1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/atomic.inline.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/interfaceSupport.hpp"
  33 #include "runtime/mutexLocker.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/objectMonitor.inline.hpp"
  36 #include "runtime/orderAccess.inline.hpp"
  37 #include "runtime/osThread.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 #include "services/threadService.hpp"
  41 #include "trace/tracing.hpp"
  42 #include "trace/traceMacros.hpp"
  43 #include "utilities/dtrace.hpp"
  44 #include "utilities/macros.hpp"
  45 #include "utilities/preserveException.hpp"
  46 
  47 #ifdef DTRACE_ENABLED
  48 
  49 // Only bother with this argument setup if dtrace is available
  50 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  51 
  52 
  53 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  54   char* bytes = NULL;                                                      \
  55   int len = 0;                                                             \
  56   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  57   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  58   if (klassname != NULL) {                                                 \
  59     bytes = (char*)klassname->bytes();                                     \
  60     len = klassname->utf8_length();                                        \
  61   }
  62 
  63 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  64   {                                                                        \
  65     if (DTraceMonitorProbes) {                                             \
  66       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  67       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  68                            (monitor), bytes, len, (millis));               \
  69     }                                                                      \
  70   }
  71 
  72 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  73 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  74 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  75 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  76 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  77 
  78 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  79   {                                                                        \
  80     if (DTraceMonitorProbes) {                                             \
  81       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  82       HOTSPOT_MONITOR_##probe(jtid,                                        \
  83                               (uintptr_t)(monitor), bytes, len);           \
  84     }                                                                      \
  85   }
  86 
  87 #else //  ndef DTRACE_ENABLED
  88 
  89 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  90 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  91 
  92 #endif // ndef DTRACE_ENABLED
  93 
  94 // Tunables ...
  95 // The knob* variables are effectively final.  Once set they should
  96 // never be modified hence.  Consider using __read_mostly with GCC.
  97 
  98 int ObjectMonitor::Knob_ExitRelease = 0;
  99 int ObjectMonitor::Knob_Verbose     = 0;
 100 int ObjectMonitor::Knob_VerifyInUse = 0;
 101 int ObjectMonitor::Knob_VerifyMatch = 0;
 102 int ObjectMonitor::Knob_SpinLimit   = 5000;    // derived by an external tool -
 103 static int Knob_LogSpins            = 0;       // enable jvmstat tally for spins
 104 static int Knob_HandOff             = 0;
 105 static int Knob_ReportSettings      = 0;
 106 
 107 static int Knob_SpinBase            = 0;       // Floor AKA SpinMin
 108 static int Knob_SpinBackOff         = 0;       // spin-loop backoff
 109 static int Knob_CASPenalty          = -1;      // Penalty for failed CAS
 110 static int Knob_OXPenalty           = -1;      // Penalty for observed _owner change
 111 static int Knob_SpinSetSucc         = 1;       // spinners set the _succ field
 112 static int Knob_SpinEarly           = 1;
 113 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 114 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 115 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 116 static int Knob_Bonus               = 100;     // spin success bonus
 117 static int Knob_BonusB              = 100;     // spin success bonus
 118 static int Knob_Penalty             = 200;     // spin failure penalty
 119 static int Knob_Poverty             = 1000;
 120 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 121 static int Knob_FixedSpin           = 0;
 122 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 123 static int Knob_UsePause            = 1;
 124 static int Knob_ExitPolicy          = 0;
 125 static int Knob_PreSpin             = 10;      // 20-100 likely better
 126 static int Knob_ResetEvent          = 0;
 127 static int BackOffMask              = 0;
 128 
 129 static int Knob_FastHSSEC           = 0;
 130 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 131 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 132 static volatile int InitDone        = 0;
 133 
 134 #define TrySpin TrySpin_VaryDuration
 135 
 136 // -----------------------------------------------------------------------------
 137 // Theory of operations -- Monitors lists, thread residency, etc:
 138 //
 139 // * A thread acquires ownership of a monitor by successfully
 140 //   CAS()ing the _owner field from null to non-null.
 141 //
 142 // * Invariant: A thread appears on at most one monitor list --
 143 //   cxq, EntryList or WaitSet -- at any one time.
 144 //
 145 // * Contending threads "push" themselves onto the cxq with CAS
 146 //   and then spin/park.
 147 //
 148 // * After a contending thread eventually acquires the lock it must
 149 //   dequeue itself from either the EntryList or the cxq.
 150 //
 151 // * The exiting thread identifies and unparks an "heir presumptive"
 152 //   tentative successor thread on the EntryList.  Critically, the
 153 //   exiting thread doesn't unlink the successor thread from the EntryList.
 154 //   After having been unparked, the wakee will recontend for ownership of
 155 //   the monitor.   The successor (wakee) will either acquire the lock or
 156 //   re-park itself.
 157 //
 158 //   Succession is provided for by a policy of competitive handoff.
 159 //   The exiting thread does _not_ grant or pass ownership to the
 160 //   successor thread.  (This is also referred to as "handoff" succession").
 161 //   Instead the exiting thread releases ownership and possibly wakes
 162 //   a successor, so the successor can (re)compete for ownership of the lock.
 163 //   If the EntryList is empty but the cxq is populated the exiting
 164 //   thread will drain the cxq into the EntryList.  It does so by
 165 //   by detaching the cxq (installing null with CAS) and folding
 166 //   the threads from the cxq into the EntryList.  The EntryList is
 167 //   doubly linked, while the cxq is singly linked because of the
 168 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 169 //
 170 // * Concurrency invariants:
 171 //
 172 //   -- only the monitor owner may access or mutate the EntryList.
 173 //      The mutex property of the monitor itself protects the EntryList
 174 //      from concurrent interference.
 175 //   -- Only the monitor owner may detach the cxq.
 176 //
 177 // * The monitor entry list operations avoid locks, but strictly speaking
 178 //   they're not lock-free.  Enter is lock-free, exit is not.
 179 //   For a description of 'Methods and apparatus providing non-blocking access
 180 //   to a resource,' see U.S. Pat. No. 7844973.
 181 //
 182 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 183 //   detaching thread.  This mechanism is immune from the ABA corruption.
 184 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 185 //
 186 // * Taken together, the cxq and the EntryList constitute or form a
 187 //   single logical queue of threads stalled trying to acquire the lock.
 188 //   We use two distinct lists to improve the odds of a constant-time
 189 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 190 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 191 //   A key desideratum is to minimize queue & monitor metadata manipulation
 192 //   that occurs while holding the monitor lock -- that is, we want to
 193 //   minimize monitor lock holds times.  Note that even a small amount of
 194 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 195 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 196 //   locks and monitor metadata.
 197 //
 198 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 199 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 200 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 201 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 202 //
 203 //   The EntryList is ordered by the prevailing queue discipline and
 204 //   can be organized in any convenient fashion, such as a doubly-linked list or
 205 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 206 //   to operate in constant-time.  If we need a priority queue then something akin
 207 //   to Solaris' sleepq would work nicely.  Viz.,
 208 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 209 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 210 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 211 //   EntryList accordingly.
 212 //
 213 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 214 //   somewhat similar to an elevator-scan.
 215 //
 216 // * The monitor synchronization subsystem avoids the use of native
 217 //   synchronization primitives except for the narrow platform-specific
 218 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 219 //   the semantics of park-unpark.  Put another way, this monitor implementation
 220 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 221 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 222 //   underlying OS manages the READY<->RUN transitions.
 223 //
 224 // * Waiting threads reside on the WaitSet list -- wait() puts
 225 //   the caller onto the WaitSet.
 226 //
 227 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 228 //   either the EntryList or cxq.  Subsequent exit() operations will
 229 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 230 //   it's likely the notifyee would simply impale itself on the lock held
 231 //   by the notifier.
 232 //
 233 // * An interesting alternative is to encode cxq as (List,LockByte) where
 234 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 235 //   variable, like _recursions, in the scheme.  The threads or Events that form
 236 //   the list would have to be aligned in 256-byte addresses.  A thread would
 237 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 238 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 239 //   Note that is is *not* word-tearing, but it does presume that full-word
 240 //   CAS operations are coherent with intermix with STB operations.  That's true
 241 //   on most common processors.
 242 //
 243 // * See also http://blogs.sun.com/dave
 244 
 245 
 246 // -----------------------------------------------------------------------------
 247 // Enter support
 248 
 249 void ObjectMonitor::enter(TRAPS) {
 250   // The following code is ordered to check the most common cases first
 251   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 252   Thread * const Self = THREAD;
 253 
 254   void * cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL);
 255   if (cur == NULL) {
 256     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 257     assert(_recursions == 0, "invariant");
 258     assert(_owner == Self, "invariant");
 259     return;
 260   }
 261 
 262   if (cur == Self) {
 263     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 264     _recursions++;
 265     return;
 266   }
 267 
 268   if (Self->is_lock_owned ((address)cur)) {
 269     assert(_recursions == 0, "internal state error");
 270     _recursions = 1;
 271     // Commute owner from a thread-specific on-stack BasicLockObject address to
 272     // a full-fledged "Thread *".
 273     _owner = Self;
 274     return;
 275   }
 276 
 277   // We've encountered genuine contention.
 278   assert(Self->_Stalled == 0, "invariant");
 279   Self->_Stalled = intptr_t(this);
 280 
 281   // Try one round of spinning *before* enqueueing Self
 282   // and before going through the awkward and expensive state
 283   // transitions.  The following spin is strictly optional ...
 284   // Note that if we acquire the monitor from an initial spin
 285   // we forgo posting JVMTI events and firing DTRACE probes.
 286   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 287     assert(_owner == Self, "invariant");
 288     assert(_recursions == 0, "invariant");
 289     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 290     Self->_Stalled = 0;
 291     return;
 292   }
 293 
 294   assert(_owner != Self, "invariant");
 295   assert(_succ != Self, "invariant");
 296   assert(Self->is_Java_thread(), "invariant");
 297   JavaThread * jt = (JavaThread *) Self;
 298   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 299   assert(jt->thread_state() != _thread_blocked, "invariant");
 300   assert(this->object() != NULL, "invariant");
 301   assert(_count >= 0, "invariant");
 302 
 303   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 304   // Ensure the object-monitor relationship remains stable while there's contention.
 305   Atomic::inc(&_count);
 306 
 307   EventJavaMonitorEnter event;
 308 
 309   { // Change java thread status to indicate blocked on monitor enter.
 310     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 311 
 312     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 313     if (JvmtiExport::should_post_monitor_contended_enter()) {
 314       JvmtiExport::post_monitor_contended_enter(jt, this);
 315 
 316       // The current thread does not yet own the monitor and does not
 317       // yet appear on any queues that would get it made the successor.
 318       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 319       // handler cannot accidentally consume an unpark() meant for the
 320       // ParkEvent associated with this ObjectMonitor.
 321     }
 322 
 323     OSThreadContendState osts(Self->osthread());
 324     ThreadBlockInVM tbivm(jt);
 325 
 326     Self->set_current_pending_monitor(this);
 327 
 328     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 329     for (;;) {
 330       jt->set_suspend_equivalent();
 331       // cleared by handle_special_suspend_equivalent_condition()
 332       // or java_suspend_self()
 333 
 334       EnterI(THREAD);
 335 
 336       if (!ExitSuspendEquivalent(jt)) break;
 337 
 338       // We have acquired the contended monitor, but while we were
 339       // waiting another thread suspended us. We don't want to enter
 340       // the monitor while suspended because that would surprise the
 341       // thread that suspended us.
