/* * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2015 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_PPC_VM_ASSEMBLER_PPC_INLINE_HPP #define CPU_PPC_VM_ASSEMBLER_PPC_INLINE_HPP #include "asm/assembler.inline.hpp" #include "asm/codeBuffer.hpp" #include "code/codeCache.hpp" inline void Assembler::emit_int32(int x) { AbstractAssembler::emit_int32(x); } inline void Assembler::emit_data(int x) { emit_int32(x); } inline void Assembler::emit_data(int x, relocInfo::relocType rtype) { relocate(rtype); emit_int32(x); } inline void Assembler::emit_data(int x, RelocationHolder const& rspec) { relocate(rspec); emit_int32(x); } // Emit an address inline address Assembler::emit_addr(const address addr) { address start = pc(); emit_address(addr); return start; } #if !defined(ABI_ELFv2) // Emit a function descriptor with the specified entry point, TOC, and // ENV. If the entry point is NULL, the descriptor will point just // past the descriptor. inline address Assembler::emit_fd(address entry, address toc, address env) { FunctionDescriptor* fd = (FunctionDescriptor*)pc(); assert(sizeof(FunctionDescriptor) == 3*sizeof(address), "function descriptor size"); (void)emit_addr(); (void)emit_addr(); (void)emit_addr(); fd->set_entry(entry == NULL ? pc() : entry); fd->set_toc(toc); fd->set_env(env); return (address)fd; } #endif // Issue an illegal instruction. 0 is guaranteed to be an illegal instruction. inline void Assembler::illtrap() { Assembler::emit_int32(0); } inline bool Assembler::is_illtrap(int x) { return x == 0; } // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions inline void Assembler::addi( Register d, Register a, int si16) { assert(a != R0, "r0 not allowed"); addi_r0ok( d, a, si16); } inline void Assembler::addis( Register d, Register a, int si16) { assert(a != R0, "r0 not allowed"); addis_r0ok(d, a, si16); } inline void Assembler::addi_r0ok(Register d,Register a,int si16) { emit_int32(ADDI_OPCODE | rt(d) | ra(a) | simm(si16, 16)); } inline void Assembler::addis_r0ok(Register d,Register a,int si16) { emit_int32(ADDIS_OPCODE | rt(d) | ra(a) | simm(si16, 16)); } inline void Assembler::addic_( Register d, Register a, int si16) { emit_int32(ADDIC__OPCODE | rt(d) | ra(a) | simm(si16, 16)); } inline void Assembler::subfic( Register d, Register a, int si16) { emit_int32(SUBFIC_OPCODE | rt(d) | ra(a) | simm(si16, 16)); } inline void Assembler::add( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::add_( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } inline void Assembler::subf( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::sub( Register d, Register a, Register b) { subf(d, b, a); } inline void Assembler::subf_( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } inline void Assembler::addc( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::addc_( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } inline void Assembler::subfc( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::subfc_( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } inline void Assembler::adde( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::adde_( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } inline void Assembler::subfe( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::subfe_( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } inline void Assembler::addme( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } inline void Assembler::addme_( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } inline void Assembler::subfme( Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } inline void Assembler::subfme_(Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } inline void Assembler::addze( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } inline void Assembler::addze_( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } inline void Assembler::subfze( Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } inline void Assembler::subfze_(Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } inline void Assembler::neg( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } inline void Assembler::neg_( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } inline void Assembler::mulli( Register d, Register a, int si16) { emit_int32(MULLI_OPCODE | rt(d) | ra(a) | simm(si16, 16)); } inline void Assembler::mulld( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::mulld_( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } inline void Assembler::mullw( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::mullw_( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } inline void Assembler::mulhw( Register d, Register a, Register b) { emit_int32(MULHW_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); } inline void Assembler::mulhw_( Register d, Register a, Register b) { emit_int32(MULHW_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); } inline void Assembler::mulhwu( Register d, Register a, Register b) { emit_int32(MULHWU_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); } inline void Assembler::mulhwu_(Register d, Register a, Register b) { emit_int32(MULHWU_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); } inline void Assembler::mulhd( Register d, Register a, Register b) { emit_int32(MULHD_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); } inline void Assembler::mulhd_( Register d, Register a, Register b) { emit_int32(MULHD_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); } inline void Assembler::mulhdu( Register d, Register a, Register b) { emit_int32(MULHDU_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); } inline void Assembler::mulhdu_(Register d, Register a, Register b) { emit_int32(MULHDU_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); } inline void Assembler::divd( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::divd_( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } inline void Assembler::divw( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } inline void Assembler::divw_( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } // Fixed-Point Arithmetic Instructions with Overflow detection inline void Assembler::addo( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::addo_( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } inline void Assembler::subfo( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::subfo_( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } inline void Assembler::addco( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::addco_( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } inline void Assembler::subfco( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::subfco_( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } inline void Assembler::addeo( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::addeo_( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } inline void Assembler::subfeo( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::subfeo_( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } inline void Assembler::addmeo( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } inline void Assembler::addmeo_( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } inline void Assembler::subfmeo( Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } inline void Assembler::subfmeo_(Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } inline void Assembler::addzeo( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } inline void Assembler::addzeo_( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } inline void Assembler::subfzeo( Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } inline void Assembler::subfzeo_(Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } inline void Assembler::nego( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } inline void Assembler::nego_( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } inline void Assembler::mulldo( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::mulldo_( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } inline void Assembler::mullwo( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::mullwo_( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } inline void Assembler::divdo( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::divdo_( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } inline void Assembler::divwo( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } inline void Assembler::divwo_( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } // extended mnemonics inline void Assembler::li( Register d, int si16) { Assembler::addi_r0ok( d, R0, si16); } inline void Assembler::lis( Register d, int si16) { Assembler::addis_r0ok(d, R0, si16); } inline void Assembler::addir(Register d, int si16, Register a) { Assembler::addi(d, a, si16); } // PPC 1, section 3.3.9, Fixed-Point Compare Instructions inline void Assembler::cmpi( ConditionRegister f, int l, Register a, int si16) { emit_int32( CMPI_OPCODE | bf(f) | l10(l) | ra(a) | simm(si16,16)); } inline void Assembler::cmp( ConditionRegister f, int l, Register a, Register b) { emit_int32( CMP_OPCODE | bf(f) | l10(l) | ra(a) | rb(b)); } inline void Assembler::cmpli( ConditionRegister f, int l, Register a, int ui16) { emit_int32( CMPLI_OPCODE | bf(f) | l10(l) | ra(a) | uimm(ui16,16)); } inline void Assembler::cmpl( ConditionRegister f, int l, Register a, Register b) { emit_int32( CMPL_OPCODE | bf(f) | l10(l) | ra(a) | rb(b)); } // extended mnemonics of Compare Instructions inline void Assembler::cmpwi( ConditionRegister crx, Register a, int si16) { Assembler::cmpi( crx, 0, a, si16); } inline void