1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/c2compiler.hpp"
  36 #include "opto/callGenerator.hpp"
  37 #include "opto/castnode.hpp"
  38 #include "opto/cfgnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/countbitsnode.hpp"
  41 #include "opto/intrinsicnode.hpp"
  42 #include "opto/idealKit.hpp"
  43 #include "opto/mathexactnode.hpp"
  44 #include "opto/movenode.hpp"
  45 #include "opto/mulnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subnode.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "prims/unsafe.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #ifdef TRACE_HAVE_INTRINSICS
  55 #include "trace/traceMacros.hpp"
  56 #endif
  57 
  58 class LibraryIntrinsic : public InlineCallGenerator {
  59   // Extend the set of intrinsics known to the runtime:
  60  public:
  61  private:
  62   bool             _is_virtual;
  63   bool             _does_virtual_dispatch;
  64   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  65   int8_t           _last_predicate; // Last generated predicate
  66   vmIntrinsics::ID _intrinsic_id;
  67 
  68  public:
  69   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  70     : InlineCallGenerator(m),
  71       _is_virtual(is_virtual),
  72       _does_virtual_dispatch(does_virtual_dispatch),
  73       _predicates_count((int8_t)predicates_count),
  74       _last_predicate((int8_t)-1),
  75       _intrinsic_id(id)
  76   {
  77   }
  78   virtual bool is_intrinsic() const { return true; }
  79   virtual bool is_virtual()   const { return _is_virtual; }
  80   virtual bool is_predicated() const { return _predicates_count > 0; }
  81   virtual int  predicates_count() const { return _predicates_count; }
  82   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  83   virtual JVMState* generate(JVMState* jvms);
  84   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  85   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  86 };
  87 
  88 
  89 // Local helper class for LibraryIntrinsic:
  90 class LibraryCallKit : public GraphKit {
  91  private:
  92   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  93   Node*             _result;        // the result node, if any
  94   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  95 
  96   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
  97 
  98  public:
  99   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 100     : GraphKit(jvms),
 101       _intrinsic(intrinsic),
 102       _result(NULL)
 103   {
 104     // Check if this is a root compile.  In that case we don't have a caller.
 105     if (!jvms->has_method()) {
 106       _reexecute_sp = sp();
 107     } else {
 108       // Find out how many arguments the interpreter needs when deoptimizing
 109       // and save the stack pointer value so it can used by uncommon_trap.
 110       // We find the argument count by looking at the declared signature.
 111       bool ignored_will_link;
 112       ciSignature* declared_signature = NULL;
 113       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 114       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 115       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 116     }
 117   }
 118 
 119   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 120 
 121   ciMethod*         caller()    const    { return jvms()->method(); }
 122   int               bci()       const    { return jvms()->bci(); }
 123   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 124   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 125   ciMethod*         callee()    const    { return _intrinsic->method(); }
 126 
 127   bool  try_to_inline(int predicate);
 128   Node* try_to_predicate(int predicate);
 129 
 130   void push_result() {
 131     // Push the result onto the stack.
 132     if (!stopped() && result() != NULL) {
 133       BasicType bt = result()->bottom_type()->basic_type();
 134       push_node(bt, result());
 135     }
 136   }
 137 
 138  private:
 139   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 140     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 141   }
 142 
 143   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 144   void  set_result(RegionNode* region, PhiNode* value);
 145   Node*     result() { return _result; }
 146 
 147   virtual int reexecute_sp() { return _reexecute_sp; }
 148 
 149   // Helper functions to inline natives
 150   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 151   Node* generate_slow_guard(Node* test, RegionNode* region);
 152   Node* generate_fair_guard(Node* test, RegionNode* region);
 153   Node* generate_negative_guard(Node* index, RegionNode* region,
 154                                 // resulting CastII of index:
 155                                 Node* *pos_index = NULL);
 156   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 157                              Node* array_length,
 158                              RegionNode* region);
 159   void  generate_string_range_check(Node* array, Node* offset,
 160                                     Node* length, bool char_count);
 161   Node* generate_current_thread(Node* &tls_output);
 162   Node* load_mirror_from_klass(Node* klass);
 163   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 164                                       RegionNode* region, int null_path,
 165                                       int offset);
 166   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 174                                      RegionNode* region, int null_path) {
 175     int offset = java_lang_Class::array_klass_offset_in_bytes();
 176     return load_klass_from_mirror_common(mirror, never_see_null,
 177                                          region, null_path,
 178                                          offset);
 179   }
 180   Node* generate_access_flags_guard(Node* kls,
 181                                     int modifier_mask, int modifier_bits,
 182                                     RegionNode* region);
 183   Node* generate_interface_guard(Node* kls, RegionNode* region);
 184   Node* generate_array_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, false, false);
 186   }
 187   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 188     return generate_array_guard_common(kls, region, false, true);
 189   }
 190   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 191     return generate_array_guard_common(kls, region, true, false);
 192   }
 193   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 194     return generate_array_guard_common(kls, region, true, true);
 195   }
 196   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 197                                     bool obj_array, bool not_array);
 198   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 199   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 200                                      bool is_virtual = false, bool is_static = false);
 201   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 202     return generate_method_call(method_id, false, true);
 203   }
 204   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 205     return generate_method_call(method_id, true, false);
 206   }
 207   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 208   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 209 
 210   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 211   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 213   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 214   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 215                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 216   bool inline_string_indexOfChar();
 217   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_toBytesU();
 219   bool inline_string_getCharsU();
 220   bool inline_string_copy(bool compress);
 221   bool inline_string_char_access(bool is_store);
 222   Node* round_double_node(Node* n);
 223   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 224   bool inline_math_native(vmIntrinsics::ID id);
 225   bool inline_math(vmIntrinsics::ID id);
 226   template <typename OverflowOp>
 227   bool inline_math_overflow(Node* arg1, Node* arg2);
 228   void inline_math_mathExact(Node* math, Node* test);
 229   bool inline_math_addExactI(bool is_increment);
 230   bool inline_math_addExactL(bool is_increment);
 231   bool inline_math_multiplyExactI();
 232   bool inline_math_multiplyExactL();
 233   bool inline_math_negateExactI();
 234   bool inline_math_negateExactL();
 235   bool inline_math_subtractExactI(bool is_decrement);
 236   bool inline_math_subtractExactL(bool is_decrement);
 237   bool inline_min_max(vmIntrinsics::ID id);
 238   bool inline_notify(vmIntrinsics::ID id);
 239   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 240   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 241   int classify_unsafe_addr(Node* &base, Node* &offset);
 242   Node* make_unsafe_address(Node* base, Node* offset);
 243   // Helper for inline_unsafe_access.
 244   // Generates the guards that check whether the result of
 245   // Unsafe.getObject should be recorded in an SATB log buffer.
 246   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 247 
 248   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 249   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 250   static bool klass_needs_init_guard(Node* kls);
 251   bool inline_unsafe_allocate();
 252   bool inline_unsafe_newArray(bool uninitialized);
 253   bool inline_unsafe_copyMemory();
 254   bool inline_native_currentThread();
 255 
 256   bool inline_native_time_funcs(address method, const char* funcName);
 257   bool inline_native_isInterrupted();
 258   bool inline_native_Class_query(vmIntrinsics::ID id);
 259   bool inline_native_subtype_check();
 260   bool inline_native_getLength();
 261   bool inline_array_copyOf(bool is_copyOfRange);
 262   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 263   bool inline_preconditions_checkIndex();
 264   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 265   bool inline_native_clone(bool is_virtual);
 266   bool inline_native_Reflection_getCallerClass();
 267   // Helper function for inlining native object hash method
 268   bool inline_native_hashcode(bool is_virtual, bool is_static);
 269   bool inline_native_getClass();
 270 
 271   // Helper functions for inlining arraycopy
 272   bool inline_arraycopy();
 273   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 274                                                 RegionNode* slow_region);
 275   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 276   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 277 
 278   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 279   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 280   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 281   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 282   bool inline_unsafe_fence(vmIntrinsics::ID id);
 283   bool inline_onspinwait();
 284   bool inline_fp_conversions(vmIntrinsics::ID id);
 285   bool inline_number_methods(vmIntrinsics::ID id);
 286   bool inline_reference_get();
 287   bool inline_Class_cast();
 288   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 289   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 290   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 291   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 292   Node* inline_counterMode_AESCrypt_predicate();
 293   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 294   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 295   bool inline_ghash_processBlocks();
 296   bool inline_sha_implCompress(vmIntrinsics::ID id);
 297   bool inline_digestBase_implCompressMB(int predicate);
 298   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 299                                  bool long_state, address stubAddr, const char *stubName,
 300                                  Node* src_start, Node* ofs, Node* limit);
 301   Node* get_state_from_sha_object(Node *sha_object);
 302   Node* get_state_from_sha5_object(Node *sha_object);
 303   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 304   bool inline_encodeISOArray();
 305   bool inline_updateCRC32();
 306   bool inline_updateBytesCRC32();
 307   bool inline_updateByteBufferCRC32();
 308   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 309   bool inline_updateBytesCRC32C();
 310   bool inline_updateDirectByteBufferCRC32C();
 311   bool inline_updateBytesAdler32();
 312   bool inline_updateByteBufferAdler32();
 313   bool inline_multiplyToLen();
 314   bool inline_hasNegatives();
 315   bool inline_squareToLen();
 316   bool inline_mulAdd();
 317   bool inline_montgomeryMultiply();
 318   bool inline_montgomerySquare();
 319   bool inline_vectorizedMismatch();
 320 
 321   bool inline_profileBoolean();
 322   bool inline_isCompileConstant();
 323 };
 324 
 325 //---------------------------make_vm_intrinsic----------------------------
 326 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 327   vmIntrinsics::ID id = m->intrinsic_id();
 328   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 329 
 330   if (!m->is_loaded()) {
 331     // Do not attempt to inline unloaded methods.
 332     return NULL;
 333   }
 334 
 335   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 336   bool is_available = false;
 337 
 338   {
 339     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 340     // the compiler must transition to '_thread_in_vm' state because both
 341     // methods access VM-internal data.
 342     VM_ENTRY_MARK;
 343     methodHandle mh(THREAD, m->get_Method());
 344     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 345                    !C->directive()->is_intrinsic_disabled(mh) &&
 346                    !vmIntrinsics::is_disabled_by_flags(mh);
 347 
 348   }
 349 
 350   if (is_available) {
 351     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 352     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 353     return new LibraryIntrinsic(m, is_virtual,
 354                                 vmIntrinsics::predicates_needed(id),
 355                                 vmIntrinsics::does_virtual_dispatch(id),
 356                                 (vmIntrinsics::ID) id);
 357   } else {
 358     return NULL;
 359   }
 360 }
 361 
 362 //----------------------register_library_intrinsics-----------------------
 363 // Initialize this file's data structures, for each Compile instance.
 364 void Compile::register_library_intrinsics() {
 365   // Nothing to do here.
 366 }
 367 
 368 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 369   LibraryCallKit kit(jvms, this);
 370   Compile* C = kit.C;
 371   int nodes = C->unique();
 372 #ifndef PRODUCT
 373   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 374     char buf[1000];
 375     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 376     tty->print_cr("Intrinsic %s", str);
 377   }
 378 #endif
 379   ciMethod* callee = kit.callee();
 380   const int bci    = kit.bci();
 381 
 382   // Try to inline the intrinsic.
 383   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 384       kit.try_to_inline(_last_predicate)) {
 385     if (C->print_intrinsics() || C->print_inlining()) {
 386       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 387     }
 388     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 389     if (C->log()) {
 390       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 391                      vmIntrinsics::name_at(intrinsic_id()),
 392                      (is_virtual() ? " virtual='1'" : ""),
 393                      C->unique() - nodes);
 394     }
 395     // Push the result from the inlined method onto the stack.
 396     kit.push_result();
 397     C->print_inlining_update(this);
 398     return kit.transfer_exceptions_into_jvms();
 399   }
 400 
 401   // The intrinsic bailed out
 402   if (C->print_intrinsics() || C->print_inlining()) {
 403     if (jvms->has_method()) {
 404       // Not a root compile.
 405       const char* msg;
 406       if (callee->intrinsic_candidate()) {
 407         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 408       } else {
 409         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 410                            : "failed to inline (intrinsic), method not annotated";
 411       }
 412       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 413     } else {
 414       // Root compile
 415       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 416                vmIntrinsics::name_at(intrinsic_id()),
 417                (is_virtual() ? " (virtual)" : ""), bci);
 418     }
 419   }
 420   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 421   C->print_inlining_update(this);
 422   return NULL;
 423 }
 424 
 425 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 426   LibraryCallKit kit(jvms, this);
 427   Compile* C = kit.C;
 428   int nodes = C->unique();
 429   _last_predicate = predicate;
 430 #ifndef PRODUCT
 431   assert(is_predicated() && predicate < predicates_count(), "sanity");
 432   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 433     char buf[1000];
 434     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 435     tty->print_cr("Predicate for intrinsic %s", str);
 436   }
 437 #endif
 438   ciMethod* callee = kit.callee();
 439   const int bci    = kit.bci();
 440 
 441   Node* slow_ctl = kit.try_to_predicate(predicate);
 442   if (!kit.failing()) {
 443     if (C->print_intrinsics() || C->print_inlining()) {
 444       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 445     }
 446     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 447     if (C->log()) {
 448       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 449                      vmIntrinsics::name_at(intrinsic_id()),
 450                      (is_virtual() ? " virtual='1'" : ""),
 451                      C->unique() - nodes);
 452     }
 453     return slow_ctl; // Could be NULL if the check folds.
 454   }
 455 
 456   // The intrinsic bailed out
 457   if (C->print_intrinsics() || C->print_inlining()) {
 458     if (jvms->has_method()) {
 459       // Not a root compile.
 460       const char* msg = "failed to generate predicate for intrinsic";
 461       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 462     } else {
 463       // Root compile
 464       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 465                                         vmIntrinsics::name_at(intrinsic_id()),
 466                                         (is_virtual() ? " (virtual)" : ""), bci);
 467     }
 468   }
 469   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 470   return NULL;
 471 }
 472 
 473 bool LibraryCallKit::try_to_inline(int predicate) {
 474   // Handle symbolic names for otherwise undistinguished boolean switches:
 475   const bool is_store       = true;
 476   const bool is_compress    = true;
 477   const bool is_static      = true;
 478   const bool is_volatile    = true;
 479 
 480   if (!jvms()->has_method()) {
 481     // Root JVMState has a null method.
 482     assert(map()->memory()->Opcode() == Op_Parm, "");
 483     // Insert the memory aliasing node
 484     set_all_memory(reset_memory());
 485   }
 486   assert(merged_memory(), "");
 487 
 488 
 489   switch (intrinsic_id()) {
 490   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 491   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 492   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 493 
 494   case vmIntrinsics::_dsin:
 495   case vmIntrinsics::_dcos:
 496   case vmIntrinsics::_dtan:
 497   case vmIntrinsics::_dabs:
 498   case vmIntrinsics::_datan2:
 499   case vmIntrinsics::_dsqrt:
 500   case vmIntrinsics::_dexp:
 501   case vmIntrinsics::_dlog:
 502   case vmIntrinsics::_dlog10:
 503   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 504 
 505   case vmIntrinsics::_min:
 506   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 507 
 508   case vmIntrinsics::_notify:
 509   case vmIntrinsics::_notifyAll:
 510     if (InlineNotify) {
 511       return inline_notify(intrinsic_id());
 512     }
 513     return false;
 514 
 515   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 516   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 517   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 518   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 519   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 520   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 521   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 522   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 523   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 524   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 525   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 526   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 527 
 528   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 529 
 530   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 531   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 532   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 533   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 534 
 535   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 536   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 537   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 538   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 539   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 540   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 541   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 542 
 543   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 544   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 545 
 546   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 547   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 548   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 549   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 550 
 551   case vmIntrinsics::_compressStringC:
 552   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 553   case vmIntrinsics::_inflateStringC:
 554   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 555 
 556   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 557   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 558   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 559   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 560   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 561   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 562   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 563   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 564   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 565 
 566   case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 567   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 568   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 569   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 570   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 571   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 572   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 573   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 574   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 575 
 576   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 577   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 578   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 579   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 580   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 581   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 582   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 583   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 584   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 585 
 586   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 587   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 588   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 589   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 590   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 591   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 592   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 593   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 594   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 595 
 596   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 597   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 598   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 599   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 600 
 601   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 602   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 603   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 604   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 605 
 606   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 607   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 608   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 609   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 610   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 611   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 612   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 613   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 614   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 615 
 616   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 617   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 618   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 619   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 620   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 621   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 622   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 623   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 624   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 625 
 626   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 627   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 628   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 629   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 630   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 631   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 632   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 633   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 634   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 635 
 636   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 637   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 638   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 639   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 640   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 641   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 642   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 643   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 644   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 645 
 646   case vmIntrinsics::_compareAndSwapObject:             return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 647   case vmIntrinsics::_compareAndSwapByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 648   case vmIntrinsics::_compareAndSwapShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 649   case vmIntrinsics::_compareAndSwapInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 650   case vmIntrinsics::_compareAndSwapLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 651 
 652   case vmIntrinsics::_weakCompareAndSwapObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 653   case vmIntrinsics::_weakCompareAndSwapObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 654   case vmIntrinsics::_weakCompareAndSwapObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 655   case vmIntrinsics::_weakCompareAndSwapObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 656   case vmIntrinsics::_weakCompareAndSwapByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 657   case vmIntrinsics::_weakCompareAndSwapByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 658   case vmIntrinsics::_weakCompareAndSwapByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 659   case vmIntrinsics::_weakCompareAndSwapByteVolatile:   return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 660   case vmIntrinsics::_weakCompareAndSwapShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 661   case vmIntrinsics::_weakCompareAndSwapShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 662   case vmIntrinsics::_weakCompareAndSwapShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 663   case vmIntrinsics::_weakCompareAndSwapShortVolatile:  return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 664   case vmIntrinsics::_weakCompareAndSwapInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 665   case vmIntrinsics::_weakCompareAndSwapIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 666   case vmIntrinsics::_weakCompareAndSwapIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 667   case vmIntrinsics::_weakCompareAndSwapIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 668   case vmIntrinsics::_weakCompareAndSwapLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 669   case vmIntrinsics::_weakCompareAndSwapLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 670   case vmIntrinsics::_weakCompareAndSwapLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 671   case vmIntrinsics::_weakCompareAndSwapLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 672 
 673   case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 674   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 675   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 676   case vmIntrinsics::_compareAndExchangeByteVolatile:   return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 677   case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 678   case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 679   case vmIntrinsics::_compareAndExchangeShortVolatile:  return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 680   case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 681   case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 682   case vmIntrinsics::_compareAndExchangeIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 683   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 684   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 685   case vmIntrinsics::_compareAndExchangeLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 686   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 687   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 688 
 689   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 690   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 691   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 692   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 693 
 694   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 695   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 696   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 697   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 698   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 699 
 700   case vmIntrinsics::_loadFence:
 701   case vmIntrinsics::_storeFence:
 702   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 703 
 704   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 705 
 706   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 707   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 708 
 709 #ifdef TRACE_HAVE_INTRINSICS
 710   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 711 #endif
 712   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 713   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 714   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 715   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 716   case vmIntrinsics::_getLength:                return inline_native_getLength();
 717   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 718   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 719   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 720   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 721   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 722   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 723 
 724   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 725   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 726 
 727   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 728 
 729   case vmIntrinsics::_isInstance:
 730   case vmIntrinsics::_getModifiers:
 731   case vmIntrinsics::_isInterface:
 732   case vmIntrinsics::_isArray:
 733   case vmIntrinsics::_isPrimitive:
 734   case vmIntrinsics::_getSuperclass:
 735   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 736 
 737   case vmIntrinsics::_floatToRawIntBits:
 738   case vmIntrinsics::_floatToIntBits:
 739   case vmIntrinsics::_intBitsToFloat:
 740   case vmIntrinsics::_doubleToRawLongBits:
 741   case vmIntrinsics::_doubleToLongBits:
 742   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 743 
 744   case vmIntrinsics::_numberOfLeadingZeros_i:
 745   case vmIntrinsics::_numberOfLeadingZeros_l:
 746   case vmIntrinsics::_numberOfTrailingZeros_i:
 747   case vmIntrinsics::_numberOfTrailingZeros_l:
 748   case vmIntrinsics::_bitCount_i:
 749   case vmIntrinsics::_bitCount_l:
 750   case vmIntrinsics::_reverseBytes_i:
 751   case vmIntrinsics::_reverseBytes_l:
 752   case vmIntrinsics::_reverseBytes_s:
 753   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 754 
 755   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 756 
 757   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 758 
 759   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 760 
 761   case vmIntrinsics::_aescrypt_encryptBlock:
 762   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 763 
 764   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 765   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 766     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 767 
 768   case vmIntrinsics::_counterMode_AESCrypt:
 769     return inline_counterMode_AESCrypt(intrinsic_id());
 770 
 771   case vmIntrinsics::_sha_implCompress:
 772   case vmIntrinsics::_sha2_implCompress:
 773   case vmIntrinsics::_sha5_implCompress:
 774     return inline_sha_implCompress(intrinsic_id());
 775 
 776   case vmIntrinsics::_digestBase_implCompressMB:
 777     return inline_digestBase_implCompressMB(predicate);
 778 
 779   case vmIntrinsics::_multiplyToLen:
 780     return inline_multiplyToLen();
 781 
 782   case vmIntrinsics::_squareToLen:
 783     return inline_squareToLen();
 784 
 785   case vmIntrinsics::_mulAdd:
 786     return inline_mulAdd();
 787 
 788   case vmIntrinsics::_montgomeryMultiply:
 789     return inline_montgomeryMultiply();
 790   case vmIntrinsics::_montgomerySquare:
 791     return inline_montgomerySquare();
 792 
 793   case vmIntrinsics::_vectorizedMismatch:
 794     return inline_vectorizedMismatch();
 795 
 796   case vmIntrinsics::_ghash_processBlocks:
 797     return inline_ghash_processBlocks();
 798 
 799   case vmIntrinsics::_encodeISOArray:
 800   case vmIntrinsics::_encodeByteISOArray:
 801     return inline_encodeISOArray();
 802 
 803   case vmIntrinsics::_updateCRC32:
 804     return inline_updateCRC32();
 805   case vmIntrinsics::_updateBytesCRC32:
 806     return inline_updateBytesCRC32();
 807   case vmIntrinsics::_updateByteBufferCRC32:
 808     return inline_updateByteBufferCRC32();
 809 
 810   case vmIntrinsics::_updateBytesCRC32C:
 811     return inline_updateBytesCRC32C();
 812   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 813     return inline_updateDirectByteBufferCRC32C();
 814 
 815   case vmIntrinsics::_updateBytesAdler32:
 816     return inline_updateBytesAdler32();
 817   case vmIntrinsics::_updateByteBufferAdler32:
 818     return inline_updateByteBufferAdler32();
 819 
 820   case vmIntrinsics::_profileBoolean:
 821     return inline_profileBoolean();
 822   case vmIntrinsics::_isCompileConstant:
 823     return inline_isCompileConstant();
 824 
 825   case vmIntrinsics::_hasNegatives:
 826     return inline_hasNegatives();
 827 
 828   default:
 829     // If you get here, it may be that someone has added a new intrinsic
 830     // to the list in vmSymbols.hpp without implementing it here.
 831 #ifndef PRODUCT
 832     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 833       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 834                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 835     }
 836 #endif
 837     return false;
 838   }
 839 }
 840 
 841 Node* LibraryCallKit::try_to_predicate(int predicate) {
 842   if (!jvms()->has_method()) {
 843     // Root JVMState has a null method.
 844     assert(map()->memory()->Opcode() == Op_Parm, "");
 845     // Insert the memory aliasing node
 846     set_all_memory(reset_memory());
 847   }
 848   assert(merged_memory(), "");
 849 
 850   switch (intrinsic_id()) {
 851   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 852     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 853   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 854     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 855   case vmIntrinsics::_counterMode_AESCrypt:
 856     return inline_counterMode_AESCrypt_predicate();
 857   case vmIntrinsics::_digestBase_implCompressMB:
 858     return inline_digestBase_implCompressMB_predicate(predicate);
 859 
 860   default:
 861     // If you get here, it may be that someone has added a new intrinsic
 862     // to the list in vmSymbols.hpp without implementing it here.
 863 #ifndef PRODUCT
 864     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 865       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 866                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 867     }
 868 #endif
 869     Node* slow_ctl = control();
 870     set_control(top()); // No fast path instrinsic
 871     return slow_ctl;
 872   }
 873 }
 874 
 875 //------------------------------set_result-------------------------------
 876 // Helper function for finishing intrinsics.
 877 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 878   record_for_igvn(region);
 879   set_control(_gvn.transform(region));
 880   set_result( _gvn.transform(value));
 881   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 882 }
 883 
 884 //------------------------------generate_guard---------------------------
 885 // Helper function for generating guarded fast-slow graph structures.
 886 // The given 'test', if true, guards a slow path.  If the test fails
 887 // then a fast path can be taken.  (We generally hope it fails.)
 888 // In all cases, GraphKit::control() is updated to the fast path.
 889 // The returned value represents the control for the slow path.
 890 // The return value is never 'top'; it is either a valid control
 891 // or NULL if it is obvious that the slow path can never be taken.
 892 // Also, if region and the slow control are not NULL, the slow edge
 893 // is appended to the region.
 894 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 895   if (stopped()) {
 896     // Already short circuited.
 897     return NULL;
 898   }
 899 
 900   // Build an if node and its projections.
 901   // If test is true we take the slow path, which we assume is uncommon.
 902   if (_gvn.type(test) == TypeInt::ZERO) {
 903     // The slow branch is never taken.  No need to build this guard.
 904     return NULL;
 905   }
 906 
 907   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 908 
 909   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 910   if (if_slow == top()) {
 911     // The slow branch is never taken.  No need to build this guard.
