1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef NOINLINE
  46 #define NOINLINE
  47 #endif
  48 #ifndef ALWAYSINLINE
  49 #define ALWAYSINLINE inline
  50 #endif
  51 #ifndef PRAGMA_DIAG_PUSH
  52 #define PRAGMA_DIAG_PUSH
  53 #endif
  54 #ifndef PRAGMA_DIAG_POP
  55 #define PRAGMA_DIAG_POP
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  59 #endif
  60 #ifndef PRAGMA_FORMAT_IGNORED
  61 #define PRAGMA_FORMAT_IGNORED
  62 #endif
  63 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  64 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  65 #endif
  66 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  67 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  68 #endif
  69 #ifndef ATTRIBUTE_PRINTF
  70 #define ATTRIBUTE_PRINTF(fmt, vargs)
  71 #endif
  72 #ifndef ATTRIBUTE_SCANF
  73 #define ATTRIBUTE_SCANF(fmt, vargs)
  74 #endif
  75 
  76 
  77 #include "utilities/macros.hpp"
  78 
  79 // This file holds all globally used constants & types, class (forward)
  80 // declarations and a few frequently used utility functions.
  81 
  82 //----------------------------------------------------------------------------------------------------
  83 // Constants
  84 
  85 const int LogBytesPerShort   = 1;
  86 const int LogBytesPerInt     = 2;
  87 #ifdef _LP64
  88 const int LogBytesPerWord    = 3;
  89 #else
  90 const int LogBytesPerWord    = 2;
  91 #endif
  92 const int LogBytesPerLong    = 3;
  93 
  94 const int BytesPerShort      = 1 << LogBytesPerShort;
  95 const int BytesPerInt        = 1 << LogBytesPerInt;
  96 const int BytesPerWord       = 1 << LogBytesPerWord;
  97 const int BytesPerLong       = 1 << LogBytesPerLong;
  98 
  99 const int LogBitsPerByte     = 3;
 100 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 101 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 102 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 103 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 104 
 105 const int BitsPerByte        = 1 << LogBitsPerByte;
 106 const int BitsPerShort       = 1 << LogBitsPerShort;
 107 const int BitsPerInt         = 1 << LogBitsPerInt;
 108 const int BitsPerWord        = 1 << LogBitsPerWord;
 109 const int BitsPerLong        = 1 << LogBitsPerLong;
 110 
 111 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 112 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 113 
 114 const int WordsPerLong       = 2;       // Number of stack entries for longs
 115 
 116 const int oopSize            = sizeof(char*); // Full-width oop
 117 extern int heapOopSize;                       // Oop within a java object
 118 const int wordSize           = sizeof(char*);
 119 const int longSize           = sizeof(jlong);
 120 const int jintSize           = sizeof(jint);
 121 const int size_tSize         = sizeof(size_t);
 122 
 123 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 124 
 125 extern int LogBytesPerHeapOop;                // Oop within a java object
 126 extern int LogBitsPerHeapOop;
 127 extern int BytesPerHeapOop;
 128 extern int BitsPerHeapOop;
 129 
 130 const int BitsPerJavaInteger = 32;
 131 const int BitsPerJavaLong    = 64;
 132 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 133 
 134 // Size of a char[] needed to represent a jint as a string in decimal.
 135 const int jintAsStringSize = 12;
 136 
 137 // In fact this should be
 138 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 139 // see os::set_memory_serialize_page()
 140 #ifdef _LP64
 141 const int SerializePageShiftCount = 4;
 142 #else
 143 const int SerializePageShiftCount = 3;
 144 #endif
 145 
 146 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 147 // pointer into the heap.  We require that object sizes be measured in
 148 // units of heap words, so that that
 149 //   HeapWord* hw;
 150 //   hw += oop(hw)->foo();
 151 // works, where foo is a method (like size or scavenge) that returns the
 152 // object size.
 153 class HeapWord {
 154   friend class VMStructs;
 155  private:
 156   char* i;
 157 #ifndef PRODUCT
 158  public:
 159   char* value() { return i; }
 160 #endif
 161 };
 162 
 163 // Analogous opaque struct for metadata allocated from
 164 // metaspaces.
 165 class MetaWord {
 166  private:
 167   char* i;
 168 };
 169 
 170 // HeapWordSize must be 2^LogHeapWordSize.
 171 const int HeapWordSize        = sizeof(HeapWord);
 172 #ifdef _LP64
 173 const int LogHeapWordSize     = 3;
 174 #else
 175 const int LogHeapWordSize     = 2;
 176 #endif
 177 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 178 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 179 
 180 // The larger HeapWordSize for 64bit requires larger heaps
 181 // for the same application running in 64bit.  See bug 4967770.
 182 // The minimum alignment to a heap word size is done.  Other
 183 // parts of the memory system may require additional alignment
 184 // and are responsible for those alignments.
 185 #ifdef _LP64
 186 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 187 #else
 188 #define ScaleForWordSize(x) (x)
 189 #endif
 190 
 191 // The minimum number of native machine words necessary to contain "byte_size"
 192 // bytes.
