1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 141 {
 142   // Claim the right to put the region on the dirty cards region list
 143   // by installing a self pointer.
 144   HeapRegion* next = hr->get_next_dirty_cards_region();
 145   if (next == NULL) {
 146     HeapRegion* res = (HeapRegion*)
 147       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 148                           NULL);
 149     if (res == NULL) {
 150       HeapRegion* head;
 151       do {
 152         // Put the region to the dirty cards region list.
 153         head = _dirty_cards_region_list;
 154         next = (HeapRegion*)
 155           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 156         if (next == head) {
 157           assert(hr->get_next_dirty_cards_region() == hr,
 158                  "hr->get_next_dirty_cards_region() != hr");
 159           if (next == NULL) {
 160             // The last region in the list points to itself.
 161             hr->set_next_dirty_cards_region(hr);
 162           } else {
 163             hr->set_next_dirty_cards_region(next);
 164           }
 165         }
 166       } while (next != head);
 167     }
 168   }
 169 }
 170 
 171 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 172 {
 173   HeapRegion* head;
 174   HeapRegion* hr;
 175   do {
 176     head = _dirty_cards_region_list;
 177     if (head == NULL) {
 178       return NULL;
 179     }
 180     HeapRegion* new_head = head->get_next_dirty_cards_region();
 181     if (head == new_head) {
 182       // The last region.
 183       new_head = NULL;
 184     }
 185     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 186                                           head);
 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);
 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new top of the new object.
 324   HeapWord* obj_top = new_obj + word_size;
 325 
 326   // First, we need to zero the header of the space that we will be
 327   // allocating. When we update top further down, some refinement
 328   // threads might try to scan the region. By zeroing the header we
 329   // ensure that any thread that will try to scan the region will
 330   // come across the zero klass word and bail out.
 331   //
 332   // NOTE: It would not have been correct to have used
 333   // CollectedHeap::fill_with_object() and make the space look like
 334   // an int array. The thread that is doing the allocation will
 335   // later update the object header to a potentially different array
 336   // type and, for a very short period of time, the klass and length
 337   // fields will be inconsistent. This could cause a refinement
 338   // thread to calculate the object size incorrectly.
 339   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 340 
 341   // We will set up the first region as "starts humongous". This
 342   // will also update the BOT covering all the regions to reflect
 343   // that there is a single object that starts at the bottom of the
 344   // first region.
 345   first_hr->set_starts_humongous(obj_top);
 346   first_hr->set_allocation_context(context);
 347   // Then, if there are any, we will set up the "continues
 348   // humongous" regions.
 349   HeapRegion* hr = NULL;
 350   for (uint i = first + 1; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_continues_humongous(first_hr);
 353     hr->set_allocation_context(context);
 354   }
 355 
 356   // Up to this point no concurrent thread would have been able to
 357   // do any scanning on any region in this series. All the top
 358   // fields still point to bottom, so the intersection between
 359   // [bottom,top] and [card_start,card_end] will be empty. Before we
 360   // update the top fields, we'll do a storestore to make sure that
 361   // no thread sees the update to top before the zeroing of the
 362   // object header and the BOT initialization.
 363   OrderAccess::storestore();
 364 
 365   // Now that the BOT and the object header have been initialized,
 366   // we can update top of the "starts humongous" region.
 367   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 368   if (_hr_printer.is_active()) {
 369     _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->top());
 370   }
 371 
 372   // Now, we will update the top fields of the "continues humongous"
 373   // regions.
 374   hr = NULL;
 375   for (uint i = first + 1; i < last; ++i) {
 376     hr = region_at(i);
 377     if ((i + 1) == last) {
 378       // last continues humongous region
 379       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 380              "new_top should fall on this region");
 381       hr->set_top(obj_top);
 382       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 383     } else {
 384       // not last one
 385       assert(obj_top > hr->end(), "obj_top should be above this region");
 386       hr->set_top(hr->end());
 387       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 388     }
 389   }
 390   // If we have continues humongous regions (hr != NULL), its top should
 391   // match obj_top.
 392   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 393   check_bitmaps("Humongous Region Allocation", first_hr);
 394 
 395   increase_used(word_size * HeapWordSize);
 396 
 397   for (uint i = first; i < last; ++i) {
 398     _humongous_set.add(region_at(i));
 399   }
 400 
 401   return new_obj;
 402 }
 403 
 404 // If could fit into free regions w/o expansion, try.
 405 // Otherwise, if can expand, do so.
 406 // Otherwise, if using ex regions might help, try with ex given back.
 407 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 408   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 409 
 410   verify_region_sets_optional();
 411 
 412   uint first = G1_NO_HRM_INDEX;
 413   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 414 
 415   if (obj_regions == 1) {
 416     // Only one region to allocate, try to use a fast path by directly allocating
 417     // from the free lists. Do not try to expand here, we will potentially do that
 418     // later.
 419     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 420     if (hr != NULL) {
 421       first = hr->hrm_index();
 422     }
 423   } else {
 424     // We can't allocate humongous regions spanning more than one region while
 425     // cleanupComplete() is running, since some of the regions we find to be
 426     // empty might not yet be added to the free list. It is not straightforward
 427     // to know in which list they are on so that we can remove them. We only
 428     // need to do this if we need to allocate more than one region to satisfy the
 429     // current humongous allocation request. If we are only allocating one region
 430     // we use the one-region region allocation code (see above), that already
 431     // potentially waits for regions from the secondary free list.
 432     wait_while_free_regions_coming();
 433     append_secondary_free_list_if_not_empty_with_lock();
 434 
 435     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 436     // are lucky enough to find some.
 437     first = _hrm.find_contiguous_only_empty(obj_regions);
 438     if (first != G1_NO_HRM_INDEX) {
 439       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 440     }
 441   }
 442 
 443   if (first == G1_NO_HRM_INDEX) {
 444     // Policy: We could not find enough regions for the humongous object in the
 445     // free list. Look through the heap to find a mix of free and uncommitted regions.
 446     // If so, try expansion.
 447     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 448     if (first != G1_NO_HRM_INDEX) {
 449       // We found something. Make sure these regions are committed, i.e. expand
 450       // the heap. Alternatively we could do a defragmentation GC.
 451       ergo_verbose1(ErgoHeapSizing,
 452                     "attempt heap expansion",
 453                     ergo_format_reason("humongous allocation request failed")
 454                     ergo_format_byte("allocation request"),
 455                     word_size * HeapWordSize);
 456 
 457       _hrm.expand_at(first, obj_regions);
 458       g1_policy()->record_new_heap_size(num_regions());
 459 
 460 #ifdef ASSERT
 461       for (uint i = first; i < first + obj_regions; ++i) {
 462         HeapRegion* hr = region_at(i);
 463         assert(hr->is_free(), "sanity");
 464         assert(hr->is_empty(), "sanity");
 465         assert(is_on_master_free_list(hr), "sanity");
 466       }
 467 #endif
 468       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 469     } else {
 470       // Policy: Potentially trigger a defragmentation GC.
 471     }
 472   }
 473 
 474   HeapWord* result = NULL;
 475   if (first != G1_NO_HRM_INDEX) {
 476     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 477                                                        word_size, context);
 478     assert(result != NULL, "it should always return a valid result");
 479 
 480     // A successful humongous object allocation changes the used space
 481     // information of the old generation so we need to recalculate the
 482     // sizes and update the jstat counters here.
 483     g1mm()->update_sizes();
 484   }
 485 
 486   verify_region_sets_optional();
 487 
 488   return result;
 489 }
 490 
 491 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 492   assert_heap_not_locked_and_not_at_safepoint();
 493   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 494 
 495   uint dummy_gc_count_before;
 496   uint dummy_gclocker_retry_count = 0;
 497   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 498 }
 499 
 500 HeapWord*
 501 G1CollectedHeap::mem_allocate(size_t word_size,
 502                               bool*  gc_overhead_limit_was_exceeded) {
 503   assert_heap_not_locked_and_not_at_safepoint();
 504 
 505   // Loop until the allocation is satisfied, or unsatisfied after GC.
 506   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 507     uint gc_count_before;
 508 
 509     HeapWord* result = NULL;
 510     if (!is_humongous(word_size)) {
 511       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 512     } else {
 513       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 514     }
 515     if (result != NULL) {
 516       return result;
 517     }
 518 
 519     // Create the garbage collection operation...
 520     VM_G1CollectForAllocation op(gc_count_before, word_size);
 521     op.set_allocation_context(AllocationContext::current());
 522 
 523     // ...and get the VM thread to execute it.
 524     VMThread::execute(&op);
 525 
 526     if (op.prologue_succeeded() && op.pause_succeeded()) {
 527       // If the operation was successful we'll return the result even
 528       // if it is NULL. If the allocation attempt failed immediately
 529       // after a Full GC, it's unlikely we'll be able to allocate now.
 530       HeapWord* result = op.result();
 531       if (result != NULL && !is_humongous(word_size)) {
 532         // Allocations that take place on VM operations do not do any
 533         // card dirtying and we have to do it here. We only have to do
 534         // this for non-humongous allocations, though.
 535         dirty_young_block(result, word_size);
 536       }
 537       return result;
 538     } else {
 539       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 540         return NULL;
 541       }
 542       assert(op.result() == NULL,
 543              "the result should be NULL if the VM op did not succeed");
 544     }
 545 
 546     // Give a warning if we seem to be looping forever.
 547     if ((QueuedAllocationWarningCount > 0) &&
 548         (try_count % QueuedAllocationWarningCount == 0)) {
 549       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 550     }
 551   }
 552 
 553   ShouldNotReachHere();
 554   return NULL;
 555 }
 556 
 557 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 558                                                    AllocationContext_t context,
 559                                                    uint* gc_count_before_ret,
 560                                                    uint* gclocker_retry_count_ret) {
 561   // Make sure you read the note in attempt_allocation_humongous().
 562 
 563   assert_heap_not_locked_and_not_at_safepoint();
 564   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 565          "be called for humongous allocation requests");
 566 
 567   // We should only get here after the first-level allocation attempt
 568   // (attempt_allocation()) failed to allocate.
 569 
 570   // We will loop until a) we manage to successfully perform the
 571   // allocation or b) we successfully schedule a collection which
 572   // fails to perform the allocation. b) is the only case when we'll
 573   // return NULL.
 574   HeapWord* result = NULL;
 575   for (int try_count = 1; /* we'll return */; try_count += 1) {
 576     bool should_try_gc;
 577     uint gc_count_before;
 578 
 579     {
 580       MutexLockerEx x(Heap_lock);
 581       result = _allocator->attempt_allocation_locked(word_size, context);
 582       if (result != NULL) {
 583         return result;
 584       }
 585 
 586       if (GC_locker::is_active_and_needs_gc()) {
 587         if (g1_policy()->can_expand_young_list()) {
 588           // No need for an ergo verbose message here,
 589           // can_expand_young_list() does this when it returns true.
 590           result = _allocator->attempt_allocation_force(word_size, context);
 591           if (result != NULL) {
 592             return result;
 593           }
 594         }
 595         should_try_gc = false;
 596       } else {
 597         // The GCLocker may not be active but the GCLocker initiated
 598         // GC may not yet have been performed (GCLocker::needs_gc()
 599         // returns true). In this case we do not try this GC and
 600         // wait until the GCLocker initiated GC is performed, and
 601         // then retry the allocation.
 602         if (GC_locker::needs_gc()) {
 603           should_try_gc = false;
 604         } else {
 605           // Read the GC count while still holding the Heap_lock.
 606           gc_count_before = total_collections();
 607           should_try_gc = true;
 608         }
 609       }
 610     }
 611 
 612     if (should_try_gc) {
 613       bool succeeded;
 614       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 615                                    GCCause::_g1_inc_collection_pause);
 616       if (result != NULL) {
 617         assert(succeeded, "only way to get back a non-NULL result");
 618         return result;
 619       }
 620 
 621       if (succeeded) {
 622         // If we get here we successfully scheduled a collection which
 623         // failed to allocate. No point in trying to allocate
 624         // further. We'll just return NULL.
 625         MutexLockerEx x(Heap_lock);
 626         *gc_count_before_ret = total_collections();
 627         return NULL;
 628       }
 629     } else {
 630       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 631         MutexLockerEx x(Heap_lock);
 632         *gc_count_before_ret = total_collections();
 633         return NULL;
 634       }
 635       // The GCLocker is either active or the GCLocker initiated
 636       // GC has not yet been performed. Stall until it is and
 637       // then retry the allocation.
 638       GC_locker::stall_until_clear();
 639       (*gclocker_retry_count_ret) += 1;
 640     }
 641 
 642     // We can reach here if we were unsuccessful in scheduling a
 643     // collection (because another thread beat us to it) or if we were
 644     // stalled due to the GC locker. In either can we should retry the
 645     // allocation attempt in case another thread successfully
 646     // performed a collection and reclaimed enough space. We do the
 647     // first attempt (without holding the Heap_lock) here and the
 648     // follow-on attempt will be at the start of the next loop
 649     // iteration (after taking the Heap_lock).
 650     result = _allocator->attempt_allocation(word_size, context);
 651     if (result != NULL) {
 652       return result;
 653     }
 654 
 655     // Give a warning if we seem to be looping forever.
 656     if ((QueuedAllocationWarningCount > 0) &&
 657         (try_count % QueuedAllocationWarningCount == 0)) {
 658       warning("G1CollectedHeap::attempt_allocation_slow() "
 659               "retries %d times", try_count);
 660     }
 661   }
 662 
 663   ShouldNotReachHere();
 664   return NULL;
 665 }
 666 
 667 void G1CollectedHeap::begin_archive_alloc_range() {
 668   assert_at_safepoint(true /* should_be_vm_thread */);
 669   if (_archive_allocator == NULL) {
 670     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 671   }
 672 }
 673 
 674 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 675   // Allocations in archive regions cannot be of a size that would be considered
 676   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 677   // may be different at archive-restore time.
 678   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 679 }
 680 
 681 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 682   assert_at_safepoint(true /* should_be_vm_thread */);
 683   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 684   if (is_archive_alloc_too_large(word_size)) {
 685     return NULL;
 686   }
 687   return _archive_allocator->archive_mem_allocate(word_size);
 688 }
 689 
 690 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 691                                               size_t end_alignment_in_bytes) {
 692   assert_at_safepoint(true /* should_be_vm_thread */);
 693   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 694 
 695   // Call complete_archive to do the real work, filling in the MemRegion
 696   // array with the archive regions.
 697   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 698   delete _archive_allocator;
 699   _archive_allocator = NULL;
 700 }
 701 
 702 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 703   assert(ranges != NULL, "MemRegion array NULL");
 704   assert(count != 0, "No MemRegions provided");
 705   MemRegion reserved = _hrm.reserved();
 706   for (size_t i = 0; i < count; i++) {
 707     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 708       return false;
 709     }
 710   }
 711   return true;
 712 }
 713 
 714 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 715   assert(!is_init_completed(), "Expect to be called at JVM init time");
 716   assert(ranges != NULL, "MemRegion array NULL");
 717   assert(count != 0, "No MemRegions provided");
 718   MutexLockerEx x(Heap_lock);
 719 
 720   MemRegion reserved = _hrm.reserved();
 721   HeapWord* prev_last_addr = NULL;
 722   HeapRegion* prev_last_region = NULL;
 723 
 724   // Temporarily disable pretouching of heap pages. This interface is used
 725   // when mmap'ing archived heap data in, so pre-touching is wasted.
 726   FlagSetting fs(AlwaysPreTouch, false);
 727 
 728   // Enable archive object checking in G1MarkSweep. We have to let it know
 729   // about each archive range, so that objects in those ranges aren't marked.
 730   G1MarkSweep::enable_archive_object_check();
 731 
 732   // For each specified MemRegion range, allocate the corresponding G1
 733   // regions and mark them as archive regions. We expect the ranges in
 734   // ascending starting address order, without overlap.
 735   for (size_t i = 0; i < count; i++) {
 736     MemRegion curr_range = ranges[i];
 737     HeapWord* start_address = curr_range.start();
 738     size_t word_size = curr_range.word_size();
 739     HeapWord* last_address = curr_range.last();
 740     size_t commits = 0;
 741 
 742     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 743               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 744               p2i(start_address), p2i(last_address));
 745     guarantee(start_address > prev_last_addr,
 746               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 747               p2i(start_address), p2i(prev_last_addr));
 748     prev_last_addr = last_address;
 749 
 750     // Check for ranges that start in the same G1 region in which the previous
 751     // range ended, and adjust the start address so we don't try to allocate
 752     // the same region again. If the current range is entirely within that
 753     // region, skip it, just adjusting the recorded top.
 754     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 755     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 756       start_address = start_region->end();
 757       if (start_address > last_address) {
 758         increase_used(word_size * HeapWordSize);
 759         start_region->set_top(last_address + 1);
 760         continue;
 761       }
 762       start_region->set_top(start_address);
 763       curr_range = MemRegion(start_address, last_address + 1);
 764       start_region = _hrm.addr_to_region(start_address);
 765     }
 766 
 767     // Perform the actual region allocation, exiting if it fails.
 768     // Then note how much new space we have allocated.
 769     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 770       return false;
 771     }
 772     increase_used(word_size * HeapWordSize);
 773     if (commits != 0) {
 774       ergo_verbose1(ErgoHeapSizing,
 775                     "attempt heap expansion",
 776                     ergo_format_reason("allocate archive regions")
 777                     ergo_format_byte("total size"),
 778                     HeapRegion::GrainWords * HeapWordSize * commits);
 779     }
 780 
 781     // Mark each G1 region touched by the range as archive, add it to the old set,
 782     // and set the allocation context and top.
 783     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 784     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 785     prev_last_region = last_region;
 786 
 787     while (curr_region != NULL) {
 788       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 789              "Region already in use (index %u)", curr_region->hrm_index());
 790       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 791       curr_region->set_allocation_context(AllocationContext::system());
 792       curr_region->set_archive();
 793       _old_set.add(curr_region);
 794       if (curr_region != last_region) {
 795         curr_region->set_top(curr_region->end());
 796         curr_region = _hrm.next_region_in_heap(curr_region);
 797       } else {
 798         curr_region->set_top(last_address + 1);
 799         curr_region = NULL;
 800       }
 801     }
 802 
 803     // Notify mark-sweep of the archive range.
 804     G1MarkSweep::set_range_archive(curr_range, true);
 805   }
 806   return true;
 807 }
 808 
 809 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 810   assert(!is_init_completed(), "Expect to be called at JVM init time");
 811   assert(ranges != NULL, "MemRegion array NULL");
 812   assert(count != 0, "No MemRegions provided");
 813   MemRegion reserved = _hrm.reserved();
 814   HeapWord *prev_last_addr = NULL;
 815   HeapRegion* prev_last_region = NULL;
 816 
 817   // For each MemRegion, create filler objects, if needed, in the G1 regions
 818   // that contain the address range. The address range actually within the
 819   // MemRegion will not be modified. That is assumed to have been initialized
 820   // elsewhere, probably via an mmap of archived heap data.
 821   MutexLockerEx x(Heap_lock);
 822   for (size_t i = 0; i < count; i++) {
 823     HeapWord* start_address = ranges[i].start();
 824     HeapWord* last_address = ranges[i].last();
 825 
 826     assert(reserved.contains(start_address) && reserved.contains(last_address),
 827            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 828            p2i(start_address), p2i(last_address));
 829     assert(start_address > prev_last_addr,
 830            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 831            p2i(start_address), p2i(prev_last_addr));
 832 
 833     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 834     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 835     HeapWord* bottom_address = start_region->bottom();
 836 
 837     // Check for a range beginning in the same region in which the
 838     // previous one ended.
 839     if (start_region == prev_last_region) {
 840       bottom_address = prev_last_addr + 1;
 841     }
 842 
 843     // Verify that the regions were all marked as archive regions by
 844     // alloc_archive_regions.
 845     HeapRegion* curr_region = start_region;
 846     while (curr_region != NULL) {
 847       guarantee(curr_region->is_archive(),
 848                 "Expected archive region at index %u", curr_region->hrm_index());
 849       if (curr_region != last_region) {
 850         curr_region = _hrm.next_region_in_heap(curr_region);
 851       } else {
 852         curr_region = NULL;
 853       }
 854     }
 855 
 856     prev_last_addr = last_address;
 857     prev_last_region = last_region;
 858 
 859     // Fill the memory below the allocated range with dummy object(s),
 860     // if the region bottom does not match the range start, or if the previous
 861     // range ended within the same G1 region, and there is a gap.
 862     if (start_address != bottom_address) {
 863       size_t fill_size = pointer_delta(start_address, bottom_address);
 864       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 865       increase_used(fill_size * HeapWordSize);
 866     }
 867   }
 868 }
 869 
 870 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 871                                                      uint* gc_count_before_ret,
 872                                                      uint* gclocker_retry_count_ret) {
 873   assert_heap_not_locked_and_not_at_safepoint();
 874   assert(!is_humongous(word_size), "attempt_allocation() should not "
 875          "be called for humongous allocation requests");
 876 
 877   AllocationContext_t context = AllocationContext::current();
 878   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 879 
 880   if (result == NULL) {
 881     result = attempt_allocation_slow(word_size,
 882                                      context,
 883                                      gc_count_before_ret,
 884                                      gclocker_retry_count_ret);
 885   }
 886   assert_heap_not_locked();
 887   if (result != NULL) {
 888     dirty_young_block(result, word_size);
 889   }
 890   return result;
 891 }
 892 
 893 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 894   assert(!is_init_completed(), "Expect to be called at JVM init time");
 895   assert(ranges != NULL, "MemRegion array NULL");
 896   assert(count != 0, "No MemRegions provided");
 897   MemRegion reserved = _hrm.reserved();
 898   HeapWord* prev_last_addr = NULL;
 899   HeapRegion* prev_last_region = NULL;
 900   size_t size_used = 0;
 901   size_t uncommitted_regions = 0;
 902 
 903   // For each Memregion, free the G1 regions that constitute it, and
 904   // notify mark-sweep that the range is no longer to be considered 'archive.'
 905   MutexLockerEx x(Heap_lock);
 906   for (size_t i = 0; i < count; i++) {
 907     HeapWord* start_address = ranges[i].start();
 908     HeapWord* last_address = ranges[i].last();
 909 
 910     assert(reserved.contains(start_address) && reserved.contains(last_address),
 911            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 912            p2i(start_address), p2i(last_address));
 913     assert(start_address > prev_last_addr,
 914            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 915            p2i(start_address), p2i(prev_last_addr));
 916     size_used += ranges[i].byte_size();
 917     prev_last_addr = last_address;
 918 
 919     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 920     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 921 
 922     // Check for ranges that start in the same G1 region in which the previous
 923     // range ended, and adjust the start address so we don't try to free
 924     // the same region again. If the current range is entirely within that
 925     // region, skip it.
