1 /*
   2  * Copyright (c) 2009, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_STACK_INLINE_HPP
  26 #define SHARE_VM_UTILITIES_STACK_INLINE_HPP
  27 
  28 #include "utilities/stack.hpp"
  29 
  30 // Stack is used by the GC code and in some hot paths a lot of the Stack
  31 // code gets inlined. This is generally good, but when too much code has
  32 // been inlined, no further inlining is allowed by GCC. Therefore we need
  33 // to prevent parts of the slow path in Stack to be inlined to allow other
  34 // code to be.
  35 #if defined(TARGET_COMPILER_gcc)
  36 #define NOINLINE __attribute__((noinline))
  37 #else
  38 #define NOINLINE
  39 #endif
  40 
  41 template <MEMFLAGS F> StackBase<F>::StackBase(size_t segment_size, size_t max_cache_size,
  42                      size_t max_size):
  43   _seg_size(segment_size),
  44   _max_cache_size(max_cache_size),
  45   _max_size(adjust_max_size(max_size, segment_size))
  46 {
  47   assert(_max_size % _seg_size == 0, "not a multiple");
  48 }
  49 
  50 template <MEMFLAGS F> size_t StackBase<F>::adjust_max_size(size_t max_size, size_t seg_size)
  51 {
  52   assert(seg_size > 0, "cannot be 0");
  53   assert(max_size >= seg_size || max_size == 0, "max_size too small");
  54   const size_t limit = max_uintx - (seg_size - 1);
  55   if (max_size == 0 || max_size > limit) {
  56     max_size = limit;
  57   }
  58   return (max_size + seg_size - 1) / seg_size * seg_size;
  59 }
  60 
  61 template <class E, MEMFLAGS F>
  62 Stack<E, F>::Stack(size_t segment_size, size_t max_cache_size, size_t max_size):
  63   StackBase<F>(adjust_segment_size(segment_size), max_cache_size, max_size)
  64 {
  65   reset(true);
  66 }
  67 
  68 template <class E, MEMFLAGS F>
  69 void Stack<E, F>::push(E item)
  70 {
  71   assert(!is_full(), "pushing onto a full stack");
  72   if (this->_cur_seg_size == this->_seg_size) {
  73     push_segment();
  74   }
  75   this->_cur_seg[this->_cur_seg_size] = item;
  76   ++this->_cur_seg_size;
  77 }
  78 
  79 template <class E, MEMFLAGS F>
  80 E Stack<E, F>::pop()
  81 {
  82   assert(!is_empty(), "popping from an empty stack");
  83   if (this->_cur_seg_size == 1) {
  84     E tmp = _cur_seg[--this->_cur_seg_size];
  85     pop_segment();
  86     return tmp;
  87   }
  88   return this->_cur_seg[--this->_cur_seg_size];
  89 }
  90 
  91 template <class E, MEMFLAGS F>
  92 void Stack<E, F>::clear(bool clear_cache)
  93 {
  94   free_segments(_cur_seg);
  95   if (clear_cache) free_segments(_cache);
  96   reset(clear_cache);
  97 }
  98 
  99 template <class E, MEMFLAGS F>
 100 size_t Stack<E, F>::adjust_segment_size(size_t seg_size)
 101 {
 102   const size_t elem_sz = sizeof(E);
 103   const size_t ptr_sz = sizeof(E*);
 104   assert(elem_sz % ptr_sz == 0 || ptr_sz % elem_sz == 0, "bad element size");
 105   if (elem_sz < ptr_sz) {
 106     return align_size_up(seg_size * elem_sz, ptr_sz) / elem_sz;
 107   }
 108   return seg_size;
 109 }
 110 
 111 template <class E, MEMFLAGS F>
 112 size_t Stack<E, F>::link_offset() const
 113 {
 114   return align_size_up(this->_seg_size * sizeof(E), sizeof(E*));
 115 }
 116 
 117 template <class E, MEMFLAGS F>
 118 size_t Stack<E, F>::segment_bytes() const
 119 {
 120   return link_offset() + sizeof(E*);
 121 }
 122 
 123 template <class E, MEMFLAGS F>
 124 E** Stack<E, F>::link_addr(E* seg) const
 125 {
 126   return (E**) ((char*)seg + link_offset());
 127 }
 128 
 129 template <class E, MEMFLAGS F>
 130 E* Stack<E, F>::get_link(E* seg) const
 131 {
 132   return *link_addr(seg);
 133 }
 134 
 135 template <class E, MEMFLAGS F>
 136 E* Stack<E, F>::set_link(E* new_seg, E* old_seg)
 137 {
 138   *link_addr(new_seg) = old_seg;
 139   return new_seg;
 140 }
 141 
 142 template <class E, MEMFLAGS F>
 143 E* Stack<E, F>::alloc(size_t bytes)
 144 {
 145   return (E*) NEW_C_HEAP_ARRAY(char, bytes, F);
 146 }
 147 
 148 template <class E, MEMFLAGS F>
 149 void Stack<E, F>::free(E* addr, size_t bytes)
 150 {
 151   FREE_C_HEAP_ARRAY(char, (char*) addr);
 152 }
 153 
 154 template <class E, MEMFLAGS F>
 155 NOINLINE void Stack<E, F>::push_segment()
 156 {
 157   assert(this->_cur_seg_size == this->_seg_size, "current segment is not full");
 158   E* next;
 159   if (this->_cache_size > 0) {
 160     // Use a cached segment.