 193 inline size_t heap_word_size(size_t byte_size) {
 194   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 195 }
 196 
 197 const size_t K                  = 1024;
 198 const size_t M                  = K*K;
 199 const size_t G                  = M*K;
 200 const size_t HWperKB            = K / sizeof(HeapWord);
 201 
 202 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 203 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 204 
 205 // Constants for converting from a base unit to milli-base units.  For
 206 // example from seconds to milliseconds and microseconds
 207 
 208 const int MILLIUNITS    = 1000;         // milli units per base unit
 209 const int MICROUNITS    = 1000000;      // micro units per base unit
 210 const int NANOUNITS     = 1000000000;   // nano units per base unit
 211 
 212 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 213 const jint  NANOSECS_PER_MILLISEC = 1000000;
 214 
 215 inline const char* proper_unit_for_byte_size(size_t s) {
 216 #ifdef _LP64
 217   if (s >= 10*G) {
 218     return "G";
 219   }
 220 #endif
 221   if (s >= 10*M) {
 222     return "M";
 223   } else if (s >= 10*K) {
 224     return "K";
 225   } else {
 226     return "B";
 227   }
 228 }
 229 
 230 template <class T>
 231 inline T byte_size_in_proper_unit(T s) {
 232 #ifdef _LP64
 233   if (s >= 10*G) {
 234     return (T)(s/G);
 235   }
 236 #endif
 237   if (s >= 10*M) {
 238     return (T)(s/M);
 239   } else if (s >= 10*K) {
 240     return (T)(s/K);
 241   } else {
 242     return s;
 243   }
 244 }
 245 
 246 //----------------------------------------------------------------------------------------------------
 247 // VM type definitions
 248 
 249 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 250 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 251 
 252 typedef intptr_t  intx;
 253 typedef uintptr_t uintx;
 254 
 255 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 256 const intx  max_intx  = (uintx)min_intx - 1;
 257 const uintx max_uintx = (uintx)-1;
 258 
 259 // Table of values:
 260 //      sizeof intx         4               8
 261 // min_intx             0x80000000      0x8000000000000000
 262 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 263 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 264 
 265 typedef unsigned int uint;   NEEDS_CLEANUP
 266 
 267 
 268 //----------------------------------------------------------------------------------------------------
 269 // Java type definitions
 270 
 271 // All kinds of 'plain' byte addresses
 272 typedef   signed char s_char;
 273 typedef unsigned char u_char;
 274 typedef u_char*       address;
 275 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 276                                     // except for some implementations of a C++
 277                                     // linkage pointer to function. Should never
 278                                     // need one of those to be placed in this
 279                                     // type anyway.
 280 
 281 //  Utility functions to "portably" (?) bit twiddle pointers
 282 //  Where portable means keep ANSI C++ compilers quiet
 283 
 284 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 285 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 286 
 287 //  Utility functions to "portably" make cast to/from function pointers.
 288 
 289 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 290 inline address_word  castable_address(address x)              { return address_word(x) ; }
 291 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 292 
 293 // Pointer subtraction.
 294 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 295 // the range we might need to find differences from one end of the heap
 296 // to the other.
 297 // A typical use might be:
 298 //     if (pointer_delta(end(), top()) >= size) {
 299 //       // enough room for an object of size
 300 //       ...
 301 // and then additions like
 302 //       ... top() + size ...
 303 // are safe because we know that top() is at least size below end().
 304 inline size_t pointer_delta(const void* left,
 305                             const void* right,
 306                             size_t element_size) {
 307   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 308 }
 309 // A version specialized for HeapWord*'s.
 310 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 311   return pointer_delta(left, right, sizeof(HeapWord));
 312 }
 313 // A version specialized for MetaWord*'s.
 314 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 315   return pointer_delta(left, right, sizeof(MetaWord));
 316 }
 317 
 318 //
 319 // ANSI C++ does not allow casting from one pointer type to a function pointer
 320 // directly without at best a warning. This macro accomplishes it silently
 321 // In every case that is present at this point the value be cast is a pointer
 322 // to a C linkage function. In some case the type used for the cast reflects
 323 // that linkage and a picky compiler would not complain. In other cases because
 324 // there is no convenient place to place a typedef with extern C linkage (i.e
 325 // a platform dependent header file) it doesn't. At this point no compiler seems
 326 // picky enough to catch these instances (which are few). It is possible that
 327 // using templates could fix these for all cases. This use of templates is likely
 328 // so far from the middle of the road that it is likely to be problematic in
 329 // many C++ compilers.
 330 //
 331 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 332 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 333 
 334 // Unsigned byte types for os and stream.hpp
 335 
 336 // Unsigned one, two, four and eigth byte quantities used for describing
 337 // the .class file format. See JVM book chapter 4.
 338 
 339 typedef jubyte  u1;
 340 typedef jushort u2;
 341 typedef juint   u4;
 342 typedef julong  u8;
 343 
 344 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 345 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 346 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 347 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 348 
 349 typedef jbyte  s1;
 350 typedef jshort s2;
 351 typedef jint   s4;
 352 typedef jlong  s8;
 353 
 354 //----------------------------------------------------------------------------------------------------
 355 // JVM spec restrictions
 356 
 357 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 358 
 359 // Default ProtectionDomainCacheSize values
 360 
 361 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 362 
 363 //----------------------------------------------------------------------------------------------------
 364 // Default and minimum StringTableSize values
 365 
 366 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 367 const int minimumStringTableSize = 1009;
 368 
 369 const int defaultSymbolTableSize = 20011;
 370 const int minimumSymbolTableSize = 1009;
 371 
 372 
 373 //----------------------------------------------------------------------------------------------------
 374 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 375 //
 376 // Determines whether on-the-fly class replacement and frame popping are enabled.
 377 
 378 #define HOTSWAP
 379 
 380 //----------------------------------------------------------------------------------------------------
 381 // Object alignment, in units of HeapWords.
 382 //
 383 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 384 // reference fields can be naturally aligned.