 926     if (start_region == prev_last_region) {
 927       start_address = start_region->end();
 928       if (start_address > last_address) {
 929         continue;
 930       }
 931       start_region = _hrm.addr_to_region(start_address);
 932     }
 933     prev_last_region = last_region;
 934 
 935     // After verifying that each region was marked as an archive region by
 936     // alloc_archive_regions, set it free and empty and uncommit it.
 937     HeapRegion* curr_region = start_region;
 938     while (curr_region != NULL) {
 939       guarantee(curr_region->is_archive(),
 940                 "Expected archive region at index %u", curr_region->hrm_index());
 941       uint curr_index = curr_region->hrm_index();
 942       _old_set.remove(curr_region);
 943       curr_region->set_free();
 944       curr_region->set_top(curr_region->bottom());
 945       if (curr_region != last_region) {
 946         curr_region = _hrm.next_region_in_heap(curr_region);
 947       } else {
 948         curr_region = NULL;
 949       }
 950       _hrm.shrink_at(curr_index, 1);
 951       uncommitted_regions++;
 952     }
 953 
 954     // Notify mark-sweep that this is no longer an archive range.
 955     G1MarkSweep::set_range_archive(ranges[i], false);
 956   }
 957 
 958   if (uncommitted_regions != 0) {
 959     ergo_verbose1(ErgoHeapSizing,
 960                   "attempt heap shrinking",
 961                   ergo_format_reason("uncommitted archive regions")
 962                   ergo_format_byte("total size"),
 963                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 964   }
 965   decrease_used(size_used);
 966 }
 967 
 968 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 969                                                         uint* gc_count_before_ret,
 970                                                         uint* gclocker_retry_count_ret) {
 971   // The structure of this method has a lot of similarities to
 972   // attempt_allocation_slow(). The reason these two were not merged
 973   // into a single one is that such a method would require several "if
 974   // allocation is not humongous do this, otherwise do that"
 975   // conditional paths which would obscure its flow. In fact, an early
 976   // version of this code did use a unified method which was harder to
 977   // follow and, as a result, it had subtle bugs that were hard to
 978   // track down. So keeping these two methods separate allows each to
 979   // be more readable. It will be good to keep these two in sync as
 980   // much as possible.
 981 
 982   assert_heap_not_locked_and_not_at_safepoint();
 983   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 984          "should only be called for humongous allocations");
 985 
 986   // Humongous objects can exhaust the heap quickly, so we should check if we
 987   // need to start a marking cycle at each humongous object allocation. We do
 988   // the check before we do the actual allocation. The reason for doing it
 989   // before the allocation is that we avoid having to keep track of the newly
 990   // allocated memory while we do a GC.
 991   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 992                                            word_size)) {
 993     collect(GCCause::_g1_humongous_allocation);
 994   }
 995 
 996   // We will loop until a) we manage to successfully perform the
 997   // allocation or b) we successfully schedule a collection which
 998   // fails to perform the allocation. b) is the only case when we'll
 999   // return NULL.
1000   HeapWord* result = NULL;
1001   for (int try_count = 1; /* we'll return */; try_count += 1) {
1002     bool should_try_gc;
1003     uint gc_count_before;
1004 
1005     {
1006       MutexLockerEx x(Heap_lock);
1007 
1008       // Given that humongous objects are not allocated in young
1009       // regions, we'll first try to do the allocation without doing a
1010       // collection hoping that there's enough space in the heap.
1011       result = humongous_obj_allocate(word_size, AllocationContext::current());
1012       if (result != NULL) {
1013         return result;
1014       }
1015 
1016       if (GC_locker::is_active_and_needs_gc()) {
1017         should_try_gc = false;
1018       } else {
1019          // The GCLocker may not be active but the GCLocker initiated
1020         // GC may not yet have been performed (GCLocker::needs_gc()
1021         // returns true). In this case we do not try this GC and
1022         // wait until the GCLocker initiated GC is performed, and
1023         // then retry the allocation.
1024         if (GC_locker::needs_gc()) {
1025           should_try_gc = false;
1026         } else {
1027           // Read the GC count while still holding the Heap_lock.
1028           gc_count_before = total_collections();
1029           should_try_gc = true;
1030         }
1031       }
1032     }
1033 
1034     if (should_try_gc) {
1035       // If we failed to allocate the humongous object, we should try to
1036       // do a collection pause (if we're allowed) in case it reclaims
1037       // enough space for the allocation to succeed after the pause.
1038 
1039       bool succeeded;
1040       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1041                                    GCCause::_g1_humongous_allocation);
1042       if (result != NULL) {
1043         assert(succeeded, "only way to get back a non-NULL result");
1044         return result;
1045       }
1046 
1047       if (succeeded) {
1048         // If we get here we successfully scheduled a collection which
1049         // failed to allocate. No point in trying to allocate
1050         // further. We'll just return NULL.
1051         MutexLockerEx x(Heap_lock);
1052         *gc_count_before_ret = total_collections();
1053         return NULL;
1054       }
1055     } else {
1056       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1057         MutexLockerEx x(Heap_lock);
1058         *gc_count_before_ret = total_collections();
1059         return NULL;
1060       }
1061       // The GCLocker is either active or the GCLocker initiated
1062       // GC has not yet been performed. Stall until it is and
1063       // then retry the allocation.
1064       GC_locker::stall_until_clear();
1065       (*gclocker_retry_count_ret) += 1;
1066     }
1067 
1068     // We can reach here if we were unsuccessful in scheduling a
1069     // collection (because another thread beat us to it) or if we were
1070     // stalled due to the GC locker. In either can we should retry the
1071     // allocation attempt in case another thread successfully
1072     // performed a collection and reclaimed enough space.  Give a
1073     // warning if we seem to be looping forever.
1074 
1075     if ((QueuedAllocationWarningCount > 0) &&
1076         (try_count % QueuedAllocationWarningCount == 0)) {
1077       warning("G1CollectedHeap::attempt_allocation_humongous() "
1078               "retries %d times", try_count);
1079     }
1080   }
1081 
1082   ShouldNotReachHere();
1083   return NULL;
1084 }
1085 
1086 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1087                                                            AllocationContext_t context,
1088                                                            bool expect_null_mutator_alloc_region) {
1089   assert_at_safepoint(true /* should_be_vm_thread */);
1090   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1091          "the current alloc region was unexpectedly found to be non-NULL");
1092 
1093   if (!is_humongous(word_size)) {
1094     return _allocator->attempt_allocation_locked(word_size, context);
1095   } else {
1096     HeapWord* result = humongous_obj_allocate(word_size, context);
1097     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1098       collector_state()->set_initiate_conc_mark_if_possible(true);
1099     }
1100     return result;
1101   }
1102 
1103   ShouldNotReachHere();
1104 }
1105 
1106 class PostMCRemSetClearClosure: public HeapRegionClosure {
1107   G1CollectedHeap* _g1h;
1108   ModRefBarrierSet* _mr_bs;
1109 public:
1110   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1111     _g1h(g1h), _mr_bs(mr_bs) {}
1112 
1113   bool doHeapRegion(HeapRegion* r) {
1114     HeapRegionRemSet* hrrs = r->rem_set();
1115 
1116     _g1h->reset_gc_time_stamps(r);
1117 
1118     if (r->is_continues_humongous()) {
1119       // We'll assert that the strong code root list and RSet is empty
1120       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1121       assert(hrrs->occupied() == 0, "RSet should be empty");
1122     } else {
1123       hrrs->clear();
1124     }
1125     // You might think here that we could clear just the cards
1126     // corresponding to the used region.  But no: if we leave a dirty card
1127     // in a region we might allocate into, then it would prevent that card
1128     // from being enqueued, and cause it to be missed.
1129     // Re: the performance cost: we shouldn't be doing full GC anyway!
1130     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1131 
1132     return false;
1133   }
1134 };
1135 
1136 void G1CollectedHeap::clear_rsets_post_compaction() {
1137   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1138   heap_region_iterate(&rs_clear);
1139 }
1140 
1141 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1142   G1CollectedHeap*   _g1h;
1143   UpdateRSOopClosure _cl;
1144 public:
1145   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1146     _cl(g1->g1_rem_set(), worker_i),
1147     _g1h(g1)
1148   { }
1149 
1150   bool doHeapRegion(HeapRegion* r) {
1151     if (!r->is_continues_humongous()) {
1152       _cl.set_from(r);
1153       r->oop_iterate(&_cl);
1154     }
1155     return false;
1156   }
1157 };
1158 
1159 class ParRebuildRSTask: public AbstractGangTask {
1160   G1CollectedHeap* _g1;
1161   HeapRegionClaimer _hrclaimer;
1162 
1163 public:
1164   ParRebuildRSTask(G1CollectedHeap* g1) :
1165       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1166 
1167   void work(uint worker_id) {
1168     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1169     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1170   }
1171 };
1172 
1173 class PostCompactionPrinterClosure: public HeapRegionClosure {
1174 private:
1175   G1HRPrinter* _hr_printer;
1176 public:
1177   bool doHeapRegion(HeapRegion* hr) {
1178     assert(!hr->is_young(), "not expecting to find young regions");
1179     if (hr->is_free()) {
1180       // We only generate output for non-empty regions.
1181     } else if (hr->is_starts_humongous()) {
1182       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1183     } else if (hr->is_continues_humongous()) {
1184       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1185     } else if (hr->is_archive()) {
1186       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1187     } else if (hr->is_old()) {
1188       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1189     } else {
1190       ShouldNotReachHere();
1191     }
1192     return false;
1193   }
1194 
1195   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1196     : _hr_printer(hr_printer) { }
1197 };
1198 
1199 void G1CollectedHeap::print_hrm_post_compaction() {
1200   PostCompactionPrinterClosure cl(hr_printer());
1201   heap_region_iterate(&cl);
1202 }
1203 
1204 bool G1CollectedHeap::do_collection(bool explicit_gc,
1205                                     bool clear_all_soft_refs,
1206                                     size_t word_size) {
1207   assert_at_safepoint(true /* should_be_vm_thread */);
1208 
1209   if (GC_locker::check_active_before_gc()) {
1210     return false;
1211   }
1212 
1213   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1214   gc_timer->register_gc_start();
1215 
1216   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1217   GCIdMark gc_id_mark;
1218   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1219 
1220   SvcGCMarker sgcm(SvcGCMarker::FULL);
1221   ResourceMark rm;
1222 
1223   G1Log::update_level();
1224   print_heap_before_gc();
1225   trace_heap_before_gc(gc_tracer);
1226 
1227   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1228 
1229   verify_region_sets_optional();
1230 
1231   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1232                            collector_policy()->should_clear_all_soft_refs();
1233 
1234   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1235 
1236   {
1237     IsGCActiveMark x;
1238 
1239     // Timing
1240     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1241     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1242 
1243     {
1244       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1245       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1246       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1247 
1248       g1_policy()->record_full_collection_start();
1249 
1250       // Note: When we have a more flexible GC logging framework that
1251       // allows us to add optional attributes to a GC log record we
1252       // could consider timing and reporting how long we wait in the
1253       // following two methods.
1254       wait_while_free_regions_coming();
1255       // If we start the compaction before the CM threads finish
1256       // scanning the root regions we might trip them over as we'll
1257       // be moving objects / updating references. So let's wait until
1258       // they are done. By telling them to abort, they should complete
1259       // early.
1260       _cm->root_regions()->abort();
1261       _cm->root_regions()->wait_until_scan_finished();
1262       append_secondary_free_list_if_not_empty_with_lock();
1263 
1264       gc_prologue(true);
1265       increment_total_collections(true /* full gc */);
1266       increment_old_marking_cycles_started();
1267 
1268       assert(used() == recalculate_used(), "Should be equal");
1269 
1270       verify_before_gc();
1271 
1272       check_bitmaps("Full GC Start");
1273       pre_full_gc_dump(gc_timer);
1274 
1275 #if defined(COMPILER2) || INCLUDE_JVMCI
1276       DerivedPointerTable::clear();
1277 #endif
1278 
1279       // Disable discovery and empty the discovered lists
1280       // for the CM ref processor.
1281       ref_processor_cm()->disable_discovery();
1282       ref_processor_cm()->abandon_partial_discovery();
1283       ref_processor_cm()->verify_no_references_recorded();
1284 
1285       // Abandon current iterations of concurrent marking and concurrent
1286       // refinement, if any are in progress. We have to do this before
1287       // wait_until_scan_finished() below.
1288       concurrent_mark()->abort();
1289 
1290       // Make sure we'll choose a new allocation region afterwards.
1291       _allocator->release_mutator_alloc_region();
1292       _allocator->abandon_gc_alloc_regions();
1293       g1_rem_set()->cleanupHRRS();
1294 
1295       // We should call this after we retire any currently active alloc
1296       // regions so that all the ALLOC / RETIRE events are generated
1297       // before the start GC event.
1298       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1299 
1300       // We may have added regions to the current incremental collection
1301       // set between the last GC or pause and now. We need to clear the
1302       // incremental collection set and then start rebuilding it afresh
1303       // after this full GC.
1304       abandon_collection_set(g1_policy()->inc_cset_head());
1305       g1_policy()->clear_incremental_cset();
1306       g1_policy()->stop_incremental_cset_building();
1307 
1308       tear_down_region_sets(false /* free_list_only */);
1309       collector_state()->set_gcs_are_young(true);
1310 
1311       // See the comments in g1CollectedHeap.hpp and
1312       // G1CollectedHeap::ref_processing_init() about
1313       // how reference processing currently works in G1.
1314 
1315       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1316       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1317 
1318       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1319       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1320 
1321       ref_processor_stw()->enable_discovery();
1322       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1323 
1324       // Do collection work
1325       {
1326         HandleMark hm;  // Discard invalid handles created during gc
1327         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1328       }
1329 
1330       assert(num_free_regions() == 0, "we should not have added any free regions");
1331       rebuild_region_sets(false /* free_list_only */);
1332 
1333       // Enqueue any discovered reference objects that have
1334       // not been removed from the discovered lists.
1335       ref_processor_stw()->enqueue_discovered_references();
1336 
1337 #if defined(COMPILER2) || INCLUDE_JVMCI
1338       DerivedPointerTable::update_pointers();
1339 #endif
1340 
1341       MemoryService::track_memory_usage();
1342 
1343       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1344       ref_processor_stw()->verify_no_references_recorded();
1345 
1346       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1347       ClassLoaderDataGraph::purge();
1348       MetaspaceAux::verify_metrics();
1349 
1350       // Note: since we've just done a full GC, concurrent
1351       // marking is no longer active. Therefore we need not
1352       // re-enable reference discovery for the CM ref processor.
1353       // That will be done at the start of the next marking cycle.
1354       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1355       ref_processor_cm()->verify_no_references_recorded();
1356 
1357       reset_gc_time_stamp();
1358       // Since everything potentially moved, we will clear all remembered
1359       // sets, and clear all cards.  Later we will rebuild remembered
1360       // sets. We will also reset the GC time stamps of the regions.
1361       clear_rsets_post_compaction();
1362       check_gc_time_stamps();
1363 
1364       // Resize the heap if necessary.
1365       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1366 
1367       if (_hr_printer.is_active()) {
1368         // We should do this after we potentially resize the heap so
1369         // that all the COMMIT / UNCOMMIT events are generated before
1370         // the end GC event.
1371 
1372         print_hrm_post_compaction();
1373         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1374       }
1375 
1376       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1377       if (hot_card_cache->use_cache()) {
1378         hot_card_cache->reset_card_counts();
1379         hot_card_cache->reset_hot_cache();
1380       }
1381 
1382       // Rebuild remembered sets of all regions.
1383       uint n_workers =
1384         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1385                                                 workers()->active_workers(),
1386                                                 Threads::number_of_non_daemon_threads());
1387       workers()->set_active_workers(n_workers);
1388 
1389       ParRebuildRSTask rebuild_rs_task(this);
1390       workers()->run_task(&rebuild_rs_task);
1391 
1392       // Rebuild the strong code root lists for each region
1393       rebuild_strong_code_roots();
1394 
1395       if (true) { // FIXME
1396         MetaspaceGC::compute_new_size();
1397       }
1398 
1399 #ifdef TRACESPINNING
1400       ParallelTaskTerminator::print_termination_counts();
1401 #endif
1402 
1403       // Discard all rset updates
1404       JavaThread::dirty_card_queue_set().abandon_logs();
1405       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1406 
1407       _young_list->reset_sampled_info();
1408       // At this point there should be no regions in the
1409       // entire heap tagged as young.
1410       assert(check_young_list_empty(true /* check_heap */),
1411              "young list should be empty at this point");
1412 
1413       // Update the number of full collections that have been completed.
1414       increment_old_marking_cycles_completed(false /* concurrent */);
1415 
1416       _hrm.verify_optional();
1417       verify_region_sets_optional();
1418 
1419       verify_after_gc();
1420 
1421       // Clear the previous marking bitmap, if needed for bitmap verification.
1422       // Note we cannot do this when we clear the next marking bitmap in
1423       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1424       // objects marked during a full GC against the previous bitmap.
1425       // But we need to clear it before calling check_bitmaps below since
1426       // the full GC has compacted objects and updated TAMS but not updated
1427       // the prev bitmap.
1428       if (G1VerifyBitmaps) {
1429         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1430       }
1431       check_bitmaps("Full GC End");
1432 
1433       // Start a new incremental collection set for the next pause
1434       assert(g1_policy()->collection_set() == NULL, "must be");
1435       g1_policy()->start_incremental_cset_building();
1436 
1437       clear_cset_fast_test();
1438 
1439       _allocator->init_mutator_alloc_region();
1440 
1441       g1_policy()->record_full_collection_end();
1442 
1443       if (G1Log::fine()) {
1444         g1_policy()->print_heap_transition();
1445       }
1446 
1447       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1448       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1449       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1450       // before any GC notifications are raised.
1451       g1mm()->update_sizes();
1452 
1453       gc_epilogue(true);
1454     }
1455 
1456     if (G1Log::finer()) {
1457       g1_policy()->print_detailed_heap_transition(true /* full */);
1458     }
1459 
1460     print_heap_after_gc();
1461     trace_heap_after_gc(gc_tracer);
1462 
1463     post_full_gc_dump(gc_timer);
1464 
1465     gc_timer->register_gc_end();
1466     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1467   }
1468 
1469   return true;
1470 }
1471 
1472 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1473   // do_collection() will return whether it succeeded in performing
1474   // the GC. Currently, there is no facility on the
1475   // do_full_collection() API to notify the caller than the collection
1476   // did not succeed (e.g., because it was locked out by the GC
1477   // locker). So, right now, we'll ignore the return value.
1478   bool dummy = do_collection(true,                /* explicit_gc */
1479                              clear_all_soft_refs,
1480                              0                    /* word_size */);
1481 }
1482 
1483 // This code is mostly copied from TenuredGeneration.
1484 void
1485 G1CollectedHeap::
1486 resize_if_necessary_after_full_collection(size_t word_size) {
1487   // Include the current allocation, if any, and bytes that will be
1488   // pre-allocated to support collections, as "used".
1489   const size_t used_after_gc = used();
1490   const size_t capacity_after_gc = capacity();
1491   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1492 
1493   // This is enforced in arguments.cpp.
1494   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1495          "otherwise the code below doesn't make sense");
1496 
1497   // We don't have floating point command-line arguments
1498   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1499   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1500   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1501   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1502 
1503   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1504   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1505 
1506   // We have to be careful here as these two calculations can overflow
1507   // 32-bit size_t's.
1508   double used_after_gc_d = (double) used_after_gc;
1509   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1510   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1511 
1512   // Let's make sure that they are both under the max heap size, which
1513   // by default will make them fit into a size_t.
1514   double desired_capacity_upper_bound = (double) max_heap_size;
1515   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1516                                     desired_capacity_upper_bound);
1517   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1518                                     desired_capacity_upper_bound);
1519 
1520   // We can now safely turn them into size_t's.
1521   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1522   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1523 
1524   // This assert only makes sense here, before we adjust them
1525   // with respect to the min and max heap size.
1526   assert(minimum_desired_capacity <= maximum_desired_capacity,
1527          "minimum_desired_capacity = " SIZE_FORMAT ", "
1528          "maximum_desired_capacity = " SIZE_FORMAT,
1529          minimum_desired_capacity, maximum_desired_capacity);
1530 
1531   // Should not be greater than the heap max size. No need to adjust
1532   // it with respect to the heap min size as it's a lower bound (i.e.,
1533   // we'll try to make the capacity larger than it, not smaller).
1534   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1535   // Should not be less than the heap min size. No need to adjust it
1536   // with respect to the heap max size as it's an upper bound (i.e.,
1537   // we'll try to make the capacity smaller than it, not greater).
1538   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1539 
1540   if (capacity_after_gc < minimum_desired_capacity) {
1541     // Don't expand unless it's significant
1542     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1543     ergo_verbose4(ErgoHeapSizing,
1544                   "attempt heap expansion",
1545                   ergo_format_reason("capacity lower than "
1546                                      "min desired capacity after Full GC")
1547                   ergo_format_byte("capacity")
1548                   ergo_format_byte("occupancy")
1549                   ergo_format_byte_perc("min desired capacity"),
1550                   capacity_after_gc, used_after_gc,
1551                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1552     expand(expand_bytes);
1553 
1554     // No expansion, now see if we want to shrink
1555   } else if (capacity_after_gc > maximum_desired_capacity) {
1556     // Capacity too large, compute shrinking size
1557     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1558     ergo_verbose4(ErgoHeapSizing,
1559                   "attempt heap shrinking",
1560                   ergo_format_reason("capacity higher than "
1561                                      "max desired capacity after Full GC")
1562                   ergo_format_byte("capacity")
1563                   ergo_format_byte("occupancy")
1564                   ergo_format_byte_perc("max desired capacity"),
1565                   capacity_after_gc, used_after_gc,
1566                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1567     shrink(shrink_bytes);
1568   }
1569 }
1570 
1571 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1572                                                             AllocationContext_t context,
1573                                                             bool do_gc,
1574                                                             bool clear_all_soft_refs,
1575                                                             bool expect_null_mutator_alloc_region,
1576                                                             bool* gc_succeeded) {
1577   *gc_succeeded = true;
1578   // Let's attempt the allocation first.
1579   HeapWord* result =
1580     attempt_allocation_at_safepoint(word_size,
1581                                     context,
1582                                     expect_null_mutator_alloc_region);
1583   if (result != NULL) {
1584     assert(*gc_succeeded, "sanity");
1585     return result;
1586   }
1587 
1588   // In a G1 heap, we're supposed to keep allocation from failing by
1589   // incremental pauses.  Therefore, at least for now, we'll favor
1590   // expansion over collection.  (This might change in the future if we can
1591   // do something smarter than full collection to satisfy a failed alloc.)
1592   result = expand_and_allocate(word_size, context);
1593   if (result != NULL) {
1594     assert(*gc_succeeded, "sanity");
1595     return result;
1596   }
1597 
1598   if (do_gc) {
1599     // Expansion didn't work, we'll try to do a Full GC.