Assembler::cmpdi( ConditionRegister crx, Register a, int si16) { Assembler::cmpi( crx, 1, a, si16); } inline void Assembler::cmpw( ConditionRegister crx, Register a, Register b) { Assembler::cmp( crx, 0, a, b); } inline void Assembler::cmpd( ConditionRegister crx, Register a, Register b) { Assembler::cmp( crx, 1, a, b); } inline void Assembler::cmplwi(ConditionRegister crx, Register a, int ui16) { Assembler::cmpli(crx, 0, a, ui16); } inline void Assembler::cmpldi(ConditionRegister crx, Register a, int ui16) { Assembler::cmpli(crx, 1, a, ui16); } inline void Assembler::cmplw( ConditionRegister crx, Register a, Register b) { Assembler::cmpl( crx, 0, a, b); } inline void Assembler::cmpld( ConditionRegister crx, Register a, Register b) { Assembler::cmpl( crx, 1, a, b); } inline void Assembler::isel(Register d, Register a, Register b, int c) { guarantee(VM_Version::has_isel(), "opcode not supported on this hardware"); emit_int32(ISEL_OPCODE | rt(d) | ra(a) | rb(b) | bc(c)); } // PPC 1, section 3.3.11, Fixed-Point Logical Instructions inline void Assembler::andi_( Register a, Register s, int ui16) { emit_int32(ANDI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } inline void Assembler::andis_( Register a, Register s, int ui16) { emit_int32(ANDIS_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } inline void Assembler::ori( Register a, Register s, int ui16) { emit_int32(ORI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } inline void Assembler::oris( Register a, Register s, int ui16) { emit_int32(ORIS_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } inline void Assembler::xori( Register a, Register s, int ui16) { emit_int32(XORI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } inline void Assembler::xoris( Register a, Register s, int ui16) { emit_int32(XORIS_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } inline void Assembler::andr( Register a, Register s, Register b) { emit_int32(AND_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::and_( Register a, Register s, Register b) { emit_int32(AND_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::or_unchecked(Register a, Register s, Register b){ emit_int32(OR_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::orr( Register a, Register s, Register b) { if (a==s && s==b) { Assembler::nop(); } else { Assembler::or_unchecked(a,s,b); } } inline void Assembler::or_( Register a, Register s, Register b) { emit_int32(OR_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::xorr( Register a, Register s, Register b) { emit_int32(XOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::xor_( Register a, Register s, Register b) { emit_int32(XOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::nand( Register a, Register s, Register b) { emit_int32(NAND_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::nand_( Register a, Register s, Register b) { emit_int32(NAND_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::nor( Register a, Register s, Register b) { emit_int32(NOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::nor_( Register a, Register s, Register b) { emit_int32(NOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::andc( Register a, Register s, Register b) { emit_int32(ANDC_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::andc_( Register a, Register s, Register b) { emit_int32(ANDC_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::orc( Register a, Register s, Register b) { emit_int32(ORC_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::orc_( Register a, Register s, Register b) { emit_int32(ORC_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::extsb( Register a, Register s) { emit_int32(EXTSB_OPCODE | rta(a) | rs(s) | rc(0)); } inline void Assembler::extsb_( Register a, Register s) { emit_int32(EXTSB_OPCODE | rta(a) | rs(s) | rc(1)); } inline void Assembler::extsh( Register a, Register s) { emit_int32(EXTSH_OPCODE | rta(a) | rs(s) | rc(0)); } inline void Assembler::extsh_( Register a, Register s) { emit_int32(EXTSH_OPCODE | rta(a) | rs(s) | rc(1)); } inline void Assembler::extsw( Register a, Register s) { emit_int32(EXTSW_OPCODE | rta(a) | rs(s) | rc(0)); } inline void Assembler::extsw_( Register a, Register s) { emit_int32(EXTSW_OPCODE | rta(a) | rs(s) | rc(1)); } // extended mnemonics inline void Assembler::nop() { Assembler::ori(R0, R0, 0); } // NOP for FP and BR units (different versions to allow them to be in one group) inline void Assembler::fpnop0() { Assembler::fmr(F30, F30); } inline void Assembler::fpnop1() { Assembler::fmr(F31, F31); } inline void Assembler::brnop0() { Assembler::mcrf(CCR2, CCR2); } inline void Assembler::brnop1() { Assembler::mcrf(CCR3, CCR3); } inline void Assembler::brnop2() { Assembler::mcrf(CCR4, CCR4); } inline void Assembler::mr( Register d, Register s) { Assembler::orr(d, s, s); } inline void Assembler::ori_opt( Register d, int ui16) { if (ui16!=0) Assembler::ori( d, d, ui16); } inline void Assembler::oris_opt(Register d, int ui16) { if (ui16!=0) Assembler::oris(d, d, ui16); } inline void Assembler::endgroup() { Assembler::ori(R1, R1, 0); } // count instructions inline void Assembler::cntlzw( Register a, Register s) { emit_int32(CNTLZW_OPCODE | rta(a) | rs(s) | rc(0)); } inline void Assembler::cntlzw_( Register a, Register s) { emit_int32(CNTLZW_OPCODE | rta(a) | rs(s) | rc(1)); } inline void Assembler::cntlzd( Register a, Register s) { emit_int32(CNTLZD_OPCODE | rta(a) | rs(s) | rc(0)); } inline void Assembler::cntlzd_( Register a, Register s) { emit_int32(CNTLZD_OPCODE | rta(a) | rs(s) | rc(1)); } // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions inline void Assembler::sld( Register a, Register s, Register b) { emit_int32(SLD_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::sld_( Register a, Register s, Register b) { emit_int32(SLD_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::slw( Register a, Register s, Register b) { emit_int32(SLW_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::slw_( Register a, Register s, Register b) { emit_int32(SLW_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::srd( Register a, Register s, Register b) { emit_int32(SRD_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::srd_( Register a, Register s, Register b) { emit_int32(SRD_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::srw( Register a, Register s, Register b) { emit_int32(SRW_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::srw_( Register a, Register s, Register b) { emit_int32(SRW_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::srad( Register a, Register s, Register b) { emit_int32(SRAD_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::srad_( Register a, Register s, Register b) { emit_int32(SRAD_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::sraw( Register a, Register s, Register b) { emit_int32(SRAW_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::sraw_( Register a, Register s, Register b) { emit_int32(SRAW_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } inline void Assembler::sradi( Register a, Register s, int sh6) { emit_int32(SRADI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | rc(0)); } inline void Assembler::sradi_( Register a, Register s, int sh6) { emit_int32(SRADI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | rc(1)); } inline void Assembler::srawi( Register a, Register s, int sh5) { emit_int32(SRAWI_OPCODE | rta(a) | rs(s) | sh1620(sh5) | rc(0)); } inline void Assembler::srawi_( Register a, Register s, int sh5) { emit_int32(SRAWI_OPCODE | rta(a) | rs(s) | sh1620(sh5) | rc(1)); } // extended mnemonics for Shift Instructions inline void Assembler::sldi( Register a, Register s, int sh6) { Assembler::rldicr(a, s, sh6, 63-sh6); } inline void Assembler::sldi_( Register a, Register s, int sh6) { Assembler::rldicr_(a, s, sh6, 63-sh6); } inline void Assembler::slwi( Register a, Register s, int sh5) { Assembler::rlwinm(a, s, sh5, 0, 31-sh5); } inline void Assembler::slwi_( Register a, Register s, int sh5) { Assembler::rlwinm_(a, s, sh5, 0, 31-sh5); } inline void Assembler::srdi( Register a, Register s, int sh6) { Assembler::rldicl(a, s, 64-sh6, sh6); } inline void Assembler::srdi_( Register a, Register s, int sh6) { Assembler::rldicl_(a, s, 64-sh6, sh6); } inline void Assembler::srwi( Register a, Register s, int sh5) { Assembler::rlwinm(a, s, 32-sh5, sh5, 31); } inline void Assembler::srwi_( Register a, Register s, int sh5) { Assembler::rlwinm_(a, s, 32-sh5, sh5, 31); } inline void Assembler::clrrdi( Register a, Register s, int ui6) { Assembler::rldicr(a, s, 0, 63-ui6); } inline void Assembler::clrrdi_( Register a, Register s, int ui6) { Assembler::rldicr_(a, s, 0, 63-ui6); } inline void Assembler::clrldi( Register a, Register s, int ui6) { Assembler::rldicl(a, s, 0, ui6); } inline void Assembler::clrldi_( Register a, Register s, int ui6) { Assembler::rldicl_(a, s, 0, ui6); } inline void Assembler::clrlsldi( Register a, Register s, int clrl6, int shl6) { Assembler::rldic( a, s, shl6, clrl6-shl6); } inline void Assembler::clrlsldi_(Register a, Register s, int clrl6, int shl6) { Assembler::rldic_(a, s, shl6, clrl6-shl6); } inline void Assembler::extrdi( Register a, Register s, int n, int b){ Assembler::rldicl(a, s, b+n, 64-n); } // testbit with condition register. inline void Assembler::testbitdi(ConditionRegister cr, Register a, Register s, int ui6) { if (cr == CCR0) { Assembler::rldicr_(a, s, 63-ui6, 0); } else { Assembler::rldicr(a, s, 63-ui6, 0); Assembler::cmpdi(cr, a, 0); } } // rotate instructions inline void Assembler::rotldi( Register a, Register s, int