 385 
 386 extern int MinObjAlignment;
 387 extern int MinObjAlignmentInBytes;
 388 extern int MinObjAlignmentInBytesMask;
 389 
 390 extern int LogMinObjAlignment;
 391 extern int LogMinObjAlignmentInBytes;
 392 
 393 const int LogKlassAlignmentInBytes = 3;
 394 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 395 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 396 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 397 
 398 // Maximal size of heap where unscaled compression can be used. Also upper bound
 399 // for heap placement: 4GB.
 400 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 401 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 402 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 403 extern uint64_t OopEncodingHeapMax;
 404 
 405 // Maximal size of compressed class space. Above this limit compression is not possible.
 406 // Also upper bound for placement of zero based class space. (Class space is further limited
 407 // to be < 3G, see arguments.cpp.)
 408 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 409 
 410 // Machine dependent stuff
 411 
 412 // States of Restricted Transactional Memory usage.
 413 enum RTMState {
 414   NoRTM      = 0x2, // Don't use RTM
 415   UseRTM     = 0x1, // Use RTM
 416   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 417 };
 418 
 419 // The maximum size of the code cache.  Can be overridden by targets.
 420 #define CODE_CACHE_SIZE_LIMIT (2*G)
 421 // Allow targets to reduce the default size of the code cache.
 422 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 423 
 424 #ifdef TARGET_ARCH_x86
 425 # include "globalDefinitions_x86.hpp"
 426 #endif
 427 #ifdef TARGET_ARCH_sparc
 428 # include "globalDefinitions_sparc.hpp"
 429 #endif
 430 #ifdef TARGET_ARCH_zero
 431 # include "globalDefinitions_zero.hpp"
 432 #endif
 433 #ifdef TARGET_ARCH_arm
 434 # include "globalDefinitions_arm.hpp"
 435 #endif
 436 #ifdef TARGET_ARCH_ppc
 437 # include "globalDefinitions_ppc.hpp"
 438 #endif
 439 #ifdef TARGET_ARCH_aarch64
 440 # include "globalDefinitions_aarch64.hpp"
 441 #endif
 442 
 443 #ifndef INCLUDE_RTM_OPT
 444 #define INCLUDE_RTM_OPT 0
 445 #endif
 446 #if INCLUDE_RTM_OPT
 447 #define RTM_OPT_ONLY(code) code
 448 #else
 449 #define RTM_OPT_ONLY(code)
 450 #endif
 451 
 452 // To assure the IRIW property on processors that are not multiple copy
 453 // atomic, sync instructions must be issued between volatile reads to
 454 // assure their ordering, instead of after volatile stores.
 455 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 456 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 457 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 458 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 459 #else
 460 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 461 #endif
 462 
 463 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 464 // Note: this value must be a power of 2
 465 
 466 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 467 
 468 // Signed variants of alignment helpers.  There are two versions of each, a macro
 469 // for use in places like enum definitions that require compile-time constant
 470 // expressions and a function for all other places so as to get type checking.
 471 
 472 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 473 
 474 inline bool is_size_aligned(size_t size, size_t alignment) {
 475   return align_size_up_(size, alignment) == size;
 476 }
 477 
 478 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 479   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 480 }
 481 
 482 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 483   return align_size_up_(size, alignment);
 484 }
 485 
 486 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 487 
 488 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 489   return align_size_down_(size, alignment);
 490 }
 491 
 492 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 493 
 494 inline void* align_ptr_up(const void* ptr, size_t alignment) {
 495   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 496 }
 497 
 498 inline void* align_ptr_down(void* ptr, size_t alignment) {
 499   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 500 }
 501 
 502 // Align metaspace objects by rounding up to natural word boundary
 503 
 504 inline intptr_t align_metadata_size(intptr_t size) {
 505   return align_size_up(size, 1);
 506 }
 507 
 508 // Align objects in the Java Heap by rounding up their size, in HeapWord units.
 509 // Since the size is given in words this is somewhat of a nop, but
 510 // distinguishes it from align_object_size.
 511 inline intptr_t align_object_size(intptr_t size) {
 512   return align_size_up(size, MinObjAlignment);
 513 }
 514 
 515 inline bool is_object_aligned(intptr_t addr) {
 516   return addr == align_object_size(addr);
 517 }
 518 
 519 // Pad out certain offsets to jlong alignment, in HeapWord units.
 520 
 521 inline intptr_t align_object_offset(intptr_t offset) {
 522   return align_size_up(offset, HeapWordsPerLong);
 523 }
 524 
 525 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 526 
 527 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 528   size_t aligned_size = align_size_down_(size, alignment);
 529   return aligned_size > 0 ? aligned_size : alignment;
 530 }
 531 
 532 // Clamp an address to be within a specific page
 533 // 1. If addr is on the page it is returned as is
 534 // 2. If addr is above the page_address the start of the *next* page will be returned
 535 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 536 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 537   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 538     // address is in the specified page, just return it as is
 539     return addr;
 540   } else if (addr > page_address) {
 541     // address is above specified page, return start of next page
 542     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 543   } else {
 544     // address is below specified page, return start of page
 545     return (address)align_size_down(intptr_t(page_address), page_size);
 546   }
 547 }
 548 
 549 
 550 // The expected size in bytes of a cache line, used to pad data structures.