 161     next = _cache;
 162     _cache = get_link(_cache);
 163     --this->_cache_size;
 164   } else {
 165     next = alloc(segment_bytes());
 166     DEBUG_ONLY(zap_segment(next, true);)
 167   }
 168   const bool at_empty_transition = is_empty();
 169   this->_cur_seg = set_link(next, _cur_seg);
 170   this->_cur_seg_size = 0;
 171   this->_full_seg_size += at_empty_transition ? 0 : this->_seg_size;
 172   DEBUG_ONLY(verify(at_empty_transition);)
 173 }
 174 
 175 template <class E, MEMFLAGS F>
 176 void Stack<E, F>::pop_segment()
 177 {
 178   assert(this->_cur_seg_size == 0, "current segment is not empty");
 179   E* const prev = get_link(_cur_seg);
 180   if (this->_cache_size < this->_max_cache_size) {
 181     // Add the current segment to the cache.
 182     DEBUG_ONLY(zap_segment(_cur_seg, false);)
 183     _cache = set_link(_cur_seg, _cache);
 184     ++this->_cache_size;
 185   } else {
 186     DEBUG_ONLY(zap_segment(_cur_seg, true);)
 187     free(_cur_seg, segment_bytes());
 188   }
 189   const bool at_empty_transition = prev == NULL;
 190   this->_cur_seg = prev;
 191   this->_cur_seg_size = this->_seg_size;
 192   this->_full_seg_size -= at_empty_transition ? 0 : this->_seg_size;
 193   DEBUG_ONLY(verify(at_empty_transition);)
 194 }
 195 
 196 template <class E, MEMFLAGS F>
 197 void Stack<E, F>::free_segments(E* seg)
 198 {
 199   const size_t bytes = segment_bytes();
 200   while (seg != NULL) {
 201     E* const prev = get_link(seg);
 202     free(seg, bytes);
 203     seg = prev;
 204   }
 205 }
 206 
 207 template <class E, MEMFLAGS F>
 208 void Stack<E, F>::reset(bool reset_cache)
 209 {
 210   this->_cur_seg_size = this->_seg_size; // So push() will alloc a new segment.
 211   this->_full_seg_size = 0;
 212   _cur_seg = NULL;
 213   if (reset_cache) {
 214     this->_cache_size = 0;
 215     _cache = NULL;
 216   }
 217 }
 218 
 219 #ifdef ASSERT
 220 template <class E, MEMFLAGS F>
 221 void Stack<E, F>::verify(bool at_empty_transition) const
 222 {
 223   assert(size() <= this->max_size(), "stack exceeded bounds");
 224   assert(this->cache_size() <= this->max_cache_size(), "cache exceeded bounds");
 225   assert(this->_cur_seg_size <= this->segment_size(), "segment index exceeded bounds");
 226 
 227   assert(this->_full_seg_size % this->_seg_size == 0, "not a multiple");
 228   assert(at_empty_transition || is_empty() == (size() == 0), "mismatch");
 229   assert((_cache == NULL) == (this->cache_size() == 0), "mismatch");
 230 
 231   if (is_empty()) {
 232     assert(this->_cur_seg_size == this->segment_size(), "sanity");
 233   }
 234 }
 235 
 236 template <class E, MEMFLAGS F>
 237 void Stack<E, F>::zap_segment(E* seg, bool zap_link_field) const
 238 {
 239   if (!ZapStackSegments) return;
 240   const size_t zap_bytes = segment_bytes() - (zap_link_field ? 0 : sizeof(E*));
 241   uint32_t* cur = (uint32_t*)seg;
 242   const uint32_t* end = cur + zap_bytes / sizeof(uint32_t);
 243   while (cur < end) {
 244     *cur++ = 0xfadfaded;
 245   }
 246 }
 247 #endif
 248 
 249 template <class E, MEMFLAGS F>
 250 E* ResourceStack<E, F>::alloc(size_t bytes)
 251 {
 252   return (E*) resource_allocate_bytes(bytes);
 253 }
 254 
 255 template <class E, MEMFLAGS F>
 256 void ResourceStack<E, F>::free(E* addr, size_t bytes)
 257 {
 258   resource_free_bytes((char*) addr, bytes);
 259 }
 260 
 261 template <class E, MEMFLAGS F>
 262 void StackIterator<E, F>::sync()
 263 {
 264   _full_seg_size = _stack._full_seg_size;
 265   _cur_seg_size = _stack._cur_seg_size;
 266   _cur_seg = _stack._cur_seg;
 267 }
 268 
 269 template <class E, MEMFLAGS F>
 270 E* StackIterator<E, F>::next_addr()
 271 {
 272   assert(!is_empty(), "no items left");
 273   if (_cur_seg_size == 1) {
 274     E* addr = _cur_seg;
 275     _cur_seg = _stack.get_link(_cur_seg);
 276     _cur_seg_size = _stack.segment_size();
 277     _full_seg_size -= _stack.segment_size();
 278     return addr;
 279   }
 280   return _cur_seg + --_cur_seg_size;
 281 }
 282 
 283 #undef NOINLINE
 284 
 285 #endif // SHARE_VM_UTILITIES_STACK_INLINE_HPP