n) { Assembler::rldicl(a, s, n, 0); } inline void Assembler::rotrdi( Register a, Register s, int n) { Assembler::rldicl(a, s, 64-n, 0); } inline void Assembler::rotlwi( Register a, Register s, int n) { Assembler::rlwinm(a, s, n, 0, 31); } inline void Assembler::rotrwi( Register a, Register s, int n) { Assembler::rlwinm(a, s, 32-n, 0, 31); } inline void Assembler::rldic( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIC_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(0)); } inline void Assembler::rldic_( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIC_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(1)); } inline void Assembler::rldicr( Register a, Register s, int sh6, int mb6) { emit_int32(RLDICR_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(0)); } inline void Assembler::rldicr_( Register a, Register s, int sh6, int mb6) { emit_int32(RLDICR_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(1)); } inline void Assembler::rldicl( Register a, Register s, int sh6, int me6) { emit_int32(RLDICL_OPCODE | rta(a) | rs(s) | sh162030(sh6) | me2126(me6) | rc(0)); } inline void Assembler::rldicl_( Register a, Register s, int sh6, int me6) { emit_int32(RLDICL_OPCODE | rta(a) | rs(s) | sh162030(sh6) | me2126(me6) | rc(1)); } inline void Assembler::rlwinm( Register a, Register s, int sh5, int mb5, int me5){ emit_int32(RLWINM_OPCODE | rta(a) | rs(s) | sh1620(sh5) | mb2125(mb5) | me2630(me5) | rc(0)); } inline void Assembler::rlwinm_( Register a, Register s, int sh5, int mb5, int me5){ emit_int32(RLWINM_OPCODE | rta(a) | rs(s) | sh1620(sh5) | mb2125(mb5) | me2630(me5) | rc(1)); } inline void Assembler::rldimi( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIMI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(0)); } inline void Assembler::rlwimi( Register a, Register s, int sh5, int mb5, int me5){ emit_int32(RLWIMI_OPCODE | rta(a) | rs(s) | sh1620(sh5) | mb2125(mb5) | me2630(me5) | rc(0)); } inline void Assembler::rldimi_( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIMI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(1)); } inline void Assembler::insrdi( Register a, Register s, int n, int b) { Assembler::rldimi(a, s, 64-(b+n), b); } inline void Assembler::insrwi( Register a, Register s, int n, int b) { Assembler::rlwimi(a, s, 32-(b+n), b, b+n-1); } // PPC 1, section 3.3.2 Fixed-Point Load Instructions inline void Assembler::lwzx( Register d, Register s1, Register s2) { emit_int32(LWZX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} inline void Assembler::lwz( Register d, int si16, Register s1) { emit_int32(LWZ_OPCODE | rt(d) | d1(si16) | ra0mem(s1));} inline void Assembler::lwzu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LWZU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));} inline void Assembler::lwax( Register d, Register s1, Register s2) { emit_int32(LWAX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} inline void Assembler::lwa( Register d, int si16, Register s1) { emit_int32(LWA_OPCODE | rt(d) | ds(si16) | ra0mem(s1));} inline void Assembler::lwbrx( Register d, Register s1, Register s2) { emit_int32(LWBRX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} inline void Assembler::lhzx( Register d, Register s1, Register s2) { emit_int32(LHZX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} inline void Assembler::lhz( Register d, int si16, Register s1) { emit_int32(LHZ_OPCODE | rt(d) | d1(si16) | ra0mem(s1));} inline void Assembler::lhzu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LHZU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));} inline void Assembler::lhbrx( Register d, Register s1, Register s2) { emit_int32(LHBRX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} inline void Assembler::lhax( Register d, Register s1, Register s2) { emit_int32(LHAX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} inline void Assembler::lha( Register d, int si16, Register s1) { emit_int32(LHA_OPCODE | rt(d) | d1(si16) | ra0mem(s1));} inline void Assembler::lhau( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LHAU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));} inline void Assembler::lbzx( Register d, Register s1, Register s2) { emit_int32(LBZX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} inline void Assembler::lbz( Register d, int si16, Register s1) { emit_int32(LBZ_OPCODE | rt(d) | d1(si16) | ra0mem(s1));} inline void Assembler::lbzu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LBZU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));} inline void Assembler::ld( Register d, int si16, Register s1) { emit_int32(LD_OPCODE | rt(d) | ds(si16) | ra0mem(s1));} inline void Assembler::ldx( Register d, Register s1, Register s2) { emit_int32(LDX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} inline void Assembler::ldu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LDU_OPCODE | rt(d) | ds(si16) | rta0mem(s1));} // PPC 1, section 3.3.3 Fixed-Point Store Instructions inline void Assembler::stwx( Register d, Register s1, Register s2) { emit_int32(STWX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} inline void Assembler::stw( Register d, int si16, Register s1) { emit_int32(STW_OPCODE | rs(d) | d1(si16) | ra0mem(s1));} inline void Assembler::stwu( Register d, int si16, Register s1) { emit_int32(STWU_OPCODE | rs(d) | d1(si16) | rta0mem(s1));} inline void Assembler::sthx( Register d, Register s1, Register s2) { emit_int32(STHX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} inline void Assembler::sth( Register d, int si16, Register s1) { emit_int32(STH_OPCODE | rs(d) | d1(si16) | ra0mem(s1));} inline void Assembler::sthu( Register d, int si16, Register s1) { emit_int32(STHU_OPCODE | rs(d) | d1(si16) | rta0mem(s1));} inline void Assembler::stbx( Register d, Register s1, Register s2) { emit_int32(STBX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} inline void Assembler::stb( Register d, int si16, Register s1) { emit_int32(STB_OPCODE | rs(d) | d1(si16) | ra0mem(s1));} inline void Assembler::stbu( Register d, int si16, Register s1) { emit_int32(STBU_OPCODE | rs(d) | d1(si16) | rta0mem(s1));} inline void Assembler::std( Register d, int si16, Register s1) { emit_int32(STD_OPCODE | rs(d) | ds(si16) | ra0mem(s1));} inline void Assembler::stdx( Register d, Register s1, Register s2) { emit_int32(STDX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} inline void Assembler::stdu( Register d, int si16, Register s1) { emit_int32(STDU_OPCODE | rs(d) | ds(si16) | rta0mem(s1));} inline void Assembler::stdux(Register s, Register a, Register b) { emit_int32(STDUX_OPCODE| rs(s) | rta0mem(a) | rb(b));} // PPC 1, section 3.3.13 Move To/From System Register Instructions inline void Assembler::mtlr( Register s1) { emit_int32(MTLR_OPCODE | rs(s1)); } inline void Assembler::mflr( Register d ) { emit_int32(MFLR_OPCODE | rt(d)); } inline void Assembler::mtctr(Register s1) { emit_int32(MTCTR_OPCODE | rs(s1)); } inline void Assembler::mfctr(Register d ) { emit_int32(MFCTR_OPCODE | rt(d)); } inline void Assembler::mtcrf(int afxm, Register s){ emit_int32(MTCRF_OPCODE | fxm(afxm) | rs(s)); } inline void Assembler::mfcr( Register d ) { emit_int32(MFCR_OPCODE | rt(d)); } inline void Assembler::mcrf( ConditionRegister crd, ConditionRegister cra) { emit_int32(MCRF_OPCODE | bf(crd) | bfa(cra)); } inline void Assembler::mtcr( Register s) { Assembler::mtcrf(0xff, s); } // Special purpose registers // Exception Register inline void Assembler::mtxer(Register s1) { emit_int32(MTXER_OPCODE | rs(s1)); } inline void Assembler::mfxer(Register d ) { emit_int32(MFXER_OPCODE | rt(d)); } // Vector Register Save Register inline void Assembler::mtvrsave(Register s1) { emit_int32(MTVRSAVE_OPCODE | rs(s1)); } inline void Assembler::mfvrsave(Register d ) { emit_int32(MFVRSAVE_OPCODE | rt(d)); } // Timebase inline void Assembler::mftb(Register d ) { emit_int32(MFTB_OPCODE | rt(d)); } // Introduced with Power 8: // Data Stream Control Register inline void Assembler::mtdscr(Register s1) { emit_int32(MTDSCR_OPCODE | rs(s1)); } inline void Assembler::mfdscr(Register d ) { emit_int32(MFDSCR_OPCODE | rt(d)); } // Transactional Memory Registers inline void Assembler::mftfhar(Register d ) { emit_int32(MFTFHAR_OPCODE | rt(d)); } inline void Assembler::mftfiar(Register d ) { emit_int32(MFTFIAR_OPCODE | rt(d)); } inline void Assembler::mftexasr(Register d ) { emit_int32(MFTEXASR_OPCODE | rt(d)); } inline void Assembler::mftexasru(Register d ) { emit_int32(MFTEXASRU_OPCODE | rt(d)); } // SAP JVM 2006-02-13 PPC branch instruction. // PPC 1, section 2.4.1 Branch Instructions inline void Assembler::b( address a, relocInfo::relocType rt) { emit_data(BXX_OPCODE| li(disp( intptr_t(a), intptr_t(pc()))) |aa(0)|lk(0), rt); } inline void Assembler::b( Label& L) { b( target(L)); } inline void Assembler::bl(address a, relocInfo::relocType rt) { emit_data(BXX_OPCODE| li(disp( intptr_t(a), intptr_t(pc()))) |aa(0)|lk(1), rt); } inline void Assembler::bl(Label& L) { bl(target(L)); } inline void Assembler::bc( int boint, int biint, address a, relocInfo::relocType rt) { emit_data(BCXX_OPCODE| bo(boint) | bi(biint) | bd(disp( intptr_t(a), intptr_t(pc()))) | aa(0) | lk(0), rt); } inline void Assembler::bc( int boint, int biint, Label& L) { bc(boint, biint, target(L)); } inline void Assembler::bcl(int boint, int biint, address a, relocInfo::relocType rt) { emit_data(BCXX_OPCODE| bo(boint) | bi(biint) | bd(disp( intptr_t(a), intptr_t(pc()))) | aa(0)|lk(1)); } inline void Assembler::bcl(int boint, int biint, Label& L) { bcl(boint, biint, target(L)); } inline