 342       //
 343       _recursions = 0;
 344       _succ = NULL;
 345       exit(false, Self);
 346 
 347       jt->java_suspend_self();
 348     }
 349     Self->set_current_pending_monitor(NULL);
 350 
 351     // We cleared the pending monitor info since we've just gotten past
 352     // the enter-check-for-suspend dance and we now own the monitor free
 353     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 354     // destructor can go to a safepoint at the end of this block. If we
 355     // do a thread dump during that safepoint, then this thread will show
 356     // as having "-locked" the monitor, but the OS and java.lang.Thread
 357     // states will still report that the thread is blocked trying to
 358     // acquire it.
 359   }
 360 
 361   Atomic::dec(&_count);
 362   assert(_count >= 0, "invariant");
 363   Self->_Stalled = 0;
 364 
 365   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 366   assert(_recursions == 0, "invariant");
 367   assert(_owner == Self, "invariant");
 368   assert(_succ != Self, "invariant");
 369   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 370 
 371   // The thread -- now the owner -- is back in vm mode.
 372   // Report the glorious news via TI,DTrace and jvmstat.
 373   // The probe effect is non-trivial.  All the reportage occurs
 374   // while we hold the monitor, increasing the length of the critical
 375   // section.  Amdahl's parallel speedup law comes vividly into play.
 376   //
 377   // Another option might be to aggregate the events (thread local or
 378   // per-monitor aggregation) and defer reporting until a more opportune
 379   // time -- such as next time some thread encounters contention but has
 380   // yet to acquire the lock.  While spinning that thread could
 381   // spinning we could increment JVMStat counters, etc.
 382 
 383   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 384   if (JvmtiExport::should_post_monitor_contended_entered()) {
 385     JvmtiExport::post_monitor_contended_entered(jt, this);
 386 
 387     // The current thread already owns the monitor and is not going to
 388     // call park() for the remainder of the monitor enter protocol. So
 389     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 390     // event handler consumed an unpark() issued by the thread that
 391     // just exited the monitor.
 392   }
 393 
 394   if (event.should_commit()) {
 395     event.set_klass(((oop)this->object())->klass());
 396     event.set_previousOwner((TYPE_THREAD)_previous_owner_tid);
 397     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 398     event.commit();
 399   }
 400 
 401   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 402 }
 403 
 404 
 405 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 406 // Callers must compensate as needed.
 407 
 408 int ObjectMonitor::TryLock(Thread * Self) {
 409   void * own = _owner;
 410   if (own != NULL) return 0;
 411   if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 412     // Either guarantee _recursions == 0 or set _recursions = 0.
 413     assert(_recursions == 0, "invariant");
 414     assert(_owner == Self, "invariant");
 415     return 1;
 416   }
 417   // The lock had been free momentarily, but we lost the race to the lock.
 418   // Interference -- the CAS failed.
 419   // We can either return -1 or retry.
 420   // Retry doesn't make as much sense because the lock was just acquired.
 421   return -1;
 422 }
 423 
 424 #define MAX_RECHECK_INTERVAL 1000
 425 
 426 void ObjectMonitor::EnterI(TRAPS) {
 427   Thread * const Self = THREAD;
 428   assert(Self->is_Java_thread(), "invariant");
 429   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 430 
 431   // Try the lock - TATAS
 432   if (TryLock (Self) > 0) {
 433     assert(_succ != Self, "invariant");
 434     assert(_owner == Self, "invariant");
 435     assert(_Responsible != Self, "invariant");
 436     return;
 437   }
 438 
 439   DeferredInitialize();
 440 
 441   // We try one round of spinning *before* enqueueing Self.
 442   //
 443   // If the _owner is ready but OFFPROC we could use a YieldTo()
 444   // operation to donate the remainder of this thread's quantum
 445   // to the owner.  This has subtle but beneficial affinity
 446   // effects.
 447 
 448   if (TrySpin (Self) > 0) {
 449     assert(_owner == Self, "invariant");
 450     assert(_succ != Self, "invariant");
 451     assert(_Responsible != Self, "invariant");
 452     return;
 453   }
 454 
 455   // The Spin failed -- Enqueue and park the thread ...
 456   assert(_succ != Self, "invariant");
 457   assert(_owner != Self, "invariant");
 458   assert(_Responsible != Self, "invariant");
 459 
 460   // Enqueue "Self" on ObjectMonitor's _cxq.
 461   //
 462   // Node acts as a proxy for Self.
 463   // As an aside, if were to ever rewrite the synchronization code mostly
 464   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 465   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 466   // as well as eliminate a subset of ABA issues.
 467   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 468 
 469   ObjectWaiter node(Self);
 470   Self->_ParkEvent->reset();
 471   node._prev   = (ObjectWaiter *) 0xBAD;
 472   node.TState  = ObjectWaiter::TS_CXQ;
 473 
 474   // Push "Self" onto the front of the _cxq.
 475   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 476   // Note that spinning tends to reduce the rate at which threads
 477   // enqueue and dequeue on EntryList|cxq.
 478   ObjectWaiter * nxt;
 479   for (;;) {
 480     node._next = nxt = _cxq;
 481     if (Atomic::cmpxchg_ptr(&node, &_cxq, nxt) == nxt) break;
 482 
 483     // Interference - the CAS failed because _cxq changed.  Just retry.
 484     // As an optional optimization we retry the lock.
 485     if (TryLock (Self) > 0) {
 486       assert(_succ != Self, "invariant");
 487       assert(_owner == Self, "invariant");
 488       assert(_Responsible != Self, "invariant");
 489       return;
 490     }
 491   }
 492 
 493   // Check for cxq|EntryList edge transition to non-null.  This indicates
 494   // the onset of contention.  While contention persists exiting threads
 495   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 496   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 497   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 498   // arrange for one of the contending thread to use a timed park() operations
 499   // to detect and recover from the race.  (Stranding is form of progress failure
 500   // where the monitor is unlocked but all the contending threads remain parked).
 501   // That is, at least one of the contended threads will periodically poll _owner.
 502   // One of the contending threads will become the designated "Responsible" thread.
 503   // The Responsible thread uses a timed park instead of a normal indefinite park
 504   // operation -- it periodically wakes and checks for and recovers from potential
 505   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 506   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 507   // be responsible for a monitor.
 508   //
 509   // Currently, one of the contended threads takes on the added role of "Responsible".
 510   // A viable alternative would be to use a dedicated "stranding checker" thread
 511   // that periodically iterated over all the threads (or active monitors) and unparked
 512   // successors where there was risk of stranding.  This would help eliminate the
 513   // timer scalability issues we see on some platforms as we'd only have one thread
 514   // -- the checker -- parked on a timer.
 515 
 516   if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 517     // Try to assume the role of responsible thread for the monitor.
 518     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 519     Atomic::cmpxchg_ptr(Self, &_Responsible, NULL);
 520   }
 521 
 522   // The lock might have been released while this thread was occupied queueing
 523   // itself onto _cxq.  To close the race and avoid "stranding" and
 524   // progress-liveness failure we must resample-retry _owner before parking.
 525   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 526   // In this case the ST-MEMBAR is accomplished with CAS().
 527   //
 528   // TODO: Defer all thread state transitions until park-time.
 529   // Since state transitions are heavy and inefficient we'd like
 530   // to defer the state transitions until absolutely necessary,
 531   // and in doing so avoid some transitions ...
 532 
 533   TEVENT(Inflated enter - Contention);
 534   int nWakeups = 0;
 535   int recheckInterval = 1;
 536 
 537   for (;;) {
 538 
 539     if (TryLock(Self) > 0) break;
 540     assert(_owner != Self, "invariant");
 541 
 542     if ((SyncFlags & 2) && _Responsible == NULL) {
 543       Atomic::cmpxchg_ptr(Self, &_Responsible, NULL);
 544     }
 545 
 546     // park self
 547     if (_Responsible == Self || (SyncFlags & 1)) {
 548       TEVENT(Inflated enter - park TIMED);
 549       Self->_ParkEvent->park((jlong) recheckInterval);
 550       // Increase the recheckInterval, but clamp the value.
 551       recheckInterval *= 8;
 552       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 553         recheckInterval = MAX_RECHECK_INTERVAL;
 554       }
 555     } else {
 556       TEVENT(Inflated enter - park UNTIMED);
 557       Self->_ParkEvent->park();
 558     }
 559 
 560     if (TryLock(Self) > 0) break;
 561 
 562     // The lock is still contested.
 563     // Keep a tally of the # of futile wakeups.
 564     // Note that the counter is not protected by a lock or updated by atomics.
 565     // That is by design - we trade "lossy" counters which are exposed to
 566     // races during updates for a lower probe effect.
 567     TEVENT(Inflated enter - Futile wakeup);
 568     // This PerfData object can be used in parallel with a safepoint.
 569     // See the work around in PerfDataManager::destroy().
 570     OM_PERFDATA_OP(FutileWakeups, inc());
 571     ++nWakeups;
 572 
 573     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 574     // We can defer clearing _succ until after the spin completes
 575     // TrySpin() must tolerate being called with _succ == Self.
 576     // Try yet another round of adaptive spinning.
 577     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 578 
 579     // We can find that we were unpark()ed and redesignated _succ while
 580     // we were spinning.  That's harmless.  If we iterate and call park(),
 581     // park() will consume the event and return immediately and we'll
 582     // just spin again.  This pattern can repeat, leaving _succ to simply
 583     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 584     // Alternately, we can sample fired() here, and if set, forgo spinning
 585     // in the next iteration.
 586 
 587     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 588       Self->_ParkEvent->reset();
 589       OrderAccess::fence();
 590     }
 591     if (_succ == Self) _succ = NULL;
 592 
 593     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 594     OrderAccess::fence();
 595   }
 596 
 597   // Egress :
 598   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 599   // Normally we'll find Self on the EntryList .
 600   // From the perspective of the lock owner (this thread), the
 601   // EntryList is stable and cxq is prepend-only.
 602   // The head of cxq is volatile but the interior is stable.
 603   // In addition, Self.TState is stable.
 604 
 605   assert(_owner == Self, "invariant");
 606   assert(object() != NULL, "invariant");
 607   // I'd like to write:
 608   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 609   // but as we're at a safepoint that's not safe.
 610 
 611   UnlinkAfterAcquire(Self, &node);
 612   if (_succ == Self) _succ = NULL;
 613 
 614   assert(_succ != Self, "invariant");
 615   if (_Responsible == Self) {
 616     _Responsible = NULL;
 617     OrderAccess::fence(); // Dekker pivot-point
 618 
 619     // We may leave threads on cxq|EntryList without a designated
 620     // "Responsible" thread.  This is benign.  When this thread subsequently
 621     // exits the monitor it can "see" such preexisting "old" threads --
 622     // threads that arrived on the cxq|EntryList before the fence, above --
 623     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 624     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 625     // non-null and elect a new "Responsible" timer thread.
 626     //
 627     // This thread executes:
 628     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 629     //    LD cxq|EntryList               (in subsequent exit)
 630     //
 631     // Entering threads in the slow/contended path execute:
 632     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 633     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 634     //
 635     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 636     // exit operation from floating above the ST Responsible=null.
 637   }
 638 
 639   // We've acquired ownership with CAS().
 640   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 641   // But since the CAS() this thread may have also stored into _succ,
 642   // EntryList, cxq or Responsible.  These meta-data updates must be
 643   // visible __before this thread subsequently drops the lock.
 644   // Consider what could occur if we didn't enforce this constraint --
 645   // STs to monitor meta-data and user-data could reorder with (become
 646   // visible after) the ST in exit that drops ownership of the lock.
 647   // Some other thread could then acquire the lock, but observe inconsistent
 648   // or old monitor meta-data and heap data.  That violates the JMM.