1600     *gc_succeeded = do_collection(false, /* explicit_gc */
1601                                   clear_all_soft_refs,
1602                                   word_size);
1603   }
1604 
1605   return NULL;
1606 }
1607 
1608 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1609                                                      AllocationContext_t context,
1610                                                      bool* succeeded) {
1611   assert_at_safepoint(true /* should_be_vm_thread */);
1612 
1613   // Attempts to allocate followed by Full GC.
1614   HeapWord* result =
1615     satisfy_failed_allocation_helper(word_size,
1616                                      context,
1617                                      true,  /* do_gc */
1618                                      false, /* clear_all_soft_refs */
1619                                      false, /* expect_null_mutator_alloc_region */
1620                                      succeeded);
1621 
1622   if (result != NULL || !*succeeded) {
1623     return result;
1624   }
1625 
1626   // Attempts to allocate followed by Full GC that will collect all soft references.
1627   result = satisfy_failed_allocation_helper(word_size,
1628                                             context,
1629                                             true, /* do_gc */
1630                                             true, /* clear_all_soft_refs */
1631                                             true, /* expect_null_mutator_alloc_region */
1632                                             succeeded);
1633 
1634   if (result != NULL || !*succeeded) {
1635     return result;
1636   }
1637 
1638   // Attempts to allocate, no GC
1639   result = satisfy_failed_allocation_helper(word_size,
1640                                             context,
1641                                             false, /* do_gc */
1642                                             false, /* clear_all_soft_refs */
1643                                             true,  /* expect_null_mutator_alloc_region */
1644                                             succeeded);
1645 
1646   if (result != NULL) {
1647     assert(*succeeded, "sanity");
1648     return result;
1649   }
1650 
1651   assert(!collector_policy()->should_clear_all_soft_refs(),
1652          "Flag should have been handled and cleared prior to this point");
1653 
1654   // What else?  We might try synchronous finalization later.  If the total
1655   // space available is large enough for the allocation, then a more
1656   // complete compaction phase than we've tried so far might be
1657   // appropriate.
1658   assert(*succeeded, "sanity");
1659   return NULL;
1660 }
1661 
1662 // Attempting to expand the heap sufficiently
1663 // to support an allocation of the given "word_size".  If
1664 // successful, perform the allocation and return the address of the
1665 // allocated block, or else "NULL".
1666 
1667 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1668   assert_at_safepoint(true /* should_be_vm_thread */);
1669 
1670   verify_region_sets_optional();
1671 
1672   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1673   ergo_verbose1(ErgoHeapSizing,
1674                 "attempt heap expansion",
1675                 ergo_format_reason("allocation request failed")
1676                 ergo_format_byte("allocation request"),
1677                 word_size * HeapWordSize);
1678   if (expand(expand_bytes)) {
1679     _hrm.verify_optional();
1680     verify_region_sets_optional();
1681     return attempt_allocation_at_safepoint(word_size,
1682                                            context,
1683                                            false /* expect_null_mutator_alloc_region */);
1684   }
1685   return NULL;
1686 }
1687 
1688 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1689   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1690   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1691                                        HeapRegion::GrainBytes);
1692   ergo_verbose2(ErgoHeapSizing,
1693                 "expand the heap",
1694                 ergo_format_byte("requested expansion amount")
1695                 ergo_format_byte("attempted expansion amount"),
1696                 expand_bytes, aligned_expand_bytes);
1697 
1698   if (is_maximal_no_gc()) {
1699     ergo_verbose0(ErgoHeapSizing,
1700                       "did not expand the heap",
1701                       ergo_format_reason("heap already fully expanded"));
1702     return false;
1703   }
1704 
1705   double expand_heap_start_time_sec = os::elapsedTime();
1706   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1707   assert(regions_to_expand > 0, "Must expand by at least one region");
1708 
1709   uint expanded_by = _hrm.expand_by(regions_to_expand);
1710   if (expand_time_ms != NULL) {
1711     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1712   }
1713 
1714   if (expanded_by > 0) {
1715     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1716     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1717     g1_policy()->record_new_heap_size(num_regions());
1718   } else {
1719     ergo_verbose0(ErgoHeapSizing,
1720                   "did not expand the heap",
1721                   ergo_format_reason("heap expansion operation failed"));
1722     // The expansion of the virtual storage space was unsuccessful.
1723     // Let's see if it was because we ran out of swap.
1724     if (G1ExitOnExpansionFailure &&
1725         _hrm.available() >= regions_to_expand) {
1726       // We had head room...
1727       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1728     }
1729   }
1730   return regions_to_expand > 0;
1731 }
1732 
1733 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1734   size_t aligned_shrink_bytes =
1735     ReservedSpace::page_align_size_down(shrink_bytes);
1736   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1737                                          HeapRegion::GrainBytes);
1738   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1739 
1740   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1741   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1742 
1743   ergo_verbose3(ErgoHeapSizing,
1744                 "shrink the heap",
1745                 ergo_format_byte("requested shrinking amount")
1746                 ergo_format_byte("aligned shrinking amount")
1747                 ergo_format_byte("attempted shrinking amount"),
1748                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1749   if (num_regions_removed > 0) {
1750     g1_policy()->record_new_heap_size(num_regions());
1751   } else {
1752     ergo_verbose0(ErgoHeapSizing,
1753                   "did not shrink the heap",
1754                   ergo_format_reason("heap shrinking operation failed"));
1755   }
1756 }
1757 
1758 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1759   verify_region_sets_optional();
1760 
1761   // We should only reach here at the end of a Full GC which means we
1762   // should not not be holding to any GC alloc regions. The method
1763   // below will make sure of that and do any remaining clean up.
1764   _allocator->abandon_gc_alloc_regions();
1765 
1766   // Instead of tearing down / rebuilding the free lists here, we
1767   // could instead use the remove_all_pending() method on free_list to
1768   // remove only the ones that we need to remove.
1769   tear_down_region_sets(true /* free_list_only */);
1770   shrink_helper(shrink_bytes);
1771   rebuild_region_sets(true /* free_list_only */);
1772 
1773   _hrm.verify_optional();
1774   verify_region_sets_optional();
1775 }
1776 
1777 // Public methods.
1778 
1779 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1780   CollectedHeap(),
1781   _g1_policy(policy_),
1782   _dirty_card_queue_set(false),
1783   _is_alive_closure_cm(this),
1784   _is_alive_closure_stw(this),
1785   _ref_processor_cm(NULL),
1786   _ref_processor_stw(NULL),
1787   _bot_shared(NULL),
1788   _cg1r(NULL),
1789   _g1mm(NULL),
1790   _refine_cte_cl(NULL),
1791   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1792   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1793   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1794   _humongous_reclaim_candidates(),
1795   _has_humongous_reclaim_candidates(false),
1796   _archive_allocator(NULL),
1797   _free_regions_coming(false),
1798   _young_list(new YoungList(this)),
1799   _gc_time_stamp(0),
1800   _summary_bytes_used(0),
1801   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1802   _old_evac_stats(OldPLABSize, PLABWeight),
1803   _expand_heap_after_alloc_failure(true),
1804   _old_marking_cycles_started(0),
1805   _old_marking_cycles_completed(0),
1806   _heap_summary_sent(false),
1807   _in_cset_fast_test(),
1808   _dirty_cards_region_list(NULL),
1809   _worker_cset_start_region(NULL),
1810   _worker_cset_start_region_time_stamp(NULL),
1811   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1812   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1813   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1814   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1815 
1816   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1817                           /* are_GC_task_threads */true,
1818                           /* are_ConcurrentGC_threads */false);
1819   _workers->initialize_workers();
1820 
1821   _allocator = G1Allocator::create_allocator(this);
1822   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1823 
1824   // Override the default _filler_array_max_size so that no humongous filler
1825   // objects are created.
1826   _filler_array_max_size = _humongous_object_threshold_in_words;
1827 
1828   uint n_queues = ParallelGCThreads;
1829   _task_queues = new RefToScanQueueSet(n_queues);
1830 
1831   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1832   assert(n_rem_sets > 0, "Invariant.");
1833 
1834   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1835   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1836   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1837 
1838   for (uint i = 0; i < n_queues; i++) {
1839     RefToScanQueue* q = new RefToScanQueue();
1840     q->initialize();
1841     _task_queues->register_queue(i, q);
1842     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1843   }
1844   clear_cset_start_regions();
1845 
1846   // Initialize the G1EvacuationFailureALot counters and flags.
1847   NOT_PRODUCT(reset_evacuation_should_fail();)
1848 
1849   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1850 }
1851 
1852 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1853                                                                  size_t size,
1854                                                                  size_t translation_factor) {
1855   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1856   // Allocate a new reserved space, preferring to use large pages.
1857   ReservedSpace rs(size, preferred_page_size);
1858   G1RegionToSpaceMapper* result  =
1859     G1RegionToSpaceMapper::create_mapper(rs,
1860                                          size,
1861                                          rs.alignment(),
1862                                          HeapRegion::GrainBytes,
1863                                          translation_factor,
1864                                          mtGC);
1865   if (TracePageSizes) {
1866     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1867                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1868   }
1869   return result;
1870 }
1871 
1872 jint G1CollectedHeap::initialize() {
1873   CollectedHeap::pre_initialize();
1874   os::enable_vtime();
1875 
1876   G1Log::init();
1877 
1878   // Necessary to satisfy locking discipline assertions.
1879 
1880   MutexLocker x(Heap_lock);
1881 
1882   // We have to initialize the printer before committing the heap, as
1883   // it will be used then.
1884   _hr_printer.set_active(G1PrintHeapRegions);
1885 
1886   // While there are no constraints in the GC code that HeapWordSize
1887   // be any particular value, there are multiple other areas in the
1888   // system which believe this to be true (e.g. oop->object_size in some
1889   // cases incorrectly returns the size in wordSize units rather than
1890   // HeapWordSize).
1891   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1892 
1893   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1894   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1895   size_t heap_alignment = collector_policy()->heap_alignment();
1896 
1897   // Ensure that the sizes are properly aligned.
1898   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1899   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1900   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1901 
1902   _refine_cte_cl = new RefineCardTableEntryClosure();
1903 
1904   jint ecode = JNI_OK;
1905   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1906   if (_cg1r == NULL) {
1907     return ecode;
1908   }
1909 
1910   // Reserve the maximum.
1911 
1912   // When compressed oops are enabled, the preferred heap base
1913   // is calculated by subtracting the requested size from the
1914   // 32Gb boundary and using the result as the base address for
1915   // heap reservation. If the requested size is not aligned to
1916   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1917   // into the ReservedHeapSpace constructor) then the actual
1918   // base of the reserved heap may end up differing from the
1919   // address that was requested (i.e. the preferred heap base).
1920   // If this happens then we could end up using a non-optimal
1921   // compressed oops mode.
1922 
1923   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1924                                                  heap_alignment);
1925 
1926   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1927 
1928   // Create the barrier set for the entire reserved region.
1929   G1SATBCardTableLoggingModRefBS* bs
1930     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1931   bs->initialize();
1932   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1933   set_barrier_set(bs);
1934 
1935   // Also create a G1 rem set.
1936   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1937 
1938   // Carve out the G1 part of the heap.
1939 
1940   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1941   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1942   G1RegionToSpaceMapper* heap_storage =
1943     G1RegionToSpaceMapper::create_mapper(g1_rs,
1944                                          g1_rs.size(),
1945                                          page_size,
1946                                          HeapRegion::GrainBytes,
1947                                          1,
1948                                          mtJavaHeap);
1949   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1950                        max_byte_size, page_size,
1951                        heap_rs.base(),
1952                        heap_rs.size());
1953   heap_storage->set_mapping_changed_listener(&_listener);
1954 
1955   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1956   G1RegionToSpaceMapper* bot_storage =
1957     create_aux_memory_mapper("Block offset table",
1958                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1959                              G1BlockOffsetSharedArray::heap_map_factor());
1960 
1961   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1962   G1RegionToSpaceMapper* cardtable_storage =
1963     create_aux_memory_mapper("Card table",
1964                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1965                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1966 
1967   G1RegionToSpaceMapper* card_counts_storage =
1968     create_aux_memory_mapper("Card counts table",
1969                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1970                              G1CardCounts::heap_map_factor());
1971 
1972   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1973   G1RegionToSpaceMapper* prev_bitmap_storage =
1974     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1975   G1RegionToSpaceMapper* next_bitmap_storage =
1976     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1977 
1978   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1979   g1_barrier_set()->initialize(cardtable_storage);
1980    // Do later initialization work for concurrent refinement.
1981   _cg1r->init(card_counts_storage);
1982 
1983   // 6843694 - ensure that the maximum region index can fit
1984   // in the remembered set structures.
1985   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1986   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1987 
1988   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1989   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1990   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1991             "too many cards per region");
1992 
1993   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1994 
1995   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1996 
1997   {
1998     HeapWord* start = _hrm.reserved().start();
1999     HeapWord* end = _hrm.reserved().end();
2000     size_t granularity = HeapRegion::GrainBytes;
2001 
2002     _in_cset_fast_test.initialize(start, end, granularity);
2003     _humongous_reclaim_candidates.initialize(start, end, granularity);
2004   }
2005 
2006   // Create the ConcurrentMark data structure and thread.
2007   // (Must do this late, so that "max_regions" is defined.)
2008   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2009   if (_cm == NULL || !_cm->completed_initialization()) {
2010     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2011     return JNI_ENOMEM;
2012   }
2013   _cmThread = _cm->cmThread();
2014 
2015   // Initialize the from_card cache structure of HeapRegionRemSet.
2016   HeapRegionRemSet::init_heap(max_regions());
2017 
2018   // Now expand into the initial heap size.
2019   if (!expand(init_byte_size)) {
2020     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2021     return JNI_ENOMEM;
2022   }
2023 
2024   // Perform any initialization actions delegated to the policy.
2025   g1_policy()->init();
2026 
2027   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2028                                                SATB_Q_FL_lock,
2029                                                G1SATBProcessCompletedThreshold,
2030                                                Shared_SATB_Q_lock);
2031 
2032   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2033                                                 DirtyCardQ_CBL_mon,
2034                                                 DirtyCardQ_FL_lock,
2035                                                 concurrent_g1_refine()->yellow_zone(),
2036                                                 concurrent_g1_refine()->red_zone(),
2037                                                 Shared_DirtyCardQ_lock);
2038 
2039   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2040                                     DirtyCardQ_CBL_mon,
2041                                     DirtyCardQ_FL_lock,
2042                                     -1, // never trigger processing
2043                                     -1, // no limit on length
2044                                     Shared_DirtyCardQ_lock,
2045                                     &JavaThread::dirty_card_queue_set());
2046 
2047   // Here we allocate the dummy HeapRegion that is required by the
2048   // G1AllocRegion class.
2049   HeapRegion* dummy_region = _hrm.get_dummy_region();
2050 
2051   // We'll re-use the same region whether the alloc region will
2052   // require BOT updates or not and, if it doesn't, then a non-young
2053   // region will complain that it cannot support allocations without
2054   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2055   dummy_region->set_eden();
2056   // Make sure it's full.
2057   dummy_region->set_top(dummy_region->end());
2058   G1AllocRegion::setup(this, dummy_region);
2059 
2060   _allocator->init_mutator_alloc_region();
2061 
2062   // Do create of the monitoring and management support so that
2063   // values in the heap have been properly initialized.
2064   _g1mm = new G1MonitoringSupport(this);
2065 
2066   G1StringDedup::initialize();
2067 
2068   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2069   for (uint i = 0; i < ParallelGCThreads; i++) {
2070     new (&_preserved_objs[i]) OopAndMarkOopStack();
2071   }
2072 
2073   return JNI_OK;
2074 }
2075 
2076 void G1CollectedHeap::stop() {
2077   // Stop all concurrent threads. We do this to make sure these threads
2078   // do not continue to execute and access resources (e.g. gclog_or_tty)
2079   // that are destroyed during shutdown.
2080   _cg1r->stop();
2081   _cmThread->stop();
2082   if (G1StringDedup::is_enabled()) {
2083     G1StringDedup::stop();
2084   }
2085 }
2086 
2087 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2088   return HeapRegion::max_region_size();
2089 }
2090 
2091 void G1CollectedHeap::post_initialize() {
2092   CollectedHeap::post_initialize();
2093   ref_processing_init();
2094 }
2095 
2096 void G1CollectedHeap::ref_processing_init() {
2097   // Reference processing in G1 currently works as follows:
2098   //
2099   // * There are two reference processor instances. One is
2100   //   used to record and process discovered references
2101   //   during concurrent marking; the other is used to
2102   //   record and process references during STW pauses
2103   //   (both full and incremental).
2104   // * Both ref processors need to 'span' the entire heap as
2105   //   the regions in the collection set may be dotted around.
2106   //
2107   // * For the concurrent marking ref processor:
2108   //   * Reference discovery is enabled at initial marking.
2109   //   * Reference discovery is disabled and the discovered
2110   //     references processed etc during remarking.
2111   //   * Reference discovery is MT (see below).
2112   //   * Reference discovery requires a barrier (see below).
2113   //   * Reference processing may or may not be MT
2114   //     (depending on the value of ParallelRefProcEnabled
2115   //     and ParallelGCThreads).
2116   //   * A full GC disables reference discovery by the CM
2117   //     ref processor and abandons any entries on it's
2118   //     discovered lists.
2119   //
2120   // * For the STW processor:
2121   //   * Non MT discovery is enabled at the start of a full GC.
2122   //   * Processing and enqueueing during a full GC is non-MT.
2123   //   * During a full GC, references are processed after marking.
2124   //
2125   //   * Discovery (may or may not be MT) is enabled at the start
2126   //     of an incremental evacuation pause.
2127   //   * References are processed near the end of a STW evacuation pause.
2128   //   * For both types of GC:
2129   //     * Discovery is atomic - i.e. not concurrent.
2130   //     * Reference discovery will not need a barrier.
2131 
2132   MemRegion mr = reserved_region();
2133 
2134   // Concurrent Mark ref processor
2135   _ref_processor_cm =
2136     new ReferenceProcessor(mr,    // span
2137                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2138                                 // mt processing
2139                            ParallelGCThreads,
2140                                 // degree of mt processing
2141                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2142                                 // mt discovery
2143                            MAX2(ParallelGCThreads, ConcGCThreads),
2144                                 // degree of mt discovery
2145                            false,
2146                                 // Reference discovery is not atomic
2147                            &_is_alive_closure_cm);
2148                                 // is alive closure
2149                                 // (for efficiency/performance)
2150 
2151   // STW ref processor
2152   _ref_processor_stw =
2153     new ReferenceProcessor(mr,    // span
2154                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2155                                 // mt processing
2156                            ParallelGCThreads,
2157                                 // degree of mt processing
2158                            (ParallelGCThreads > 1),
2159                                 // mt discovery
2160                            ParallelGCThreads,
2161                                 // degree of mt discovery
2162                            true,
2163                                 // Reference discovery is atomic
2164                            &_is_alive_closure_stw);
2165                                 // is alive closure
2166                                 // (for efficiency/performance)
2167 }
2168 
2169 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2170   return g1_policy();
2171 }
2172 
2173 size_t G1CollectedHeap::capacity() const {
2174   return _hrm.length() * HeapRegion::GrainBytes;
2175 }
2176 
2177 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2178   hr->reset_gc_time_stamp();
2179 }
2180 
2181 #ifndef PRODUCT
2182 
2183 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2184 private:
2185   unsigned _gc_time_stamp;
2186   bool _failures;
2187 
2188 public:
2189   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2190     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2191 
2192   virtual bool doHeapRegion(HeapRegion* hr) {
2193     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2194     if (_gc_time_stamp != region_gc_time_stamp) {
2195       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2196                              "expected %d", HR_FORMAT_PARAMS(hr),
2197                              region_gc_time_stamp, _gc_time_stamp);
2198       _failures = true;
2199     }
2200     return false;
2201   }
2202 
2203   bool failures() { return _failures; }
2204 };
2205 
2206 void G1CollectedHeap::check_gc_time_stamps() {
2207   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2208   heap_region_iterate(&cl);
2209   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2210 }
2211 #endif // PRODUCT
2212 
2213 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2214   _cg1r->hot_card_cache()->drain(cl, worker_i);
2215 }
2216 
2217 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2218   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2219   size_t n_completed_buffers = 0;
2220   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2221     n_completed_buffers++;
2222   }
2223   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2224   dcqs.clear_n_completed_buffers();
2225   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2226 }
2227 
2228 // Computes the sum of the storage used by the various regions.
2229 size_t G1CollectedHeap::used() const {
2230   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2231   if (_archive_allocator != NULL) {
2232     result += _archive_allocator->used();
2233   }
2234   return result;
2235 }
2236 
2237 size_t G1CollectedHeap::used_unlocked() const {
2238   return _summary_bytes_used;
2239 }
2240 
2241 class SumUsedClosure: public HeapRegionClosure {
2242   size_t _used;
2243 public:
2244   SumUsedClosure() : _used(0) {}
2245   bool doHeapRegion(HeapRegion* r) {
2246     _used += r->used();
2247     return false;
2248   }
2249   size_t result() { return _used; }
2250 };
2251 
2252 size_t G1CollectedHeap::recalculate_used() const {
2253   double recalculate_used_start = os::elapsedTime();
2254 
2255   SumUsedClosure blk;
2256   heap_region_iterate(&blk);
2257 
2258   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2259   return blk.result();
2260 }
2261 
2262 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2263   switch (cause) {
2264     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2265     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2266     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2267     case GCCause::_g1_humongous_allocation: return true;
2268     case GCCause::_update_allocation_context_stats_inc: return true;
2269     case GCCause::_wb_conc_mark:            return true;
2270     default:                                return false;
2271   }
2272 }
2273 
2274 #ifndef PRODUCT
2275 void G1CollectedHeap::allocate_dummy_regions() {
2276   // Let's fill up most of the region
2277   size_t word_size = HeapRegion::GrainWords - 1024;
2278   // And as a result the region we'll allocate will be humongous.
2279   guarantee(is_humongous(word_size), "sanity");
2280 
2281   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2282     // Let's use the existing mechanism for the allocation
2283     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2284                                                  AllocationContext::system());
2285     if (dummy_obj != NULL) {
2286       MemRegion mr(dummy_obj, word_size);
2287       CollectedHeap::fill_with_object(mr);
2288     } else {
2289       // If we can't allocate once, we probably cannot allocate
2290       // again. Let's get out of the loop.
2291       break;
2292     }
2293   }
2294 }
2295 #endif // !PRODUCT
2296 
2297 void G1CollectedHeap::increment_old_marking_cycles_started() {
2298   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2299          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2300          "Wrong marking cycle count (started: %d, completed: %d)",
2301          _old_marking_cycles_started, _old_marking_cycles_completed);
2302 
2303   _old_marking_cycles_started++;
2304 }
2305 
2306 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2307   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2308 
2309   // We assume that if concurrent == true, then the caller is a
2310   // concurrent thread that was joined the Suspendible Thread
2311   // Set. If there's ever a cheap way to check this, we should add an
2312   // assert here.
