1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef PRAGMA_DIAG_PUSH
  46 #define PRAGMA_DIAG_PUSH
  47 #endif
  48 #ifndef PRAGMA_DIAG_POP
  49 #define PRAGMA_DIAG_POP
  50 #endif
  51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  53 #endif
  54 #ifndef PRAGMA_FORMAT_IGNORED
  55 #define PRAGMA_FORMAT_IGNORED
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  59 #endif
  60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  62 #endif
  63 #ifndef ATTRIBUTE_PRINTF
  64 #define ATTRIBUTE_PRINTF(fmt, vargs)
  65 #endif
  66 #ifndef ATTRIBUTE_SCANF
  67 #define ATTRIBUTE_SCANF(fmt, vargs)
  68 #endif
  69 
  70 
  71 #include "utilities/macros.hpp"
  72 
  73 // This file holds all globally used constants & types, class (forward)
  74 // declarations and a few frequently used utility functions.
  75 
  76 //----------------------------------------------------------------------------------------------------
  77 // Constants
  78 
  79 const int LogBytesPerShort   = 1;
  80 const int LogBytesPerInt     = 2;
  81 #ifdef _LP64
  82 const int LogBytesPerWord    = 3;
  83 #else
  84 const int LogBytesPerWord    = 2;
  85 #endif
  86 const int LogBytesPerLong    = 3;
  87 
  88 const int BytesPerShort      = 1 << LogBytesPerShort;
  89 const int BytesPerInt        = 1 << LogBytesPerInt;
  90 const int BytesPerWord       = 1 << LogBytesPerWord;
  91 const int BytesPerLong       = 1 << LogBytesPerLong;
  92 
  93 const int LogBitsPerByte     = 3;
  94 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  95 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  96 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  97 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  98 
  99 const int BitsPerByte        = 1 << LogBitsPerByte;
 100 const int BitsPerShort       = 1 << LogBitsPerShort;
 101 const int BitsPerInt         = 1 << LogBitsPerInt;
 102 const int BitsPerWord        = 1 << LogBitsPerWord;
 103 const int BitsPerLong        = 1 << LogBitsPerLong;
 104 
 105 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 106 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 107 
 108 const int WordsPerLong       = 2;       // Number of stack entries for longs
 109 
 110 const int oopSize            = sizeof(char*); // Full-width oop
 111 extern int heapOopSize;                       // Oop within a java object
 112 const int wordSize           = sizeof(char*);
 113 const int longSize           = sizeof(jlong);
 114 const int jintSize           = sizeof(jint);
 115 const int size_tSize         = sizeof(size_t);
 116 
 117 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 118 
 119 extern int LogBytesPerHeapOop;                // Oop within a java object
 120 extern int LogBitsPerHeapOop;
 121 extern int BytesPerHeapOop;
 122 extern int BitsPerHeapOop;
 123 
 124 const int BitsPerJavaInteger = 32;
 125 const int BitsPerJavaLong    = 64;
 126 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 127 
 128 // Size of a char[] needed to represent a jint as a string in decimal.
 129 const int jintAsStringSize = 12;
 130 
 131 // In fact this should be
 132 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 133 // see os::set_memory_serialize_page()
 134 #ifdef _LP64
 135 const int SerializePageShiftCount = 4;
 136 #else
 137 const int SerializePageShiftCount = 3;
 138 #endif
 139 
 140 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 141 // pointer into the heap.  We require that object sizes be measured in
 142 // units of heap words, so that that
 143 //   HeapWord* hw;
 144 //   hw += oop(hw)->foo();
 145 // works, where foo is a method (like size or scavenge) that returns the
 146 // object size.
 147 class HeapWord {
 148   friend class VMStructs;
 149  private:
 150   char* i;
 151 #ifndef PRODUCT
 152  public:
 153   char* value() { return i; }
 154 #endif
 155 };
 156 
 157 // Analogous opaque struct for metadata allocated from
 158 // metaspaces.
 159 class MetaWord {
 160  private:
 161   char* i;
 162 };
 163 
 164 // HeapWordSize must be 2^LogHeapWordSize.
 165 const int HeapWordSize        = sizeof(HeapWord);
 166 #ifdef _LP64
 167 const int LogHeapWordSize     = 3;
 168 #else
 169 const int LogHeapWordSize     = 2;
 170 #endif
 171 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 172 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 173 
 174 // The larger HeapWordSize for 64bit requires larger heaps
 175 // for the same application running in 64bit.  See bug 4967770.
 176 // The minimum alignment to a heap word size is done.  Other
 177 // parts of the memory system may require additional alignment
 178 // and are responsible for those alignments.
 179 #ifdef _LP64
 180 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 181 #else
 182 #define ScaleForWordSize(x) (x)
 183 #endif
 184 
 185 // The minimum number of native machine words necessary to contain "byte_size"
 186 // bytes.