 649   // To that end, the 1-0 exit() operation must have at least STST|LDST
 650   // "release" barrier semantics.  Specifically, there must be at least a
 651   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 652   // the lock.   The barrier ensures that changes to monitor meta-data and data
 653   // protected by the lock will be visible before we release the lock, and
 654   // therefore before some other thread (CPU) has a chance to acquire the lock.
 655   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 656   //
 657   // Critically, any prior STs to _succ or EntryList must be visible before
 658   // the ST of null into _owner in the *subsequent* (following) corresponding
 659   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 660   // execute a serializing instruction.
 661 
 662   if (SyncFlags & 8) {
 663     OrderAccess::fence();
 664   }
 665   return;
 666 }
 667 
 668 // ReenterI() is a specialized inline form of the latter half of the
 669 // contended slow-path from EnterI().  We use ReenterI() only for
 670 // monitor reentry in wait().
 671 //
 672 // In the future we should reconcile EnterI() and ReenterI(), adding
 673 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 674 // loop accordingly.
 675 
 676 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 677   assert(Self != NULL, "invariant");
 678   assert(SelfNode != NULL, "invariant");
 679   assert(SelfNode->_thread == Self, "invariant");
 680   assert(_waiters > 0, "invariant");
 681   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 682   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 683   JavaThread * jt = (JavaThread *) Self;
 684 
 685   int nWakeups = 0;
 686   for (;;) {
 687     ObjectWaiter::TStates v = SelfNode->TState;
 688     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 689     assert(_owner != Self, "invariant");
 690 
 691     if (TryLock(Self) > 0) break;
 692     if (TrySpin(Self) > 0) break;
 693 
 694     TEVENT(Wait Reentry - parking);
 695 
 696     // State transition wrappers around park() ...
 697     // ReenterI() wisely defers state transitions until
 698     // it's clear we must park the thread.
 699     {
 700       OSThreadContendState osts(Self->osthread());
 701       ThreadBlockInVM tbivm(jt);
 702 
 703       // cleared by handle_special_suspend_equivalent_condition()
 704       // or java_suspend_self()
 705       jt->set_suspend_equivalent();
 706       if (SyncFlags & 1) {
 707         Self->_ParkEvent->park((jlong)MAX_RECHECK_INTERVAL);
 708       } else {
 709         Self->_ParkEvent->park();
 710       }
 711 
 712       // were we externally suspended while we were waiting?
 713       for (;;) {
 714         if (!ExitSuspendEquivalent(jt)) break;
 715         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 716         jt->java_suspend_self();
 717         jt->set_suspend_equivalent();
 718       }
 719     }
 720 
 721     // Try again, but just so we distinguish between futile wakeups and
 722     // successful wakeups.  The following test isn't algorithmically
 723     // necessary, but it helps us maintain sensible statistics.
 724     if (TryLock(Self) > 0) break;
 725 
 726     // The lock is still contested.
 727     // Keep a tally of the # of futile wakeups.
 728     // Note that the counter is not protected by a lock or updated by atomics.
 729     // That is by design - we trade "lossy" counters which are exposed to
 730     // races during updates for a lower probe effect.
 731     TEVENT(Wait Reentry - futile wakeup);
 732     ++nWakeups;
 733 
 734     // Assuming this is not a spurious wakeup we'll normally
 735     // find that _succ == Self.
 736     if (_succ == Self) _succ = NULL;
 737 
 738     // Invariant: after clearing _succ a contending thread
 739     // *must* retry  _owner before parking.
 740     OrderAccess::fence();
 741 
 742     // This PerfData object can be used in parallel with a safepoint.
 743     // See the work around in PerfDataManager::destroy().
 744     OM_PERFDATA_OP(FutileWakeups, inc());
 745   }
 746 
 747   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 748   // Normally we'll find Self on the EntryList.
 749   // Unlinking from the EntryList is constant-time and atomic-free.
 750   // From the perspective of the lock owner (this thread), the
 751   // EntryList is stable and cxq is prepend-only.
 752   // The head of cxq is volatile but the interior is stable.
 753   // In addition, Self.TState is stable.
 754 
 755   assert(_owner == Self, "invariant");
 756   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 757   UnlinkAfterAcquire(Self, SelfNode);
 758   if (_succ == Self) _succ = NULL;
 759   assert(_succ != Self, "invariant");
 760   SelfNode->TState = ObjectWaiter::TS_RUN;
 761   OrderAccess::fence();      // see comments at the end of EnterI()
 762 }
 763 
 764 // By convention we unlink a contending thread from EntryList|cxq immediately
 765 // after the thread acquires the lock in ::enter().  Equally, we could defer
 766 // unlinking the thread until ::exit()-time.
 767 
 768 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 769   assert(_owner == Self, "invariant");
 770   assert(SelfNode->_thread == Self, "invariant");
 771 
 772   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 773     // Normal case: remove Self from the DLL EntryList .
 774     // This is a constant-time operation.
 775     ObjectWaiter * nxt = SelfNode->_next;
 776     ObjectWaiter * prv = SelfNode->_prev;
 777     if (nxt != NULL) nxt->_prev = prv;
 778     if (prv != NULL) prv->_next = nxt;
 779     if (SelfNode == _EntryList) _EntryList = nxt;
 780     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 781     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 782     TEVENT(Unlink from EntryList);
 783   } else {
 784     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 785     // Inopportune interleaving -- Self is still on the cxq.
 786     // This usually means the enqueue of self raced an exiting thread.
 787     // Normally we'll find Self near the front of the cxq, so
 788     // dequeueing is typically fast.  If needbe we can accelerate
 789     // this with some MCS/CHL-like bidirectional list hints and advisory
 790     // back-links so dequeueing from the interior will normally operate
 791     // in constant-time.
 792     // Dequeue Self from either the head (with CAS) or from the interior
 793     // with a linear-time scan and normal non-atomic memory operations.
 794     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 795     // and then unlink Self from EntryList.  We have to drain eventually,
 796     // so it might as well be now.
 797 
 798     ObjectWaiter * v = _cxq;
 799     assert(v != NULL, "invariant");
 800     if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 801       // The CAS above can fail from interference IFF a "RAT" arrived.
 802       // In that case Self must be in the interior and can no longer be
 803       // at the head of cxq.
 804       if (v == SelfNode) {
 805         assert(_cxq != v, "invariant");
 806         v = _cxq;          // CAS above failed - start scan at head of list
 807       }
 808       ObjectWaiter * p;
 809       ObjectWaiter * q = NULL;
 810       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 811         q = p;
 812         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 813       }
 814       assert(v != SelfNode, "invariant");
 815       assert(p == SelfNode, "Node not found on cxq");
 816       assert(p != _cxq, "invariant");
 817       assert(q != NULL, "invariant");
 818       assert(q->_next == p, "invariant");
 819       q->_next = p->_next;
 820     }
 821     TEVENT(Unlink from cxq);
 822   }
 823 
 824 #ifdef ASSERT
 825   // Diagnostic hygiene ...
 826   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 827   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 828   SelfNode->TState = ObjectWaiter::TS_RUN;
 829 #endif
 830 }
 831 
 832 // -----------------------------------------------------------------------------
 833 // Exit support
 834 //
 835 // exit()
 836 // ~~~~~~
 837 // Note that the collector can't reclaim the objectMonitor or deflate
 838 // the object out from underneath the thread calling ::exit() as the
 839 // thread calling ::exit() never transitions to a stable state.
 840 // This inhibits GC, which in turn inhibits asynchronous (and
 841 // inopportune) reclamation of "this".
 842 //
 843 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 844 // There's one exception to the claim above, however.  EnterI() can call
 845 // exit() to drop a lock if the acquirer has been externally suspended.
 846 // In that case exit() is called with _thread_state as _thread_blocked,
 847 // but the monitor's _count field is > 0, which inhibits reclamation.
 848 //
 849 // 1-0 exit
 850 // ~~~~~~~~
 851 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 852 // the fast-path operators have been optimized so the common ::exit()
 853 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 854 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 855 // greatly improves latency -- MEMBAR and CAS having considerable local
 856 // latency on modern processors -- but at the cost of "stranding".  Absent the
 857 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 858 // ::enter() path, resulting in the entering thread being stranding
 859 // and a progress-liveness failure.   Stranding is extremely rare.
 860 // We use timers (timed park operations) & periodic polling to detect
 861 // and recover from stranding.  Potentially stranded threads periodically
 862 // wake up and poll the lock.  See the usage of the _Responsible variable.
 863 //
 864 // The CAS() in enter provides for safety and exclusion, while the CAS or
 865 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 866 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 867 // We detect and recover from stranding with timers.
 868 //
 869 // If a thread transiently strands it'll park until (a) another
 870 // thread acquires the lock and then drops the lock, at which time the
 871 // exiting thread will notice and unpark the stranded thread, or, (b)
 872 // the timer expires.  If the lock is high traffic then the stranding latency
 873 // will be low due to (a).  If the lock is low traffic then the odds of
 874 // stranding are lower, although the worst-case stranding latency
 875 // is longer.  Critically, we don't want to put excessive load in the
 876 // platform's timer subsystem.  We want to minimize both the timer injection
 877 // rate (timers created/sec) as well as the number of timers active at
 878 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 879 // the integral of the # of active timers at any instant over time).
 880 // Both impinge on OS scalability.  Given that, at most one thread parked on
 881 // a monitor will use a timer.
 882 //
 883 // There is also the risk of a futile wake-up. If we drop the lock
 884 // another thread can reacquire the lock immediately, and we can
 885 // then wake a thread unnecessarily. This is benign, and we've
 886 // structured the code so the windows are short and the frequency
 887 // of such futile wakups is low.
 888 
 889 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 890   Thread * const Self = THREAD;
 891   if (THREAD != _owner) {
 892     if (THREAD->is_lock_owned((address) _owner)) {
 893       // Transmute _owner from a BasicLock pointer to a Thread address.
 894       // We don't need to hold _mutex for this transition.
 895       // Non-null to Non-null is safe as long as all readers can
 896       // tolerate either flavor.
 897       assert(_recursions == 0, "invariant");
 898       _owner = THREAD;
 899       _recursions = 0;
 900     } else {
 901       // Apparent unbalanced locking ...
 902       // Naively we'd like to throw IllegalMonitorStateException.
 903       // As a practical matter we can neither allocate nor throw an
 904       // exception as ::exit() can be called from leaf routines.
 905       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 906       // Upon deeper reflection, however, in a properly run JVM the only
 907       // way we should encounter this situation is in the presence of
 908       // unbalanced JNI locking. TODO: CheckJNICalls.
 909       // See also: CR4414101
 910       TEVENT(Exit - Throw IMSX);
 911       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 912       return;
 913     }
 914   }
 915 
 916   if (_recursions != 0) {
 917     _recursions--;        // this is simple recursive enter
 918     TEVENT(Inflated exit - recursive);
 919     return;
 920   }
 921 
 922   // Invariant: after setting Responsible=null an thread must execute
 923   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 924   if ((SyncFlags & 4) == 0) {
 925     _Responsible = NULL;
 926   }
 927 
 928 #if INCLUDE_TRACE
 929   // get the owner's thread id for the MonitorEnter event
 930   // if it is enabled and the thread isn't suspended
 931   if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 932     _previous_owner_tid = THREAD_TRACE_ID(Self);
 933   }
 934 #endif
 935 
 936   for (;;) {
 937     assert(THREAD == _owner, "invariant");
 938 
 939 
 940     if (Knob_ExitPolicy == 0) {
 941       // release semantics: prior loads and stores from within the critical section
 942       // must not float (reorder) past the following store that drops the lock.