 912     return NULL;
 913   }
 914 
 915   if (region != NULL)
 916     region->add_req(if_slow);
 917 
 918   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 919   set_control(if_fast);
 920 
 921   return if_slow;
 922 }
 923 
 924 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 925   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 926 }
 927 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 928   return generate_guard(test, region, PROB_FAIR);
 929 }
 930 
 931 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 932                                                      Node* *pos_index) {
 933   if (stopped())
 934     return NULL;                // already stopped
 935   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 936     return NULL;                // index is already adequately typed
 937   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 938   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 939   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 940   if (is_neg != NULL && pos_index != NULL) {
 941     // Emulate effect of Parse::adjust_map_after_if.
 942     Node* ccast = new CastIINode(index, TypeInt::POS);
 943     ccast->set_req(0, control());
 944     (*pos_index) = _gvn.transform(ccast);
 945   }
 946   return is_neg;
 947 }
 948 
 949 // Make sure that 'position' is a valid limit index, in [0..length].
 950 // There are two equivalent plans for checking this:
 951 //   A. (offset + copyLength)  unsigned<=  arrayLength
 952 //   B. offset  <=  (arrayLength - copyLength)
 953 // We require that all of the values above, except for the sum and
 954 // difference, are already known to be non-negative.
 955 // Plan A is robust in the face of overflow, if offset and copyLength
 956 // are both hugely positive.
 957 //
 958 // Plan B is less direct and intuitive, but it does not overflow at
 959 // all, since the difference of two non-negatives is always
 960 // representable.  Whenever Java methods must perform the equivalent
 961 // check they generally use Plan B instead of Plan A.
 962 // For the moment we use Plan A.
 963 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 964                                                   Node* subseq_length,
 965                                                   Node* array_length,
 966                                                   RegionNode* region) {
 967   if (stopped())
 968     return NULL;                // already stopped
 969   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 970   if (zero_offset && subseq_length->eqv_uncast(array_length))
 971     return NULL;                // common case of whole-array copy
 972   Node* last = subseq_length;
 973   if (!zero_offset)             // last += offset
 974     last = _gvn.transform(new AddINode(last, offset));
 975   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 976   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 977   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 978   return is_over;
 979 }
 980 
 981 // Emit range checks for the given String.value byte array
 982 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 983   if (stopped()) {
 984     return; // already stopped
 985   }
 986   RegionNode* bailout = new RegionNode(1);
 987   record_for_igvn(bailout);
 988   if (char_count) {
 989     // Convert char count to byte count
 990     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 991   }
 992 
 993   // Offset and count must not be negative
 994   generate_negative_guard(offset, bailout);
 995   generate_negative_guard(count, bailout);
 996   // Offset + count must not exceed length of array
 997   generate_limit_guard(offset, count, load_array_length(array), bailout);
 998 
 999   if (bailout->req() > 1) {
1000     PreserveJVMState pjvms(this);
1001     set_control(_gvn.transform(bailout));
1002     uncommon_trap(Deoptimization::Reason_intrinsic,
1003                   Deoptimization::Action_maybe_recompile);
1004   }
1005 }
1006 
1007 //--------------------------generate_current_thread--------------------
1008 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1009   ciKlass*    thread_klass = env()->Thread_klass();
1010   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1011   Node* thread = _gvn.transform(new ThreadLocalNode());
1012   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1013   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1014   tls_output = thread;
1015   return threadObj;
1016 }
1017 
1018 
1019 //------------------------------make_string_method_node------------------------
1020 // Helper method for String intrinsic functions. This version is called with
1021 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1022 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1023 // containing the lengths of str1 and str2.
1024 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1025   Node* result = NULL;
1026   switch (opcode) {
1027   case Op_StrIndexOf:
1028     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1029                                 str1_start, cnt1, str2_start, cnt2, ae);
1030     break;
1031   case Op_StrComp:
1032     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1033                              str1_start, cnt1, str2_start, cnt2, ae);
1034     break;
1035   case Op_StrEquals:
1036     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1037     // Use the constant length if there is one because optimized match rule may exist.
1038     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1039                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1040     break;
1041   default:
1042     ShouldNotReachHere();
1043     return NULL;
1044   }
1045 
1046   // All these intrinsics have checks.
1047   C->set_has_split_ifs(true); // Has chance for split-if optimization
1048 
1049   return _gvn.transform(result);
1050 }
1051 
1052 //------------------------------inline_string_compareTo------------------------
1053 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1054   Node* arg1 = argument(0);
1055   Node* arg2 = argument(1);
1056 
1057   // Get start addr and length of first argument
1058   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1059   Node* arg1_cnt    = load_array_length(arg1);
1060 
1061   // Get start addr and length of second argument
1062   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1063   Node* arg2_cnt    = load_array_length(arg2);
1064 
1065   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1066   set_result(result);
1067   return true;
1068 }
1069 
1070 //------------------------------inline_string_equals------------------------
1071 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1072   Node* arg1 = argument(0);
1073   Node* arg2 = argument(1);
1074 
1075   // paths (plus control) merge
1076   RegionNode* region = new RegionNode(3);
1077   Node* phi = new PhiNode(region, TypeInt::BOOL);
1078 
1079   if (!stopped()) {
1080     // Get start addr and length of first argument
1081     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1082     Node* arg1_cnt    = load_array_length(arg1);
1083 
1084     // Get start addr and length of second argument
1085     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1086     Node* arg2_cnt    = load_array_length(arg2);
1087 
1088     // Check for arg1_cnt != arg2_cnt
1089     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1090     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1091     Node* if_ne = generate_slow_guard(bol, NULL);
1092     if (if_ne != NULL) {
1093       phi->init_req(2, intcon(0));
1094       region->init_req(2, if_ne);
1095     }
1096 
1097     // Check for count == 0 is done by assembler code for StrEquals.
1098 
1099     if (!stopped()) {
1100       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1101       phi->init_req(1, equals);
1102       region->init_req(1, control());
1103     }
1104   }
1105 
1106   // post merge
1107   set_control(_gvn.transform(region));
1108   record_for_igvn(region);
1109 
1110   set_result(_gvn.transform(phi));
1111   return true;
1112 }
1113 
1114 //------------------------------inline_array_equals----------------------------
1115 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1116   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1117   Node* arg1 = argument(0);
1118   Node* arg2 = argument(1);
1119 
1120   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1121   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1122   return true;
1123 }
1124 
1125 //------------------------------inline_hasNegatives------------------------------
1126 bool LibraryCallKit::inline_hasNegatives() {
1127   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1128     return false;
1129   }
1130 
1131   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1132   // no receiver since it is static method
1133   Node* ba         = argument(0);
1134   Node* offset     = argument(1);
1135   Node* len        = argument(2);
1136 
1137   // Range checks
1138   generate_string_range_check(ba, offset, len, false);
1139   if (stopped()) {
1140     return true;
1141   }
1142   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1143   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1144   set_result(_gvn.transform(result));
1145   return true;
1146 }
1147 
1148 bool LibraryCallKit::inline_preconditions_checkIndex() {
1149   Node* index = argument(0);
1150   Node* length = argument(1);
1151   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1152     return false;
1153   }
1154 
1155   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1156   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1157 
1158   {
1159     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1160     uncommon_trap(Deoptimization::Reason_intrinsic,
1161                   Deoptimization::Action_make_not_entrant);
1162   }
1163 
1164   if (stopped()) {
1165     return false;
1166   }
1167 
1168   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1169   BoolTest::mask btest = BoolTest::lt;
1170   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1171   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1172   _gvn.set_type(rc, rc->Value(&_gvn));
1173   if (!rc_bool->is_Con()) {
1174     record_for_igvn(rc);
1175   }
1176   set_control(_gvn.transform(new IfTrueNode(rc)));
1177   {
1178     PreserveJVMState pjvms(this);
1179     set_control(_gvn.transform(new IfFalseNode(rc)));
1180     uncommon_trap(Deoptimization::Reason_range_check,
1181                   Deoptimization::Action_make_not_entrant);
1182   }
1183 
1184   if (stopped()) {
1185     return false;
1186   }
1187 
1188   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1189   result->set_req(0, control());
1190   result = _gvn.transform(result);
1191   set_result(result);
1192   replace_in_map(index, result);
1193   return true;
1194 }
1195 
1196 //------------------------------inline_string_indexOf------------------------
1197 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1198   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1199     return false;
1200   }
1201   Node* src = argument(0);
1202   Node* tgt = argument(1);
1203 
1204   // Make the merge point
1205   RegionNode* result_rgn = new RegionNode(4);
1206   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1207 
1208   // Get start addr and length of source string
1209   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1210   Node* src_count = load_array_length(src);
1211 
1212   // Get start addr and length of substring
1213   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1214   Node* tgt_count = load_array_length(tgt);
1215 
1216   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1217     // Divide src size by 2 if String is UTF16 encoded
1218     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1219   }
1220   if (ae == StrIntrinsicNode::UU) {
1221     // Divide substring size by 2 if String is UTF16 encoded
1222     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1223   }
1224 
1225   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1226   if (result != NULL) {
1227     result_phi->init_req(3, result);
1228     result_rgn->init_req(3, control());
1229   }
1230   set_control(_gvn.transform(result_rgn));
1231   record_for_igvn(result_rgn);
1232   set_result(_gvn.transform(result_phi));
1233 
1234   return true;
1235 }
1236 
1237 //-----------------------------inline_string_indexOf-----------------------
1238 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1239   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1240     return false;
1241   }
1242   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1243     return false;
1244   }
1245   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1246   Node* src         = argument(0); // byte[]
1247   Node* src_count   = argument(1); // char count
1248   Node* tgt         = argument(2); // byte[]
1249   Node* tgt_count   = argument(3); // char count
1250   Node* from_index  = argument(4); // char index
1251 
1252   // Multiply byte array index by 2 if String is UTF16 encoded
1253   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1254   src_count = _gvn.transform(new SubINode(src_count, from_index));
1255   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1256   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1257 
1258   // Range checks
1259   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1260   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1261   if (stopped()) {
1262     return true;
1263   }
1264 
1265   RegionNode* region = new RegionNode(5);
1266   Node* phi = new PhiNode(region, TypeInt::INT);
1267 
1268   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1269   if (result != NULL) {
1270     // The result is index relative to from_index if substring was found, -1 otherwise.
1271     // Generate code which will fold into cmove.
1272     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1273     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1274 
1275     Node* if_lt = generate_slow_guard(bol, NULL);
1276     if (if_lt != NULL) {
1277       // result == -1
1278       phi->init_req(3, result);
1279       region->init_req(3, if_lt);
1280     }
1281     if (!stopped()) {
1282       result = _gvn.transform(new AddINode(result, from_index));
1283       phi->init_req(4, result);
1284       region->init_req(4, control());
1285     }
1286   }
1287 
1288   set_control(_gvn.transform(region));
1289   record_for_igvn(region);
1290   set_result(_gvn.transform(phi));
1291 
1292   return true;
1293 }
1294 
1295 // Create StrIndexOfNode with fast path checks
1296 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1297                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1298   // Check for substr count > string count
1299   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1300   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1301   Node* if_gt = generate_slow_guard(bol, NULL);
1302   if (if_gt != NULL) {
1303     phi->init_req(1, intcon(-1));
1304     region->init_req(1, if_gt);
1305   }
1306   if (!stopped()) {
1307     // Check for substr count == 0
1308     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1309     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1310     Node* if_zero = generate_slow_guard(bol, NULL);
1311     if (if_zero != NULL) {
1312       phi->init_req(2, intcon(0));
1313       region->init_req(2, if_zero);
1314     }
1315   }
1316   if (!stopped()) {
1317     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1318   }
1319   return NULL;
1320 }
1321 
1322 //-----------------------------inline_string_indexOfChar-----------------------
1323 bool LibraryCallKit::inline_string_indexOfChar() {
1324   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1325     return false;
1326   }
1327   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1328     return false;
1329   }
1330   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1331   Node* src         = argument(0); // byte[]
1332   Node* tgt         = argument(1); // tgt is int ch
1333   Node* from_index  = argument(2);
1334   Node* max         = argument(3);
1335 
1336   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1337   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1338   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1339 
1340   // Range checks
1341   generate_string_range_check(src, src_offset, src_count, true);
1342   if (stopped()) {
1343     return true;
1344   }
1345 
1346   RegionNode* region = new RegionNode(3);
1347   Node* phi = new PhiNode(region, TypeInt::INT);
1348 
1349   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1350   C->set_has_split_ifs(true); // Has chance for split-if optimization
1351   _gvn.transform(result);
1352 
1353   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1354   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1355 
1356   Node* if_lt = generate_slow_guard(bol, NULL);
1357   if (if_lt != NULL) {
1358     // result == -1
1359     phi->init_req(2, result);
1360     region->init_req(2, if_lt);
1361   }
1362   if (!stopped()) {
1363     result = _gvn.transform(new AddINode(result, from_index));
1364     phi->init_req(1, result);
1365     region->init_req(1, control());
1366   }
1367   set_control(_gvn.transform(region));
1368   record_for_igvn(region);
1369   set_result(_gvn.transform(phi));
1370 
1371   return true;
1372 }
1373 //---------------------------inline_string_copy---------------------
1374 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1375 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1376 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1377 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1378 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1379 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1380 bool LibraryCallKit::inline_string_copy(bool compress) {
1381   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1382     return false;
1383   }
1384   int nargs = 5;  // 2 oops, 3 ints
1385   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1386 
1387   Node* src         = argument(0);
1388   Node* src_offset  = argument(1);
1389   Node* dst         = argument(2);
1390   Node* dst_offset  = argument(3);
1391   Node* length      = argument(4);
1392 
1393   // Check for allocation before we add nodes that would confuse
1394   // tightly_coupled_allocation()
1395   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1396 
1397   // Figure out the size and type of the elements we will be copying.
1398   const Type* src_type = src->Value(&_gvn);
1399   const Type* dst_type = dst->Value(&_gvn);
1400   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1401   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1402   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1403          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1404          "Unsupported array types for inline_string_copy");
1405 
1406   // Convert char[] offsets to byte[] offsets
1407   bool convert_src = (compress && src_elem == T_BYTE);
1408   bool convert_dst = (!compress && dst_elem == T_BYTE);
1409   if (convert_src) {
1410     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1411   } else if (convert_dst) {
1412     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1413   }
1414 
1415   // Range checks
1416   generate_string_range_check(src, src_offset, length, convert_src);
1417   generate_string_range_check(dst, dst_offset, length, convert_dst);
1418   if (stopped()) {
1419     return true;
1420   }
1421 
1422   Node* src_start = array_element_address(src, src_offset, src_elem);
1423   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1424   // 'src_start' points to src array + scaled offset
1425   // 'dst_start' points to dst array + scaled offset
1426   Node* count = NULL;
1427   if (compress) {
1428     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1429   } else {
1430     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1431   }
1432 
1433   if (alloc != NULL) {
1434     if (alloc->maybe_set_complete(&_gvn)) {
1435       // "You break it, you buy it."
1436       InitializeNode* init = alloc->initialization();
1437       assert(init->is_complete(), "we just did this");
1438       init->set_complete_with_arraycopy();
1439       assert(dst->is_CheckCastPP(), "sanity");
1440       assert(dst->in(0)->in(0) == init, "dest pinned");
1441     }
1442     // Do not let stores that initialize this object be reordered with
1443     // a subsequent store that would make this object accessible by
1444     // other threads.
1445     // Record what AllocateNode this StoreStore protects so that
1446     // escape analysis can go from the MemBarStoreStoreNode to the
1447     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1448     // based on the escape status of the AllocateNode.
1449     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1450   }
1451   if (compress) {
1452     set_result(_gvn.transform(count));
1453   }
1454   return true;
1455 }
1456 
1457 #ifdef _LP64
1458 #define XTOP ,top() /*additional argument*/
1459 #else  //_LP64
1460 #define XTOP        /*no additional argument*/
1461 #endif //_LP64
1462 
1463 //------------------------inline_string_toBytesU--------------------------
1464 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1465 bool LibraryCallKit::inline_string_toBytesU() {
1466   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1467     return false;
1468   }
1469   // Get the arguments.
1470   Node* value     = argument(0);
1471   Node* offset    = argument(1);
1472   Node* length    = argument(2);
1473 
1474   Node* newcopy = NULL;
1475 
1476   // Set the original stack and the reexecute bit for the interpreter to reexecute
1477   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1478   { PreserveReexecuteState preexecs(this);
1479     jvms()->set_should_reexecute(true);
1480 
1481     // Check if a null path was taken unconditionally.
1482     value = null_check(value);
1483 
1484     RegionNode* bailout = new RegionNode(1);
1485     record_for_igvn(bailout);
1486 
1487     // Range checks
1488     generate_negative_guard(offset, bailout);
1489     generate_negative_guard(length, bailout);
1490     generate_limit_guard(offset, length, load_array_length(value), bailout);
1491     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1492     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1493 
1494     if (bailout->req() > 1) {
1495       PreserveJVMState pjvms(this);
1496       set_control(_gvn.transform(bailout));
1497       uncommon_trap(Deoptimization::Reason_intrinsic,
1498                     Deoptimization::Action_maybe_recompile);
1499     }
1500     if (stopped()) {
1501       return true;
1502     }
1503 
1504     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1505     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1506     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1507     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1508 
1509     // Calculate starting addresses.
1510     Node* src_start = array_element_address(value, offset, T_CHAR);
1511     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1512 
1513     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1514     const TypeInt* toffset = gvn().type(offset)->is_int();
1515     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1516 
1517     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1518     const char* copyfunc_name = "arraycopy";
1519     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1520     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1521                       OptoRuntime::fast_arraycopy_Type(),
1522                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1523                       src_start, dst_start, ConvI2X(length) XTOP);
1524     // Do not let reads from the cloned object float above the arraycopy.
1525     if (alloc != NULL) {
1526       if (alloc->maybe_set_complete(&_gvn)) {
1527         // "You break it, you buy it."
1528         InitializeNode* init = alloc->initialization();
1529         assert(init->is_complete(), "we just did this");
1530         init->set_complete_with_arraycopy();
1531         assert(newcopy->is_CheckCastPP(), "sanity");
1532         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1533       }
1534       // Do not let stores that initialize this object be reordered with
1535       // a subsequent store that would make this object accessible by
1536       // other threads.
1537       // Record what AllocateNode this StoreStore protects so that
1538       // escape analysis can go from the MemBarStoreStoreNode to the
1539       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1540       // based on the escape status of the AllocateNode.
1541       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1542     } else {
1543       insert_mem_bar(Op_MemBarCPUOrder);
1544     }
1545   } // original reexecute is set back here
1546 
1547   C->set_has_split_ifs(true); // Has chance for split-if optimization
1548   if (!stopped()) {
1549     set_result(newcopy);
1550   }
1551   return true;
1552 }
1553 
1554 //------------------------inline_string_getCharsU--------------------------
1555 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1556 bool LibraryCallKit::inline_string_getCharsU() {
1557   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1558     return false;
1559   }
1560 
1561   // Get the arguments.
1562   Node* src       = argument(0);
1563   Node* src_begin = argument(1);
1564   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1565   Node* dst       = argument(3);
1566   Node* dst_begin = argument(4);
1567 
1568   // Check for allocation before we add nodes that would confuse
1569   // tightly_coupled_allocation()
1570   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1571 
1572   // Check if a null path was taken unconditionally.
1573   src = null_check(src);
1574   dst = null_check(dst);
1575   if (stopped()) {
1576     return true;
1577   }
1578 
1579   // Get length and convert char[] offset to byte[] offset
1580   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1581   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1582 
1583   // Range checks
1584   generate_string_range_check(src, src_begin, length, true);
1585   generate_string_range_check(dst, dst_begin, length, false);
1586   if (stopped()) {
1587     return true;
1588   }
1589 
1590   if (!stopped()) {
1591     // Calculate starting addresses.
1592     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1593     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1594 
1595     // Check if array addresses are aligned to HeapWordSize
1596     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1597     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1598     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1599                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1600 
1601     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1602     const char* copyfunc_name = "arraycopy";
1603     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1604     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1605                       OptoRuntime::fast_arraycopy_Type(),
1606                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1607                       src_start, dst_start, ConvI2X(length) XTOP);
1608     // Do not let reads from the cloned object float above the arraycopy.
1609     if (alloc != NULL) {
1610       if (alloc->maybe_set_complete(&_gvn)) {
1611         // "You break it, you buy it."
1612         InitializeNode* init = alloc->initialization();
1613         assert(init->is_complete(), "we just did this");
1614         init->set_complete_with_arraycopy();
1615         assert(dst->is_CheckCastPP(), "sanity");
1616         assert(dst->in(0)->in(0) == init, "dest pinned");
1617       }
1618       // Do not let stores that initialize this object be reordered with
1619       // a subsequent store that would make this object accessible by
1620       // other threads.
1621       // Record what AllocateNode this StoreStore protects so that
1622       // escape analysis can go from the MemBarStoreStoreNode to the
1623       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1624       // based on the escape status of the AllocateNode.
1625       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1626     } else {
1627       insert_mem_bar(Op_MemBarCPUOrder);
1628     }
1629   }
1630 
1631   C->set_has_split_ifs(true); // Has chance for split-if optimization
1632   return true;
1633 }
1634 
1635 //----------------------inline_string_char_access----------------------------
1636 // Store/Load char to/from byte[] array.
1637 // static void StringUTF16.putChar(byte[] val, int index, int c)
1638 // static char StringUTF16.getChar(byte[] val, int index)
1639 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1640   Node* value  = argument(0);
1641   Node* index  = argument(1);
1642   Node* ch = is_store ? argument(2) : NULL;
1643 
1644   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1645   // correctly requires matched array shapes.
1646   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1647           "sanity: byte[] and char[] bases agree");
1648   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1649           "sanity: byte[] and char[] scales agree");
1650 
1651   // Bail when getChar over constants is requested: constant folding would
1652   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1653   // Java method would constant fold nicely instead.
1654   if (!is_store && value->is_Con() && index->is_Con()) {
1655     return false;
1656   }
1657 
1658   Node* adr = array_element_address(value, index, T_CHAR);
1659   if (is_store) {
1660     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1661                            false, false, true /* mismatched */);
1662   } else {
1663     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1664                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1665     set_result(ch);
1666   }
1667   return true;
1668 }
1669 
1670 //--------------------------round_double_node--------------------------------
1671 // Round a double node if necessary.
1672 Node* LibraryCallKit::round_double_node(Node* n) {
1673   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1674     n = _gvn.transform(new RoundDoubleNode(0, n));
1675   return n;
1676 }
1677 
1678 //------------------------------inline_math-----------------------------------
1679 // public static double Math.abs(double)
1680 // public static double Math.sqrt(double)
1681 // public static double Math.log(double)
1682 // public static double Math.log10(double)
1683 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1684   Node* arg = round_double_node(argument(0));
1685   Node* n = NULL;
1686   switch (id) {
1687   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1688   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1689   default:  fatal_unexpected_iid(id);  break;
1690   }
1691   set_result(_gvn.transform(n));
1692   return true;
1693 }
1694 
1695 //------------------------------runtime_math-----------------------------
1696 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1697   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1698          "must be (DD)D or (D)D type");
1699 
1700   // Inputs
1701   Node* a = round_double_node(argument(0));
1702   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1703 
1704   const TypePtr* no_memory_effects = NULL;
1705   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1706                                  no_memory_effects,
1707                                  a, top(), b, b ? top() : NULL);
1708   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1709 #ifdef ASSERT
1710   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1711   assert(value_top == top(), "second value must be top");
1712 #endif
1713 
1714   set_result(value);
1715   return true;
1716 }
1717 
1718 //------------------------------inline_math_native-----------------------------
1719 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1720 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1721   switch (id) {
1722     // These intrinsics are not properly supported on all hardware
1723   case vmIntrinsics::_dsin:
1724     return StubRoutines::dsin() != NULL ?
1725       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1726       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1727   case vmIntrinsics::_dcos:
1728     return StubRoutines::dcos() != NULL ?
1729       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1730       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1731   case vmIntrinsics::_dtan:
1732     return StubRoutines::dtan() != NULL ?
1733       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1734       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1735   case vmIntrinsics::_dlog:
1736     return StubRoutines::dlog() != NULL ?
1737       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1738       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1739   case vmIntrinsics::_dlog10:
1740     return StubRoutines::dlog10() != NULL ?
1741       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1742       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1743 
1744     // These intrinsics are supported on all hardware
1745   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1746   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1747 
1748   case vmIntrinsics::_dexp:
1749     return StubRoutines::dexp() != NULL ?
1750       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1751       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1752   case vmIntrinsics::_dpow:
1753     return StubRoutines::dpow() != NULL ?
1754       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1755       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1756 #undef FN_PTR
1757 
1758    // These intrinsics are not yet correctly implemented
1759   case vmIntrinsics::_datan2:
1760     return false;
1761 
1762   default:
1763     fatal_unexpected_iid(id);
1764     return false;
1765   }
1766 }
1767 
1768 static bool is_simple_name(Node* n) {
1769   return (n->req() == 1         // constant
1770           || (n->is_Type() && n->as_Type()->type()->singleton())
1771           || n->is_Proj()       // parameter or return value
1772           || n->is_Phi()        // local of some sort
1773           );
1774 }
1775 
1776 //----------------------------inline_notify-----------------------------------*
1777 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1778   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1779   address func;
1780   if (id == vmIntrinsics::_notify) {
1781     func = OptoRuntime::monitor_notify_Java();
1782   } else {
1783     func = OptoRuntime::monitor_notifyAll_Java();
1784   }
1785   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1786   make_slow_call_ex(call, env()->Throwable_klass(), false);
1787   return true;
1788 }
1789 
1790 
1791 //----------------------------inline_min_max-----------------------------------
1792 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1793   set_result(generate_min_max(id, argument(0), argument(1)));
1794   return true;
1795 }
1796 
1797 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1798   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1799   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1800   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1801   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1802 
1803   {
1804     PreserveJVMState pjvms(this);
1805     PreserveReexecuteState preexecs(this);
1806     jvms()->set_should_reexecute(true);
1807 
1808     set_control(slow_path);
1809     set_i_o(i_o());
1810 
1811     uncommon_trap(Deoptimization::Reason_intrinsic,
1812                   Deoptimization::Action_none);
1813   }
1814 
1815   set_control(fast_path);
1816   set_result(math);
1817 }
1818 
1819 template <typename OverflowOp>
1820 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1821   typedef typename OverflowOp::MathOp MathOp;
1822 
1823   MathOp* mathOp = new MathOp(arg1, arg2);
1824   Node* operation = _gvn.transform( mathOp );
1825   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1826   inline_math_mathExact(operation, ofcheck);
1827   return true;
1828 }
1829 
1830 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1831   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1832 }
1833 
1834 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1835   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1836 }
1837 
1838 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1839   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1840 }
1841 
1842 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1843   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1844 }
1845 
1846 bool LibraryCallKit::inline_math_negateExactI() {
1847   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1848 }
1849 
1850 bool LibraryCallKit::inline_math_negateExactL() {
1851   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1852 }
1853 
1854 bool LibraryCallKit::inline_math_multiplyExactI() {
1855   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1856 }
1857 
1858 bool LibraryCallKit::inline_math_multiplyExactL() {
1859   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1860 }
1861 
1862 Node*
1863 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1864   // These are the candidate return value:
1865   Node* xvalue = x0;
1866   Node* yvalue = y0;
1867 
1868   if (xvalue == yvalue) {
1869     return xvalue;
1870   }
1871 
1872   bool want_max = (id == vmIntrinsics::_max);
1873 
1874   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1875   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1876   if (txvalue == NULL || tyvalue == NULL)  return top();
1877   // This is not really necessary, but it is consistent with a
1878   // hypothetical MaxINode::Value method:
1879   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1880 
1881   // %%% This folding logic should (ideally) be in a different place.