 187 inline size_t heap_word_size(size_t byte_size) {
 188   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 189 }
 190 
 191 const size_t K                  = 1024;
 192 const size_t M                  = K*K;
 193 const size_t G                  = M*K;
 194 const size_t HWperKB            = K / sizeof(HeapWord);
 195 
 196 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 197 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 198 
 199 // Constants for converting from a base unit to milli-base units.  For
 200 // example from seconds to milliseconds and microseconds
 201 
 202 const int MILLIUNITS    = 1000;         // milli units per base unit
 203 const int MICROUNITS    = 1000000;      // micro units per base unit
 204 const int NANOUNITS     = 1000000000;   // nano units per base unit
 205 
 206 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 207 const jint  NANOSECS_PER_MILLISEC = 1000000;
 208 
 209 inline const char* proper_unit_for_byte_size(size_t s) {
 210 #ifdef _LP64
 211   if (s >= 10*G) {
 212     return "G";
 213   }
 214 #endif
 215   if (s >= 10*M) {
 216     return "M";
 217   } else if (s >= 10*K) {
 218     return "K";
 219   } else {
 220     return "B";
 221   }
 222 }
 223 
 224 template <class T>
 225 inline T byte_size_in_proper_unit(T s) {
 226 #ifdef _LP64
 227   if (s >= 10*G) {
 228     return (T)(s/G);
 229   }
 230 #endif
 231   if (s >= 10*M) {
 232     return (T)(s/M);
 233   } else if (s >= 10*K) {
 234     return (T)(s/K);
 235   } else {
 236     return s;
 237   }
 238 }
 239 
 240 //----------------------------------------------------------------------------------------------------
 241 // VM type definitions
 242 
 243 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 244 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 245 
 246 typedef intptr_t  intx;
 247 typedef uintptr_t uintx;
 248 
 249 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 250 const intx  max_intx  = (uintx)min_intx - 1;
 251 const uintx max_uintx = (uintx)-1;
 252 
 253 // Table of values:
 254 //      sizeof intx         4               8
 255 // min_intx             0x80000000      0x8000000000000000
 256 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 257 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 258 
 259 typedef unsigned int uint;   NEEDS_CLEANUP
 260 
 261 
 262 //----------------------------------------------------------------------------------------------------
 263 // Java type definitions
 264 
 265 // All kinds of 'plain' byte addresses
 266 typedef   signed char s_char;
 267 typedef unsigned char u_char;
 268 typedef u_char*       address;
 269 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 270                                     // except for some implementations of a C++
 271                                     // linkage pointer to function. Should never
 272                                     // need one of those to be placed in this
 273                                     // type anyway.
 274 
 275 //  Utility functions to "portably" (?) bit twiddle pointers
 276 //  Where portable means keep ANSI C++ compilers quiet
 277 
 278 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 279 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 280 
 281 //  Utility functions to "portably" make cast to/from function pointers.
 282 
 283 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 284 inline address_word  castable_address(address x)              { return address_word(x) ; }
 285 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 286 
 287 // Pointer subtraction.
 288 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 289 // the range we might need to find differences from one end of the heap
 290 // to the other.
 291 // A typical use might be:
 292 //     if (pointer_delta(end(), top()) >= size) {
 293 //       // enough room for an object of size
 294 //       ...
 295 // and then additions like
 296 //       ... top() + size ...
 297 // are safe because we know that top() is at least size below end().
 298 inline size_t pointer_delta(const void* left,
 299                             const void* right,
 300                             size_t element_size) {
 301   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 302 }
 303 // A version specialized for HeapWord*'s.
 304 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 305   return pointer_delta(left, right, sizeof(HeapWord));
 306 }
 307 // A version specialized for MetaWord*'s.
 308 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 309   return pointer_delta(left, right, sizeof(MetaWord));
 310 }
 311 
 312 //
 313 // ANSI C++ does not allow casting from one pointer type to a function pointer
 314 // directly without at best a warning. This macro accomplishes it silently
 315 // In every case that is present at this point the value be cast is a pointer
 316 // to a C linkage function. In some case the type used for the cast reflects
 317 // that linkage and a picky compiler would not complain. In other cases because
 318 // there is no convenient place to place a typedef with extern C linkage (i.e
 319 // a platform dependent header file) it doesn't. At this point no compiler seems
 320 // picky enough to catch these instances (which are few). It is possible that
 321 // using templates could fix these for all cases. This use of templates is likely
 322 // so far from the middle of the road that it is likely to be problematic in
 323 // many C++ compilers.
 324 //
 325 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 326 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 327 
 328 // Unsigned byte types for os and stream.hpp
 329 
 330 // Unsigned one, two, four and eigth byte quantities used for describing
 331 // the .class file format. See JVM book chapter 4.
 332 
 333 typedef jubyte  u1;
 334 typedef jushort u2;
 335 typedef juint   u4;
 336 typedef julong  u8;
 337 
 338 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 339 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 340 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 341 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 342 
 343 typedef jbyte  s1;
 344 typedef jshort s2;
 345 typedef jint   s4;
 346 typedef jlong  s8;
 347 
 348 //----------------------------------------------------------------------------------------------------
 349 // JVM spec restrictions
 350 
 351 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 352 
 353 // Default ProtectionDomainCacheSize values
 354 
 355 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 356 
 357 //----------------------------------------------------------------------------------------------------
 358 // Default and minimum StringTableSize values
 359 
 360 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 361 const int minimumStringTableSize = 1009;
 362 
 363 const int defaultSymbolTableSize = 20011;
 364 const int minimumSymbolTableSize = 1009;
 365 
 366 
 367 //----------------------------------------------------------------------------------------------------
 368 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 369 //
 370 // Determines whether on-the-fly class replacement and frame popping are enabled.
 371 
 372 #define HOTSWAP
 373 
 374 //----------------------------------------------------------------------------------------------------
 375 // Object alignment, in units of HeapWords.
 376 //
 377 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 378 // reference fields can be naturally aligned.