 551 #ifndef DEFAULT_CACHE_LINE_SIZE
 552   #define DEFAULT_CACHE_LINE_SIZE 64
 553 #endif
 554 
 555 
 556 //----------------------------------------------------------------------------------------------------
 557 // Utility macros for compilers
 558 // used to silence compiler warnings
 559 
 560 #define Unused_Variable(var) var
 561 
 562 
 563 //----------------------------------------------------------------------------------------------------
 564 // Miscellaneous
 565 
 566 // 6302670 Eliminate Hotspot __fabsf dependency
 567 // All fabs() callers should call this function instead, which will implicitly
 568 // convert the operand to double, avoiding a dependency on __fabsf which
 569 // doesn't exist in early versions of Solaris 8.
 570 inline double fabsd(double value) {
 571   return fabs(value);
 572 }
 573 
 574 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 575 // is zero, return 0.0.
 576 template<typename T>
 577 inline double percent_of(T numerator, T denominator) {
 578   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 579 }
 580 
 581 //----------------------------------------------------------------------------------------------------
 582 // Special casts
 583 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 584 typedef union {
 585   jfloat f;
 586   jint i;
 587 } FloatIntConv;
 588 
 589 typedef union {
 590   jdouble d;
 591   jlong l;
 592   julong ul;
 593 } DoubleLongConv;
 594 
 595 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 596 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 597 
 598 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 599 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 600 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 601 
 602 inline jint low (jlong value)                    { return jint(value); }
 603 inline jint high(jlong value)                    { return jint(value >> 32); }
 604 
 605 // the fancy casts are a hopefully portable way
 606 // to do unsigned 32 to 64 bit type conversion
 607 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 608                                                    *value |= (jlong)(julong)(juint)low; }
 609 
 610 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 611                                                    *value |= (jlong)high       << 32; }
 612 
 613 inline jlong jlong_from(jint h, jint l) {
 614   jlong result = 0; // initialization to avoid warning
 615   set_high(&result, h);
 616   set_low(&result,  l);
 617   return result;
 618 }
 619 
 620 union jlong_accessor {
 621   jint  words[2];
 622   jlong long_value;
 623 };
 624 
 625 void basic_types_init(); // cannot define here; uses assert
 626 
 627 
 628 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 629 enum BasicType {
 630   T_BOOLEAN     =  4,
 631   T_CHAR        =  5,
 632   T_FLOAT       =  6,
 633   T_DOUBLE      =  7,
 634   T_BYTE        =  8,
 635   T_SHORT       =  9,
 636   T_INT         = 10,
 637   T_LONG        = 11,
 638   T_OBJECT      = 12,
 639   T_ARRAY       = 13,
 640   T_VOID        = 14,
 641   T_ADDRESS     = 15,
 642   T_NARROWOOP   = 16,
 643   T_METADATA    = 17,
 644   T_NARROWKLASS = 18,
 645   T_CONFLICT    = 19, // for stack value type with conflicting contents
 646   T_ILLEGAL     = 99
 647 };
 648 
 649 inline bool is_java_primitive(BasicType t) {
 650   return T_BOOLEAN <= t && t <= T_LONG;
 651 }
 652 
 653 inline bool is_subword_type(BasicType t) {
 654   // these guys are processed exactly like T_INT in calling sequences:
 655   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 656 }
 657 
 658 inline bool is_signed_subword_type(BasicType t) {
 659   return (t == T_BYTE || t == T_SHORT);
 660 }
 661 
 662 // Convert a char from a classfile signature to a BasicType
 663 inline BasicType char2type(char c) {
 664   switch( c ) {
 665   case 'B': return T_BYTE;
 666   case 'C': return T_CHAR;
 667   case 'D': return T_DOUBLE;
 668   case 'F': return T_FLOAT;
 669   case 'I': return T_INT;
 670   case 'J': return T_LONG;
 671   case 'S': return T_SHORT;
 672   case 'Z': return T_BOOLEAN;
 673   case 'V': return T_VOID;
 674   case 'L': return T_OBJECT;
 675   case '[': return T_ARRAY;
 676   }
 677   return T_ILLEGAL;
 678 }
 679 
 680 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 681 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 682 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 683 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 684 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 685 extern BasicType name2type(const char* name);
 686 
 687 // Auxiliary math routines
 688 // least common multiple
 689 extern size_t lcm(size_t a, size_t b);
 690 
 691 
 692 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 693 enum BasicTypeSize {
 694   T_BOOLEAN_size     = 1,
 695   T_CHAR_size        = 1,
 696   T_FLOAT_size       = 1,
 697   T_DOUBLE_size      = 2,
 698   T_BYTE_size        = 1,
 699   T_SHORT_size       = 1,
 700   T_INT_size         = 1,
 701   T_LONG_size        = 2,
 702   T_OBJECT_size      = 1,
 703   T_ARRAY_size       = 1,
 704   T_NARROWOOP_size   = 1,
 705   T_NARROWKLASS_size = 1,
 706   T_VOID_size        = 0
 707 };
 708 
 709 
 710 // maps a BasicType to its instance field storage type:
 711 // all sub-word integral types are widened to T_INT
 712 extern BasicType type2field[T_CONFLICT+1];
 713 extern BasicType type2wfield[T_CONFLICT+1];
 714 
 715 
 716 // size in bytes
 717 enum ArrayElementSize {
 718   T_BOOLEAN_aelem_bytes     = 1,
 719   T_CHAR_aelem_bytes        = 2,
 720   T_FLOAT_aelem_bytes       = 4,
 721   T_DOUBLE_aelem_bytes      = 8,
 722   T_BYTE_aelem_bytes        = 1,
 723   T_SHORT_aelem_bytes       = 2,
 724   T_INT_aelem_bytes         = 4,
 725   T_LONG_aelem_bytes        = 8,
 726 #ifdef _LP64
 727   T_OBJECT_aelem_bytes      = 8,
 728   T_ARRAY_aelem_bytes       = 8,
 729 #else
 730   T_OBJECT_aelem_bytes      = 4,
 731   T_ARRAY_aelem_bytes       = 4,
 732 #endif
 733   T_NARROWOOP_aelem_bytes   = 4,
 734   T_NARROWKLASS_aelem_bytes = 4,
 735   T_VOID_aelem_bytes        = 0
 736 };
 737 
 738 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 739 #ifdef ASSERT
 740 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 741 #else
 742 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 743 #endif
 744 
 745 
 746 // JavaValue serves as a container for arbitrary Java values.