 943       // On SPARC that requires MEMBAR #loadstore|#storestore.
 944       // But of course in TSO #loadstore|#storestore is not required.
 945       // I'd like to write one of the following:
 946       // A.  OrderAccess::release() ; _owner = NULL
 947       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 948       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 949       // store into a _dummy variable.  That store is not needed, but can result
 950       // in massive wasteful coherency traffic on classic SMP systems.
 951       // Instead, I use release_store(), which is implemented as just a simple
 952       // ST on x64, x86 and SPARC.
 953       OrderAccess::release_store_ptr(&_owner, NULL);   // drop the lock
 954       OrderAccess::storeload();                        // See if we need to wake a successor
 955       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 956         TEVENT(Inflated exit - simple egress);
 957         return;
 958       }
 959       TEVENT(Inflated exit - complex egress);
 960       // Other threads are blocked trying to acquire the lock.
 961 
 962       // Normally the exiting thread is responsible for ensuring succession,
 963       // but if other successors are ready or other entering threads are spinning
 964       // then this thread can simply store NULL into _owner and exit without
 965       // waking a successor.  The existence of spinners or ready successors
 966       // guarantees proper succession (liveness).  Responsibility passes to the
 967       // ready or running successors.  The exiting thread delegates the duty.
 968       // More precisely, if a successor already exists this thread is absolved
 969       // of the responsibility of waking (unparking) one.
 970       //
 971       // The _succ variable is critical to reducing futile wakeup frequency.
 972       // _succ identifies the "heir presumptive" thread that has been made
 973       // ready (unparked) but that has not yet run.  We need only one such
 974       // successor thread to guarantee progress.
 975       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 976       // section 3.3 "Futile Wakeup Throttling" for details.
 977       //
 978       // Note that spinners in Enter() also set _succ non-null.
 979       // In the current implementation spinners opportunistically set
 980       // _succ so that exiting threads might avoid waking a successor.
 981       // Another less appealing alternative would be for the exiting thread
 982       // to drop the lock and then spin briefly to see if a spinner managed
 983       // to acquire the lock.  If so, the exiting thread could exit
 984       // immediately without waking a successor, otherwise the exiting
 985       // thread would need to dequeue and wake a successor.
 986       // (Note that we'd need to make the post-drop spin short, but no
 987       // shorter than the worst-case round-trip cache-line migration time.
 988       // The dropped lock needs to become visible to the spinner, and then
 989       // the acquisition of the lock by the spinner must become visible to
 990       // the exiting thread).
 991 
 992       // It appears that an heir-presumptive (successor) must be made ready.
 993       // Only the current lock owner can manipulate the EntryList or
 994       // drain _cxq, so we need to reacquire the lock.  If we fail
 995       // to reacquire the lock the responsibility for ensuring succession
 996       // falls to the new owner.
 997       //
 998       if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 999         return;
1000       }
1001       TEVENT(Exit - Reacquired);
1002     } else {
1003       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1004         OrderAccess::release_store_ptr(&_owner, NULL);   // drop the lock
1005         OrderAccess::storeload();
1006         // Ratify the previously observed values.
1007         if (_cxq == NULL || _succ != NULL) {
1008           TEVENT(Inflated exit - simple egress);
1009           return;
1010         }
1011 
1012         // inopportune interleaving -- the exiting thread (this thread)
1013         // in the fast-exit path raced an entering thread in the slow-enter
1014         // path.
1015         // We have two choices:
1016         // A.  Try to reacquire the lock.
1017         //     If the CAS() fails return immediately, otherwise
1018         //     we either restart/rerun the exit operation, or simply
1019         //     fall-through into the code below which wakes a successor.
1020         // B.  If the elements forming the EntryList|cxq are TSM
1021         //     we could simply unpark() the lead thread and return
1022         //     without having set _succ.
1023         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1024           TEVENT(Inflated exit - reacquired succeeded);
1025           return;
1026         }
1027         TEVENT(Inflated exit - reacquired failed);
1028       } else {
1029         TEVENT(Inflated exit - complex egress);
1030       }
1031     }
1032 
1033     guarantee(_owner == THREAD, "invariant");
1034 
1035     ObjectWaiter * w = NULL;
1036     int QMode = Knob_QMode;
1037 
1038     if (QMode == 2 && _cxq != NULL) {
1039       // QMode == 2 : cxq has precedence over EntryList.
1040       // Try to directly wake a successor from the cxq.
1041       // If successful, the successor will need to unlink itself from cxq.
1042       w = _cxq;
1043       assert(w != NULL, "invariant");
1044       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1045       ExitEpilog(Self, w);
1046       return;
1047     }
1048 
1049     if (QMode == 3 && _cxq != NULL) {
1050       // Aggressively drain cxq into EntryList at the first opportunity.
1051       // This policy ensure that recently-run threads live at the head of EntryList.
1052       // Drain _cxq into EntryList - bulk transfer.
1053       // First, detach _cxq.
1054       // The following loop is tantamount to: w = swap(&cxq, NULL)
1055       w = _cxq;
1056       for (;;) {
1057         assert(w != NULL, "Invariant");
1058         ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr(NULL, &_cxq, w);
1059         if (u == w) break;
1060         w = u;
1061       }
1062       assert(w != NULL, "invariant");
1063 
1064       ObjectWaiter * q = NULL;
1065       ObjectWaiter * p;
1066       for (p = w; p != NULL; p = p->_next) {
1067         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1068         p->TState = ObjectWaiter::TS_ENTER;
1069         p->_prev = q;
1070         q = p;
1071       }
1072 
1073       // Append the RATs to the EntryList
1074       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1075       ObjectWaiter * Tail;
1076       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1077            Tail = Tail->_next)
1078         /* empty */;
1079       if (Tail == NULL) {
1080         _EntryList = w;
1081       } else {
1082         Tail->_next = w;
1083         w->_prev = Tail;
1084       }
1085 
1086       // Fall thru into code that tries to wake a successor from EntryList
1087     }
1088 
1089     if (QMode == 4 && _cxq != NULL) {
1090       // Aggressively drain cxq into EntryList at the first opportunity.
1091       // This policy ensure that recently-run threads live at the head of EntryList.
1092 
1093       // Drain _cxq into EntryList - bulk transfer.
1094       // First, detach _cxq.
1095       // The following loop is tantamount to: w = swap(&cxq, NULL)
1096       w = _cxq;
1097       for (;;) {
1098         assert(w != NULL, "Invariant");
1099         ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr(NULL, &_cxq, w);
1100         if (u == w) break;
1101         w = u;
1102       }
1103       assert(w != NULL, "invariant");
1104 
1105       ObjectWaiter * q = NULL;
1106       ObjectWaiter * p;
1107       for (p = w; p != NULL; p = p->_next) {
1108         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1109         p->TState = ObjectWaiter::TS_ENTER;
1110         p->_prev = q;
1111         q = p;
1112       }
1113 
1114       // Prepend the RATs to the EntryList
1115       if (_EntryList != NULL) {
1116         q->_next = _EntryList;
1117         _EntryList->_prev = q;
1118       }
1119       _EntryList = w;
1120 
1121       // Fall thru into code that tries to wake a successor from EntryList
1122     }
1123 
1124     w = _EntryList;
1125     if (w != NULL) {
1126       // I'd like to write: guarantee (w->_thread != Self).
1127       // But in practice an exiting thread may find itself on the EntryList.
1128       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1129       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1130       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1131       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1132       // release the lock "O".  T2 resumes immediately after the ST of null into
1133       // _owner, above.  T2 notices that the EntryList is populated, so it
1134       // reacquires the lock and then finds itself on the EntryList.
1135       // Given all that, we have to tolerate the circumstance where "w" is
1136       // associated with Self.
1137       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1138       ExitEpilog(Self, w);
1139       return;
1140     }
1141 
1142     // If we find that both _cxq and EntryList are null then just
1143     // re-run the exit protocol from the top.
1144     w = _cxq;
1145     if (w == NULL) continue;
1146 
1147     // Drain _cxq into EntryList - bulk transfer.
1148     // First, detach _cxq.
1149     // The following loop is tantamount to: w = swap(&cxq, NULL)
1150     for (;;) {
1151       assert(w != NULL, "Invariant");
1152       ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr(NULL, &_cxq, w);
1153       if (u == w) break;
1154       w = u;
1155     }
1156     TEVENT(Inflated exit - drain cxq into EntryList);
1157 
1158     assert(w != NULL, "invariant");
1159     assert(_EntryList == NULL, "invariant");
1160 
1161     // Convert the LIFO SLL anchored by _cxq into a DLL.
1162     // The list reorganization step operates in O(LENGTH(w)) time.
1163     // It's critical that this step operate quickly as
1164     // "Self" still holds the outer-lock, restricting parallelism
1165     // and effectively lengthening the critical section.
1166     // Invariant: s chases t chases u.
1167     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1168     // we have faster access to the tail.
1169 
1170     if (QMode == 1) {
1171       // QMode == 1 : drain cxq to EntryList, reversing order
1172       // We also reverse the order of the list.
1173       ObjectWaiter * s = NULL;
1174       ObjectWaiter * t = w;
1175       ObjectWaiter * u = NULL;
1176       while (t != NULL) {
1177         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1178         t->TState = ObjectWaiter::TS_ENTER;
1179         u = t->_next;
1180         t->_prev = u;
1181         t->_next = s;
1182         s = t;
1183         t = u;
1184       }
1185       _EntryList  = s;
1186       assert(s != NULL, "invariant");
1187     } else {
1188       // QMode == 0 or QMode == 2
1189       _EntryList = w;
1190       ObjectWaiter * q = NULL;
1191       ObjectWaiter * p;
1192       for (p = w; p != NULL; p = p->_next) {
1193         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1194         p->TState = ObjectWaiter::TS_ENTER;
1195         p->_prev = q;
1196         q = p;
1197       }
1198     }
1199 
1200     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1201     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1202 
1203     // See if we can abdicate to a spinner instead of waking a thread.
1204     // A primary goal of the implementation is to reduce the
1205     // context-switch rate.
1206     if (_succ != NULL) continue;
1207 
1208     w = _EntryList;
1209     if (w != NULL) {
1210       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1211       ExitEpilog(Self, w);
1212       return;
1213     }
1214   }
1215 }
1216 
1217 // ExitSuspendEquivalent:
1218 // A faster alternate to handle_special_suspend_equivalent_condition()
1219 //
1220 // handle_special_suspend_equivalent_condition() unconditionally
1221 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1222 // operations have high latency.  Note that in ::enter() we call HSSEC
1223 // while holding the monitor, so we effectively lengthen the critical sections.
1224 //
1225 // There are a number of possible solutions:
1226 //
1227 // A.  To ameliorate the problem we might also defer state transitions
1228 //     to as late as possible -- just prior to parking.
1229 //     Given that, we'd call HSSEC after having returned from park(),
1230 //     but before attempting to acquire the monitor.  This is only a
1231 //     partial solution.  It avoids calling HSSEC while holding the
1232 //     monitor (good), but it still increases successor reacquisition latency --
1233 //     the interval between unparking a successor and the time the successor
1234 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1235 //     If we use this technique we can also avoid EnterI()-exit() loop
1236 //     in ::enter() where we iteratively drop the lock and then attempt
1237 //     to reacquire it after suspending.
1238 //
1239 // B.  In the future we might fold all the suspend bits into a
1240 //     composite per-thread suspend flag and then update it with CAS().