 379 
 380 extern int MinObjAlignment;
 381 extern int MinObjAlignmentInBytes;
 382 extern int MinObjAlignmentInBytesMask;
 383 
 384 extern int LogMinObjAlignment;
 385 extern int LogMinObjAlignmentInBytes;
 386 
 387 const int LogKlassAlignmentInBytes = 3;
 388 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 389 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 390 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 391 
 392 // Maximal size of heap where unscaled compression can be used. Also upper bound
 393 // for heap placement: 4GB.
 394 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 395 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 396 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 397 extern uint64_t OopEncodingHeapMax;
 398 
 399 // Maximal size of compressed class space. Above this limit compression is not possible.
 400 // Also upper bound for placement of zero based class space. (Class space is further limited
 401 // to be < 3G, see arguments.cpp.)
 402 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 403 
 404 // Machine dependent stuff
 405 
 406 // States of Restricted Transactional Memory usage.
 407 enum RTMState {
 408   NoRTM      = 0x2, // Don't use RTM
 409   UseRTM     = 0x1, // Use RTM
 410   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 411 };
 412 
 413 // The maximum size of the code cache.  Can be overridden by targets.
 414 #define CODE_CACHE_SIZE_LIMIT (2*G)
 415 // Allow targets to reduce the default size of the code cache.
 416 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 417 
 418 #ifdef TARGET_ARCH_x86
 419 # include "globalDefinitions_x86.hpp"
 420 #endif
 421 #ifdef TARGET_ARCH_sparc
 422 # include "globalDefinitions_sparc.hpp"
 423 #endif
 424 #ifdef TARGET_ARCH_zero
 425 # include "globalDefinitions_zero.hpp"
 426 #endif
 427 #ifdef TARGET_ARCH_arm
 428 # include "globalDefinitions_arm.hpp"
 429 #endif
 430 #ifdef TARGET_ARCH_ppc
 431 # include "globalDefinitions_ppc.hpp"
 432 #endif
 433 #ifdef TARGET_ARCH_aarch64
 434 # include "globalDefinitions_aarch64.hpp"
 435 #endif
 436 
 437 #ifndef INCLUDE_RTM_OPT
 438 #define INCLUDE_RTM_OPT 0
 439 #endif
 440 #if INCLUDE_RTM_OPT
 441 #define RTM_OPT_ONLY(code) code
 442 #else
 443 #define RTM_OPT_ONLY(code)
 444 #endif
 445 
 446 // To assure the IRIW property on processors that are not multiple copy
 447 // atomic, sync instructions must be issued between volatile reads to
 448 // assure their ordering, instead of after volatile stores.
 449 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 450 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 451 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 452 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 453 #else
 454 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 455 #endif
 456 
 457 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 458 // Note: this value must be a power of 2
 459 
 460 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 461 
 462 // Signed variants of alignment helpers.  There are two versions of each, a macro
 463 // for use in places like enum definitions that require compile-time constant
 464 // expressions and a function for all other places so as to get type checking.
 465 
 466 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 467 
 468 inline bool is_size_aligned(size_t size, size_t alignment) {
 469   return align_size_up_(size, alignment) == size;
 470 }
 471 
 472 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 473   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 474 }
 475 
 476 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 477   return align_size_up_(size, alignment);
 478 }
 479 
 480 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 481 
 482 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 483   return align_size_down_(size, alignment);
 484 }
 485 
 486 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 487 
 488 inline void* align_ptr_up(const void* ptr, size_t alignment) {
 489   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 490 }
 491 
 492 inline void* align_ptr_down(void* ptr, size_t alignment) {
 493   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 494 }
 495 
 496 // Align metaspace objects by rounding up to natural word boundary
 497 
 498 inline intptr_t align_metadata_size(intptr_t size) {
 499   return align_size_up(size, 1);
 500 }
 501 
 502 // Align objects in the Java Heap by rounding up their size, in HeapWord units.
 503 // Since the size is given in words this is somewhat of a nop, but
 504 // distinguishes it from align_object_size.
 505 inline intptr_t align_object_size(intptr_t size) {
 506   return align_size_up(size, MinObjAlignment);
 507 }
 508 
 509 inline bool is_object_aligned(intptr_t addr) {
 510   return addr == align_object_size(addr);
 511 }
 512 
 513 // Pad out certain offsets to jlong alignment, in HeapWord units.
 514 
 515 inline intptr_t align_object_offset(intptr_t offset) {
 516   return align_size_up(offset, HeapWordsPerLong);
 517 }
 518 
 519 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 520 
 521 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 522   size_t aligned_size = align_size_down_(size, alignment);
 523   return aligned_size > 0 ? aligned_size : alignment;
 524 }
 525 
 526 // Clamp an address to be within a specific page
 527 // 1. If addr is on the page it is returned as is
 528 // 2. If addr is above the page_address the start of the *next* page will be returned
 529 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 530 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 531   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 532     // address is in the specified page, just return it as is
 533     return addr;
 534   } else if (addr > page_address) {
 535     // address is above specified page, return start of next page
 536     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 537   } else {
 538     // address is below specified page, return start of page
 539     return (address)align_size_down(intptr_t(page_address), page_size);
 540   }
 541 }
 542 
 543 
 544 // The expected size in bytes of a cache line, used to pad data structures.
 545 #ifndef DEFAULT_CACHE_LINE_SIZE
 546   #define DEFAULT_CACHE_LINE_SIZE 64
 547 #endif
 548 
 549 
 550 //----------------------------------------------------------------------------------------------------
 551 // Utility macros for compilers
 552 // used to silence compiler warnings
 553 
 554 #define Unused_Variable(var) var
 555 
 556 
 557 //----------------------------------------------------------------------------------------------------
 558 // Miscellaneous
 559 
 560 // 6302670 Eliminate Hotspot __fabsf dependency
 561 // All fabs() callers should call this function instead, which will implicitly
 562 // convert the operand to double, avoiding a dependency on __fabsf which
 563 // doesn't exist in early versions of Solaris 8.