void Assembler::bclr( int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCLR_OPCODE | bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(0), rt); } inline void Assembler::bclrl( int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCLR_OPCODE | bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(1), rt); } inline void Assembler::bcctr( int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCCTR_OPCODE| bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(0), rt); } inline void Assembler::bcctrl(int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCCTR_OPCODE| bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(1), rt); } // helper function for b inline bool Assembler::is_within_range_of_b(address a, address pc) { // Guard against illegal branch targets, e.g. -1 (see CompiledStaticCall and ad-file). if ((((uint64_t)a) & 0x3) != 0) return false; const int range = 1 << (29-6); // li field is from bit 6 to bit 29. int value = disp(intptr_t(a), intptr_t(pc)); bool result = -range <= value && value < range-1; #ifdef ASSERT if (result) li(value); // Assert that value is in correct range. #endif return result; } // helper functions for bcxx. inline bool Assembler::is_within_range_of_bcxx(address a, address pc) { // Guard against illegal branch targets, e.g. -1 (see CompiledStaticCall and ad-file). if ((((uint64_t)a) & 0x3) != 0) return false; const int range = 1 << (29-16); // bd field is from bit 16 to bit 29. int value = disp(intptr_t(a), intptr_t(pc)); bool result = -range <= value && value < range-1; #ifdef ASSERT if (result) bd(value); // Assert that value is in correct range. #endif return result; } // Get the destination of a bxx branch (b, bl, ba, bla). address Assembler::bxx_destination(address baddr) { return bxx_destination(*(int*)baddr, baddr); } address Assembler::bxx_destination(int instr, address pc) { return (address)bxx_destination_offset(instr, (intptr_t)pc); } intptr_t Assembler::bxx_destination_offset(int instr, intptr_t bxx_pos) { intptr_t displ = inv_li_field(instr); return bxx_pos + displ; } // Extended mnemonics for Branch Instructions inline void Assembler::blt(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, less), L); } inline void Assembler::bgt(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, greater), L); } inline void Assembler::beq(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, equal), L); } inline void Assembler::bso(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, summary_overflow), L); } inline void Assembler::bge(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, less), L); } inline void Assembler::ble(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, greater), L); } inline void Assembler::bne(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, equal), L); } inline void Assembler::bns(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, summary_overflow), L); } // Branch instructions with static prediction hints. inline void Assembler::blt_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, less), L); } inline void Assembler::bgt_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, greater), L); } inline void Assembler::beq_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, equal), L); } inline void Assembler::bso_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, summary_overflow), L); } inline void Assembler::bge_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, less), L); } inline void Assembler::ble_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, greater), L); } inline void Assembler::bne_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, equal), L); } inline void Assembler::bns_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, summary_overflow), L); } inline void Assembler::blt_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, less), L); } inline void Assembler::bgt_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, greater), L); } inline void Assembler::beq_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, equal), L); } inline void Assembler::bso_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, summary_overflow), L); } inline void Assembler::bge_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, less), L); } inline void Assembler::ble_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, greater), L); } inline void Assembler::bne_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, equal), L); } inline void Assembler::bns_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, summary_overflow), L); } // For use in conjunction with testbitdi: inline void Assembler::btrue( ConditionRegister crx, Label& L) { Assembler::bne(crx, L); } inline void Assembler::bfalse(ConditionRegister crx, Label& L) { Assembler::beq(crx, L); } inline void Assembler::bltl(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, less), L); } inline void Assembler::bgtl(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, greater), L); } inline void Assembler::beql(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, equal), L); } inline void Assembler::bsol(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, summary_overflow), L); } inline void Assembler::bgel(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, less), L); } inline void Assembler::blel(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, greater), L); } inline void Assembler::bnel(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, equal), L); } inline void Assembler::bnsl(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, summary_overflow), L); } // Extended mnemonics for Branch Instructions via LR. // We use `blr' for returns. inline void Assembler::blr(relocInfo::relocType rt) { Assembler::bclr(bcondAlways, 0, bhintbhBCLRisReturn, rt); } // Extended mnemonics for Branch Instructions with CTR. // Bdnz means `decrement CTR and jump to L if CTR is not zero'. inline void Assembler::bdnz(Label& L) { Assembler::bc(16, 0, L); } // Decrement and branch if result is zero. inline void Assembler::bdz(Label& L) { Assembler::bc(18, 0, L); } // We use `bctr[l]' for jumps/calls in function descriptor glue // code, e.g. for calls to runtime functions. inline void Assembler::bctr( relocInfo::relocType rt) { Assembler::bcctr(bcondAlways, 0, bhintbhBCCTRisNotReturnButSame, rt); } inline void Assembler::bctrl(relocInfo::relocType rt) { Assembler::bcctrl(bcondAlways, 0, bhintbhBCCTRisNotReturnButSame, rt); } // Conditional jumps/branches via CTR. inline void Assembler::beqctr( ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctr( bcondCRbiIs1, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); } inline void Assembler::beqctrl(ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctrl(bcondCRbiIs1, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); } inline void Assembler::bnectr( ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctr( bcondCRbiIs0, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); } inline void Assembler::bnectrl(ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctrl(bcondCRbiIs0, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); } // condition register logic instructions inline void Assembler::crand( int d, int s1, int s2) { emit_int32(CRAND_OPCODE | bt(d) | ba(s1) | bb(s2)); } inline void Assembler::crnand(int d, int s1, int s2) { emit_int32(CRNAND_OPCODE | bt(d) | ba(s1) | bb(s2)); } inline void Assembler::cror( int d, int s1, int s2) { emit_int32(CROR_OPCODE | bt(d) | ba(s1) | bb(s2)); } inline void Assembler::crxor( int d, int s1, int s2) { emit_int32(CRXOR_OPCODE | bt(d) | ba(s1) | bb(s2)); } inline void Assembler::crnor( int d, int s1, int s2) { emit_int32(CRNOR_OPCODE | bt(d) | ba(s1) | bb(s2)); } inline void Assembler::creqv( int d, int s1, int s2) { emit_int32(CREQV_OPCODE | bt(d) | ba(s1) | bb(s2)); } inline void Assembler::crandc(int d, int s1, int s2) { emit_int32(CRANDC_OPCODE | bt(d) | ba(s1) | bb(s2)); } inline void Assembler::crorc( int d, int s1, int s2) { emit_int32(CRORC_OPCODE | bt(d) | ba(s1) | bb(s2)); } // More convenient version. inline void Assembler::crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { int dst_bit = condition_register_bit(crdst, cdst), src_bit = condition_register_bit(crsrc, csrc); crand(dst_bit, src_bit, dst_bit); } inline void Assembler::crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { int dst_bit = condition_register_bit(crdst, cdst), src_bit = condition_register_bit(crsrc, csrc); crnand(dst_bit, src_bit, dst_bit); } inline void Assembler::cror( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { int dst_bit = condition_register_bit(crdst, cdst), src_bit = condition_register_bit(crsrc, csrc); cror(dst_bit, src_bit, dst_bit); } inline void Assembler::crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { int dst_bit = condition_register_bit(crdst, cdst), src_bit = condition_register_bit(crsrc, csrc); crxor(dst_bit, src_bit, dst_bit); } inline void Assembler::crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { int dst_bit = condition_register_bit(crdst, cdst), src_bit = condition_register_bit(crsrc, csrc); crnor(dst_bit, src_bit, dst_bit); } inline void Assembler::creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { int dst_bit = condition_register_bit(crdst, cdst), src_bit = condition_register_bit(crsrc, csrc); creqv(dst_bit, src_bit, dst_bit); } inline void Assembler::crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { int dst_bit = condition_register_bit(crdst, cdst), src_bit = condition_register_bit(crsrc, csrc); crandc(dst_bit, src_bit, dst_bit); } inline void