1241 //     Alternately, a Dekker-like mechanism with multiple variables
1242 //     would suffice:
1243 //       ST Self->_suspend_equivalent = false
1244 //       MEMBAR
1245 //       LD Self_>_suspend_flags
1246 //
1247 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1248 // with a more efficient implementation, the need to use "FastHSSEC" has
1249 // decreased. - Dave
1250 
1251 
1252 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1253   const int Mode = Knob_FastHSSEC;
1254   if (Mode && !jSelf->is_external_suspend()) {
1255     assert(jSelf->is_suspend_equivalent(), "invariant");
1256     jSelf->clear_suspend_equivalent();
1257     if (2 == Mode) OrderAccess::storeload();
1258     if (!jSelf->is_external_suspend()) return false;
1259     // We raced a suspension -- fall thru into the slow path
1260     TEVENT(ExitSuspendEquivalent - raced);
1261     jSelf->set_suspend_equivalent();
1262   }
1263   return jSelf->handle_special_suspend_equivalent_condition();
1264 }
1265 
1266 
1267 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1268   assert(_owner == Self, "invariant");
1269 
1270   // Exit protocol:
1271   // 1. ST _succ = wakee
1272   // 2. membar #loadstore|#storestore;
1273   // 2. ST _owner = NULL
1274   // 3. unpark(wakee)
1275 
1276   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1277   ParkEvent * Trigger = Wakee->_event;
1278 
1279   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1280   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1281   // out-of-scope (non-extant).
1282   Wakee  = NULL;
1283 
1284   // Drop the lock
1285   OrderAccess::release_store_ptr(&_owner, NULL);
1286   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1287 
1288   if (SafepointSynchronize::do_call_back()) {
1289     TEVENT(unpark before SAFEPOINT);
1290   }
1291 
1292   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1293   Trigger->unpark();
1294 
1295   // Maintain stats and report events to JVMTI
1296   OM_PERFDATA_OP(Parks, inc());
1297 }
1298 
1299 
1300 // -----------------------------------------------------------------------------
1301 // Class Loader deadlock handling.
1302 //
1303 // complete_exit exits a lock returning recursion count
1304 // complete_exit/reenter operate as a wait without waiting
1305 // complete_exit requires an inflated monitor
1306 // The _owner field is not always the Thread addr even with an
1307 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1308 // thread due to contention.
1309 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1310   Thread * const Self = THREAD;
1311   assert(Self->is_Java_thread(), "Must be Java thread!");
1312   JavaThread *jt = (JavaThread *)THREAD;
1313 
1314   DeferredInitialize();
1315 
1316   if (THREAD != _owner) {
1317     if (THREAD->is_lock_owned ((address)_owner)) {
1318       assert(_recursions == 0, "internal state error");
1319       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1320       _recursions = 0;
1321     }
1322   }
1323 
1324   guarantee(Self == _owner, "complete_exit not owner");
1325   intptr_t save = _recursions; // record the old recursion count
1326   _recursions = 0;        // set the recursion level to be 0
1327   exit(true, Self);           // exit the monitor
1328   guarantee(_owner != Self, "invariant");
1329   return save;
1330 }
1331 
1332 // reenter() enters a lock and sets recursion count
1333 // complete_exit/reenter operate as a wait without waiting
1334 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1335   Thread * const Self = THREAD;
1336   assert(Self->is_Java_thread(), "Must be Java thread!");
1337   JavaThread *jt = (JavaThread *)THREAD;
1338 
1339   guarantee(_owner != Self, "reenter already owner");
1340   enter(THREAD);       // enter the monitor
1341   guarantee(_recursions == 0, "reenter recursion");
1342   _recursions = recursions;
1343   return;
1344 }
1345 
1346 
1347 // -----------------------------------------------------------------------------
1348 // A macro is used below because there may already be a pending
1349 // exception which should not abort the execution of the routines
1350 // which use this (which is why we don't put this into check_slow and
1351 // call it with a CHECK argument).
1352 
1353 #define CHECK_OWNER()                                                       \
1354   do {                                                                      \
1355     if (THREAD != _owner) {                                                 \
1356       if (THREAD->is_lock_owned((address) _owner)) {                        \
1357         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1358         _recursions = 0;                                                    \
1359       } else {                                                              \
1360         TEVENT(Throw IMSX);                                                 \
1361         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1362       }                                                                     \
1363     }                                                                       \
1364   } while (false)
1365 
1366 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1367 // TODO-FIXME: remove check_slow() -- it's likely dead.
1368 
1369 void ObjectMonitor::check_slow(TRAPS) {
1370   TEVENT(check_slow - throw IMSX);
1371   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1372   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1373 }
1374 
1375 static int Adjust(volatile int * adr, int dx) {
1376   int v;
1377   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1378   return v;
1379 }
1380 
1381 // helper method for posting a monitor wait event
1382 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1383                                             jlong notifier_tid,
1384                                             jlong timeout,
1385                                             bool timedout) {
1386   assert(event != NULL, "invariant");
1387   event->set_klass(((oop)this->object())->klass());
1388   event->set_timeout(timeout);
1389   event->set_address((TYPE_ADDRESS)this->object_addr());
1390   event->set_notifier(notifier_tid);
1391   event->set_timedOut(timedout);
1392   event->commit();
1393 }
1394 
1395 // -----------------------------------------------------------------------------
1396 // Wait/Notify/NotifyAll
1397 //
1398 // Note: a subset of changes to ObjectMonitor::wait()
1399 // will need to be replicated in complete_exit
1400 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1401   Thread * const Self = THREAD;
1402   assert(Self->is_Java_thread(), "Must be Java thread!");
1403   JavaThread *jt = (JavaThread *)THREAD;
1404 
1405   DeferredInitialize();
1406 
1407   // Throw IMSX or IEX.
1408   CHECK_OWNER();
1409 
1410   EventJavaMonitorWait event;
1411 
1412   // check for a pending interrupt
1413   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1414     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1415     if (JvmtiExport::should_post_monitor_waited()) {
1416       // Note: 'false' parameter is passed here because the
1417       // wait was not timed out due to thread interrupt.
1418       JvmtiExport::post_monitor_waited(jt, this, false);
1419 
1420       // In this short circuit of the monitor wait protocol, the
1421       // current thread never drops ownership of the monitor and
1422       // never gets added to the wait queue so the current thread
1423       // cannot be made the successor. This means that the
1424       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1425       // consume an unpark() meant for the ParkEvent associated with
1426       // this ObjectMonitor.
1427     }
1428     if (event.should_commit()) {
1429       post_monitor_wait_event(&event, 0, millis, false);
1430     }
1431     TEVENT(Wait - Throw IEX);
1432     THROW(vmSymbols::java_lang_InterruptedException());
1433     return;
1434   }
1435 
1436   TEVENT(Wait);
1437 
1438   assert(Self->_Stalled == 0, "invariant");
1439   Self->_Stalled = intptr_t(this);
1440   jt->set_current_waiting_monitor(this);
1441 
1442   // create a node to be put into the queue
1443   // Critically, after we reset() the event but prior to park(), we must check
1444   // for a pending interrupt.
1445   ObjectWaiter node(Self);
1446   node.TState = ObjectWaiter::TS_WAIT;
1447   Self->_ParkEvent->reset();
1448   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1449 
1450   // Enter the waiting queue, which is a circular doubly linked list in this case
1451   // but it could be a priority queue or any data structure.
1452   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1453   // by the the owner of the monitor *except* in the case where park()
1454   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1455   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1456 
1457   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1458   AddWaiter(&node);
1459   Thread::SpinRelease(&_WaitSetLock);
1460 
1461   if ((SyncFlags & 4) == 0) {
1462     _Responsible = NULL;
1463   }
1464   intptr_t save = _recursions; // record the old recursion count
1465   _waiters++;                  // increment the number of waiters
1466   _recursions = 0;             // set the recursion level to be 1
1467   exit(true, Self);                    // exit the monitor
1468   guarantee(_owner != Self, "invariant");
1469 
1470   // The thread is on the WaitSet list - now park() it.
1471   // On MP systems it's conceivable that a brief spin before we park
1472   // could be profitable.
1473   //
1474   // TODO-FIXME: change the following logic to a loop of the form
1475   //   while (!timeout && !interrupted && _notified == 0) park()
1476 
1477   int ret = OS_OK;
1478   int WasNotified = 0;
1479   { // State transition wrappers
1480     OSThread* osthread = Self->osthread();
1481     OSThreadWaitState osts(osthread, true);
1482     {
1483       ThreadBlockInVM tbivm(jt);
1484       // Thread is in thread_blocked state and oop access is unsafe.
1485       jt->set_suspend_equivalent();
1486 
1487       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1488         // Intentionally empty
1489       } else if (node._notified == 0) {
1490         if (millis <= 0) {
1491           Self->_ParkEvent->park();
1492         } else {
1493           ret = Self->_ParkEvent->park(millis);
1494         }
1495       }
1496 
1497       // were we externally suspended while we were waiting?
1498       if (ExitSuspendEquivalent (jt)) {
1499         // TODO-FIXME: add -- if succ == Self then succ = null.
1500         jt->java_suspend_self();
1501       }
1502 
1503     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1504 
1505     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1506     // from the WaitSet to the EntryList.
1507     // See if we need to remove Node from the WaitSet.
1508     // We use double-checked locking to avoid grabbing _WaitSetLock
1509     // if the thread is not on the wait queue.
1510     //
1511     // Note that we don't need a fence before the fetch of TState.
1512     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1513     // written by the is thread. (perhaps the fetch might even be satisfied
1514     // by a look-aside into the processor's own store buffer, although given
1515     // the length of the code path between the prior ST and this load that's
1516     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1517     // then we'll acquire the lock and then re-fetch a fresh TState value.
1518     // That is, we fail toward safety.
1519 
1520     if (node.TState == ObjectWaiter::TS_WAIT) {
1521       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1522       if (node.TState == ObjectWaiter::TS_WAIT) {
1523         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1524         assert(node._notified == 0, "invariant");
1525         node.TState = ObjectWaiter::TS_RUN;
1526       }
1527       Thread::SpinRelease(&_WaitSetLock);
1528     }
1529 
1530     // The thread is now either on off-list (TS_RUN),
1531     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1532     // The Node's TState variable is stable from the perspective of this thread.
1533     // No other threads will asynchronously modify TState.
1534     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1535     OrderAccess::loadload();
1536     if (_succ == Self) _succ = NULL;
1537     WasNotified = node._notified;
1538 
1539     // Reentry phase -- reacquire the monitor.
1540     // re-enter contended monitor after object.wait().
1541     // retain OBJECT_WAIT state until re-enter successfully completes
1542     // Thread state is thread_in_vm and oop access is again safe,
1543     // although the raw address of the object may have changed.
1544     // (Don't cache naked oops over safepoints, of course).
1545 
1546     // post monitor waited event. Note that this is past-tense, we are done waiting.
1547     if (JvmtiExport::should_post_monitor_waited()) {
1548       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1549 
1550       if (node._notified != 0 && _succ == Self) {
1551         // In this part of the monitor wait-notify-reenter protocol it
1552         // is possible (and normal) for another thread to do a fastpath
1553         // monitor enter-exit while this thread is still trying to get
1554         // to the reenter portion of the protocol.
1555         //
1556         // The ObjectMonitor was notified and the current thread is
1557         // the successor which also means that an unpark() has already
1558         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1559         // consume the unpark() that was done when the successor was
1560         // set because the same ParkEvent is shared between Java
1561         // monitors and JVM/TI RawMonitors (for now).
1562         //
1563         // We redo the unpark() to ensure forward progress, i.e., we
1564         // don't want all pending threads hanging (parked) with none
1565         // entering the unlocked monitor.