 564 inline double fabsd(double value) {
 565   return fabs(value);
 566 }
 567 
 568 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 569 // is zero, return 0.0.
 570 template<typename T>
 571 inline double percent_of(T numerator, T denominator) {
 572   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 573 }
 574 
 575 //----------------------------------------------------------------------------------------------------
 576 // Special casts
 577 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 578 typedef union {
 579   jfloat f;
 580   jint i;
 581 } FloatIntConv;
 582 
 583 typedef union {
 584   jdouble d;
 585   jlong l;
 586   julong ul;
 587 } DoubleLongConv;
 588 
 589 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 590 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 591 
 592 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 593 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 594 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 595 
 596 inline jint low (jlong value)                    { return jint(value); }
 597 inline jint high(jlong value)                    { return jint(value >> 32); }
 598 
 599 // the fancy casts are a hopefully portable way
 600 // to do unsigned 32 to 64 bit type conversion
 601 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 602                                                    *value |= (jlong)(julong)(juint)low; }
 603 
 604 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 605                                                    *value |= (jlong)high       << 32; }
 606 
 607 inline jlong jlong_from(jint h, jint l) {
 608   jlong result = 0; // initialization to avoid warning
 609   set_high(&result, h);
 610   set_low(&result,  l);
 611   return result;
 612 }
 613 
 614 union jlong_accessor {
 615   jint  words[2];
 616   jlong long_value;
 617 };
 618 
 619 void basic_types_init(); // cannot define here; uses assert
 620 
 621 
 622 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 623 enum BasicType {
 624   T_BOOLEAN     =  4,
 625   T_CHAR        =  5,
 626   T_FLOAT       =  6,
 627   T_DOUBLE      =  7,
 628   T_BYTE        =  8,
 629   T_SHORT       =  9,
 630   T_INT         = 10,
 631   T_LONG        = 11,
 632   T_OBJECT      = 12,
 633   T_ARRAY       = 13,
 634   T_VOID        = 14,
 635   T_ADDRESS     = 15,
 636   T_NARROWOOP   = 16,
 637   T_METADATA    = 17,
 638   T_NARROWKLASS = 18,
 639   T_CONFLICT    = 19, // for stack value type with conflicting contents
 640   T_ILLEGAL     = 99
 641 };
 642 
 643 inline bool is_java_primitive(BasicType t) {
 644   return T_BOOLEAN <= t && t <= T_LONG;
 645 }
 646 
 647 inline bool is_subword_type(BasicType t) {
 648   // these guys are processed exactly like T_INT in calling sequences:
 649   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 650 }
 651 
 652 inline bool is_signed_subword_type(BasicType t) {
 653   return (t == T_BYTE || t == T_SHORT);
 654 }
 655 
 656 // Convert a char from a classfile signature to a BasicType
 657 inline BasicType char2type(char c) {
 658   switch( c ) {
 659   case 'B': return T_BYTE;
 660   case 'C': return T_CHAR;
 661   case 'D': return T_DOUBLE;
 662   case 'F': return T_FLOAT;
 663   case 'I': return T_INT;
 664   case 'J': return T_LONG;
 665   case 'S': return T_SHORT;
 666   case 'Z': return T_BOOLEAN;
 667   case 'V': return T_VOID;
 668   case 'L': return T_OBJECT;
 669   case '[': return T_ARRAY;
 670   }
 671   return T_ILLEGAL;
 672 }
 673 
 674 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 675 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 676 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 677 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 678 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 679 extern BasicType name2type(const char* name);
 680 
 681 // Auxiliary math routines
 682 // least common multiple
 683 extern size_t lcm(size_t a, size_t b);
 684 
 685 
 686 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 687 enum BasicTypeSize {
 688   T_BOOLEAN_size     = 1,
 689   T_CHAR_size        = 1,
 690   T_FLOAT_size       = 1,
 691   T_DOUBLE_size      = 2,
 692   T_BYTE_size        = 1,
 693   T_SHORT_size       = 1,
 694   T_INT_size         = 1,
 695   T_LONG_size        = 2,
 696   T_OBJECT_size      = 1,
 697   T_ARRAY_size       = 1,
 698   T_NARROWOOP_size   = 1,
 699   T_NARROWKLASS_size = 1,
 700   T_VOID_size        = 0
 701 };
 702 
 703 
 704 // maps a BasicType to its instance field storage type:
 705 // all sub-word integral types are widened to T_INT
 706 extern BasicType type2field[T_CONFLICT+1];
 707 extern BasicType type2wfield[T_CONFLICT+1];
 708 
 709 
 710 // size in bytes
 711 enum ArrayElementSize {
 712   T_BOOLEAN_aelem_bytes     = 1,
 713   T_CHAR_aelem_bytes        = 2,
 714   T_FLOAT_aelem_bytes       = 4,
 715   T_DOUBLE_aelem_bytes      = 8,
 716   T_BYTE_aelem_bytes        = 1,
 717   T_SHORT_aelem_bytes       = 2,
 718   T_INT_aelem_bytes         = 4,
 719   T_LONG_aelem_bytes        = 8,
 720 #ifdef _LP64
 721   T_OBJECT_aelem_bytes      = 8,
 722   T_ARRAY_aelem_bytes       = 8,
 723 #else
 724   T_OBJECT_aelem_bytes      = 4,
 725   T_ARRAY_aelem_bytes       = 4,
 726 #endif
 727   T_NARROWOOP_aelem_bytes   = 4,
 728   T_NARROWKLASS_aelem_bytes = 4,
 729   T_VOID_aelem_bytes        = 0
 730 };
 731 
 732 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 733 #ifdef ASSERT
 734 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 735 #else
 736 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 737 #endif
 738 
 739 
 740 // JavaValue serves as a container for arbitrary Java values.