 747 
 748 class JavaValue {
 749 
 750  public:
 751   typedef union JavaCallValue {
 752     jfloat   f;
 753     jdouble  d;
 754     jint     i;
 755     jlong    l;
 756     jobject  h;
 757   } JavaCallValue;
 758 
 759  private:
 760   BasicType _type;
 761   JavaCallValue _value;
 762 
 763  public:
 764   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 765 
 766   JavaValue(jfloat value) {
 767     _type    = T_FLOAT;
 768     _value.f = value;
 769   }
 770 
 771   JavaValue(jdouble value) {
 772     _type    = T_DOUBLE;
 773     _value.d = value;
 774   }
 775 
 776  jfloat get_jfloat() const { return _value.f; }
 777  jdouble get_jdouble() const { return _value.d; }
 778  jint get_jint() const { return _value.i; }
 779  jlong get_jlong() const { return _value.l; }
 780  jobject get_jobject() const { return _value.h; }
 781  JavaCallValue* get_value_addr() { return &_value; }
 782  BasicType get_type() const { return _type; }
 783 
 784  void set_jfloat(jfloat f) { _value.f = f;}
 785  void set_jdouble(jdouble d) { _value.d = d;}
 786  void set_jint(jint i) { _value.i = i;}
 787  void set_jlong(jlong l) { _value.l = l;}
 788  void set_jobject(jobject h) { _value.h = h;}
 789  void set_type(BasicType t) { _type = t; }
 790 
 791  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 792  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 793  jchar get_jchar() const { return (jchar) (_value.i);}
 794  jshort get_jshort() const { return (jshort) (_value.i);}
 795 
 796 };
 797 
 798 
 799 #define STACK_BIAS      0
 800 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 801 // in order to extend the reach of the stack pointer.
 802 #if defined(SPARC) && defined(_LP64)
 803 #undef STACK_BIAS
 804 #define STACK_BIAS      0x7ff
 805 #endif
 806 
 807 
 808 // TosState describes the top-of-stack state before and after the execution of
 809 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 810 // registers. The TosState corresponds to the 'machine representation' of this cached
 811 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 812 // as well as a 5th state in case the top-of-stack value is actually on the top
 813 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 814 // state when it comes to machine representation but is used separately for (oop)
 815 // type specific operations (e.g. verification code).
 816 
 817 enum TosState {         // describes the tos cache contents
 818   btos = 0,             // byte, bool tos cached
 819   ctos = 1,             // char tos cached
 820   stos = 2,             // short tos cached
 821   itos = 3,             // int tos cached
 822   ltos = 4,             // long tos cached
 823   ftos = 5,             // float tos cached
 824   dtos = 6,             // double tos cached
 825   atos = 7,             // object cached
 826   vtos = 8,             // tos not cached
 827   number_of_states,
 828   ilgl                  // illegal state: should not occur
 829 };
 830 
 831 
 832 inline TosState as_TosState(BasicType type) {
 833   switch (type) {
 834     case T_BYTE   : return btos;
 835     case T_BOOLEAN: return btos; // FIXME: Add ztos
 836     case T_CHAR   : return ctos;
 837     case T_SHORT  : return stos;
 838     case T_INT    : return itos;
 839     case T_LONG   : return ltos;
 840     case T_FLOAT  : return ftos;
 841     case T_DOUBLE : return dtos;
 842     case T_VOID   : return vtos;
 843     case T_ARRAY  : // fall through
 844     case T_OBJECT : return atos;
 845   }
 846   return ilgl;
 847 }
 848 
 849 inline BasicType as_BasicType(TosState state) {
 850   switch (state) {
 851     //case ztos: return T_BOOLEAN;//FIXME
 852     case btos : return T_BYTE;
 853     case ctos : return T_CHAR;
 854     case stos : return T_SHORT;
 855     case itos : return T_INT;
 856     case ltos : return T_LONG;
 857     case ftos : return T_FLOAT;
 858     case dtos : return T_DOUBLE;
 859     case atos : return T_OBJECT;
 860     case vtos : return T_VOID;
 861   }
 862   return T_ILLEGAL;
 863 }
 864 
 865 
 866 // Helper function to convert BasicType info into TosState
 867 // Note: Cannot define here as it uses global constant at the time being.
 868 TosState as_TosState(BasicType type);
 869 
 870 
 871 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 872 // information is needed by the safepoint code.
 873 //
 874 // There are 4 essential states:
 875 //
 876 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 877 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 878 //  _thread_in_vm       : Executing in the vm
 879 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 880 //
 881 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 882 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 883 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 884 //
 885 // Given a state, the xxxx_trans state can always be found by adding 1.