Assembler::crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { int dst_bit = condition_register_bit(crdst, cdst), src_bit = condition_register_bit(crsrc, csrc); crorc(dst_bit, src_bit, dst_bit); } // Conditional move (>= Power7) inline void Assembler::isel(Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b) { if (b == noreg) { b = d; // Can be omitted if old value should be kept in "else" case. } Register first = a; Register second = b; if (inv) { first = b; second = a; // exchange } assert(first != R0, "r0 not allowed"); isel(d, first, second, bi0(cr, cc)); } inline void Assembler::isel_0(Register d, ConditionRegister cr, Condition cc, Register b) { if (b == noreg) { b = d; // Can be omitted if old value should be kept in "else" case. } isel(d, R0, b, bi0(cr, cc)); } // PPC 2, section 3.2.1 Instruction Cache Instructions inline void Assembler::icbi( Register s1, Register s2) { emit_int32( ICBI_OPCODE | ra0mem(s1) | rb(s2) ); } // PPC 2, section 3.2.2 Data Cache Instructions //inline void Assembler::dcba( Register s1, Register s2) { emit_int32( DCBA_OPCODE | ra0mem(s1) | rb(s2) ); } inline void Assembler::dcbz( Register s1, Register s2) { emit_int32( DCBZ_OPCODE | ra0mem(s1) | rb(s2) ); } inline void Assembler::dcbst( Register s1, Register s2) { emit_int32( DCBST_OPCODE | ra0mem(s1) | rb(s2) ); } inline void Assembler::dcbf( Register s1, Register s2) { emit_int32( DCBF_OPCODE | ra0mem(s1) | rb(s2) ); } // dcache read hint inline void Assembler::dcbt( Register s1, Register s2) { emit_int32( DCBT_OPCODE | ra0mem(s1) | rb(s2) ); } inline void Assembler::dcbtct( Register s1, Register s2, int ct) { emit_int32( DCBT_OPCODE | ra0mem(s1) | rb(s2) | thct(ct)); } inline void Assembler::dcbtds( Register s1, Register s2, int ds) { emit_int32( DCBT_OPCODE | ra0mem(s1) | rb(s2) | thds(ds)); } // dcache write hint inline void Assembler::dcbtst( Register s1, Register s2) { emit_int32( DCBTST_OPCODE | ra0mem(s1) | rb(s2) ); } inline void Assembler::dcbtstct(Register s1, Register s2, int ct) { emit_int32( DCBTST_OPCODE | ra0mem(s1) | rb(s2) | thct(ct)); } // machine barrier instructions: inline void Assembler::sync(int a) { emit_int32( SYNC_OPCODE | l910(a)); } inline void Assembler::sync() { Assembler::sync(0); } inline void Assembler::lwsync() { Assembler::sync(1); } inline void Assembler::ptesync() { Assembler::sync(2); } inline void Assembler::eieio() { emit_int32( EIEIO_OPCODE); } inline void Assembler::isync() { emit_int32( ISYNC_OPCODE); } inline void Assembler::elemental_membar(int e) { assert(0 < e && e < 16, "invalid encoding"); emit_int32( SYNC_OPCODE | e1215(e)); } // Wait instructions for polling. inline void Assembler::wait() { emit_int32( WAIT_OPCODE); } inline void Assembler::waitrsv() { emit_int32( WAIT_OPCODE | 1<<(31-10)); } // WC=0b01 >=Power7 // atomics // Use ra0mem to disallow R0 as base. inline void Assembler::lwarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LWARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); } inline void Assembler::ldarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LDARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); } inline void Assembler::lqarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LQARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); } inline bool Assembler::lxarx_hint_exclusive_access() { return VM_Version::has_lxarxeh(); } inline void Assembler::lwarx( Register d, Register a, Register b, bool hint_exclusive_access) { lwarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } inline void Assembler::ldarx( Register d, Register a, Register b, bool hint_exclusive_access) { ldarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } inline void Assembler::lqarx( Register d, Register a, Register b, bool hint_exclusive_access) { lqarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } inline void Assembler::stwcx_(Register s, Register a, Register b) { emit_int32( STWCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); } inline void Assembler::stdcx_(Register s, Register a, Register b) { emit_int32( STDCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); } inline void Assembler::stqcx_(Register s, Register a, Register b) { emit_int32( STQCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); } // Instructions for adjusting thread priority // for simultaneous multithreading (SMT) on POWER5. inline void Assembler::smt_prio_very_low() { Assembler::or_unchecked(R31, R31, R31); } inline void Assembler::smt_prio_low() { Assembler::or_unchecked(R1, R1, R1); } inline void Assembler::smt_prio_medium_low() { Assembler::or_unchecked(R6, R6, R6); } inline void Assembler::smt_prio_medium() { Assembler::or_unchecked(R2, R2, R2); } inline void Assembler::smt_prio_medium_high() { Assembler::or_unchecked(R5, R5, R5); } inline void Assembler::smt_prio_high() { Assembler::or_unchecked(R3, R3, R3); } // >= Power7 inline void Assembler::smt_yield() { Assembler::or_unchecked(R27, R27, R27); } inline void Assembler::smt_mdoio() { Assembler::or_unchecked(R29, R29, R29); } inline void Assembler::smt_mdoom() { Assembler::or_unchecked(R30, R30, R30); } // >= Power8 inline void Assembler::smt_miso() { Assembler::or_unchecked(R26, R26, R26); } inline void Assembler::twi_0(Register a) { twi_unchecked(0, a, 0);} // trap instructions inline void Assembler::tdi_unchecked(int tobits, Register a, int si16){ emit_int32( TDI_OPCODE | to(tobits) | ra(a) | si(si16)); } inline void Assembler::twi_unchecked(int tobits, Register a, int si16){ emit_int32( TWI_OPCODE | to(tobits) | ra(a) | si(si16)); } inline void Assembler::tdi(int tobits, Register a, int si16) { assert(UseSIGTRAP, "precondition"); tdi_unchecked(tobits, a, si16); } inline void Assembler::twi(int tobits, Register a, int si16) { assert(UseSIGTRAP, "precondition"); twi_unchecked(tobits, a, si16); } inline void Assembler::td( int tobits, Register a, Register b) { assert(UseSIGTRAP, "precondition"); emit_int32( TD_OPCODE | to(tobits) | ra(a) | rb(b)); } inline void Assembler::tw( int tobits, Register a, Register b) { assert(UseSIGTRAP, "precondition"); emit_int32( TW_OPCODE | to(tobits) | ra(a) | rb(b)); } // FLOATING POINT instructions ppc. // PPC 1, section 4.6.2 Floating-Point Load Instructions // Use ra0mem instead of ra in some instructions below. inline void Assembler::lfs( FloatRegister d, int si16, Register a) { emit_int32( LFS_OPCODE | frt(d) | ra0mem(a) | simm(si16,16)); } inline void Assembler::lfsu(FloatRegister d, int si16, Register a) { emit_int32( LFSU_OPCODE | frt(d) | ra(a) | simm(si16,16)); } inline void Assembler::lfsx(FloatRegister d, Register a, Register b) { emit_int32( LFSX_OPCODE | frt(d) | ra0mem(a) | rb(b)); } inline void Assembler::lfd( FloatRegister d, int si16, Register a) { emit_int32( LFD_OPCODE | frt(d) | ra0mem(a) | simm(si16,16)); } inline void Assembler::lfdu(FloatRegister d, int si16, Register a) { emit_int32( LFDU_OPCODE | frt(d) | ra(a) | simm(si16,16)); } inline void Assembler::lfdx(FloatRegister d, Register a, Register b) { emit_int32( LFDX_OPCODE | frt(d) | ra0mem(a) | rb(b)); } // PPC 1, section 4.6.3 Floating-Point Store Instructions // Use ra0mem instead of ra in some instructions below. inline void Assembler::stfs( FloatRegister s, int si16, Register a) { emit_int32( STFS_OPCODE | frs(s) | ra0mem(a) | simm(si16,16)); } inline void Assembler::stfsu(FloatRegister s, int si16, Register a) { emit_int32( STFSU_OPCODE | frs(s) | ra(a) | simm(si16,16)); } inline void Assembler::stfsx(FloatRegister s, Register a, Register b){ emit_int32( STFSX_OPCODE | frs(s) | ra0mem(a) | rb(b)); } inline void Assembler::stfd( FloatRegister s, int si16, Register a) { emit_int32( STFD_OPCODE | frs(s) | ra0mem(a) | simm(si16,16)); } inline void Assembler::stfdu(FloatRegister s, int si16, Register a) { emit_int32( STFDU_OPCODE | frs(s) | ra(a) | simm(si16,16)); } inline void Assembler::stfdx(FloatRegister s, Register a, Register b){ emit_int32( STFDX_OPCODE | frs(s) | ra0mem(a) | rb(b)); } // PPC 1, section 4.6.4 Floating-Point Move Instructions inline void Assembler::fmr( FloatRegister d, FloatRegister b) { emit_int32( FMR_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fmr_(FloatRegister d, FloatRegister b) { emit_int32( FMR_OPCODE | frt(d) | frb(b) | rc(1)); } // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx" // on Power7. Do not use. //inline void Assembler::mffgpr( FloatRegister d, Register b) { emit_int32( MFFGPR_OPCODE | frt(d) | rb(b) | rc(0)); } //inline void Assembler::mftgpr( Register d, FloatRegister b) { emit_int32( MFTGPR_OPCODE | rt(d) | frb(b) | rc(0)); } // add cmpb and popcntb to detect ppc power version. inline void Assembler::cmpb( Register a, Register s, Register b) { guarantee(VM_Version::has_cmpb(), "opcode not supported on this hardware"); emit_int32( CMPB_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } inline void Assembler::popcntb(Register a, Register s) { guarantee(VM_Version::has_popcntb(), "opcode not supported on this hardware"); emit_int32( POPCNTB_OPCODE | rta(a) | rs(s)); }; inline void Assembler::popcntw(Register a, Register s) { guarantee(VM_Version::has_popcntw(), "opcode not supported on this hardware"); emit_int32( POPCNTW_OPCODE | rta(a) | rs(s)); }; inline void Assembler::popcntd(Register a, Register s) { emit_int32( POPCNTD_OPCODE | rta(a) | rs(s)); }; inline void Assembler::fneg( FloatRegister d, FloatRegister b) { emit_int32( FNEG_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fneg_( FloatRegister d, FloatRegister b) { emit_int32( FNEG_OPCODE | frt(d) | frb(b) | rc(1)); } inline void Assembler::fabs( FloatRegister