 741 
 742 class JavaValue {
 743 
 744  public:
 745   typedef union JavaCallValue {
 746     jfloat   f;
 747     jdouble  d;
 748     jint     i;
 749     jlong    l;
 750     jobject  h;
 751   } JavaCallValue;
 752 
 753  private:
 754   BasicType _type;
 755   JavaCallValue _value;
 756 
 757  public:
 758   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 759 
 760   JavaValue(jfloat value) {
 761     _type    = T_FLOAT;
 762     _value.f = value;
 763   }
 764 
 765   JavaValue(jdouble value) {
 766     _type    = T_DOUBLE;
 767     _value.d = value;
 768   }
 769 
 770  jfloat get_jfloat() const { return _value.f; }
 771  jdouble get_jdouble() const { return _value.d; }
 772  jint get_jint() const { return _value.i; }
 773  jlong get_jlong() const { return _value.l; }
 774  jobject get_jobject() const { return _value.h; }
 775  JavaCallValue* get_value_addr() { return &_value; }
 776  BasicType get_type() const { return _type; }
 777 
 778  void set_jfloat(jfloat f) { _value.f = f;}
 779  void set_jdouble(jdouble d) { _value.d = d;}
 780  void set_jint(jint i) { _value.i = i;}
 781  void set_jlong(jlong l) { _value.l = l;}
 782  void set_jobject(jobject h) { _value.h = h;}
 783  void set_type(BasicType t) { _type = t; }
 784 
 785  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 786  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 787  jchar get_jchar() const { return (jchar) (_value.i);}
 788  jshort get_jshort() const { return (jshort) (_value.i);}
 789 
 790 };
 791 
 792 
 793 #define STACK_BIAS      0
 794 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 795 // in order to extend the reach of the stack pointer.
 796 #if defined(SPARC) && defined(_LP64)
 797 #undef STACK_BIAS
 798 #define STACK_BIAS      0x7ff
 799 #endif
 800 
 801 
 802 // TosState describes the top-of-stack state before and after the execution of
 803 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 804 // registers. The TosState corresponds to the 'machine representation' of this cached
 805 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 806 // as well as a 5th state in case the top-of-stack value is actually on the top
 807 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 808 // state when it comes to machine representation but is used separately for (oop)
 809 // type specific operations (e.g. verification code).
 810 
 811 enum TosState {         // describes the tos cache contents
 812   btos = 0,             // byte, bool tos cached
 813   ctos = 1,             // char tos cached
 814   stos = 2,             // short tos cached
 815   itos = 3,             // int tos cached
 816   ltos = 4,             // long tos cached
 817   ftos = 5,             // float tos cached
 818   dtos = 6,             // double tos cached
 819   atos = 7,             // object cached
 820   vtos = 8,             // tos not cached
 821   number_of_states,
 822   ilgl                  // illegal state: should not occur
 823 };
 824 
 825 
 826 inline TosState as_TosState(BasicType type) {
 827   switch (type) {
 828     case T_BYTE   : return btos;
 829     case T_BOOLEAN: return btos; // FIXME: Add ztos
 830     case T_CHAR   : return ctos;
 831     case T_SHORT  : return stos;
 832     case T_INT    : return itos;
 833     case T_LONG   : return ltos;
 834     case T_FLOAT  : return ftos;
 835     case T_DOUBLE : return dtos;
 836     case T_VOID   : return vtos;
 837     case T_ARRAY  : // fall through
 838     case T_OBJECT : return atos;
 839   }
 840   return ilgl;
 841 }
 842 
 843 inline BasicType as_BasicType(TosState state) {
 844   switch (state) {
 845     //case ztos: return T_BOOLEAN;//FIXME
 846     case btos : return T_BYTE;
 847     case ctos : return T_CHAR;
 848     case stos : return T_SHORT;
 849     case itos : return T_INT;
 850     case ltos : return T_LONG;
 851     case ftos : return T_FLOAT;
 852     case dtos : return T_DOUBLE;
 853     case atos : return T_OBJECT;
 854     case vtos : return T_VOID;
 855   }
 856   return T_ILLEGAL;
 857 }
 858 
 859 
 860 // Helper function to convert BasicType info into TosState
 861 // Note: Cannot define here as it uses global constant at the time being.
 862 TosState as_TosState(BasicType type);
 863 
 864 
 865 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 866 // information is needed by the safepoint code.
 867 //
 868 // There are 4 essential states:
 869 //
 870 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 871 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 872 //  _thread_in_vm       : Executing in the vm
 873 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 874 //
 875 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 876 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 877 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 878 //
 879 // Given a state, the xxxx_trans state can always be found by adding 1.
 880 //
 881 enum JavaThreadState {
 882   _thread_uninitialized     =  0, // should never happen (missing initialization)
 883   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 884   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 885   _thread_in_native         =  4, // running in native code
 886   _thread_in_native_trans   =  5, // corresponding transition state
 887   _thread_in_vm             =  6, // running in VM
 888   _thread_in_vm_trans       =  7, // corresponding transition state
 889   _thread_in_Java           =  8, // running in Java or in stub code
 890   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 891   _thread_blocked           = 10, // blocked in vm
 892   _thread_blocked_trans     = 11, // corresponding transition state
 893   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 894 };
 895 
 896 
 897 // Handy constants for deciding which compiler mode to use.