 886 //
 887 enum JavaThreadState {
 888   _thread_uninitialized     =  0, // should never happen (missing initialization)
 889   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 890   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 891   _thread_in_native         =  4, // running in native code
 892   _thread_in_native_trans   =  5, // corresponding transition state
 893   _thread_in_vm             =  6, // running in VM
 894   _thread_in_vm_trans       =  7, // corresponding transition state
 895   _thread_in_Java           =  8, // running in Java or in stub code
 896   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 897   _thread_blocked           = 10, // blocked in vm
 898   _thread_blocked_trans     = 11, // corresponding transition state
 899   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 900 };
 901 
 902 
 903 // Handy constants for deciding which compiler mode to use.
 904 enum MethodCompilation {
 905   InvocationEntryBci = -1     // i.e., not a on-stack replacement compilation
 906 };
 907 
 908 // Enumeration to distinguish tiers of compilation
 909 enum CompLevel {
 910   CompLevel_any               = -1,
 911   CompLevel_all               = -1,
 912   CompLevel_none              = 0,         // Interpreter
 913   CompLevel_simple            = 1,         // C1
 914   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 915   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 916   CompLevel_full_optimization = 4,         // C2, Shark or JVMCI
 917 
 918 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
 919   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered or JVMCI and tiered
 920 #elif defined(COMPILER1)
 921   CompLevel_highest_tier      = CompLevel_simple,             // pure C1 or JVMCI
 922 #else
 923   CompLevel_highest_tier      = CompLevel_none,
 924 #endif
 925 
 926 #if defined(TIERED)
 927   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 928 #elif defined(COMPILER1) || INCLUDE_JVMCI
 929   CompLevel_initial_compile   = CompLevel_simple              // pure C1 or JVMCI
 930 #elif defined(COMPILER2) || defined(SHARK)
 931   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 932 #else
 933   CompLevel_initial_compile   = CompLevel_none
 934 #endif
 935 };
 936 
 937 inline bool is_c1_compile(int comp_level) {
 938   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 939 }
 940 
 941 inline bool is_c2_compile(int comp_level) {
 942   return comp_level == CompLevel_full_optimization;
 943 }
 944 
 945 inline bool is_highest_tier_compile(int comp_level) {
 946   return comp_level == CompLevel_highest_tier;
 947 }
 948 
 949 inline bool is_compile(int comp_level) {
 950   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 951 }
 952 
 953 //----------------------------------------------------------------------------------------------------
 954 // 'Forward' declarations of frequently used classes
 955 // (in order to reduce interface dependencies & reduce
 956 // number of unnecessary compilations after changes)
 957 
 958 class ClassFileStream;
 959 
 960 class Event;
 961 
 962 class Thread;
 963 class  VMThread;
 964 class  JavaThread;
 965 class Threads;
 966 
 967 class VM_Operation;
 968 class VMOperationQueue;
 969 
 970 class CodeBlob;
 971 class  nmethod;
 972 class  OSRAdapter;
 973 class  I2CAdapter;
 974 class  C2IAdapter;
 975 class CompiledIC;
 976 class relocInfo;
 977 class ScopeDesc;
 978 class PcDesc;
 979 
 980 class Recompiler;
 981 class Recompilee;
 982 class RecompilationPolicy;
 983 class RFrame;
 984 class  CompiledRFrame;
 985 class  InterpretedRFrame;
 986 
 987 class frame;
 988 
 989 class vframe;
 990 class   javaVFrame;
 991 class     interpretedVFrame;
 992 class     compiledVFrame;
 993 class     deoptimizedVFrame;
 994 class   externalVFrame;
 995 class     entryVFrame;
 996 
 997 class RegisterMap;
 998 
 999 class Mutex;
1000 class Monitor;
1001 class BasicLock;
1002 class BasicObjectLock;
1003 
1004 class PeriodicTask;
1005 
1006 class JavaCallWrapper;
1007 
1008 class   oopDesc;
1009 class   metaDataOopDesc;
1010 
1011 class NativeCall;
1012 
1013 class zone;
1014 
1015 class StubQueue;
1016 
1017 class outputStream;
1018 
1019 class ResourceArea;
1020 
1021 class DebugInformationRecorder;
1022 class ScopeValue;
1023 class CompressedStream;
1024 class   DebugInfoReadStream;
1025 class   DebugInfoWriteStream;
1026 class LocationValue;
1027 class ConstantValue;
1028 class IllegalValue;
1029 
1030 class PrivilegedElement;
1031 class MonitorArray;
1032 
1033 class MonitorInfo;
1034 
1035 class OffsetClosure;
1036 class OopMapCache;
1037 class InterpreterOopMap;
1038 class OopMapCacheEntry;
1039 class OSThread;
1040 
1041 typedef int (*OSThreadStartFunc)(void*);
1042 
1043 class Space;
1044 
1045 class JavaValue;
1046 class methodHandle;
1047 class JavaCallArguments;
1048 
1049 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1050 
1051 extern void basic_fatal(const char* msg);
1052 
1053 
1054 //----------------------------------------------------------------------------------------------------
1055 // Special constants for debugging
1056 
1057 const jint     badInt           = -3;                       // generic "bad int" value
1058 const long     badAddressVal    = -2;                       // generic "bad address" value
1059 const long     badOopVal        = -1;                       // generic "bad oop" value
1060 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1061 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1062 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1063 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1064 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1065 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1066 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1067 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1068 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1069 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1070 
1071 
1072 // (These must be implemented as #defines because C++ compilers are
1073 // not obligated to inline non-integral constants!)