2313 
2314   // Given that this method is called at the end of a Full GC or of a
2315   // concurrent cycle, and those can be nested (i.e., a Full GC can
2316   // interrupt a concurrent cycle), the number of full collections
2317   // completed should be either one (in the case where there was no
2318   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2319   // behind the number of full collections started.
2320 
2321   // This is the case for the inner caller, i.e. a Full GC.
2322   assert(concurrent ||
2323          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2324          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2325          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2326          "is inconsistent with _old_marking_cycles_completed = %u",
2327          _old_marking_cycles_started, _old_marking_cycles_completed);
2328 
2329   // This is the case for the outer caller, i.e. the concurrent cycle.
2330   assert(!concurrent ||
2331          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2332          "for outer caller (concurrent cycle): "
2333          "_old_marking_cycles_started = %u "
2334          "is inconsistent with _old_marking_cycles_completed = %u",
2335          _old_marking_cycles_started, _old_marking_cycles_completed);
2336 
2337   _old_marking_cycles_completed += 1;
2338 
2339   // We need to clear the "in_progress" flag in the CM thread before
2340   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2341   // is set) so that if a waiter requests another System.gc() it doesn't
2342   // incorrectly see that a marking cycle is still in progress.
2343   if (concurrent) {
2344     _cmThread->set_idle();
2345   }
2346 
2347   // This notify_all() will ensure that a thread that called
2348   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2349   // and it's waiting for a full GC to finish will be woken up. It is
2350   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2351   FullGCCount_lock->notify_all();
2352 }
2353 
2354 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2355   GCIdMarkAndRestore conc_gc_id_mark;
2356   collector_state()->set_concurrent_cycle_started(true);
2357   _gc_timer_cm->register_gc_start(start_time);
2358 
2359   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2360   trace_heap_before_gc(_gc_tracer_cm);
2361   _cmThread->set_gc_id(GCId::current());
2362 }
2363 
2364 void G1CollectedHeap::register_concurrent_cycle_end() {
2365   if (collector_state()->concurrent_cycle_started()) {
2366     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2367     if (_cm->has_aborted()) {
2368       _gc_tracer_cm->report_concurrent_mode_failure();
2369     }
2370 
2371     _gc_timer_cm->register_gc_end();
2372     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2373 
2374     // Clear state variables to prepare for the next concurrent cycle.
2375      collector_state()->set_concurrent_cycle_started(false);
2376     _heap_summary_sent = false;
2377   }
2378 }
2379 
2380 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2381   if (collector_state()->concurrent_cycle_started()) {
2382     // This function can be called when:
2383     //  the cleanup pause is run
2384     //  the concurrent cycle is aborted before the cleanup pause.
2385     //  the concurrent cycle is aborted after the cleanup pause,
2386     //   but before the concurrent cycle end has been registered.
2387     // Make sure that we only send the heap information once.
2388     if (!_heap_summary_sent) {
2389       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2390       trace_heap_after_gc(_gc_tracer_cm);
2391       _heap_summary_sent = true;
2392     }
2393   }
2394 }
2395 
2396 void G1CollectedHeap::collect(GCCause::Cause cause) {
2397   assert_heap_not_locked();
2398 
2399   uint gc_count_before;
2400   uint old_marking_count_before;
2401   uint full_gc_count_before;
2402   bool retry_gc;
2403 
2404   do {
2405     retry_gc = false;
2406 
2407     {
2408       MutexLocker ml(Heap_lock);
2409 
2410       // Read the GC count while holding the Heap_lock
2411       gc_count_before = total_collections();
2412       full_gc_count_before = total_full_collections();
2413       old_marking_count_before = _old_marking_cycles_started;
2414     }
2415 
2416     if (should_do_concurrent_full_gc(cause)) {
2417       // Schedule an initial-mark evacuation pause that will start a
2418       // concurrent cycle. We're setting word_size to 0 which means that
2419       // we are not requesting a post-GC allocation.
2420       VM_G1IncCollectionPause op(gc_count_before,
2421                                  0,     /* word_size */
2422                                  true,  /* should_initiate_conc_mark */
2423                                  g1_policy()->max_pause_time_ms(),
2424                                  cause);
2425       op.set_allocation_context(AllocationContext::current());
2426 
2427       VMThread::execute(&op);
2428       if (!op.pause_succeeded()) {
2429         if (old_marking_count_before == _old_marking_cycles_started) {
2430           retry_gc = op.should_retry_gc();
2431         } else {
2432           // A Full GC happened while we were trying to schedule the
2433           // initial-mark GC. No point in starting a new cycle given
2434           // that the whole heap was collected anyway.
2435         }
2436 
2437         if (retry_gc) {
2438           if (GC_locker::is_active_and_needs_gc()) {
2439             GC_locker::stall_until_clear();
2440           }
2441         }
2442       }
2443     } else {
2444       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2445           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2446 
2447         // Schedule a standard evacuation pause. We're setting word_size
2448         // to 0 which means that we are not requesting a post-GC allocation.
2449         VM_G1IncCollectionPause op(gc_count_before,
2450                                    0,     /* word_size */
2451                                    false, /* should_initiate_conc_mark */
2452                                    g1_policy()->max_pause_time_ms(),
2453                                    cause);
2454         VMThread::execute(&op);
2455       } else {
2456         // Schedule a Full GC.
2457         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2458         VMThread::execute(&op);
2459       }
2460     }
2461   } while (retry_gc);
2462 }
2463 
2464 bool G1CollectedHeap::is_in(const void* p) const {
2465   if (_hrm.reserved().contains(p)) {
2466     // Given that we know that p is in the reserved space,
2467     // heap_region_containing() should successfully
2468     // return the containing region.
2469     HeapRegion* hr = heap_region_containing(p);
2470     return hr->is_in(p);
2471   } else {
2472     return false;
2473   }
2474 }
2475 
2476 #ifdef ASSERT
2477 bool G1CollectedHeap::is_in_exact(const void* p) const {
2478   bool contains = reserved_region().contains(p);
2479   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2480   if (contains && available) {
2481     return true;
2482   } else {
2483     return false;
2484   }
2485 }
2486 #endif
2487 
2488 bool G1CollectedHeap::obj_in_cs(oop obj) {
2489   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2490   return r != NULL && r->in_collection_set();
2491 }
2492 
2493 // Iteration functions.
2494 
2495 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2496 
2497 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2498   ExtendedOopClosure* _cl;
2499 public:
2500   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2501   bool doHeapRegion(HeapRegion* r) {
2502     if (!r->is_continues_humongous()) {
2503       r->oop_iterate(_cl);
2504     }
2505     return false;
2506   }
2507 };
2508 
2509 // Iterates an ObjectClosure over all objects within a HeapRegion.
2510 
2511 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2512   ObjectClosure* _cl;
2513 public:
2514   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2515   bool doHeapRegion(HeapRegion* r) {
2516     if (!r->is_continues_humongous()) {
2517       r->object_iterate(_cl);
2518     }
2519     return false;
2520   }
2521 };
2522 
2523 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2524   IterateObjectClosureRegionClosure blk(cl);
2525   heap_region_iterate(&blk);
2526 }
2527 
2528 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2529   _hrm.iterate(cl);
2530 }
2531 
2532 void
2533 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2534                                          uint worker_id,
2535                                          HeapRegionClaimer *hrclaimer,
2536                                          bool concurrent) const {
2537   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2538 }
2539 
2540 // Clear the cached CSet starting regions and (more importantly)
2541 // the time stamps. Called when we reset the GC time stamp.
2542 void G1CollectedHeap::clear_cset_start_regions() {
2543   assert(_worker_cset_start_region != NULL, "sanity");
2544   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2545 
2546   for (uint i = 0; i < ParallelGCThreads; i++) {
2547     _worker_cset_start_region[i] = NULL;
2548     _worker_cset_start_region_time_stamp[i] = 0;
2549   }
2550 }
2551 
2552 // Given the id of a worker, obtain or calculate a suitable
2553 // starting region for iterating over the current collection set.
2554 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2555   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2556 
2557   HeapRegion* result = NULL;
2558   unsigned gc_time_stamp = get_gc_time_stamp();
2559 
2560   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2561     // Cached starting region for current worker was set
2562     // during the current pause - so it's valid.
2563     // Note: the cached starting heap region may be NULL
2564     // (when the collection set is empty).
2565     result = _worker_cset_start_region[worker_i];
2566     assert(result == NULL || result->in_collection_set(), "sanity");
2567     return result;
2568   }
2569 
2570   // The cached entry was not valid so let's calculate
2571   // a suitable starting heap region for this worker.
2572 
2573   // We want the parallel threads to start their collection
2574   // set iteration at different collection set regions to
2575   // avoid contention.
2576   // If we have:
2577   //          n collection set regions
2578   //          p threads
2579   // Then thread t will start at region floor ((t * n) / p)
2580 
2581   result = g1_policy()->collection_set();
2582   uint cs_size = g1_policy()->cset_region_length();
2583   uint active_workers = workers()->active_workers();
2584 
2585   uint end_ind   = (cs_size * worker_i) / active_workers;
2586   uint start_ind = 0;
2587 
2588   if (worker_i > 0 &&
2589       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2590     // Previous workers starting region is valid
2591     // so let's iterate from there
2592     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2593     result = _worker_cset_start_region[worker_i - 1];
2594   }
2595 
2596   for (uint i = start_ind; i < end_ind; i++) {
2597     result = result->next_in_collection_set();
2598   }
2599 
2600   // Note: the calculated starting heap region may be NULL
2601   // (when the collection set is empty).
2602   assert(result == NULL || result->in_collection_set(), "sanity");
2603   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2604          "should be updated only once per pause");
2605   _worker_cset_start_region[worker_i] = result;
2606   OrderAccess::storestore();
2607   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2608   return result;
2609 }
2610 
2611 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2612   HeapRegion* r = g1_policy()->collection_set();
2613   while (r != NULL) {
2614     HeapRegion* next = r->next_in_collection_set();
2615     if (cl->doHeapRegion(r)) {
2616       cl->incomplete();
2617       return;
2618     }
2619     r = next;
2620   }
2621 }
2622 
2623 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2624                                                   HeapRegionClosure *cl) {
2625   if (r == NULL) {
2626     // The CSet is empty so there's nothing to do.
2627     return;
2628   }
2629 
2630   assert(r->in_collection_set(),
2631          "Start region must be a member of the collection set.");
2632   HeapRegion* cur = r;
2633   while (cur != NULL) {
2634     HeapRegion* next = cur->next_in_collection_set();
2635     if (cl->doHeapRegion(cur) && false) {
2636       cl->incomplete();
2637       return;
2638     }
2639     cur = next;
2640   }
2641   cur = g1_policy()->collection_set();
2642   while (cur != r) {
2643     HeapRegion* next = cur->next_in_collection_set();
2644     if (cl->doHeapRegion(cur) && false) {
2645       cl->incomplete();
2646       return;
2647     }
2648     cur = next;
2649   }
2650 }
2651 
2652 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2653   HeapRegion* result = _hrm.next_region_in_heap(from);
2654   while (result != NULL && result->is_pinned()) {
2655     result = _hrm.next_region_in_heap(result);
2656   }
2657   return result;
2658 }
2659 
2660 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2661   HeapRegion* hr = heap_region_containing(addr);
2662   return hr->block_start(addr);
2663 }
2664 
2665 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2666   HeapRegion* hr = heap_region_containing(addr);
2667   return hr->block_size(addr);
2668 }
2669 
2670 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2671   HeapRegion* hr = heap_region_containing(addr);
2672   return hr->block_is_obj(addr);
2673 }
2674 
2675 bool G1CollectedHeap::supports_tlab_allocation() const {
2676   return true;
2677 }
2678 
2679 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2680   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2681 }
2682 
2683 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2684   return young_list()->eden_used_bytes();
2685 }
2686 
2687 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2688 // must be equal to the humongous object limit.
2689 size_t G1CollectedHeap::max_tlab_size() const {
2690   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2691 }
2692 
2693 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2694   AllocationContext_t context = AllocationContext::current();
2695   return _allocator->unsafe_max_tlab_alloc(context);
2696 }
2697 
2698 size_t G1CollectedHeap::max_capacity() const {
2699   return _hrm.reserved().byte_size();
2700 }
2701 
2702 jlong G1CollectedHeap::millis_since_last_gc() {
2703   // assert(false, "NYI");
2704   return 0;
2705 }
2706 
2707 void G1CollectedHeap::prepare_for_verify() {
2708   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2709     ensure_parsability(false);
2710   }
2711   g1_rem_set()->prepare_for_verify();
2712 }
2713 
2714 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2715                                               VerifyOption vo) {
2716   switch (vo) {
2717   case VerifyOption_G1UsePrevMarking:
2718     return hr->obj_allocated_since_prev_marking(obj);
2719   case VerifyOption_G1UseNextMarking:
2720     return hr->obj_allocated_since_next_marking(obj);
2721   case VerifyOption_G1UseMarkWord:
2722     return false;
2723   default:
2724     ShouldNotReachHere();
2725   }
2726   return false; // keep some compilers happy
2727 }
2728 
2729 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2730   switch (vo) {
2731   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2732   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2733   case VerifyOption_G1UseMarkWord:    return NULL;
2734   default:                            ShouldNotReachHere();
2735   }
2736   return NULL; // keep some compilers happy
2737 }
2738 
2739 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2740   switch (vo) {
2741   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2742   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2743   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2744   default:                            ShouldNotReachHere();
2745   }
2746   return false; // keep some compilers happy
2747 }
2748 
2749 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2750   switch (vo) {
2751   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2752   case VerifyOption_G1UseNextMarking: return "NTAMS";
2753   case VerifyOption_G1UseMarkWord:    return "NONE";
2754   default:                            ShouldNotReachHere();
2755   }
2756   return NULL; // keep some compilers happy
2757 }
2758 
2759 class VerifyRootsClosure: public OopClosure {
2760 private:
2761   G1CollectedHeap* _g1h;
2762   VerifyOption     _vo;
2763   bool             _failures;
2764 public:
2765   // _vo == UsePrevMarking -> use "prev" marking information,
2766   // _vo == UseNextMarking -> use "next" marking information,
2767   // _vo == UseMarkWord    -> use mark word from object header.
2768   VerifyRootsClosure(VerifyOption vo) :
2769     _g1h(G1CollectedHeap::heap()),
2770     _vo(vo),
2771     _failures(false) { }
2772 
2773   bool failures() { return _failures; }
2774 
2775   template <class T> void do_oop_nv(T* p) {
2776     T heap_oop = oopDesc::load_heap_oop(p);
2777     if (!oopDesc::is_null(heap_oop)) {
2778       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2779       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2780         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2781                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2782         if (_vo == VerifyOption_G1UseMarkWord) {
2783           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2784         }
2785         obj->print_on(gclog_or_tty);
2786         _failures = true;
2787       }
2788     }
2789   }
2790 
2791   void do_oop(oop* p)       { do_oop_nv(p); }
2792   void do_oop(narrowOop* p) { do_oop_nv(p); }
2793 };
2794 
2795 class G1VerifyCodeRootOopClosure: public OopClosure {
2796   G1CollectedHeap* _g1h;
2797   OopClosure* _root_cl;
2798   nmethod* _nm;
2799   VerifyOption _vo;
2800   bool _failures;
2801 
2802   template <class T> void do_oop_work(T* p) {
2803     // First verify that this root is live
2804     _root_cl->do_oop(p);
2805 
2806     if (!G1VerifyHeapRegionCodeRoots) {
2807       // We're not verifying the code roots attached to heap region.
2808       return;
2809     }
2810 
2811     // Don't check the code roots during marking verification in a full GC
2812     if (_vo == VerifyOption_G1UseMarkWord) {
2813       return;
2814     }
2815 
2816     // Now verify that the current nmethod (which contains p) is
2817     // in the code root list of the heap region containing the
2818     // object referenced by p.
2819 
2820     T heap_oop = oopDesc::load_heap_oop(p);
2821     if (!oopDesc::is_null(heap_oop)) {
2822       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2823 
2824       // Now fetch the region containing the object
2825       HeapRegion* hr = _g1h->heap_region_containing(obj);
2826       HeapRegionRemSet* hrrs = hr->rem_set();
2827       // Verify that the strong code root list for this region
2828       // contains the nmethod
2829       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2830         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2831                                "from nmethod " PTR_FORMAT " not in strong "
2832                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2833                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2834         _failures = true;
2835       }
2836     }
2837   }
2838 
2839 public:
2840   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2841     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2842 
2843   void do_oop(oop* p) { do_oop_work(p); }
2844   void do_oop(narrowOop* p) { do_oop_work(p); }
2845 
2846   void set_nmethod(nmethod* nm) { _nm = nm; }
2847   bool failures() { return _failures; }
2848 };
2849 
2850 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2851   G1VerifyCodeRootOopClosure* _oop_cl;
2852 
2853 public:
2854   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2855     _oop_cl(oop_cl) {}
2856 
2857   void do_code_blob(CodeBlob* cb) {
2858     nmethod* nm = cb->as_nmethod_or_null();
2859     if (nm != NULL) {
2860       _oop_cl->set_nmethod(nm);
2861       nm->oops_do(_oop_cl);
2862     }
2863   }
2864 };
2865 
2866 class YoungRefCounterClosure : public OopClosure {
2867   G1CollectedHeap* _g1h;
2868   int              _count;
2869  public:
2870   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2871   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2872   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2873 
2874   int count() { return _count; }
2875   void reset_count() { _count = 0; };
2876 };
2877 
2878 class VerifyKlassClosure: public KlassClosure {
2879   YoungRefCounterClosure _young_ref_counter_closure;
2880   OopClosure *_oop_closure;
2881  public:
2882   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2883   void do_klass(Klass* k) {
2884     k->oops_do(_oop_closure);
2885 
2886     _young_ref_counter_closure.reset_count();
2887     k->oops_do(&_young_ref_counter_closure);
2888     if (_young_ref_counter_closure.count() > 0) {
2889       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2890     }
2891   }
2892 };
2893 
2894 class VerifyLivenessOopClosure: public OopClosure {
2895   G1CollectedHeap* _g1h;
2896   VerifyOption _vo;
2897 public:
2898   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2899     _g1h(g1h), _vo(vo)
2900   { }
2901   void do_oop(narrowOop *p) { do_oop_work(p); }
2902   void do_oop(      oop *p) { do_oop_work(p); }
2903 
2904   template <class T> void do_oop_work(T *p) {
2905     oop obj = oopDesc::load_decode_heap_oop(p);
2906     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2907               "Dead object referenced by a not dead object");
2908   }
2909 };
2910 
2911 class VerifyObjsInRegionClosure: public ObjectClosure {
2912 private:
2913   G1CollectedHeap* _g1h;
2914   size_t _live_bytes;
2915   HeapRegion *_hr;
2916   VerifyOption _vo;
2917 public:
2918   // _vo == UsePrevMarking -> use "prev" marking information,
2919   // _vo == UseNextMarking -> use "next" marking information,
2920   // _vo == UseMarkWord    -> use mark word from object header.
2921   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2922     : _live_bytes(0), _hr(hr), _vo(vo) {
2923     _g1h = G1CollectedHeap::heap();
2924   }
2925   void do_object(oop o) {
2926     VerifyLivenessOopClosure isLive(_g1h, _vo);
2927     assert(o != NULL, "Huh?");
2928     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2929       // If the object is alive according to the mark word,
2930       // then verify that the marking information agrees.
2931       // Note we can't verify the contra-positive of the
2932       // above: if the object is dead (according to the mark
2933       // word), it may not be marked, or may have been marked
2934       // but has since became dead, or may have been allocated
2935       // since the last marking.
2936       if (_vo == VerifyOption_G1UseMarkWord) {
2937         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2938       }
2939 
2940       o->oop_iterate_no_header(&isLive);
2941       if (!_hr->obj_allocated_since_prev_marking(o)) {
2942         size_t obj_size = o->size();    // Make sure we don't overflow
2943         _live_bytes += (obj_size * HeapWordSize);
2944       }
2945     }
2946   }
2947   size_t live_bytes() { return _live_bytes; }
2948 };
2949 
2950 class VerifyArchiveOopClosure: public OopClosure {
2951 public:
2952   VerifyArchiveOopClosure(HeapRegion *hr) { }
2953   void do_oop(narrowOop *p) { do_oop_work(p); }
2954   void do_oop(      oop *p) { do_oop_work(p); }
2955 
2956   template <class T> void do_oop_work(T *p) {
2957     oop obj = oopDesc::load_decode_heap_oop(p);
2958     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2959               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2960               p2i(p), p2i(obj));
2961   }
2962 };
2963 
2964 class VerifyArchiveRegionClosure: public ObjectClosure {
2965 public:
2966   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2967   // Verify that all object pointers are to archive regions.
2968   void do_object(oop o) {
2969     VerifyArchiveOopClosure checkOop(NULL);
2970     assert(o != NULL, "Should not be here for NULL oops");
2971     o->oop_iterate_no_header(&checkOop);
2972   }
2973 };
2974 
2975 class VerifyRegionClosure: public HeapRegionClosure {
2976 private:
2977   bool             _par;
2978   VerifyOption     _vo;
2979   bool             _failures;
2980 public:
2981   // _vo == UsePrevMarking -> use "prev" marking information,
2982   // _vo == UseNextMarking -> use "next" marking information,
2983   // _vo == UseMarkWord    -> use mark word from object header.
2984   VerifyRegionClosure(bool par, VerifyOption vo)
2985     : _par(par),
2986       _vo(vo),
2987       _failures(false) {}
2988 
2989   bool failures() {
2990     return _failures;
2991   }
2992 
2993   bool doHeapRegion(HeapRegion* r) {
2994     // For archive regions, verify there are no heap pointers to
2995     // non-pinned regions. For all others, verify liveness info.
2996     if (r->is_archive()) {
2997       VerifyArchiveRegionClosure verify_oop_pointers(r);
2998       r->object_iterate(&verify_oop_pointers);
2999       return true;
3000     }
3001     if (!r->is_continues_humongous()) {
3002       bool failures = false;
3003       r->verify(_vo, &failures);
3004       if (failures) {
3005         _failures = true;
3006       } else if (!r->is_starts_humongous()) {
3007         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3008         r->object_iterate(&not_dead_yet_cl);
3009         if (_vo != VerifyOption_G1UseNextMarking) {
3010           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3011             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3012                                    "max_live_bytes " SIZE_FORMAT " "
3013                                    "< calculated " SIZE_FORMAT,
3014                                    p2i(r->bottom()), p2i(r->end()),
3015                                    r->max_live_bytes(),
3016                                  not_dead_yet_cl.live_bytes());
3017             _failures = true;
3018           }
3019         } else {
3020           // When vo == UseNextMarking we cannot currently do a sanity
3021           // check on the live bytes as the calculation has not been
3022           // finalized yet.
3023         }
3024       }
3025     }
3026     return false; // stop the region iteration if we hit a failure
3027   }
3028 };
3029 
3030 // This is the task used for parallel verification of the heap regions
3031 
3032 class G1ParVerifyTask: public AbstractGangTask {
3033 private:
3034   G1CollectedHeap*  _g1h;
3035   VerifyOption      _vo;
3036   bool              _failures;
3037   HeapRegionClaimer _hrclaimer;
3038 
3039 public:
3040   // _vo == UsePrevMarking -> use "prev" marking information,
3041   // _vo == UseNextMarking -> use "next" marking information,
3042   // _vo == UseMarkWord    -> use mark word from object header.
3043   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3044       AbstractGangTask("Parallel verify task"),
3045       _g1h(g1h),
3046       _vo(vo),
3047       _failures(false),
3048       _hrclaimer(g1h->workers()->active_workers()) {}
3049 
3050   bool failures() {
3051     return _failures;
3052   }
3053 
3054   void work(uint worker_id) {
3055     HandleMark hm;
3056     VerifyRegionClosure blk(true, _vo);
3057     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3058     if (blk.failures()) {
3059       _failures = true;
3060     }
3061   }
3062 };
3063 
3064 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3065   if (SafepointSynchronize::is_at_safepoint()) {
3066     assert(Thread::current()->is_VM_thread(),
3067            "Expected to be executed serially by the VM thread at this point");
3068 
3069     if (!silent) { gclog_or_tty->print("Roots "); }
3070     VerifyRootsClosure rootsCl(vo);
3071     VerifyKlassClosure klassCl(this, &rootsCl);
3072     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3073 
3074     // We apply the relevant closures to all the oops in the
3075     // system dictionary, class loader data graph, the string table
3076     // and the nmethods in the code cache.
3077     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3078     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3079 
3080     {
3081       G1RootProcessor root_processor(this, 1);
3082       root_processor.process_all_roots(&rootsCl,
3083                                        &cldCl,
3084                                        &blobsCl);
3085     }
3086 
3087     bool failures = rootsCl.failures() || codeRootsCl.failures();
3088 
3089     if (vo != VerifyOption_G1UseMarkWord) {
3090       // If we're verifying during a full GC then the region sets
3091       // will have been torn down at the start of the GC. Therefore
3092       // verifying the region sets will fail. So we only verify
3093       // the region sets when not in a full GC.
3094       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3095       verify_region_sets();
3096     }
3097 
3098     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3099     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3100 
3101       G1ParVerifyTask task(this, vo);
3102       workers()->run_task(&task);
3103       if (task.failures()) {
3104         failures = true;
3105       }
3106 
3107     } else {
3108       VerifyRegionClosure blk(false, vo);
3109       heap_region_iterate(&blk);
3110       if (blk.failures()) {
3111         failures = true;
3112       }
3113     }
3114 
3115     if (G1StringDedup::is_enabled()) {
3116       if (!silent) gclog_or_tty->print("StrDedup ");
3117       G1StringDedup::verify();
3118     }
3119 
3120     if (failures) {
3121       gclog_or_tty->print_cr("Heap:");
3122       // It helps to have the per-region information in the output to
3123       // help us track down what went wrong. This is why we call
3124       // print_extended_on() instead of print_on().
3125       print_extended_on(gclog_or_tty);
3126       gclog_or_tty->cr();
3127       gclog_or_tty->flush();
3128     }
3129     guarantee(!failures, "there should not have been any failures");
3130   } else {
3131     if (!silent) {
3132       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3133       if (G1StringDedup::is_enabled()) {
3134         gclog_or_tty->print(", StrDedup");
3135       }
3136       gclog_or_tty->print(") ");
3137     }
3138   }
3139 }
3140 
3141 void G1CollectedHeap::verify(bool silent) {
3142   verify(silent, VerifyOption_G1UsePrevMarking);
3143 }
3144 
3145 double G1CollectedHeap::verify(bool guard, const char* msg) {
3146   double verify_time_ms = 0.0;
3147 
3148   if (guard && total_collections() >= VerifyGCStartAt) {
3149     double verify_start = os::elapsedTime();
3150     HandleMark hm;  // Discard invalid handles created during verification
3151     prepare_for_verify();
3152     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3153     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3154   }
3155 
3156   return verify_time_ms;
3157 }
3158 
3159 void G1CollectedHeap::verify_before_gc() {
3160   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3161   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3162 }
3163 
3164 void G1CollectedHeap::verify_after_gc() {
3165   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3166   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3167 }
3168 
3169 class PrintRegionClosure: public HeapRegionClosure {
3170   outputStream* _st;
3171 public:
3172   PrintRegionClosure(outputStream* st) : _st(st) {}
3173   bool doHeapRegion(HeapRegion* r) {
3174     r->print_on(_st);
3175     return false;
3176   }
3177 };
3178 
3179 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3180                                        const HeapRegion* hr,
3181                                        const VerifyOption vo) const {
3182   switch (vo) {
3183   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3184   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3185   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3186   default:                            ShouldNotReachHere();
3187   }
3188   return false; // keep some compilers happy
3189 }
3190 
3191 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3192                                        const VerifyOption vo) const {
3193   switch (vo) {
3194   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3195   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3196   case VerifyOption_G1UseMarkWord: {
3197     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3198     return !obj->is_gc_marked() && !hr->is_archive();
3199   }
3200   default:                            ShouldNotReachHere();
3201   }
3202   return false; // keep some compilers happy
3203 }
3204 
3205 void G1CollectedHeap::print_on(outputStream* st) const {
3206   st->print(" %-20s", "garbage-first heap");
3207   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3208             capacity()/K, used_unlocked()/K);
3209   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3210             p2i(_hrm.reserved().start()),
3211             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3212             p2i(_hrm.reserved().end()));
3213   st->cr();
3214   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3215   uint young_regions = _young_list->length();
3216   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3217             (size_t) young_regions * HeapRegion::GrainBytes / K);
3218   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3219   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3220             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3221   st->cr();
3222   MetaspaceAux::print_on(st);
3223 }
3224 
3225 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3226   print_on(st);
3227 
3228   // Print the per-region information.
3229   st->cr();
3230   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3231                "HS=humongous(starts), HC=humongous(continues), "
3232                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3233                "PTAMS=previous top-at-mark-start, "
3234                "NTAMS=next top-at-mark-start)");
3235   PrintRegionClosure blk(st);
3236   heap_region_iterate(&blk);
3237 }
3238 
3239 void G1CollectedHeap::print_on_error(outputStream* st) const {
3240   this->CollectedHeap::print_on_error(st);
3241 
3242   if (_cm != NULL) {
3243     st->cr();
3244     _cm->print_on_error(st);
3245   }
3246 }
3247 
3248 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3249   workers()->print_worker_threads_on(st);
3250   _cmThread->print_on(st);
3251   st->cr();
3252   _cm->print_worker_threads_on(st);
3253   _cg1r->print_worker_threads_on(st);
3254   if (G1StringDedup::is_enabled()) {
3255     G1StringDedup::print_worker_threads_on(st);
3256   }
3257 }
3258 
3259 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3260   workers()->threads_do(tc);
3261   tc->do_thread(_cmThread);
3262   _cg1r->threads_do(tc);
3263   if (G1StringDedup::is_enabled()) {
3264     G1StringDedup::threads_do(tc);
3265   }
3266 }
3267 
3268 void G1CollectedHeap::print_tracing_info() const {
3269   // We'll overload this to mean "trace GC pause statistics."
3270   if (TraceYoungGenTime || TraceOldGenTime) {
3271     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3272     // to that.
3273     g1_policy()->print_tracing_info();
3274   }
3275   if (G1SummarizeRSetStats) {
3276     g1_rem_set()->print_summary_info();
3277   }
3278   if (G1SummarizeConcMark) {
3279     concurrent_mark()->print_summary_info();
3280   }
3281   g1_policy()->print_yg_surv_rate_info();
3282 }
3283 
3284 #ifndef PRODUCT
3285 // Helpful for debugging RSet issues.
3286 
3287 class PrintRSetsClosure : public HeapRegionClosure {
3288 private:
3289   const char* _msg;
3290   size_t _occupied_sum;
3291 
3292 public:
3293   bool doHeapRegion(HeapRegion* r) {
3294     HeapRegionRemSet* hrrs = r->rem_set();
3295     size_t occupied = hrrs->occupied();
3296     _occupied_sum += occupied;
3297 
3298     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3299                            HR_FORMAT_PARAMS(r));
3300     if (occupied == 0) {
3301       gclog_or_tty->print_cr("  RSet is empty");
3302     } else {
3303       hrrs->print();
3304     }
3305     gclog_or_tty->print_cr("----------");
3306     return false;
3307   }
3308 
3309   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3310     gclog_or_tty->cr();
3311     gclog_or_tty->print_cr("========================================");
3312     gclog_or_tty->print_cr("%s", msg);
3313     gclog_or_tty->cr();
3314   }
3315 
3316   ~PrintRSetsClosure() {
3317     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3318     gclog_or_tty->print_cr("========================================");
3319     gclog_or_tty->cr();
3320   }
3321 };
3322 
3323 void G1CollectedHeap::print_cset_rsets() {
3324   PrintRSetsClosure cl("Printing CSet RSets");
3325   collection_set_iterate(&cl);
3326 }
3327 
3328 void G1CollectedHeap::print_all_rsets() {
3329   PrintRSetsClosure cl("Printing All RSets");;
3330   heap_region_iterate(&cl);
3331 }
3332 #endif // PRODUCT
3333 
3334 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3335   YoungList* young_list = heap()->young_list();
3336 
3337   size_t eden_used_bytes = young_list->eden_used_bytes();
3338   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3339 
3340   size_t eden_capacity_bytes =
3341     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3342 
3343   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3344   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3345 }
3346 
3347 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3348   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3349                        stats->unused(), stats->used(), stats->region_end_waste(),
3350                        stats->regions_filled(), stats->direct_allocated(),
3351                        stats->failure_used(), stats->failure_waste());
3352 }
3353 
3354 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3355   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3356   gc_tracer->report_gc_heap_summary(when, heap_summary);
3357 
3358   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3359   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3360 }
3361 
3362 
3363 G1CollectedHeap* G1CollectedHeap::heap() {
3364   CollectedHeap* heap = Universe::heap();
3365   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3366   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3367   return (G1CollectedHeap*)heap;
3368 }
3369 
3370 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3371   // always_do_update_barrier = false;
3372   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3373   // Fill TLAB's and such
3374   accumulate_statistics_all_tlabs();
3375   ensure_parsability(true);
3376 
3377   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3378       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3379     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3380   }
3381 }
3382 
3383 void G1CollectedHeap::gc_epilogue(bool full) {
3384 
3385   if (G1SummarizeRSetStats &&
3386       (G1SummarizeRSetStatsPeriod > 0) &&
3387       // we are at the end of the GC. Total collections has already been increased.
3388       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3389     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3390   }
3391 
3392   // FIXME: what is this about?
3393   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3394   // is set.
3395 #if defined(COMPILER2) || INCLUDE_JVMCI
3396   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3397 #endif
3398   // always_do_update_barrier = true;
3399 
3400   resize_all_tlabs();
3401   allocation_context_stats().update(full);
3402 
3403   // We have just completed a GC. Update the soft reference
3404   // policy with the new heap occupancy
3405   Universe::update_heap_info_at_gc();
3406 }
3407 
3408 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3409                                                uint gc_count_before,
3410                                                bool* succeeded,
3411                                                GCCause::Cause gc_cause) {
3412   assert_heap_not_locked_and_not_at_safepoint();
3413   g1_policy()->record_stop_world_start();
3414   VM_G1IncCollectionPause op(gc_count_before,
3415                              word_size,
3416                              false, /* should_initiate_conc_mark */
3417                              g1_policy()->max_pause_time_ms(),
3418                              gc_cause);
3419 
3420   op.set_allocation_context(AllocationContext::current());
3421   VMThread::execute(&op);
3422 
3423   HeapWord* result = op.result();
3424   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3425   assert(result == NULL || ret_succeeded,
3426          "the result should be NULL if the VM did not succeed");
3427   *succeeded = ret_succeeded;
3428 
3429   assert_heap_not_locked();
3430   return result;
3431 }
3432 
3433 void
3434 G1CollectedHeap::doConcurrentMark() {
3435   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3436   if (!_cmThread->in_progress()) {
3437     _cmThread->set_started();
3438     CGC_lock->notify();
3439   }
3440 }
3441 
3442 size_t G1CollectedHeap::pending_card_num() {
3443   size_t extra_cards = 0;
3444   JavaThread *curr = Threads::first();
3445   while (curr != NULL) {
3446     DirtyCardQueue& dcq = curr->dirty_card_queue();
3447     extra_cards += dcq.size();
3448     curr = curr->next();
3449   }
3450   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3451   size_t buffer_size = dcqs.buffer_size();
3452   size_t buffer_num = dcqs.completed_buffers_num();
3453 
3454   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3455   // in bytes - not the number of 'entries'. We need to convert
3456   // into a number of cards.
3457   return (buffer_size * buffer_num + extra_cards) / oopSize;
3458 }
3459 
3460 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3461  private:
3462   size_t _total_humongous;
3463   size_t _candidate_humongous;
3464 
3465   DirtyCardQueue _dcq;
3466 
3467   // We don't nominate objects with many remembered set entries, on
3468   // the assumption that such objects are likely still live.
3469   bool is_remset_small(HeapRegion* region) const {
3470     HeapRegionRemSet* const rset = region->rem_set();
3471     return G1EagerReclaimHumongousObjectsWithStaleRefs
3472       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3473       : rset->is_empty();
3474   }
3475 
3476   bool is_typeArray_region(HeapRegion* region) const {
3477     return oop(region->bottom())->is_typeArray();
3478   }
3479 
3480   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3481     assert(region->is_starts_humongous(), "Must start a humongous object");
3482 
3483     // Candidate selection must satisfy the following constraints
3484     // while concurrent marking is in progress:
3485     //
3486     // * In order to maintain SATB invariants, an object must not be
3487     // reclaimed if it was allocated before the start of marking and
3488     // has not had its references scanned.  Such an object must have
3489     // its references (including type metadata) scanned to ensure no
3490     // live objects are missed by the marking process.  Objects
3491     // allocated after the start of concurrent marking don't need to
3492     // be scanned.
3493     //
3494     // * An object must not be reclaimed if it is on the concurrent
3495     // mark stack.  Objects allocated after the start of concurrent
3496     // marking are never pushed on the mark stack.
3497     //
3498     // Nominating only objects allocated after the start of concurrent
3499     // marking is sufficient to meet both constraints.  This may miss
3500     // some objects that satisfy the constraints, but the marking data
3501     // structures don't support efficiently performing the needed
3502     // additional tests or scrubbing of the mark stack.
3503     //
3504     // However, we presently only nominate is_typeArray() objects.
3505     // A humongous object containing references induces remembered
3506     // set entries on other regions.  In order to reclaim such an
3507     // object, those remembered sets would need to be cleaned up.
3508     //
3509     // We also treat is_typeArray() objects specially, allowing them
3510     // to be reclaimed even if allocated before the start of
3511     // concurrent mark.  For this we rely on mark stack insertion to
3512     // exclude is_typeArray() objects, preventing reclaiming an object
3513     // that is in the mark stack.  We also rely on the metadata for
3514     // such objects to be built-in and so ensured to be kept live.
3515     // Frequent allocation and drop of large binary blobs is an
3516     // important use case for eager reclaim, and this special handling
3517     // may reduce needed headroom.
3518 
3519     return is_typeArray_region(region) && is_remset_small(region);
3520   }
3521 
3522  public:
3523   RegisterHumongousWithInCSetFastTestClosure()
3524   : _total_humongous(0),
3525     _candidate_humongous(0),
3526     _dcq(&JavaThread::dirty_card_queue_set()) {
3527   }
3528 
3529   virtual bool doHeapRegion(HeapRegion* r) {
3530     if (!r->is_starts_humongous()) {
3531       return false;
3532     }
3533     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3534 
3535     bool is_candidate = humongous_region_is_candidate(g1h, r);
3536     uint rindex = r->hrm_index();
3537     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3538     if (is_candidate) {
3539       _candidate_humongous++;
3540       g1h->register_humongous_region_with_cset(rindex);
3541       // Is_candidate already filters out humongous object with large remembered sets.
3542       // If we have a humongous object with a few remembered sets, we simply flush these
3543       // remembered set entries into the DCQS. That will result in automatic
3544       // re-evaluation of their remembered set entries during the following evacuation
3545       // phase.
3546       if (!r->rem_set()->is_empty()) {
3547         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3548                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3549         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3550         HeapRegionRemSetIterator hrrs(r->rem_set());
3551         size_t card_index;
3552         while (hrrs.has_next(card_index)) {
3553           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3554           // The remembered set might contain references to already freed
3555           // regions. Filter out such entries to avoid failing card table
3556           // verification.
3557           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3558             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3559               *card_ptr = CardTableModRefBS::dirty_card_val();
3560               _dcq.enqueue(card_ptr);
3561             }
3562           }
3563         }
3564         r->rem_set()->clear_locked();
3565       }
3566       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3567     }
3568     _total_humongous++;
3569 
3570     return false;
3571   }
3572 
3573   size_t total_humongous() const { return _total_humongous; }
3574   size_t candidate_humongous() const { return _candidate_humongous; }
3575 
3576   void flush_rem_set_entries() { _dcq.flush(); }
3577 };
3578 
3579 void G1CollectedHeap::register_humongous_regions_with_cset() {
3580   if (!G1EagerReclaimHumongousObjects) {
3581     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3582     return;
3583   }
3584   double time = os::elapsed_counter();
3585 
3586   // Collect reclaim candidate information and register candidates with cset.
3587   RegisterHumongousWithInCSetFastTestClosure cl;
3588   heap_region_iterate(&cl);
3589 
3590   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3591   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3592                                                                   cl.total_humongous(),
3593                                                                   cl.candidate_humongous());
3594   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3595 
3596   // Finally flush all remembered set entries to re-check into the global DCQS.
3597   cl.flush_rem_set_entries();
3598 }
3599 
3600 #ifdef ASSERT
3601 class VerifyCSetClosure: public HeapRegionClosure {
3602 public:
3603   bool doHeapRegion(HeapRegion* hr) {
3604     // Here we check that the CSet region's RSet is ready for parallel
3605     // iteration. The fields that we'll verify are only manipulated
3606     // when the region is part of a CSet and is collected. Afterwards,
3607     // we reset these fields when we clear the region's RSet (when the
3608     // region is freed) so they are ready when the region is
3609     // re-allocated. The only exception to this is if there's an
3610     // evacuation failure and instead of freeing the region we leave
3611     // it in the heap. In that case, we reset these fields during
3612     // evacuation failure handling.
3613     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3614 
3615     // Here's a good place to add any other checks we'd like to
3616     // perform on CSet regions.
3617     return false;
3618   }
3619 };
3620 #endif // ASSERT
3621 
3622 uint G1CollectedHeap::num_task_queues() const {
3623   return _task_queues->size();
3624 }
3625 
3626 #if TASKQUEUE_STATS
3627 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3628   st->print_raw_cr("GC Task Stats");
3629   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3630   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3631 }
3632 
3633 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3634   print_taskqueue_stats_hdr(st);
3635 
3636   TaskQueueStats totals;
3637   const uint n = num_task_queues();
3638   for (uint i = 0; i < n; ++i) {
3639     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3640     totals += task_queue(i)->stats;
3641   }
3642   st->print_raw("tot "); totals.print(st); st->cr();
3643 
3644   DEBUG_ONLY(totals.verify());
3645 }
3646 
3647 void G1CollectedHeap::reset_taskqueue_stats() {
3648   const uint n = num_task_queues();
3649   for (uint i = 0; i < n; ++i) {
3650     task_queue(i)->stats.reset();
3651   }
3652 }
3653 #endif // TASKQUEUE_STATS
3654 
3655 void G1CollectedHeap::log_gc_header() {
3656   if (!G1Log::fine()) {
3657     return;
3658   }
3659 
3660   gclog_or_tty->gclog_stamp();
3661 
3662   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3663     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3664     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3665 
3666   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3667 }
3668 
3669 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3670   if (!G1Log::fine()) {
3671     return;
3672   }
3673 
3674   if (G1Log::finer()) {
3675     if (evacuation_failed()) {
3676       gclog_or_tty->print(" (to-space exhausted)");
3677     }
3678     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3679     g1_policy()->print_phases(pause_time_sec);
3680     g1_policy()->print_detailed_heap_transition();
3681   } else {
3682     if (evacuation_failed()) {
3683       gclog_or_tty->print("--");
3684     }
3685     g1_policy()->print_heap_transition();
3686     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3687   }
3688   gclog_or_tty->flush();
3689 }
3690 
3691 void G1CollectedHeap::wait_for_root_region_scanning() {
3692   double scan_wait_start = os::elapsedTime();
3693   // We have to wait until the CM threads finish scanning the
3694   // root regions as it's the only way to ensure that all the
3695   // objects on them have been correctly scanned before we start
3696   // moving them during the GC.
3697   bool waited = _cm->root_regions()->wait_until_scan_finished();
3698   double wait_time_ms = 0.0;
3699   if (waited) {
3700     double scan_wait_end = os::elapsedTime();
3701     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3702   }
3703   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3704 }
3705 
3706 bool
3707 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3708   assert_at_safepoint(true /* should_be_vm_thread */);
3709   guarantee(!is_gc_active(), "collection is not reentrant");
3710 
3711   if (GC_locker::check_active_before_gc()) {
3712     return false;
3713   }
3714 
3715   _gc_timer_stw->register_gc_start();
3716 
3717   GCIdMark gc_id_mark;
3718   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3719 
3720   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3721   ResourceMark rm;
3722 
3723   wait_for_root_region_scanning();
3724 
3725   G1Log::update_level();
3726   print_heap_before_gc();
3727   trace_heap_before_gc(_gc_tracer_stw);
3728 
3729   verify_region_sets_optional();
3730   verify_dirty_young_regions();
3731 
3732   // This call will decide whether this pause is an initial-mark
3733   // pause. If it is, during_initial_mark_pause() will return true
3734   // for the duration of this pause.
3735   g1_policy()->decide_on_conc_mark_initiation();
3736 
3737   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3738   assert(!collector_state()->during_initial_mark_pause() ||
3739           collector_state()->gcs_are_young(), "sanity");
3740 
3741   // We also do not allow mixed GCs during marking.
3742   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3743 
3744   // Record whether this pause is an initial mark. When the current
3745   // thread has completed its logging output and it's safe to signal
3746   // the CM thread, the flag's value in the policy has been reset.
3747   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3748 
3749   // Inner scope for scope based logging, timers, and stats collection
3750   {
3751     EvacuationInfo evacuation_info;
3752 
3753     if (collector_state()->during_initial_mark_pause()) {
3754       // We are about to start a marking cycle, so we increment the
3755       // full collection counter.