1882   // Some should be inside IfNode, and there to be a more reliable
1883   // transformation of ?: style patterns into cmoves.  We also want
1884   // more powerful optimizations around cmove and min/max.
1885 
1886   // Try to find a dominating comparison of these guys.
1887   // It can simplify the index computation for Arrays.copyOf
1888   // and similar uses of System.arraycopy.
1889   // First, compute the normalized version of CmpI(x, y).
1890   int   cmp_op = Op_CmpI;
1891   Node* xkey = xvalue;
1892   Node* ykey = yvalue;
1893   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1894   if (ideal_cmpxy->is_Cmp()) {
1895     // E.g., if we have CmpI(length - offset, count),
1896     // it might idealize to CmpI(length, count + offset)
1897     cmp_op = ideal_cmpxy->Opcode();
1898     xkey = ideal_cmpxy->in(1);
1899     ykey = ideal_cmpxy->in(2);
1900   }
1901 
1902   // Start by locating any relevant comparisons.
1903   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1904   Node* cmpxy = NULL;
1905   Node* cmpyx = NULL;
1906   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1907     Node* cmp = start_from->fast_out(k);
1908     if (cmp->outcnt() > 0 &&            // must have prior uses
1909         cmp->in(0) == NULL &&           // must be context-independent
1910         cmp->Opcode() == cmp_op) {      // right kind of compare
1911       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1912       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1913     }
1914   }
1915 
1916   const int NCMPS = 2;
1917   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1918   int cmpn;
1919   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1920     if (cmps[cmpn] != NULL)  break;     // find a result
1921   }
1922   if (cmpn < NCMPS) {
1923     // Look for a dominating test that tells us the min and max.
1924     int depth = 0;                // Limit search depth for speed
1925     Node* dom = control();
1926     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1927       if (++depth >= 100)  break;
1928       Node* ifproj = dom;
1929       if (!ifproj->is_Proj())  continue;
1930       Node* iff = ifproj->in(0);
1931       if (!iff->is_If())  continue;
1932       Node* bol = iff->in(1);
1933       if (!bol->is_Bool())  continue;
1934       Node* cmp = bol->in(1);
1935       if (cmp == NULL)  continue;
1936       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1937         if (cmps[cmpn] == cmp)  break;
1938       if (cmpn == NCMPS)  continue;
1939       BoolTest::mask btest = bol->as_Bool()->_test._test;
1940       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1941       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1942       // At this point, we know that 'x btest y' is true.
1943       switch (btest) {
1944       case BoolTest::eq:
1945         // They are proven equal, so we can collapse the min/max.
1946         // Either value is the answer.  Choose the simpler.
1947         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1948           return yvalue;
1949         return xvalue;
1950       case BoolTest::lt:          // x < y
1951       case BoolTest::le:          // x <= y
1952         return (want_max ? yvalue : xvalue);
1953       case BoolTest::gt:          // x > y
1954       case BoolTest::ge:          // x >= y
1955         return (want_max ? xvalue : yvalue);
1956       }
1957     }
1958   }
1959 
1960   // We failed to find a dominating test.
1961   // Let's pick a test that might GVN with prior tests.
1962   Node*          best_bol   = NULL;
1963   BoolTest::mask best_btest = BoolTest::illegal;
1964   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1965     Node* cmp = cmps[cmpn];
1966     if (cmp == NULL)  continue;
1967     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1968       Node* bol = cmp->fast_out(j);
1969       if (!bol->is_Bool())  continue;
1970       BoolTest::mask btest = bol->as_Bool()->_test._test;
1971       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1972       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1973       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1974         best_bol   = bol->as_Bool();
1975         best_btest = btest;
1976       }
1977     }
1978   }
1979 
1980   Node* answer_if_true  = NULL;
1981   Node* answer_if_false = NULL;
1982   switch (best_btest) {
1983   default:
1984     if (cmpxy == NULL)
1985       cmpxy = ideal_cmpxy;
1986     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
1987     // and fall through:
1988   case BoolTest::lt:          // x < y
1989   case BoolTest::le:          // x <= y
1990     answer_if_true  = (want_max ? yvalue : xvalue);
1991     answer_if_false = (want_max ? xvalue : yvalue);
1992     break;
1993   case BoolTest::gt:          // x > y
1994   case BoolTest::ge:          // x >= y
1995     answer_if_true  = (want_max ? xvalue : yvalue);
1996     answer_if_false = (want_max ? yvalue : xvalue);
1997     break;
1998   }
1999 
2000   jint hi, lo;
2001   if (want_max) {
2002     // We can sharpen the minimum.
2003     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2004     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2005   } else {
2006     // We can sharpen the maximum.
2007     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2008     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2009   }
2010 
2011   // Use a flow-free graph structure, to avoid creating excess control edges
2012   // which could hinder other optimizations.
2013   // Since Math.min/max is often used with arraycopy, we want
2014   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2015   Node* cmov = CMoveNode::make(NULL, best_bol,
2016                                answer_if_false, answer_if_true,
2017                                TypeInt::make(lo, hi, widen));
2018 
2019   return _gvn.transform(cmov);
2020 
2021   /*
2022   // This is not as desirable as it may seem, since Min and Max
2023   // nodes do not have a full set of optimizations.
2024   // And they would interfere, anyway, with 'if' optimizations
2025   // and with CMoveI canonical forms.
2026   switch (id) {
2027   case vmIntrinsics::_min:
2028     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2029   case vmIntrinsics::_max:
2030     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2031   default:
2032     ShouldNotReachHere();
2033   }
2034   */
2035 }
2036 
2037 inline int
2038 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2039   const TypePtr* base_type = TypePtr::NULL_PTR;
2040   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2041   if (base_type == NULL) {
2042     // Unknown type.
2043     return Type::AnyPtr;
2044   } else if (base_type == TypePtr::NULL_PTR) {
2045     // Since this is a NULL+long form, we have to switch to a rawptr.
2046     base   = _gvn.transform(new CastX2PNode(offset));
2047     offset = MakeConX(0);
2048     return Type::RawPtr;
2049   } else if (base_type->base() == Type::RawPtr) {
2050     return Type::RawPtr;
2051   } else if (base_type->isa_oopptr()) {
2052     // Base is never null => always a heap address.
2053     if (base_type->ptr() == TypePtr::NotNull) {
2054       return Type::OopPtr;
2055     }
2056     // Offset is small => always a heap address.
2057     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2058     if (offset_type != NULL &&
2059         base_type->offset() == 0 &&     // (should always be?)
2060         offset_type->_lo >= 0 &&
2061         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2062       return Type::OopPtr;
2063     }
2064     // Otherwise, it might either be oop+off or NULL+addr.
2065     return Type::AnyPtr;
2066   } else {
2067     // No information:
2068     return Type::AnyPtr;
2069   }
2070 }
2071 
2072 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2073   int kind = classify_unsafe_addr(base, offset);
2074   if (kind == Type::RawPtr) {
2075     return basic_plus_adr(top(), base, offset);
2076   } else {
2077     return basic_plus_adr(base, offset);
2078   }
2079 }
2080 
2081 //--------------------------inline_number_methods-----------------------------
2082 // inline int     Integer.numberOfLeadingZeros(int)
2083 // inline int        Long.numberOfLeadingZeros(long)
2084 //
2085 // inline int     Integer.numberOfTrailingZeros(int)
2086 // inline int        Long.numberOfTrailingZeros(long)
2087 //
2088 // inline int     Integer.bitCount(int)
2089 // inline int        Long.bitCount(long)
2090 //
2091 // inline char  Character.reverseBytes(char)
2092 // inline short     Short.reverseBytes(short)
2093 // inline int     Integer.reverseBytes(int)
2094 // inline long       Long.reverseBytes(long)
2095 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2096   Node* arg = argument(0);
2097   Node* n = NULL;
2098   switch (id) {
2099   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2100   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2101   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2102   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2103   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2104   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2105   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2106   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2107   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2108   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2109   default:  fatal_unexpected_iid(id);  break;
2110   }
2111   set_result(_gvn.transform(n));
2112   return true;
2113 }
2114 
2115 //----------------------------inline_unsafe_access----------------------------
2116 
2117 // Helper that guards and inserts a pre-barrier.
2118 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2119                                         Node* pre_val, bool need_mem_bar) {
2120   // We could be accessing the referent field of a reference object. If so, when G1
2121   // is enabled, we need to log the value in the referent field in an SATB buffer.
2122   // This routine performs some compile time filters and generates suitable
2123   // runtime filters that guard the pre-barrier code.
2124   // Also add memory barrier for non volatile load from the referent field
2125   // to prevent commoning of loads across safepoint.
2126   if (!UseG1GC && !need_mem_bar)
2127     return;
2128 
2129   // Some compile time checks.
2130 
2131   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2132   const TypeX* otype = offset->find_intptr_t_type();
2133   if (otype != NULL && otype->is_con() &&
2134       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2135     // Constant offset but not the reference_offset so just return
2136     return;
2137   }
2138 
2139   // We only need to generate the runtime guards for instances.
2140   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2141   if (btype != NULL) {
2142     if (btype->isa_aryptr()) {
2143       // Array type so nothing to do
2144       return;
2145     }
2146 
2147     const TypeInstPtr* itype = btype->isa_instptr();
2148     if (itype != NULL) {
2149       // Can the klass of base_oop be statically determined to be
2150       // _not_ a sub-class of Reference and _not_ Object?
2151       ciKlass* klass = itype->klass();
2152       if ( klass->is_loaded() &&
2153           !klass->is_subtype_of(env()->Reference_klass()) &&
2154           !env()->Object_klass()->is_subtype_of(klass)) {
2155         return;
2156       }
2157     }
2158   }
2159 
2160   // The compile time filters did not reject base_oop/offset so
2161   // we need to generate the following runtime filters
2162   //
2163   // if (offset == java_lang_ref_Reference::_reference_offset) {
2164   //   if (instance_of(base, java.lang.ref.Reference)) {
2165   //     pre_barrier(_, pre_val, ...);
2166   //   }
2167   // }
2168 
2169   float likely   = PROB_LIKELY(  0.999);
2170   float unlikely = PROB_UNLIKELY(0.999);
2171 
2172   IdealKit ideal(this);
2173 #define __ ideal.
2174 
2175   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2176 
2177   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2178       // Update graphKit memory and control from IdealKit.
2179       sync_kit(ideal);
2180 
2181       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2182       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2183 
2184       // Update IdealKit memory and control from graphKit.
2185       __ sync_kit(this);
2186 
2187       Node* one = __ ConI(1);
2188       // is_instof == 0 if base_oop == NULL
2189       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2190 
2191         // Update graphKit from IdeakKit.
2192         sync_kit(ideal);
2193 
2194         // Use the pre-barrier to record the value in the referent field
2195         pre_barrier(false /* do_load */,
2196                     __ ctrl(),
2197                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2198                     pre_val /* pre_val */,
2199                     T_OBJECT);
2200         if (need_mem_bar) {
2201           // Add memory barrier to prevent commoning reads from this field
2202           // across safepoint since GC can change its value.
2203           insert_mem_bar(Op_MemBarCPUOrder);
2204         }
2205         // Update IdealKit from graphKit.
2206         __ sync_kit(this);
2207 
2208       } __ end_if(); // _ref_type != ref_none
2209   } __ end_if(); // offset == referent_offset
2210 
2211   // Final sync IdealKit and GraphKit.
2212   final_sync(ideal);
2213 #undef __
2214 }
2215 
2216 
2217 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2218   // Attempt to infer a sharper value type from the offset and base type.
2219   ciKlass* sharpened_klass = NULL;
2220 
2221   // See if it is an instance field, with an object type.
2222   if (alias_type->field() != NULL) {
2223     if (alias_type->field()->type()->is_klass()) {
2224       sharpened_klass = alias_type->field()->type()->as_klass();
2225     }
2226   }
2227 
2228   // See if it is a narrow oop array.
2229   if (adr_type->isa_aryptr()) {
2230     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2231       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2232       if (elem_type != NULL) {
2233         sharpened_klass = elem_type->klass();
2234       }
2235     }
2236   }
2237 
2238   // The sharpened class might be unloaded if there is no class loader
2239   // contraint in place.
2240   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2241     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2242 
2243 #ifndef PRODUCT
2244     if (C->print_intrinsics() || C->print_inlining()) {
2245       tty->print("  from base type: ");  adr_type->dump();
2246       tty->print("  sharpened value: ");  tjp->dump();
2247     }
2248 #endif
2249     // Sharpen the value type.
2250     return tjp;
2251   }
2252   return NULL;
2253 }
2254 
2255 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2256   if (callee()->is_static())  return false;  // caller must have the capability!
2257   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2258   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2259   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2260 
2261 #ifndef PRODUCT
2262   {
2263     ResourceMark rm;
2264     // Check the signatures.
2265     ciSignature* sig = callee()->signature();
2266 #ifdef ASSERT
2267     if (!is_store) {
2268       // Object getObject(Object base, int/long offset), etc.
2269       BasicType rtype = sig->return_type()->basic_type();
2270       assert(rtype == type, "getter must return the expected value");
2271       assert(sig->count() == 2, "oop getter has 2 arguments");
2272       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2273       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2274     } else {
2275       // void putObject(Object base, int/long offset, Object x), etc.
2276       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2277       assert(sig->count() == 3, "oop putter has 3 arguments");
2278       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2279       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2280       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2281       assert(vtype == type, "putter must accept the expected value");
2282     }
2283 #endif // ASSERT
2284  }
2285 #endif //PRODUCT
2286 
2287   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2288 
2289   Node* receiver = argument(0);  // type: oop
2290 
2291   // Build address expression.
2292   Node* adr;
2293   Node* heap_base_oop = top();
2294   Node* offset = top();
2295   Node* val;
2296 
2297   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2298   Node* base = argument(1);  // type: oop
2299   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2300   offset = argument(2);  // type: long
2301   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2302   // to be plain byte offsets, which are also the same as those accepted
2303   // by oopDesc::field_base.
2304   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2305          "fieldOffset must be byte-scaled");
2306   // 32-bit machines ignore the high half!
2307   offset = ConvL2X(offset);
2308   adr = make_unsafe_address(base, offset);
2309   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2310     heap_base_oop = base;
2311   }
2312   val = is_store ? argument(4) : NULL;
2313 
2314   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2315 
2316   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2317   // there was not enough information to nail it down.
2318   Compile::AliasType* alias_type = C->alias_type(adr_type);
2319   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2320 
2321   // Only field, array element or unknown locations are supported.
2322   if (alias_type->adr_type() != TypeRawPtr::BOTTOM &&
2323       alias_type->adr_type() != TypeOopPtr::BOTTOM &&
2324       alias_type->basic_type() == T_ILLEGAL) {
2325     return false;
2326   }
2327 
2328   bool mismatched = false;
2329   BasicType bt = alias_type->basic_type();
2330   if (bt != T_ILLEGAL) {
2331     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2332       // Alias type doesn't differentiate between byte[] and boolean[]).
2333       // Use address type to get the element type.
2334       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2335     }
2336     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2337       // accessing an array field with getObject is not a mismatch
2338       bt = T_OBJECT;
2339     }
2340     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2341       // Don't intrinsify mismatched object accesses
2342       return false;
2343     }
2344     mismatched = (bt != type);
2345   } else if (alias_type->adr_type() == TypeOopPtr::BOTTOM) {
2346     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2347   }
2348 
2349   // First guess at the value type.
2350   const Type *value_type = Type::get_const_basic_type(type);
2351 
2352   // We will need memory barriers unless we can determine a unique
2353   // alias category for this reference.  (Note:  If for some reason
2354   // the barriers get omitted and the unsafe reference begins to "pollute"
2355   // the alias analysis of the rest of the graph, either Compile::can_alias
2356   // or Compile::must_alias will throw a diagnostic assert.)
2357   bool need_mem_bar;
2358   switch (kind) {
2359       case Relaxed:
2360           need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2361           break;
2362       case Opaque:
2363           // Opaque uses CPUOrder membars for protection against code movement.
2364       case Acquire:
2365       case Release:
2366       case Volatile:
2367           need_mem_bar = true;
2368           break;
2369       default:
2370           ShouldNotReachHere();
2371   }
2372 
2373   // Some accesses require access atomicity for all types, notably longs and doubles.
2374   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2375   bool requires_atomic_access = false;
2376   switch (kind) {
2377       case Relaxed:
2378           requires_atomic_access = AlwaysAtomicAccesses;
2379           break;
2380       case Opaque:
2381           // Opaque accesses are atomic.
2382       case Acquire:
2383       case Release:
2384       case Volatile:
2385           requires_atomic_access = true;
2386           break;
2387       default:
2388           ShouldNotReachHere();
2389   }
2390 
2391   // Figure out the memory ordering.
2392   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2393   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2394 
2395   // If we are reading the value of the referent field of a Reference
2396   // object (either by using Unsafe directly or through reflection)
2397   // then, if G1 is enabled, we need to record the referent in an
2398   // SATB log buffer using the pre-barrier mechanism.
2399   // Also we need to add memory barrier to prevent commoning reads
2400   // from this field across safepoint since GC can change its value.
2401   bool need_read_barrier = !is_store &&
2402                            offset != top() && heap_base_oop != top();
2403 
2404   if (!is_store && type == T_OBJECT) {
2405     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2406     if (tjp != NULL) {
2407       value_type = tjp;
2408     }
2409   }
2410 
2411   receiver = null_check(receiver);
2412   if (stopped()) {
2413     return true;
2414   }
2415   // Heap pointers get a null-check from the interpreter,
2416   // as a courtesy.  However, this is not guaranteed by Unsafe,
2417   // and it is not possible to fully distinguish unintended nulls
2418   // from intended ones in this API.
2419 
2420   // We need to emit leading and trailing CPU membars (see below) in
2421   // addition to memory membars for special access modes. This is a little
2422   // too strong, but avoids the need to insert per-alias-type
2423   // volatile membars (for stores; compare Parse::do_put_xxx), which
2424   // we cannot do effectively here because we probably only have a
2425   // rough approximation of type.
2426 
2427   switch(kind) {
2428     case Relaxed:
2429     case Opaque:
2430     case Acquire:
2431       break;
2432     case Release:
2433     case Volatile:
2434       if (is_store) {
2435         insert_mem_bar(Op_MemBarRelease);
2436       } else {
2437         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2438           insert_mem_bar(Op_MemBarVolatile);
2439         }
2440       }
2441       break;
2442     default:
2443       ShouldNotReachHere();
2444   }
2445 
2446   // Memory barrier to prevent normal and 'unsafe' accesses from
2447   // bypassing each other.  Happens after null checks, so the
2448   // exception paths do not take memory state from the memory barrier,
2449   // so there's no problems making a strong assert about mixing users
2450   // of safe & unsafe memory.
2451   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2452 
2453   if (!is_store) {
2454     Node* p = NULL;
2455     // Try to constant fold a load from a constant field
2456     ciField* field = alias_type->field();
2457     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2458       // final or stable field
2459       p = make_constant_from_field(field, heap_base_oop);
2460     }
2461     if (p == NULL) {
2462       // To be valid, unsafe loads may depend on other conditions than
2463       // the one that guards them: pin the Load node
2464       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2465       // load value
2466       switch (type) {
2467       case T_BOOLEAN:
2468       case T_CHAR:
2469       case T_BYTE:
2470       case T_SHORT:
2471       case T_INT:
2472       case T_LONG:
2473       case T_FLOAT:
2474       case T_DOUBLE:
2475         break;
2476       case T_OBJECT:
2477         if (need_read_barrier) {
2478           // We do not require a mem bar inside pre_barrier if need_mem_bar
2479           // is set: the barriers would be emitted by us.
2480           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2481         }
2482         break;
2483       case T_ADDRESS:
2484         // Cast to an int type.
2485         p = _gvn.transform(new CastP2XNode(NULL, p));
2486         p = ConvX2UL(p);
2487         break;
2488       default:
2489         fatal("unexpected type %d: %s", type, type2name(type));
2490         break;
2491       }
2492     }
2493     // The load node has the control of the preceding MemBarCPUOrder.  All
2494     // following nodes will have the control of the MemBarCPUOrder inserted at
2495     // the end of this method.  So, pushing the load onto the stack at a later
2496     // point is fine.
2497     set_result(p);
2498   } else {
2499     // place effect of store into memory
2500     switch (type) {
2501     case T_DOUBLE:
2502       val = dstore_rounding(val);
2503       break;
2504     case T_ADDRESS:
2505       // Repackage the long as a pointer.
2506       val = ConvL2X(val);
2507       val = _gvn.transform(new CastX2PNode(val));
2508       break;
2509     }
2510 
2511     if (type != T_OBJECT) {
2512       (void) store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2513     } else {
2514       // Possibly an oop being stored to Java heap or native memory
2515       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2516         // oop to Java heap.
2517         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2518       } else {
2519         // We can't tell at compile time if we are storing in the Java heap or outside
2520         // of it. So we need to emit code to conditionally do the proper type of
2521         // store.
2522 
2523         IdealKit ideal(this);
2524 #define __ ideal.
2525         // QQQ who knows what probability is here??
2526         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2527           // Sync IdealKit and graphKit.
2528           sync_kit(ideal);
2529           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2530           // Update IdealKit memory.
2531           __ sync_kit(this);
2532         } __ else_(); {
2533           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, requires_atomic_access, mismatched);
2534         } __ end_if();
2535         // Final sync IdealKit and GraphKit.
2536         final_sync(ideal);
2537 #undef __
2538       }
2539     }
2540   }
2541 
2542   switch(kind) {
2543     case Relaxed:
2544     case Opaque:
2545     case Release:
2546       break;
2547     case Acquire:
2548     case Volatile:
2549       if (!is_store) {
2550         insert_mem_bar(Op_MemBarAcquire);
2551       } else {
2552         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2553           insert_mem_bar(Op_MemBarVolatile);
2554         }
2555       }
2556       break;
2557     default:
2558       ShouldNotReachHere();
2559   }
2560 
2561   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2562 
2563   return true;
2564 }
2565 
2566 //----------------------------inline_unsafe_load_store----------------------------
2567 // This method serves a couple of different customers (depending on LoadStoreKind):
2568 //
2569 // LS_cmp_swap:
2570 //
2571 //   boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2572 //   boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2573 //   boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2574 //
2575 // LS_cmp_swap_weak:
2576 //
2577 //   boolean weakCompareAndSwapObject(       Object o, long offset, Object expected, Object x);
2578 //   boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
2579 //   boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
2580 //
2581 //   boolean weakCompareAndSwapInt(          Object o, long offset, int    expected, int    x);
2582 //   boolean weakCompareAndSwapIntAcquire(   Object o, long offset, int    expected, int    x);
2583 //   boolean weakCompareAndSwapIntRelease(   Object o, long offset, int    expected, int    x);
2584 //
2585 //   boolean weakCompareAndSwapLong(         Object o, long offset, long   expected, long   x);
2586 //   boolean weakCompareAndSwapLongAcquire(  Object o, long offset, long   expected, long   x);
2587 //   boolean weakCompareAndSwapLongRelease(  Object o, long offset, long   expected, long   x);
2588 //
2589 // LS_cmp_exchange:
2590 //
2591 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2592 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2593 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2594 //
2595 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2596 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2597 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2598 //
2599 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2600 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2601 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2602 //
2603 // LS_get_add:
2604 //
2605 //   int  getAndAddInt( Object o, long offset, int  delta)
2606 //   long getAndAddLong(Object o, long offset, long delta)
2607 //
2608 // LS_get_set:
2609 //
2610 //   int    getAndSet(Object o, long offset, int    newValue)
2611 //   long   getAndSet(Object o, long offset, long   newValue)
2612 //   Object getAndSet(Object o, long offset, Object newValue)
2613 //
2614 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2615   // This basic scheme here is the same as inline_unsafe_access, but
2616   // differs in enough details that combining them would make the code
2617   // overly confusing.  (This is a true fact! I originally combined
2618   // them, but even I was confused by it!) As much code/comments as
2619   // possible are retained from inline_unsafe_access though to make
2620   // the correspondences clearer. - dl
2621 
2622   if (callee()->is_static())  return false;  // caller must have the capability!
2623 
2624 #ifndef PRODUCT
2625   BasicType rtype;
2626   {
2627     ResourceMark rm;
2628     // Check the signatures.
2629     ciSignature* sig = callee()->signature();
2630     rtype = sig->return_type()->basic_type();
2631     switch(kind) {
2632       case LS_get_add:
2633       case LS_get_set: {
2634       // Check the signatures.
2635 #ifdef ASSERT
2636       assert(rtype == type, "get and set must return the expected type");
2637       assert(sig->count() == 3, "get and set has 3 arguments");
2638       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2639       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2640       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2641       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2642 #endif // ASSERT
2643         break;
2644       }
2645       case LS_cmp_swap:
2646       case LS_cmp_swap_weak: {
2647       // Check the signatures.
2648 #ifdef ASSERT
2649       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2650       assert(sig->count() == 4, "CAS has 4 arguments");
2651       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2652       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2653 #endif // ASSERT
2654         break;
2655       }
2656       case LS_cmp_exchange: {
2657       // Check the signatures.
2658 #ifdef ASSERT
2659       assert(rtype == type, "CAS must return the expected type");
2660       assert(sig->count() == 4, "CAS has 4 arguments");
2661       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2662       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2663 #endif // ASSERT
2664         break;
2665       }
2666       default:
2667         ShouldNotReachHere();
2668     }
2669   }
2670 #endif //PRODUCT
2671 
2672   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2673 
2674   // Get arguments:
2675   Node* receiver = NULL;
2676   Node* base     = NULL;
2677   Node* offset   = NULL;
2678   Node* oldval   = NULL;
2679   Node* newval   = NULL;
2680   switch(kind) {
2681     case LS_cmp_swap:
2682     case LS_cmp_swap_weak:
2683     case LS_cmp_exchange: {
2684       const bool two_slot_type = type2size[type] == 2;
2685       receiver = argument(0);  // type: oop
2686       base     = argument(1);  // type: oop
2687       offset   = argument(2);  // type: long
2688       oldval   = argument(4);  // type: oop, int, or long
2689       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2690       break;
2691     }
2692     case LS_get_add:
2693     case LS_get_set: {
2694       receiver = argument(0);  // type: oop
2695       base     = argument(1);  // type: oop
2696       offset   = argument(2);  // type: long
2697       oldval   = NULL;
2698       newval   = argument(4);  // type: oop, int, or long
2699       break;
2700     }
2701     default:
2702       ShouldNotReachHere();
2703   }
2704 
2705   // Build field offset expression.
2706   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2707   // to be plain byte offsets, which are also the same as those accepted
2708   // by oopDesc::field_base.
2709   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2710   // 32-bit machines ignore the high half of long offsets
2711   offset = ConvL2X(offset);
2712   Node* adr = make_unsafe_address(base, offset);
2713   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2714 
2715   Compile::AliasType* alias_type = C->alias_type(adr_type);
2716   BasicType bt = alias_type->basic_type();
2717   if (bt != T_ILLEGAL &&
2718       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2719     // Don't intrinsify mismatched object accesses.
2720     return false;
2721   }
2722 
2723   // For CAS, unlike inline_unsafe_access, there seems no point in
2724   // trying to refine types. Just use the coarse types here.
2725   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2726   const Type *value_type = Type::get_const_basic_type(type);
2727 
2728   switch (kind) {
2729     case LS_get_set:
2730     case LS_cmp_exchange: {
2731       if (type == T_OBJECT) {
2732         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2733         if (tjp != NULL) {
2734           value_type = tjp;
2735         }
2736       }
2737       break;
2738     }
2739     case LS_cmp_swap:
2740     case LS_cmp_swap_weak:
2741     case LS_get_add:
2742       break;
2743     default:
2744       ShouldNotReachHere();
2745   }
2746 
2747   // Null check receiver.
2748   receiver = null_check(receiver);
2749   if (stopped()) {
2750     return true;
2751   }
2752 
2753   int alias_idx = C->get_alias_index(adr_type);
2754 
2755   // Memory-model-wise, a LoadStore acts like a little synchronized
2756   // block, so needs barriers on each side.  These don't translate
2757   // into actual barriers on most machines, but we still need rest of
2758   // compiler to respect ordering.
2759 
2760   switch (access_kind) {
2761     case Relaxed:
2762     case Acquire:
2763       break;
2764     case Release:
2765       insert_mem_bar(Op_MemBarRelease);
2766       break;
2767     case Volatile:
2768       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2769         insert_mem_bar(Op_MemBarVolatile);
2770       } else {
2771         insert_mem_bar(Op_MemBarRelease);
2772       }
2773       break;
2774     default:
2775       ShouldNotReachHere();
2776   }
2777   insert_mem_bar(Op_MemBarCPUOrder);
2778 
2779   // Figure out the memory ordering.
2780   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2781 
2782   // 4984716: MemBars must be inserted before this
2783   //          memory node in order to avoid a false
2784   //          dependency which will confuse the scheduler.
2785   Node *mem = memory(alias_idx);
2786 
2787   // For now, we handle only those cases that actually exist: ints,
2788   // longs, and Object. Adding others should be straightforward.
2789   Node* load_store = NULL;
2790   switch(type) {
2791   case T_BYTE:
2792     switch(kind) {
2793       case LS_get_add:
2794         load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2795         break;
2796       case LS_get_set:
2797         load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2798         break;
2799       case LS_cmp_swap_weak:
2800         load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2801         break;
2802       case LS_cmp_swap:
2803         load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2804         break;
2805       case LS_cmp_exchange:
2806         load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2807         break;
2808       default:
2809         ShouldNotReachHere();
2810     }
2811     break;
2812   case T_SHORT:
2813     switch(kind) {
2814       case LS_get_add:
2815         load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2816         break;
2817       case LS_get_set:
2818         load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2819         break;
2820       case LS_cmp_swap_weak:
2821         load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2822         break;
2823       case LS_cmp_swap:
2824         load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2825         break;
2826       case LS_cmp_exchange:
2827         load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2828         break;
2829       default:
2830         ShouldNotReachHere();
2831     }
2832     break;
2833   case T_INT:
2834     switch(kind) {
2835       case LS_get_add:
2836         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2837         break;
2838       case LS_get_set:
2839         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2840         break;
2841       case LS_cmp_swap_weak:
2842         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2843         break;
2844       case LS_cmp_swap:
2845         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2846         break;
2847       case LS_cmp_exchange:
2848         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2849         break;
2850       default:
2851         ShouldNotReachHere();
2852     }
2853     break;
2854   case T_LONG:
2855     switch(kind) {
2856       case LS_get_add:
2857         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2858         break;
2859       case LS_get_set:
2860         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2861         break;
2862       case LS_cmp_swap_weak:
2863         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2864         break;
2865       case LS_cmp_swap:
2866         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2867         break;
2868       case LS_cmp_exchange:
2869         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2870         break;
2871       default:
2872         ShouldNotReachHere();
2873     }
2874     break;
2875   case T_OBJECT:
2876     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2877     // could be delayed during Parse (for example, in adjust_map_after_if()).
2878     // Execute transformation here to avoid barrier generation in such case.
2879     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2880       newval = _gvn.makecon(TypePtr::NULL_PTR);
2881 
2882     // Reference stores need a store barrier.
2883     switch(kind) {
2884       case LS_get_set: {
2885         // If pre-barrier must execute before the oop store, old value will require do_load here.
2886         if (!can_move_pre_barrier()) {
2887           pre_barrier(true /* do_load*/,
2888                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2889                       NULL /* pre_val*/,
2890                       T_OBJECT);
2891         } // Else move pre_barrier to use load_store value, see below.
2892         break;
2893       }
2894       case LS_cmp_swap_weak:
2895       case LS_cmp_swap:
2896       case LS_cmp_exchange: {
2897         // Same as for newval above:
2898         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2899           oldval = _gvn.makecon(TypePtr::NULL_PTR);
2900         }
2901         // The only known value which might get overwritten is oldval.
2902         pre_barrier(false /* do_load */,
2903                     control(), NULL, NULL, max_juint, NULL, NULL,
2904                     oldval /* pre_val */,
2905                     T_OBJECT);
2906         break;
2907       }
2908       default:
2909         ShouldNotReachHere();
2910     }
2911 
2912 #ifdef _LP64
2913     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2914       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2915 
2916       switch(kind) {
2917         case LS_get_set:
2918           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2919           break;
2920         case LS_cmp_swap_weak: {
2921           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2922           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2923           break;
2924         }
2925         case LS_cmp_swap: {
2926           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2927           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2928           break;
2929         }
2930         case LS_cmp_exchange: {
2931           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2932           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2933           break;
2934         }
2935         default:
2936           ShouldNotReachHere();
2937       }
2938     } else
2939 #endif
2940     switch (kind) {
2941       case LS_get_set:
2942         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2943         break;
2944       case LS_cmp_swap_weak:
2945         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2946         break;
2947       case LS_cmp_swap:
2948         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2949         break;
2950       case LS_cmp_exchange:
2951         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
2952         break;
2953       default:
2954         ShouldNotReachHere();
2955     }
2956 
2957     // Emit the post barrier only when the actual store happened. This makes sense
2958     // to check only for LS_cmp_* that can fail to set the value.
2959     // LS_cmp_exchange does not produce any branches by default, so there is no
2960     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
2961     // CompareAndExchange and move branches here, it would make sense to conditionalize
2962     // post_barriers for LS_cmp_exchange as well.
2963     //
2964     // CAS success path is marked more likely since we anticipate this is a performance
2965     // critical path, while CAS failure path can use the penalty for going through unlikely
2966     // path as backoff. Which is still better than doing a store barrier there.
2967     switch (kind) {
2968       case LS_get_set:
2969       case LS_cmp_exchange: {
2970         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2971         break;
2972       }
2973       case LS_cmp_swap_weak:
2974       case LS_cmp_swap: {
2975         IdealKit ideal(this);
2976         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2977           sync_kit(ideal);
2978           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2979           ideal.sync_kit(this);
2980         } ideal.end_if();
2981         final_sync(ideal);
2982         break;
2983       }
2984       default:
2985         ShouldNotReachHere();
2986     }
2987     break;
2988   default:
2989     fatal("unexpected type %d: %s", type, type2name(type));
2990     break;
2991   }
2992 
2993   // SCMemProjNodes represent the memory state of a LoadStore. Their
2994   // main role is to prevent LoadStore nodes from being optimized away
2995   // when their results aren't used.
2996   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2997   set_memory(proj, alias_idx);
2998 
2999   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3000 #ifdef _LP64
3001     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3002       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3003     }
3004 #endif
3005     if (can_move_pre_barrier()) {
3006       // Don't need to load pre_val. The old value is returned by load_store.
3007       // The pre_barrier can execute after the xchg as long as no safepoint
3008       // gets inserted between them.
3009       pre_barrier(false /* do_load */,
3010                   control(), NULL, NULL, max_juint, NULL, NULL,
3011                   load_store /* pre_val */,
3012                   T_OBJECT);
3013     }
3014   }
3015 
3016   // Add the trailing membar surrounding the access
3017   insert_mem_bar(Op_MemBarCPUOrder);
3018 
3019   switch (access_kind) {
3020     case Relaxed:
3021     case Release:
3022       break; // do nothing
3023     case Acquire:
3024     case Volatile:
3025       insert_mem_bar(Op_MemBarAcquire);
3026       // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3027       break;
3028     default:
3029       ShouldNotReachHere();
3030   }
3031 
3032   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3033   set_result(load_store);
3034   return true;
3035 }
3036 
3037 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3038   MemNode::MemOrd mo = MemNode::unset;
3039   switch(kind) {
3040     case Opaque:
3041     case Relaxed:  mo = MemNode::unordered; break;
3042     case Acquire:  mo = MemNode::acquire;   break;
3043     case Release:  mo = MemNode::release;   break;
3044     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3045     default:
3046       ShouldNotReachHere();
3047   }
3048   guarantee(mo != MemNode::unset, "Should select memory ordering");
3049   return mo;
3050 }
3051 
3052 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3053   MemNode::MemOrd mo = MemNode::unset;
3054   switch(kind) {
3055     case Opaque:
3056     case Relaxed:  mo = MemNode::unordered; break;
3057     case Acquire:  mo = MemNode::acquire;   break;
3058     case Release:  mo = MemNode::release;   break;
3059     case Volatile: mo = MemNode::seqcst;    break;
3060     default:
3061       ShouldNotReachHere();
3062   }
3063   guarantee(mo != MemNode::unset, "Should select memory ordering");
3064   return mo;
3065 }
3066 
3067 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3068   // Regardless of form, don't allow previous ld/st to move down,
3069   // then issue acquire, release, or volatile mem_bar.
3070   insert_mem_bar(Op_MemBarCPUOrder);
3071   switch(id) {
3072     case vmIntrinsics::_loadFence:
3073       insert_mem_bar(Op_LoadFence);
3074       return true;
3075     case vmIntrinsics::_storeFence:
3076       insert_mem_bar(Op_StoreFence);
3077       return true;
3078     case vmIntrinsics::_fullFence:
3079       insert_mem_bar(Op_MemBarVolatile);
3080       return true;
3081     default:
3082       fatal_unexpected_iid(id);
3083       return false;
3084   }
3085 }
3086 
3087 bool LibraryCallKit::inline_onspinwait() {
3088   insert_mem_bar(Op_OnSpinWait);
3089   return true;
3090 }
3091 
3092 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3093   if (!kls->is_Con()) {
3094     return true;
3095   }
3096   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3097   if (klsptr == NULL) {
3098     return true;
3099   }
3100   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3101   // don't need a guard for a klass that is already initialized
3102   return !ik->is_initialized();
3103 }
3104 
3105 //----------------------------inline_unsafe_allocate---------------------------
3106 // public native Object Unsafe.allocateInstance(Class<?> cls);
3107 bool LibraryCallKit::inline_unsafe_allocate() {
3108   if (callee()->is_static())  return false;  // caller must have the capability!
3109 
3110   null_check_receiver();  // null-check, then ignore
3111   Node* cls = null_check(argument(1));
3112   if (stopped())  return true;
3113 
3114   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3115   kls = null_check(kls);
3116   if (stopped())  return true;  // argument was like int.class
3117 
3118   Node* test = NULL;
3119   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3120     // Note:  The argument might still be an illegal value like
3121     // Serializable.class or Object[].class.   The runtime will handle it.
3122     // But we must make an explicit check for initialization.
3123     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3124     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3125     // can generate code to load it as unsigned byte.
3126     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3127     Node* bits = intcon(InstanceKlass::fully_initialized);
3128     test = _gvn.transform(new SubINode(inst, bits));
3129     // The 'test' is non-zero if we need to take a slow path.
3130   }
3131 
3132   Node* obj = new_instance(kls, test);
3133   set_result(obj);
3134   return true;
3135 }
3136 
3137 //------------------------inline_native_time_funcs--------------
3138 // inline code for System.currentTimeMillis() and System.nanoTime()
3139 // these have the same type and signature
3140 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3141   const TypeFunc* tf = OptoRuntime::void_long_Type();
3142   const TypePtr* no_memory_effects = NULL;
3143   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3144   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3145 #ifdef ASSERT
3146   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3147   assert(value_top == top(), "second value must be top");
3148 #endif
3149   set_result(value);
3150   return true;
3151 }
3152 
3153 //------------------------inline_native_currentThread------------------
3154 bool LibraryCallKit::inline_native_currentThread() {
3155   Node* junk = NULL;
3156   set_result(generate_current_thread(junk));
3157   return true;
3158 }
3159 
3160 //------------------------inline_native_isInterrupted------------------
3161 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3162 bool LibraryCallKit::inline_native_isInterrupted() {
3163   // Add a fast path to t.isInterrupted(clear_int):
3164   //   (t == Thread.current() &&
3165   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3166   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3167   // So, in the common case that the interrupt bit is false,
3168   // we avoid making a call into the VM.  Even if the interrupt bit
3169   // is true, if the clear_int argument is false, we avoid the VM call.
3170   // However, if the receiver is not currentThread, we must call the VM,
3171   // because there must be some locking done around the operation.
3172 
3173   // We only go to the fast case code if we pass two guards.
3174   // Paths which do not pass are accumulated in the slow_region.
3175 
3176   enum {
3177     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3178     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3179     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3180     PATH_LIMIT
3181   };
3182 
3183   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3184   // out of the function.
3185   insert_mem_bar(Op_MemBarCPUOrder);
3186 
3187   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3188   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3189 
3190   RegionNode* slow_region = new RegionNode(1);
3191   record_for_igvn(slow_region);
3192 
3193   // (a) Receiving thread must be the current thread.
3194   Node* rec_thr = argument(0);
3195   Node* tls_ptr = NULL;
3196   Node* cur_thr = generate_current_thread(tls_ptr);
3197   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3198   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3199 
3200   generate_slow_guard(bol_thr, slow_region);
3201 
3202   // (b) Interrupt bit on TLS must be false.
3203   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3204   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3205   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3206 
3207   // Set the control input on the field _interrupted read to prevent it floating up.
3208   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3209   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3210   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3211 
3212   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3213 
3214   // First fast path:  if (!TLS._interrupted) return false;
3215   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3216   result_rgn->init_req(no_int_result_path, false_bit);
3217   result_val->init_req(no_int_result_path, intcon(0));
3218 
3219   // drop through to next case
3220   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3221 
3222 #ifndef _WINDOWS
3223   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3224   Node* clr_arg = argument(1);
3225   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3226   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3227   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3228 
3229   // Second fast path:  ... else if (!clear_int) return true;
3230   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3231   result_rgn->init_req(no_clear_result_path, false_arg);
3232   result_val->init_req(no_clear_result_path, intcon(1));
3233 
3234   // drop through to next case
3235   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3236 #else
3237   // To return true on Windows you must read the _interrupted field
3238   // and check the event state i.e. take the slow path.
3239 #endif // _WINDOWS
3240 
3241   // (d) Otherwise, go to the slow path.
3242   slow_region->add_req(control());
3243   set_control( _gvn.transform(slow_region));
3244 
3245   if (stopped()) {
3246     // There is no slow path.
3247     result_rgn->init_req(slow_result_path, top());
3248     result_val->init_req(slow_result_path, top());
3249   } else {
3250     // non-virtual because it is a private non-static
3251     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3252 
3253     Node* slow_val = set_results_for_java_call(slow_call);
3254     // this->control() comes from set_results_for_java_call
3255 
3256     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3257     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3258 
3259     // These two phis are pre-filled with copies of of the fast IO and Memory
3260     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3261     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3262 
3263     result_rgn->init_req(slow_result_path, control());
3264     result_io ->init_req(slow_result_path, i_o());
3265     result_mem->init_req(slow_result_path, reset_memory());
3266     result_val->init_req(slow_result_path, slow_val);
3267 
3268     set_all_memory(_gvn.transform(result_mem));
3269     set_i_o(       _gvn.transform(result_io));
3270   }
3271 
3272   C->set_has_split_ifs(true); // Has chance for split-if optimization
3273   set_result(result_rgn, result_val);
3274   return true;
3275 }
3276 
3277 //---------------------------load_mirror_from_klass----------------------------
3278 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3279 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3280   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3281   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3282 }
3283 
3284 //-----------------------load_klass_from_mirror_common-------------------------
3285 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3286 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3287 // and branch to the given path on the region.
3288 // If never_see_null, take an uncommon trap on null, so we can optimistically
3289 // compile for the non-null case.
3290 // If the region is NULL, force never_see_null = true.
3291 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3292                                                     bool never_see_null,
3293                                                     RegionNode* region,
3294                                                     int null_path,
3295                                                     int offset) {
3296   if (region == NULL)  never_see_null = true;
3297   Node* p = basic_plus_adr(mirror, offset);
3298   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3299   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3300   Node* null_ctl = top();
3301   kls = null_check_oop(kls, &null_ctl, never_see_null);
3302   if (region != NULL) {
3303     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3304     region->init_req(null_path, null_ctl);
3305   } else {
3306     assert(null_ctl == top(), "no loose ends");
3307   }
3308   return kls;
3309 }
3310 
3311 //--------------------(inline_native_Class_query helpers)---------------------
3312 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3313 // Fall through if (mods & mask) == bits, take the guard otherwise.
3314 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3315   // Branch around if the given klass has the given modifier bit set.
3316   // Like generate_guard, adds a new path onto the region.
3317   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3318   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3319   Node* mask = intcon(modifier_mask);
3320   Node* bits = intcon(modifier_bits);
3321   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3322   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3323   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3324   return generate_fair_guard(bol, region);
3325 }
3326 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3327   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3328 }
3329 
3330 //-------------------------inline_native_Class_query-------------------
3331 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3332   const Type* return_type = TypeInt::BOOL;
3333   Node* prim_return_value = top();  // what happens if it's a primitive class?
3334   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3335   bool expect_prim = false;     // most of these guys expect to work on refs
3336 
3337   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3338 
3339   Node* mirror = argument(0);
3340   Node* obj    = top();
3341 
3342   switch (id) {
3343   case vmIntrinsics::_isInstance:
3344     // nothing is an instance of a primitive type
3345     prim_return_value = intcon(0);
3346     obj = argument(1);
3347     break;
3348   case vmIntrinsics::_getModifiers:
3349     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3350     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3351     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3352     break;
3353   case vmIntrinsics::_isInterface:
3354     prim_return_value = intcon(0);
3355     break;
3356   case vmIntrinsics::_isArray:
3357     prim_return_value = intcon(0);
3358     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3359     break;
3360   case vmIntrinsics::_isPrimitive:
3361     prim_return_value = intcon(1);
3362     expect_prim = true;  // obviously
3363     break;
3364   case vmIntrinsics::_getSuperclass:
3365     prim_return_value = null();
3366     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3367     break;
3368   case vmIntrinsics::_getClassAccessFlags:
3369     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3370     return_type = TypeInt::INT;  // not bool!  6297094
3371     break;
3372   default:
3373     fatal_unexpected_iid(id);
3374     break;
3375   }
3376 
3377   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3378   if (mirror_con == NULL)  return false;  // cannot happen?
3379 
3380 #ifndef PRODUCT
3381   if (C->print_intrinsics() || C->print_inlining()) {
3382     ciType* k = mirror_con->java_mirror_type();
3383     if (k) {
3384       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3385       k->print_name();
3386       tty->cr();
3387     }
3388   }
3389 #endif
3390 
3391   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3392   RegionNode* region = new RegionNode(PATH_LIMIT);
3393   record_for_igvn(region);
3394   PhiNode* phi = new PhiNode(region, return_type);
3395 
3396   // The mirror will never be null of Reflection.getClassAccessFlags, however
3397   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3398   // if it is. See bug 4774291.
3399 
3400   // For Reflection.getClassAccessFlags(), the null check occurs in
3401   // the wrong place; see inline_unsafe_access(), above, for a similar
3402   // situation.
3403   mirror = null_check(mirror);
3404   // If mirror or obj is dead, only null-path is taken.
3405   if (stopped())  return true;
3406 
3407   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3408 
3409   // Now load the mirror's klass metaobject, and null-check it.
3410   // Side-effects region with the control path if the klass is null.
3411   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3412   // If kls is null, we have a primitive mirror.
3413   phi->init_req(_prim_path, prim_return_value);
3414   if (stopped()) { set_result(region, phi); return true; }
3415   bool safe_for_replace = (region->in(_prim_path) == top());
3416 
3417   Node* p;  // handy temp
3418   Node* null_ctl;
3419 
3420   // Now that we have the non-null klass, we can perform the real query.
3421   // For constant classes, the query will constant-fold in LoadNode::Value.
3422   Node* query_value = top();
3423   switch (id) {
3424   case vmIntrinsics::_isInstance:
3425     // nothing is an instance of a primitive type
3426     query_value = gen_instanceof(obj, kls, safe_for_replace);
3427     break;
3428 
3429   case vmIntrinsics::_getModifiers:
3430     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3431     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3432     break;
3433 
3434   case vmIntrinsics::_isInterface:
3435     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3436     if (generate_interface_guard(kls, region) != NULL)
3437       // A guard was added.  If the guard is taken, it was an interface.
3438       phi->add_req(intcon(1));
3439     // If we fall through, it's a plain class.
3440     query_value = intcon(0);
3441     break;
3442 
3443   case vmIntrinsics::_isArray:
3444     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3445     if (generate_array_guard(kls, region) != NULL)
3446       // A guard was added.  If the guard is taken, it was an array.
3447       phi->add_req(intcon(1));
3448     // If we fall through, it's a plain class.
3449     query_value = intcon(0);
3450     break;
3451 
3452   case vmIntrinsics::_isPrimitive:
3453     query_value = intcon(0); // "normal" path produces false
3454     break;
3455 
3456   case vmIntrinsics::_getSuperclass:
3457     // The rules here are somewhat unfortunate, but we can still do better
3458     // with random logic than with a JNI call.
3459     // Interfaces store null or Object as _super, but must report null.
3460     // Arrays store an intermediate super as _super, but must report Object.
3461     // Other types can report the actual _super.
3462     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3463     if (generate_interface_guard(kls, region) != NULL)
3464       // A guard was added.  If the guard is taken, it was an interface.
3465       phi->add_req(null());
3466     if (generate_array_guard(kls, region) != NULL)
3467       // A guard was added.  If the guard is taken, it was an array.
3468       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3469     // If we fall through, it's a plain class.  Get its _super.
3470     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3471     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3472     null_ctl = top();
3473     kls = null_check_oop(kls, &null_ctl);
3474     if (null_ctl != top()) {
3475       // If the guard is taken, Object.superClass is null (both klass and mirror).
3476       region->add_req(null_ctl);
3477       phi   ->add_req(null());
3478     }
3479     if (!stopped()) {
3480       query_value = load_mirror_from_klass(kls);
3481     }
3482     break;
3483 
3484   case vmIntrinsics::_getClassAccessFlags:
3485     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3486     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3487     break;
3488 
3489   default:
3490     fatal_unexpected_iid(id);
3491     break;
3492   }
3493 
3494   // Fall-through is the normal case of a query to a real class.
3495   phi->init_req(1, query_value);
3496   region->init_req(1, control());
3497 
3498   C->set_has_split_ifs(true); // Has chance for split-if optimization
3499   set_result(region, phi);
3500   return true;
3501 }
3502 
3503 //-------------------------inline_Class_cast-------------------
3504 bool LibraryCallKit::inline_Class_cast() {
3505   Node* mirror = argument(0); // Class
3506   Node* obj    = argument(1);
3507   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3508   if (mirror_con == NULL) {
3509     return false;  // dead path (mirror->is_top()).
3510   }
3511   if (obj == NULL || obj->is_top()) {
3512     return false;  // dead path
3513   }
3514   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3515 
3516   // First, see if Class.cast() can be folded statically.
3517   // java_mirror_type() returns non-null for compile-time Class constants.
3518   ciType* tm = mirror_con->java_mirror_type();
3519   if (tm != NULL && tm->is_klass() &&
3520       tp != NULL && tp->klass() != NULL) {
3521     if (!tp->klass()->is_loaded()) {
3522       // Don't use intrinsic when class is not loaded.
3523       return false;
3524     } else {
3525       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3526       if (static_res == Compile::SSC_always_true) {
3527         // isInstance() is true - fold the code.
3528         set_result(obj);
3529         return true;
3530       } else if (static_res == Compile::SSC_always_false) {
3531         // Don't use intrinsic, have to throw ClassCastException.
3532         // If the reference is null, the non-intrinsic bytecode will
3533         // be optimized appropriately.
3534         return false;
3535       }
3536     }
3537   }
3538 
3539   // Bailout intrinsic and do normal inlining if exception path is frequent.
3540   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3541     return false;
3542   }
3543 
3544   // Generate dynamic checks.
3545   // Class.cast() is java implementation of _checkcast bytecode.
3546   // Do checkcast (Parse::do_checkcast()) optimizations here.
3547 
3548   mirror = null_check(mirror);
3549   // If mirror is dead, only null-path is taken.
3550   if (stopped()) {
3551     return true;
3552   }
3553 
3554   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3555   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3556   RegionNode* region = new RegionNode(PATH_LIMIT);
3557   record_for_igvn(region);
3558 
3559   // Now load the mirror's klass metaobject, and null-check it.
3560   // If kls is null, we have a primitive mirror and
3561   // nothing is an instance of a primitive type.
3562   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3563 
3564   Node* res = top();
3565   if (!stopped()) {
3566     Node* bad_type_ctrl = top();
3567     // Do checkcast optimizations.
3568     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3569     region->init_req(_bad_type_path, bad_type_ctrl);
3570   }
3571   if (region->in(_prim_path) != top() ||
3572       region->in(_bad_type_path) != top()) {
3573     // Let Interpreter throw ClassCastException.
3574     PreserveJVMState pjvms(this);
3575     set_control(_gvn.transform(region));
3576     uncommon_trap(Deoptimization::Reason_intrinsic,
3577                   Deoptimization::Action_maybe_recompile);
3578   }
3579   if (!stopped()) {
3580     set_result(res);
3581   }
3582   return true;
3583 }
3584 
3585 
3586 //--------------------------inline_native_subtype_check------------------------
3587 // This intrinsic takes the JNI calls out of the heart of
3588 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3589 bool LibraryCallKit::inline_native_subtype_check() {
3590   // Pull both arguments off the stack.
3591   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3592   args[0] = argument(0);
3593   args[1] = argument(1);
3594   Node* klasses[2];             // corresponding Klasses: superk, subk
3595   klasses[0] = klasses[1] = top();
3596 
3597   enum {
3598     // A full decision tree on {superc is prim, subc is prim}:
3599     _prim_0_path = 1,           // {P,N} => false
3600                                 // {P,P} & superc!=subc => false
3601     _prim_same_path,            // {P,P} & superc==subc => true
3602     _prim_1_path,               // {N,P} => false
3603     _ref_subtype_path,          // {N,N} & subtype check wins => true
3604     _both_ref_path,             // {N,N} & subtype check loses => false
3605     PATH_LIMIT
3606   };
3607 
3608   RegionNode* region = new RegionNode(PATH_LIMIT);
3609   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3610   record_for_igvn(region);
3611 
3612   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3613   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3614   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3615 
3616   // First null-check both mirrors and load each mirror's klass metaobject.
3617   int which_arg;
3618   for (which_arg = 0; which_arg <= 1; which_arg++) {
3619     Node* arg = args[which_arg];
3620     arg = null_check(arg);
3621     if (stopped())  break;
3622     args[which_arg] = arg;
3623 
3624     Node* p = basic_plus_adr(arg, class_klass_offset);
3625     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3626     klasses[which_arg] = _gvn.transform(kls);
3627   }
3628 
3629   // Having loaded both klasses, test each for null.
3630   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3631   for (which_arg = 0; which_arg <= 1; which_arg++) {
3632     Node* kls = klasses[which_arg];
3633     Node* null_ctl = top();
3634     kls = null_check_oop(kls, &null_ctl, never_see_null);
3635     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3636     region->init_req(prim_path, null_ctl);
3637     if (stopped())  break;
3638     klasses[which_arg] = kls;
3639   }
3640 
3641   if (!stopped()) {
3642     // now we have two reference types, in klasses[0..1]
3643     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3644     Node* superk = klasses[0];  // the receiver
3645     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3646     // now we have a successful reference subtype check
3647     region->set_req(_ref_subtype_path, control());
3648   }
3649 
3650   // If both operands are primitive (both klasses null), then
3651   // we must return true when they are identical primitives.
3652   // It is convenient to test this after the first null klass check.
3653   set_control(region->in(_prim_0_path)); // go back to first null check
3654   if (!stopped()) {
3655     // Since superc is primitive, make a guard for the superc==subc case.
3656     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3657     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3658     generate_guard(bol_eq, region, PROB_FAIR);
3659     if (region->req() == PATH_LIMIT+1) {
3660       // A guard was added.  If the added guard is taken, superc==subc.
3661       region->swap_edges(PATH_LIMIT, _prim_same_path);
3662       region->del_req(PATH_LIMIT);
3663     }
3664     region->set_req(_prim_0_path, control()); // Not equal after all.
3665   }
3666 
3667   // these are the only paths that produce 'true':
3668   phi->set_req(_prim_same_path,   intcon(1));
3669   phi->set_req(_ref_subtype_path, intcon(1));
3670 
3671   // pull together the cases:
3672   assert(region->req() == PATH_LIMIT, "sane region");
3673   for (uint i = 1; i < region->req(); i++) {
3674     Node* ctl = region->in(i);
3675     if (ctl == NULL || ctl == top()) {
3676       region->set_req(i, top());
3677       phi   ->set_req(i, top());
3678     } else if (phi->in(i) == NULL) {
3679       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3680     }
3681   }
3682 
3683   set_control(_gvn.transform(region));
3684   set_result(_gvn.transform(phi));
3685   return true;
3686 }
3687 
3688 //---------------------generate_array_guard_common------------------------
3689 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3690                                                   bool obj_array, bool not_array) {
3691 
3692   if (stopped()) {
3693     return NULL;
3694   }
3695 
3696   // If obj_array/non_array==false/false:
3697   // Branch around if the given klass is in fact an array (either obj or prim).
3698   // If obj_array/non_array==false/true:
3699   // Branch around if the given klass is not an array klass of any kind.
3700   // If obj_array/non_array==true/true:
3701   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3702   // If obj_array/non_array==true/false:
3703   // Branch around if the kls is an oop array (Object[] or subtype)
3704   //
3705   // Like generate_guard, adds a new path onto the region.
3706   jint  layout_con = 0;
3707   Node* layout_val = get_layout_helper(kls, layout_con);
3708   if (layout_val == NULL) {
3709     bool query = (obj_array
3710                   ? Klass::layout_helper_is_objArray(layout_con)
3711                   : Klass::layout_helper_is_array(layout_con));
3712     if (query == not_array) {
3713       return NULL;                       // never a branch
3714     } else {                             // always a branch
3715       Node* always_branch = control();
3716       if (region != NULL)
3717         region->add_req(always_branch);
3718       set_control(top());
3719       return always_branch;
3720     }
3721   }
3722   // Now test the correct condition.
3723   jint  nval = (obj_array
3724                 ? (jint)(Klass::_lh_array_tag_type_value
3725                    <<    Klass::_lh_array_tag_shift)
3726                 : Klass::_lh_neutral_value);
3727   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3728   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3729   // invert the test if we are looking for a non-array
3730   if (not_array)  btest = BoolTest(btest).negate();
3731   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3732   return generate_fair_guard(bol, region);
3733 }
3734 
3735 
3736 //-----------------------inline_native_newArray--------------------------
3737 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3738 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3739 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3740   Node* mirror;
3741   Node* count_val;
3742   if (uninitialized) {
3743     mirror    = argument(1);
3744     count_val = argument(2);
3745   } else {
3746     mirror    = argument(0);
3747     count_val = argument(1);
3748   }
3749 
3750   mirror = null_check(mirror);
3751   // If mirror or obj is dead, only null-path is taken.
3752   if (stopped())  return true;
3753 
3754   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3755   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3756   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3757   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3758   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3759 
3760   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3761   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3762                                                   result_reg, _slow_path);
3763   Node* normal_ctl   = control();
3764   Node* no_array_ctl = result_reg->in(_slow_path);
3765 
3766   // Generate code for the slow case.  We make a call to newArray().
3767   set_control(no_array_ctl);
3768   if (!stopped()) {
3769     // Either the input type is void.class, or else the
3770     // array klass has not yet been cached.  Either the
3771     // ensuing call will throw an exception, or else it
3772     // will cache the array klass for next time.
3773     PreserveJVMState pjvms(this);
3774     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3775     Node* slow_result = set_results_for_java_call(slow_call);
3776     // this->control() comes from set_results_for_java_call
3777     result_reg->set_req(_slow_path, control());
3778     result_val->set_req(_slow_path, slow_result);
3779     result_io ->set_req(_slow_path, i_o());
3780     result_mem->set_req(_slow_path, reset_memory());
3781   }
3782 
3783   set_control(normal_ctl);
3784   if (!stopped()) {
3785     // Normal case:  The array type has been cached in the java.lang.Class.
3786     // The following call works fine even if the array type is polymorphic.
3787     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3788     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3789     result_reg->init_req(_normal_path, control());
3790     result_val->init_req(_normal_path, obj);
3791     result_io ->init_req(_normal_path, i_o());
3792     result_mem->init_req(_normal_path, reset_memory());
3793 
3794     if (uninitialized) {
3795       // Mark the allocation so that zeroing is skipped
3796       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3797       alloc->maybe_set_complete(&_gvn);
3798     }
3799   }
3800 
3801   // Return the combined state.
3802   set_i_o(        _gvn.transform(result_io)  );
3803   set_all_memory( _gvn.transform(result_mem));
3804 
3805   C->set_has_split_ifs(true); // Has chance for split-if optimization
3806   set_result(result_reg, result_val);
3807   return true;
3808 }
3809 
3810 //----------------------inline_native_getLength--------------------------
3811 // public static native int java.lang.reflect.Array.getLength(Object array);
3812 bool LibraryCallKit::inline_native_getLength() {
3813   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3814 
3815   Node* array = null_check(argument(0));
3816   // If array is dead, only null-path is taken.
3817   if (stopped())  return true;
3818 
3819   // Deoptimize if it is a non-array.
3820   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3821 
3822   if (non_array != NULL) {
3823     PreserveJVMState pjvms(this);
3824     set_control(non_array);
3825     uncommon_trap(Deoptimization::Reason_intrinsic,
3826                   Deoptimization::Action_maybe_recompile);
3827   }
3828 
3829   // If control is dead, only non-array-path is taken.
3830   if (stopped())  return true;
3831 
3832   // The works fine even if the array type is polymorphic.
3833   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3834   Node* result = load_array_length(array);
3835 
3836   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3837   set_result(result);
3838   return true;
3839 }
3840 
3841 //------------------------inline_array_copyOf----------------------------
3842 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3843 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3844 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3845   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3846 
3847   // Get the arguments.
3848   Node* original          = argument(0);
3849   Node* start             = is_copyOfRange? argument(1): intcon(0);
3850   Node* end               = is_copyOfRange? argument(2): argument(1);
3851   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3852 
3853   Node* newcopy = NULL;
3854 
3855   // Set the original stack and the reexecute bit for the interpreter to reexecute
3856   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3857   { PreserveReexecuteState preexecs(this);
3858     jvms()->set_should_reexecute(true);
3859 
3860     array_type_mirror = null_check(array_type_mirror);
3861     original          = null_check(original);
3862 
3863     // Check if a null path was taken unconditionally.
3864     if (stopped())  return true;
3865 
3866     Node* orig_length = load_array_length(original);
3867 
3868     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3869     klass_node = null_check(klass_node);
3870 
3871     RegionNode* bailout = new RegionNode(1);
3872     record_for_igvn(bailout);
3873 
3874     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3875     // Bail out if that is so.
3876     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3877     if (not_objArray != NULL) {
3878       // Improve the klass node's type from the new optimistic assumption:
3879       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3880       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3881       Node* cast = new CastPPNode(klass_node, akls);
3882       cast->init_req(0, control());
3883       klass_node = _gvn.transform(cast);
3884     }
3885 
3886     // Bail out if either start or end is negative.
3887     generate_negative_guard(start, bailout, &start);
3888     generate_negative_guard(end,   bailout, &end);
3889 
3890     Node* length = end;
3891     if (_gvn.type(start) != TypeInt::ZERO) {
3892       length = _gvn.transform(new SubINode(end, start));
3893     }
3894 
3895     // Bail out if length is negative.
3896     // Without this the new_array would throw
3897     // NegativeArraySizeException but IllegalArgumentException is what
3898     // should be thrown
3899     generate_negative_guard(length, bailout, &length);
3900 
3901     if (bailout->req() > 1) {
3902       PreserveJVMState pjvms(this);
3903       set_control(_gvn.transform(bailout));
3904       uncommon_trap(Deoptimization::Reason_intrinsic,
3905                     Deoptimization::Action_maybe_recompile);
3906     }
3907 
3908     if (!stopped()) {
3909       // How many elements will we copy from the original?
3910       // The answer is MinI(orig_length - start, length).
3911       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3912       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3913 
3914       // Generate a direct call to the right arraycopy function(s).
3915       // We know the copy is disjoint but we might not know if the
3916       // oop stores need checking.
3917       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3918       // This will fail a store-check if x contains any non-nulls.
3919 
3920       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3921       // loads/stores but it is legal only if we're sure the
3922       // Arrays.copyOf would succeed. So we need all input arguments
3923       // to the copyOf to be validated, including that the copy to the
3924       // new array won't trigger an ArrayStoreException. That subtype
3925       // check can be optimized if we know something on the type of
3926       // the input array from type speculation.
3927       if (_gvn.type(klass_node)->singleton()) {
3928         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3929         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3930 
3931         int test = C->static_subtype_check(superk, subk);
3932         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3933           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3934           if (t_original->speculative_type() != NULL) {
3935             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3936           }
3937         }
3938       }
3939 
3940       bool validated = false;
3941       // Reason_class_check rather than Reason_intrinsic because we
3942       // want to intrinsify even if this traps.
3943       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3944         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3945                                                    klass_node);
3946 
3947         if (not_subtype_ctrl != top()) {
3948           PreserveJVMState pjvms(this);
3949           set_control(not_subtype_ctrl);
3950           uncommon_trap(Deoptimization::Reason_class_check,
3951                         Deoptimization::Action_make_not_entrant);
3952           assert(stopped(), "Should be stopped");
3953         }
3954         validated = true;
3955       }
3956 
3957       if (!stopped()) {
3958         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3959 
3960         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3961                                                 load_object_klass(original), klass_node);
3962         if (!is_copyOfRange) {
3963           ac->set_copyof(validated);
3964         } else {
3965           ac->set_copyofrange(validated);
3966         }
3967         Node* n = _gvn.transform(ac);
3968         if (n == ac) {
3969           ac->connect_outputs(this);
3970         } else {
3971           assert(validated, "shouldn't transform if all arguments not validated");
3972           set_all_memory(n);
3973         }
3974       }
3975     }
3976   } // original reexecute is set back here
3977 
3978   C->set_has_split_ifs(true); // Has chance for split-if optimization
3979   if (!stopped()) {
3980     set_result(newcopy);
3981   }
3982   return true;
3983 }
3984 
3985 
3986 //----------------------generate_virtual_guard---------------------------
3987 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3988 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3989                                              RegionNode* slow_region) {
3990   ciMethod* method = callee();
3991   int vtable_index = method->vtable_index();
3992   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3993          "bad index %d", vtable_index);
3994   // Get the Method* out of the appropriate vtable entry.
3995   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
3996                      vtable_index*vtableEntry::size_in_bytes() +
3997                      vtableEntry::method_offset_in_bytes();
3998   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3999   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4000 
4001   // Compare the target method with the expected method (e.g., Object.hashCode).
4002   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4003 
4004   Node* native_call = makecon(native_call_addr);
4005   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4006   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4007 
4008   return generate_slow_guard(test_native, slow_region);
4009 }
4010 
4011 //-----------------------generate_method_call----------------------------
4012 // Use generate_method_call to make a slow-call to the real
4013 // method if the fast path fails.  An alternative would be to
4014 // use a stub like OptoRuntime::slow_arraycopy_Java.
4015 // This only works for expanding the current library call,
4016 // not another intrinsic.  (E.g., don't use this for making an
4017 // arraycopy call inside of the copyOf intrinsic.)
4018 CallJavaNode*
4019 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4020   // When compiling the intrinsic method itself, do not use this technique.
4021   guarantee(callee() != C->method(), "cannot make slow-call to self");
4022 
4023   ciMethod* method = callee();
4024   // ensure the JVMS we have will be correct for this call
4025   guarantee(method_id == method->intrinsic_id(), "must match");
4026 
4027   const TypeFunc* tf = TypeFunc::make(method);
4028   CallJavaNode* slow_call;
4029   if (is_static) {
4030     assert(!is_virtual, "");
4031     slow_call = new CallStaticJavaNode(C, tf,
4032                            SharedRuntime::get_resolve_static_call_stub(),
4033                            method, bci());
4034   } else if (is_virtual) {
4035     null_check_receiver();
4036     int vtable_index = Method::invalid_vtable_index;
4037     if (UseInlineCaches) {
4038       // Suppress the vtable call
4039     } else {
4040       // hashCode and clone are not a miranda methods,
4041       // so the vtable index is fixed.
4042       // No need to use the linkResolver to get it.
4043        vtable_index = method->vtable_index();
4044        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4045               "bad index %d", vtable_index);
4046     }
4047     slow_call = new CallDynamicJavaNode(tf,
4048                           SharedRuntime::get_resolve_virtual_call_stub(),
4049                           method, vtable_index, bci());
4050   } else {  // neither virtual nor static:  opt_virtual
4051     null_check_receiver();
4052     slow_call = new CallStaticJavaNode(C, tf,
4053                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4054                                 method, bci());
4055     slow_call->set_optimized_virtual(true);
4056   }
4057   set_arguments_for_java_call(slow_call);
4058   set_edges_for_java_call(slow_call);
4059   return slow_call;
4060 }
4061 
4062 
4063 /**
4064  * Build special case code for calls to hashCode on an object. This call may
4065  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4066  * slightly different code.
4067  */
4068 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4069   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4070   assert(!(is_virtual && is_static), "either virtual, special, or static");
4071 
4072   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4073 
4074   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4075   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4076   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4077   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4078   Node* obj = NULL;
4079   if (!is_static) {
4080     // Check for hashing null object
4081     obj = null_check_receiver();
4082     if (stopped())  return true;        // unconditionally null
4083     result_reg->init_req(_null_path, top());
4084     result_val->init_req(_null_path, top());
4085   } else {
4086     // Do a null check, and return zero if null.
4087     // System.identityHashCode(null) == 0
4088     obj = argument(0);
4089     Node* null_ctl = top();
4090     obj = null_check_oop(obj, &null_ctl);
4091     result_reg->init_req(_null_path, null_ctl);
4092     result_val->init_req(_null_path, _gvn.intcon(0));
4093   }
4094 
4095   // Unconditionally null?  Then return right away.
4096   if (stopped()) {
4097     set_control( result_reg->in(_null_path));
4098     if (!stopped())
4099       set_result(result_val->in(_null_path));
4100     return true;
4101   }
4102 
4103   // We only go to the fast case code if we pass a number of guards.  The
4104   // paths which do not pass are accumulated in the slow_region.
4105   RegionNode* slow_region = new RegionNode(1);
4106   record_for_igvn(slow_region);
4107 
4108   // If this is a virtual call, we generate a funny guard.  We pull out
4109   // the vtable entry corresponding to hashCode() from the target object.
4110   // If the target method which we are calling happens to be the native
4111   // Object hashCode() method, we pass the guard.  We do not need this
4112   // guard for non-virtual calls -- the caller is known to be the native
4113   // Object hashCode().
4114   if (is_virtual) {
4115     // After null check, get the object's klass.
4116     Node* obj_klass = load_object_klass(obj);
4117     generate_virtual_guard(obj_klass, slow_region);
4118   }
4119 
4120   // Get the header out of the object, use LoadMarkNode when available
4121   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4122   // The control of the load must be NULL. Otherwise, the load can move before
4123   // the null check after castPP removal.
4124   Node* no_ctrl = NULL;
4125   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4126 
4127   // Test the header to see if it is unlocked.
4128   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4129   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4130   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4131   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4132   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4133 
4134   generate_slow_guard(test_unlocked, slow_region);
4135 
4136   // Get the hash value and check to see that it has been properly assigned.
4137   // We depend on hash_mask being at most 32 bits and avoid the use of
4138   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4139   // vm: see markOop.hpp.
4140   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4141   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4142   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4143   // This hack lets the hash bits live anywhere in the mark object now, as long
4144   // as the shift drops the relevant bits into the low 32 bits.  Note that
4145   // Java spec says that HashCode is an int so there's no point in capturing
4146   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4147   hshifted_header      = ConvX2I(hshifted_header);
4148   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4149 
4150   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4151   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4152   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4153 
4154   generate_slow_guard(test_assigned, slow_region);
4155 
4156   Node* init_mem = reset_memory();
4157   // fill in the rest of the null path:
4158   result_io ->init_req(_null_path, i_o());
4159   result_mem->init_req(_null_path, init_mem);
4160 
4161   result_val->init_req(_fast_path, hash_val);
4162   result_reg->init_req(_fast_path, control());
4163   result_io ->init_req(_fast_path, i_o());
4164   result_mem->init_req(_fast_path, init_mem);
4165 
4166   // Generate code for the slow case.  We make a call to hashCode().
4167   set_control(_gvn.transform(slow_region));
4168   if (!stopped()) {
4169     // No need for PreserveJVMState, because we're using up the present state.
4170     set_all_memory(init_mem);
4171     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4172     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4173     Node* slow_result = set_results_for_java_call(slow_call);
4174     // this->control() comes from set_results_for_java_call
4175     result_reg->init_req(_slow_path, control());
4176     result_val->init_req(_slow_path, slow_result);
4177     result_io  ->set_req(_slow_path, i_o());
4178     result_mem ->set_req(_slow_path, reset_memory());
4179   }
4180 
4181   // Return the combined state.
4182   set_i_o(        _gvn.transform(result_io)  );
4183   set_all_memory( _gvn.transform(result_mem));
4184 
4185   set_result(result_reg, result_val);
4186   return true;
4187 }
4188 
4189 //---------------------------inline_native_getClass----------------------------
4190 // public final native Class<?> java.lang.Object.getClass();
4191 //
4192 // Build special case code for calls to getClass on an object.
4193 bool LibraryCallKit::inline_native_getClass() {
4194   Node* obj = null_check_receiver();
4195   if (stopped())  return true;
4196   set_result(load_mirror_from_klass(load_object_klass(obj)));
4197   return true;
4198 }
4199 
4200 //-----------------inline_native_Reflection_getCallerClass---------------------
4201 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4202 //
4203 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4204 //
4205 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4206 // in that it must skip particular security frames and checks for
4207 // caller sensitive methods.
4208 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4209 #ifndef PRODUCT
4210   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4211     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4212   }
4213 #endif
4214 
4215   if (!jvms()->has_method()) {
4216 #ifndef PRODUCT
4217     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4218       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4219     }
4220 #endif
4221     return false;
4222   }
4223 
4224   // Walk back up the JVM state to find the caller at the required
4225   // depth.
4226   JVMState* caller_jvms = jvms();
4227 
4228   // Cf. JVM_GetCallerClass
4229   // NOTE: Start the loop at depth 1 because the current JVM state does
4230   // not include the Reflection.getCallerClass() frame.
4231   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4232     ciMethod* m = caller_jvms->method();
4233     switch (n) {
4234     case 0:
4235       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4236       break;
4237     case 1:
4238       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4239       if (!m->caller_sensitive()) {
4240 #ifndef PRODUCT
4241         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4242           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4243         }
4244 #endif
4245         return false;  // bail-out; let JVM_GetCallerClass do the work
4246       }
4247       break;
4248     default:
4249       if (!m->is_ignored_by_security_stack_walk()) {
4250         // We have reached the desired frame; return the holder class.
4251         // Acquire method holder as java.lang.Class and push as constant.
4252         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4253         ciInstance* caller_mirror = caller_klass->java_mirror();
4254         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4255 
4256 #ifndef PRODUCT
4257         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4258           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4259           tty->print_cr("  JVM state at this point:");
4260           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4261             ciMethod* m = jvms()->of_depth(i)->method();
4262             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4263           }
4264         }
4265 #endif
4266         return true;
4267       }
4268       break;
4269     }
4270   }
4271 
4272 #ifndef PRODUCT
4273   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4274     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4275     tty->print_cr("  JVM state at this point:");
4276     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4277       ciMethod* m = jvms()->of_depth(i)->method();
4278       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4279     }
4280   }
4281 #endif
4282 
4283   return false;  // bail-out; let JVM_GetCallerClass do the work
4284 }
4285 
4286 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4287   Node* arg = argument(0);
4288   Node* result = NULL;
4289 
4290   switch (id) {
4291   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4292   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4293   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4294   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4295 
4296   case vmIntrinsics::_doubleToLongBits: {
4297     // two paths (plus control) merge in a wood
4298     RegionNode *r = new RegionNode(3);
4299     Node *phi = new PhiNode(r, TypeLong::LONG);
4300 
4301     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4302     // Build the boolean node
4303     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4304 
4305     // Branch either way.
4306     // NaN case is less traveled, which makes all the difference.
4307     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4308     Node *opt_isnan = _gvn.transform(ifisnan);
4309     assert( opt_isnan->is_If(), "Expect an IfNode");
4310     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4311     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4312 
4313     set_control(iftrue);
4314 
4315     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4316     Node *slow_result = longcon(nan_bits); // return NaN
4317     phi->init_req(1, _gvn.transform( slow_result ));
4318     r->init_req(1, iftrue);
4319 
4320     // Else fall through
4321     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4322     set_control(iffalse);
4323 
4324     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4325     r->init_req(2, iffalse);
4326 
4327     // Post merge
4328     set_control(_gvn.transform(r));
4329     record_for_igvn(r);
4330 
4331     C->set_has_split_ifs(true); // Has chance for split-if optimization
4332     result = phi;
4333     assert(result->bottom_type()->isa_long(), "must be");
4334     break;
4335   }
4336 
4337   case vmIntrinsics::_floatToIntBits: {
4338     // two paths (plus control) merge in a wood
4339     RegionNode *r = new RegionNode(3);
4340     Node *phi = new PhiNode(r, TypeInt::INT);
4341 
4342     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4343     // Build the boolean node
4344     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4345 
4346     // Branch either way.
4347     // NaN case is less traveled, which makes all the difference.
4348     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4349     Node *opt_isnan = _gvn.transform(ifisnan);
4350     assert( opt_isnan->is_If(), "Expect an IfNode");
4351     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4352     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4353 
4354     set_control(iftrue);
4355 
4356     static const jint nan_bits = 0x7fc00000;
4357     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4358     phi->init_req(1, _gvn.transform( slow_result ));
4359     r->init_req(1, iftrue);
4360 
4361     // Else fall through
4362     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4363     set_control(iffalse);
4364 
4365     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4366     r->init_req(2, iffalse);
4367 
4368     // Post merge
4369     set_control(_gvn.transform(r));
4370     record_for_igvn(r);
4371 
4372     C->set_has_split_ifs(true); // Has chance for split-if optimization
4373     result = phi;
4374     assert(result->bottom_type()->isa_int(), "must be");
4375     break;
4376   }
4377 
4378   default:
4379     fatal_unexpected_iid(id);
4380     break;
4381   }
4382   set_result(_gvn.transform(result));
4383   return true;
4384 }
4385 
4386 //----------------------inline_unsafe_copyMemory-------------------------
4387 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4388 bool LibraryCallKit::inline_unsafe_copyMemory() {
4389   if (callee()->is_static())  return false;  // caller must have the capability!
4390   null_check_receiver();  // null-check receiver
4391   if (stopped())  return true;
4392 
4393   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4394 
4395   Node* src_ptr =         argument(1);   // type: oop
4396   Node* src_off = ConvL2X(argument(2));  // type: long
4397   Node* dst_ptr =         argument(4);   // type: oop
4398   Node* dst_off = ConvL2X(argument(5));  // type: long
4399   Node* size    = ConvL2X(argument(7));  // type: long
4400 
4401   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4402          "fieldOffset must be byte-scaled");
4403 
4404   Node* src = make_unsafe_address(src_ptr, src_off);
4405   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4406 
4407   // Conservatively insert a memory barrier on all memory slices.
4408   // Do not let writes of the copy source or destination float below the copy.
4409   insert_mem_bar(Op_MemBarCPUOrder);
4410 
4411   // Call it.  Note that the length argument is not scaled.
4412   make_runtime_call(RC_LEAF|RC_NO_FP,
4413                     OptoRuntime::fast_arraycopy_Type(),
4414                     StubRoutines::unsafe_arraycopy(),
4415                     "unsafe_arraycopy",
4416                     TypeRawPtr::BOTTOM,
4417                     src, dst, size XTOP);
4418 
4419   // Do not let reads of the copy destination float above the copy.
4420   insert_mem_bar(Op_MemBarCPUOrder);
4421 
4422   return true;
4423 }
4424 
4425 //------------------------clone_coping-----------------------------------
4426 // Helper function for inline_native_clone.
4427 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4428   assert(obj_size != NULL, "");
4429   Node* raw_obj = alloc_obj->in(1);
4430   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4431 
4432   AllocateNode* alloc = NULL;
4433   if (ReduceBulkZeroing) {
4434     // We will be completely responsible for initializing this object -
4435     // mark Initialize node as complete.
4436     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4437     // The object was just allocated - there should be no any stores!
4438     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4439     // Mark as complete_with_arraycopy so that on AllocateNode
4440     // expansion, we know this AllocateNode is initialized by an array
4441     // copy and a StoreStore barrier exists after the array copy.
4442     alloc->initialization()->set_complete_with_arraycopy();
4443   }
4444 
4445   // Copy the fastest available way.
4446   // TODO: generate fields copies for small objects instead.
4447   Node* src  = obj;
4448   Node* dest = alloc_obj;
4449   Node* size = _gvn.transform(obj_size);
4450 
4451   // Exclude the header but include array length to copy by 8 bytes words.
4452   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4453   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4454                             instanceOopDesc::base_offset_in_bytes();
4455   // base_off:
4456   // 8  - 32-bit VM
4457   // 12 - 64-bit VM, compressed klass
4458   // 16 - 64-bit VM, normal klass
4459   if (base_off % BytesPerLong != 0) {
4460     assert(UseCompressedClassPointers, "");
4461     if (is_array) {
4462       // Exclude length to copy by 8 bytes words.
4463       base_off += sizeof(int);
4464     } else {
4465       // Include klass to copy by 8 bytes words.
4466       base_off = instanceOopDesc::klass_offset_in_bytes();
4467     }
4468     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4469   }
4470   src  = basic_plus_adr(src,  base_off);
4471   dest = basic_plus_adr(dest, base_off);
4472 
4473   // Compute the length also, if needed:
4474   Node* countx = size;
4475   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4476   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4477 
4478   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4479 
4480   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4481   ac->set_clonebasic();
4482   Node* n = _gvn.transform(ac);
4483   if (n == ac) {
4484     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4485   } else {
4486     set_all_memory(n);
4487   }
4488 
4489   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4490   if (card_mark) {
4491     assert(!is_array, "");
4492     // Put in store barrier for any and all oops we are sticking
4493     // into this object.  (We could avoid this if we could prove
4494     // that the object type contains no oop fields at all.)
4495     Node* no_particular_value = NULL;
4496     Node* no_particular_field = NULL;
4497     int raw_adr_idx = Compile::AliasIdxRaw;
4498     post_barrier(control(),
4499                  memory(raw_adr_type),
4500                  alloc_obj,
4501                  no_particular_field,
4502                  raw_adr_idx,
4503                  no_particular_value,
4504                  T_OBJECT,
4505                  false);
4506   }
4507 
4508   // Do not let reads from the cloned object float above the arraycopy.
4509   if (alloc != NULL) {
4510     // Do not let stores that initialize this object be reordered with
4511     // a subsequent store that would make this object accessible by
4512     // other threads.
4513     // Record what AllocateNode this StoreStore protects so that
4514     // escape analysis can go from the MemBarStoreStoreNode to the
4515     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4516     // based on the escape status of the AllocateNode.
4517     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4518   } else {
4519     insert_mem_bar(Op_MemBarCPUOrder);
4520   }
4521 }
4522 
4523 //------------------------inline_native_clone----------------------------
4524 // protected native Object java.lang.Object.clone();
4525 //
4526 // Here are the simple edge cases:
4527 //  null receiver => normal trap
4528 //  virtual and clone was overridden => slow path to out-of-line clone
4529 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4530 //
4531 // The general case has two steps, allocation and copying.
4532 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4533 //
4534 // Copying also has two cases, oop arrays and everything else.
4535 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4536 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4537 //
4538 // These steps fold up nicely if and when the cloned object's klass
4539 // can be sharply typed as an object array, a type array, or an instance.
4540 //
4541 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4542   PhiNode* result_val;
4543 
4544   // Set the reexecute bit for the interpreter to reexecute
4545   // the bytecode that invokes Object.clone if deoptimization happens.
4546   { PreserveReexecuteState preexecs(this);
4547     jvms()->set_should_reexecute(true);
4548 
4549     Node* obj = null_check_receiver();
4550     if (stopped())  return true;
4551 
4552     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4553 
4554     // If we are going to clone an instance, we need its exact type to
4555     // know the number and types of fields to convert the clone to
4556     // loads/stores. Maybe a speculative type can help us.
4557     if (!obj_type->klass_is_exact() &&
4558         obj_type->speculative_type() != NULL &&
4559         obj_type->speculative_type()->is_instance_klass()) {
4560       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4561       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4562           !spec_ik->has_injected_fields()) {
4563         ciKlass* k = obj_type->klass();
4564         if (!k->is_instance_klass() ||
4565             k->as_instance_klass()->is_interface() ||
4566             k->as_instance_klass()->has_subklass()) {
4567           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4568         }
4569       }
4570     }
4571 
4572     Node* obj_klass = load_object_klass(obj);
4573     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4574     const TypeOopPtr*   toop   = ((tklass != NULL)
4575                                 ? tklass->as_instance_type()
4576                                 : TypeInstPtr::NOTNULL);
4577 
4578     // Conservatively insert a memory barrier on all memory slices.
4579     // Do not let writes into the original float below the clone.
4580     insert_mem_bar(Op_MemBarCPUOrder);
4581 
4582     // paths into result_reg:
4583     enum {
4584       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4585       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4586       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4587       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4588       PATH_LIMIT
4589     };
4590     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4591     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4592     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4593     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4594     record_for_igvn(result_reg);
4595 
4596     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4597     int raw_adr_idx = Compile::AliasIdxRaw;
4598 
4599     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4600     if (array_ctl != NULL) {
4601       // It's an array.
4602       PreserveJVMState pjvms(this);
4603       set_control(array_ctl);
4604       Node* obj_length = load_array_length(obj);
4605       Node* obj_size  = NULL;
4606       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4607 
4608       if (!use_ReduceInitialCardMarks()) {
4609         // If it is an oop array, it requires very special treatment,
4610         // because card marking is required on each card of the array.
4611         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4612         if (is_obja != NULL) {
4613           PreserveJVMState pjvms2(this);
4614           set_control(is_obja);
4615           // Generate a direct call to the right arraycopy function(s).
4616           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4617           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4618           ac->set_cloneoop();
4619           Node* n = _gvn.transform(ac);
4620           assert(n == ac, "cannot disappear");
4621           ac->connect_outputs(this);
4622 
4623           result_reg->init_req(_objArray_path, control());
4624           result_val->init_req(_objArray_path, alloc_obj);
4625           result_i_o ->set_req(_objArray_path, i_o());
4626           result_mem ->set_req(_objArray_path, reset_memory());
4627         }
4628       }
4629       // Otherwise, there are no card marks to worry about.
4630       // (We can dispense with card marks if we know the allocation
4631       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4632       //  causes the non-eden paths to take compensating steps to
4633       //  simulate a fresh allocation, so that no further
4634       //  card marks are required in compiled code to initialize
4635       //  the object.)
4636 
4637       if (!stopped()) {
4638         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4639 
4640         // Present the results of the copy.
4641         result_reg->init_req(_array_path, control());
4642         result_val->init_req(_array_path, alloc_obj);
4643         result_i_o ->set_req(_array_path, i_o());
4644         result_mem ->set_req(_array_path, reset_memory());
4645       }
4646     }
4647 
4648     // We only go to the instance fast case code if we pass a number of guards.
4649     // The paths which do not pass are accumulated in the slow_region.
4650     RegionNode* slow_region = new RegionNode(1);
4651     record_for_igvn(slow_region);
4652     if (!stopped()) {
4653       // It's an instance (we did array above).  Make the slow-path tests.
4654       // If this is a virtual call, we generate a funny guard.  We grab
4655       // the vtable entry corresponding to clone() from the target object.
4656       // If the target method which we are calling happens to be the
4657       // Object clone() method, we pass the guard.  We do not need this
4658       // guard for non-virtual calls; the caller is known to be the native
4659       // Object clone().
4660       if (is_virtual) {
4661         generate_virtual_guard(obj_klass, slow_region);
4662       }
4663 
4664       // The object must be easily cloneable and must not have a finalizer.
4665       // Both of these conditions may be checked in a single test.
4666       // We could optimize the test further, but we don't care.
4667       generate_access_flags_guard(obj_klass,
4668                                   // Test both conditions:
4669                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4670                                   // Must be cloneable but not finalizer:
4671                                   JVM_ACC_IS_CLONEABLE_FAST,
4672                                   slow_region);
4673     }
4674 
4675     if (!stopped()) {
4676       // It's an instance, and it passed the slow-path tests.
4677       PreserveJVMState pjvms(this);
4678       Node* obj_size  = NULL;
4679       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4680       // is reexecuted if deoptimization occurs and there could be problems when merging
4681       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4682       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4683 
4684       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4685 
4686       // Present the results of the slow call.
4687       result_reg->init_req(_instance_path, control());
4688       result_val->init_req(_instance_path, alloc_obj);
4689       result_i_o ->set_req(_instance_path, i_o());
4690       result_mem ->set_req(_instance_path, reset_memory());
4691     }
4692 
4693     // Generate code for the slow case.  We make a call to clone().
4694     set_control(_gvn.transform(slow_region));
4695     if (!stopped()) {
4696       PreserveJVMState pjvms(this);
4697       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4698       Node* slow_result = set_results_for_java_call(slow_call);
4699       // this->control() comes from set_results_for_java_call
4700       result_reg->init_req(_slow_path, control());
4701       result_val->init_req(_slow_path, slow_result);
4702       result_i_o ->set_req(_slow_path, i_o());
4703       result_mem ->set_req(_slow_path, reset_memory());
4704     }
4705 
4706     // Return the combined state.
4707     set_control(    _gvn.transform(result_reg));
4708     set_i_o(        _gvn.transform(result_i_o));
4709     set_all_memory( _gvn.transform(result_mem));
4710   } // original reexecute is set back here
4711 
4712   set_result(_gvn.transform(result_val));
4713   return true;
4714 }
4715 
4716 // If we have a tighly coupled allocation, the arraycopy may take care
4717 // of the array initialization. If one of the guards we insert between
4718 // the allocation and the arraycopy causes a deoptimization, an
4719 // unitialized array will escape the compiled method. To prevent that
4720 // we set the JVM state for uncommon traps between the allocation and
4721 // the arraycopy to the state before the allocation so, in case of
4722 // deoptimization, we'll reexecute the allocation and the
4723 // initialization.
4724 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4725   if (alloc != NULL) {
4726     ciMethod* trap_method = alloc->jvms()->method();
4727     int trap_bci = alloc->jvms()->bci();
4728 
4729     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4730           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4731       // Make sure there's no store between the allocation and the
4732       // arraycopy otherwise visible side effects could be rexecuted
4733       // in case of deoptimization and cause incorrect execution.
4734       bool no_interfering_store = true;
4735       Node* mem = alloc->in(TypeFunc::Memory);
4736       if (mem->is_MergeMem()) {
4737         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4738           Node* n = mms.memory();
4739           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4740             assert(n->is_Store(), "what else?");
4741             no_interfering_store = false;
4742             break;
4743           }
4744         }
4745       } else {
4746         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4747           Node* n = mms.memory();
4748           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4749             assert(n->is_Store(), "what else?");
4750             no_interfering_store = false;
4751             break;
4752           }
4753         }
4754       }
4755 
4756       if (no_interfering_store) {
4757         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4758         uint size = alloc->req();
4759         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4760         old_jvms->set_map(sfpt);
4761         for (uint i = 0; i < size; i++) {
4762           sfpt->init_req(i, alloc->in(i));
4763         }
4764         // re-push array length for deoptimization
4765         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4766         old_jvms->set_sp(old_jvms->sp()+1);
4767         old_jvms->set_monoff(old_jvms->monoff()+1);
4768         old_jvms->set_scloff(old_jvms->scloff()+1);
4769         old_jvms->set_endoff(old_jvms->endoff()+1);
4770         old_jvms->set_should_reexecute(true);
4771 
4772         sfpt->set_i_o(map()->i_o());
4773         sfpt->set_memory(map()->memory());
4774         sfpt->set_control(map()->control());
4775 
4776         JVMState* saved_jvms = jvms();
4777         saved_reexecute_sp = _reexecute_sp;
4778 
4779         set_jvms(sfpt->jvms());
4780         _reexecute_sp = jvms()->sp();
4781 
4782         return saved_jvms;
4783       }
4784     }
4785   }
4786   return NULL;
4787 }
4788 
4789 // In case of a deoptimization, we restart execution at the
4790 // allocation, allocating a new array. We would leave an uninitialized
4791 // array in the heap that GCs wouldn't expect. Move the allocation
4792 // after the traps so we don't allocate the array if we
4793 // deoptimize. This is possible because tightly_coupled_allocation()
4794 // guarantees there's no observer of the allocated array at this point
4795 // and the control flow is simple enough.
4796 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4797   if (saved_jvms != NULL && !stopped()) {
4798     assert(alloc != NULL, "only with a tightly coupled allocation");
4799     // restore JVM state to the state at the arraycopy
4800     saved_jvms->map()->set_control(map()->control());
4801     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4802     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4803     // If we've improved the types of some nodes (null check) while
4804     // emitting the guards, propagate them to the current state
4805     map()->replaced_nodes().apply(saved_jvms->map());
4806     set_jvms(saved_jvms);
4807     _reexecute_sp = saved_reexecute_sp;
4808 
4809     // Remove the allocation from above the guards
4810     CallProjections callprojs;
4811     alloc->extract_projections(&callprojs, true);
4812     InitializeNode* init = alloc->initialization();
4813     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4814     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4815     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4816     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4817 
4818     // move the allocation here (after the guards)
4819     _gvn.hash_delete(alloc);
4820     alloc->set_req(TypeFunc::Control, control());
4821     alloc->set_req(TypeFunc::I_O, i_o());
4822     Node *mem = reset_memory();
4823     set_all_memory(mem);
4824     alloc->set_req(TypeFunc::Memory, mem);
4825     set_control(init->proj_out(TypeFunc::Control));
4826     set_i_o(callprojs.fallthrough_ioproj);
4827 
4828     // Update memory as done in GraphKit::set_output_for_allocation()
4829     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4830     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4831     if (ary_type->isa_aryptr() && length_type != NULL) {
4832       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4833     }
4834     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4835     int            elemidx  = C->get_alias_index(telemref);
4836     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4837     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4838 
4839     Node* allocx = _gvn.transform(alloc);
4840     assert(allocx == alloc, "where has the allocation gone?");
4841     assert(dest->is_CheckCastPP(), "not an allocation result?");
4842 
4843     _gvn.hash_delete(dest);
4844     dest->set_req(0, control());
4845     Node* destx = _gvn.transform(dest);
4846     assert(destx == dest, "where has the allocation result gone?");
4847   }
4848 }
4849 
4850 
4851 //------------------------------inline_arraycopy-----------------------
4852 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4853 //                                                      Object dest, int destPos,
4854 //                                                      int length);
4855 bool LibraryCallKit::inline_arraycopy() {
4856   // Get the arguments.
4857   Node* src         = argument(0);  // type: oop
4858   Node* src_offset  = argument(1);  // type: int
4859   Node* dest        = argument(2);  // type: oop
4860   Node* dest_offset = argument(3);  // type: int
4861   Node* length      = argument(4);  // type: int
4862 
4863 
4864   // Check for allocation before we add nodes that would confuse
4865   // tightly_coupled_allocation()
4866   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4867 
4868   int saved_reexecute_sp = -1;
4869   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4870   // See arraycopy_restore_alloc_state() comment
4871   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4872   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4873   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4874   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4875 
4876   // The following tests must be performed
4877   // (1) src and dest are arrays.
4878   // (2) src and dest arrays must have elements of the same BasicType
4879   // (3) src and dest must not be null.
4880   // (4) src_offset must not be negative.
4881   // (5) dest_offset must not be negative.
4882   // (6) length must not be negative.
4883   // (7) src_offset + length must not exceed length of src.
4884   // (8) dest_offset + length must not exceed length of dest.
4885   // (9) each element of an oop array must be assignable
4886 
4887   // (3) src and dest must not be null.
4888   // always do this here because we need the JVM state for uncommon traps
4889   Node* null_ctl = top();
4890   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4891   assert(null_ctl->is_top(), "no null control here");
4892   dest = null_check(dest, T_ARRAY);
4893 
4894   if (!can_emit_guards) {
4895     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4896     // guards but the arraycopy node could still take advantage of a
4897     // tightly allocated allocation. tightly_coupled_allocation() is
4898     // called again to make sure it takes the null check above into
4899     // account: the null check is mandatory and if it caused an
4900     // uncommon trap to be emitted then the allocation can't be
4901     // considered tightly coupled in this context.
4902     alloc = tightly_coupled_allocation(dest, NULL);
4903   }
4904 
4905   bool validated = false;
4906 
4907   const Type* src_type  = _gvn.type(src);
4908   const Type* dest_type = _gvn.type(dest);
4909   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4910   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4911 
4912   // Do we have the type of src?
4913   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4914   // Do we have the type of dest?
4915   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4916   // Is the type for src from speculation?
4917   bool src_spec = false;
4918   // Is the type for dest from speculation?
4919   bool dest_spec = false;
4920 
4921   if ((!has_src || !has_dest) && can_emit_guards) {
4922     // We don't have sufficient type information, let's see if
4923     // speculative types can help. We need to have types for both src
4924     // and dest so that it pays off.
4925 
4926     // Do we already have or could we have type information for src
4927     bool could_have_src = has_src;
4928     // Do we already have or could we have type information for dest
4929     bool could_have_dest = has_dest;
4930 
4931     ciKlass* src_k = NULL;
4932     if (!has_src) {
4933       src_k = src_type->speculative_type_not_null();
4934       if (src_k != NULL && src_k->is_array_klass()) {
4935         could_have_src = true;
4936       }
4937     }
4938 
4939     ciKlass* dest_k = NULL;
4940     if (!has_dest) {
4941       dest_k = dest_type->speculative_type_not_null();
4942       if (dest_k != NULL && dest_k->is_array_klass()) {
4943         could_have_dest = true;
4944       }
4945     }
4946 
4947     if (could_have_src && could_have_dest) {
4948       // This is going to pay off so emit the required guards
4949       if (!has_src) {
4950         src = maybe_cast_profiled_obj(src, src_k, true);
4951         src_type  = _gvn.type(src);
4952         top_src  = src_type->isa_aryptr();
4953         has_src = (top_src != NULL && top_src->klass() != NULL);
4954         src_spec = true;
4955       }
4956       if (!has_dest) {
4957         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4958         dest_type  = _gvn.type(dest);
4959         top_dest  = dest_type->isa_aryptr();
4960         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4961         dest_spec = true;
4962       }
4963     }
4964   }
4965 
4966   if (has_src && has_dest && can_emit_guards) {
4967     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4968     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4969     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4970     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4971 
4972     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4973       // If both arrays are object arrays then having the exact types
4974       // for both will remove the need for a subtype check at runtime
4975       // before the call and may make it possible to pick a faster copy
4976       // routine (without a subtype check on every element)
4977       // Do we have the exact type of src?
4978       bool could_have_src = src_spec;
4979       // Do we have the exact type of dest?
4980       bool could_have_dest = dest_spec;
4981       ciKlass* src_k = top_src->klass();
4982       ciKlass* dest_k = top_dest->klass();
4983       if (!src_spec) {
4984         src_k = src_type->speculative_type_not_null();
4985         if (src_k != NULL && src_k->is_array_klass()) {
4986           could_have_src = true;
4987         }
4988       }
4989       if (!dest_spec) {
4990         dest_k = dest_type->speculative_type_not_null();
4991         if (dest_k != NULL && dest_k->is_array_klass()) {
4992           could_have_dest = true;
4993         }
4994       }
4995       if (could_have_src && could_have_dest) {
4996         // If we can have both exact types, emit the missing guards
4997         if (could_have_src && !src_spec) {
4998           src = maybe_cast_profiled_obj(src, src_k, true);
4999         }
5000         if (could_have_dest && !dest_spec) {
5001           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5002         }
5003       }
5004     }
5005   }
5006 
5007   ciMethod* trap_method = method();
5008   int trap_bci = bci();
5009   if (saved_jvms != NULL) {
5010     trap_method = alloc->jvms()->method();
5011     trap_bci = alloc->jvms()->bci();
5012   }
5013 
5014   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5015       can_emit_guards &&
5016       !src->is_top() && !dest->is_top()) {
5017     // validate arguments: enables transformation the ArrayCopyNode
5018     validated = true;
5019 
5020     RegionNode* slow_region = new RegionNode(1);
5021     record_for_igvn(slow_region);
5022 
5023     // (1) src and dest are arrays.
5024     generate_non_array_guard(load_object_klass(src), slow_region);
5025     generate_non_array_guard(load_object_klass(dest), slow_region);
5026 
5027     // (2) src and dest arrays must have elements of the same BasicType
5028     // done at macro expansion or at Ideal transformation time
5029 
5030     // (4) src_offset must not be negative.
5031     generate_negative_guard(src_offset, slow_region);
5032 
5033     // (5) dest_offset must not be negative.
5034     generate_negative_guard(dest_offset, slow_region);
5035 
5036     // (7) src_offset + length must not exceed length of src.
5037     generate_limit_guard(src_offset, length,
5038                          load_array_length(src),
5039                          slow_region);
5040 
5041     // (8) dest_offset + length must not exceed length of dest.
5042     generate_limit_guard(dest_offset, length,
5043                          load_array_length(dest),
5044                          slow_region);
5045 
5046     // (9) each element of an oop array must be assignable
5047     Node* src_klass  = load_object_klass(src);
5048     Node* dest_klass = load_object_klass(dest);
5049     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5050 
5051     if (not_subtype_ctrl != top()) {
5052       PreserveJVMState pjvms(this);
5053       set_control(not_subtype_ctrl);
5054       uncommon_trap(Deoptimization::Reason_intrinsic,
5055                     Deoptimization::Action_make_not_entrant);
5056       assert(stopped(), "Should be stopped");
5057     }
5058     {
5059       PreserveJVMState pjvms(this);
5060       set_control(_gvn.transform(slow_region));
5061       uncommon_trap(Deoptimization::Reason_intrinsic,
5062                     Deoptimization::Action_make_not_entrant);
5063       assert(stopped(), "Should be stopped");
5064     }
5065   }
5066 
5067   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5068 
5069   if (stopped()) {
5070     return true;
5071   }
5072 
5073   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5074                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5075                                           // so the compiler has a chance to eliminate them: during macro expansion,
5076                                           // we have to set their control (CastPP nodes are eliminated).
5077                                           load_object_klass(src), load_object_klass(dest),
5078                                           load_array_length(src), load_array_length(dest));
5079 
5080   ac->set_arraycopy(validated);
5081 
5082   Node* n = _gvn.transform(ac);
5083   if (n == ac) {
5084     ac->connect_outputs(this);
5085   } else {
5086     assert(validated, "shouldn't transform if all arguments not validated");
5087     set_all_memory(n);
5088   }
5089 
5090   return true;
5091 }
5092 
5093 
5094 // Helper function which determines if an arraycopy immediately follows
5095 // an allocation, with no intervening tests or other escapes for the object.
5096 AllocateArrayNode*
5097 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5098                                            RegionNode* slow_region) {
5099   if (stopped())             return NULL;  // no fast path
5100   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5101 
5102   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5103   if (alloc == NULL)  return NULL;
5104 
5105   Node* rawmem = memory(Compile::AliasIdxRaw);
5106   // Is the allocation's memory state untouched?
5107   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5108     // Bail out if there have been raw-memory effects since the allocation.
5109     // (Example:  There might have been a call or safepoint.)
5110     return NULL;
5111   }
5112   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5113   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5114     return NULL;
5115   }
5116 
5117   // There must be no unexpected observers of this allocation.
5118   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5119     Node* obs = ptr->fast_out(i);
5120     if (obs != this->map()) {
5121       return NULL;
5122     }
5123   }
5124 
5125   // This arraycopy must unconditionally follow the allocation of the ptr.
5126   Node* alloc_ctl = ptr->in(0);
5127   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5128 
5129   Node* ctl = control();
5130   while (ctl != alloc_ctl) {
5131     // There may be guards which feed into the slow_region.
5132     // Any other control flow means that we might not get a chance
5133     // to finish initializing the allocated object.
5134     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5135       IfNode* iff = ctl->in(0)->as_If();
5136       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5137       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5138       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5139         ctl = iff->in(0);       // This test feeds the known slow_region.
5140         continue;
5141       }
5142       // One more try:  Various low-level checks bottom out in
5143       // uncommon traps.  If the debug-info of the trap omits
5144       // any reference to the allocation, as we've already
5145       // observed, then there can be no objection to the trap.
5146       bool found_trap = false;
5147       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5148         Node* obs = not_ctl->fast_out(j);
5149         if (obs->in(0) == not_ctl && obs->is_Call() &&
5150             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5151           found_trap = true; break;
5152         }
5153       }
5154       if (found_trap) {
5155         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5156         continue;
5157       }
5158     }
5159     return NULL;
5160   }
5161 
5162   // If we get this far, we have an allocation which immediately
5163   // precedes the arraycopy, and we can take over zeroing the new object.
5164   // The arraycopy will finish the initialization, and provide
5165   // a new control state to which we will anchor the destination pointer.
5166 
5167   return alloc;
5168 }
5169 
5170 //-------------inline_encodeISOArray-----------------------------------
5171 // encode char[] to byte[] in ISO_8859_1
5172 bool LibraryCallKit::inline_encodeISOArray() {
5173   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5174   // no receiver since it is static method
5175   Node *src         = argument(0);
5176   Node *src_offset  = argument(1);
5177   Node *dst         = argument(2);
5178   Node *dst_offset  = argument(3);
5179   Node *length      = argument(4);
5180 
5181   const Type* src_type = src->Value(&_gvn);
5182   const Type* dst_type = dst->Value(&_gvn);
5183   const TypeAryPtr* top_src = src_type->isa_aryptr();
5184   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5185   if (top_src  == NULL || top_src->klass()  == NULL ||
5186       top_dest == NULL || top_dest->klass() == NULL) {
5187     // failed array check
5188     return false;
5189   }
5190 
5191   // Figure out the size and type of the elements we will be copying.
5192   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5193   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5194   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5195     return false;
5196   }
5197 
5198   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5199   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5200   // 'src_start' points to src array + scaled offset
5201   // 'dst_start' points to dst array + scaled offset
5202 
5203   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5204   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5205   enc = _gvn.transform(enc);
5206   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5207   set_memory(res_mem, mtype);
5208   set_result(enc);
5209   return true;
5210 }
5211 
5212 //-------------inline_multiplyToLen-----------------------------------
5213 bool LibraryCallKit::inline_multiplyToLen() {
5214   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5215 
5216   address stubAddr = StubRoutines::multiplyToLen();
5217   if (stubAddr == NULL) {
5218     return false; // Intrinsic's stub is not implemented on this platform
5219   }
5220   const char* stubName = "multiplyToLen";
5221 
5222   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5223 
5224   // no receiver because it is a static method
5225   Node* x    = argument(0);
5226   Node* xlen = argument(1);
5227   Node* y    = argument(2);
5228   Node* ylen = argument(3);
5229   Node* z    = argument(4);
5230 
5231   const Type* x_type = x->Value(&_gvn);
5232   const Type* y_type = y->Value(&_gvn);
5233   const TypeAryPtr* top_x = x_type->isa_aryptr();
5234   const TypeAryPtr* top_y = y_type->isa_aryptr();
5235   if (top_x  == NULL || top_x->klass()  == NULL ||
5236       top_y == NULL || top_y->klass() == NULL) {
5237     // failed array check
5238     return false;
5239   }
5240 
5241   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5242   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5243   if (x_elem != T_INT || y_elem != T_INT) {
5244     return false;
5245   }
5246 
5247   // Set the original stack and the reexecute bit for the interpreter to reexecute
5248   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5249   // on the return from z array allocation in runtime.
5250   { PreserveReexecuteState preexecs(this);
5251     jvms()->set_should_reexecute(true);
5252 
5253     Node* x_start = array_element_address(x, intcon(0), x_elem);
5254     Node* y_start = array_element_address(y, intcon(0), y_elem);
5255     // 'x_start' points to x array + scaled xlen
5256     // 'y_start' points to y array + scaled ylen
5257 
5258     // Allocate the result array
5259     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5260     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5261     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5262 
5263     IdealKit ideal(this);
5264 
5265 #define __ ideal.
5266      Node* one = __ ConI(1);
5267      Node* zero = __ ConI(0);
5268      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5269      __ set(need_alloc, zero);
5270      __ set(z_alloc, z);
5271      __ if_then(z, BoolTest::eq, null()); {
5272        __ increment (need_alloc, one);
5273      } __ else_(); {
5274        // Update graphKit memory and control from IdealKit.
5275        sync_kit(ideal);
5276        Node* zlen_arg = load_array_length(z);
5277        // Update IdealKit memory and control from graphKit.
5278        __ sync_kit(this);
5279        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5280          __ increment (need_alloc, one);
5281        } __ end_if();
5282      } __ end_if();
5283 
5284      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5285        // Update graphKit memory and control from IdealKit.
5286        sync_kit(ideal);
5287        Node * narr = new_array(klass_node, zlen, 1);
5288        // Update IdealKit memory and control from graphKit.
5289        __ sync_kit(this);
5290        __ set(z_alloc, narr);
5291      } __ end_if();
5292 
5293      sync_kit(ideal);
5294      z = __ value(z_alloc);
5295      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5296      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5297      // Final sync IdealKit and GraphKit.
5298      final_sync(ideal);
5299 #undef __
5300 
5301     Node* z_start = array_element_address(z, intcon(0), T_INT);
5302 
5303     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5304                                    OptoRuntime::multiplyToLen_Type(),
5305                                    stubAddr, stubName, TypePtr::BOTTOM,
5306                                    x_start, xlen, y_start, ylen, z_start, zlen);
5307   } // original reexecute is set back here
5308 
5309   C->set_has_split_ifs(true); // Has chance for split-if optimization
5310   set_result(z);
5311   return true;
5312 }
5313 
5314 //-------------inline_squareToLen------------------------------------
5315 bool LibraryCallKit::inline_squareToLen() {
5316   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5317 
5318   address stubAddr = StubRoutines::squareToLen();
5319   if (stubAddr == NULL) {
5320     return false; // Intrinsic's stub is not implemented on this platform
5321   }
5322   const char* stubName = "squareToLen";
5323 
5324   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5325 
5326   Node* x    = argument(0);
5327   Node* len  = argument(1);
5328   Node* z    = argument(2);
5329   Node* zlen = argument(3);
5330 
5331   const Type* x_type = x->Value(&_gvn);
5332   const Type* z_type = z->Value(&_gvn);
5333   const TypeAryPtr* top_x = x_type->isa_aryptr();
5334   const TypeAryPtr* top_z = z_type->isa_aryptr();
5335   if (top_x  == NULL || top_x->klass()  == NULL ||
5336       top_z  == NULL || top_z->klass()  == NULL) {
5337     // failed array check
5338     return false;
5339   }
5340 
5341   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5342   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5343   if (x_elem != T_INT || z_elem != T_INT) {
5344     return false;
5345   }
5346 
5347 
5348   Node* x_start = array_element_address(x, intcon(0), x_elem);
5349   Node* z_start = array_element_address(z, intcon(0), z_elem);
5350 
5351   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5352                                   OptoRuntime::squareToLen_Type(),
5353                                   stubAddr, stubName, TypePtr::BOTTOM,
5354                                   x_start, len, z_start, zlen);
5355 
5356   set_result(z);
5357   return true;
5358 }
5359 
5360 //-------------inline_mulAdd------------------------------------------
5361 bool LibraryCallKit::inline_mulAdd() {
5362   assert(UseMulAddIntrinsic, "not implemented on this platform");
5363 
5364   address stubAddr = StubRoutines::mulAdd();
5365   if (stubAddr == NULL) {
5366     return false; // Intrinsic's stub is not implemented on this platform
5367   }
5368   const char* stubName = "mulAdd";
5369 
5370   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5371 
5372   Node* out      = argument(0);
5373   Node* in       = argument(1);
5374   Node* offset   = argument(2);
5375   Node* len      = argument(3);
5376   Node* k        = argument(4);
5377 
5378   const Type* out_type = out->Value(&_gvn);
5379   const Type* in_type = in->Value(&_gvn);
5380   const TypeAryPtr* top_out = out_type->isa_aryptr();
5381   const TypeAryPtr* top_in = in_type->isa_aryptr();
5382   if (top_out  == NULL || top_out->klass()  == NULL ||
5383       top_in == NULL || top_in->klass() == NULL) {
5384     // failed array check
5385     return false;
5386   }
5387 
5388   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5389   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5390   if (out_elem != T_INT || in_elem != T_INT) {
5391     return false;
5392   }
5393 
5394   Node* outlen = load_array_length(out);
5395   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5396   Node* out_start = array_element_address(out, intcon(0), out_elem);
5397   Node* in_start = array_element_address(in, intcon(0), in_elem);
5398 
5399   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5400                                   OptoRuntime::mulAdd_Type(),
5401                                   stubAddr, stubName, TypePtr::BOTTOM,
5402                                   out_start,in_start, new_offset, len, k);
5403   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5404   set_result(result);
5405   return true;
5406 }
5407 
5408 //-------------inline_montgomeryMultiply-----------------------------------
5409 bool LibraryCallKit::inline_montgomeryMultiply() {
5410   address stubAddr = StubRoutines::montgomeryMultiply();
5411   if (stubAddr == NULL) {
5412     return false; // Intrinsic's stub is not implemented on this platform
5413   }
5414 
5415   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5416   const char* stubName = "montgomery_square";
5417 
5418   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5419 
5420   Node* a    = argument(0);
5421   Node* b    = argument(1);
5422   Node* n    = argument(2);
5423   Node* len  = argument(3);
5424   Node* inv  = argument(4);
5425   Node* m    = argument(6);
5426 
5427   const Type* a_type = a->Value(&_gvn);
5428   const TypeAryPtr* top_a = a_type->isa_aryptr();
5429   const Type* b_type = b->Value(&_gvn);
5430   const TypeAryPtr* top_b = b_type->isa_aryptr();
5431   const Type* n_type = a->Value(&_gvn);
5432   const TypeAryPtr* top_n = n_type->isa_aryptr();
5433   const Type* m_type = a->Value(&_gvn);
5434   const TypeAryPtr* top_m = m_type->isa_aryptr();
5435   if (top_a  == NULL || top_a->klass()  == NULL ||
5436       top_b == NULL || top_b->klass()  == NULL ||
5437       top_n == NULL || top_n->klass()  == NULL ||
5438       top_m == NULL || top_m->klass()  == NULL) {
5439     // failed array check
5440     return false;
5441   }
5442 
5443   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5444   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5445   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5446   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5447   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5448     return false;
5449   }
5450 
5451   // Make the call
5452   {
5453     Node* a_start = array_element_address(a, intcon(0), a_elem);
5454     Node* b_start = array_element_address(b, intcon(0), b_elem);
5455     Node* n_start = array_element_address(n, intcon(0), n_elem);
5456     Node* m_start = array_element_address(m, intcon(0), m_elem);
5457 
5458     Node* call = make_runtime_call(RC_LEAF,
5459                                    OptoRuntime::montgomeryMultiply_Type(),
5460                                    stubAddr, stubName, TypePtr::BOTTOM,
5461                                    a_start, b_start, n_start, len, inv, top(),
5462                                    m_start);
5463     set_result(m);
5464   }
5465 
5466   return true;
5467 }
5468 
5469 bool LibraryCallKit::inline_montgomerySquare() {
5470   address stubAddr = StubRoutines::montgomerySquare();
5471   if (stubAddr == NULL) {
5472     return false; // Intrinsic's stub is not implemented on this platform
5473   }
5474 
5475   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5476   const char* stubName = "montgomery_square";
5477 
5478   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5479 
5480   Node* a    = argument(0);
5481   Node* n    = argument(1);
5482   Node* len  = argument(2);
5483   Node* inv  = argument(3);
5484   Node* m    = argument(5);
5485 
5486   const Type* a_type = a->Value(&_gvn);
5487   const TypeAryPtr* top_a = a_type->isa_aryptr();
5488   const Type* n_type = a->Value(&_gvn);
5489   const TypeAryPtr* top_n = n_type->isa_aryptr();
5490   const Type* m_type = a->Value(&_gvn);
5491   const TypeAryPtr* top_m = m_type->isa_aryptr();
5492   if (top_a  == NULL || top_a->klass()  == NULL ||
5493       top_n == NULL || top_n->klass()  == NULL ||
5494       top_m == NULL || top_m->klass()  == NULL) {
5495     // failed array check
5496     return false;
5497   }
5498 
5499   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5500   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5501   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5502   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5503     return false;
5504   }
5505 
5506   // Make the call
5507   {
5508     Node* a_start = array_element_address(a, intcon(0), a_elem);
5509     Node* n_start = array_element_address(n, intcon(0), n_elem);
5510     Node* m_start = array_element_address(m, intcon(0), m_elem);
5511 
5512     Node* call = make_runtime_call(RC_LEAF,
5513                                    OptoRuntime::montgomerySquare_Type(),
5514                                    stubAddr, stubName, TypePtr::BOTTOM,
5515                                    a_start, n_start, len, inv, top(),
5516                                    m_start);
5517     set_result(m);
5518   }
5519 
5520   return true;
5521 }
5522 
5523 //-------------inline_vectorizedMismatch------------------------------
5524 bool LibraryCallKit::inline_vectorizedMismatch() {
5525   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5526 
5527   address stubAddr = StubRoutines::vectorizedMismatch();
5528   if (stubAddr == NULL) {
5529     return false; // Intrinsic's stub is not implemented on this platform
5530   }
5531   const char* stubName = "vectorizedMismatch";
5532   int size_l = callee()->signature()->size();
5533   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5534 
5535   Node* obja = argument(0);
5536   Node* aoffset = argument(1);
5537   Node* objb = argument(3);
5538   Node* boffset = argument(4);
5539   Node* length = argument(6);
5540   Node* scale = argument(7);
5541 
5542   const Type* a_type = obja->Value(&_gvn);
5543   const Type* b_type = objb->Value(&_gvn);
5544   const TypeAryPtr* top_a = a_type->isa_aryptr();
5545   const TypeAryPtr* top_b = b_type->isa_aryptr();
5546   if (top_a == NULL || top_a->klass() == NULL ||
5547     top_b == NULL || top_b->klass() == NULL) {
5548     // failed array check
5549     return false;
5550   }
5551 
5552   Node* call;
5553   jvms()->set_should_reexecute(true);
5554 
5555   Node* obja_adr = make_unsafe_address(obja, aoffset);
5556   Node* objb_adr = make_unsafe_address(objb, boffset);
5557 
5558   call = make_runtime_call(RC_LEAF,
5559     OptoRuntime::vectorizedMismatch_Type(),
5560     stubAddr, stubName, TypePtr::BOTTOM,
5561     obja_adr, objb_adr, length, scale);
5562 
5563   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5564   set_result(result);
5565   return true;
5566 }
5567 
5568 /**
5569  * Calculate CRC32 for byte.
5570  * int java.util.zip.CRC32.update(int crc, int b)
5571  */
5572 bool LibraryCallKit::inline_updateCRC32() {
5573   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5574   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5575   // no receiver since it is static method
5576   Node* crc  = argument(0); // type: int
5577   Node* b    = argument(1); // type: int
5578 
5579   /*
5580    *    int c = ~ crc;
5581    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5582    *    b = b ^ (c >>> 8);
5583    *    crc = ~b;
5584    */
5585 
5586   Node* M1 = intcon(-1);
5587   crc = _gvn.transform(new XorINode(crc, M1));
5588   Node* result = _gvn.transform(new XorINode(crc, b));
5589   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5590 
5591   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5592   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5593   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5594   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5595 
5596   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5597   result = _gvn.transform(new XorINode(crc, result));
5598   result = _gvn.transform(new XorINode(result, M1));
5599   set_result(result);
5600   return true;
5601 }
5602 
5603 /**
5604  * Calculate CRC32 for byte[] array.
5605  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5606  */
5607 bool LibraryCallKit::inline_updateBytesCRC32() {
5608   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5609   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5610   // no receiver since it is static method
5611   Node* crc     = argument(0); // type: int
5612   Node* src     = argument(1); // type: oop
5613   Node* offset  = argument(2); // type: int
5614   Node* length  = argument(3); // type: int
5615 
5616   const Type* src_type = src->Value(&_gvn);
5617   const TypeAryPtr* top_src = src_type->isa_aryptr();
5618   if (top_src  == NULL || top_src->klass()  == NULL) {
5619     // failed array check
5620     return false;
5621   }
5622 
5623   // Figure out the size and type of the elements we will be copying.
5624   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5625   if (src_elem != T_BYTE) {
5626     return false;
5627   }
5628 
5629   // 'src_start' points to src array + scaled offset
5630   Node* src_start = array_element_address(src, offset, src_elem);
5631 
5632   // We assume that range check is done by caller.
5633   // TODO: generate range check (offset+length < src.length) in debug VM.
5634 
5635   // Call the stub.
5636   address stubAddr = StubRoutines::updateBytesCRC32();
5637   const char *stubName = "updateBytesCRC32";
5638 
5639   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5640                                  stubAddr, stubName, TypePtr::BOTTOM,
5641                                  crc, src_start, length);
5642   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5643   set_result(result);
5644   return true;
5645 }
5646 
5647 /**
5648  * Calculate CRC32 for ByteBuffer.
5649  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5650  */
5651 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5652   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5653   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5654   // no receiver since it is static method
5655   Node* crc     = argument(0); // type: int
5656   Node* src     = argument(1); // type: long
5657   Node* offset  = argument(3); // type: int
5658   Node* length  = argument(4); // type: int
5659 
5660   src = ConvL2X(src);  // adjust Java long to machine word
5661   Node* base = _gvn.transform(new CastX2PNode(src));
5662   offset = ConvI2X(offset);
5663 
5664   // 'src_start' points to src array + scaled offset
5665   Node* src_start = basic_plus_adr(top(), base, offset);
5666 
5667   // Call the stub.
5668   address stubAddr = StubRoutines::updateBytesCRC32();
5669   const char *stubName = "updateBytesCRC32";
5670 
5671   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5672                                  stubAddr, stubName, TypePtr::BOTTOM,
5673                                  crc, src_start, length);
5674   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5675   set_result(result);
5676   return true;
5677 }
5678 
5679 //------------------------------get_table_from_crc32c_class-----------------------
5680 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5681   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5682   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5683 
5684   return table;
5685 }
5686 
5687 //------------------------------inline_updateBytesCRC32C-----------------------
5688 //
5689 // Calculate CRC32C for byte[] array.
5690 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5691 //
5692 bool LibraryCallKit::inline_updateBytesCRC32C() {
5693   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5694   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5695   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5696   // no receiver since it is a static method
5697   Node* crc     = argument(0); // type: int
5698   Node* src     = argument(1); // type: oop
5699   Node* offset  = argument(2); // type: int
5700   Node* end     = argument(3); // type: int
5701 
5702   Node* length = _gvn.transform(new SubINode(end, offset));
5703 
5704   const Type* src_type = src->Value(&_gvn);
5705   const TypeAryPtr* top_src = src_type->isa_aryptr();
5706   if (top_src  == NULL || top_src->klass()  == NULL) {
5707     // failed array check
5708     return false;
5709   }
5710 
5711   // Figure out the size and type of the elements we will be copying.
5712   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5713   if (src_elem != T_BYTE) {
5714     return false;
5715   }
5716 
5717   // 'src_start' points to src array + scaled offset
5718   Node* src_start = array_element_address(src, offset, src_elem);
5719 
5720   // static final int[] byteTable in class CRC32C
5721   Node* table = get_table_from_crc32c_class(callee()->holder());
5722   Node* table_start = array_element_address(table, intcon(0), T_INT);
5723 
5724   // We assume that range check is done by caller.
5725   // TODO: generate range check (offset+length < src.length) in debug VM.
5726 
5727   // Call the stub.
5728   address stubAddr = StubRoutines::updateBytesCRC32C();
5729   const char *stubName = "updateBytesCRC32C";
5730 
5731   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5732                                  stubAddr, stubName, TypePtr::BOTTOM,
5733                                  crc, src_start, length, table_start);
5734   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5735   set_result(result);
5736   return true;
5737 }
5738 
5739 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5740 //
5741 // Calculate CRC32C for DirectByteBuffer.
5742 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5743 //
5744 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5745   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5746   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5747   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5748   // no receiver since it is a static method
5749   Node* crc     = argument(0); // type: int
5750   Node* src     = argument(1); // type: long
5751   Node* offset  = argument(3); // type: int
5752   Node* end     = argument(4); // type: int
5753 
5754   Node* length = _gvn.transform(new SubINode(end, offset));
5755 
5756   src = ConvL2X(src);  // adjust Java long to machine word
5757   Node* base = _gvn.transform(new CastX2PNode(src));
5758   offset = ConvI2X(offset);
5759 
5760   // 'src_start' points to src array + scaled offset
5761   Node* src_start = basic_plus_adr(top(), base, offset);
5762 
5763   // static final int[] byteTable in class CRC32C
5764   Node* table = get_table_from_crc32c_class(callee()->holder());
5765   Node* table_start = array_element_address(table, intcon(0), T_INT);
5766 
5767   // Call the stub.
5768   address stubAddr = StubRoutines::updateBytesCRC32C();
5769   const char *stubName = "updateBytesCRC32C";
5770 
5771   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5772                                  stubAddr, stubName, TypePtr::BOTTOM,
5773                                  crc, src_start, length, table_start);
5774   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5775   set_result(result);
5776   return true;
5777 }
5778 
5779 //------------------------------inline_updateBytesAdler32----------------------
5780 //
5781 // Calculate Adler32 checksum for byte[] array.
5782 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5783 //
5784 bool LibraryCallKit::inline_updateBytesAdler32() {
5785   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5786   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5787   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5788   // no receiver since it is static method
5789   Node* crc     = argument(0); // type: int
5790   Node* src     = argument(1); // type: oop
5791   Node* offset  = argument(2); // type: int
5792   Node* length  = argument(3); // type: int
5793 
5794   const Type* src_type = src->Value(&_gvn);
5795   const TypeAryPtr* top_src = src_type->isa_aryptr();
5796   if (top_src  == NULL || top_src->klass()  == NULL) {
5797     // failed array check
5798     return false;
5799   }
5800 
5801   // Figure out the size and type of the elements we will be copying.
5802   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5803   if (src_elem != T_BYTE) {
5804     return false;
5805   }
5806 
5807   // 'src_start' points to src array + scaled offset
5808   Node* src_start = array_element_address(src, offset, src_elem);
5809 
5810   // We assume that range check is done by caller.
5811   // TODO: generate range check (offset+length < src.length) in debug VM.
5812 
5813   // Call the stub.
5814   address stubAddr = StubRoutines::updateBytesAdler32();
5815   const char *stubName = "updateBytesAdler32";
5816 
5817   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5818                                  stubAddr, stubName, TypePtr::BOTTOM,
5819                                  crc, src_start, length);
5820   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5821   set_result(result);
5822   return true;
5823 }
5824 
5825 //------------------------------inline_updateByteBufferAdler32---------------
5826 //
5827 // Calculate Adler32 checksum for DirectByteBuffer.
5828 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5829 //
5830 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5831   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5832   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5833   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5834   // no receiver since it is static method
5835   Node* crc     = argument(0); // type: int
5836   Node* src     = argument(1); // type: long
5837   Node* offset  = argument(3); // type: int
5838   Node* length  = argument(4); // type: int
5839 
5840   src = ConvL2X(src);  // adjust Java long to machine word
5841   Node* base = _gvn.transform(new CastX2PNode(src));
5842   offset = ConvI2X(offset);
5843 
5844   // 'src_start' points to src array + scaled offset
5845   Node* src_start = basic_plus_adr(top(), base, offset);
5846 
5847   // Call the stub.
5848   address stubAddr = StubRoutines::updateBytesAdler32();
5849   const char *stubName = "updateBytesAdler32";
5850 
5851   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5852                                  stubAddr, stubName, TypePtr::BOTTOM,
5853                                  crc, src_start, length);
5854 
5855   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5856   set_result(result);
5857   return true;
5858 }
5859 
5860 //----------------------------inline_reference_get----------------------------
5861 // public T java.lang.ref.Reference.get();
5862 bool LibraryCallKit::inline_reference_get() {
5863   const int referent_offset = java_lang_ref_Reference::referent_offset;
5864   guarantee(referent_offset > 0, "should have already been set");
5865 
5866   // Get the argument:
5867   Node* reference_obj = null_check_receiver();
5868   if (stopped()) return true;
5869 
5870   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5871 
5872   ciInstanceKlass* klass = env()->Object_klass();
5873   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5874 
5875   Node* no_ctrl = NULL;
5876   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5877 
5878   // Use the pre-barrier to record the value in the referent field
5879   pre_barrier(false /* do_load */,
5880               control(),
5881               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5882               result /* pre_val */,
5883               T_OBJECT);
5884 
5885   // Add memory barrier to prevent commoning reads from this field
5886   // across safepoint since GC can change its value.
5887   insert_mem_bar(Op_MemBarCPUOrder);
5888 
5889   set_result(result);
5890   return true;
5891 }
5892 
5893 
5894 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5895                                               bool is_exact=true, bool is_static=false,
5896                                               ciInstanceKlass * fromKls=NULL) {
5897   if (fromKls == NULL) {
5898     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5899     assert(tinst != NULL, "obj is null");
5900     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5901     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5902     fromKls = tinst->klass()->as_instance_klass();
5903   } else {
5904     assert(is_static, "only for static field access");
5905   }
5906   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5907                                               ciSymbol::make(fieldTypeString),
5908                                               is_static);
5909 
5910   assert (field != NULL, "undefined field");
5911   if (field == NULL) return (Node *) NULL;
5912 
5913   if (is_static) {
5914     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5915     fromObj = makecon(tip);
5916   }
5917 
5918   // Next code  copied from Parse::do_get_xxx():
5919 
5920   // Compute address and memory type.
5921   int offset  = field->offset_in_bytes();
5922   bool is_vol = field->is_volatile();
5923   ciType* field_klass = field->type();
5924   assert(field_klass->is_loaded(), "should be loaded");
5925   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5926   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5927   BasicType bt = field->layout_type();
5928 
5929   // Build the resultant type of the load
5930   const Type *type;
5931   if (bt == T_OBJECT) {
5932     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5933   } else {
5934     type = Type::get_const_basic_type(bt);
5935   }
5936 
5937   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5938     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5939   }
5940   // Build the load.
5941   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5942   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5943   // If reference is volatile, prevent following memory ops from
5944   // floating up past the volatile read.  Also prevents commoning
5945   // another volatile read.
5946   if (is_vol) {
5947     // Memory barrier includes bogus read of value to force load BEFORE membar
5948     insert_mem_bar(Op_MemBarAcquire, loadedField);
5949   }
5950   return loadedField;
5951 }
5952 
5953 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5954                                                  bool is_exact = true, bool is_static = false,
5955                                                  ciInstanceKlass * fromKls = NULL) {
5956   if (fromKls == NULL) {
5957     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5958     assert(tinst != NULL, "obj is null");
5959     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5960     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5961     fromKls = tinst->klass()->as_instance_klass();
5962   }
5963   else {
5964     assert(is_static, "only for static field access");
5965   }
5966   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5967     ciSymbol::make(fieldTypeString),
5968     is_static);
5969 
5970   assert(field != NULL, "undefined field");
5971   assert(!field->is_volatile(), "not defined for volatile fields");
5972 
5973   if (is_static) {
5974     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5975     fromObj = makecon(tip);
5976   }
5977 
5978   // Next code  copied from Parse::do_get_xxx():
5979 
5980   // Compute address and memory type.
5981   int offset = field->offset_in_bytes();
5982   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5983 
5984   return adr;
5985 }
5986 
5987 //------------------------------inline_aescrypt_Block-----------------------
5988 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5989   address stubAddr = NULL;
5990   const char *stubName;
5991   assert(UseAES, "need AES instruction support");
5992 
5993   switch(id) {
5994   case vmIntrinsics::_aescrypt_encryptBlock:
5995     stubAddr = StubRoutines::aescrypt_encryptBlock();
5996     stubName = "aescrypt_encryptBlock";
5997     break;
5998   case vmIntrinsics::_aescrypt_decryptBlock:
5999     stubAddr = StubRoutines::aescrypt_decryptBlock();
6000     stubName = "aescrypt_decryptBlock";
6001     break;
6002   }
6003   if (stubAddr == NULL) return false;
6004 
6005   Node* aescrypt_object = argument(0);
6006   Node* src             = argument(1);
6007   Node* src_offset      = argument(2);
6008   Node* dest            = argument(3);
6009   Node* dest_offset     = argument(4);
6010 
6011   // (1) src and dest are arrays.
6012   const Type* src_type = src->Value(&_gvn);
6013   const Type* dest_type = dest->Value(&_gvn);
6014   const TypeAryPtr* top_src = src_type->isa_aryptr();
6015   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6016   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6017 
6018   // for the quick and dirty code we will skip all the checks.
6019   // we are just trying to get the call to be generated.
6020   Node* src_start  = src;
6021   Node* dest_start = dest;
6022   if (src_offset != NULL || dest_offset != NULL) {
6023     assert(src_offset != NULL && dest_offset != NULL, "");
6024     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6025     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6026   }
6027 
6028   // now need to get the start of its expanded key array
6029   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6030   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6031   if (k_start == NULL) return false;
6032 
6033   if (Matcher::pass_original_key_for_aes()) {
6034     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6035     // compatibility issues between Java key expansion and SPARC crypto instructions
6036     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6037     if (original_k_start == NULL) return false;
6038 
6039     // Call the stub.
6040     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6041                       stubAddr, stubName, TypePtr::BOTTOM,
6042                       src_start, dest_start, k_start, original_k_start);
6043   } else {
6044     // Call the stub.
6045     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6046                       stubAddr, stubName, TypePtr::BOTTOM,
6047                       src_start, dest_start, k_start);
6048   }
6049 
6050   return true;
6051 }
6052 
6053 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6054 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6055   address stubAddr = NULL;
6056   const char *stubName = NULL;
6057 
6058   assert(UseAES, "need AES instruction support");
6059 
6060   switch(id) {
6061   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6062     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6063     stubName = "cipherBlockChaining_encryptAESCrypt";
6064     break;
6065   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6066     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6067     stubName = "cipherBlockChaining_decryptAESCrypt";
6068     break;
6069   }
6070   if (stubAddr == NULL) return false;
6071 
6072   Node* cipherBlockChaining_object = argument(0);
6073   Node* src                        = argument(1);
6074   Node* src_offset                 = argument(2);
6075   Node* len                        = argument(3);
6076   Node* dest                       = argument(4);
6077   Node* dest_offset                = argument(5);
6078 
6079   // (1) src and dest are arrays.
6080   const Type* src_type = src->Value(&_gvn);
6081   const Type* dest_type = dest->Value(&_gvn);
6082   const TypeAryPtr* top_src = src_type->isa_aryptr();
6083   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6084   assert (top_src  != NULL && top_src->klass()  != NULL
6085           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6086 
6087   // checks are the responsibility of the caller
6088   Node* src_start  = src;
6089   Node* dest_start = dest;
6090   if (src_offset != NULL || dest_offset != NULL) {
6091     assert(src_offset != NULL && dest_offset != NULL, "");
6092     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6093     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6094   }
6095 
6096   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6097   // (because of the predicated logic executed earlier).
6098   // so we cast it here safely.
6099   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6100 
6101   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6102   if (embeddedCipherObj == NULL) return false;
6103 
6104   // cast it to what we know it will be at runtime
6105   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6106   assert(tinst != NULL, "CBC obj is null");
6107   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6108   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6109   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6110 
6111   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6112   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6113   const TypeOopPtr* xtype = aklass->as_instance_type();
6114   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6115   aescrypt_object = _gvn.transform(aescrypt_object);
6116 
6117   // we need to get the start of the aescrypt_object's expanded key array
6118   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6119   if (k_start == NULL) return false;
6120 
6121   // similarly, get the start address of the r vector
6122   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6123   if (objRvec == NULL) return false;
6124   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6125 
6126   Node* cbcCrypt;
6127   if (Matcher::pass_original_key_for_aes()) {
6128     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6129     // compatibility issues between Java key expansion and SPARC crypto instructions
6130     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6131     if (original_k_start == NULL) return false;
6132 
6133     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6134     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6135                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6136                                  stubAddr, stubName, TypePtr::BOTTOM,
6137                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6138   } else {
6139     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6140     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6141                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6142                                  stubAddr, stubName, TypePtr::BOTTOM,
6143                                  src_start, dest_start, k_start, r_start, len);
6144   }
6145 
6146   // return cipher length (int)
6147   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6148   set_result(retvalue);
6149   return true;
6150 }
6151 
6152 //------------------------------inline_counterMode_AESCrypt-----------------------
6153 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6154   assert(UseAES, "need AES instruction support");
6155   if (!UseAESCTRIntrinsics) return false;
6156 
6157   address stubAddr = NULL;
6158   const char *stubName = NULL;
6159   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6160     stubAddr = StubRoutines::counterMode_AESCrypt();
6161     stubName = "counterMode_AESCrypt";
6162   }
6163   if (stubAddr == NULL) return false;
6164 
6165   Node* counterMode_object = argument(0);
6166   Node* src = argument(1);
6167   Node* src_offset = argument(2);
6168   Node* len = argument(3);
6169   Node* dest = argument(4);
6170   Node* dest_offset = argument(5);
6171 
6172   // (1) src and dest are arrays.
6173   const Type* src_type = src->Value(&_gvn);
6174   const Type* dest_type = dest->Value(&_gvn);
6175   const TypeAryPtr* top_src = src_type->isa_aryptr();
6176   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6177   assert(top_src != NULL && top_src->klass() != NULL &&
6178          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6179 
6180   // checks are the responsibility of the caller
6181   Node* src_start = src;
6182   Node* dest_start = dest;
6183   if (src_offset != NULL || dest_offset != NULL) {
6184     assert(src_offset != NULL && dest_offset != NULL, "");
6185     src_start = array_element_address(src, src_offset, T_BYTE);
6186     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6187   }
6188 
6189   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6190   // (because of the predicated logic executed earlier).
6191   // so we cast it here safely.
6192   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6193   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6194   if (embeddedCipherObj == NULL) return false;
6195   // cast it to what we know it will be at runtime
6196   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6197   assert(tinst != NULL, "CTR obj is null");
6198   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6199   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6200   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6201   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6202   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6203   const TypeOopPtr* xtype = aklass->as_instance_type();
6204   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6205   aescrypt_object = _gvn.transform(aescrypt_object);
6206   // we need to get the start of the aescrypt_object's expanded key array
6207   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6208   if (k_start == NULL) return false;
6209   // similarly, get the start address of the r vector
6210   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6211   if (obj_counter == NULL) return false;
6212   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6213 
6214   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6215   if (saved_encCounter == NULL) return false;
6216   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6217   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6218 
6219   Node* ctrCrypt;
6220   if (Matcher::pass_original_key_for_aes()) {
6221     // no SPARC version for AES/CTR intrinsics now.
6222     return false;
6223   }
6224   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6225   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6226                                OptoRuntime::counterMode_aescrypt_Type(),
6227                                stubAddr, stubName, TypePtr::BOTTOM,
6228                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6229 
6230   // return cipher length (int)
6231   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6232   set_result(retvalue);
6233   return true;
6234 }
6235 
6236 //------------------------------get_key_start_from_aescrypt_object-----------------------
6237 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6238 #ifdef PPC64
6239   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6240   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6241   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6242   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6243   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6244   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6245   if (objSessionK == NULL) {
6246     return (Node *) NULL;
6247   }
6248   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6249 #else
6250   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6251 #endif // PPC64
6252   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6253   if (objAESCryptKey == NULL) return (Node *) NULL;
6254 
6255   // now have the array, need to get the start address of the K array
6256   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6257   return k_start;
6258 }
6259 
6260 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6261 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6262   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6263   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6264   if (objAESCryptKey == NULL) return (Node *) NULL;
6265 
6266   // now have the array, need to get the start address of the lastKey array
6267   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6268   return original_k_start;
6269 }
6270 
6271 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6272 // Return node representing slow path of predicate check.
6273 // the pseudo code we want to emulate with this predicate is:
6274 // for encryption:
6275 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6276 // for decryption:
6277 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6278 //    note cipher==plain is more conservative than the original java code but that's OK
6279 //
6280 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6281   // The receiver was checked for NULL already.
6282   Node* objCBC = argument(0);
6283 
6284   // Load embeddedCipher field of CipherBlockChaining object.
6285   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6286 
6287   // get AESCrypt klass for instanceOf check
6288   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6289   // will have same classloader as CipherBlockChaining object
6290   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6291   assert(tinst != NULL, "CBCobj is null");
6292   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6293 
6294   // we want to do an instanceof comparison against the AESCrypt class
6295   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6296   if (!klass_AESCrypt->is_loaded()) {
6297     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6298     Node* ctrl = control();
6299     set_control(top()); // no regular fast path
6300     return ctrl;
6301   }
6302   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6303 
6304   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6305   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6306   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6307 
6308   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6309 
6310   // for encryption, we are done
6311   if (!decrypting)
6312     return instof_false;  // even if it is NULL
6313 
6314   // for decryption, we need to add a further check to avoid
6315   // taking the intrinsic path when cipher and plain are the same
6316   // see the original java code for why.
6317   RegionNode* region = new RegionNode(3);
6318   region->init_req(1, instof_false);
6319   Node* src = argument(1);
6320   Node* dest = argument(4);
6321   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6322   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6323   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6324   region->init_req(2, src_dest_conjoint);
6325 
6326   record_for_igvn(region);
6327   return _gvn.transform(region);
6328 }
6329 
6330 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6331 // Return node representing slow path of predicate check.
6332 // the pseudo code we want to emulate with this predicate is:
6333 // for encryption:
6334 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6335 // for decryption:
6336 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6337 //    note cipher==plain is more conservative than the original java code but that's OK
6338 //
6339 
6340 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6341   // The receiver was checked for NULL already.
6342   Node* objCTR = argument(0);
6343 
6344   // Load embeddedCipher field of CipherBlockChaining object.
6345   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6346 
6347   // get AESCrypt klass for instanceOf check
6348   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6349   // will have same classloader as CipherBlockChaining object
6350   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6351   assert(tinst != NULL, "CTRobj is null");
6352   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6353 
6354   // we want to do an instanceof comparison against the AESCrypt class
6355   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6356   if (!klass_AESCrypt->is_loaded()) {
6357     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6358     Node* ctrl = control();
6359     set_control(top()); // no regular fast path
6360     return ctrl;
6361   }
6362 
6363   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6364   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6365   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6366   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6367   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6368 
6369   return instof_false; // even if it is NULL
6370 }
6371 
6372 //------------------------------inline_ghash_processBlocks
6373 bool LibraryCallKit::inline_ghash_processBlocks() {
6374   address stubAddr;
6375   const char *stubName;
6376   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6377 
6378   stubAddr = StubRoutines::ghash_processBlocks();
6379   stubName = "ghash_processBlocks";
6380 
6381   Node* data           = argument(0);
6382   Node* offset         = argument(1);
6383   Node* len            = argument(2);
6384   Node* state          = argument(3);
6385   Node* subkeyH        = argument(4);
6386 
6387   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6388   assert(state_start, "state is NULL");
6389   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6390   assert(subkeyH_start, "subkeyH is NULL");
6391   Node* data_start  = array_element_address(data, offset, T_BYTE);
6392   assert(data_start, "data is NULL");
6393 
6394   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6395                                   OptoRuntime::ghash_processBlocks_Type(),
6396                                   stubAddr, stubName, TypePtr::BOTTOM,
6397                                   state_start, subkeyH_start, data_start, len);
6398   return true;
6399 }
6400 
6401 //------------------------------inline_sha_implCompress-----------------------
6402 //
6403 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6404 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6405 //
6406 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6407 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6408 //
6409 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6410 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6411 //
6412 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6413   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6414 
6415   Node* sha_obj = argument(0);
6416   Node* src     = argument(1); // type oop
6417   Node* ofs     = argument(2); // type int
6418 
6419   const Type* src_type = src->Value(&_gvn);
6420   const TypeAryPtr* top_src = src_type->isa_aryptr();
6421   if (top_src  == NULL || top_src->klass()  == NULL) {
6422     // failed array check
6423     return false;
6424   }
6425   // Figure out the size and type of the elements we will be copying.
6426   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6427   if (src_elem != T_BYTE) {
6428     return false;
6429   }
6430   // 'src_start' points to src array + offset
6431   Node* src_start = array_element_address(src, ofs, src_elem);
6432   Node* state = NULL;
6433   address stubAddr;
6434   const char *stubName;
6435 
6436   switch(id) {
6437   case vmIntrinsics::_sha_implCompress:
6438     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6439     state = get_state_from_sha_object(sha_obj);
6440     stubAddr = StubRoutines::sha1_implCompress();
6441     stubName = "sha1_implCompress";
6442     break;
6443   case vmIntrinsics::_sha2_implCompress:
6444     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6445     state = get_state_from_sha_object(sha_obj);
6446     stubAddr = StubRoutines::sha256_implCompress();
6447     stubName = "sha256_implCompress";
6448     break;
6449   case vmIntrinsics::_sha5_implCompress:
6450     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6451     state = get_state_from_sha5_object(sha_obj);
6452     stubAddr = StubRoutines::sha512_implCompress();
6453     stubName = "sha512_implCompress";
6454     break;
6455   default:
6456     fatal_unexpected_iid(id);
6457     return false;
6458   }
6459   if (state == NULL) return false;
6460 
6461   // Call the stub.
6462   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6463                                  stubAddr, stubName, TypePtr::BOTTOM,
6464                                  src_start, state);
6465 
6466   return true;
6467 }
6468 
6469 //------------------------------inline_digestBase_implCompressMB-----------------------
6470 //
6471 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6472 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6473 //
6474 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6475   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6476          "need SHA1/SHA256/SHA512 instruction support");
6477   assert((uint)predicate < 3, "sanity");
6478   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6479 
6480   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6481   Node* src            = argument(1); // byte[] array
6482   Node* ofs            = argument(2); // type int
6483   Node* limit          = argument(3); // type int
6484 
6485   const Type* src_type = src->Value(&_gvn);
6486   const TypeAryPtr* top_src = src_type->isa_aryptr();
6487   if (top_src  == NULL || top_src->klass()  == NULL) {
6488     // failed array check
6489     return false;
6490   }
6491   // Figure out the size and type of the elements we will be copying.
6492   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6493   if (src_elem != T_BYTE) {
6494     return false;
6495   }
6496   // 'src_start' points to src array + offset
6497   Node* src_start = array_element_address(src, ofs, src_elem);
6498 
6499   const char* klass_SHA_name = NULL;
6500   const char* stub_name = NULL;
6501   address     stub_addr = NULL;
6502   bool        long_state = false;
6503 
6504   switch (predicate) {
6505   case 0:
6506     if (UseSHA1Intrinsics) {
6507       klass_SHA_name = "sun/security/provider/SHA";
6508       stub_name = "sha1_implCompressMB";
6509       stub_addr = StubRoutines::sha1_implCompressMB();
6510     }
6511     break;
6512   case 1:
6513     if (UseSHA256Intrinsics) {
6514       klass_SHA_name = "sun/security/provider/SHA2";
6515       stub_name = "sha256_implCompressMB";
6516       stub_addr = StubRoutines::sha256_implCompressMB();
6517     }
6518     break;
6519   case 2:
6520     if (UseSHA512Intrinsics) {
6521       klass_SHA_name = "sun/security/provider/SHA5";
6522       stub_name = "sha512_implCompressMB";
6523       stub_addr = StubRoutines::sha512_implCompressMB();
6524       long_state = true;
6525     }
6526     break;
6527   default:
6528     fatal("unknown SHA intrinsic predicate: %d", predicate);
6529   }
6530   if (klass_SHA_name != NULL) {
6531     // get DigestBase klass to lookup for SHA klass
6532     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6533     assert(tinst != NULL, "digestBase_obj is not instance???");
6534     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6535 
6536     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6537     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6538     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6539     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6540   }
6541   return false;
6542 }
6543 //------------------------------inline_sha_implCompressMB-----------------------
6544 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6545                                                bool long_state, address stubAddr, const char *stubName,
6546                                                Node* src_start, Node* ofs, Node* limit) {
6547   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6548   const TypeOopPtr* xtype = aklass->as_instance_type();
6549   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6550   sha_obj = _gvn.transform(sha_obj);
6551 
6552   Node* state;
6553   if (long_state) {
6554     state = get_state_from_sha5_object(sha_obj);
6555   } else {
6556     state = get_state_from_sha_object(sha_obj);
6557   }
6558   if (state == NULL) return false;
6559 
6560   // Call the stub.
6561   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6562                                  OptoRuntime::digestBase_implCompressMB_Type(),
6563                                  stubAddr, stubName, TypePtr::BOTTOM,
6564                                  src_start, state, ofs, limit);
6565   // return ofs (int)
6566   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6567   set_result(result);
6568 
6569   return true;
6570 }
6571 
6572 //------------------------------get_state_from_sha_object-----------------------
6573 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6574   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6575   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6576   if (sha_state == NULL) return (Node *) NULL;
6577 
6578   // now have the array, need to get the start address of the state array
6579   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6580   return state;
6581 }
6582 
6583 //------------------------------get_state_from_sha5_object-----------------------
6584 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6585   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6586   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6587   if (sha_state == NULL) return (Node *) NULL;
6588 
6589   // now have the array, need to get the start address of the state array
6590   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6591   return state;
6592 }
6593 
6594 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6595 // Return node representing slow path of predicate check.
6596 // the pseudo code we want to emulate with this predicate is:
6597 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6598 //
6599 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6600   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6601          "need SHA1/SHA256/SHA512 instruction support");
6602   assert((uint)predicate < 3, "sanity");
6603 
6604   // The receiver was checked for NULL already.
6605   Node* digestBaseObj = argument(0);
6606 
6607   // get DigestBase klass for instanceOf check
6608   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6609   assert(tinst != NULL, "digestBaseObj is null");
6610   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6611 
6612   const char* klass_SHA_name = NULL;
6613   switch (predicate) {
6614   case 0:
6615     if (UseSHA1Intrinsics) {
6616       // we want to do an instanceof comparison against the SHA class
6617       klass_SHA_name = "sun/security/provider/SHA";
6618     }
6619     break;
6620   case 1:
6621     if (UseSHA256Intrinsics) {
6622       // we want to do an instanceof comparison against the SHA2 class
6623       klass_SHA_name = "sun/security/provider/SHA2";
6624     }
6625     break;
6626   case 2:
6627     if (UseSHA512Intrinsics) {
6628       // we want to do an instanceof comparison against the SHA5 class
6629       klass_SHA_name = "sun/security/provider/SHA5";
6630     }
6631     break;
6632   default:
6633     fatal("unknown SHA intrinsic predicate: %d", predicate);
6634   }
6635 
6636   ciKlass* klass_SHA = NULL;
6637   if (klass_SHA_name != NULL) {
6638     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6639   }
6640   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6641     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6642     Node* ctrl = control();
6643     set_control(top()); // no intrinsic path
6644     return ctrl;
6645   }
6646   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6647 
6648   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6649   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6650   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6651   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6652 
6653   return instof_false;  // even if it is NULL
6654 }
6655 
6656 bool LibraryCallKit::inline_profileBoolean() {
6657   Node* counts = argument(1);
6658   const TypeAryPtr* ary = NULL;
6659   ciArray* aobj = NULL;
6660   if (counts->is_Con()
6661       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6662       && (aobj = ary->const_oop()->as_array()) != NULL
6663       && (aobj->length() == 2)) {
6664     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6665     jint false_cnt = aobj->element_value(0).as_int();
6666     jint  true_cnt = aobj->element_value(1).as_int();
6667 
6668     if (C->log() != NULL) {
6669       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6670                      false_cnt, true_cnt);
6671     }
6672 
6673     if (false_cnt + true_cnt == 0) {
6674       // According to profile, never executed.
6675       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6676                           Deoptimization::Action_reinterpret);
6677       return true;
6678     }
6679 
6680     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6681     // is a number of each value occurrences.
6682     Node* result = argument(0);
6683     if (false_cnt == 0 || true_cnt == 0) {
6684       // According to profile, one value has been never seen.
6685       int expected_val = (false_cnt == 0) ? 1 : 0;
6686 
6687       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6688       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6689 
6690       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6691       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6692       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6693 
6694       { // Slow path: uncommon trap for never seen value and then reexecute
6695         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6696         // the value has been seen at least once.
6697         PreserveJVMState pjvms(this);
6698         PreserveReexecuteState preexecs(this);
6699         jvms()->set_should_reexecute(true);
6700 
6701         set_control(slow_path);
6702         set_i_o(i_o());
6703 
6704         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6705                             Deoptimization::Action_reinterpret);
6706       }
6707       // The guard for never seen value enables sharpening of the result and
6708       // returning a constant. It allows to eliminate branches on the same value
6709       // later on.
6710       set_control(fast_path);
6711       result = intcon(expected_val);
6712     }
6713     // Stop profiling.
6714     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6715     // By replacing method body with profile data (represented as ProfileBooleanNode
6716     // on IR level) we effectively disable profiling.
6717     // It enables full speed execution once optimized code is generated.
6718     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6719     C->record_for_igvn(profile);
6720     set_result(profile);
6721     return true;
6722   } else {
6723     // Continue profiling.
6724     // Profile data isn't available at the moment. So, execute method's bytecode version.
6725     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6726     // is compiled and counters aren't available since corresponding MethodHandle
6727     // isn't a compile-time constant.
6728     return false;
6729   }
6730 }
6731 
6732 bool LibraryCallKit::inline_isCompileConstant() {
6733   Node* n = argument(0);
6734   set_result(n->is_Con() ? intcon(1) : intcon(0));
6735   return true;
6736 }