d, FloatRegister b) { emit_int32( FABS_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fabs_( FloatRegister d, FloatRegister b) { emit_int32( FABS_OPCODE | frt(d) | frb(b) | rc(1)); } inline void Assembler::fnabs( FloatRegister d, FloatRegister b) { emit_int32( FNABS_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fnabs_(FloatRegister d, FloatRegister b) { emit_int32( FNABS_OPCODE | frt(d) | frb(b) | rc(1)); } // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions inline void Assembler::fadd( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADD_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } inline void Assembler::fadd_( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADD_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } inline void Assembler::fadds( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADDS_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } inline void Assembler::fadds_(FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADDS_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } inline void Assembler::fsub( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUB_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } inline void Assembler::fsub_( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUB_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } inline void Assembler::fsubs( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUBS_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } inline void Assembler::fsubs_(FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUBS_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } inline void Assembler::fmul( FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMUL_OPCODE | frt(d) | fra(a) | frc(c) | rc(0)); } inline void Assembler::fmul_( FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMUL_OPCODE | frt(d) | fra(a) | frc(c) | rc(1)); } inline void Assembler::fmuls( FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMULS_OPCODE | frt(d) | fra(a) | frc(c) | rc(0)); } inline void Assembler::fmuls_(FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMULS_OPCODE | frt(d) | fra(a) | frc(c) | rc(1)); } inline void Assembler::fdiv( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIV_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } inline void Assembler::fdiv_( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIV_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } inline void Assembler::fdivs( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIVS_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } inline void Assembler::fdivs_(FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIVS_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions inline void Assembler::frsp( FloatRegister d, FloatRegister b) { emit_int32( FRSP_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fctid( FloatRegister d, FloatRegister b) { emit_int32( FCTID_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fctidz(FloatRegister d, FloatRegister b) { emit_int32( FCTIDZ_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fctiw( FloatRegister d, FloatRegister b) { emit_int32( FCTIW_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fctiwz(FloatRegister d, FloatRegister b) { emit_int32( FCTIWZ_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fcfid( FloatRegister d, FloatRegister b) { emit_int32( FCFID_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fcfids(FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fcfids(), "opcode not supported on this hardware"); emit_int32( FCFIDS_OPCODE | frt(d) | frb(b) | rc(0)); } // PPC 1, section 4.6.7 Floating-Point Compare Instructions inline void Assembler::fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b) { emit_int32( FCMPU_OPCODE | bf(crx) | fra(a) | frb(b)); } // PPC 1, section 5.2.1 Floating-Point Arithmetic Instructions inline void Assembler::fsqrt( FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fsqrt(), "opcode not supported on this hardware"); emit_int32( FSQRT_OPCODE | frt(d) | frb(b) | rc(0)); } inline void Assembler::fsqrts(FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fsqrts(), "opcode not supported on this hardware"); emit_int32( FSQRTS_OPCODE | frt(d) | frb(b) | rc(0)); } // Vector instructions for >= Power6. inline void Assembler::lvebx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEBX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::lvehx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEHX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::lvewx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEWX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::lvx( VectorRegister d, Register s1, Register s2) { emit_int32( LVX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::lvxl( VectorRegister d, Register s1, Register s2) { emit_int32( LVXL_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::stvebx(VectorRegister d, Register s1, Register s2) { emit_int32( STVEBX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::stvehx(VectorRegister d, Register s1, Register s2) { emit_int32( STVEHX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::stvewx(VectorRegister d, Register s1, Register s2) { emit_int32( STVEWX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::stvx( VectorRegister d, Register s1, Register s2) { emit_int32( STVX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::stvxl( VectorRegister d, Register s1, Register s2) { emit_int32( STVXL_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::lvsl( VectorRegister d, Register s1, Register s2) { emit_int32( LVSL_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::lvsr( VectorRegister d, Register s1, Register s2) { emit_int32( LVSR_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } inline void Assembler::vpkpx( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKPX_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpkshss( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSHSS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpkswss( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSWSS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpkshus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSHUS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpkswus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSWUS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUHUM_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUWUM_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUHUS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUWUS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vupkhpx( VectorRegister d, VectorRegister b) { emit_int32( VUPKHPX_OPCODE | vrt(d) | vrb(b)); } inline void Assembler::vupkhsb( VectorRegister d, VectorRegister b) { emit_int32( VUPKHSB_OPCODE | vrt(d) | vrb(b)); } inline void Assembler::vupkhsh( VectorRegister d, VectorRegister b) { emit_int32( VUPKHSH_OPCODE | vrt(d) | vrb(b)); } inline void Assembler::vupklpx( VectorRegister d, VectorRegister b) { emit_int32( VUPKLPX_OPCODE | vrt(d) | vrb(b)); } inline void Assembler::vupklsb( VectorRegister d, VectorRegister b) { emit_int32( VUPKLSB_OPCODE | vrt(d) | vrb(b)); } inline void Assembler::vupklsh( VectorRegister d, VectorRegister b) { emit_int32( VUPKLSH_OPCODE | vrt(d) | vrb(b)); } inline void Assembler::vmrghb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGHB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmrghw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGHW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmrghh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGHH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmrglb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGLB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmrglw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGLW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmrglh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGLH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsplt( VectorRegister d, int ui4, VectorRegister b) { emit_int32( VSPLT_OPCODE | vrt(d) | vsplt_uim(uimm(ui4,4)) | vrb(b)); } inline void Assembler::vsplth( VectorRegister d, int ui3, VectorRegister b) { emit_int32( VSPLTH_OPCODE | vrt(d) | vsplt_uim(uimm(ui3,3)) | vrb(b)); } inline void Assembler::vspltw( VectorRegister d, int ui2, VectorRegister b) { emit_int32( VSPLTW_OPCODE | vrt(d) | vsplt_uim(uimm(ui2,2)) | vrb(b)); } inline void Assembler::vspltisb(VectorRegister d, int si5) { emit_int32( VSPLTISB_OPCODE| vrt(d) | vsplti_sim(simm(si5,5))); } inline void Assembler::vspltish(VectorRegister d, int si5) { emit_int32( VSPLTISH_OPCODE| vrt(d) | vsplti_sim(simm(si5,5))); } inline void Assembler::vspltisw(VectorRegister d, int si5) { emit_int32( VSPLTISW_OPCODE| vrt(d) | vsplti_sim(simm(si5,5))); } inline void Assembler::vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c){ emit_int32( VPERM_OPCODE | vrt(d) | vra(a) | vrb(b) | vrc(c)); } inline void Assembler::vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c){ emit_int32( VSEL_OPCODE | vrt(d) | vra(a) | vrb(b) | vrc(c)); } inline void Assembler::vsl( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSL_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int si4) { emit_int32( VSLDOI_OPCODE| vrt(d) | vra(a) | vrb(b) | vsldoi_shb(simm(si4,4))); } inline void