 898 enum MethodCompilation {
 899   InvocationEntryBci = -1     // i.e., not a on-stack replacement compilation
 900 };
 901 
 902 // Enumeration to distinguish tiers of compilation
 903 enum CompLevel {
 904   CompLevel_any               = -1,
 905   CompLevel_all               = -1,
 906   CompLevel_none              = 0,         // Interpreter
 907   CompLevel_simple            = 1,         // C1
 908   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 909   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 910   CompLevel_full_optimization = 4,         // C2, Shark or JVMCI
 911 
 912 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
 913   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered or JVMCI and tiered
 914 #elif defined(COMPILER1)
 915   CompLevel_highest_tier      = CompLevel_simple,             // pure C1 or JVMCI
 916 #else
 917   CompLevel_highest_tier      = CompLevel_none,
 918 #endif
 919 
 920 #if defined(TIERED)
 921   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 922 #elif defined(COMPILER1) || INCLUDE_JVMCI
 923   CompLevel_initial_compile   = CompLevel_simple              // pure C1 or JVMCI
 924 #elif defined(COMPILER2) || defined(SHARK)
 925   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 926 #else
 927   CompLevel_initial_compile   = CompLevel_none
 928 #endif
 929 };
 930 
 931 inline bool is_c1_compile(int comp_level) {
 932   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 933 }
 934 
 935 inline bool is_c2_compile(int comp_level) {
 936   return comp_level == CompLevel_full_optimization;
 937 }
 938 
 939 inline bool is_highest_tier_compile(int comp_level) {
 940   return comp_level == CompLevel_highest_tier;
 941 }
 942 
 943 inline bool is_compile(int comp_level) {
 944   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 945 }
 946 
 947 //----------------------------------------------------------------------------------------------------
 948 // 'Forward' declarations of frequently used classes
 949 // (in order to reduce interface dependencies & reduce
 950 // number of unnecessary compilations after changes)
 951 
 952 class ClassFileStream;
 953 
 954 class Event;
 955 
 956 class Thread;
 957 class  VMThread;
 958 class  JavaThread;
 959 class Threads;
 960 
 961 class VM_Operation;
 962 class VMOperationQueue;
 963 
 964 class CodeBlob;
 965 class  nmethod;
 966 class  OSRAdapter;
 967 class  I2CAdapter;
 968 class  C2IAdapter;
 969 class CompiledIC;
 970 class relocInfo;
 971 class ScopeDesc;
 972 class PcDesc;
 973 
 974 class Recompiler;
 975 class Recompilee;
 976 class RecompilationPolicy;
 977 class RFrame;
 978 class  CompiledRFrame;
 979 class  InterpretedRFrame;
 980 
 981 class frame;
 982 
 983 class vframe;
 984 class   javaVFrame;
 985 class     interpretedVFrame;
 986 class     compiledVFrame;
 987 class     deoptimizedVFrame;
 988 class   externalVFrame;
 989 class     entryVFrame;
 990 
 991 class RegisterMap;
 992 
 993 class Mutex;
 994 class Monitor;
 995 class BasicLock;
 996 class BasicObjectLock;
 997 
 998 class PeriodicTask;
 999 
1000 class JavaCallWrapper;
1001 
1002 class   oopDesc;
1003 class   metaDataOopDesc;
1004 
1005 class NativeCall;
1006 
1007 class zone;
1008 
1009 class StubQueue;
1010 
1011 class outputStream;
1012 
1013 class ResourceArea;
1014 
1015 class DebugInformationRecorder;
1016 class ScopeValue;
1017 class CompressedStream;
1018 class   DebugInfoReadStream;
1019 class   DebugInfoWriteStream;
1020 class LocationValue;
1021 class ConstantValue;
1022 class IllegalValue;
1023 
1024 class PrivilegedElement;
1025 class MonitorArray;
1026 
1027 class MonitorInfo;
1028 
1029 class OffsetClosure;
1030 class OopMapCache;
1031 class InterpreterOopMap;
1032 class OopMapCacheEntry;
1033 class OSThread;
1034 
1035 typedef int (*OSThreadStartFunc)(void*);
1036 
1037 class Space;
1038 
1039 class JavaValue;
1040 class methodHandle;
1041 class JavaCallArguments;
1042 
1043 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1044 
1045 extern void basic_fatal(const char* msg);
1046 
1047 
1048 //----------------------------------------------------------------------------------------------------
1049 // Special constants for debugging
1050 
1051 const jint     badInt           = -3;                       // generic "bad int" value
1052 const long     badAddressVal    = -2;                       // generic "bad address" value
1053 const long     badOopVal        = -1;                       // generic "bad oop" value
1054 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1055 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1056 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1057 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1058 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1059 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1060 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1061 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1062 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1063 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1064 
1065 
1066 // (These must be implemented as #defines because C++ compilers are
1067 // not obligated to inline non-integral constants!)
