1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods
  49 
  50 CollectorPolicy::CollectorPolicy() :
  51     _space_alignment(0),
  52     _heap_alignment(0),
  53     _initial_heap_byte_size(InitialHeapSize),
  54     _max_heap_byte_size(MaxHeapSize),
  55     _min_heap_byte_size(Arguments::min_heap_size()),
  56     _max_heap_size_cmdline(false),
  57     _size_policy(NULL),
  58     _should_clear_all_soft_refs(false),
  59     _all_soft_refs_clear(false)
  60 {}
  61 
  62 #ifdef ASSERT
  63 void CollectorPolicy::assert_flags() {
  64   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
  65   assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
  66   assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
  67 }
  68 
  69 void CollectorPolicy::assert_size_info() {
  70   assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
  71   assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
  72   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
  73   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
  74   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
  75   assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
  76   assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
  77   assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
  78 }
  79 #endif // ASSERT
  80 
  81 void CollectorPolicy::initialize_flags() {
  82   assert(_space_alignment != 0, "Space alignment not set up properly");
  83   assert(_heap_alignment != 0, "Heap alignment not set up properly");
  84   assert(_heap_alignment >= _space_alignment,
  85          err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
  86                  _heap_alignment, _space_alignment));
  87   assert(_heap_alignment % _space_alignment == 0,
  88          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
  89                  _heap_alignment, _space_alignment));
  90 
  91   if (FLAG_IS_CMDLINE(MaxHeapSize)) {
  92     if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
  93       vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
  94     }
  95     if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
  96       vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
  97     }
  98     _max_heap_size_cmdline = true;
  99   }
 100 
 101   // Check heap parameter properties
 102   if (InitialHeapSize < M) {
 103     vm_exit_during_initialization("Too small initial heap");
 104   }
 105   if (_min_heap_byte_size < M) {
 106     vm_exit_during_initialization("Too small minimum heap");
 107   }
 108 
 109   // User inputs from -Xmx and -Xms must be aligned
 110   _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
 111   uintx aligned_initial_heap_size = align_size_up(InitialHeapSize, _heap_alignment);
 112   uintx aligned_max_heap_size = align_size_up(MaxHeapSize, _heap_alignment);
 113 
 114   // Write back to flags if the values changed
 115   if (aligned_initial_heap_size != InitialHeapSize) {
 116     FLAG_SET_ERGO(uintx, InitialHeapSize, aligned_initial_heap_size);
 117   }
 118   if (aligned_max_heap_size != MaxHeapSize) {
 119     FLAG_SET_ERGO(uintx, MaxHeapSize, aligned_max_heap_size);
 120   }
 121 
 122   if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
 123       InitialHeapSize < _min_heap_byte_size) {
 124     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 125   }
 126   if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
 127     FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
 128   } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
 129     FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
 130     if (InitialHeapSize < _min_heap_byte_size) {
 131       _min_heap_byte_size = InitialHeapSize;
 132     }
 133   }
 134 
 135   _initial_heap_byte_size = InitialHeapSize;
 136   _max_heap_byte_size = MaxHeapSize;
 137 
 138   FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
 139 
 140   DEBUG_ONLY(CollectorPolicy::assert_flags();)
 141 }
 142 
 143 void CollectorPolicy::initialize_size_info() {
 144   if (PrintGCDetails && Verbose) {
 145     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 146       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 147       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 148   }
 149 
 150   DEBUG_ONLY(CollectorPolicy::assert_size_info();)
 151 }
 152 
 153 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 154   bool result = _should_clear_all_soft_refs;
 155   set_should_clear_all_soft_refs(false);
 156   return result;
 157 }
 158 
 159 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 160                                            int max_covered_regions) {
 161   return new CardTableRS(whole_heap, max_covered_regions);
 162 }
 163 
 164 void CollectorPolicy::cleared_all_soft_refs() {
 165   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 166   // have been cleared in the last collection but if the gc overhear
 167   // limit continues to be near, SoftRefs should still be cleared.
 168   if (size_policy() != NULL) {
 169     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 170   }
 171   _all_soft_refs_clear = true;
 172 }
 173 
 174 size_t CollectorPolicy::compute_heap_alignment() {
 175   // The card marking array and the offset arrays for old generations are
 176   // committed in os pages as well. Make sure they are entirely full (to
 177   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 178   // byte entry and the os page size is 4096, the maximum heap size should
 179   // be 512*4096 = 2MB aligned.
 180 
 181   size_t alignment = GenRemSet::max_alignment_constraint();
 182 
 183   // Parallel GC does its own alignment of the generations to avoid requiring a
 184   // large page (256M on some platforms) for the permanent generation.  The
 185   // other collectors should also be updated to do their own alignment and then
 186   // this use of lcm() should be removed.
 187   if (UseLargePages && !UseParallelGC) {
 188       // In presence of large pages we have to make sure that our
 189       // alignment is large page aware
 190       alignment = lcm(os::large_page_size(), alignment);
 191   }
 192 
 193   return alignment;
 194 }
 195 
 196 // GenCollectorPolicy methods
 197 
 198 GenCollectorPolicy::GenCollectorPolicy() :
 199     _min_gen0_size(0),
 200     _initial_gen0_size(0),
 201     _max_gen0_size(0),
 202     _gen_alignment(0),
 203     _generations(NULL)
 204 {}
 205 
 206 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 207   return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
 208 }
 209 
 210 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 211                                                  size_t maximum_size) {
 212   size_t max_minus = maximum_size - _gen_alignment;
 213   return desired_size < max_minus ? desired_size : max_minus;
 214 }
 215 
 216 
 217 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 218                                                 size_t init_promo_size,
 219                                                 size_t init_survivor_size) {
 220   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 221   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 222                                         init_promo_size,
 223                                         init_survivor_size,
 224                                         max_gc_pause_sec,
 225                                         GCTimeRatio);
 226 }
 227 
 228 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
 229   // The young generation must be aligned and have room for eden + two survivors
 230   return align_size_up(3 * _space_alignment, _gen_alignment);
 231 }
 232 
 233 #ifdef ASSERT
 234 void GenCollectorPolicy::assert_flags() {
 235   CollectorPolicy::assert_flags();
 236   assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
 237   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 238   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
 239   assert(NewSize % _gen_alignment == 0, "NewSize alignment");
 240   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
 241 }
 242 
 243 void TwoGenerationCollectorPolicy::assert_flags() {
 244   GenCollectorPolicy::assert_flags();
 245   assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
 246   assert(OldSize % _gen_alignment == 0, "OldSize alignment");
 247 }
 248 
 249 void GenCollectorPolicy::assert_size_info() {
 250   CollectorPolicy::assert_size_info();
 251   // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
 252   assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
 253   assert(NewSize == _initial_gen0_size, "Discrepancy between NewSize flag and local storage");
 254   assert(MaxNewSize == _max_gen0_size, "Discrepancy between MaxNewSize flag and local storage");
 255   assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
 256   assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 257   assert(_min_gen0_size % _gen_alignment == 0, "_min_gen0_size alignment");
 258   assert(_initial_gen0_size % _gen_alignment == 0, "_initial_gen0_size alignment");
 259   assert(_max_gen0_size % _gen_alignment == 0, "_max_gen0_size alignment");
 260 }
 261 
 262 void TwoGenerationCollectorPolicy::assert_size_info() {
 263   GenCollectorPolicy::assert_size_info();
 264   assert(OldSize == _initial_gen1_size, "Discrepancy between OldSize flag and local storage");
 265   assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
 266   assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
 267   assert(_max_gen1_size % _gen_alignment == 0, "_max_gen1_size alignment");
 268   assert(_initial_gen1_size % _gen_alignment == 0, "_initial_gen1_size alignment");
 269   assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
 270 }
 271 #endif // ASSERT
 272 
 273 void GenCollectorPolicy::initialize_flags() {
 274   CollectorPolicy::initialize_flags();
 275 
 276   assert(_gen_alignment != 0, "Generation alignment not set up properly");
 277   assert(_heap_alignment >= _gen_alignment,
 278          err_msg("heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
 279                  _heap_alignment, _gen_alignment));
 280   assert(_gen_alignment % _space_alignment == 0,
 281          err_msg("gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
 282                  _gen_alignment, _space_alignment));
 283   assert(_heap_alignment % _gen_alignment == 0,
 284          err_msg("heap_alignment: " SIZE_FORMAT " not aligned by gen_alignment: " SIZE_FORMAT,
 285                  _heap_alignment, _gen_alignment));
 286 
 287   // All generational heaps have a youngest gen; handle those flags here
 288 
 289   // Make sure the heap is large enough for two generations
 290   uintx smallest_new_size = young_gen_size_lower_bound();
 291   uintx smallest_heap_size = align_size_up(smallest_new_size + align_size_up(_space_alignment, _gen_alignment),
 292                                            _heap_alignment);
 293   if (MaxHeapSize < smallest_heap_size) {
 294     FLAG_SET_ERGO(uintx, MaxHeapSize, smallest_heap_size);
 295     _max_heap_byte_size = MaxHeapSize;
 296   }
 297   // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
 298   if (_min_heap_byte_size < smallest_heap_size) {
 299     _min_heap_byte_size = smallest_heap_size;
 300     if (InitialHeapSize < _min_heap_byte_size) {
 301       FLAG_SET_ERGO(uintx, InitialHeapSize, smallest_heap_size);
 302       _initial_heap_byte_size = smallest_heap_size;
 303     }
 304   }
 305 
 306   // Now take the actual NewSize into account. We will silently increase NewSize
 307   // if the user specified a smaller value.
 308   smallest_new_size = MAX2(smallest_new_size, (uintx)align_size_down(NewSize, _gen_alignment));
 309   if (smallest_new_size != NewSize) {
 310     FLAG_SET_ERGO(uintx, NewSize, smallest_new_size);
 311   }
 312   _initial_gen0_size = NewSize;
 313 
 314   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 315     uintx min_new_size = MAX2(_gen_alignment, _min_gen0_size);
 316 
 317     if (MaxNewSize >= MaxHeapSize) {
 318       // Make sure there is room for an old generation
 319       uintx smaller_max_new_size = MaxHeapSize - _gen_alignment;
 320       if (FLAG_IS_CMDLINE(MaxNewSize)) {
 321         warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
 322                 "heap (" SIZE_FORMAT "k).  A new max generation size of " SIZE_FORMAT "k will be used.",
 323                 MaxNewSize/K, MaxHeapSize/K, smaller_max_new_size/K);
 324       }
 325       FLAG_SET_ERGO(uintx, MaxNewSize, smaller_max_new_size);
 326       if (NewSize > MaxNewSize) {
 327         FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
 328         _initial_gen0_size = NewSize;
 329       }
 330     } else if (MaxNewSize < min_new_size) {
 331       FLAG_SET_ERGO(uintx, MaxNewSize, min_new_size);
 332     } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
 333       FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
 334     }
 335     _max_gen0_size = MaxNewSize;
 336   }
 337 
 338   if (NewSize > MaxNewSize) {
 339     // At this point this should only happen if the user specifies a large NewSize and/or
 340     // a small (but not too small) MaxNewSize.
 341     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 342       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 343               "A new max generation size of " SIZE_FORMAT "k will be used.",
 344               NewSize/K, MaxNewSize/K, NewSize/K);
 345     }
 346     FLAG_SET_ERGO(uintx, MaxNewSize, NewSize);
 347     _max_gen0_size = MaxNewSize;
 348   }
 349 
 350   if (SurvivorRatio < 1 || NewRatio < 1) {
 351     vm_exit_during_initialization("Invalid young gen ratio specified");
 352   }
 353 
 354   DEBUG_ONLY(GenCollectorPolicy::assert_flags();)
 355 }
 356 
 357 void TwoGenerationCollectorPolicy::initialize_flags() {
 358   GenCollectorPolicy::initialize_flags();
 359 
 360   if (!is_size_aligned(OldSize, _gen_alignment)) {
 361     FLAG_SET_ERGO(uintx, OldSize, align_size_down(OldSize, _gen_alignment));
 362   }
 363 
 364   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
 365     // NewRatio will be used later to set the young generation size so we use
 366     // it to calculate how big the heap should be based on the requested OldSize
 367     // and NewRatio.
 368     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 369     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 370 
 371     calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
 372     FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
 373     _max_heap_byte_size = MaxHeapSize;
 374     FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
 375     _initial_heap_byte_size = InitialHeapSize;
 376   }
 377 
 378   // Adjust NewSize and OldSize or MaxHeapSize to match each other
 379   if (NewSize + OldSize > MaxHeapSize) {
 380     if (_max_heap_size_cmdline) {
 381       // Somebody has set a maximum heap size with the intention that we should not
 382       // exceed it. Adjust New/OldSize as necessary.
 383       uintx calculated_size = NewSize + OldSize;
 384       double shrink_factor = (double) MaxHeapSize / calculated_size;
 385       uintx smaller_new_size = align_size_down((uintx)(NewSize * shrink_factor), _gen_alignment);
 386       FLAG_SET_ERGO(uintx, NewSize, MAX2(young_gen_size_lower_bound(), smaller_new_size));
 387       _initial_gen0_size = NewSize;
 388 
 389       // OldSize is already aligned because above we aligned MaxHeapSize to
 390       // _heap_alignment, and we just made sure that NewSize is aligned to
 391       // _gen_alignment. In initialize_flags() we verified that _heap_alignment
 392       // is a multiple of _gen_alignment.
 393       FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
 394     } else {
 395       FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
 396       _max_heap_byte_size = MaxHeapSize;
 397     }
 398   }
 399 
 400   always_do_update_barrier = UseConcMarkSweepGC;
 401 
 402   DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_flags();)
 403 }
 404 
 405 // Values set on the command line win over any ergonomically
 406 // set command line parameters.
 407 // Ergonomic choice of parameters are done before this
 408 // method is called.  Values for command line parameters such as NewSize
 409 // and MaxNewSize feed those ergonomic choices into this method.
 410 // This method makes the final generation sizings consistent with
 411 // themselves and with overall heap sizings.
 412 // In the absence of explicitly set command line flags, policies
 413 // such as the use of NewRatio are used to size the generation.
 414 void GenCollectorPolicy::initialize_size_info() {
 415   CollectorPolicy::initialize_size_info();
 416 
 417   // _space_alignment is used for alignment within a generation.
 418   // There is additional alignment done down stream for some
 419   // collectors that sometimes causes unwanted rounding up of
 420   // generations sizes.
 421 
 422   // Determine maximum size of gen0
 423 
 424   size_t max_new_size = 0;
 425   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 426     max_new_size = MaxNewSize;
 427   } else {
 428     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 429     // Bound the maximum size by NewSize below (since it historically
 430     // would have been NewSize and because the NewRatio calculation could
 431     // yield a size that is too small) and bound it by MaxNewSize above.
 432     // Ergonomics plays here by previously calculating the desired
 433     // NewSize and MaxNewSize.
 434     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 435   }
 436   assert(max_new_size > 0, "All paths should set max_new_size");
 437 
 438   // Given the maximum gen0 size, determine the initial and
 439   // minimum gen0 sizes.
 440 
 441   if (_max_heap_byte_size == _min_heap_byte_size) {
 442     // The maximum and minimum heap sizes are the same so the generations
 443     // minimum and initial must be the same as its maximum.
 444     _min_gen0_size = max_new_size;
 445     _initial_gen0_size = max_new_size;
 446     _max_gen0_size = max_new_size;
 447   } else {
 448     size_t desired_new_size = 0;
 449     if (!FLAG_IS_DEFAULT(NewSize)) {
 450       // If NewSize is set ergonomically (for example by cms), it
 451       // would make sense to use it.  If it is used, also use it
 452       // to set the initial size.  Although there is no reason
 453       // the minimum size and the initial size have to be the same,
 454       // the current implementation gets into trouble during the calculation
 455       // of the tenured generation sizes if they are different.
 456       // Note that this makes the initial size and the minimum size
 457       // generally small compared to the NewRatio calculation.
 458       _min_gen0_size = NewSize;
 459       desired_new_size = NewSize;
 460       max_new_size = MAX2(max_new_size, NewSize);
 461     } else {
 462       // For the case where NewSize is the default, use NewRatio
 463       // to size the minimum and initial generation sizes.
 464       // Use the default NewSize as the floor for these values.  If
 465       // NewRatio is overly large, the resulting sizes can be too small.
 466       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
 467       desired_new_size =
 468         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
 469     }
 470 
 471     assert(_min_gen0_size > 0, "Sanity check");
 472     _initial_gen0_size = desired_new_size;
 473     _max_gen0_size = max_new_size;
 474 
 475     // At this point the desirable initial and minimum sizes have been
 476     // determined without regard to the maximum sizes.
 477 
 478     // Bound the sizes by the corresponding overall heap sizes.
 479     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
 480     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
 481     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
 482 
 483     // At this point all three sizes have been checked against the
 484     // maximum sizes but have not been checked for consistency among the three.
 485 
 486     // Final check min <= initial <= max
 487     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
 488     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
 489     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
 490   }
 491 
 492   // Write back to flags if necessary.
 493   if (NewSize != _initial_gen0_size) {
 494     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
 495   }
 496 
 497   if (MaxNewSize != _max_gen0_size) {
 498     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 499   }
 500 
 501   if (PrintGCDetails && Verbose) {
 502     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 503       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 504       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 505   }
 506 
 507   DEBUG_ONLY(GenCollectorPolicy::assert_size_info();)
 508 }
 509 
 510 // Call this method during the sizing of the gen1 to make
 511 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 512 // the most freedom in sizing because it is done before the
 513 // policy for gen1 is applied.  Once gen1 policies have been applied,
 514 // there may be conflicts in the shape of the heap and this method
 515 // is used to make the needed adjustments.  The application of the
 516 // policies could be more sophisticated (iterative for example) but
 517 // keeping it simple also seems a worthwhile goal.
 518 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 519                                                      size_t* gen1_size_ptr,
 520                                                      const size_t heap_size) {
 521   bool result = false;
 522 
 523   if ((*gen0_size_ptr + *gen1_size_ptr) > heap_size) {
 524     uintx smallest_new_size = young_gen_size_lower_bound();
 525     if ((heap_size < (*gen0_size_ptr + _min_gen1_size)) &&
 526         (heap_size >= _min_gen1_size + smallest_new_size)) {
 527       // Adjust gen0 down to accommodate _min_gen1_size
 528       *gen0_size_ptr = align_size_down_bounded(heap_size - _min_gen1_size, _gen_alignment);
 529       result = true;
 530     } else {
 531       *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _gen_alignment);
 532     }
 533   }
 534   return result;
 535 }
 536 
 537 // Minimum sizes of the generations may be different than
 538 // the initial sizes.  An inconsistency is permitted here
 539 // in the total size that can be specified explicitly by
 540 // command line specification of OldSize and NewSize and
 541 // also a command line specification of -Xms.  Issue a warning
 542 // but allow the values to pass.
 543 
 544 void TwoGenerationCollectorPolicy::initialize_size_info() {
 545   GenCollectorPolicy::initialize_size_info();
 546 
 547   // At this point the minimum, initial and maximum sizes
 548   // of the overall heap and of gen0 have been determined.
 549   // The maximum gen1 size can be determined from the maximum gen0
 550   // and maximum heap size since no explicit flags exist
 551   // for setting the gen1 maximum.
 552   _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _gen_alignment);
 553 
 554   // If no explicit command line flag has been set for the
 555   // gen1 size, use what is left for gen1
 556   if (!FLAG_IS_CMDLINE(OldSize)) {
 557     // The user has not specified any value but the ergonomics
 558     // may have chosen a value (which may or may not be consistent
 559     // with the overall heap size).  In either case make
 560     // the minimum, maximum and initial sizes consistent
 561     // with the gen0 sizes and the overall heap sizes.
 562     _min_gen1_size = MAX2(_min_heap_byte_size - _min_gen0_size, _gen_alignment);
 563     _initial_gen1_size = MAX2(_initial_heap_byte_size - _initial_gen0_size, _gen_alignment);
 564     // _max_gen1_size has already been made consistent above
 565     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 566   } else {
 567     // OldSize has been explicitly set on the command line. Use the
 568     // OldSize and then determine the consequences.
 569     _min_gen1_size = MIN2(OldSize, _min_heap_byte_size - _min_gen0_size);
 570     _initial_gen1_size = OldSize;
 571 
 572     // If the user has explicitly set an OldSize that is inconsistent
 573     // with other command line flags, issue a warning.
 574     // The generation minimums and the overall heap minimum should
 575     // be within one generation alignment.
 576     if ((_min_gen1_size + _min_gen0_size + _gen_alignment) < _min_heap_byte_size) {
 577       warning("Inconsistency between minimum heap size and minimum "
 578               "generation sizes: using minimum heap = " SIZE_FORMAT,
 579               _min_heap_byte_size);
 580     }
 581     if (OldSize > _max_gen1_size) {
 582       warning("Inconsistency between maximum heap size and maximum "
 583               "generation sizes: using maximum heap = " SIZE_FORMAT
 584               " -XX:OldSize flag is being ignored",
 585               _max_heap_byte_size);
 586     }
 587     // If there is an inconsistency between the OldSize and the minimum and/or
 588     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 589     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size, _min_heap_byte_size)) {
 590       if (PrintGCDetails && Verbose) {
 591         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 592               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 593               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 594       }
 595     }
 596     // The same as above for the old gen initial size.
 597     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 598                           _initial_heap_byte_size)) {
 599       if (PrintGCDetails && Verbose) {
 600         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 601           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 602           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
 603       }
 604     }
 605   }
 606 
 607   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
 608 
 609   // Make sure that min gen1 <= initial gen1 <= max gen1.
 610   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
 611   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
 612 
 613   // Write back to flags if necessary
 614   if (NewSize != _initial_gen0_size) {
 615     FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
 616   }
 617 
 618   if (MaxNewSize != _max_gen0_size) {
 619     FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
 620   }
 621 
 622   if (OldSize != _initial_gen1_size) {
 623     FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
 624   }
 625 
 626   if (PrintGCDetails && Verbose) {
 627     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 628       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 629       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
 630   }
 631 
 632   DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_size_info();)
 633 }
 634 
 635 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 636                                         bool is_tlab,
 637                                         bool* gc_overhead_limit_was_exceeded) {
 638   GenCollectedHeap *gch = GenCollectedHeap::heap();
 639 
 640   debug_only(gch->check_for_valid_allocation_state());
 641   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 642 
 643   // In general gc_overhead_limit_was_exceeded should be false so
 644   // set it so here and reset it to true only if the gc time
 645   // limit is being exceeded as checked below.
 646   *gc_overhead_limit_was_exceeded = false;
 647 
 648   HeapWord* result = NULL;
 649 
 650   // Loop until the allocation is satisfied, or unsatisfied after GC.
 651   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 652     HandleMark hm; // Discard any handles allocated in each iteration.
 653 
 654     // First allocation attempt is lock-free.
 655     Generation *gen0 = gch->get_gen(0);
 656     assert(gen0->supports_inline_contig_alloc(),
 657       "Otherwise, must do alloc within heap lock");
 658     if (gen0->should_allocate(size, is_tlab)) {
 659       result = gen0->par_allocate(size, is_tlab);
 660       if (result != NULL) {
 661         assert(gch->is_in_reserved(result), "result not in heap");
 662         return result;
 663       }
 664     }
 665     unsigned int gc_count_before;  // Read inside the Heap_lock locked region.
 666     {
 667       MutexLocker ml(Heap_lock);
 668       if (PrintGC && Verbose) {
 669         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 670                       " attempting locked slow path allocation");
 671       }
 672       // Note that only large objects get a shot at being
 673       // allocated in later generations.
 674       bool first_only = ! should_try_older_generation_allocation(size);
 675 
 676       result = gch->attempt_allocation(size, is_tlab, first_only);
 677       if (result != NULL) {
 678         assert(gch->is_in_reserved(result), "result not in heap");
 679         return result;
 680       }
 681 
 682       if (GC_locker::is_active_and_needs_gc()) {
 683         if (is_tlab) {
 684           return NULL;  // Caller will retry allocating individual object.
 685         }
 686         if (!gch->is_maximal_no_gc()) {
 687           // Try and expand heap to satisfy request.
 688           result = expand_heap_and_allocate(size, is_tlab);
 689           // Result could be null if we are out of space.
 690           if (result != NULL) {
 691             return result;
 692           }
 693         }
 694 
 695         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 696           return NULL; // We didn't get to do a GC and we didn't get any memory.
 697         }
 698 
 699         // If this thread is not in a jni critical section, we stall
 700         // the requestor until the critical section has cleared and
 701         // GC allowed. When the critical section clears, a GC is
 702         // initiated by the last thread exiting the critical section; so
 703         // we retry the allocation sequence from the beginning of the loop,
 704         // rather than causing more, now probably unnecessary, GC attempts.
 705         JavaThread* jthr = JavaThread::current();
 706         if (!jthr->in_critical()) {
 707           MutexUnlocker mul(Heap_lock);
 708           // Wait for JNI critical section to be exited
 709           GC_locker::stall_until_clear();
 710           gclocker_stalled_count += 1;
 711           continue;
 712         } else {
 713           if (CheckJNICalls) {
 714             fatal("Possible deadlock due to allocating while"
 715                   " in jni critical section");
 716           }
 717           return NULL;
 718         }
 719       }
 720 
 721       // Read the gc count while the heap lock is held.
 722       gc_count_before = Universe::heap()->total_collections();
 723     }
 724 
 725     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 726     VMThread::execute(&op);
 727     if (op.prologue_succeeded()) {
 728       result = op.result();
 729       if (op.gc_locked()) {
 730          assert(result == NULL, "must be NULL if gc_locked() is true");
 731          continue;  // Retry and/or stall as necessary.
 732       }
 733 
 734       // Allocation has failed and a collection
 735       // has been done.  If the gc time limit was exceeded the
 736       // this time, return NULL so that an out-of-memory
 737       // will be thrown.  Clear gc_overhead_limit_exceeded
 738       // so that the overhead exceeded does not persist.
 739 
 740       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 741       const bool softrefs_clear = all_soft_refs_clear();
 742 
 743       if (limit_exceeded && softrefs_clear) {
 744         *gc_overhead_limit_was_exceeded = true;
 745         size_policy()->set_gc_overhead_limit_exceeded(false);
 746         if (op.result() != NULL) {
 747           CollectedHeap::fill_with_object(op.result(), size);
 748         }
 749         return NULL;
 750       }
 751       assert(result == NULL || gch->is_in_reserved(result),
 752              "result not in heap");
 753       return result;
 754     }
 755 
 756     // Give a warning if we seem to be looping forever.
 757     if ((QueuedAllocationWarningCount > 0) &&
 758         (try_count % QueuedAllocationWarningCount == 0)) {
 759           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 760                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 761     }
 762   }
 763 }
 764 
 765 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 766                                                        bool   is_tlab) {
 767   GenCollectedHeap *gch = GenCollectedHeap::heap();
 768   HeapWord* result = NULL;
 769   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 770     Generation *gen = gch->get_gen(i);
 771     if (gen->should_allocate(size, is_tlab)) {
 772       result = gen->expand_and_allocate(size, is_tlab);
 773     }
 774   }
 775   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 776   return result;
 777 }
 778 
 779 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 780                                                         bool   is_tlab) {
 781   GenCollectedHeap *gch = GenCollectedHeap::heap();
 782   GCCauseSetter x(gch, GCCause::_allocation_failure);
 783   HeapWord* result = NULL;
 784 
 785   assert(size != 0, "Precondition violated");
 786   if (GC_locker::is_active_and_needs_gc()) {
 787     // GC locker is active; instead of a collection we will attempt
 788     // to expand the heap, if there's room for expansion.
 789     if (!gch->is_maximal_no_gc()) {
 790       result = expand_heap_and_allocate(size, is_tlab);
 791     }
 792     return result;   // Could be null if we are out of space.
 793   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 794     // Do an incremental collection.
 795     gch->do_collection(false            /* full */,
 796                        false            /* clear_all_soft_refs */,
 797                        size             /* size */,
 798                        is_tlab          /* is_tlab */,
 799                        number_of_generations() - 1 /* max_level */);
 800   } else {
 801     if (Verbose && PrintGCDetails) {
 802       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 803     }
 804     // Try a full collection; see delta for bug id 6266275
 805     // for the original code and why this has been simplified
 806     // with from-space allocation criteria modified and
 807     // such allocation moved out of the safepoint path.
 808     gch->do_collection(true             /* full */,
 809                        false            /* clear_all_soft_refs */,
 810                        size             /* size */,
 811                        is_tlab          /* is_tlab */,
 812                        number_of_generations() - 1 /* max_level */);
 813   }
 814 
 815   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 816 
 817   if (result != NULL) {
 818     assert(gch->is_in_reserved(result), "result not in heap");
 819     return result;
 820   }
 821 
 822   // OK, collection failed, try expansion.
 823   result = expand_heap_and_allocate(size, is_tlab);
 824   if (result != NULL) {
 825     return result;
 826   }
 827 
 828   // If we reach this point, we're really out of memory. Try every trick
 829   // we can to reclaim memory. Force collection of soft references. Force
 830   // a complete compaction of the heap. Any additional methods for finding
 831   // free memory should be here, especially if they are expensive. If this
 832   // attempt fails, an OOM exception will be thrown.
 833   {
 834     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 835 
 836     gch->do_collection(true             /* full */,
 837                        true             /* clear_all_soft_refs */,
 838                        size             /* size */,
 839                        is_tlab          /* is_tlab */,
 840                        number_of_generations() - 1 /* max_level */);
 841   }
 842 
 843   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 844   if (result != NULL) {
 845     assert(gch->is_in_reserved(result), "result not in heap");
 846     return result;
 847   }
 848 
 849   assert(!should_clear_all_soft_refs(),
 850     "Flag should have been handled and cleared prior to this point");
 851 
 852   // What else?  We might try synchronous finalization later.  If the total
 853   // space available is large enough for the allocation, then a more
 854   // complete compaction phase than we've tried so far might be
 855   // appropriate.
 856   return NULL;
 857 }
 858 
 859 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 860                                                  ClassLoaderData* loader_data,
 861                                                  size_t word_size,
 862                                                  Metaspace::MetadataType mdtype) {
 863   uint loop_count = 0;
 864   uint gc_count = 0;
 865   uint full_gc_count = 0;
 866 
 867   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 868 
 869   do {
 870     MetaWord* result = NULL;
 871     if (GC_locker::is_active_and_needs_gc()) {
 872       // If the GC_locker is active, just expand and allocate.
 873       // If that does not succeed, wait if this thread is not
 874       // in a critical section itself.
 875       result =
 876         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 877                                                                mdtype);
 878       if (result != NULL) {
 879         return result;
 880       }
 881       JavaThread* jthr = JavaThread::current();
 882       if (!jthr->in_critical()) {
 883         // Wait for JNI critical section to be exited
 884         GC_locker::stall_until_clear();
 885         // The GC invoked by the last thread leaving the critical
 886         // section will be a young collection and a full collection
 887         // is (currently) needed for unloading classes so continue
 888         // to the next iteration to get a full GC.
 889         continue;
 890       } else {
 891         if (CheckJNICalls) {
 892           fatal("Possible deadlock due to allocating while"
 893                 " in jni critical section");
 894         }
 895         return NULL;
 896       }
 897     }
 898 
 899     {  // Need lock to get self consistent gc_count's
 900       MutexLocker ml(Heap_lock);
 901       gc_count      = Universe::heap()->total_collections();
 902       full_gc_count = Universe::heap()->total_full_collections();
 903     }
 904 
 905     // Generate a VM operation
 906     VM_CollectForMetadataAllocation op(loader_data,
 907                                        word_size,
 908                                        mdtype,
 909                                        gc_count,
 910                                        full_gc_count,
 911                                        GCCause::_metadata_GC_threshold);
 912     VMThread::execute(&op);
 913 
 914     // If GC was locked out, try again. Check before checking success because the
 915     // prologue could have succeeded and the GC still have been locked out.
 916     if (op.gc_locked()) {
 917       continue;
 918     }
 919 
 920     if (op.prologue_succeeded()) {
 921       return op.result();
 922     }
 923     loop_count++;
 924     if ((QueuedAllocationWarningCount > 0) &&
 925         (loop_count % QueuedAllocationWarningCount == 0)) {
 926       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 927               " size=%d", loop_count, word_size);
 928     }
 929   } while (true);  // Until a GC is done
 930 }
 931 
 932 // Return true if any of the following is true:
 933 // . the allocation won't fit into the current young gen heap
 934 // . gc locker is occupied (jni critical section)
 935 // . heap memory is tight -- the most recent previous collection
 936 //   was a full collection because a partial collection (would
 937 //   have) failed and is likely to fail again
 938 bool GenCollectorPolicy::should_try_older_generation_allocation(
 939         size_t word_size) const {
 940   GenCollectedHeap* gch = GenCollectedHeap::heap();
 941   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 942   return    (word_size > heap_word_size(gen0_capacity))
 943          || GC_locker::is_active_and_needs_gc()
 944          || gch->incremental_collection_failed();
 945 }
 946 
 947 
 948 //
 949 // MarkSweepPolicy methods
 950 //
 951 
 952 void MarkSweepPolicy::initialize_alignments() {
 953   _space_alignment = _gen_alignment = (uintx)Generation::GenGrain;
 954   _heap_alignment = compute_heap_alignment();
 955 }
 956 
 957 void MarkSweepPolicy::initialize_generations() {
 958   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 959   if (_generations == NULL) {
 960     vm_exit_during_initialization("Unable to allocate gen spec");
 961   }
 962 
 963   if (UseParNewGC) {
 964     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 965   } else {
 966     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 967   }
 968   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 969 
 970   if (_generations[0] == NULL || _generations[1] == NULL) {
 971     vm_exit_during_initialization("Unable to allocate gen spec");
 972   }
 973 }
 974 
 975 void MarkSweepPolicy::initialize_gc_policy_counters() {
 976   // Initialize the policy counters - 2 collectors, 3 generations.
 977   if (UseParNewGC) {
 978     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 979   } else {
 980     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 981   }
 982 }