1566         node._event->unpark();
1567       }
1568     }
1569 
1570     if (event.should_commit()) {
1571       post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1572     }
1573 
1574     OrderAccess::fence();
1575 
1576     assert(Self->_Stalled != 0, "invariant");
1577     Self->_Stalled = 0;
1578 
1579     assert(_owner != Self, "invariant");
1580     ObjectWaiter::TStates v = node.TState;
1581     if (v == ObjectWaiter::TS_RUN) {
1582       enter(Self);
1583     } else {
1584       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1585       ReenterI(Self, &node);
1586       node.wait_reenter_end(this);
1587     }
1588 
1589     // Self has reacquired the lock.
1590     // Lifecycle - the node representing Self must not appear on any queues.
1591     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1592     // want residual elements associated with this thread left on any lists.
1593     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1594     assert(_owner == Self, "invariant");
1595     assert(_succ != Self, "invariant");
1596   } // OSThreadWaitState()
1597 
1598   jt->set_current_waiting_monitor(NULL);
1599 
1600   guarantee(_recursions == 0, "invariant");
1601   _recursions = save;     // restore the old recursion count
1602   _waiters--;             // decrement the number of waiters
1603 
1604   // Verify a few postconditions
1605   assert(_owner == Self, "invariant");
1606   assert(_succ != Self, "invariant");
1607   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1608 
1609   if (SyncFlags & 32) {
1610     OrderAccess::fence();
1611   }
1612 
1613   // check if the notification happened
1614   if (!WasNotified) {
1615     // no, it could be timeout or Thread.interrupt() or both
1616     // check for interrupt event, otherwise it is timeout
1617     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1618       TEVENT(Wait - throw IEX from epilog);
1619       THROW(vmSymbols::java_lang_InterruptedException());
1620     }
1621   }
1622 
1623   // NOTE: Spurious wake up will be consider as timeout.
1624   // Monitor notify has precedence over thread interrupt.
1625 }
1626 
1627 
1628 // Consider:
1629 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1630 // then instead of transferring a thread from the WaitSet to the EntryList
1631 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1632 
1633 void ObjectMonitor::INotify(Thread * Self) {
1634   const int policy = Knob_MoveNotifyee;
1635 
1636   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1637   ObjectWaiter * iterator = DequeueWaiter();
1638   if (iterator != NULL) {
1639     TEVENT(Notify1 - Transfer);
1640     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1641     guarantee(iterator->_notified == 0, "invariant");
1642     // Disposition - what might we do with iterator ?
1643     // a.  add it directly to the EntryList - either tail (policy == 1)
1644     //     or head (policy == 0).
1645     // b.  push it onto the front of the _cxq (policy == 2).
1646     // For now we use (b).
1647     if (policy != 4) {
1648       iterator->TState = ObjectWaiter::TS_ENTER;
1649     }
1650     iterator->_notified = 1;
1651     iterator->_notifier_tid = THREAD_TRACE_ID(Self);
1652 
1653     ObjectWaiter * list = _EntryList;
1654     if (list != NULL) {
1655       assert(list->_prev == NULL, "invariant");
1656       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1657       assert(list != iterator, "invariant");
1658     }
1659 
1660     if (policy == 0) {       // prepend to EntryList
1661       if (list == NULL) {
1662         iterator->_next = iterator->_prev = NULL;
1663         _EntryList = iterator;
1664       } else {
1665         list->_prev = iterator;
1666         iterator->_next = list;
1667         iterator->_prev = NULL;
1668         _EntryList = iterator;
1669       }
1670     } else if (policy == 1) {      // append to EntryList
1671       if (list == NULL) {
1672         iterator->_next = iterator->_prev = NULL;
1673         _EntryList = iterator;
1674       } else {
1675         // CONSIDER:  finding the tail currently requires a linear-time walk of
1676         // the EntryList.  We can make tail access constant-time by converting to
1677         // a CDLL instead of using our current DLL.
1678         ObjectWaiter * tail;
1679         for (tail = list; tail->_next != NULL; tail = tail->_next) /* empty */;
1680         assert(tail != NULL && tail->_next == NULL, "invariant");
1681         tail->_next = iterator;
1682         iterator->_prev = tail;
1683         iterator->_next = NULL;
1684       }
1685     } else if (policy == 2) {      // prepend to cxq
1686       if (list == NULL) {
1687         iterator->_next = iterator->_prev = NULL;
1688         _EntryList = iterator;
1689       } else {
1690         iterator->TState = ObjectWaiter::TS_CXQ;
1691         for (;;) {
1692           ObjectWaiter * front = _cxq;
1693           iterator->_next = front;
1694           if (Atomic::cmpxchg_ptr(iterator, &_cxq, front) == front) {
1695             break;
1696           }
1697         }
1698       }
1699     } else if (policy == 3) {      // append to cxq
1700       iterator->TState = ObjectWaiter::TS_CXQ;
1701       for (;;) {
1702         ObjectWaiter * tail = _cxq;
1703         if (tail == NULL) {
1704           iterator->_next = NULL;
1705           if (Atomic::cmpxchg_ptr(iterator, &_cxq, NULL) == NULL) {
1706             break;
1707           }
1708         } else {
1709           while (tail->_next != NULL) tail = tail->_next;
1710           tail->_next = iterator;
1711           iterator->_prev = tail;
1712           iterator->_next = NULL;
1713           break;
1714         }
1715       }
1716     } else {
1717       ParkEvent * ev = iterator->_event;
1718       iterator->TState = ObjectWaiter::TS_RUN;
1719       OrderAccess::fence();
1720       ev->unpark();
1721     }
1722 
1723     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1724     // move the add-to-EntryList operation, above, outside the critical section
1725     // protected by _WaitSetLock.  In practice that's not useful.  With the
1726     // exception of  wait() timeouts and interrupts the monitor owner
1727     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1728     // on _WaitSetLock so it's not profitable to reduce the length of the
1729     // critical section.
1730 
1731     if (policy < 4) {
1732       iterator->wait_reenter_begin(this);
1733     }
1734   }
1735   Thread::SpinRelease(&_WaitSetLock);
1736 }
1737 
1738 // Consider: a not-uncommon synchronization bug is to use notify() when
1739 // notifyAll() is more appropriate, potentially resulting in stranded
1740 // threads; this is one example of a lost wakeup. A useful diagnostic
1741 // option is to force all notify() operations to behave as notifyAll().
1742 //
1743 // Note: We can also detect many such problems with a "minimum wait".
1744 // When the "minimum wait" is set to a small non-zero timeout value
1745 // and the program does not hang whereas it did absent "minimum wait",
1746 // that suggests a lost wakeup bug. The '-XX:SyncFlags=1' option uses
1747 // a "minimum wait" for all park() operations; see the recheckInterval
1748 // variable and MAX_RECHECK_INTERVAL.
1749 
1750 void ObjectMonitor::notify(TRAPS) {
1751   CHECK_OWNER();
1752   if (_WaitSet == NULL) {
1753     TEVENT(Empty-Notify);
1754     return;
1755   }
1756   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1757   INotify(THREAD);
1758   OM_PERFDATA_OP(Notifications, inc(1));
1759 }
1760 
1761 
1762 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1763 // from the waitset to the EntryList. This could be done more efficiently with a
1764 // single bulk transfer but in practice it's not time-critical. Beware too,
1765 // that in prepend-mode we invert the order of the waiters. Let's say that the
1766 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1767 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1768 
1769 void ObjectMonitor::notifyAll(TRAPS) {
1770   CHECK_OWNER();
1771   if (_WaitSet == NULL) {
1772     TEVENT(Empty-NotifyAll);
1773     return;
1774   }
1775 
1776   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1777   int tally = 0;
1778   while (_WaitSet != NULL) {
1779     tally++;
1780     INotify(THREAD);
1781   }
1782 
1783   OM_PERFDATA_OP(Notifications, inc(tally));
1784 }
1785 
1786 // -----------------------------------------------------------------------------
1787 // Adaptive Spinning Support
1788 //
1789 // Adaptive spin-then-block - rational spinning
1790 //
1791 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1792 // algorithm.  On high order SMP systems it would be better to start with
1793 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1794 // a contending thread could enqueue itself on the cxq and then spin locally
1795 // on a thread-specific variable such as its ParkEvent._Event flag.
1796 // That's left as an exercise for the reader.  Note that global spinning is
1797 // not problematic on Niagara, as the L2 cache serves the interconnect and
1798 // has both low latency and massive bandwidth.
1799 //
1800 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1801 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1802 // (duration) or we can fix the count at approximately the duration of
1803 // a context switch and vary the frequency.   Of course we could also
1804 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1805 // For a description of 'Adaptive spin-then-block mutual exclusion in
1806 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1807 //
1808 // This implementation varies the duration "D", where D varies with
1809 // the success rate of recent spin attempts. (D is capped at approximately
1810 // length of a round-trip context switch).  The success rate for recent
1811 // spin attempts is a good predictor of the success rate of future spin
1812 // attempts.  The mechanism adapts automatically to varying critical
1813 // section length (lock modality), system load and degree of parallelism.
1814 // D is maintained per-monitor in _SpinDuration and is initialized
1815 // optimistically.  Spin frequency is fixed at 100%.
1816 //
1817 // Note that _SpinDuration is volatile, but we update it without locks
1818 // or atomics.  The code is designed so that _SpinDuration stays within
1819 // a reasonable range even in the presence of races.  The arithmetic
1820 // operations on _SpinDuration are closed over the domain of legal values,
1821 // so at worst a race will install and older but still legal value.
1822 // At the very worst this introduces some apparent non-determinism.
1823 // We might spin when we shouldn't or vice-versa, but since the spin
1824 // count are relatively short, even in the worst case, the effect is harmless.
1825 //
1826 // Care must be taken that a low "D" value does not become an
1827 // an absorbing state.  Transient spinning failures -- when spinning
1828 // is overall profitable -- should not cause the system to converge
1829 // on low "D" values.  We want spinning to be stable and predictable
1830 // and fairly responsive to change and at the same time we don't want
1831 // it to oscillate, become metastable, be "too" non-deterministic,
1832 // or converge on or enter undesirable stable absorbing states.
1833 //
1834 // We implement a feedback-based control system -- using past behavior
1835 // to predict future behavior.  We face two issues: (a) if the
1836 // input signal is random then the spin predictor won't provide optimal
1837 // results, and (b) if the signal frequency is too high then the control
1838 // system, which has some natural response lag, will "chase" the signal.
1839 // (b) can arise from multimodal lock hold times.  Transient preemption
1840 // can also result in apparent bimodal lock hold times.
1841 // Although sub-optimal, neither condition is particularly harmful, as
1842 // in the worst-case we'll spin when we shouldn't or vice-versa.
1843 // The maximum spin duration is rather short so the failure modes aren't bad.
1844 // To be conservative, I've tuned the gain in system to bias toward
1845 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1846 // "rings" or oscillates between spinning and not spinning.  This happens
1847 // when spinning is just on the cusp of profitability, however, so the
1848 // situation is not dire.  The state is benign -- there's no need to add
1849 // hysteresis control to damp the transition rate between spinning and
1850 // not spinning.
1851 
1852 intptr_t ObjectMonitor::SpinCallbackArgument = 0;
1853 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL;
1854 
1855 // Spinning: Fixed frequency (100%), vary duration
1856 
1857 
1858 int ObjectMonitor::TrySpin_VaryDuration(Thread * Self) {
1859   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1860   int ctr = Knob_FixedSpin;
1861   if (ctr != 0) {
1862     while (--ctr >= 0) {
1863       if (TryLock(Self) > 0) return 1;
1864       SpinPause();
1865     }
1866     return 0;
1867   }
1868 
1869   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1870     if (TryLock(Self) > 0) {
1871       // Increase _SpinDuration ...
1872       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1873       // Raising _SpurDuration to the poverty line is key.
1874       int x = _SpinDuration;
1875       if (x < Knob_SpinLimit) {
1876         if (x < Knob_Poverty) x = Knob_Poverty;
1877         _SpinDuration = x + Knob_BonusB;
1878       }
1879       return 1;
1880     }
1881     SpinPause();
1882   }
1883 
1884   // Admission control - verify preconditions for spinning
1885   //
1886   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1887   // becoming an absorbing state.  Put another way, we spin briefly to
1888   // sample, just in case the system load, parallelism, contention, or lock
1889   // modality changed.
1890   //
1891   // Consider the following alternative:
1892   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1893   // spin attempt.  "Periodically" might mean after a tally of
1894   // the # of failed spin attempts (or iterations) reaches some threshold.
1895   // This takes us into the realm of 1-out-of-N spinning, where we
1896   // hold the duration constant but vary the frequency.
1897 
1898   ctr = _SpinDuration;
1899   if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
1900   if (ctr <= 0) return 0;
1901 
1902   if (Knob_SuccRestrict && _succ != NULL) return 0;
1903   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1904     TEVENT(Spin abort - notrunnable [TOP]);
1905     return 0;
1906   }
1907 
1908   int MaxSpin = Knob_MaxSpinners;
1909   if (MaxSpin >= 0) {
1910     if (_Spinner > MaxSpin) {
1911       TEVENT(Spin abort -- too many spinners);
1912       return 0;
1913     }
1914     // Slightly racy, but benign ...
1915     Adjust(&_Spinner, 1);
1916   }
1917 
1918   // We're good to spin ... spin ingress.
1919   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1920   // when preparing to LD...CAS _owner, etc and the CAS is likely
1921   // to succeed.
1922   int hits    = 0;
1923   int msk     = 0;
1924   int caspty  = Knob_CASPenalty;
1925   int oxpty   = Knob_OXPenalty;
1926   int sss     = Knob_SpinSetSucc;
1927   if (sss && _succ == NULL) _succ = Self;
1928   Thread * prv = NULL;
1929 
1930   // There are three ways to exit the following loop:
1931   // 1.  A successful spin where this thread has acquired the lock.
1932   // 2.  Spin failure with prejudice
1933   // 3.  Spin failure without prejudice
1934 
1935   while (--ctr >= 0) {
1936 
1937     // Periodic polling -- Check for pending GC
1938     // Threads may spin while they're unsafe.
1939     // We don't want spinning threads to delay the JVM from reaching
1940     // a stop-the-world safepoint or to steal cycles from GC.
1941     // If we detect a pending safepoint we abort in order that
1942     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1943     // this thread, if safe, doesn't steal cycles from GC.
1944     // This is in keeping with the "no loitering in runtime" rule.
1945     // We periodically check to see if there's a safepoint pending.
1946     if ((ctr & 0xFF) == 0) {
1947       if (SafepointSynchronize::do_call_back()) {
1948         TEVENT(Spin: safepoint);
1949         goto Abort;           // abrupt spin egress
1950       }
1951       if (Knob_UsePause & 1) SpinPause();
1952 
1953       int (*scb)(intptr_t,int) = SpinCallbackFunction;
1954       if (hits > 50 && scb != NULL) {
1955         int abend = (*scb)(SpinCallbackArgument, 0);
1956       }
1957     }
1958 
1959     if (Knob_UsePause & 2) SpinPause();
1960 
1961     // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
1962     // This is useful on classic SMP systems, but is of less utility on
1963     // N1-style CMT platforms.
1964     //
1965     // Trade-off: lock acquisition latency vs coherency bandwidth.
1966     // Lock hold times are typically short.  A histogram
1967     // of successful spin attempts shows that we usually acquire
1968     // the lock early in the spin.  That suggests we want to
1969     // sample _owner frequently in the early phase of the spin,
1970     // but then back-off and sample less frequently as the spin
1971     // progresses.  The back-off makes a good citizen on SMP big
1972     // SMP systems.  Oversampling _owner can consume excessive
1973     // coherency bandwidth.  Relatedly, if we _oversample _owner we
1974     // can inadvertently interfere with the the ST m->owner=null.
1975     // executed by the lock owner.
1976     if (ctr & msk) continue;
1977     ++hits;
1978     if ((hits & 0xF) == 0) {
1979       // The 0xF, above, corresponds to the exponent.
1980       // Consider: (msk+1)|msk
1981       msk = ((msk << 2)|3) & BackOffMask;
1982     }
1983 
1984     // Probe _owner with TATAS
1985     // If this thread observes the monitor transition or flicker
1986     // from locked to unlocked to locked, then the odds that this
1987     // thread will acquire the lock in this spin attempt go down
1988     // considerably.  The same argument applies if the CAS fails
1989     // or if we observe _owner change from one non-null value to
1990     // another non-null value.   In such cases we might abort
1991     // the spin without prejudice or apply a "penalty" to the
1992     // spin count-down variable "ctr", reducing it by 100, say.
1993 
1994     Thread * ox = (Thread *) _owner;
1995     if (ox == NULL) {
1996       ox = (Thread *) Atomic::cmpxchg_ptr(Self, &_owner, NULL);
1997       if (ox == NULL) {
1998         // The CAS succeeded -- this thread acquired ownership
1999         // Take care of some bookkeeping to exit spin state.
2000         if (sss && _succ == Self) {
2001           _succ = NULL;
2002         }
2003         if (MaxSpin > 0) Adjust(&_Spinner, -1);
2004 
2005         // Increase _SpinDuration :
2006         // The spin was successful (profitable) so we tend toward
2007         // longer spin attempts in the future.
2008         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2009         // If we acquired the lock early in the spin cycle it
2010         // makes sense to increase _SpinDuration proportionally.
2011         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2012         int x = _SpinDuration;
2013         if (x < Knob_SpinLimit) {
2014           if (x < Knob_Poverty) x = Knob_Poverty;
2015           _SpinDuration = x + Knob_Bonus;
2016         }
2017         return 1;
2018       }
2019 
2020       // The CAS failed ... we can take any of the following actions:
2021       // * penalize: ctr -= Knob_CASPenalty
2022       // * exit spin with prejudice -- goto Abort;
2023       // * exit spin without prejudice.
2024       // * Since CAS is high-latency, retry again immediately.
2025       prv = ox;
2026       TEVENT(Spin: cas failed);
2027       if (caspty == -2) break;
2028       if (caspty == -1) goto Abort;
2029       ctr -= caspty;
2030       continue;
2031     }
2032 
2033     // Did lock ownership change hands ?
2034     if (ox != prv && prv != NULL) {
2035       TEVENT(spin: Owner changed)
2036       if (oxpty == -2) break;
2037       if (oxpty == -1) goto Abort;
2038       ctr -= oxpty;
2039     }
2040     prv = ox;
2041 
2042     // Abort the spin if the owner is not executing.
2043     // The owner must be executing in order to drop the lock.
2044     // Spinning while the owner is OFFPROC is idiocy.
2045     // Consider: ctr -= RunnablePenalty ;
2046     if (Knob_OState && NotRunnable (Self, ox)) {
2047       TEVENT(Spin abort - notrunnable);
2048       goto Abort;
2049     }
2050     if (sss && _succ == NULL) _succ = Self;
2051   }
2052 
2053   // Spin failed with prejudice -- reduce _SpinDuration.
2054   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2055   // AIMD is globally stable.
2056   TEVENT(Spin failure);
2057   {
2058     int x = _SpinDuration;
2059     if (x > 0) {
2060       // Consider an AIMD scheme like: x -= (x >> 3) + 100
2061       // This is globally sample and tends to damp the response.
2062       x -= Knob_Penalty;
2063       if (x < 0) x = 0;
2064       _SpinDuration = x;
2065     }
2066   }
2067 
2068  Abort:
2069   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
2070   if (sss && _succ == Self) {
2071     _succ = NULL;
2072     // Invariant: after setting succ=null a contending thread
2073     // must recheck-retry _owner before parking.  This usually happens
2074     // in the normal usage of TrySpin(), but it's safest
2075     // to make TrySpin() as foolproof as possible.
2076     OrderAccess::fence();
2077     if (TryLock(Self) > 0) return 1;
2078   }
2079   return 0;
2080 }
2081 
2082 // NotRunnable() -- informed spinning
2083 //
2084 // Don't bother spinning if the owner is not eligible to drop the lock.
2085 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2086 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2087 // The thread must be runnable in order to drop the lock in timely fashion.
2088 // If the _owner is not runnable then spinning will not likely be
2089 // successful (profitable).
2090 //
2091 // Beware -- the thread referenced by _owner could have died
2092 // so a simply fetch from _owner->_thread_state might trap.
2093 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2094 // Because of the lifecycle issues the schedctl and _thread_state values
2095 // observed by NotRunnable() might be garbage.  NotRunnable must
2096 // tolerate this and consider the observed _thread_state value
2097 // as advisory.
2098 //
2099 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2100 // a thread pointer.
2101 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2102 // with the LSB of _owner.  Another option would be to probablistically probe
2103 // the putative _owner->TypeTag value.
2104 //
2105 // Checking _thread_state isn't perfect.  Even if the thread is
2106 // in_java it might be blocked on a page-fault or have been preempted
2107 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2108 // with schedctl.sc_state gives us a good picture of what the
2109 // thread is doing, however.
2110 //
2111 // TODO: check schedctl.sc_state.
2112 // We'll need to use SafeFetch32() to read from the schedctl block.
2113 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2114 //
2115 // The return value from NotRunnable() is *advisory* -- the
2116 // result is based on sampling and is not necessarily coherent.
2117 // The caller must tolerate false-negative and false-positive errors.
2118 // Spinning, in general, is probabilistic anyway.
2119 
2120 
2121 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2122   // Check ox->TypeTag == 2BAD.
2123   if (ox == NULL) return 0;
2124 
2125   // Avoid transitive spinning ...
2126   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2127   // Immediately after T1 acquires L it's possible that T2, also
2128   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2129   // This occurs transiently after T1 acquired L but before
2130   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2131   // its spin in this circumstance.
2132   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2133 
2134   if (BlockedOn == 1) return 1;
2135   if (BlockedOn != 0) {
2136     return BlockedOn != intptr_t(this) && _owner == ox;
2137   }
2138 
2139   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2140   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2141   // consider also: jst != _thread_in_Java -- but that's overspecific.
2142   return jst == _thread_blocked || jst == _thread_in_native;
2143 }
2144 
2145 
2146 // -----------------------------------------------------------------------------
2147 // WaitSet management ...