1074 #define       badAddress        ((address)::badAddressVal)
1075 #define       badOop            (cast_to_oop(::badOopVal))
1076 #define       badHeapWord       (::badHeapWordVal)
1077 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1078 
1079 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1080 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1081 
1082 //----------------------------------------------------------------------------------------------------
1083 // Utility functions for bitfield manipulations
1084 
1085 const intptr_t AllBits    = ~0; // all bits set in a word
1086 const intptr_t NoBits     =  0; // no bits set in a word
1087 const jlong    NoLongBits =  0; // no bits set in a long
1088 const intptr_t OneBit     =  1; // only right_most bit set in a word
1089 
1090 // get a word with the n.th or the right-most or left-most n bits set
1091 // (note: #define used only so that they can be used in enum constant definitions)
1092 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1093 #define right_n_bits(n)   (nth_bit(n) - 1)
1094 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1095 
1096 // bit-operations using a mask m
1097 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1098 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1099 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1100 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1101 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1102 
1103 // bit-operations using the n.th bit
1104 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1105 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1106 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1107 
1108 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1109 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1110   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1111 }
1112 
1113 
1114 //----------------------------------------------------------------------------------------------------
1115 // Utility functions for integers
1116 
1117 // Avoid use of global min/max macros which may cause unwanted double
1118 // evaluation of arguments.
1119 #ifdef max
1120 #undef max
1121 #endif
1122 
1123 #ifdef min
1124 #undef min
1125 #endif
1126 
1127 #define max(a,b) Do_not_use_max_use_MAX2_instead
1128 #define min(a,b) Do_not_use_min_use_MIN2_instead
1129 
1130 // It is necessary to use templates here. Having normal overloaded
1131 // functions does not work because it is necessary to provide both 32-
1132 // and 64-bit overloaded functions, which does not work, and having
1133 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1134 // will be even more error-prone than macros.
1135 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1136 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1137 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1138 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1139 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1140 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1141 
1142 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1143 
1144 // true if x is a power of 2, false otherwise
1145 inline bool is_power_of_2(intptr_t x) {
1146   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1147 }
1148 
1149 // long version of is_power_of_2
1150 inline bool is_power_of_2_long(jlong x) {
1151   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1152 }
1153 
1154 // Returns largest i such that 2^i <= x.
1155 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1156 // If x == 0, the function returns -1.
1157 inline int log2_intptr(intptr_t x) {
1158   int i = -1;
1159   uintptr_t p = 1;
1160   while (p != 0 && p <= (uintptr_t)x) {
1161     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1162     i++; p *= 2;
1163   }
1164   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1165   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1166   return i;
1167 }
1168 
1169 //* largest i such that 2^i <= x
1170 //  A negative value of 'x' will return '63'
1171 inline int log2_long(jlong x) {
1172   int i = -1;
1173   julong p =  1;
1174   while (p != 0 && p <= (julong)x) {
1175     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1176     i++; p *= 2;
1177   }
1178   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1179   // (if p = 0 then overflow occurred and i = 63)
1180   return i;
1181 }
1182 
1183 //* the argument must be exactly a power of 2
1184 inline int exact_log2(intptr_t x) {
1185   #ifdef ASSERT
1186     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1187   #endif
1188   return log2_intptr(x);
1189 }
1190 
1191 //* the argument must be exactly a power of 2
1192 inline int exact_log2_long(jlong x) {
1193   #ifdef ASSERT
1194     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1195   #endif
1196   return log2_long(x);
1197 }
1198 
1199 
1200 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1201 inline intptr_t round_to(intptr_t x, uintx s) {
1202   #ifdef ASSERT
1203     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1204   #endif
1205   const uintx m = s - 1;
1206   return mask_bits(x + m, ~m);
1207 }
1208 
1209 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1210 inline intptr_t round_down(intptr_t x, uintx s) {
1211   #ifdef ASSERT
1212     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1213   #endif
1214   const uintx m = s - 1;
1215   return mask_bits(x, ~m);
1216 }
1217 
1218 
1219 inline bool is_odd (intx x) { return x & 1;      }
1220 inline bool is_even(intx x) { return !is_odd(x); }
1221 
1222 // "to" should be greater than "from."
1223 inline intx byte_size(void* from, void* to) {
1224   return (address)to - (address)from;
1225 }
1226 
1227 //----------------------------------------------------------------------------------------------------
1228 // Avoid non-portable casts with these routines (DEPRECATED)
1229 
1230 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1231 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1232 
1233 // Given sequence of four bytes, build into a 32-bit word
1234 // following the conventions used in class files.
1235 // On the 386, this could be realized with a simple address cast.
1236 //
1237 
1238 // This routine takes eight bytes:
1239 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1240   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1241        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1242        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1243        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1244        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1245        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1246        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1247        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1248 }
1249 
1250 // This routine takes four bytes:
1251 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1252   return  (( u4(c1) << 24 )  &  0xff000000)
1253        |  (( u4(c2) << 16 )  &  0x00ff0000)
1254        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1255        |  (( u4(c4) <<  0 )  &  0x000000ff);
1256 }
1257 
1258 // And this one works if the four bytes are contiguous in memory:
1259 inline u4 build_u4_from( u1* p ) {
1260   return  build_u4_from( p[0], p[1], p[2], p[3] );
1261 }
1262 
1263 // Ditto for two-byte ints:
1264 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1265   return  u2((( u2(c1) <<  8 )  &  0xff00)
1266           |  (( u2(c2) <<  0 )  &  0x00ff));
1267 }
1268 
1269 // And this one works if the two bytes are contiguous in memory:
1270 inline u2 build_u2_from( u1* p ) {
1271   return  build_u2_from( p[0], p[1] );
1272 }
1273 
1274 // Ditto for floats:
1275 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1276   u4 u = build_u4_from( c1, c2, c3, c4 );
1277   return  *(jfloat*)&u;
1278 }
1279 
1280 inline jfloat build_float_from( u1* p ) {
1281   u4 u = build_u4_from( p );
1282   return  *(jfloat*)&u;
1283 }
1284 
1285 
1286 // now (64-bit) longs
1287 
1288 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1289   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1290        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1291        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1292        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1293        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1294        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1295        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1296        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1297 }
1298 
1299 inline jlong build_long_from( u1* p ) {
1300   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1301 }
1302 
1303 
1304 // Doubles, too!