1068 #define       badAddress        ((address)::badAddressVal)
1069 #define       badOop            (cast_to_oop(::badOopVal))
1070 #define       badHeapWord       (::badHeapWordVal)
1071 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1072 
1073 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1074 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1075 
1076 //----------------------------------------------------------------------------------------------------
1077 // Utility functions for bitfield manipulations
1078 
1079 const intptr_t AllBits    = ~0; // all bits set in a word
1080 const intptr_t NoBits     =  0; // no bits set in a word
1081 const jlong    NoLongBits =  0; // no bits set in a long
1082 const intptr_t OneBit     =  1; // only right_most bit set in a word
1083 
1084 // get a word with the n.th or the right-most or left-most n bits set
1085 // (note: #define used only so that they can be used in enum constant definitions)
1086 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1087 #define right_n_bits(n)   (nth_bit(n) - 1)
1088 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1089 
1090 // bit-operations using a mask m
1091 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1092 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1093 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1094 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1095 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1096 
1097 // bit-operations using the n.th bit
1098 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1099 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1100 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1101 
1102 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1103 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1104   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1105 }
1106 
1107 
1108 //----------------------------------------------------------------------------------------------------
1109 // Utility functions for integers
1110 
1111 // Avoid use of global min/max macros which may cause unwanted double
1112 // evaluation of arguments.
1113 #ifdef max
1114 #undef max
1115 #endif
1116 
1117 #ifdef min
1118 #undef min
1119 #endif
1120 
1121 #define max(a,b) Do_not_use_max_use_MAX2_instead
1122 #define min(a,b) Do_not_use_min_use_MIN2_instead
1123 
1124 // It is necessary to use templates here. Having normal overloaded
1125 // functions does not work because it is necessary to provide both 32-
1126 // and 64-bit overloaded functions, which does not work, and having
1127 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1128 // will be even more error-prone than macros.
1129 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1130 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1131 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1132 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1133 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1134 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1135 
1136 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1137 
1138 // true if x is a power of 2, false otherwise
1139 inline bool is_power_of_2(intptr_t x) {
1140   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1141 }
1142 
1143 // long version of is_power_of_2
1144 inline bool is_power_of_2_long(jlong x) {
1145   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1146 }
1147 
1148 // Returns largest i such that 2^i <= x.
1149 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1150 // If x == 0, the function returns -1.
1151 inline int log2_intptr(intptr_t x) {
1152   int i = -1;
1153   uintptr_t p = 1;
1154   while (p != 0 && p <= (uintptr_t)x) {
1155     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1156     i++; p *= 2;
1157   }
1158   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1159   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1160   return i;
1161 }
1162 
1163 //* largest i such that 2^i <= x
1164 //  A negative value of 'x' will return '63'
1165 inline int log2_long(jlong x) {
1166   int i = -1;
1167   julong p =  1;
1168   while (p != 0 && p <= (julong)x) {
1169     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1170     i++; p *= 2;
1171   }
1172   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1173   // (if p = 0 then overflow occurred and i = 63)
1174   return i;
1175 }
1176 
1177 //* the argument must be exactly a power of 2
1178 inline int exact_log2(intptr_t x) {
1179   #ifdef ASSERT
1180     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1181   #endif
1182   return log2_intptr(x);
1183 }
1184 
1185 //* the argument must be exactly a power of 2
1186 inline int exact_log2_long(jlong x) {
1187   #ifdef ASSERT
1188     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1189   #endif
1190   return log2_long(x);
1191 }
1192 
1193 
1194 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1195 inline intptr_t round_to(intptr_t x, uintx s) {
1196   #ifdef ASSERT
1197     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1198   #endif
1199   const uintx m = s - 1;
1200   return mask_bits(x + m, ~m);
1201 }
1202 
1203 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1204 inline intptr_t round_down(intptr_t x, uintx s) {
1205   #ifdef ASSERT
1206     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1207   #endif
1208   const uintx m = s - 1;
1209   return mask_bits(x, ~m);
1210 }
1211 
1212 
1213 inline bool is_odd (intx x) { return x & 1;      }
1214 inline bool is_even(intx x) { return !is_odd(x); }
1215 
1216 // "to" should be greater than "from."
1217 inline intx byte_size(void* from, void* to) {
1218   return (address)to - (address)from;
1219 }
1220 
1221 //----------------------------------------------------------------------------------------------------
1222 // Avoid non-portable casts with these routines (DEPRECATED)
1223 
1224 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1225 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1226 
1227 // Given sequence of four bytes, build into a 32-bit word
1228 // following the conventions used in class files.
1229 // On the 386, this could be realized with a simple address cast.
1230 //
1231 
1232 // This routine takes eight bytes:
1233 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1234   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1235        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1236        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1237        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1238        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1239        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1240        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1241        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1242 }
1243 
1244 // This routine takes four bytes:
1245 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1246   return  (( u4(c1) << 24 )  &  0xff000000)
1247        |  (( u4(c2) << 16 )  &  0x00ff0000)
1248        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1249        |  (( u4(c4) <<  0 )  &  0x000000ff);
1250 }
1251 
1252 // And this one works if the four bytes are contiguous in memory:
1253 inline u4 build_u4_from( u1* p ) {
1254   return  build_u4_from( p[0], p[1], p[2], p[3] );
1255 }
1256 
1257 // Ditto for two-byte ints:
1258 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1259   return  u2((( u2(c1) <<  8 )  &  0xff00)
1260           |  (( u2(c2) <<  0 )  &  0x00ff));
1261 }
1262 
1263 // And this one works if the two bytes are contiguous in memory:
1264 inline u2 build_u2_from( u1* p ) {
1265   return  build_u2_from( p[0], p[1] );
1266 }
1267 
1268 // Ditto for floats:
1269 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1270   u4 u = build_u4_from( c1, c2, c3, c4 );
1271   return  *(jfloat*)&u;
1272 }
1273 
1274 inline jfloat build_float_from( u1* p ) {
1275   u4 u = build_u4_from( p );
1276   return  *(jfloat*)&u;
1277 }
1278 
1279 
1280 // now (64-bit) longs
1281 
1282 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1283   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1284        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1285        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1286        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1287        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1288        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1289        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1290        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1291 }
1292 
1293 inline jlong build_long_from( u1* p ) {
1294   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1295 }
1296 
1297 
1298 // Doubles, too!