2148 
2149 ObjectWaiter::ObjectWaiter(Thread* thread) {
2150   _next     = NULL;
2151   _prev     = NULL;
2152   _notified = 0;
2153   TState    = TS_RUN;
2154   _thread   = thread;
2155   _event    = thread->_ParkEvent;
2156   _active   = false;
2157   assert(_event != NULL, "invariant");
2158 }
2159 
2160 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2161   JavaThread *jt = (JavaThread *)this->_thread;
2162   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2163 }
2164 
2165 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2166   JavaThread *jt = (JavaThread *)this->_thread;
2167   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2168 }
2169 
2170 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2171   assert(node != NULL, "should not add NULL node");
2172   assert(node->_prev == NULL, "node already in list");
2173   assert(node->_next == NULL, "node already in list");
2174   // put node at end of queue (circular doubly linked list)
2175   if (_WaitSet == NULL) {
2176     _WaitSet = node;
2177     node->_prev = node;
2178     node->_next = node;
2179   } else {
2180     ObjectWaiter* head = _WaitSet;
2181     ObjectWaiter* tail = head->_prev;
2182     assert(tail->_next == head, "invariant check");
2183     tail->_next = node;
2184     head->_prev = node;
2185     node->_next = head;
2186     node->_prev = tail;
2187   }
2188 }
2189 
2190 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2191   // dequeue the very first waiter
2192   ObjectWaiter* waiter = _WaitSet;
2193   if (waiter) {
2194     DequeueSpecificWaiter(waiter);
2195   }
2196   return waiter;
2197 }
2198 
2199 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2200   assert(node != NULL, "should not dequeue NULL node");
2201   assert(node->_prev != NULL, "node already removed from list");
2202   assert(node->_next != NULL, "node already removed from list");
2203   // when the waiter has woken up because of interrupt,
2204   // timeout or other spurious wake-up, dequeue the
2205   // waiter from waiting list
2206   ObjectWaiter* next = node->_next;
2207   if (next == node) {
2208     assert(node->_prev == node, "invariant check");
2209     _WaitSet = NULL;
2210   } else {
2211     ObjectWaiter* prev = node->_prev;
2212     assert(prev->_next == node, "invariant check");
2213     assert(next->_prev == node, "invariant check");
2214     next->_prev = prev;
2215     prev->_next = next;
2216     if (_WaitSet == node) {
2217       _WaitSet = next;
2218     }
2219   }
2220   node->_next = NULL;
2221   node->_prev = NULL;
2222 }
2223 
2224 // -----------------------------------------------------------------------------
2225 // PerfData support
2226 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2227 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2228 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2229 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL;
2230 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2231 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL;
2232 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL;
2233 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL;
2234 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL;
2235 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL;
2236 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL;
2237 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL;
2238 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL;
2239 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL;
2240 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL;
2241 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2242 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2243 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2244 
2245 // One-shot global initialization for the sync subsystem.
2246 // We could also defer initialization and initialize on-demand
2247 // the first time we call inflate().  Initialization would
2248 // be protected - like so many things - by the MonitorCache_lock.
2249 
2250 void ObjectMonitor::Initialize() {
2251   static int InitializationCompleted = 0;
2252   assert(InitializationCompleted == 0, "invariant");
2253   InitializationCompleted = 1;
2254   if (UsePerfData) {
2255     EXCEPTION_MARK;
2256 #define NEWPERFCOUNTER(n)                                                \
2257   {                                                                      \
2258     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2259                                         CHECK);                          \
2260   }
2261 #define NEWPERFVARIABLE(n)                                                \
2262   {                                                                       \
2263     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2264                                          CHECK);                          \
2265   }
2266     NEWPERFCOUNTER(_sync_Inflations);
2267     NEWPERFCOUNTER(_sync_Deflations);
2268     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2269     NEWPERFCOUNTER(_sync_FutileWakeups);
2270     NEWPERFCOUNTER(_sync_Parks);
2271     NEWPERFCOUNTER(_sync_EmptyNotifications);
2272     NEWPERFCOUNTER(_sync_Notifications);
2273     NEWPERFCOUNTER(_sync_SlowEnter);
2274     NEWPERFCOUNTER(_sync_SlowExit);
2275     NEWPERFCOUNTER(_sync_SlowNotify);
2276     NEWPERFCOUNTER(_sync_SlowNotifyAll);
2277     NEWPERFCOUNTER(_sync_FailedSpins);
2278     NEWPERFCOUNTER(_sync_SuccessfulSpins);
2279     NEWPERFCOUNTER(_sync_PrivateA);
2280     NEWPERFCOUNTER(_sync_PrivateB);
2281     NEWPERFCOUNTER(_sync_MonInCirculation);
2282     NEWPERFCOUNTER(_sync_MonScavenged);
2283     NEWPERFVARIABLE(_sync_MonExtant);
2284 #undef NEWPERFCOUNTER
2285 #undef NEWPERFVARIABLE
2286   }
2287 }
2288 
2289 static char * kvGet(char * kvList, const char * Key) {
2290   if (kvList == NULL) return NULL;
2291   size_t n = strlen(Key);
2292   char * Search;
2293   for (Search = kvList; *Search; Search += strlen(Search) + 1) {
2294     if (strncmp (Search, Key, n) == 0) {
2295       if (Search[n] == '=') return Search + n + 1;
2296       if (Search[n] == 0)   return(char *) "1";
2297     }
2298   }
2299   return NULL;
2300 }
2301 
2302 static int kvGetInt(char * kvList, const char * Key, int Default) {
2303   char * v = kvGet(kvList, Key);
2304   int rslt = v ? ::strtol(v, NULL, 0) : Default;
2305   if (Knob_ReportSettings && v != NULL) {
2306     tty->print_cr("INFO: SyncKnob: %s %d(%d)", Key, rslt, Default) ;
2307     tty->flush();
2308   }
2309   return rslt;
2310 }
2311 
2312 void ObjectMonitor::DeferredInitialize() {
2313   if (InitDone > 0) return;
2314   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2315     while (InitDone != 1) /* empty */;
2316     return;
2317   }
2318 
2319   // One-shot global initialization ...
2320   // The initialization is idempotent, so we don't need locks.
2321   // In the future consider doing this via os::init_2().
2322   // SyncKnobs consist of <Key>=<Value> pairs in the style
2323   // of environment variables.  Start by converting ':' to NUL.
2324 
2325   if (SyncKnobs == NULL) SyncKnobs = "";
2326 
2327   size_t sz = strlen(SyncKnobs);
2328   char * knobs = (char *) malloc(sz + 2);
2329   if (knobs == NULL) {
2330     vm_exit_out_of_memory(sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs");
2331     guarantee(0, "invariant");
2332   }
2333   strcpy(knobs, SyncKnobs);
2334   knobs[sz+1] = 0;
2335   for (char * p = knobs; *p; p++) {
2336     if (*p == ':') *p = 0;
2337   }
2338 
2339   #define SETKNOB(x) { Knob_##x = kvGetInt(knobs, #x, Knob_##x); }
2340   SETKNOB(ReportSettings);
2341   SETKNOB(ExitRelease);
2342   SETKNOB(Verbose);
2343   SETKNOB(VerifyInUse);
2344   SETKNOB(VerifyMatch);
2345   SETKNOB(FixedSpin);
2346   SETKNOB(SpinLimit);
2347   SETKNOB(SpinBase);
2348   SETKNOB(SpinBackOff);
2349   SETKNOB(CASPenalty);
2350   SETKNOB(OXPenalty);
2351   SETKNOB(LogSpins);
2352   SETKNOB(SpinSetSucc);
2353   SETKNOB(SuccEnabled);
2354   SETKNOB(SuccRestrict);
2355   SETKNOB(Penalty);
2356   SETKNOB(Bonus);
2357   SETKNOB(BonusB);
2358   SETKNOB(Poverty);
2359   SETKNOB(SpinAfterFutile);
2360   SETKNOB(UsePause);
2361   SETKNOB(SpinEarly);
2362   SETKNOB(OState);
2363   SETKNOB(MaxSpinners);
2364   SETKNOB(PreSpin);
2365   SETKNOB(ExitPolicy);
2366   SETKNOB(QMode);
2367   SETKNOB(ResetEvent);
2368   SETKNOB(MoveNotifyee);
2369   SETKNOB(FastHSSEC);
2370   #undef SETKNOB
2371 
2372   if (Knob_Verbose) {
2373     sanity_checks();
2374   }
2375 
2376   if (os::is_MP()) {
2377     BackOffMask = (1 << Knob_SpinBackOff) - 1;
2378     if (Knob_ReportSettings) {
2379       tty->print_cr("INFO: BackOffMask=0x%X", BackOffMask);
2380     }
2381     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2382   } else {
2383     Knob_SpinLimit = 0;
2384     Knob_SpinBase  = 0;
2385     Knob_PreSpin   = 0;
2386     Knob_FixedSpin = -1;
2387   }
2388 
2389   if (Knob_LogSpins == 0) {
2390     ObjectMonitor::_sync_FailedSpins = NULL;
2391   }
2392 
2393   free(knobs);
2394   OrderAccess::fence();
2395   InitDone = 1;
2396 }
2397 
2398 void ObjectMonitor::sanity_checks() {
2399   int error_cnt = 0;
2400   int warning_cnt = 0;
2401   bool verbose = Knob_Verbose != 0 NOT_PRODUCT(|| VerboseInternalVMTests);
2402 
2403   if (verbose) {
2404     tty->print_cr("INFO: sizeof(ObjectMonitor)=" SIZE_FORMAT,
2405                   sizeof(ObjectMonitor));
2406     tty->print_cr("INFO: sizeof(PaddedEnd<ObjectMonitor>)=" SIZE_FORMAT,
2407                   sizeof(PaddedEnd<ObjectMonitor>));
2408   }
2409 
2410   uint cache_line_size = VM_Version::L1_data_cache_line_size();
2411   if (verbose) {
2412     tty->print_cr("INFO: L1_data_cache_line_size=%u", cache_line_size);
2413   }
2414 
2415   ObjectMonitor dummy;
2416   u_char *addr_begin  = (u_char*)&dummy;
2417   u_char *addr_header = (u_char*)&dummy._header;
2418   u_char *addr_owner  = (u_char*)&dummy._owner;
2419 
2420   uint offset_header = (uint)(addr_header - addr_begin);
2421   if (verbose) tty->print_cr("INFO: offset(_header)=%u", offset_header);
2422 
2423   uint offset_owner = (uint)(addr_owner - addr_begin);
2424   if (verbose) tty->print_cr("INFO: offset(_owner)=%u", offset_owner);
2425 
2426   if ((uint)(addr_header - addr_begin) != 0) {
2427     tty->print_cr("ERROR: offset(_header) must be zero (0).");
2428     error_cnt++;
2429   }
2430 
2431   if (cache_line_size != 0) {
2432     // We were able to determine the L1 data cache line size so
2433     // do some cache line specific sanity checks
2434 
2435     if ((offset_owner - offset_header) < cache_line_size) {
2436       tty->print_cr("WARNING: the _header and _owner fields are closer "
2437                     "than a cache line which permits false sharing.");
2438       warning_cnt++;
2439     }
2440 
2441     if ((sizeof(PaddedEnd<ObjectMonitor>) % cache_line_size) != 0) {
2442       tty->print_cr("WARNING: PaddedEnd<ObjectMonitor> size is not a "
2443                     "multiple of a cache line which permits false sharing.");
2444       warning_cnt++;
2445     }
2446   }
2447 
2448   ObjectSynchronizer::sanity_checks(verbose, cache_line_size, &error_cnt,
2449                                     &warning_cnt);
2450 
2451   if (verbose || error_cnt != 0 || warning_cnt != 0) {
2452     tty->print_cr("INFO: error_cnt=%d", error_cnt);
2453     tty->print_cr("INFO: warning_cnt=%d", warning_cnt);
2454   }
2455 
2456   guarantee(error_cnt == 0,
2457             "Fatal error(s) found in ObjectMonitor::sanity_checks()");
2458 }
2459 
2460 #ifndef PRODUCT
2461 void ObjectMonitor::verify() {
2462 }
2463 
2464 void ObjectMonitor::print() {
2465 }
2466 
2467 void ObjectMonitor_test() {
2468   ObjectMonitor::sanity_checks();
2469 }
2470 #endif