Assembler::vslo( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSLO_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsr( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSR_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsro( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRO_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDCUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vaddshs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDSHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDSBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vaddsws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDSWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vaddubm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUBM_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vadduwm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUWM_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vadduhm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUHM_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vaddubs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vadduws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vadduhs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBCUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsubshs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBSHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBSBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsubsws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBSWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsububm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUBM_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUWM_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUHM_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsububs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsubuws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmulesb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULESB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmuleub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULEUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmulesh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULESH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULEUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmulosb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOSB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmuloub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmulosh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOSH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmulouh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmhaddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMHADDSHS_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } inline void Assembler::vmhraddshs(VectorRegister d,VectorRegister a,VectorRegister b, VectorRegister c) { emit_int32( VMHRADDSHS_OPCODE| vrt(d) | vra(a) | vrb(b)| vrc(c)); } inline void Assembler::vmladduhm(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMLADDUHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } inline void Assembler::vmsubuhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUBUHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } inline void Assembler::vmsummbm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMMBM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } inline void Assembler::vmsumshm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMSHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } inline void Assembler::vmsumshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMSHS_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } inline void Assembler::vmsumuhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMUHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } inline void Assembler::vmsumuhs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMUHS_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } inline void Assembler::vsumsws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUMSWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsum2sws(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM2SWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsum4sbs(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM4SBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsum4ubs(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM4UBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsum4shs(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM4SHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vavgsb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGSB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vavgsw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGSW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vavgsh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGSH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vavgub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vavguw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vavguh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXSB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXSW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXSH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmaxub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vminsb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINSB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vminsw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINSW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vminsh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINSH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vminub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vminuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vminuh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vcmpequb(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } inline void Assembler::vcmpequh(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } inline void Assembler::vcmpequw(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } inline void Assembler::vcmpgtsh(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } inline void Assembler::vcmpgtsb(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } inline void Assembler::vcmpgtsw(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } inline void Assembler::vcmpgtub(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } inline void Assembler::vcmpgtuh(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } inline void Assembler::vcmpgtuw(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } inline void Assembler::vcmpequb_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } inline void Assembler::vcmpequh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } inline void Assembler::vcmpequw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } inline void Assembler::vcmpgtsh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } inline void Assembler::vcmpgtsb_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } inline void Assembler::vcmpgtsw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } inline void Assembler::vcmpgtub_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } inline void Assembler::vcmpgtuh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } inline void Assembler::vcmpgtuw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } inline void Assembler::vand( VectorRegister d, VectorRegister a, VectorRegister b) { guarantee(VM_Version::has_vand(), "opcode not supported on this hardware"); emit_int32( VAND_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vandc( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VANDC_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vnor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNOR_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VOR_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vxor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VXOR_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vrld( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLD_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vrlb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vrlw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vrlh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vslb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSLB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vskw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSKW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vslh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSLH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsrb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsrw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsrh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsrab( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRAB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsraw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRAW_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsrah( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRAH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::mtvscr( VectorRegister b) { emit_int32( MTVSCR_OPCODE | vrb(b)); } inline void Assembler::mfvscr( VectorRegister d) { emit_int32( MFVSCR_OPCODE | vrt(d)); } // AES (introduced with Power 8) inline void Assembler::vcipher( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCIPHER_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCIPHERLAST_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vncipher( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNCIPHER_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNCIPHERLAST_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vsbox( VectorRegister d, VectorRegister a) { emit_int32( VSBOX_OPCODE | vrt(d) | vra(a) ); } // SHA (introduced with Power 8) // Not yet implemented. // Vector Binary Polynomial Multiplication (introduced with Power 8) inline void Assembler::vpmsumb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMB_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpmsumd( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMD_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpmsumh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMH_OPCODE | vrt(d) | vra(a) | vrb(b)); } inline void Assembler::vpmsumw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMW_OPCODE | vrt(d) | vra(a) | vrb(b)); } // Vector Permute and Xor (introduced with Power 8) inline void Assembler::vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VPMSUMW_OPCODE | vrt(d) | vra(a) | vrb(b) | vrc(c)); } // Transactional Memory instructions (introduced with Power 8) inline void Assembler::tbegin_() { emit_int32( TBEGIN_OPCODE | rc(1)); } inline void Assembler::tbeginrot_() { emit_int32( TBEGIN_OPCODE | /*R=1*/ 1u << (31-10) | rc(1)); } inline void Assembler::tend_() { emit_int32( TEND_OPCODE | rc(1)); } inline void Assembler::tendall_() { emit_int32( TEND_OPCODE | /*A=1*/ 1u << (31-6) | rc(1)); } inline void Assembler::tabort_() { emit_int32( TABORT_OPCODE | rc(1)); } inline void Assembler::tabort_(Register a) { assert(a != R0, "r0 not allowed"); emit_int32( TABORT_OPCODE | ra(a) | rc(1)); } inline void Assembler::tabortwc_(int t, Register a, Register b) { emit_int32( TABORTWC_OPCODE | to(t) | ra(a) | rb(b) | rc(1)); } inline void Assembler::tabortwci_(int t, Register a, int si) { emit_int32( TABORTWCI_OPCODE | to(t) | ra(a) | sh1620(si) | rc(1)); } inline void Assembler::tabortdc_(int t, Register a, Register b) { emit_int32( TABORTDC_OPCODE | to(t) | ra(a) | rb(b) | rc(1)); } inline void Assembler::tabortdci_(int t, Register a, int si) { emit_int32( TABORTDCI_OPCODE | to(t) | ra(a) | sh1620(si) | rc(1)); } inline void Assembler::tsuspend_() { emit_int32( TSR_OPCODE | rc(1)); } inline void Assembler::tresume_() { emit_int32( TSR_OPCODE | /*L=1*/ 1u << (31-10) | rc(1)); } inline void Assembler::tcheck(int f) { emit_int32( TCHECK_OPCODE | bf(f)); } // ra0 version inline void Assembler::lwzx( Register d, Register s2) { emit_int32( LWZX_OPCODE | rt(d) | rb(s2));} inline void Assembler::lwz( Register d, int si16 ) { emit_int32( LWZ_OPCODE | rt(d) | d1(si16));} inline void Assembler::lwax( Register d, Register s2) { emit_int32( LWAX_OPCODE | rt(d) | rb(s2));} inline void Assembler::lwa( Register d, int si16 ) { emit_int32( LWA_OPCODE | rt(d) | ds(si16));} inline void Assembler::lwbrx(Register d, Register s2) { emit_int32( LWBRX_OPCODE| rt(d) | rb(s2));} inline void Assembler::lhzx( Register d, Register s2) { emit_int32( LHZX_OPCODE | rt(d) | rb(s2));} inline void Assembler::lhz( Register d, int si16 ) { emit_int32( LHZ_OPCODE | rt(d) | d1(si16));} inline void Assembler::lhax( Register d, Register s2) { emit_int32( LHAX_OPCODE | rt(d) | rb(s2));} inline void Assembler::lha( Register d, int si16 ) { emit_int32( LHA_OPCODE | rt(d) | d1(si16));} inline void Assembler::lhbrx(Register d, Register s2) { emit_int32( LHBRX_OPCODE| rt(d) | rb(s2));} inline void Assembler::lbzx( Register d, Register s2) { emit_int32( LBZX_OPCODE | rt(d) | rb(s2));} inline void Assembler::lbz( Register d, int si16 ) { emit_int32( LBZ_OPCODE | rt(d) | d1(si16));} inline void Assembler::ld( Register d, int si16 ) { emit_int32( LD_OPCODE | rt(d) | ds(si16));} inline void Assembler::ldx( Register d, Register s2) { emit_int32( LDX_OPCODE | rt(d) | rb(s2));} inline void Assembler::stwx( Register d, Register s2) { emit_int32( STWX_OPCODE | rs(d) | rb(s2));} inline void Assembler::stw( Register d, int si16 ) { emit_int32( STW_OPCODE | rs(d) | d1(si16));} inline void Assembler::sthx( Register d, Register s2) { emit_int32( STHX_OPCODE | rs(d) | rb(s2));} inline void Assembler::sth( Register d, int si16 ) { emit_int32( STH_OPCODE | rs(d) | d1(si16));} inline void Assembler::stbx( Register d, Register s2) { emit_int32( STBX_OPCODE | rs(d) | rb(s2));} inline void Assembler::stb( Register d, int si16 ) { emit_int32( STB_OPCODE | rs(d) | d1(si16));} inline void Assembler::std( Register d, int si16 ) { emit_int32( STD_OPCODE | rs(d) | ds(si16));} inline void Assembler::stdx( Register d, Register s2) { emit_int32( STDX_OPCODE | rs(d) | rb(s2));} // ra0 version inline void Assembler::icbi( Register s2) { emit_int32( ICBI_OPCODE | rb(s2) ); } //inline void Assembler::dcba( Register s2) { emit_int32( DCBA_OPCODE | rb(s2) ); } inline void Assembler::dcbz( Register s2) { emit_int32( DCBZ_OPCODE | rb(s2) ); } inline void Assembler::dcbst( Register s2) { emit_int32( DCBST_OPCODE | rb(s2) ); } inline void Assembler::dcbf( Register s2) { emit_int32( DCBF_OPCODE | rb(s2) ); } inline void Assembler::dcbt( Register s2) { emit_int32( DCBT_OPCODE | rb(s2) ); } inline void Assembler::dcbtct( Register s2, int ct) { emit_int32( DCBT_OPCODE | rb(s2) | thct(ct)); } inline void Assembler::dcbtds( Register s2, int ds) { emit_int32( DCBT_OPCODE | rb(s2) | thds(ds)); } inline void Assembler::dcbtst( Register s2) { emit_int32( DCBTST_OPCODE | rb(s2) ); } inline void Assembler::dcbtstct(Register s2, int ct) { emit_int32( DCBTST_OPCODE | rb(s2) | thct(ct)); } // ra0 version inline void Assembler::lwarx_unchecked(Register d, Register b, int eh1) { emit_int32( LWARX_OPCODE | rt(d) | rb(b) | eh(eh1)); } inline void Assembler::ldarx_unchecked(Register d, Register b, int eh1) { emit_int32( LDARX_OPCODE | rt(d) | rb(b) | eh(eh1)); } inline void Assembler::lqarx_unchecked(Register d, Register b, int eh1) { emit_int32( LQARX_OPCODE | rt(d) | rb(b) | eh(eh1)); } inline void Assembler::lwarx( Register d, Register b, bool hint_exclusive_access){ lwarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } inline void Assembler::ldarx( Register d, Register b, bool hint_exclusive_access){ ldarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } inline void Assembler::lqarx( Register d, Register b, bool hint_exclusive_access){ lqarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } inline void Assembler::stwcx_(Register s, Register b) { emit_int32( STWCX_OPCODE | rs(s) | rb(b) | rc(1)); } inline void Assembler::stdcx_(Register s, Register b) { emit_int32( STDCX_OPCODE | rs(s) | rb(b) | rc(1)); } inline void Assembler::stqcx_(Register s, Register b) { emit_int32( STQCX_OPCODE | rs(s) | rb(b) | rc(1)); } // ra0 version inline void Assembler::lfs( FloatRegister d, int si16) { emit_int32( LFS_OPCODE | frt(d) | simm(si16,16)); } inline void Assembler::lfsx(FloatRegister d, Register b) { emit_int32( LFSX_OPCODE | frt(d) | rb(b)); } inline void Assembler::lfd( FloatRegister d, int si16) { emit_int32( LFD_OPCODE | frt(d) | simm(si16,16)); } inline void Assembler::lfdx(FloatRegister d, Register b) { emit_int32( LFDX_OPCODE | frt(d) | rb(b)); } // ra0 version inline void Assembler::stfs( FloatRegister s, int si16) { emit_int32( STFS_OPCODE | frs(s) | simm(si16, 16)); } inline void Assembler::stfsx(FloatRegister s, Register b) { emit_int32( STFSX_OPCODE | frs(s) | rb(b)); } inline void Assembler::stfd( FloatRegister s, int si16) { emit_int32( STFD_OPCODE | frs(s) | simm(si16, 16)); } inline void Assembler::stfdx(FloatRegister s, Register b) { emit_int32( STFDX_OPCODE | frs(s) | rb(b)); } // ra0 version inline void Assembler::lvebx( VectorRegister d, Register s2) { emit_int32( LVEBX_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::lvehx( VectorRegister d, Register s2) { emit_int32( LVEHX_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::lvewx( VectorRegister d, Register s2) { emit_int32( LVEWX_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::lvx( VectorRegister d, Register s2) { emit_int32( LVX_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::lvxl( VectorRegister d, Register s2) { emit_int32( LVXL_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::stvebx(VectorRegister d, Register s2) { emit_int32( STVEBX_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::stvehx(VectorRegister d, Register s2) { emit_int32( STVEHX_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::stvewx(VectorRegister d, Register s2) { emit_int32( STVEWX_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::stvx( VectorRegister d, Register s2) { emit_int32( STVX_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::stvxl( VectorRegister d, Register s2) { emit_int32( STVXL_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::lvsl( VectorRegister d, Register s2) { emit_int32( LVSL_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::lvsr( VectorRegister d, Register s2) { emit_int32( LVSR_OPCODE | vrt(d) | rb(s2)); } inline void Assembler::load_const(Register d, void* x, Register tmp) { load_const(d, (long)x, tmp); } // Load a 64 bit constant encoded by a `Label'. This works for bound // labels as well as unbound ones. For unbound labels, the code will // be patched as soon as the label gets bound. inline void Assembler::load_const(Register d, Label& L, Register tmp) { load_const(d, target(L), tmp); } // Load a 64 bit constant encoded by an AddressLiteral. patchable. inline void Assembler::load_const(Register d, AddressLiteral& a, Register tmp) { // First relocate (we don't change the offset in the RelocationHolder, // just pass a.rspec()), then delegate to load_const(Register, long). relocate(a.rspec()); load_const(d, (long)a.value(), tmp); } inline void Assembler::load_const32(Register d, int i) { lis(d, i >> 16); ori(d, d, i & 0xFFFF); } #endif // CPU_PPC_VM_ASSEMBLER_PPC_INLINE_HPP