1305 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1306   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1307   return  *(jdouble*)&u;
1308 }
1309 
1310 inline jdouble build_double_from( u1* p ) {
1311   jlong u = build_long_from( p );
1312   return  *(jdouble*)&u;
1313 }
1314 
1315 
1316 // Portable routines to go the other way:
1317 
1318 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1319   c1 = u1(x >> 8);
1320   c2 = u1(x);
1321 }
1322 
1323 inline void explode_short_to( u2 x, u1* p ) {
1324   explode_short_to( x, p[0], p[1]);
1325 }
1326 
1327 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1328   c1 = u1(x >> 24);
1329   c2 = u1(x >> 16);
1330   c3 = u1(x >>  8);
1331   c4 = u1(x);
1332 }
1333 
1334 inline void explode_int_to( u4 x, u1* p ) {
1335   explode_int_to( x, p[0], p[1], p[2], p[3]);
1336 }
1337 
1338 
1339 // Pack and extract shorts to/from ints:
1340 
1341 inline int extract_low_short_from_int(jint x) {
1342   return x & 0xffff;
1343 }
1344 
1345 inline int extract_high_short_from_int(jint x) {
1346   return (x >> 16) & 0xffff;
1347 }
1348 
1349 inline int build_int_from_shorts( jushort low, jushort high ) {
1350   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1351 }
1352 
1353 // Convert pointer to intptr_t, for use in printing pointers.
1354 inline intptr_t p2i(const void * p) {
1355   return (intptr_t) p;
1356 }
1357 
1358 // swap a & b
1359 template<class T> static void swap(T& a, T& b) {
1360   T tmp = a;
1361   a = b;
1362   b = tmp;
1363 }
1364 
1365 // Printf-style formatters for fixed- and variable-width types as pointers and
1366 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1367 // doesn't provide appropriate definitions, they should be provided in
1368 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1369 
1370 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1371 
1372 // Format 32-bit quantities.
1373 #define INT32_FORMAT           "%" PRId32
1374 #define UINT32_FORMAT          "%" PRIu32
1375 #define INT32_FORMAT_W(width)  "%" #width PRId32
1376 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1377 
1378 #define PTR32_FORMAT           "0x%08" PRIx32
1379 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
1380 
1381 // Format 64-bit quantities.
1382 #define INT64_FORMAT           "%" PRId64
1383 #define UINT64_FORMAT          "%" PRIu64
1384 #define UINT64_FORMAT_X        "%" PRIx64
1385 #define INT64_FORMAT_W(width)  "%" #width PRId64
1386 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1387 
1388 #define PTR64_FORMAT           "0x%016" PRIx64
1389 
1390 // Format jlong, if necessary
1391 #ifndef JLONG_FORMAT
1392 #define JLONG_FORMAT           INT64_FORMAT
1393 #endif
1394 #ifndef JULONG_FORMAT
1395 #define JULONG_FORMAT          UINT64_FORMAT
1396 #endif
1397 #ifndef JULONG_FORMAT_X
1398 #define JULONG_FORMAT_X        UINT64_FORMAT_X
1399 #endif
1400 
1401 // Format pointers which change size between 32- and 64-bit.
1402 #ifdef  _LP64
1403 #define INTPTR_FORMAT "0x%016" PRIxPTR
1404 #define PTR_FORMAT    "0x%016" PRIxPTR
1405 #else   // !_LP64
1406 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1407 #define PTR_FORMAT    "0x%08"  PRIxPTR
1408 #endif  // _LP64
1409 
1410 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1411 
1412 #define SSIZE_FORMAT             "%"   PRIdPTR
1413 #define SIZE_FORMAT              "%"   PRIuPTR
1414 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1415 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1416 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1417 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1418 
1419 #define INTX_FORMAT           "%" PRIdPTR
1420 #define UINTX_FORMAT          "%" PRIuPTR
1421 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1422 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1423 
1424 
1425 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1426 
1427 //----------------------------------------------------------------------------------------------------
1428 // Sum and product which can never overflow: they wrap, just like the
1429 // Java operations.  Note that we don't intend these to be used for
1430 // general-purpose arithmetic: their purpose is to emulate Java
1431 // operations.
1432 
1433 // The goal of this code to avoid undefined or implementation-defined
1434 // behavior.  The use of an lvalue to reference cast is explicitly
1435 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1436 // 15 in C++03]
1437 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1438 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1439   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1440   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1441   return reinterpret_cast<TYPE&>(ures);                 \
1442 }
1443 
1444 JAVA_INTEGER_OP(+, java_add, jint, juint)
1445 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1446 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1447 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1448 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1449 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1450 
1451 #undef JAVA_INTEGER_OP
1452 
1453 // Dereference vptr
1454 // All C++ compilers that we know of have the vtbl pointer in the first
1455 // word.  If there are exceptions, this function needs to be made compiler
1456 // specific.
1457 static inline void* dereference_vptr(const void* addr) {
1458   return *(void**)addr;
1459 }
1460 
1461 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP