1 /*
   2  * Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // Major contributions by AHa, AS, JL, ML.
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/macroAssembler.inline.hpp"
  30 #include "interp_masm_s390.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/markOop.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 // Implementation of InterpreterMacroAssembler.
  43 // This file specializes the assember with interpreter-specific macros.
  44 
  45 #ifdef PRODUCT
  46 #define BLOCK_COMMENT(str)
  47 #define BIND(label)        bind(label);
  48 #else
  49 #define BLOCK_COMMENT(str) block_comment(str)
  50 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  51 #endif
  52 
  53 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
  54   assert(entry != NULL, "Entry must have been generated by now");
  55   assert(Rscratch != Z_R0, "Can't use R0 for addressing");
  56   branch_optimized(Assembler::bcondAlways, entry);
  57 }
  58 
  59 void InterpreterMacroAssembler::empty_expression_stack(void) {
  60   get_monitors(Z_R1_scratch);
  61   add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch);
  62 }
  63 
  64 // Dispatch code executed in the prolog of a bytecode which does not do it's
  65 // own dispatch.
  66 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  67   // On z/Architecture we are short on registers, therefore we do not preload the
  68   // dispatch address of the next bytecode.
  69 }
  70 
  71 // Dispatch code executed in the epilog of a bytecode which does not do it's
  72 // own dispatch.
  73 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
  74   dispatch_next(state, step);
  75 }
  76 
  77 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
  78   z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp);  // Load next bytecode.
  79   add2reg(Z_bcp, bcp_incr);                   // Advance bcp. Add2reg produces optimal code.
  80   dispatch_base(state, Interpreter::dispatch_table(state));
  81 }
  82 
  83 // Common code to dispatch and dispatch_only.
  84 // Dispatch value in Lbyte_code and increment Lbcp.
  85 
  86 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
  87   verify_FPU(1, state);
  88 
  89 #ifdef ASSERT
  90   address reentry = NULL;
  91   { Label OK;
  92     // Check if the frame pointer in Z_fp is correct.
  93     z_cg(Z_fp, 0, Z_SP);
  94     z_bre(OK);
  95     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE);
  96     bind(OK);
  97   }
  98   { Label OK;
  99     // check if the locals pointer in Z_locals is correct
 100     z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp);
 101     z_bre(OK);
 102     reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE);
 103     bind(OK);
 104   }
 105 #endif
 106 
 107   // TODO: Maybe implement +VerifyActivationFrameSize here.
 108   // verify_thread(); // Too slow. We will just verify on method entry & exit.
 109   verify_oop(Z_tos, state);
 110 #ifdef FAST_DISPATCH
 111   if (table == Interpreter::dispatch_table(state)) {
 112     // Use IdispatchTables.
 113     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
 114                                                         // Add offset to correct dispatch table.
 115     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // Multiply by wordSize.
 116     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // Get entry addr.
 117   } else
 118 #endif
 119   {
 120     // Dispatch table to use.
 121     load_absolute_address(Z_tmp_1, (address) table);  // Z_tmp_1 = table;
 122 
 123     // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg.
 124     // Z_bytecode must have been loaded zero-extended for this approach to be correct.
 125     z_sll(Z_bytecode, LogBytesPerWord, Z_R0);   // Multiply by wordSize.
 126     z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1);      // Get entry addr.
 127   }
 128   z_br(Z_tmp_1);
 129 }
 130 
 131 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 132   dispatch_base(state, Interpreter::dispatch_table(state));
 133 }
 134 
 135 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 136   dispatch_base(state, Interpreter::normal_table(state));
 137 }
 138 
 139 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) {
 140   // Load current bytecode.
 141   z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0));
 142   dispatch_base(state, table);
 143 }
 144 
 145 // The following call_VM*_base() methods overload and mask the respective
 146 // declarations/definitions in class MacroAssembler. They are meant as a "detour"
 147 // to perform additional, template interpreter specific tasks before actually
 148 // calling their MacroAssembler counterparts.
 149 
 150 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) {
 151   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 152   // interpreter specific
 153   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 154   // saved registers and no blocking/ GC can happen in leaf calls.
 155 
 156   // super call
 157   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 158 }
 159 
 160 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
 161   // interpreter specific
 162   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 163   // saved registers and no blocking/ GC can happen in leaf calls.
 164 
 165   // super call
 166   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 167 }
 168 
 169 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 170                                              address entry_point, bool check_exceptions) {
 171   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 172   // interpreter specific
 173 
 174   save_bcp();
 175   save_esp();
 176   // super call
 177   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 178                                entry_point, allow_relocation, check_exceptions);
 179   restore_bcp();
 180 }
 181 
 182 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 183                                              address entry_point, bool allow_relocation,
 184                                              bool check_exceptions) {
 185   // interpreter specific
 186 
 187   save_bcp();
 188   save_esp();
 189   // super call
 190   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 191                                entry_point, allow_relocation, check_exceptions);
 192   restore_bcp();
 193 }
 194 
 195 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 196   if (JvmtiExport::can_pop_frame()) {
 197     BLOCK_COMMENT("check_and_handle_popframe {");
 198     Label L;
 199     // Initiate popframe handling only if it is not already being
 200     // processed. If the flag has the popframe_processing bit set, it
 201     // means that this code is called *during* popframe handling - we
 202     // don't want to reenter.
 203     // TODO: Check if all four state combinations could be visible.
 204     // If (processing and !pending) is an invisible/impossible state,
 205     // there is optimization potential by testing both bits at once.
 206     // Then, All_Zeroes and All_Ones means skip, Mixed means doit.
 207     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 208             exact_log2(JavaThread::popframe_pending_bit));
 209     z_bfalse(L);
 210     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 211             exact_log2(JavaThread::popframe_processing_bit));
 212     z_btrue(L);
 213 
 214     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 215     // address of the same-named entrypoint in the generated interpreter code.
 216     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 217     // The above call should (as its only effect) return the contents of the field
 218     // _remove_activation_preserving_args_entry in Z_RET.
 219     // We just jump there to have the work done.
 220     z_br(Z_RET);
 221     // There is no way for control to fall thru here.
 222 
 223     bind(L);
 224     BLOCK_COMMENT("} check_and_handle_popframe");
 225   }
 226 }
 227 
 228 
 229 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 230   Register RjvmtiState = Z_R1_scratch;
 231   int      tos_off     = in_bytes(JvmtiThreadState::earlyret_tos_offset());
 232   int      oop_off     = in_bytes(JvmtiThreadState::earlyret_oop_offset());
 233   int      val_off     = in_bytes(JvmtiThreadState::earlyret_value_offset());
 234   int      state_off   = in_bytes(JavaThread::jvmti_thread_state_offset());
 235 
 236   z_lg(RjvmtiState, state_off, Z_thread);
 237 
 238   switch (state) {
 239     case atos: z_lg(Z_tos, oop_off, RjvmtiState);
 240       store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch);
 241                                                     break;
 242     case ltos: z_lg(Z_tos, val_off, RjvmtiState);   break;
 243     case btos: // fall through
 244     case ztos: // fall through
 245     case ctos: // fall through
 246     case stos: // fall through
 247     case itos: z_llgf(Z_tos, val_off, RjvmtiState); break;
 248     case ftos: z_le(Z_ftos, val_off, RjvmtiState);  break;
 249     case dtos: z_ld(Z_ftos, val_off, RjvmtiState);  break;
 250     case vtos:   /* nothing to do */                break;
 251     default  : ShouldNotReachHere();
 252   }
 253 
 254   // Clean up tos value in the jvmti thread state.
 255   store_const(Address(RjvmtiState, val_off),   0L, 8, 8, Z_R0_scratch);
 256   // Set tos state field to illegal value.
 257   store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch);
 258 }
 259 
 260 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 261   if (JvmtiExport::can_force_early_return()) {
 262     BLOCK_COMMENT("check_and_handle_earlyret {");
 263     Label L;
 264     // arg regs are save, because we are just behind the call in call_VM_base
 265     Register jvmti_thread_state = Z_ARG2;
 266     Register tmp                = Z_ARG3;
 267     load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset()));
 268     z_bre(L); // if (thread->jvmti_thread_state() == NULL) exit;
 269 
 270     // Initiate earlyret handling only if it is not already being processed.
 271     // If the flag has the earlyret_processing bit set, it means that this code
 272     // is called *during* earlyret handling - we don't want to reenter.
 273 
 274     assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0),
 275           "must fix this check, when changing the values of the earlyret enum");
 276     assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum");
 277 
 278     load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset()));
 279     z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit;
 280 
 281     // Call Interpreter::remove_activation_early_entry() to get the address of the
 282     // same-named entrypoint in the generated interpreter code.
 283     assert(sizeof(TosState) == 4, "unexpected size");
 284     z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset()));
 285     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1);
 286     // The above call should (as its only effect) return the contents of the field
 287     // _remove_activation_preserving_args_entry in Z_RET.
 288     // We just jump there to have the work done.
 289     z_br(Z_RET);
 290     // There is no way for control to fall thru here.
 291 
 292     bind(L);
 293     BLOCK_COMMENT("} check_and_handle_earlyret");
 294   }
 295 }
 296 
 297 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
 298   lgr_if_needed(Z_ARG1, arg_1);
 299   assert(arg_2 != Z_ARG1, "smashed argument");
 300   lgr_if_needed(Z_ARG2, arg_2);
 301   MacroAssembler::call_VM_leaf_base(entry_point, true);
 302 }
 303 
 304 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) {
 305   Address param(Z_bcp, bcp_offset);
 306 
 307   BLOCK_COMMENT("get_cache_index_at_bcp {");
 308   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 309   if (index_size == sizeof(u2)) {
 310     load_sized_value(index, param, 2, false /*signed*/);
 311   } else if (index_size == sizeof(u4)) {
 312 
 313     load_sized_value(index, param, 4, false);
 314 
 315     // Check if the secondary index definition is still ~x, otherwise
 316     // we have to change the following assembler code to calculate the
 317     // plain index.
 318     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 319     not_(index);  // Convert to plain index.
 320   } else if (index_size == sizeof(u1)) {
 321     z_llgc(index, param);
 322   } else {
 323     ShouldNotReachHere();
 324   }
 325   BLOCK_COMMENT("}");
 326 }
 327 
 328 
 329 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register cpe_offset,
 330                                                            int bcp_offset, size_t index_size) {
 331   BLOCK_COMMENT("get_cache_and_index_at_bcp {");
 332   assert_different_registers(cache, cpe_offset);
 333   get_cache_index_at_bcp(cpe_offset, bcp_offset, index_size);
 334   z_lg(cache, Address(Z_fp, _z_ijava_state_neg(cpoolCache)));
 335   // Convert from field index to ConstantPoolCache offset in bytes.
 336   z_sllg(cpe_offset, cpe_offset, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
 337   BLOCK_COMMENT("}");
 338 }
 339 
 340 // Kills Z_R0_scratch.
 341 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 342                                                                         Register cpe_offset,
 343                                                                         Register bytecode,
 344                                                                         int byte_no,
 345                                                                         int bcp_offset,
 346                                                                         size_t index_size) {
 347   BLOCK_COMMENT("get_cache_and_index_and_bytecode_at_bcp {");
 348   get_cache_and_index_at_bcp(cache, cpe_offset, bcp_offset, index_size);
 349 
 350   // We want to load (from CP cache) the bytecode that corresponds to the passed-in byte_no.
 351   // It is located at (cache + cpe_offset + base_offset + indices_offset + (8-1) (last byte in DW) - (byte_no+1).
 352   // Instead of loading, shifting and masking a DW, we just load that one byte of interest with z_llgc (unsigned).
 353   const int base_ix_off = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset());
 354   const int off_in_DW   = (8-1) - (1+byte_no);
 355   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 356   assert(ConstantPoolCacheEntry::bytecode_1_mask == 0xff, "");
 357   load_sized_value(bytecode, Address(cache, cpe_offset, base_ix_off+off_in_DW), 1, false /*signed*/);
 358 
 359   BLOCK_COMMENT("}");
 360 }
 361 
 362 // Load object from cpool->resolved_references(index).
 363 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
 364   assert_different_registers(result, index);
 365   get_constant_pool(result);
 366 
 367   // Convert
 368   //  - from field index to resolved_references() index and
 369   //  - from word index to byte offset.
 370   // Since this is a java object, it is potentially compressed.
 371   Register tmp = index;  // reuse
 372   z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array.
 373   // Load pointer for resolved_references[] objArray.
 374   z_lg(result, ConstantPool::cache_offset_in_bytes(), result);
 375   z_lg(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
 376   // JNIHandles::resolve(result)
 377   z_lg(result, 0, result); // Load resolved references array itself.
 378 #ifdef ASSERT
 379   NearLabel index_ok;
 380   z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes()));
 381   z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop);
 382   compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok);
 383   stop("resolved reference index out of bounds", 0x09256);
 384   bind(index_ok);
 385 #endif
 386   z_agr(result, index);    // Address of indexed array element.
 387   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
 388 }
 389 
 390 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 391                                                                Register tmp,
 392                                                                int bcp_offset,
 393                                                                size_t index_size) {
 394   BLOCK_COMMENT("get_cache_entry_pointer_at_bcp {");
 395     get_cache_and_index_at_bcp(cache, tmp, bcp_offset, index_size);
 396     add2reg_with_index(cache, in_bytes(ConstantPoolCache::base_offset()), tmp, cache);
 397   BLOCK_COMMENT("}");
 398 }
 399 
 400 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 401 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 402 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 403                                                   Register Rsuper_klass,
 404                                                   Register Rtmp1,
 405                                                   Register Rtmp2,
 406                                                   Label &ok_is_subtype) {
 407   // Profile the not-null value's klass.
 408   profile_typecheck(Rtmp1, Rsub_klass, Rtmp2);
 409 
 410   // Do the check.
 411   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
 412 
 413   // Profile the failure of the check.
 414   profile_typecheck_failed(Rtmp1, Rtmp2);
 415 }
 416 
 417 // Pop topmost element from stack. It just disappears.
 418 // Useful if consumed previously by access via stackTop().
 419 void InterpreterMacroAssembler::popx(int len) {
 420   add2reg(Z_esp, len*Interpreter::stackElementSize);
 421   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 422 }
 423 
 424 // Get Address object of stack top. No checks. No pop.
 425 // Purpose: - Provide address of stack operand to exploit reg-mem operations.
 426 //          - Avoid RISC-like mem2reg - reg-reg-op sequence.
 427 Address InterpreterMacroAssembler::stackTop() {
 428   return Address(Z_esp, Interpreter::expr_offset_in_bytes(0));
 429 }
 430 
 431 void InterpreterMacroAssembler::pop_i(Register r) {
 432   z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 433   add2reg(Z_esp, Interpreter::stackElementSize);
 434   assert_different_registers(r, Z_R1_scratch);
 435   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 436 }
 437 
 438 void InterpreterMacroAssembler::pop_ptr(Register r) {
 439   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 440   add2reg(Z_esp, Interpreter::stackElementSize);
 441   assert_different_registers(r, Z_R1_scratch);
 442   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 443 }
 444 
 445 void InterpreterMacroAssembler::pop_l(Register r) {
 446   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 447   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 448   assert_different_registers(r, Z_R1_scratch);
 449   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 450 }
 451 
 452 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
 453   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false);
 454   add2reg(Z_esp, Interpreter::stackElementSize);
 455   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 456 }
 457 
 458 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
 459   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true);
 460   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 461   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 462 }
 463 
 464 void InterpreterMacroAssembler::push_i(Register r) {
 465   assert_different_registers(r, Z_R1_scratch);
 466   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 467   z_st(r, Address(Z_esp));
 468   add2reg(Z_esp, -Interpreter::stackElementSize);
 469 }
 470 
 471 void InterpreterMacroAssembler::push_ptr(Register r) {
 472   z_stg(r, Address(Z_esp));
 473   add2reg(Z_esp, -Interpreter::stackElementSize);
 474 }
 475 
 476 void InterpreterMacroAssembler::push_l(Register r) {
 477   assert_different_registers(r, Z_R1_scratch);
 478   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 479   int offset = -Interpreter::stackElementSize;
 480   z_stg(r, Address(Z_esp, offset));
 481   clear_mem(Address(Z_esp), Interpreter::stackElementSize);
 482   add2reg(Z_esp, 2 * offset);
 483 }
 484 
 485 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 486   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 487   freg2mem_opt(f, Address(Z_esp), false);
 488   add2reg(Z_esp, -Interpreter::stackElementSize);
 489 }
 490 
 491 void InterpreterMacroAssembler::push_d(FloatRegister d) {
 492   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 493   int offset = -Interpreter::stackElementSize;
 494   freg2mem_opt(d, Address(Z_esp, offset));
 495   add2reg(Z_esp, 2 * offset);
 496 }
 497 
 498 void InterpreterMacroAssembler::push(TosState state) {
 499   verify_oop(Z_tos, state);
 500   switch (state) {
 501     case atos: push_ptr();           break;
 502     case btos: push_i();             break;
 503     case ztos:
 504     case ctos:
 505     case stos: push_i();             break;
 506     case itos: push_i();             break;
 507     case ltos: push_l();             break;
 508     case ftos: push_f();             break;
 509     case dtos: push_d();             break;
 510     case vtos: /* nothing to do */   break;
 511     default  : ShouldNotReachHere();
 512   }
 513 }
 514 
 515 void InterpreterMacroAssembler::pop(TosState state) {
 516   switch (state) {
 517     case atos: pop_ptr(Z_tos);       break;
 518     case btos: pop_i(Z_tos);         break;
 519     case ztos:
 520     case ctos:
 521     case stos: pop_i(Z_tos);         break;
 522     case itos: pop_i(Z_tos);         break;
 523     case ltos: pop_l(Z_tos);         break;
 524     case ftos: pop_f(Z_ftos);        break;
 525     case dtos: pop_d(Z_ftos);        break;
 526     case vtos: /* nothing to do */   break;
 527     default  : ShouldNotReachHere();
 528   }
 529   verify_oop(Z_tos, state);
 530 }
 531 
 532 // Helpers for swap and dup.
 533 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 534   z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 535 }
 536 
 537 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 538   z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 539 }
 540 
 541 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) {
 542   // Satisfy interpreter calling convention (see generate_normal_entry()).
 543   z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp).
 544   // Record top_frame_sp, because the callee might modify it, if it's compiled.
 545   z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp);
 546   save_bcp();
 547   save_esp();
 548   z_lgr(Z_method, method); // Set Z_method (kills Z_fp!).
 549 }
 550 
 551 // Jump to from_interpreted entry of a call unless single stepping is possible
 552 // in this thread in which case we must call the i2i entry.
 553 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 554   assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp);
 555   prepare_to_jump_from_interpreted(method);
 556 
 557   if (JvmtiExport::can_post_interpreter_events()) {
 558     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 559     // compiled code in threads for which the event is enabled. Check here for
 560     // interp_only_mode if these events CAN be enabled.
 561     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 562     MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
 563     z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero.
 564     // Run interpreted.
 565     z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset()));
 566     z_br(Z_R1_scratch);
 567   } else {
 568     // Run compiled code.
 569     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 570     z_br(Z_R1_scratch);
 571   }
 572 }
 573 
 574 #ifdef ASSERT
 575 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) {
 576   // About to read or write Resp[0].
 577   // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI.
 578   address reentry = NULL;
 579 
 580   {
 581     // Check if the frame pointer in Z_fp is correct.
 582     NearLabel OK;
 583     z_cg(Z_fp, 0, Z_SP);
 584     z_bre(OK);
 585     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp");
 586     bind(OK);
 587   }
 588   {
 589     // Resp must not point into or below the operand stack,
 590     // i.e. IJAVA_STATE.monitors > Resp.
 591     NearLabel OK;
 592     Register Rmonitors = Rtemp;
 593     z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp);
 594     compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK);
 595     reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area");
 596     bind(OK);
 597   }
 598   {
 599     // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below
 600     // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp).
 601     NearLabel OK;
 602     Register Rabi_bottom = Rtemp;
 603     add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP);
 604     compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK);
 605     reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI");
 606     bind(OK);
 607   }
 608 }
 609 
 610 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) {
 611   Label magic_ok;
 612   load_const_optimized(tmp, frame::z_istate_magic_number);
 613   z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic)));
 614   z_bre(magic_ok);
 615   stop_static("error: wrong magic number in ijava_state access");
 616   bind(magic_ok);
 617 }
 618 #endif // ASSERT
 619 
 620 void InterpreterMacroAssembler::save_bcp() {
 621   z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 622   asm_assert_ijava_state_magic(Z_bcp);
 623   NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))));
 624 }
 625 
 626 void InterpreterMacroAssembler::restore_bcp() {
 627   asm_assert_ijava_state_magic(Z_bcp);
 628   z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 629 }
 630 
 631 void InterpreterMacroAssembler::save_esp() {
 632   z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
 633 }
 634 
 635 void InterpreterMacroAssembler::restore_esp() {
 636   asm_assert_ijava_state_magic(Z_esp);
 637   z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
 638 }
 639 
 640 void InterpreterMacroAssembler::get_monitors(Register reg) {
 641   asm_assert_ijava_state_magic(reg);
 642   mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 643 }
 644 
 645 void InterpreterMacroAssembler::save_monitors(Register reg) {
 646   reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 647 }
 648 
 649 void InterpreterMacroAssembler::get_mdp(Register mdp) {
 650   z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 651 }
 652 
 653 void InterpreterMacroAssembler::save_mdp(Register mdp) {
 654   z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 655 }
 656 
 657 // Values that are only read (besides initialization).
 658 void InterpreterMacroAssembler::restore_locals() {
 659   asm_assert_ijava_state_magic(Z_locals);
 660   z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals)));
 661 }
 662 
 663 void InterpreterMacroAssembler::get_method(Register reg) {
 664   asm_assert_ijava_state_magic(reg);
 665   z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method)));
 666 }
 667 
 668 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 669                                                           signedOrNot is_signed) {
 670   // Rdst is an 8-byte return value!!!
 671 
 672   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 673   // is a few (2..3) ticks, even when the load crosses a cache line
 674   // boundary. In case of a cache miss, the stall could, of course, be
 675   // much longer.
 676 
 677   switch (is_signed) {
 678     case Signed:
 679       z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 680      break;
 681    case Unsigned:
 682      z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 683      break;
 684    default:
 685      ShouldNotReachHere();
 686   }
 687 }
 688 
 689 
 690 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 691                                                           setCCOrNot set_cc) {
 692   // Rdst is an 8-byte return value!!!
 693 
 694   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 695   // is a few (2..3) ticks, even when the load crosses a cache line
 696   // boundary. In case of a cache miss, the stall could, of course, be
 697   // much longer.
 698 
 699   // Both variants implement a sign-extending int2long load.
 700   if (set_cc == set_CC) {
 701     load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 702   } else {
 703     mem2reg_signed_opt(    Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 704   }
 705 }
 706 
 707 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 708   get_method(Rdst);
 709   mem2reg_opt(Rdst, Address(Rdst, Method::const_offset()));
 710   mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset()));
 711 }
 712 
 713 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 714   get_constant_pool(Rcpool);
 715   mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset_in_bytes()));
 716 }
 717 
 718 // Unlock if synchronized method.
 719 //
 720 // Unlock the receiver if this is a synchronized method.
 721 // Unlock any Java monitors from syncronized blocks.
 722 //
 723 // If there are locked Java monitors
 724 //   If throw_monitor_exception
 725 //     throws IllegalMonitorStateException
 726 //   Else if install_monitor_exception
 727 //     installs IllegalMonitorStateException
 728 //   Else
 729 //     no error processing
 730 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 731                                                               bool throw_monitor_exception,
 732                                                               bool install_monitor_exception) {
 733   NearLabel unlocked, unlock, no_unlock;
 734 
 735   {
 736     Register R_method = Z_ARG2;
 737     Register R_do_not_unlock_if_synchronized = Z_ARG3;
 738 
 739     // Get the value of _do_not_unlock_if_synchronized into G1_scratch.
 740     const Address do_not_unlock_if_synchronized(Z_thread,
 741                                                 JavaThread::do_not_unlock_if_synchronized_offset());
 742     load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/);
 743     z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag.
 744 
 745     // Check if synchronized method.
 746     get_method(R_method);
 747     verify_oop(Z_tos, state);
 748     push(state); // Save tos/result.
 749     testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
 750     z_bfalse(unlocked);
 751 
 752     // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 753     // is set.
 754     compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock);
 755   }
 756 
 757   // unlock monitor
 758 
 759   // BasicObjectLock will be first in list, since this is a
 760   // synchronized method. However, need to check that the object has
 761   // not been unlocked by an explicit monitorexit bytecode.
 762   const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock)));
 763   // We use Z_ARG2 so that if we go slow path it will be the correct
 764   // register for unlock_object to pass to VM directly.
 765   load_address(Z_ARG2, monitor); // Address of first monitor.
 766   z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset_in_bytes()));
 767   compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock);
 768 
 769   if (throw_monitor_exception) {
 770     // Entry already unlocked need to throw an exception.
 771     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 772     should_not_reach_here();
 773   } else {
 774     // Monitor already unlocked during a stack unroll.
 775     // If requested, install an illegal_monitor_state_exception.
 776     // Continue with stack unrolling.
 777     if (install_monitor_exception) {
 778       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 779     }
 780    z_bru(unlocked);
 781   }
 782 
 783   bind(unlock);
 784 
 785   unlock_object(Z_ARG2);
 786 
 787   bind(unlocked);
 788 
 789   // I0, I1: Might contain return value
 790 
 791   // Check that all monitors are unlocked.
 792   {
 793     NearLabel loop, exception, entry, restart;
 794     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 795     // We use Z_ARG2 so that if we go slow path it will be the correct
 796     // register for unlock_object to pass to VM directly.
 797     Register R_current_monitor = Z_ARG2;
 798     Register R_monitor_block_bot = Z_ARG1;
 799     const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors));
 800     const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size);
 801 
 802     bind(restart);
 803     // Starting with top-most entry.
 804     z_lg(R_current_monitor, monitor_block_top);
 805     // Points to word before bottom of monitor block.
 806     load_address(R_monitor_block_bot, monitor_block_bot);
 807     z_bru(entry);
 808 
 809     // Entry already locked, need to throw exception.
 810     bind(exception);
 811 
 812     if (throw_monitor_exception) {
 813       // Throw exception.
 814       MacroAssembler::call_VM(noreg,
 815                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 816                                                throw_illegal_monitor_state_exception));
 817       should_not_reach_here();
 818     } else {
 819       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 820       // Unlock does not block, so don't have to worry about the frame.
 821       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 822       unlock_object(R_current_monitor);
 823       if (install_monitor_exception) {
 824         call_VM(noreg, CAST_FROM_FN_PTR(address,
 825                                         InterpreterRuntime::
 826                                         new_illegal_monitor_state_exception));
 827       }
 828       z_bru(restart);
 829     }
 830 
 831     bind(loop);
 832     // Check if current entry is used.
 833     load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset_in_bytes()));
 834     z_brne(exception);
 835 
 836     add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry.
 837     bind(entry);
 838     compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop);
 839   }
 840 
 841   bind(no_unlock);
 842   pop(state);
 843   verify_oop(Z_tos, state);
 844 }
 845 
 846 // remove activation
 847 //
 848 // Unlock the receiver if this is a synchronized method.
 849 // Unlock any Java monitors from syncronized blocks.
 850 // Remove the activation from the stack.
 851 //
 852 // If there are locked Java monitors
 853 //   If throw_monitor_exception
 854 //     throws IllegalMonitorStateException
 855 //   Else if install_monitor_exception
 856 //     installs IllegalMonitorStateException
 857 //   Else
 858 //     no error processing
 859 void InterpreterMacroAssembler::remove_activation(TosState state,
 860                                                   Register return_pc,
 861                                                   bool throw_monitor_exception,
 862                                                   bool install_monitor_exception,
 863                                                   bool notify_jvmti) {
 864   BLOCK_COMMENT("remove_activation {");
 865   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
 866 
 867   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
 868   notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI);
 869 
 870   if (StackReservedPages > 0) {
 871     BLOCK_COMMENT("reserved_stack_check:");
 872     // Test if reserved zone needs to be enabled.
 873     Label no_reserved_zone_enabling;
 874 
 875     // Compare frame pointers. There is no good stack pointer, as with stack
 876     // frame compression we can get different SPs when we do calls. A subsequent
 877     // call could have a smaller SP, so that this compare succeeds for an
 878     // inner call of the method annotated with ReservedStack.
 879     z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp)));
 880     z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory.
 881     z_brl(no_reserved_zone_enabling);
 882 
 883     // Enable reserved zone again, throw stack overflow exception.
 884     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
 885     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
 886 
 887     should_not_reach_here();
 888 
 889     bind(no_reserved_zone_enabling);
 890   }
 891 
 892   verify_oop(Z_tos, state);
 893   verify_thread();
 894 
 895   pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3);
 896   BLOCK_COMMENT("} remove_activation");
 897 }
 898 
 899 // lock object
 900 //
 901 // Registers alive
 902 //   monitor - Address of the BasicObjectLock to be used for locking,
 903 //             which must be initialized with the object to lock.
 904 //   object  - Address of the object to be locked.
 905 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
 906 
 907   if (UseHeavyMonitors) {
 908     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 909             monitor, /*check_for_exceptions=*/false);
 910     return;
 911   }
 912 
 913   // template code:
 914   //
 915   // markOop displaced_header = obj->mark().set_unlocked();
 916   // monitor->lock()->set_displaced_header(displaced_header);
 917   // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 918   //   // We stored the monitor address into the object's mark word.
 919   // } else if (THREAD->is_lock_owned((address)displaced_header))
 920   //   // Simple recursive case.
 921   //   monitor->lock()->set_displaced_header(NULL);
 922   // } else {
 923   //   // Slow path.
 924   //   InterpreterRuntime::monitorenter(THREAD, monitor);
 925   // }
 926 
 927   const Register displaced_header = Z_ARG5;
 928   const Register object_mark_addr = Z_ARG4;
 929   const Register current_header   = Z_ARG5;
 930 
 931   NearLabel done;
 932   NearLabel slow_case;
 933 
 934   // markOop displaced_header = obj->mark().set_unlocked();
 935 
 936   // Load markOop from object into displaced_header.
 937   z_lg(displaced_header, oopDesc::mark_offset_in_bytes(), object);
 938 
 939   if (UseBiasedLocking) {
 940     biased_locking_enter(object, displaced_header, Z_R1, Z_R0, done, &slow_case);
 941   }
 942 
 943   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
 944   z_oill(displaced_header, markOopDesc::unlocked_value);
 945 
 946   // monitor->lock()->set_displaced_header(displaced_header);
 947 
 948   // Initialize the box (Must happen before we update the object mark!).
 949   z_stg(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
 950                           BasicLock::displaced_header_offset_in_bytes(), monitor);
 951 
 952   // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 953 
 954   // Store stack address of the BasicObjectLock (this is monitor) into object.
 955   add2reg(object_mark_addr, oopDesc::mark_offset_in_bytes(), object);
 956 
 957   z_csg(displaced_header, monitor, 0, object_mark_addr);
 958   assert(current_header==displaced_header, "must be same register"); // Identified two registers from z/Architecture.
 959 
 960   z_bre(done);
 961 
 962   // } else if (THREAD->is_lock_owned((address)displaced_header))
 963   //   // Simple recursive case.
 964   //   monitor->lock()->set_displaced_header(NULL);
 965 
 966   // We did not see an unlocked object so try the fast recursive case.
 967 
 968   // Check if owner is self by comparing the value in the markOop of object
 969   // (current_header) with the stack pointer.
 970   z_sgr(current_header, Z_SP);
 971 
 972   assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
 973 
 974   // The prior sequence "LGR, NGR, LTGR" can be done better
 975   // (Z_R1 is temp and not used after here).
 976   load_const_optimized(Z_R0, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
 977   z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0)
 978 
 979   // If condition is true we are done and hence we can store 0 in the displaced
 980   // header indicating it is a recursive lock and be done.
 981   z_brne(slow_case);
 982   z_release();  // Membar unnecessary on zarch AND because the above csg does a sync before and after.
 983   z_stg(Z_R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
 984                       BasicLock::displaced_header_offset_in_bytes(), monitor);
 985   z_bru(done);
 986 
 987   // } else {
 988   //   // Slow path.
 989   //   InterpreterRuntime::monitorenter(THREAD, monitor);
 990 
 991   // None of the above fast optimizations worked so we have to get into the
 992   // slow case of monitor enter.
 993   bind(slow_case);
 994 
 995   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 996           monitor, /*check_for_exceptions=*/false);
 997 
 998   // }
 999 
1000   bind(done);
1001 }
1002 
1003 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1004 //
1005 // Registers alive
1006 //   monitor - address of the BasicObjectLock to be used for locking,
1007 //             which must be initialized with the object to lock.
1008 //
1009 // Throw IllegalMonitorException if object is not locked by current thread.
1010 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) {
1011 
1012   if (UseHeavyMonitors) {
1013     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1014             monitor, /*check_for_exceptions=*/ true);
1015     return;
1016   }
1017 
1018 // else {
1019   // template code:
1020   //
1021   // if ((displaced_header = monitor->displaced_header()) == NULL) {
1022   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
1023   //   monitor->set_obj(NULL);
1024   // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
1025   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1026   //   monitor->set_obj(NULL);
1027   // } else {
1028   //   // Slow path.
1029   //   InterpreterRuntime::monitorexit(THREAD, monitor);
1030   // }
1031 
1032   const Register displaced_header = Z_ARG4;
1033   const Register current_header   = Z_R1;
1034   Address obj_entry(monitor, BasicObjectLock::obj_offset_in_bytes());
1035   Label done;
1036 
1037   if (object == noreg) {
1038     // In the template interpreter, we must assure that the object
1039     // entry in the monitor is cleared on all paths. Thus we move
1040     // loading up to here, and clear the entry afterwards.
1041     object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object.
1042     z_lg(object, obj_entry);
1043   }
1044 
1045   assert_different_registers(monitor, object, displaced_header, current_header);
1046 
1047   // if ((displaced_header = monitor->displaced_header()) == NULL) {
1048   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
1049   //   monitor->set_obj(NULL);
1050 
1051   clear_mem(obj_entry, sizeof(oop));
1052 
1053   if (UseBiasedLocking) {
1054     // The object address from the monitor is in object.
1055     assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1056     biased_locking_exit(object, displaced_header, done);
1057   }
1058 
1059   // Test first if we are in the fast recursive case.
1060   MacroAssembler::load_and_test_long(displaced_header,
1061                                      Address(monitor, BasicObjectLock::lock_offset_in_bytes() +
1062                                                       BasicLock::displaced_header_offset_in_bytes()));
1063   z_bre(done); // displaced_header == 0 -> goto done
1064 
1065   // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
1066   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1067   //   monitor->set_obj(NULL);
1068 
1069   // If we still have a lightweight lock, unlock the object and be done.
1070 
1071   // The markword is expected to be at offset 0.
1072   assert(oopDesc::mark_offset_in_bytes() == 0, "unlock_object: review code below");
1073 
1074   // We have the displaced header in displaced_header. If the lock is still
1075   // lightweight, it will contain the monitor address and we'll store the
1076   // displaced header back into the object's mark word.
1077   z_lgr(current_header, monitor);
1078   z_csg(current_header, displaced_header, 0, object);
1079   z_bre(done);
1080 
1081   // } else {
1082   //   // Slow path.
1083   //   InterpreterRuntime::monitorexit(THREAD, monitor);
1084 
1085   // The lock has been converted into a heavy lock and hence
1086   // we need to get into the slow case.
1087   z_stg(object, obj_entry);   // Restore object entry, has been cleared above.
1088   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1089           monitor,  /*check_for_exceptions=*/false);
1090 
1091   // }
1092 
1093   bind(done);
1094 }
1095 
1096 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
1097   assert(ProfileInterpreter, "must be profiling interpreter");
1098   load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx)));
1099   z_brz(zero_continue);
1100 }
1101 
1102 // Set the method data pointer for the current bcp.
1103 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1104   assert(ProfileInterpreter, "must be profiling interpreter");
1105   Label    set_mdp;
1106   Register mdp    = Z_ARG4;
1107   Register method = Z_ARG5;
1108 
1109   get_method(method);
1110   // Test MDO to avoid the call if it is NULL.
1111   load_and_test_long(mdp, method2_(method, method_data));
1112   z_brz(set_mdp);
1113 
1114   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp);
1115   // Z_RET: mdi
1116   // Mdo is guaranteed to be non-zero here, we checked for it before the call.
1117   assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame");
1118   z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg.
1119   add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp);
1120 
1121   bind(set_mdp);
1122   save_mdp(mdp);
1123 }
1124 
1125 void InterpreterMacroAssembler::verify_method_data_pointer() {
1126   assert(ProfileInterpreter, "must be profiling interpreter");
1127 #ifdef ASSERT
1128   NearLabel verify_continue;
1129   Register bcp_expected = Z_ARG3;
1130   Register mdp    = Z_ARG4;
1131   Register method = Z_ARG5;
1132 
1133   test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue
1134   get_method(method);
1135 
1136   // If the mdp is valid, it will point to a DataLayout header which is
1137   // consistent with the bcp. The converse is highly probable also.
1138   load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/);
1139   z_ag(bcp_expected, Address(method, Method::const_offset()));
1140   load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset()));
1141   compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue);
1142   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp);
1143   bind(verify_continue);
1144 #endif // ASSERT
1145 }
1146 
1147 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
1148   assert(ProfileInterpreter, "must be profiling interpreter");
1149   z_stg(value, constant, mdp_in);
1150 }
1151 
1152 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1153                                                       int constant,
1154                                                       Register tmp,
1155                                                       bool decrement) {
1156   assert_different_registers(mdp_in, tmp);
1157   // counter address
1158   Address data(mdp_in, constant);
1159   const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment;
1160   add2mem_64(Address(mdp_in, constant), delta, tmp);
1161 }
1162 
1163 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1164                                                 int flag_byte_constant) {
1165   assert(ProfileInterpreter, "must be profiling interpreter");
1166   // Set the flag.
1167   z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant);
1168 }
1169 
1170 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1171                                                  int offset,
1172                                                  Register value,
1173                                                  Register test_value_out,
1174                                                  Label& not_equal_continue) {
1175   assert(ProfileInterpreter, "must be profiling interpreter");
1176   if (test_value_out == noreg) {
1177     z_cg(value, Address(mdp_in, offset));
1178     z_brne(not_equal_continue);
1179   } else {
1180     // Put the test value into a register, so caller can use it:
1181     z_lg(test_value_out, Address(mdp_in, offset));
1182     compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue);
1183   }
1184 }
1185 
1186 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
1187   update_mdp_by_offset(mdp_in, noreg, offset_of_disp);
1188 }
1189 
1190 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1191                                                      Register dataidx,
1192                                                      int offset_of_disp) {
1193   assert(ProfileInterpreter, "must be profiling interpreter");
1194   Address disp_address(mdp_in, dataidx, offset_of_disp);
1195   Assembler::z_ag(mdp_in, disp_address);
1196   save_mdp(mdp_in);
1197 }
1198 
1199 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1200   assert(ProfileInterpreter, "must be profiling interpreter");
1201   add2reg(mdp_in, constant);
1202   save_mdp(mdp_in);
1203 }
1204 
1205 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1206   assert(ProfileInterpreter, "must be profiling interpreter");
1207   assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore");
1208   call_VM(noreg,
1209           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1210           return_bci);
1211 }
1212 
1213 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1214   if (ProfileInterpreter) {
1215     Label profile_continue;
1216 
1217     // If no method data exists, go to profile_continue.
1218     // Otherwise, assign to mdp.
1219     test_method_data_pointer(mdp, profile_continue);
1220 
1221     // We are taking a branch. Increment the taken count.
1222     // We inline increment_mdp_data_at to return bumped_count in a register
1223     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1224     Address data(mdp, JumpData::taken_offset());
1225     z_lg(bumped_count, data);
1226     // 64-bit overflow is very unlikely. Saturation to 32-bit values is
1227     // performed when reading the counts.
1228     add2reg(bumped_count, DataLayout::counter_increment);
1229     z_stg(bumped_count, data); // Store back out
1230 
1231     // The method data pointer needs to be updated to reflect the new target.
1232     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1233     bind(profile_continue);
1234   }
1235 }
1236 
1237 // Kills Z_R1_scratch.
1238 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1239   if (ProfileInterpreter) {
1240     Label profile_continue;
1241 
1242     // If no method data exists, go to profile_continue.
1243     test_method_data_pointer(mdp, profile_continue);
1244 
1245     // We are taking a branch. Increment the not taken count.
1246     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch);
1247 
1248     // The method data pointer needs to be updated to correspond to
1249     // the next bytecode.
1250     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1251     bind(profile_continue);
1252   }
1253 }
1254 
1255 // Kills: Z_R1_scratch.
1256 void InterpreterMacroAssembler::profile_call(Register mdp) {
1257   if (ProfileInterpreter) {
1258     Label profile_continue;
1259 
1260     // If no method data exists, go to profile_continue.
1261     test_method_data_pointer(mdp, profile_continue);
1262 
1263     // We are making a call. Increment the count.
1264     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1265 
1266     // The method data pointer needs to be updated to reflect the new target.
1267     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1268     bind(profile_continue);
1269   }
1270 }
1271 
1272 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1273   if (ProfileInterpreter) {
1274     Label profile_continue;
1275 
1276     // If no method data exists, go to profile_continue.
1277     test_method_data_pointer(mdp, profile_continue);
1278 
1279     // We are making a call. Increment the count.
1280     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1281 
1282     // The method data pointer needs to be updated to reflect the new target.
1283     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1284     bind(profile_continue);
1285   }
1286 }
1287 
1288 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1289                                                      Register mdp,
1290                                                      Register reg2,
1291                                                      bool receiver_can_be_null) {
1292   if (ProfileInterpreter) {
1293     NearLabel profile_continue;
1294 
1295     // If no method data exists, go to profile_continue.
1296     test_method_data_pointer(mdp, profile_continue);
1297 
1298     NearLabel skip_receiver_profile;
1299     if (receiver_can_be_null) {
1300       NearLabel not_null;
1301       compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null);
1302       // We are making a call. Increment the count for null receiver.
1303       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1304       z_bru(skip_receiver_profile);
1305       bind(not_null);
1306     }
1307 
1308     // Record the receiver type.
1309     record_klass_in_profile(receiver, mdp, reg2, true);
1310     bind(skip_receiver_profile);
1311 
1312     // The method data pointer needs to be updated to reflect the new target.
1313     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1314     bind(profile_continue);
1315   }
1316 }
1317 
1318 // This routine creates a state machine for updating the multi-row
1319 // type profile at a virtual call site (or other type-sensitive bytecode).
1320 // The machine visits each row (of receiver/count) until the receiver type
1321 // is found, or until it runs out of rows. At the same time, it remembers
1322 // the location of the first empty row. (An empty row records null for its
1323 // receiver, and can be allocated for a newly-observed receiver type.)
1324 // Because there are two degrees of freedom in the state, a simple linear
1325 // search will not work; it must be a decision tree. Hence this helper
1326 // function is recursive, to generate the required tree structured code.
1327 // It's the interpreter, so we are trading off code space for speed.
1328 // See below for example code.
1329 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1330                                         Register receiver, Register mdp,
1331                                         Register reg2, int start_row,
1332                                         Label& done, bool is_virtual_call) {
1333   if (TypeProfileWidth == 0) {
1334     if (is_virtual_call) {
1335       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1336     }
1337     return;
1338   }
1339 
1340   int last_row = VirtualCallData::row_limit() - 1;
1341   assert(start_row <= last_row, "must be work left to do");
1342   // Test this row for both the receiver and for null.
1343   // Take any of three different outcomes:
1344   //   1. found receiver => increment count and goto done
1345   //   2. found null => keep looking for case 1, maybe allocate this cell
1346   //   3. found something else => keep looking for cases 1 and 2
1347   // Case 3 is handled by a recursive call.
1348   for (int row = start_row; row <= last_row; row++) {
1349     NearLabel next_test;
1350     bool test_for_null_also = (row == start_row);
1351 
1352     // See if the receiver is receiver[n].
1353     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1354     test_mdp_data_at(mdp, recvr_offset, receiver,
1355                      (test_for_null_also ? reg2 : noreg),
1356                      next_test);
1357     // (Reg2 now contains the receiver from the CallData.)
1358 
1359     // The receiver is receiver[n]. Increment count[n].
1360     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1361     increment_mdp_data_at(mdp, count_offset);
1362     z_bru(done);
1363     bind(next_test);
1364 
1365     if (test_for_null_also) {
1366       Label found_null;
1367       // Failed the equality check on receiver[n]... Test for null.
1368       z_ltgr(reg2, reg2);
1369       if (start_row == last_row) {
1370         // The only thing left to do is handle the null case.
1371         if (is_virtual_call) {
1372           z_brz(found_null);
1373           // Receiver did not match any saved receiver and there is no empty row for it.
1374           // Increment total counter to indicate polymorphic case.
1375           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1376           z_bru(done);
1377           bind(found_null);
1378         } else {
1379           z_brnz(done);
1380         }
1381         break;
1382       }
1383       // Since null is rare, make it be the branch-taken case.
1384       z_brz(found_null);
1385 
1386       // Put all the "Case 3" tests here.
1387       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1388 
1389       // Found a null. Keep searching for a matching receiver,
1390       // but remember that this is an empty (unused) slot.
1391       bind(found_null);
1392     }
1393   }
1394 
1395   // In the fall-through case, we found no matching receiver, but we
1396   // observed the receiver[start_row] is NULL.
1397 
1398   // Fill in the receiver field and increment the count.
1399   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1400   set_mdp_data_at(mdp, recvr_offset, receiver);
1401   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1402   load_const_optimized(reg2, DataLayout::counter_increment);
1403   set_mdp_data_at(mdp, count_offset, reg2);
1404   if (start_row > 0) {
1405     z_bru(done);
1406   }
1407 }
1408 
1409 // Example state machine code for three profile rows:
1410 //   // main copy of decision tree, rooted at row[1]
1411 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1412 //   if (row[0].rec != NULL) {
1413 //     // inner copy of decision tree, rooted at row[1]
1414 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1415 //     if (row[1].rec != NULL) {
1416 //       // degenerate decision tree, rooted at row[2]
1417 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1418 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1419 //       row[2].init(rec); goto done;
1420 //     } else {
1421 //       // remember row[1] is empty
1422 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1423 //       row[1].init(rec); goto done;
1424 //     }
1425 //   } else {
1426 //     // remember row[0] is empty
1427 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1428 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1429 //     row[0].init(rec); goto done;
1430 //   }
1431 //   done:
1432 
1433 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1434                                                         Register mdp, Register reg2,
1435                                                         bool is_virtual_call) {
1436   assert(ProfileInterpreter, "must be profiling");
1437   Label done;
1438 
1439   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1440 
1441   bind (done);
1442 }
1443 
1444 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1445   if (ProfileInterpreter) {
1446     NearLabel profile_continue;
1447     uint row;
1448 
1449     // If no method data exists, go to profile_continue.
1450     test_method_data_pointer(mdp, profile_continue);
1451 
1452     // Update the total ret count.
1453     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1454 
1455     for (row = 0; row < RetData::row_limit(); row++) {
1456       NearLabel next_test;
1457 
1458       // See if return_bci is equal to bci[n]:
1459       test_mdp_data_at(mdp,
1460                        in_bytes(RetData::bci_offset(row)),
1461                        return_bci, noreg,
1462                        next_test);
1463 
1464       // Return_bci is equal to bci[n]. Increment the count.
1465       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1466 
1467       // The method data pointer needs to be updated to reflect the new target.
1468       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1469       z_bru(profile_continue);
1470       bind(next_test);
1471     }
1472 
1473     update_mdp_for_ret(return_bci);
1474 
1475     bind(profile_continue);
1476   }
1477 }
1478 
1479 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1480   if (ProfileInterpreter) {
1481     Label profile_continue;
1482 
1483     // If no method data exists, go to profile_continue.
1484     test_method_data_pointer(mdp, profile_continue);
1485 
1486     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1487 
1488     // The method data pointer needs to be updated.
1489     int mdp_delta = in_bytes(BitData::bit_data_size());
1490     if (TypeProfileCasts) {
1491       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1492     }
1493     update_mdp_by_constant(mdp, mdp_delta);
1494 
1495     bind(profile_continue);
1496   }
1497 }
1498 
1499 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp, Register tmp) {
1500   if (ProfileInterpreter && TypeProfileCasts) {
1501     Label profile_continue;
1502 
1503     // If no method data exists, go to profile_continue.
1504     test_method_data_pointer(mdp, profile_continue);
1505 
1506     int count_offset = in_bytes(CounterData::count_offset());
1507     // Back up the address, since we have already bumped the mdp.
1508     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1509 
1510     // *Decrement* the counter. We expect to see zero or small negatives.
1511     increment_mdp_data_at(mdp, count_offset, tmp, true);
1512 
1513     bind (profile_continue);
1514   }
1515 }
1516 
1517 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1518   if (ProfileInterpreter) {
1519     Label profile_continue;
1520 
1521     // If no method data exists, go to profile_continue.
1522     test_method_data_pointer(mdp, profile_continue);
1523 
1524     // The method data pointer needs to be updated.
1525     int mdp_delta = in_bytes(BitData::bit_data_size());
1526     if (TypeProfileCasts) {
1527       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1528 
1529       // Record the object type.
1530       record_klass_in_profile(klass, mdp, reg2, false);
1531     }
1532     update_mdp_by_constant(mdp, mdp_delta);
1533 
1534     bind(profile_continue);
1535   }
1536 }
1537 
1538 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1539   if (ProfileInterpreter) {
1540     Label profile_continue;
1541 
1542     // If no method data exists, go to profile_continue.
1543     test_method_data_pointer(mdp, profile_continue);
1544 
1545     // Update the default case count.
1546     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1547 
1548     // The method data pointer needs to be updated.
1549     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1550 
1551     bind(profile_continue);
1552   }
1553 }
1554 
1555 // Kills: index, scratch1, scratch2.
1556 void InterpreterMacroAssembler::profile_switch_case(Register index,
1557                                                     Register mdp,
1558                                                     Register scratch1,
1559                                                     Register scratch2) {
1560   if (ProfileInterpreter) {
1561     Label profile_continue;
1562     assert_different_registers(index, mdp, scratch1, scratch2);
1563 
1564     // If no method data exists, go to profile_continue.
1565     test_method_data_pointer(mdp, profile_continue);
1566 
1567     // Build the base (index * per_case_size_in_bytes()) +
1568     // case_array_offset_in_bytes().
1569     z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1570     add2reg(index, in_bytes(MultiBranchData::case_array_offset()));
1571 
1572     // Add the calculated base to the mdp -> address of the case' data.
1573     Address case_data_addr(mdp, index);
1574     Register case_data = scratch1;
1575     load_address(case_data, case_data_addr);
1576 
1577     // Update the case count.
1578     increment_mdp_data_at(case_data,
1579                           in_bytes(MultiBranchData::relative_count_offset()),
1580                           scratch2);
1581 
1582     // The method data pointer needs to be updated.
1583     update_mdp_by_offset(mdp,
1584                          index,
1585                          in_bytes(MultiBranchData::relative_displacement_offset()));
1586 
1587     bind(profile_continue);
1588   }
1589 }
1590 
1591 // kills: R0, R1, flags, loads klass from obj (if not null)
1592 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) {
1593   NearLabel null_seen, init_klass, do_nothing, do_update;
1594 
1595   // Klass = obj is allowed.
1596   const Register tmp = Z_R1;
1597   assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0);
1598   assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0);
1599 
1600   z_lg(tmp, mdo_addr);
1601   if (cmp_done) {
1602     z_brz(null_seen);
1603   } else {
1604     compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen);
1605   }
1606 
1607   verify_oop(obj);
1608   load_klass(klass, obj);
1609 
1610   // Klass seen before, nothing to do (regardless of unknown bit).
1611   z_lgr(Z_R0, tmp);
1612   assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
1613   z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF);
1614   compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing);
1615 
1616   // Already unknown. Nothing to do anymore.
1617   z_tmll(tmp, TypeEntries::type_unknown);
1618   z_brc(Assembler::bcondAllOne, do_nothing);
1619 
1620   z_lgr(Z_R0, tmp);
1621   assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
1622   z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF);
1623   compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass);
1624 
1625   // Different than before. Cannot keep accurate profile.
1626   z_oill(tmp, TypeEntries::type_unknown);
1627   z_bru(do_update);
1628 
1629   bind(init_klass);
1630   // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1631   z_ogr(tmp, klass);
1632   z_bru(do_update);
1633 
1634   bind(null_seen);
1635   // Set null_seen if obj is 0.
1636   z_oill(tmp, TypeEntries::null_seen);
1637   // fallthru: z_bru(do_update);
1638 
1639   bind(do_update);
1640   z_stg(tmp, mdo_addr);
1641 
1642   bind(do_nothing);
1643 }
1644 
1645 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1646   if (!ProfileInterpreter) {
1647     return;
1648   }
1649 
1650   assert_different_registers(mdp, callee, tmp);
1651 
1652   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1653     Label profile_continue;
1654 
1655     test_method_data_pointer(mdp, profile_continue);
1656 
1657     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1658 
1659     z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp,
1660            is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1661     z_brne(profile_continue);
1662 
1663     if (MethodData::profile_arguments()) {
1664       NearLabel done;
1665       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1666       add2reg(mdp, off_to_args);
1667 
1668       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1669         if (i > 0 || MethodData::profile_return()) {
1670           // If return value type is profiled we may have no argument to profile.
1671           z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1672           add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count());
1673           compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done);
1674         }
1675         z_lg(tmp, Address(callee, Method::const_offset()));
1676         z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1677         // Stack offset o (zero based) from the start of the argument
1678         // list. For n arguments translates into offset n - o - 1 from
1679         // the end of the argument list. But there is an extra slot at
1680         // the top of the stack. So the offset is n - o from Lesp.
1681         z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
1682         z_sllg(tmp, tmp, Interpreter::logStackElementSize);
1683         Address stack_slot_addr(tmp, Z_esp);
1684         z_ltg(tmp, stack_slot_addr);
1685 
1686         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1687         profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true);
1688 
1689         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1690         add2reg(mdp, to_add);
1691         off_to_args += to_add;
1692       }
1693 
1694       if (MethodData::profile_return()) {
1695         z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1696         add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1697       }
1698 
1699       bind(done);
1700 
1701       if (MethodData::profile_return()) {
1702         // We're right after the type profile for the last
1703         // argument. Tmp is the number of cells left in the
1704         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1705         // if there's a return to profile.
1706         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1707         z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size));
1708         z_agr(mdp, tmp);
1709       }
1710       z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
1711     } else {
1712       assert(MethodData::profile_return(), "either profile call args or call ret");
1713       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1714     }
1715 
1716     // Mdp points right after the end of the
1717     // CallTypeData/VirtualCallTypeData, right after the cells for the
1718     // return value type if there's one.
1719     bind(profile_continue);
1720   }
1721 }
1722 
1723 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1724   assert_different_registers(mdp, ret, tmp);
1725   if (ProfileInterpreter && MethodData::profile_return()) {
1726     Label profile_continue;
1727 
1728     test_method_data_pointer(mdp, profile_continue);
1729 
1730     if (MethodData::profile_return_jsr292_only()) {
1731       // If we don't profile all invoke bytecodes we must make sure
1732       // it's a bytecode we indeed profile. We can't go back to the
1733       // beginning of the ProfileData we intend to update to check its
1734       // type because we're right after it and we don't known its
1735       // length.
1736       NearLabel do_profile;
1737       Address bc(Z_bcp);
1738       z_lb(tmp, bc);
1739       compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile);
1740       compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile);
1741       get_method(tmp);
1742       // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit.
1743       if (Method::intrinsic_id_size_in_bytes() == 1) {
1744         z_cli(Method::intrinsic_id_offset_in_bytes(), tmp, vmIntrinsics::_compiledLambdaForm);
1745       } else {
1746         assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id");
1747         z_lh(tmp, Method::intrinsic_id_offset_in_bytes(), Z_R0, tmp);
1748         z_chi(tmp, vmIntrinsics::_compiledLambdaForm);
1749       }
1750       z_brne(profile_continue);
1751 
1752       bind(do_profile);
1753     }
1754 
1755     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1756     profile_obj_type(ret, mdo_ret_addr, tmp);
1757 
1758     bind(profile_continue);
1759   }
1760 }
1761 
1762 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1763   if (ProfileInterpreter && MethodData::profile_parameters()) {
1764     Label profile_continue, done;
1765 
1766     test_method_data_pointer(mdp, profile_continue);
1767 
1768     // Load the offset of the area within the MDO used for
1769     // parameters. If it's negative we're not profiling any parameters.
1770     Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()));
1771     load_and_test_int2long(tmp1, parm_di_addr);
1772     z_brl(profile_continue);
1773 
1774     // Compute a pointer to the area for parameters from the offset
1775     // and move the pointer to the slot for the last
1776     // parameters. Collect profiling from last parameter down.
1777     // mdo start + parameters offset + array length - 1
1778 
1779     // Pointer to the parameter area in the MDO.
1780     z_agr(mdp, tmp1);
1781 
1782     // Offset of the current profile entry to update.
1783     const Register entry_offset = tmp1;
1784     // entry_offset = array len in number of cells.
1785     z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset()));
1786     // entry_offset (number of cells) = array len - size of 1 entry
1787     add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count());
1788     // entry_offset in bytes
1789     z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1790 
1791     Label loop;
1792     bind(loop);
1793 
1794     Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0));
1795     Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0));
1796 
1797     // Load offset on the stack from the slot for this parameter.
1798     z_lg(tmp2, arg_off);
1799     z_sllg(tmp2, tmp2, Interpreter::logStackElementSize);
1800     z_lcgr(tmp2); // Negate.
1801 
1802     // Profile the parameter.
1803     z_ltg(tmp2, Address(Z_locals, tmp2));
1804     profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true);
1805 
1806     // Go to next parameter.
1807     z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size);
1808     z_brnl(loop);
1809 
1810     bind(profile_continue);
1811   }
1812 }
1813 
1814 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1815 void InterpreterMacroAssembler::increment_mask_and_jump(Address          counter_addr,
1816                                                         int              increment,
1817                                                         Address          mask,
1818                                                         Register         scratch,
1819                                                         bool             preloaded,
1820                                                         branch_condition cond,
1821                                                         Label           *where) {
1822   assert_different_registers(counter_addr.base(), scratch);
1823   if (preloaded) {
1824     add2reg(scratch, increment);
1825     reg2mem_opt(scratch, counter_addr, false);
1826   } else {
1827     if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) {
1828       z_alsi(counter_addr.disp20(), counter_addr.base(), increment);
1829       mem2reg_signed_opt(scratch, counter_addr);
1830     } else {
1831       mem2reg_signed_opt(scratch, counter_addr);
1832       add2reg(scratch, increment);
1833       reg2mem_opt(scratch, counter_addr, false);
1834     }
1835   }
1836   z_n(scratch, mask);
1837   if (where) { z_brc(cond, *where); }
1838 }
1839 
1840 // Get MethodCounters object for given method. Lazily allocated if necessary.
1841 //   method    - Ptr to Method object.
1842 //   Rcounters - Ptr to MethodCounters object associated with Method object.
1843 //   skip      - Exit point if MethodCounters object can't be created (OOM condition).
1844 void InterpreterMacroAssembler::get_method_counters(Register Rmethod,
1845                                                     Register Rcounters,
1846                                                     Label& skip) {
1847   assert_different_registers(Rmethod, Rcounters);
1848 
1849   BLOCK_COMMENT("get MethodCounters object {");
1850 
1851   Label has_counters;
1852   load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset()));
1853   z_brnz(has_counters);
1854 
1855   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod, false);
1856   z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object.
1857   z_brz(skip); // No MethodCounters, out of memory.
1858 
1859   bind(has_counters);
1860 
1861   BLOCK_COMMENT("} get MethodCounters object");
1862 }
1863 
1864 // Increment invocation counter in MethodCounters object.
1865 // Return (invocation_counter+backedge_counter) as "result" in RctrSum.
1866 // Counter values are all unsigned.
1867 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) {
1868   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
1869   assert_different_registers(Rcounters, RctrSum);
1870 
1871   int increment          = InvocationCounter::count_increment;
1872   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1873   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1874 
1875   BLOCK_COMMENT("Increment invocation counter {");
1876 
1877   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1878     // Increment the invocation counter in place,
1879     // then add the incremented value to the backedge counter.
1880     z_l(RctrSum, be_counter_offset, Rcounters);
1881     z_alsi(inv_counter_offset, Rcounters, increment);     // Atomic increment @no extra cost!
1882     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1883     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1884   } else {
1885     // This path is optimized for low register consumption
1886     // at the cost of somewhat higher operand delays.
1887     // It does not need an extra temp register.
1888 
1889     // Update the invocation counter.
1890     z_l(RctrSum, inv_counter_offset, Rcounters);
1891     if (RctrSum == Z_R0) {
1892       z_ahi(RctrSum, increment);
1893     } else {
1894       add2reg(RctrSum, increment);
1895     }
1896     z_st(RctrSum, inv_counter_offset, Rcounters);
1897 
1898     // Mask off the state bits.
1899     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1900 
1901     // Add the backedge counter to the updated invocation counter to
1902     // form the result.
1903     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1904   }
1905 
1906   BLOCK_COMMENT("} Increment invocation counter");
1907 
1908   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
1909 }
1910 
1911 
1912 // increment backedge counter in MethodCounters object.
1913 // return (invocation_counter+backedge_counter) as "result" in RctrSum
1914 // counter values are all unsigned!
1915 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) {
1916   assert(UseCompiler, "incrementing must be useful");
1917   assert_different_registers(Rcounters, RctrSum);
1918 
1919   int increment          = InvocationCounter::count_increment;
1920   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1921   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1922 
1923   BLOCK_COMMENT("Increment backedge counter {");
1924 
1925   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1926     // Increment the invocation counter in place,
1927     // then add the incremented value to the backedge counter.
1928     z_l(RctrSum, inv_counter_offset, Rcounters);
1929     z_alsi(be_counter_offset, Rcounters, increment);      // Atomic increment @no extra cost!
1930     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1931     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1932   } else {
1933     // This path is optimized for low register consumption
1934     // at the cost of somewhat higher operand delays.
1935     // It does not need an extra temp register.
1936 
1937     // Update the invocation counter.
1938     z_l(RctrSum, be_counter_offset, Rcounters);
1939     if (RctrSum == Z_R0) {
1940       z_ahi(RctrSum, increment);
1941     } else {
1942       add2reg(RctrSum, increment);
1943     }
1944     z_st(RctrSum, be_counter_offset, Rcounters);
1945 
1946     // Mask off the state bits.
1947     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1948 
1949     // Add the backedge counter to the updated invocation counter to
1950     // form the result.
1951     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1952   }
1953 
1954   BLOCK_COMMENT("} Increment backedge counter");
1955 
1956   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
1957 }
1958 
1959 // Add an InterpMonitorElem to stack (see frame_s390.hpp).
1960 void InterpreterMacroAssembler::add_monitor_to_stack(bool     stack_is_empty,
1961                                                      Register Rtemp1,
1962                                                      Register Rtemp2,
1963                                                      Register Rtemp3) {
1964 
1965   const Register Rcurr_slot = Rtemp1;
1966   const Register Rlimit     = Rtemp2;
1967   const jint delta = -frame::interpreter_frame_monitor_size() * wordSize;
1968 
1969   assert((delta & LongAlignmentMask) == 0,
1970          "sizeof BasicObjectLock must be even number of doublewords");
1971   assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize");
1972   assert(Rcurr_slot != Z_R0, "Register must be usable as base register");
1973   assert_different_registers(Rlimit, Rcurr_slot, Rtemp3);
1974 
1975   get_monitors(Rlimit);
1976 
1977   // Adjust stack pointer for additional monitor entry.
1978   resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false);
1979 
1980   if (!stack_is_empty) {
1981     // Must copy stack contents down.
1982     NearLabel next, done;
1983 
1984     // Rtemp := addr(Tos), Z_esp is pointing below it!
1985     add2reg(Rcurr_slot, wordSize, Z_esp);
1986 
1987     // Nothing to do, if already at monitor area.
1988     compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done);
1989 
1990     bind(next);
1991 
1992     // Move one stack slot.
1993     mem2reg_opt(Rtemp3, Address(Rcurr_slot));
1994     reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta));
1995     add2reg(Rcurr_slot, wordSize);
1996     compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done?
1997 
1998     bind(done);
1999     // Done copying stack.
2000   }
2001 
2002   // Adjust expression stack and monitor pointers.
2003   add2reg(Z_esp, delta);
2004   add2reg(Rlimit, delta);
2005   save_monitors(Rlimit);
2006 }
2007 
2008 // Note: Index holds the offset in bytes afterwards.
2009 // You can use this to store a new value (with Llocals as the base).
2010 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) {
2011   z_sllg(index, index, LogBytesPerWord);
2012   mem2reg_opt(dst, Address(Z_locals, index), false);
2013 }
2014 
2015 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2016   if (state == atos) { MacroAssembler::verify_oop(reg); }
2017 }
2018 
2019 // Inline assembly for:
2020 //
2021 // if (thread is in interp_only_mode) {
2022 //   InterpreterRuntime::post_method_entry();
2023 // }
2024 
2025 void InterpreterMacroAssembler::notify_method_entry() {
2026 
2027   // JVMTI
2028   // Whenever JVMTI puts a thread in interp_only_mode, method
2029   // entry/exit events are sent for that thread to track stack
2030   // depth. If it is possible to enter interp_only_mode we add
2031   // the code to check if the event should be sent.
2032   if (JvmtiExport::can_post_interpreter_events()) {
2033     Label jvmti_post_done;
2034     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2035     z_bre(jvmti_post_done);
2036     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry), /*check_exceptions=*/false);
2037     bind(jvmti_post_done);
2038   }
2039 }
2040 
2041 // Inline assembly for:
2042 //
2043 // if (thread is in interp_only_mode) {
2044 //   if (!native_method) save result
2045 //   InterpreterRuntime::post_method_exit();
2046 //   if (!native_method) restore result
2047 // }
2048 // if (DTraceMethodProbes) {
2049 //   SharedRuntime::dtrace_method_exit(thread, method);
2050 // }
2051 //
2052 // For native methods their result is stored in z_ijava_state.lresult
2053 // and z_ijava_state.fresult before coming here.
2054 // Java methods have their result stored in the expression stack.
2055 //
2056 // Notice the dependency to frame::interpreter_frame_result().
2057 void InterpreterMacroAssembler::notify_method_exit(bool native_method,
2058                                                    TosState state,
2059                                                    NotifyMethodExitMode mode) {
2060   // JVMTI
2061   // Whenever JVMTI puts a thread in interp_only_mode, method
2062   // entry/exit events are sent for that thread to track stack
2063   // depth. If it is possible to enter interp_only_mode we add
2064   // the code to check if the event should be sent.
2065   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2066     Label jvmti_post_done;
2067     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2068     z_bre(jvmti_post_done);
2069     if (!native_method) push(state); // see frame::interpreter_frame_result()
2070     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), /*check_exceptions=*/false);
2071     if (!native_method) pop(state);
2072     bind(jvmti_post_done);
2073   }
2074 
2075 #if 0
2076   // Dtrace currently not supported on z/Architecture.
2077   {
2078     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2079     push(state);
2080     get_method(c_rarg1);
2081     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2082                  r15_thread, c_rarg1);
2083     pop(state);
2084   }
2085 #endif
2086 }
2087 
2088 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) {
2089   if (!JvmtiExport::can_post_interpreter_events()) {
2090     return;
2091   }
2092 
2093   load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2094   z_brnz(Lskip);
2095 
2096 }
2097 
2098 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP.
2099 // The return pc is loaded into the register return_pc.
2100 //
2101 // Registers updated:
2102 //     return_pc  - The return pc of the calling frame.
2103 //     tmp1, tmp2 - scratch
2104 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) {
2105   // F0  Z_SP -> caller_sp (F1's)
2106   //             ...
2107   //             sender_sp (F1's)
2108   //             ...
2109   // F1  Z_fp -> caller_sp (F2's)
2110   //             return_pc (Continuation after return from F0.)
2111   //             ...
2112   // F2          caller_sp
2113 
2114   // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications
2115   // (a) by a c2i adapter and (b) by generate_fixed_frame().
2116   // In case (a) the new top frame F1 is an unextended compiled frame.
2117   // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME.
2118 
2119   // Case (b) seems to be redundant when returning to a interpreted caller,
2120   // because then the caller's top_frame_sp is installed as sp (see
2121   // TemplateInterpreterGenerator::generate_return_entry_for ()). But
2122   // pop_interpreter_frame() is also used in exception handling and there the
2123   // frame type of the caller is unknown, therefore top_frame_sp cannot be used,
2124   // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME.
2125 
2126   Register R_f1_sender_sp = tmp1;
2127   Register R_f2_sp = tmp2;
2128 
2129   // Tirst check the for the interpreter frame's magic.
2130   asm_assert_ijava_state_magic(R_f2_sp/*tmp*/);
2131   z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp);
2132   z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp);
2133   if (return_pc->is_valid())
2134     z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2135   // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp.
2136   resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/);
2137 
2138 #ifdef ASSERT
2139   // The return_pc in the new top frame is dead... at least that's my
2140   // current understanding; to assert this I overwrite it.
2141   load_const_optimized(Z_ARG3, 0xb00b1);
2142   z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2143 #endif
2144 }
2145 
2146 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2147   if (VerifyFPU) {
2148     unimplemented("verfiyFPU");
2149   }
2150 }
2151