
6444       klass_SHA_name = "sun/security/provider/SHA5";
6445     }
6446     break;
6447   default:
6448     fatal("unknown SHA intrinsic predicate: %d", predicate);
6449   }
6450 
6451   ciKlass* klass_SHA = NULL;
6452   if (klass_SHA_name != NULL) {
6453     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6454   }
6455   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6456     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6457     Node* ctrl = control();
6458     set_control(top()); // no intrinsic path
6459     return ctrl;
6460   }
6461   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6462 
6463   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6464   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6465   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6466   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6467 
6468   return instof_false;  // even if it is NULL
6469 }
6470 
6471 bool LibraryCallKit::inline_profileBoolean() {
6472   Node* counts = argument(1);
6473   const TypeAryPtr* ary = NULL;
6474   ciArray* aobj = NULL;
6475   if (counts->is_Con()
6476       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6477       && (aobj = ary->const_oop()->as_array()) != NULL
6478       && (aobj->length() == 2)) {
6479     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6480     jint false_cnt = aobj->element_value(0).as_int();
6481     jint  true_cnt = aobj->element_value(1).as_int();
6482 
6483     if (C->log() != NULL) {
6484       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6485                      false_cnt, true_cnt);
6486     }
6487 
6488     if (false_cnt + true_cnt == 0) {
6489       // According to profile, never executed.
6490       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6491                           Deoptimization::Action_reinterpret);
6492       return true;
6493     }
6494 
6495     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6496     // is a number of each value occurrences.
6497     Node* result = argument(0);
6498     if (false_cnt == 0 || true_cnt == 0) {
6499       // According to profile, one value has been never seen.
6500       int expected_val = (false_cnt == 0) ? 1 : 0;
6501 
6502       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6503       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6504 
6505       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6506       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6507       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6508 
6509       { // Slow path: uncommon trap for never seen value and then reexecute
6510         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6511         // the value has been seen at least once.
6512         PreserveJVMState pjvms(this);
6513         PreserveReexecuteState preexecs(this);
6514         jvms()->set_should_reexecute(true);
6515 
6516         set_control(slow_path);
6517         set_i_o(i_o());
6518 
6519         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6520                             Deoptimization::Action_reinterpret);
6521       }
6522       // The guard for never seen value enables sharpening of the result and
6523       // returning a constant. It allows to eliminate branches on the same value
6524       // later on.
6525       set_control(fast_path);
6526       result = intcon(expected_val);
6527     }
6528     // Stop profiling.
6529     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6530     // By replacing method body with profile data (represented as ProfileBooleanNode
6531     // on IR level) we effectively disable profiling.
6532     // It enables full speed execution once optimized code is generated.
6533     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6534     C->record_for_igvn(profile);
6535     set_result(profile);
6536     return true;
6537   } else {
6538     // Continue profiling.
6539     // Profile data isn't available at the moment. So, execute method's bytecode version.
6540     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6541     // is compiled and counters aren't available since corresponding MethodHandle
6542     // isn't a compile-time constant.
6543     return false;
6544   }
6545 }
6546 
6547 bool LibraryCallKit::inline_isCompileConstant() {
6548   Node* n = argument(0);
6549   set_result(n->is_Con() ? intcon(1) : intcon(0));
6550   return true;
6551 }
6552 
6553 bool LibraryCallKit::inline_deoptimize() {
6554   assert(WhiteBoxAPI, "");
6555   PreserveReexecuteState preexecs(this);
6556   jvms()->set_should_reexecute(false);
6557   uncommon_trap(Deoptimization::Reason_intrinsic,
6558                 Deoptimization::Action_none);
6559   return true;
6560 }