1299 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1300   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1301   return  *(jdouble*)&u;
1302 }
1303 
1304 inline jdouble build_double_from( u1* p ) {
1305   jlong u = build_long_from( p );
1306   return  *(jdouble*)&u;
1307 }
1308 
1309 
1310 // Portable routines to go the other way:
1311 
1312 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1313   c1 = u1(x >> 8);
1314   c2 = u1(x);
1315 }
1316 
1317 inline void explode_short_to( u2 x, u1* p ) {
1318   explode_short_to( x, p[0], p[1]);
1319 }
1320 
1321 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1322   c1 = u1(x >> 24);
1323   c2 = u1(x >> 16);
1324   c3 = u1(x >>  8);
1325   c4 = u1(x);
1326 }
1327 
1328 inline void explode_int_to( u4 x, u1* p ) {
1329   explode_int_to( x, p[0], p[1], p[2], p[3]);
1330 }
1331 
1332 
1333 // Pack and extract shorts to/from ints:
1334 
1335 inline int extract_low_short_from_int(jint x) {
1336   return x & 0xffff;
1337 }
1338 
1339 inline int extract_high_short_from_int(jint x) {
1340   return (x >> 16) & 0xffff;
1341 }
1342 
1343 inline int build_int_from_shorts( jushort low, jushort high ) {
1344   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1345 }
1346 
1347 // Convert pointer to intptr_t, for use in printing pointers.
1348 inline intptr_t p2i(const void * p) {
1349   return (intptr_t) p;
1350 }
1351 
1352 // swap a & b
1353 template<class T> static void swap(T& a, T& b) {
1354   T tmp = a;
1355   a = b;
1356   b = tmp;
1357 }
1358 
1359 // Printf-style formatters for fixed- and variable-width types as pointers and
1360 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1361 // doesn't provide appropriate definitions, they should be provided in
1362 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1363 
1364 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1365 
1366 // Format 32-bit quantities.
1367 #define INT32_FORMAT           "%" PRId32
1368 #define UINT32_FORMAT          "%" PRIu32
1369 #define INT32_FORMAT_W(width)  "%" #width PRId32
1370 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1371 
1372 #define PTR32_FORMAT           "0x%08" PRIx32
1373 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
1374 
1375 // Format 64-bit quantities.
1376 #define INT64_FORMAT           "%" PRId64
1377 #define UINT64_FORMAT          "%" PRIu64
1378 #define UINT64_FORMAT_X        "%" PRIx64
1379 #define INT64_FORMAT_W(width)  "%" #width PRId64
1380 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1381 
1382 #define PTR64_FORMAT           "0x%016" PRIx64
1383 
1384 // Format jlong, if necessary
1385 #ifndef JLONG_FORMAT
1386 #define JLONG_FORMAT           INT64_FORMAT
1387 #endif
1388 #ifndef JULONG_FORMAT
1389 #define JULONG_FORMAT          UINT64_FORMAT
1390 #endif
1391 #ifndef JULONG_FORMAT_X
1392 #define JULONG_FORMAT_X        UINT64_FORMAT_X
1393 #endif
1394 
1395 // Format pointers which change size between 32- and 64-bit.
1396 #ifdef  _LP64
1397 #define INTPTR_FORMAT "0x%016" PRIxPTR
1398 #define PTR_FORMAT    "0x%016" PRIxPTR
1399 #else   // !_LP64
1400 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1401 #define PTR_FORMAT    "0x%08"  PRIxPTR
1402 #endif  // _LP64
1403 
1404 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1405 
1406 #define SSIZE_FORMAT             "%"   PRIdPTR
1407 #define SIZE_FORMAT              "%"   PRIuPTR
1408 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1409 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1410 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1411 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1412 
1413 #define INTX_FORMAT           "%" PRIdPTR
1414 #define UINTX_FORMAT          "%" PRIuPTR
1415 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1416 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1417 
1418 
1419 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1420 
1421 //----------------------------------------------------------------------------------------------------
1422 // Sum and product which can never overflow: they wrap, just like the
1423 // Java operations.  Note that we don't intend these to be used for
1424 // general-purpose arithmetic: their purpose is to emulate Java
1425 // operations.
1426 
1427 // The goal of this code to avoid undefined or implementation-defined
1428 // behavior.  The use of an lvalue to reference cast is explicitly
1429 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1430 // 15 in C++03]
1431 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1432 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1433   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1434   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1435   return reinterpret_cast<TYPE&>(ures);                 \
1436 }
1437 
1438 JAVA_INTEGER_OP(+, java_add, jint, juint)
1439 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1440 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1441 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1442 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1443 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1444 
1445 #undef JAVA_INTEGER_OP
1446 
1447 // Dereference vptr
1448 // All C++ compilers that we know of have the vtbl pointer in the first
1449 // word.  If there are exceptions, this function needs to be made compiler
1450 // specific.
1451 static inline void* dereference_vptr(const void* addr) {
1452   return *(void**)addr;
1453 }
1454 
1455 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP