/* * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/stringTable.hpp" #include "classfile/systemDictionary.hpp" #include "code/codeCache.hpp" #include "gc/g1/bufferingOopClosure.hpp" #include "gc/g1/g1CodeBlobClosure.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1CollectorState.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1Policy.hpp" #include "gc/g1/g1RootClosures.hpp" #include "gc/g1/g1RootProcessor.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "memory/allocation.inline.hpp" #include "runtime/fprofiler.hpp" #include "runtime/mutex.hpp" #include "services/management.hpp" void G1RootProcessor::worker_has_discovered_all_strong_classes() { assert(ClassUnloadingWithConcurrentMark, "Currently only needed when doing G1 Class Unloading"); uint new_value = (uint)Atomic::add(1, &_n_workers_discovered_strong_classes); if (new_value == n_workers()) { // This thread is last. Notify the others. MonitorLockerEx ml(&_lock, Mutex::_no_safepoint_check_flag); _lock.notify_all(); } } void G1RootProcessor::wait_until_all_strong_classes_discovered() { assert(ClassUnloadingWithConcurrentMark, "Currently only needed when doing G1 Class Unloading"); if ((uint)_n_workers_discovered_strong_classes != n_workers()) { MonitorLockerEx ml(&_lock, Mutex::_no_safepoint_check_flag); while ((uint)_n_workers_discovered_strong_classes != n_workers()) { _lock.wait(Mutex::_no_safepoint_check_flag, 0, false); } } } G1RootProcessor::G1RootProcessor(G1CollectedHeap* g1h, uint n_workers) : _g1h(g1h), _process_strong_tasks(G1RP_PS_NumElements), _srs(n_workers), _lock(Mutex::leaf, "G1 Root Scanning barrier lock", false, Monitor::_safepoint_check_never), _n_workers_discovered_strong_classes(0) {} void G1RootProcessor::evacuate_roots(G1EvacuationRootClosures* closures, uint worker_i) { double ext_roots_start = os::elapsedTime(); G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times(); process_java_roots(closures, phase_times, worker_i); // This is the point where this worker thread will not find more strong CLDs/nmethods. // Report this so G1 can synchronize the strong and weak CLDs/nmethods processing. if (closures->trace_metadata()) { worker_has_discovered_all_strong_classes(); } process_vm_roots(closures, phase_times, worker_i); process_string_table_roots(closures, phase_times, worker_i); { // Now the CM ref_processor roots. G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::CMRefRoots, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_refProcessor_oops_do)) { // We need to treat the discovered reference lists of the // concurrent mark ref processor as roots and keep entries // (which are added by the marking threads) on them live // until they can be processed at the end of marking. _g1h->ref_processor_cm()->weak_oops_do(closures->strong_oops()); } } if (closures->trace_metadata()) { { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::WaitForStrongCLD, worker_i); // Barrier to make sure all workers passed // the strong CLD and strong nmethods phases. wait_until_all_strong_classes_discovered(); } // Now take the complement of the strong CLDs. G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::WeakCLDRoots, worker_i); assert(closures->second_pass_weak_clds() != NULL, "Should be non-null if we are tracing metadata."); ClassLoaderDataGraph::roots_cld_do(NULL, closures->second_pass_weak_clds()); } else { phase_times->record_time_secs(G1GCPhaseTimes::WaitForStrongCLD, worker_i, 0.0); phase_times->record_time_secs(G1GCPhaseTimes::WeakCLDRoots, worker_i, 0.0); assert(closures->second_pass_weak_clds() == NULL, "Should be null if not tracing metadata."); } // Finish up any enqueued closure apps (attributed as object copy time). closures->flush(); double obj_copy_time_sec = closures->closure_app_seconds(); phase_times->record_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, obj_copy_time_sec); double ext_root_time_sec = os::elapsedTime() - ext_roots_start - obj_copy_time_sec; phase_times->record_time_secs(G1GCPhaseTimes::ExtRootScan, worker_i, ext_root_time_sec); // During conc marking we have to filter the per-thread SATB buffers // to make sure we remove any oops into the CSet (which will show up // as implicitly live). { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::SATBFiltering, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_filter_satb_buffers) && _g1h->collector_state()->mark_in_progress()) { JavaThread::satb_mark_queue_set().filter_thread_buffers(); } } _process_strong_tasks.all_tasks_completed(n_workers()); } // Adaptor to pass the closures to the strong roots in the VM. class StrongRootsClosures : public G1RootClosures { OopClosure* _roots; CLDClosure* _clds; CodeBlobClosure* _blobs; public: StrongRootsClosures(OopClosure* roots, CLDClosure* clds, CodeBlobClosure* blobs) : _roots(roots), _clds(clds), _blobs(blobs) {} OopClosure* weak_oops() { return NULL; } OopClosure* strong_oops() { return _roots; } CLDClosure* weak_clds() { return NULL; } CLDClosure* strong_clds() { return _clds; } CodeBlobClosure* strong_codeblobs() { return _blobs; } }; void G1RootProcessor::process_strong_roots(OopClosure* oops, CLDClosure* clds, CodeBlobClosure* blobs) { StrongRootsClosures closures(oops, clds, blobs); process_java_roots(&closures, NULL, 0); process_vm_roots(&closures, NULL, 0); _process_strong_tasks.all_tasks_completed(n_workers()); } // Adaptor to pass the closures to all the roots in the VM. class AllRootsClosures : public G1RootClosures { OopClosure* _roots; CLDClosure* _clds; public: AllRootsClosures(OopClosure* roots, CLDClosure* clds) : _roots(roots), _clds(clds) {} OopClosure* weak_oops() { return _roots; } OopClosure* strong_oops() { return _roots; } // By returning the same CLDClosure for both weak and strong CLDs we ensure // that a single walk of the CLDG will invoke the closure on all CLDs i the // system. CLDClosure* weak_clds() { return _clds; } CLDClosure* strong_clds() { return _clds; } // We don't want to visit code blobs more than once, so we return NULL for the // strong case and walk the entire code cache as a separate step. CodeBlobClosure* strong_codeblobs() { return NULL; } }; void G1RootProcessor::process_all_roots(OopClosure* oops, CLDClosure* clds, CodeBlobClosure* blobs) { AllRootsClosures closures(oops, clds); process_java_roots(&closures, NULL, 0); process_vm_roots(&closures, NULL, 0); process_string_table_roots(&closures, NULL, 0); process_code_cache_roots(blobs, NULL, 0); _process_strong_tasks.all_tasks_completed(n_workers()); } void G1RootProcessor::process_all_roots_no_string_table(OopClosure* oops, CLDClosure* clds, CodeBlobClosure* blobs) { assert(!ClassUnloading, "Should only be used when class unloading is disabled"); AllRootsClosures closures(oops, clds); process_java_roots(&closures, NULL, 0); process_vm_roots(&closures, NULL, 0); process_code_cache_roots(blobs, NULL, 0); _process_strong_tasks.all_tasks_completed(n_workers()); } void G1RootProcessor::process_java_roots(G1RootClosures* closures, G1GCPhaseTimes* phase_times, uint worker_i) { // Iterating over the CLDG and the Threads are done early to allow us to // first process the strong CLDs and nmethods and then, after a barrier, // let the thread process the weak CLDs and nmethods. { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::CLDGRoots, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_ClassLoaderDataGraph_oops_do)) { ClassLoaderDataGraph::roots_cld_do(closures->strong_clds(), closures->weak_clds()); } } { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::ThreadRoots, worker_i); bool is_par = n_workers() > 1; Threads::possibly_parallel_oops_do(is_par, closures->strong_oops(), closures->strong_codeblobs()); } } void G1RootProcessor::process_vm_roots(G1RootClosures* closures, G1GCPhaseTimes* phase_times, uint worker_i) { OopClosure* strong_roots = closures->strong_oops(); OopClosure* weak_roots = closures->weak_oops(); { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::UniverseRoots, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_Universe_oops_do)) { Universe::oops_do(strong_roots); } } { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::JNIRoots, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_JNIHandles_oops_do)) { JNIHandles::oops_do(strong_roots); } } { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::ObjectSynchronizerRoots, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_ObjectSynchronizer_oops_do)) { ObjectSynchronizer::oops_do(strong_roots); } } { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::FlatProfilerRoots, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_FlatProfiler_oops_do)) { FlatProfiler::oops_do(strong_roots); } } { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::ManagementRoots, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_Management_oops_do)) { Management::oops_do(strong_roots); } } { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::JVMTIRoots, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_jvmti_oops_do)) { JvmtiExport::oops_do(strong_roots); } } { G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::SystemDictionaryRoots, worker_i); if (!_process_strong_tasks.is_task_claimed(G1RP_PS_SystemDictionary_oops_do)) { SystemDictionary::roots_oops_do(strong_roots, weak_roots); } } } void G1RootProcessor::process_string_table_roots(G1RootClosures* closures, G1GCPhaseTimes* phase_times, uint worker_i) { assert(closures->weak_oops() != NULL, "Should only be called when all roots are processed"); G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::StringTableRoots, worker_i); // All threads execute the following. A specific chunk of buckets // from the StringTable are the individual tasks. StringTable::possibly_parallel_oops_do(closures->weak_oops()); } void G1RootProcessor::process_code_cache_roots(CodeBlobClosure* code_closure, G1GCPhaseTimes* phase_times, uint worker_i) { if (!_process_strong_tasks.is_task_claimed(G1RP_PS_CodeCache_oops_do)) { CodeCache::blobs_do(code_closure); } } uint G1RootProcessor::n_workers() const { return _srs.n_threads(); }