3756       increment_old_marking_cycles_started();
3757       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3758     }
3759 
3760     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3761 
3762     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3763 
3764     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3765                                                                   workers()->active_workers(),
3766                                                                   Threads::number_of_non_daemon_threads());
3767     workers()->set_active_workers(active_workers);
3768 
3769     double pause_start_sec = os::elapsedTime();
3770     g1_policy()->note_gc_start(active_workers);
3771     log_gc_header();
3772 
3773     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3774     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3775 
3776     // If the secondary_free_list is not empty, append it to the
3777     // free_list. No need to wait for the cleanup operation to finish;
3778     // the region allocation code will check the secondary_free_list
3779     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3780     // set, skip this step so that the region allocation code has to
3781     // get entries from the secondary_free_list.
3782     if (!G1StressConcRegionFreeing) {
3783       append_secondary_free_list_if_not_empty_with_lock();
3784     }
3785 
3786     assert(check_young_list_well_formed(), "young list should be well formed");
3787 
3788     // Don't dynamically change the number of GC threads this early.  A value of
3789     // 0 is used to indicate serial work.  When parallel work is done,
3790     // it will be set.
3791 
3792     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3793       IsGCActiveMark x;
3794 
3795       gc_prologue(false);
3796       increment_total_collections(false /* full gc */);
3797       increment_gc_time_stamp();
3798 
3799       verify_before_gc();
3800 
3801       check_bitmaps("GC Start");
3802 
3803 #if defined(COMPILER2) || INCLUDE_JVMCI
3804       DerivedPointerTable::clear();
3805 #endif
3806 
3807       // Please see comment in g1CollectedHeap.hpp and
3808       // G1CollectedHeap::ref_processing_init() to see how
3809       // reference processing currently works in G1.
3810 
3811       // Enable discovery in the STW reference processor
3812       ref_processor_stw()->enable_discovery();
3813 
3814       {
3815         // We want to temporarily turn off discovery by the
3816         // CM ref processor, if necessary, and turn it back on
3817         // on again later if we do. Using a scoped
3818         // NoRefDiscovery object will do this.
3819         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3820 
3821         // Forget the current alloc region (we might even choose it to be part
3822         // of the collection set!).
3823         _allocator->release_mutator_alloc_region();
3824 
3825         // We should call this after we retire the mutator alloc
3826         // region(s) so that all the ALLOC / RETIRE events are generated
3827         // before the start GC event.
3828         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3829 
3830         // This timing is only used by the ergonomics to handle our pause target.
3831         // It is unclear why this should not include the full pause. We will
3832         // investigate this in CR 7178365.
3833         //
3834         // Preserving the old comment here if that helps the investigation:
3835         //
3836         // The elapsed time induced by the start time below deliberately elides
3837         // the possible verification above.
3838         double sample_start_time_sec = os::elapsedTime();
3839 
3840         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3841 
3842         if (collector_state()->during_initial_mark_pause()) {
3843           concurrent_mark()->checkpointRootsInitialPre();
3844         }
3845 
3846         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3847         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3848 
3849         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3850 
3851         register_humongous_regions_with_cset();
3852 
3853         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3854 
3855         _cm->note_start_of_gc();
3856         // We call this after finalize_cset() to
3857         // ensure that the CSet has been finalized.
3858         _cm->verify_no_cset_oops();
3859 
3860         if (_hr_printer.is_active()) {
3861           HeapRegion* hr = g1_policy()->collection_set();
3862           while (hr != NULL) {
3863             _hr_printer.cset(hr);
3864             hr = hr->next_in_collection_set();
3865           }
3866         }
3867 
3868 #ifdef ASSERT
3869         VerifyCSetClosure cl;
3870         collection_set_iterate(&cl);
3871 #endif // ASSERT
3872 
3873         // Initialize the GC alloc regions.
3874         _allocator->init_gc_alloc_regions(evacuation_info);
3875 
3876         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3877         pre_evacuate_collection_set();
3878 
3879         // Actually do the work...
3880         evacuate_collection_set(evacuation_info, &per_thread_states);
3881 
3882         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3883 
3884         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3885         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3886 
3887         eagerly_reclaim_humongous_regions();
3888 
3889         g1_policy()->clear_collection_set();
3890 
3891         // Start a new incremental collection set for the next pause.
3892         g1_policy()->start_incremental_cset_building();
3893 
3894         clear_cset_fast_test();
3895 
3896         _young_list->reset_sampled_info();
3897 
3898         // Don't check the whole heap at this point as the
3899         // GC alloc regions from this pause have been tagged
3900         // as survivors and moved on to the survivor list.
3901         // Survivor regions will fail the !is_young() check.
3902         assert(check_young_list_empty(false /* check_heap */),
3903           "young list should be empty");
3904 
3905         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3906                                              _young_list->first_survivor_region(),
3907                                              _young_list->last_survivor_region());
3908 
3909         _young_list->reset_auxilary_lists();
3910 
3911         if (evacuation_failed()) {
3912           set_used(recalculate_used());
3913           if (_archive_allocator != NULL) {
3914             _archive_allocator->clear_used();
3915           }
3916           for (uint i = 0; i < ParallelGCThreads; i++) {
3917             if (_evacuation_failed_info_array[i].has_failed()) {
3918               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3919             }
3920           }
3921         } else {
3922           // The "used" of the the collection set have already been subtracted
3923           // when they were freed.  Add in the bytes evacuated.
3924           increase_used(g1_policy()->bytes_copied_during_gc());
3925         }
3926 
3927         if (collector_state()->during_initial_mark_pause()) {
3928           // We have to do this before we notify the CM threads that
3929           // they can start working to make sure that all the
3930           // appropriate initialization is done on the CM object.
3931           concurrent_mark()->checkpointRootsInitialPost();
3932           collector_state()->set_mark_in_progress(true);
3933           // Note that we don't actually trigger the CM thread at
3934           // this point. We do that later when we're sure that
3935           // the current thread has completed its logging output.
3936         }
3937 
3938         allocate_dummy_regions();
3939 
3940         _allocator->init_mutator_alloc_region();
3941 
3942         {
3943           size_t expand_bytes = g1_policy()->expansion_amount();
3944           if (expand_bytes > 0) {
3945             size_t bytes_before = capacity();
3946             // No need for an ergo verbose message here,
3947             // expansion_amount() does this when it returns a value > 0.
3948             double expand_ms;
3949             if (!expand(expand_bytes, &expand_ms)) {
3950               // We failed to expand the heap. Cannot do anything about it.
3951             }
3952             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3953           }
3954         }
3955 
3956         // We redo the verification but now wrt to the new CSet which
3957         // has just got initialized after the previous CSet was freed.
3958         _cm->verify_no_cset_oops();
3959         _cm->note_end_of_gc();
3960 
3961         // This timing is only used by the ergonomics to handle our pause target.
3962         // It is unclear why this should not include the full pause. We will
3963         // investigate this in CR 7178365.
3964         double sample_end_time_sec = os::elapsedTime();
3965         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3966         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3967         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3968 
3969         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3970         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3971 
3972         MemoryService::track_memory_usage();
3973 
3974         // In prepare_for_verify() below we'll need to scan the deferred
3975         // update buffers to bring the RSets up-to-date if
3976         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3977         // the update buffers we'll probably need to scan cards on the
3978         // regions we just allocated to (i.e., the GC alloc
3979         // regions). However, during the last GC we called
3980         // set_saved_mark() on all the GC alloc regions, so card
3981         // scanning might skip the [saved_mark_word()...top()] area of
3982         // those regions (i.e., the area we allocated objects into
3983         // during the last GC). But it shouldn't. Given that
3984         // saved_mark_word() is conditional on whether the GC time stamp
3985         // on the region is current or not, by incrementing the GC time
3986         // stamp here we invalidate all the GC time stamps on all the
3987         // regions and saved_mark_word() will simply return top() for
3988         // all the regions. This is a nicer way of ensuring this rather
3989         // than iterating over the regions and fixing them. In fact, the
3990         // GC time stamp increment here also ensures that
3991         // saved_mark_word() will return top() between pauses, i.e.,
3992         // during concurrent refinement. So we don't need the
3993         // is_gc_active() check to decided which top to use when
3994         // scanning cards (see CR 7039627).
3995         increment_gc_time_stamp();
3996 
3997         verify_after_gc();
3998         check_bitmaps("GC End");
3999 
4000         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4001         ref_processor_stw()->verify_no_references_recorded();
4002 
4003         // CM reference discovery will be re-enabled if necessary.
4004       }
4005 
4006       // We should do this after we potentially expand the heap so
4007       // that all the COMMIT events are generated before the end GC
4008       // event, and after we retire the GC alloc regions so that all
4009       // RETIRE events are generated before the end GC event.
4010       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4011 
4012 #ifdef TRACESPINNING
4013       ParallelTaskTerminator::print_termination_counts();
4014 #endif
4015 
4016       gc_epilogue(false);
4017     }
4018 
4019     // Print the remainder of the GC log output.
4020     log_gc_footer(os::elapsedTime() - pause_start_sec);
4021 
4022     // It is not yet to safe to tell the concurrent mark to
4023     // start as we have some optional output below. We don't want the
4024     // output from the concurrent mark thread interfering with this
4025     // logging output either.
4026 
4027     _hrm.verify_optional();
4028     verify_region_sets_optional();
4029 
4030     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4031     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4032 
4033     print_heap_after_gc();
4034     trace_heap_after_gc(_gc_tracer_stw);
4035 
4036     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4037     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4038     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4039     // before any GC notifications are raised.
4040     g1mm()->update_sizes();
4041 
4042     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4043     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4044     _gc_timer_stw->register_gc_end();
4045     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4046   }
4047   // It should now be safe to tell the concurrent mark thread to start
4048   // without its logging output interfering with the logging output
4049   // that came from the pause.
4050 
4051   if (should_start_conc_mark) {
4052     // CAUTION: after the doConcurrentMark() call below,
4053     // the concurrent marking thread(s) could be running
4054     // concurrently with us. Make sure that anything after
4055     // this point does not assume that we are the only GC thread
4056     // running. Note: of course, the actual marking work will
4057     // not start until the safepoint itself is released in
4058     // SuspendibleThreadSet::desynchronize().
4059     doConcurrentMark();
4060   }
4061 
4062   return true;
4063 }
4064 
4065 void G1CollectedHeap::remove_self_forwarding_pointers() {
4066   double remove_self_forwards_start = os::elapsedTime();
4067 
4068   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4069   workers()->run_task(&rsfp_task);
4070 
4071   // Now restore saved marks, if any.
4072   for (uint i = 0; i < ParallelGCThreads; i++) {
4073     OopAndMarkOopStack& cur = _preserved_objs[i];
4074     while (!cur.is_empty()) {
4075       OopAndMarkOop elem = cur.pop();
4076       elem.set_mark();
4077     }
4078     cur.clear(true);
4079   }
4080 
4081   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4082 }
4083 
4084 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4085   if (!_evacuation_failed) {
4086     _evacuation_failed = true;
4087   }
4088 
4089   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4090 
4091   // We want to call the "for_promotion_failure" version only in the
4092   // case of a promotion failure.
4093   if (m->must_be_preserved_for_promotion_failure(obj)) {
4094     OopAndMarkOop elem(obj, m);
4095     _preserved_objs[worker_id].push(elem);
4096   }
4097 }
4098 
4099 class G1ParEvacuateFollowersClosure : public VoidClosure {
4100 private:
4101   double _start_term;
4102   double _term_time;
4103   size_t _term_attempts;
4104 
4105   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4106   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4107 protected:
4108   G1CollectedHeap*              _g1h;
4109   G1ParScanThreadState*         _par_scan_state;
4110   RefToScanQueueSet*            _queues;
4111   ParallelTaskTerminator*       _terminator;
4112 
4113   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4114   RefToScanQueueSet*      queues()         { return _queues; }
4115   ParallelTaskTerminator* terminator()     { return _terminator; }
4116 
4117 public:
4118   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4119                                 G1ParScanThreadState* par_scan_state,
4120                                 RefToScanQueueSet* queues,
4121                                 ParallelTaskTerminator* terminator)
4122     : _g1h(g1h), _par_scan_state(par_scan_state),
4123       _queues(queues), _terminator(terminator),
4124       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4125 
4126   void do_void();
4127 
4128   double term_time() const { return _term_time; }
4129   size_t term_attempts() const { return _term_attempts; }
4130 
4131 private:
4132   inline bool offer_termination();
4133 };
4134 
4135 bool G1ParEvacuateFollowersClosure::offer_termination() {
4136   G1ParScanThreadState* const pss = par_scan_state();
4137   start_term_time();
4138   const bool res = terminator()->offer_termination();
4139   end_term_time();
4140   return res;
4141 }
4142 
4143 void G1ParEvacuateFollowersClosure::do_void() {
4144   G1ParScanThreadState* const pss = par_scan_state();
4145   pss->trim_queue();
4146   do {
4147     pss->steal_and_trim_queue(queues());
4148   } while (!offer_termination());
4149 }
4150 
4151 class G1ParTask : public AbstractGangTask {
4152 protected:
4153   G1CollectedHeap*         _g1h;
4154   G1ParScanThreadStateSet* _pss;
4155   RefToScanQueueSet*       _queues;
4156   G1RootProcessor*         _root_processor;
4157   ParallelTaskTerminator   _terminator;
4158   uint                     _n_workers;
4159 
4160 public:
4161   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4162     : AbstractGangTask("G1 collection"),
4163       _g1h(g1h),
4164       _pss(per_thread_states),
4165       _queues(task_queues),
4166       _root_processor(root_processor),
4167       _terminator(n_workers, _queues),
4168       _n_workers(n_workers)
4169   {}
4170 
4171   void work(uint worker_id) {
4172     if (worker_id >= _n_workers) return;  // no work needed this round
4173 
4174     double start_sec = os::elapsedTime();
4175     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4176 
4177     {
4178       ResourceMark rm;
4179       HandleMark   hm;
4180 
4181       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4182 
4183       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4184       pss->set_ref_processor(rp);
4185 
4186       double start_strong_roots_sec = os::elapsedTime();
4187 
4188       _root_processor->evacuate_roots(pss->closures(), worker_id);
4189 
4190       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4191 
4192       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4193       // treating the nmethods visited to act as roots for concurrent marking.
4194       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4195       // objects copied by the current evacuation.
4196       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4197                                                                              pss->closures()->weak_codeblobs(),
4198                                                                              worker_id);
4199 
4200       _pss->add_cards_scanned(worker_id, cards_scanned);
4201 
4202       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4203 
4204       double term_sec = 0.0;
4205       size_t evac_term_attempts = 0;
4206       {
4207         double start = os::elapsedTime();
4208         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4209         evac.do_void();
4210 
4211         evac_term_attempts = evac.term_attempts();
4212         term_sec = evac.term_time();
4213         double elapsed_sec = os::elapsedTime() - start;
4214         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4215         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4216         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4217       }
4218 
4219       assert(pss->queue_is_empty(), "should be empty");
4220 
4221       if (PrintTerminationStats) {
4222         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4223         size_t lab_waste;
4224         size_t lab_undo_waste;
4225         pss->waste(lab_waste, lab_undo_waste);
4226         _g1h->print_termination_stats(gclog_or_tty,
4227                                       worker_id,
4228                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4229                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4230                                       term_sec * 1000.0,                          /* evac term time */
4231                                       evac_term_attempts,                         /* evac term attempts */
4232                                       lab_waste,                                  /* alloc buffer waste */
4233                                       lab_undo_waste                              /* undo waste */
4234                                       );
4235       }
4236 
4237       // Close the inner scope so that the ResourceMark and HandleMark
4238       // destructors are executed here and are included as part of the
4239       // "GC Worker Time".
4240     }
4241     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4242   }
4243 };
4244 
4245 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4246   st->print_raw_cr("GC Termination Stats");
4247   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4248   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4249   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4250 }
4251 
4252 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4253                                               uint worker_id,
4254                                               double elapsed_ms,
4255                                               double strong_roots_ms,
4256                                               double term_ms,
4257                                               size_t term_attempts,
4258                                               size_t alloc_buffer_waste,
4259                                               size_t undo_waste) const {
4260   st->print_cr("%3d %9.2f %9.2f %6.2f "
4261                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4262                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4263                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4264                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4265                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4266                alloc_buffer_waste * HeapWordSize / K,
4267                undo_waste * HeapWordSize / K);
4268 }
4269 
4270 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4271 private:
4272   BoolObjectClosure* _is_alive;
4273   int _initial_string_table_size;
4274   int _initial_symbol_table_size;
4275 
4276   bool  _process_strings;
4277   int _strings_processed;
4278   int _strings_removed;
4279 
4280   bool  _process_symbols;
4281   int _symbols_processed;
4282   int _symbols_removed;
4283 
4284 public:
4285   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4286     AbstractGangTask("String/Symbol Unlinking"),
4287     _is_alive(is_alive),
4288     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4289     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4290 
4291     _initial_string_table_size = StringTable::the_table()->table_size();
4292     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4293     if (process_strings) {
4294       StringTable::clear_parallel_claimed_index();
4295     }
4296     if (process_symbols) {
4297       SymbolTable::clear_parallel_claimed_index();
4298     }
4299   }
4300 
4301   ~G1StringSymbolTableUnlinkTask() {
4302     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4303               "claim value %d after unlink less than initial string table size %d",
4304               StringTable::parallel_claimed_index(), _initial_string_table_size);
4305     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4306               "claim value %d after unlink less than initial symbol table size %d",
4307               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4308 
4309     if (G1TraceStringSymbolTableScrubbing) {
4310       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4311                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4312                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4313                              strings_processed(), strings_removed(),
4314                              symbols_processed(), symbols_removed());
4315     }
4316   }
4317 
4318   void work(uint worker_id) {
4319     int strings_processed = 0;
4320     int strings_removed = 0;
4321     int symbols_processed = 0;
4322     int symbols_removed = 0;
4323     if (_process_strings) {
4324       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4325       Atomic::add(strings_processed, &_strings_processed);
4326       Atomic::add(strings_removed, &_strings_removed);
4327     }
4328     if (_process_symbols) {
4329       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4330       Atomic::add(symbols_processed, &_symbols_processed);
4331       Atomic::add(symbols_removed, &_symbols_removed);
4332     }
4333   }
4334 
4335   size_t strings_processed() const { return (size_t)_strings_processed; }
4336   size_t strings_removed()   const { return (size_t)_strings_removed; }
4337 
4338   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4339   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4340 };
4341 
4342 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4343 private:
4344   static Monitor* _lock;
4345 
4346   BoolObjectClosure* const _is_alive;
4347   const bool               _unloading_occurred;
4348   const uint               _num_workers;
4349 
4350   // Variables used to claim nmethods.
4351   nmethod* _first_nmethod;
4352   volatile nmethod* _claimed_nmethod;
4353 
4354   // The list of nmethods that need to be processed by the second pass.
4355   volatile nmethod* _postponed_list;
4356   volatile uint     _num_entered_barrier;
4357 
4358  public:
4359   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4360       _is_alive(is_alive),
4361       _unloading_occurred(unloading_occurred),
4362       _num_workers(num_workers),
4363       _first_nmethod(NULL),
4364       _claimed_nmethod(NULL),
4365       _postponed_list(NULL),
4366       _num_entered_barrier(0)
4367   {
4368     nmethod::increase_unloading_clock();
4369     // Get first alive nmethod
4370     NMethodIterator iter = NMethodIterator();
4371     if(iter.next_alive()) {
4372       _first_nmethod = iter.method();
4373     }
4374     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4375   }
4376 
4377   ~G1CodeCacheUnloadingTask() {
4378     CodeCache::verify_clean_inline_caches();
4379 
4380     CodeCache::set_needs_cache_clean(false);
4381     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4382 
4383     CodeCache::verify_icholder_relocations();
4384   }
4385 
4386  private:
4387   void add_to_postponed_list(nmethod* nm) {
4388       nmethod* old;
4389       do {
4390         old = (nmethod*)_postponed_list;
4391         nm->set_unloading_next(old);
4392       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4393   }
4394 
4395   void clean_nmethod(nmethod* nm) {
4396     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4397 
4398     if (postponed) {
4399       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4400       add_to_postponed_list(nm);
4401     }
4402 
4403     // Mark that this thread has been cleaned/unloaded.
4404     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4405     nm->set_unloading_clock(nmethod::global_unloading_clock());
4406   }
4407 
4408   void clean_nmethod_postponed(nmethod* nm) {
4409     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4410   }
4411 
4412   static const int MaxClaimNmethods = 16;
4413 
4414   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4415     nmethod* first;
4416     NMethodIterator last;
4417 
4418     do {
4419       *num_claimed_nmethods = 0;
4420 
4421       first = (nmethod*)_claimed_nmethod;
4422       last = NMethodIterator(first);
4423 
4424       if (first != NULL) {
4425 
4426         for (int i = 0; i < MaxClaimNmethods; i++) {
4427           if (!last.next_alive()) {
4428             break;
4429           }
4430           claimed_nmethods[i] = last.method();
4431           (*num_claimed_nmethods)++;
4432         }
4433       }
4434 
4435     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4436   }
4437 
4438   nmethod* claim_postponed_nmethod() {
4439     nmethod* claim;
4440     nmethod* next;
4441 
4442     do {
4443       claim = (nmethod*)_postponed_list;
4444       if (claim == NULL) {
4445         return NULL;
4446       }
4447 
4448       next = claim->unloading_next();
4449 
4450     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4451 
4452     return claim;
4453   }
4454 
4455  public:
4456   // Mark that we're done with the first pass of nmethod cleaning.
4457   void barrier_mark(uint worker_id) {
4458     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4459     _num_entered_barrier++;
4460     if (_num_entered_barrier == _num_workers) {
4461       ml.notify_all();
4462     }
4463   }
4464 
4465   // See if we have to wait for the other workers to
4466   // finish their first-pass nmethod cleaning work.
4467   void barrier_wait(uint worker_id) {
4468     if (_num_entered_barrier < _num_workers) {
4469       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4470       while (_num_entered_barrier < _num_workers) {
4471           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4472       }
4473     }
4474   }
4475 
4476   // Cleaning and unloading of nmethods. Some work has to be postponed
4477   // to the second pass, when we know which nmethods survive.
4478   void work_first_pass(uint worker_id) {
4479     // The first nmethods is claimed by the first worker.
4480     if (worker_id == 0 && _first_nmethod != NULL) {
4481       clean_nmethod(_first_nmethod);
4482       _first_nmethod = NULL;
4483     }
4484 
4485     int num_claimed_nmethods;
4486     nmethod* claimed_nmethods[MaxClaimNmethods];
4487 
4488     while (true) {
4489       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4490 
4491       if (num_claimed_nmethods == 0) {
4492         break;
4493       }
4494 
4495       for (int i = 0; i < num_claimed_nmethods; i++) {
4496         clean_nmethod(claimed_nmethods[i]);
4497       }
4498     }
4499   }
4500 
4501   void work_second_pass(uint worker_id) {
4502     nmethod* nm;
4503     // Take care of postponed nmethods.
4504     while ((nm = claim_postponed_nmethod()) != NULL) {
4505       clean_nmethod_postponed(nm);
4506     }
4507   }
4508 };
4509 
4510 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4511 
4512 class G1KlassCleaningTask : public StackObj {
4513   BoolObjectClosure*                      _is_alive;
4514   volatile jint                           _clean_klass_tree_claimed;
4515   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4516 
4517  public:
4518   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4519       _is_alive(is_alive),
4520       _clean_klass_tree_claimed(0),
4521       _klass_iterator() {
4522   }
4523 
4524  private:
4525   bool claim_clean_klass_tree_task() {
4526     if (_clean_klass_tree_claimed) {
4527       return false;
4528     }
4529 
4530     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4531   }
4532 
4533   InstanceKlass* claim_next_klass() {
4534     Klass* klass;
4535     do {
4536       klass =_klass_iterator.next_klass();
4537     } while (klass != NULL && !klass->is_instance_klass());
4538 
4539     // this can be null so don't call InstanceKlass::cast
4540     return static_cast<InstanceKlass*>(klass);
4541   }
4542 
4543 public:
4544 
4545   void clean_klass(InstanceKlass* ik) {
4546     ik->clean_weak_instanceklass_links(_is_alive);
4547   }
4548 
4549   void work() {
4550     ResourceMark rm;
4551 
4552     // One worker will clean the subklass/sibling klass tree.
4553     if (claim_clean_klass_tree_task()) {
4554       Klass::clean_subklass_tree(_is_alive);
4555     }
4556 
4557     // All workers will help cleaning the classes,
4558     InstanceKlass* klass;
4559     while ((klass = claim_next_klass()) != NULL) {
4560       clean_klass(klass);
4561     }
4562   }
4563 };
4564 
4565 // To minimize the remark pause times, the tasks below are done in parallel.
4566 class G1ParallelCleaningTask : public AbstractGangTask {
4567 private:
4568   G1StringSymbolTableUnlinkTask _string_symbol_task;
4569   G1CodeCacheUnloadingTask      _code_cache_task;
4570   G1KlassCleaningTask           _klass_cleaning_task;
4571 
4572 public:
4573   // The constructor is run in the VMThread.
4574   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4575       AbstractGangTask("Parallel Cleaning"),
4576       _string_symbol_task(is_alive, process_strings, process_symbols),
4577       _code_cache_task(num_workers, is_alive, unloading_occurred),
4578       _klass_cleaning_task(is_alive) {
4579   }
4580 
4581   // The parallel work done by all worker threads.
4582   void work(uint worker_id) {
4583     // Do first pass of code cache cleaning.
4584     _code_cache_task.work_first_pass(worker_id);
4585 
4586     // Let the threads mark that the first pass is done.
4587     _code_cache_task.barrier_mark(worker_id);
4588 
4589     // Clean the Strings and Symbols.
4590     _string_symbol_task.work(worker_id);
4591 
4592     // Wait for all workers to finish the first code cache cleaning pass.
4593     _code_cache_task.barrier_wait(worker_id);
4594 
4595     // Do the second code cache cleaning work, which realize on
4596     // the liveness information gathered during the first pass.
4597     _code_cache_task.work_second_pass(worker_id);
4598 
4599     // Clean all klasses that were not unloaded.
4600     _klass_cleaning_task.work();
4601   }
4602 };
4603 
4604 
4605 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4606                                         bool process_strings,
4607                                         bool process_symbols,
4608                                         bool class_unloading_occurred) {
4609   uint n_workers = workers()->active_workers();
4610 
4611   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4612                                         n_workers, class_unloading_occurred);
4613   workers()->run_task(&g1_unlink_task);
4614 }
4615 
4616 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4617                                                      bool process_strings, bool process_symbols) {
4618   {
4619     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4620     workers()->run_task(&g1_unlink_task);
4621   }
4622 
4623   if (G1StringDedup::is_enabled()) {
4624     G1StringDedup::unlink(is_alive);
4625   }
4626 }
4627 
4628 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4629  private:
4630   DirtyCardQueueSet* _queue;
4631  public:
4632   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4633 
4634   virtual void work(uint worker_id) {
4635     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4636     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4637 
4638     RedirtyLoggedCardTableEntryClosure cl;
4639     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4640 
4641     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4642   }
4643 };
4644 
4645 void G1CollectedHeap::redirty_logged_cards() {
4646   double redirty_logged_cards_start = os::elapsedTime();
4647 
4648   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4649   dirty_card_queue_set().reset_for_par_iteration();
4650   workers()->run_task(&redirty_task);
4651 
4652   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4653   dcq.merge_bufferlists(&dirty_card_queue_set());
4654   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4655 
4656   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4657 }
4658 
4659 // Weak Reference Processing support
4660 
4661 // An always "is_alive" closure that is used to preserve referents.
4662 // If the object is non-null then it's alive.  Used in the preservation
4663 // of referent objects that are pointed to by reference objects
4664 // discovered by the CM ref processor.
4665 class G1AlwaysAliveClosure: public BoolObjectClosure {
4666   G1CollectedHeap* _g1;
4667 public:
4668   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4669   bool do_object_b(oop p) {
4670     if (p != NULL) {
4671       return true;
4672     }
4673     return false;
4674   }
4675 };
4676 
4677 bool G1STWIsAliveClosure::do_object_b(oop p) {
4678   // An object is reachable if it is outside the collection set,
4679   // or is inside and copied.
4680   return !_g1->is_in_cset(p) || p->is_forwarded();
4681 }
4682 
4683 // Non Copying Keep Alive closure
4684 class G1KeepAliveClosure: public OopClosure {
4685   G1CollectedHeap* _g1;
4686 public:
4687   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4688   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4689   void do_oop(oop* p) {
4690     oop obj = *p;
4691     assert(obj != NULL, "the caller should have filtered out NULL values");
4692 
4693     const InCSetState cset_state = _g1->in_cset_state(obj);
4694     if (!cset_state.is_in_cset_or_humongous()) {
4695       return;
4696     }
4697     if (cset_state.is_in_cset()) {
4698       assert( obj->is_forwarded(), "invariant" );
4699       *p = obj->forwardee();
4700     } else {
4701       assert(!obj->is_forwarded(), "invariant" );
4702       assert(cset_state.is_humongous(),
4703              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4704       _g1->set_humongous_is_live(obj);
4705     }
4706   }
4707 };
4708 
4709 // Copying Keep Alive closure - can be called from both
4710 // serial and parallel code as long as different worker
4711 // threads utilize different G1ParScanThreadState instances
4712 // and different queues.
4713 
4714 class G1CopyingKeepAliveClosure: public OopClosure {
4715   G1CollectedHeap*         _g1h;
4716   OopClosure*              _copy_non_heap_obj_cl;
4717   G1ParScanThreadState*    _par_scan_state;
4718 
4719 public:
4720   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4721                             OopClosure* non_heap_obj_cl,
4722                             G1ParScanThreadState* pss):
4723     _g1h(g1h),
4724     _copy_non_heap_obj_cl(non_heap_obj_cl),
4725     _par_scan_state(pss)
4726   {}
4727 
4728   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4729   virtual void do_oop(      oop* p) { do_oop_work(p); }
4730 
4731   template <class T> void do_oop_work(T* p) {
4732     oop obj = oopDesc::load_decode_heap_oop(p);
4733 
4734     if (_g1h->is_in_cset_or_humongous(obj)) {
4735       // If the referent object has been forwarded (either copied
4736       // to a new location or to itself in the event of an
4737       // evacuation failure) then we need to update the reference
4738       // field and, if both reference and referent are in the G1
4739       // heap, update the RSet for the referent.
4740       //
4741       // If the referent has not been forwarded then we have to keep
4742       // it alive by policy. Therefore we have copy the referent.
4743       //
4744       // If the reference field is in the G1 heap then we can push
4745       // on the PSS queue. When the queue is drained (after each
4746       // phase of reference processing) the object and it's followers
4747       // will be copied, the reference field set to point to the
4748       // new location, and the RSet updated. Otherwise we need to
4749       // use the the non-heap or metadata closures directly to copy
4750       // the referent object and update the pointer, while avoiding
4751       // updating the RSet.
4752 
4753       if (_g1h->is_in_g1_reserved(p)) {
4754         _par_scan_state->push_on_queue(p);
4755       } else {
4756         assert(!Metaspace::contains((const void*)p),
4757                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4758         _copy_non_heap_obj_cl->do_oop(p);
4759       }
4760     }
4761   }
4762 };
4763 
4764 // Serial drain queue closure. Called as the 'complete_gc'
4765 // closure for each discovered list in some of the
4766 // reference processing phases.
4767 
4768 class G1STWDrainQueueClosure: public VoidClosure {
4769 protected:
4770   G1CollectedHeap* _g1h;
4771   G1ParScanThreadState* _par_scan_state;
4772 
4773   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4774 
4775 public:
4776   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4777     _g1h(g1h),
4778     _par_scan_state(pss)
4779   { }
4780 
4781   void do_void() {
4782     G1ParScanThreadState* const pss = par_scan_state();
4783     pss->trim_queue();
4784   }
4785 };
4786 
4787 // Parallel Reference Processing closures
4788 
4789 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4790 // processing during G1 evacuation pauses.
4791 
4792 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4793 private:
4794   G1CollectedHeap*          _g1h;
4795   G1ParScanThreadStateSet*  _pss;
4796   RefToScanQueueSet*        _queues;
4797   WorkGang*                 _workers;
4798   uint                      _active_workers;
4799 
4800 public:
4801   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4802                            G1ParScanThreadStateSet* per_thread_states,
4803                            WorkGang* workers,
4804                            RefToScanQueueSet *task_queues,
4805                            uint n_workers) :
4806     _g1h(g1h),
4807     _pss(per_thread_states),
4808     _queues(task_queues),
4809     _workers(workers),
4810     _active_workers(n_workers)
4811   {
4812     assert(n_workers > 0, "shouldn't call this otherwise");
4813   }
4814 
4815   // Executes the given task using concurrent marking worker threads.
4816   virtual void execute(ProcessTask& task);
4817   virtual void execute(EnqueueTask& task);
4818 };
4819 
4820 // Gang task for possibly parallel reference processing
4821 
4822 class G1STWRefProcTaskProxy: public AbstractGangTask {
4823   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4824   ProcessTask&     _proc_task;
4825   G1CollectedHeap* _g1h;
4826   G1ParScanThreadStateSet* _pss;
4827   RefToScanQueueSet* _task_queues;
4828   ParallelTaskTerminator* _terminator;
4829 
4830 public:
4831   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4832                         G1CollectedHeap* g1h,
4833                         G1ParScanThreadStateSet* per_thread_states,
4834                         RefToScanQueueSet *task_queues,
4835                         ParallelTaskTerminator* terminator) :
4836     AbstractGangTask("Process reference objects in parallel"),
4837     _proc_task(proc_task),
4838     _g1h(g1h),
4839     _pss(per_thread_states),
4840     _task_queues(task_queues),
4841     _terminator(terminator)
4842   {}
4843 
4844   virtual void work(uint worker_id) {
4845     // The reference processing task executed by a single worker.
4846     ResourceMark rm;
4847     HandleMark   hm;
4848 
4849     G1STWIsAliveClosure is_alive(_g1h);
4850 
4851     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4852     pss->set_ref_processor(NULL);
4853 
4854     // Keep alive closure.
4855     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4856 
4857     // Complete GC closure
4858     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4859 
4860     // Call the reference processing task's work routine.
4861     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4862 
4863     // Note we cannot assert that the refs array is empty here as not all
4864     // of the processing tasks (specifically phase2 - pp2_work) execute
4865     // the complete_gc closure (which ordinarily would drain the queue) so
4866     // the queue may not be empty.
4867   }
4868 };
4869 
4870 // Driver routine for parallel reference processing.
4871 // Creates an instance of the ref processing gang
4872 // task and has the worker threads execute it.
4873 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4874   assert(_workers != NULL, "Need parallel worker threads.");
4875 
4876   ParallelTaskTerminator terminator(_active_workers, _queues);
4877   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4878 
4879   _workers->run_task(&proc_task_proxy);
4880 }
4881 
4882 // Gang task for parallel reference enqueueing.
4883 
4884 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4885   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4886   EnqueueTask& _enq_task;
4887 
4888 public:
4889   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4890     AbstractGangTask("Enqueue reference objects in parallel"),
4891     _enq_task(enq_task)
4892   { }
4893 
4894   virtual void work(uint worker_id) {
4895     _enq_task.work(worker_id);
4896   }
4897 };
4898 
4899 // Driver routine for parallel reference enqueueing.
4900 // Creates an instance of the ref enqueueing gang
4901 // task and has the worker threads execute it.
4902 
4903 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4904   assert(_workers != NULL, "Need parallel worker threads.");
4905 
4906   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4907 
4908   _workers->run_task(&enq_task_proxy);
4909 }
4910 
4911 // End of weak reference support closures
4912 
4913 // Abstract task used to preserve (i.e. copy) any referent objects
4914 // that are in the collection set and are pointed to by reference
4915 // objects discovered by the CM ref processor.
4916 
4917 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4918 protected:
4919   G1CollectedHeap*         _g1h;
4920   G1ParScanThreadStateSet* _pss;
4921   RefToScanQueueSet*       _queues;
4922   ParallelTaskTerminator   _terminator;
4923   uint                     _n_workers;
4924 
4925 public:
4926   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4927     AbstractGangTask("ParPreserveCMReferents"),
4928     _g1h(g1h),
4929     _pss(per_thread_states),
4930     _queues(task_queues),
4931     _terminator(workers, _queues),
4932     _n_workers(workers)
4933   { }
4934 
4935   void work(uint worker_id) {
4936     ResourceMark rm;
4937     HandleMark   hm;
4938 
4939     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4940     pss->set_ref_processor(NULL);
4941     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4942 
4943     // Is alive closure
4944     G1AlwaysAliveClosure always_alive(_g1h);
4945 
4946     // Copying keep alive closure. Applied to referent objects that need
4947     // to be copied.
4948     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4949 
4950     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4951 
4952     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4953     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4954 
4955     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4956     // So this must be true - but assert just in case someone decides to
4957     // change the worker ids.
4958     assert(worker_id < limit, "sanity");
4959     assert(!rp->discovery_is_atomic(), "check this code");
4960 
4961     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4962     for (uint idx = worker_id; idx < limit; idx += stride) {
4963       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4964 
4965       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4966       while (iter.has_next()) {
4967         // Since discovery is not atomic for the CM ref processor, we
4968         // can see some null referent objects.
4969         iter.load_ptrs(DEBUG_ONLY(true));
4970         oop ref = iter.obj();
4971 
4972         // This will filter nulls.
4973         if (iter.is_referent_alive()) {
4974           iter.make_referent_alive();
4975         }
4976         iter.move_to_next();
4977       }
4978     }
4979 
4980     // Drain the queue - which may cause stealing
4981     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4982     drain_queue.do_void();
4983     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4984     assert(pss->queue_is_empty(), "should be");
4985   }
4986 };
4987 
4988 // Weak Reference processing during an evacuation pause (part 1).
4989 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4990   double ref_proc_start = os::elapsedTime();
4991 
4992   ReferenceProcessor* rp = _ref_processor_stw;
4993   assert(rp->discovery_enabled(), "should have been enabled");
4994 
4995   // Any reference objects, in the collection set, that were 'discovered'
4996   // by the CM ref processor should have already been copied (either by
4997   // applying the external root copy closure to the discovered lists, or
4998   // by following an RSet entry).
4999   //
5000   // But some of the referents, that are in the collection set, that these
5001   // reference objects point to may not have been copied: the STW ref
5002   // processor would have seen that the reference object had already
5003   // been 'discovered' and would have skipped discovering the reference,
5004   // but would not have treated the reference object as a regular oop.
5005   // As a result the copy closure would not have been applied to the
5006   // referent object.
5007   //
5008   // We need to explicitly copy these referent objects - the references
5009   // will be processed at the end of remarking.
5010   //
5011   // We also need to do this copying before we process the reference
5012   // objects discovered by the STW ref processor in case one of these
5013   // referents points to another object which is also referenced by an
5014   // object discovered by the STW ref processor.
5015 
5016   uint no_of_gc_workers = workers()->active_workers();
5017 
5018   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5019                                                  per_thread_states,
5020                                                  no_of_gc_workers,
5021                                                  _task_queues);
5022 
5023   workers()->run_task(&keep_cm_referents);
5024 
5025   // Closure to test whether a referent is alive.
5026   G1STWIsAliveClosure is_alive(this);
5027 
5028   // Even when parallel reference processing is enabled, the processing
5029   // of JNI refs is serial and performed serially by the current thread
5030   // rather than by a worker. The following PSS will be used for processing
5031   // JNI refs.
5032 
5033   // Use only a single queue for this PSS.
5034   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5035   pss->set_ref_processor(NULL);
5036   assert(pss->queue_is_empty(), "pre-condition");
5037 
5038   // Keep alive closure.
5039   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5040 
5041   // Serial Complete GC closure
5042   G1STWDrainQueueClosure drain_queue(this, pss);
5043 
5044   // Setup the soft refs policy...
5045   rp->setup_policy(false);
5046 
5047   ReferenceProcessorStats stats;
5048   if (!rp->processing_is_mt()) {
5049     // Serial reference processing...
5050     stats = rp->process_discovered_references(&is_alive,
5051                                               &keep_alive,
5052                                               &drain_queue,
5053                                               NULL,
5054                                               _gc_timer_stw);
5055   } else {
5056     // Parallel reference processing
5057     assert(rp->num_q() == no_of_gc_workers, "sanity");
5058     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5059 
5060     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5061     stats = rp->process_discovered_references(&is_alive,
5062                                               &keep_alive,
5063                                               &drain_queue,
5064                                               &par_task_executor,
5065                                               _gc_timer_stw);
5066   }
5067 
5068   _gc_tracer_stw->report_gc_reference_stats(stats);
5069 
5070   // We have completed copying any necessary live referent objects.
5071   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5072 
5073   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5074   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5075 }
5076 
5077 // Weak Reference processing during an evacuation pause (part 2).
5078 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5079   double ref_enq_start = os::elapsedTime();
5080 
5081   ReferenceProcessor* rp = _ref_processor_stw;
5082   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5083 
5084   // Now enqueue any remaining on the discovered lists on to
5085   // the pending list.
5086   if (!rp->processing_is_mt()) {
5087     // Serial reference processing...
5088     rp->enqueue_discovered_references();
5089   } else {
5090     // Parallel reference enqueueing
5091 
5092     uint n_workers = workers()->active_workers();
5093 
5094     assert(rp->num_q() == n_workers, "sanity");
5095     assert(n_workers <= rp->max_num_q(), "sanity");
5096 
5097     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5098     rp->enqueue_discovered_references(&par_task_executor);
5099   }
5100 
5101   rp->verify_no_references_recorded();
5102   assert(!rp->discovery_enabled(), "should have been disabled");
5103 
5104   // FIXME
5105   // CM's reference processing also cleans up the string and symbol tables.
5106   // Should we do that here also? We could, but it is a serial operation
5107   // and could significantly increase the pause time.
5108 
5109   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5110   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5111 }
5112 
5113 void G1CollectedHeap::pre_evacuate_collection_set() {
5114   _expand_heap_after_alloc_failure = true;
5115   _evacuation_failed = false;
5116 
5117   // Disable the hot card cache.
5118   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5119   hot_card_cache->reset_hot_cache_claimed_index();
5120   hot_card_cache->set_use_cache(false);
5121 
5122 }
5123 
5124 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5125   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5126 
5127   // Should G1EvacuationFailureALot be in effect for this GC?
5128   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5129 
5130   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5131   double start_par_time_sec = os::elapsedTime();
5132   double end_par_time_sec;
5133 
5134   {
5135     const uint n_workers = workers()->active_workers();
5136     G1RootProcessor root_processor(this, n_workers);
5137     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5138     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5139     if (collector_state()->during_initial_mark_pause()) {
5140       ClassLoaderDataGraph::clear_claimed_marks();
5141     }
5142 
5143     // The individual threads will set their evac-failure closures.
5144     if (PrintTerminationStats) {
5145       print_termination_stats_hdr(gclog_or_tty);
5146     }
5147 
5148     workers()->run_task(&g1_par_task);
5149     end_par_time_sec = os::elapsedTime();
5150 
5151     // Closing the inner scope will execute the destructor
5152     // for the G1RootProcessor object. We record the current
5153     // elapsed time before closing the scope so that time
5154     // taken for the destructor is NOT included in the
5155     // reported parallel time.
5156   }
5157 
5158   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5159 
5160   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5161   phase_times->record_par_time(par_time_ms);
5162 
5163   double code_root_fixup_time_ms =
5164         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5165   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5166 
5167   // Process any discovered reference objects - we have
5168   // to do this _before_ we retire the GC alloc regions
5169   // as we may have to copy some 'reachable' referent
5170   // objects (and their reachable sub-graphs) that were
5171   // not copied during the pause.
5172   process_discovered_references(per_thread_states);
5173 
5174   if (G1StringDedup::is_enabled()) {
5175     double fixup_start = os::elapsedTime();
5176 
5177     G1STWIsAliveClosure is_alive(this);
5178     G1KeepAliveClosure keep_alive(this);
5179     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5180 
5181     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5182     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5183   }
5184 
5185   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5186 
5187   if (evacuation_failed()) {
5188     remove_self_forwarding_pointers();
5189 
5190     // Reset the G1EvacuationFailureALot counters and flags
5191     // Note: the values are reset only when an actual
5192     // evacuation failure occurs.
5193     NOT_PRODUCT(reset_evacuation_should_fail();)
5194   }
5195 
5196   // Enqueue any remaining references remaining on the STW
5197   // reference processor's discovered lists. We need to do
5198   // this after the card table is cleaned (and verified) as
5199   // the act of enqueueing entries on to the pending list
5200   // will log these updates (and dirty their associated
5201   // cards). We need these updates logged to update any
5202   // RSets.
5203   enqueue_discovered_references(per_thread_states);
5204 }
5205 
5206 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5207   _allocator->release_gc_alloc_regions(evacuation_info);
5208 
5209   per_thread_states->flush();
5210 
5211   record_obj_copy_mem_stats();
5212 
5213   _survivor_evac_stats.adjust_desired_plab_sz();
5214   _old_evac_stats.adjust_desired_plab_sz();
5215 
5216   // Reset and re-enable the hot card cache.
5217   // Note the counts for the cards in the regions in the
5218   // collection set are reset when the collection set is freed.
5219   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5220   hot_card_cache->reset_hot_cache();
5221   hot_card_cache->set_use_cache(true);
5222 
5223   purge_code_root_memory();
5224 
5225   redirty_logged_cards();
5226 #if defined(COMPILER2) || INCLUDE_JVMCI
5227   DerivedPointerTable::update_pointers();
5228 #endif
5229 }
5230 
5231 void G1CollectedHeap::record_obj_copy_mem_stats() {
5232   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5233                                                create_g1_evac_summary(&_old_evac_stats));
5234 }
5235 
5236 void G1CollectedHeap::free_region(HeapRegion* hr,
5237                                   FreeRegionList* free_list,
5238                                   bool par,
5239                                   bool locked) {
5240   assert(!hr->is_free(), "the region should not be free");
5241   assert(!hr->is_empty(), "the region should not be empty");
5242   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5243   assert(free_list != NULL, "pre-condition");
5244 
5245   if (G1VerifyBitmaps) {
5246     MemRegion mr(hr->bottom(), hr->end());
5247     concurrent_mark()->clearRangePrevBitmap(mr);
5248   }
5249 
5250   // Clear the card counts for this region.
5251   // Note: we only need to do this if the region is not young
5252   // (since we don't refine cards in young regions).
5253   if (!hr->is_young()) {
5254     _cg1r->hot_card_cache()->reset_card_counts(hr);
5255   }
5256   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5257   free_list->add_ordered(hr);
5258 }
5259 
5260 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5261                                             FreeRegionList* free_list,
5262                                             bool par) {
5263   assert(hr->is_humongous(), "this is only for humongous regions");
5264   assert(free_list != NULL, "pre-condition");
5265   hr->clear_humongous();
5266   free_region(hr, free_list, par);
5267 }
5268 
5269 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5270                                            const HeapRegionSetCount& humongous_regions_removed) {
5271   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5272     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5273     _old_set.bulk_remove(old_regions_removed);
5274     _humongous_set.bulk_remove(humongous_regions_removed);
5275   }
5276 
5277 }
5278 
5279 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5280   assert(list != NULL, "list can't be null");
5281   if (!list->is_empty()) {
5282     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5283     _hrm.insert_list_into_free_list(list);
5284   }
5285 }
5286 
5287 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5288   decrease_used(bytes);
5289 }
5290 
5291 class G1ParCleanupCTTask : public AbstractGangTask {
5292   G1SATBCardTableModRefBS* _ct_bs;
5293   G1CollectedHeap* _g1h;
5294   HeapRegion* volatile _su_head;
5295 public:
5296   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5297                      G1CollectedHeap* g1h) :
5298     AbstractGangTask("G1 Par Cleanup CT Task"),
5299     _ct_bs(ct_bs), _g1h(g1h) { }
5300 
5301   void work(uint worker_id) {
5302     HeapRegion* r;
5303     while (r = _g1h->pop_dirty_cards_region()) {
5304       clear_cards(r);
5305     }
5306   }
5307 
5308   void clear_cards(HeapRegion* r) {
5309     // Cards of the survivors should have already been dirtied.
5310     if (!r->is_survivor()) {
5311       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5312     }
5313   }
5314 };
5315 
5316 #ifndef PRODUCT
5317 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5318   G1CollectedHeap* _g1h;
5319   G1SATBCardTableModRefBS* _ct_bs;
5320 public:
5321   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5322     : _g1h(g1h), _ct_bs(ct_bs) { }
5323   virtual bool doHeapRegion(HeapRegion* r) {
5324     if (r->is_survivor()) {
5325       _g1h->verify_dirty_region(r);
5326     } else {
5327       _g1h->verify_not_dirty_region(r);
5328     }
5329     return false;
5330   }
5331 };
5332 
5333 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5334   // All of the region should be clean.
5335   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5336   MemRegion mr(hr->bottom(), hr->end());
5337   ct_bs->verify_not_dirty_region(mr);
5338 }
5339 
5340 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5341   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5342   // dirty allocated blocks as they allocate them. The thread that
5343   // retires each region and replaces it with a new one will do a
5344   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5345   // not dirty that area (one less thing to have to do while holding
5346   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5347   // is dirty.
5348   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5349   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5350   if (hr->is_young()) {
5351     ct_bs->verify_g1_young_region(mr);
5352   } else {
5353     ct_bs->verify_dirty_region(mr);
5354   }
5355 }
5356 
5357 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5358   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5359   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5360     verify_dirty_region(hr);
5361   }
5362 }
5363 
5364 void G1CollectedHeap::verify_dirty_young_regions() {
5365   verify_dirty_young_list(_young_list->first_region());
5366 }
5367 
5368 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5369                                                HeapWord* tams, HeapWord* end) {
5370   guarantee(tams <= end,
5371             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5372   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5373   if (result < end) {
5374     gclog_or_tty->cr();
5375     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5376                            bitmap_name, p2i(result));
5377     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5378                            bitmap_name, p2i(tams), p2i(end));
5379     return false;
5380   }
5381   return true;
5382 }
5383 
5384 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5385   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5386   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5387 
5388   HeapWord* bottom = hr->bottom();
5389   HeapWord* ptams  = hr->prev_top_at_mark_start();
5390   HeapWord* ntams  = hr->next_top_at_mark_start();
5391   HeapWord* end    = hr->end();
5392 
5393   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5394 
5395   bool res_n = true;
5396   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5397   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5398   // if we happen to be in that state.
5399   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5400     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5401   }
5402   if (!res_p || !res_n) {
5403     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5404                            HR_FORMAT_PARAMS(hr));
5405     gclog_or_tty->print_cr("#### Caller: %s", caller);
5406     return false;
5407   }
5408   return true;
5409 }
5410 
5411 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5412   if (!G1VerifyBitmaps) return;
5413 
5414   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5415 }
5416 
5417 class G1VerifyBitmapClosure : public HeapRegionClosure {
5418 private:
5419   const char* _caller;
5420   G1CollectedHeap* _g1h;
5421   bool _failures;
5422 
5423 public:
5424   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5425     _caller(caller), _g1h(g1h), _failures(false) { }
5426 
5427   bool failures() { return _failures; }
5428 
5429   virtual bool doHeapRegion(HeapRegion* hr) {
5430     bool result = _g1h->verify_bitmaps(_caller, hr);
5431     if (!result) {
5432       _failures = true;
5433     }
5434     return false;
5435   }
5436 };
5437 
5438 void G1CollectedHeap::check_bitmaps(const char* caller) {
5439   if (!G1VerifyBitmaps) return;
5440 
5441   G1VerifyBitmapClosure cl(caller, this);
5442   heap_region_iterate(&cl);
5443   guarantee(!cl.failures(), "bitmap verification");
5444 }
5445 
5446 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5447  private:
5448   bool _failures;
5449  public:
5450   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5451 
5452   virtual bool doHeapRegion(HeapRegion* hr) {
5453     uint i = hr->hrm_index();
5454     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5455     if (hr->is_humongous()) {
5456       if (hr->in_collection_set()) {
5457         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5458         _failures = true;
5459         return true;
5460       }
5461       if (cset_state.is_in_cset()) {
5462         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5463         _failures = true;
5464         return true;
5465       }
5466       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5467         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5468         _failures = true;
5469         return true;
5470       }
5471     } else {
5472       if (cset_state.is_humongous()) {
5473         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5474         _failures = true;
5475         return true;
5476       }
5477       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5478         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5479                                hr->in_collection_set(), cset_state.value(), i);
5480         _failures = true;
5481         return true;
5482       }
5483       if (cset_state.is_in_cset()) {
5484         if (hr->is_young() != (cset_state.is_young())) {
5485           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5486                                  hr->is_young(), cset_state.value(), i);
5487           _failures = true;
5488           return true;
5489         }
5490         if (hr->is_old() != (cset_state.is_old())) {
5491           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5492                                  hr->is_old(), cset_state.value(), i);
5493           _failures = true;
5494           return true;
5495         }
5496       }
5497     }
5498     return false;
5499   }
5500 
5501   bool failures() const { return _failures; }
5502 };
5503 
5504 bool G1CollectedHeap::check_cset_fast_test() {
5505   G1CheckCSetFastTableClosure cl;
5506   _hrm.iterate(&cl);
5507   return !cl.failures();
5508 }
5509 #endif // PRODUCT
5510 
5511 void G1CollectedHeap::cleanUpCardTable() {
5512   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5513   double start = os::elapsedTime();
5514 
5515   {
5516     // Iterate over the dirty cards region list.
5517     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5518 
5519     workers()->run_task(&cleanup_task);
5520 #ifndef PRODUCT
5521     if (G1VerifyCTCleanup || VerifyAfterGC) {
5522       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5523       heap_region_iterate(&cleanup_verifier);
5524     }
5525 #endif
5526   }
5527 
5528   double elapsed = os::elapsedTime() - start;
5529   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5530 }
5531 
5532 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5533   size_t pre_used = 0;
5534   FreeRegionList local_free_list("Local List for CSet Freeing");
5535 
5536   double young_time_ms     = 0.0;
5537   double non_young_time_ms = 0.0;
5538 
5539   // Since the collection set is a superset of the the young list,
5540   // all we need to do to clear the young list is clear its
5541   // head and length, and unlink any young regions in the code below
5542   _young_list->clear();
5543 
5544   G1CollectorPolicy* policy = g1_policy();
5545 
5546   double start_sec = os::elapsedTime();
5547   bool non_young = true;
5548 
5549   HeapRegion* cur = cs_head;
5550   int age_bound = -1;
5551   size_t rs_lengths = 0;
5552 
5553   while (cur != NULL) {
5554     assert(!is_on_master_free_list(cur), "sanity");
5555     if (non_young) {
5556       if (cur->is_young()) {
5557         double end_sec = os::elapsedTime();
5558         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5559         non_young_time_ms += elapsed_ms;
5560 
5561         start_sec = os::elapsedTime();
5562         non_young = false;
5563       }
5564     } else {
5565       if (!cur->is_young()) {
5566         double end_sec = os::elapsedTime();
5567         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5568         young_time_ms += elapsed_ms;
5569 
5570         start_sec = os::elapsedTime();
5571         non_young = true;
5572       }
5573     }
5574 
5575     rs_lengths += cur->rem_set()->occupied_locked();
5576 
5577     HeapRegion* next = cur->next_in_collection_set();
5578     assert(cur->in_collection_set(), "bad CS");
5579     cur->set_next_in_collection_set(NULL);
5580     clear_in_cset(cur);
5581 
5582     if (cur->is_young()) {
5583       int index = cur->young_index_in_cset();
5584       assert(index != -1, "invariant");
5585       assert((uint) index < policy->young_cset_region_length(), "invariant");
5586       size_t words_survived = surviving_young_words[index];
5587       cur->record_surv_words_in_group(words_survived);
5588 
5589       // At this point the we have 'popped' cur from the collection set
5590       // (linked via next_in_collection_set()) but it is still in the
5591       // young list (linked via next_young_region()). Clear the
5592       // _next_young_region field.
5593       cur->set_next_young_region(NULL);
5594     } else {
5595       int index = cur->young_index_in_cset();
5596       assert(index == -1, "invariant");
5597     }
5598 
5599     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5600             (!cur->is_young() && cur->young_index_in_cset() == -1),
5601             "invariant" );
5602 
5603     if (!cur->evacuation_failed()) {
5604       MemRegion used_mr = cur->used_region();
5605 
5606       // And the region is empty.
5607       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5608       pre_used += cur->used();
5609       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5610     } else {
5611       cur->uninstall_surv_rate_group();
5612       if (cur->is_young()) {
5613         cur->set_young_index_in_cset(-1);
5614       }
5615       cur->set_evacuation_failed(false);
5616       // The region is now considered to be old.
5617       cur->set_old();
5618       // Do some allocation statistics accounting. Regions that failed evacuation
5619       // are always made old, so there is no need to update anything in the young
5620       // gen statistics, but we need to update old gen statistics.
5621       size_t used_words = cur->marked_bytes() / HeapWordSize;
5622       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5623       _old_set.add(cur);
5624       evacuation_info.increment_collectionset_used_after(cur->used());
5625     }
5626     cur = next;
5627   }
5628 
5629   evacuation_info.set_regions_freed(local_free_list.length());
5630   policy->record_max_rs_lengths(rs_lengths);
5631   policy->cset_regions_freed();
5632 
5633   double end_sec = os::elapsedTime();
5634   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5635 
5636   if (non_young) {
5637     non_young_time_ms += elapsed_ms;
5638   } else {
5639     young_time_ms += elapsed_ms;
5640   }
5641 
5642   prepend_to_freelist(&local_free_list);
5643   decrement_summary_bytes(pre_used);
5644   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5645   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5646 }
5647 
5648 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5649  private:
5650   FreeRegionList* _free_region_list;
5651   HeapRegionSet* _proxy_set;
5652   HeapRegionSetCount _humongous_regions_removed;
5653   size_t _freed_bytes;
5654  public:
5655 
5656   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5657     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5658   }
5659 
5660   virtual bool doHeapRegion(HeapRegion* r) {
5661     if (!r->is_starts_humongous()) {
5662       return false;
5663     }
5664 
5665     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5666 
5667     oop obj = (oop)r->bottom();
5668     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5669 
5670     // The following checks whether the humongous object is live are sufficient.
5671     // The main additional check (in addition to having a reference from the roots
5672     // or the young gen) is whether the humongous object has a remembered set entry.
5673     //
5674     // A humongous object cannot be live if there is no remembered set for it
5675     // because:
5676     // - there can be no references from within humongous starts regions referencing
5677     // the object because we never allocate other objects into them.
5678     // (I.e. there are no intra-region references that may be missed by the
5679     // remembered set)
5680     // - as soon there is a remembered set entry to the humongous starts region
5681     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5682     // until the end of a concurrent mark.
5683     //
5684     // It is not required to check whether the object has been found dead by marking
5685     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5686     // all objects allocated during that time are considered live.
5687     // SATB marking is even more conservative than the remembered set.
5688     // So if at this point in the collection there is no remembered set entry,
5689     // nobody has a reference to it.
5690     // At the start of collection we flush all refinement logs, and remembered sets
5691     // are completely up-to-date wrt to references to the humongous object.
5692     //
5693     // Other implementation considerations:
5694     // - never consider object arrays at this time because they would pose
5695     // considerable effort for cleaning up the the remembered sets. This is
5696     // required because stale remembered sets might reference locations that
5697     // are currently allocated into.
5698     uint region_idx = r->hrm_index();
5699     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5700         !r->rem_set()->is_empty()) {
5701 
5702       if (G1TraceEagerReclaimHumongousObjects) {
5703         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5704                                region_idx,
5705                                (size_t)obj->size() * HeapWordSize,
5706                                p2i(r->bottom()),
5707                                r->rem_set()->occupied(),
5708                                r->rem_set()->strong_code_roots_list_length(),
5709                                next_bitmap->isMarked(r->bottom()),
5710                                g1h->is_humongous_reclaim_candidate(region_idx),
5711                                obj->is_typeArray()
5712                               );
5713       }
5714 
5715       return false;
5716     }
5717 
5718     guarantee(obj->is_typeArray(),
5719               "Only eagerly reclaiming type arrays is supported, but the object "
5720               PTR_FORMAT " is not.", p2i(r->bottom()));
5721 
5722     if (G1TraceEagerReclaimHumongousObjects) {
5723       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5724                              region_idx,
5725                              (size_t)obj->size() * HeapWordSize,
5726                              p2i(r->bottom()),
5727                              r->rem_set()->occupied(),
5728                              r->rem_set()->strong_code_roots_list_length(),
5729                              next_bitmap->isMarked(r->bottom()),
5730                              g1h->is_humongous_reclaim_candidate(region_idx),
5731                              obj->is_typeArray()
5732                             );
5733     }
5734     // Need to clear mark bit of the humongous object if already set.
5735     if (next_bitmap->isMarked(r->bottom())) {
5736       next_bitmap->clear(r->bottom());
5737     }
5738     do {
5739       HeapRegion* next = g1h->next_region_in_humongous(r);
5740       _freed_bytes += r->used();
5741       r->set_containing_set(NULL);
5742       _humongous_regions_removed.increment(1u, r->capacity());
5743       g1h->free_humongous_region(r, _free_region_list, false);
5744       r = next;
5745     } while (r != NULL);
5746 
5747     return false;
5748   }
5749 
5750   HeapRegionSetCount& humongous_free_count() {
5751     return _humongous_regions_removed;
5752   }
5753 
5754   size_t bytes_freed() const {
5755     return _freed_bytes;
5756   }
5757 
5758   size_t humongous_reclaimed() const {
5759     return _humongous_regions_removed.length();
5760   }
5761 };
5762 
5763 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5764   assert_at_safepoint(true);
5765 
5766   if (!G1EagerReclaimHumongousObjects ||
5767       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5768     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5769     return;
5770   }
5771 
5772   double start_time = os::elapsedTime();
5773 
5774   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5775 
5776   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5777   heap_region_iterate(&cl);
5778 
5779   HeapRegionSetCount empty_set;
5780   remove_from_old_sets(empty_set, cl.humongous_free_count());
5781 
5782   G1HRPrinter* hrp = hr_printer();
5783   if (hrp->is_active()) {
5784     FreeRegionListIterator iter(&local_cleanup_list);
5785     while (iter.more_available()) {
5786       HeapRegion* hr = iter.get_next();
5787       hrp->cleanup(hr);
5788     }
5789   }
5790 
5791   prepend_to_freelist(&local_cleanup_list);
5792   decrement_summary_bytes(cl.bytes_freed());
5793 
5794   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5795                                                                     cl.humongous_reclaimed());
5796 }
5797 
5798 // This routine is similar to the above but does not record
5799 // any policy statistics or update free lists; we are abandoning
5800 // the current incremental collection set in preparation of a
5801 // full collection. After the full GC we will start to build up
5802 // the incremental collection set again.
5803 // This is only called when we're doing a full collection
5804 // and is immediately followed by the tearing down of the young list.
5805 
5806 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5807   HeapRegion* cur = cs_head;
5808 
5809   while (cur != NULL) {
5810     HeapRegion* next = cur->next_in_collection_set();
5811     assert(cur->in_collection_set(), "bad CS");
5812     cur->set_next_in_collection_set(NULL);
5813     clear_in_cset(cur);
5814     cur->set_young_index_in_cset(-1);
5815     cur = next;
5816   }
5817 }
5818 
5819 void G1CollectedHeap::set_free_regions_coming() {
5820   if (G1ConcRegionFreeingVerbose) {
5821     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5822                            "setting free regions coming");
5823   }
5824 
5825   assert(!free_regions_coming(), "pre-condition");
5826   _free_regions_coming = true;
5827 }
5828 
5829 void G1CollectedHeap::reset_free_regions_coming() {
5830   assert(free_regions_coming(), "pre-condition");
5831 
5832   {
5833     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5834     _free_regions_coming = false;
5835     SecondaryFreeList_lock->notify_all();
5836   }
5837 
5838   if (G1ConcRegionFreeingVerbose) {
5839     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5840                            "reset free regions coming");
5841   }
5842 }
5843 
5844 void G1CollectedHeap::wait_while_free_regions_coming() {
5845   // Most of the time we won't have to wait, so let's do a quick test
5846   // first before we take the lock.
5847   if (!free_regions_coming()) {
5848     return;
5849   }
5850 
5851   if (G1ConcRegionFreeingVerbose) {
5852     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5853                            "waiting for free regions");
5854   }
5855 
5856   {
5857     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5858     while (free_regions_coming()) {
5859       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5860     }
5861   }
5862 
5863   if (G1ConcRegionFreeingVerbose) {
5864     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5865                            "done waiting for free regions");
5866   }
5867 }
5868 
5869 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5870   return _allocator->is_retained_old_region(hr);
5871 }
5872 
5873 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5874   _young_list->push_region(hr);
5875 }
5876 
5877 class NoYoungRegionsClosure: public HeapRegionClosure {
5878 private:
5879   bool _success;
5880 public:
5881   NoYoungRegionsClosure() : _success(true) { }
5882   bool doHeapRegion(HeapRegion* r) {
5883     if (r->is_young()) {
5884       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5885                              p2i(r->bottom()), p2i(r->end()));
5886       _success = false;
5887     }
5888     return false;
5889   }
5890   bool success() { return _success; }
5891 };
5892 
5893 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5894   bool ret = _young_list->check_list_empty(check_sample);
5895 
5896   if (check_heap) {
5897     NoYoungRegionsClosure closure;
5898     heap_region_iterate(&closure);
5899     ret = ret && closure.success();
5900   }
5901 
5902   return ret;
5903 }
5904 
5905 class TearDownRegionSetsClosure : public HeapRegionClosure {
5906 private:
5907   HeapRegionSet *_old_set;
5908 
5909 public:
5910   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5911 
5912   bool doHeapRegion(HeapRegion* r) {
5913     if (r->is_old()) {
5914       _old_set->remove(r);
5915     } else {
5916       // We ignore free regions, we'll empty the free list afterwards.
5917       // We ignore young regions, we'll empty the young list afterwards.
5918       // We ignore humongous regions, we're not tearing down the
5919       // humongous regions set.
5920       assert(r->is_free() || r->is_young() || r->is_humongous(),
5921              "it cannot be another type");
5922     }
5923     return false;
5924   }
5925 
5926   ~TearDownRegionSetsClosure() {
5927     assert(_old_set->is_empty(), "post-condition");
5928   }
5929 };
5930 
5931 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5932   assert_at_safepoint(true /* should_be_vm_thread */);
5933 
5934   if (!free_list_only) {
5935     TearDownRegionSetsClosure cl(&_old_set);
5936     heap_region_iterate(&cl);
5937 
5938     // Note that emptying the _young_list is postponed and instead done as
5939     // the first step when rebuilding the regions sets again. The reason for
5940     // this is that during a full GC string deduplication needs to know if
5941     // a collected region was young or old when the full GC was initiated.
5942   }
5943   _hrm.remove_all_free_regions();
5944 }
5945 
5946 void G1CollectedHeap::increase_used(size_t bytes) {
5947   _summary_bytes_used += bytes;
5948 }
5949 
5950 void G1CollectedHeap::decrease_used(size_t bytes) {
5951   assert(_summary_bytes_used >= bytes,
5952          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5953          _summary_bytes_used, bytes);
5954   _summary_bytes_used -= bytes;
5955 }
5956 
5957 void G1CollectedHeap::set_used(size_t bytes) {
5958   _summary_bytes_used = bytes;
5959 }
5960 
5961 class RebuildRegionSetsClosure : public HeapRegionClosure {
5962 private:
5963   bool            _free_list_only;
5964   HeapRegionSet*   _old_set;
5965   HeapRegionManager*   _hrm;
5966   size_t          _total_used;
5967 
5968 public:
5969   RebuildRegionSetsClosure(bool free_list_only,
5970                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5971     _free_list_only(free_list_only),
5972     _old_set(old_set), _hrm(hrm), _total_used(0) {
5973     assert(_hrm->num_free_regions() == 0, "pre-condition");
5974     if (!free_list_only) {
5975       assert(_old_set->is_empty(), "pre-condition");
5976     }
5977   }
5978 
5979   bool doHeapRegion(HeapRegion* r) {
5980     if (r->is_empty()) {
5981       // Add free regions to the free list
5982       r->set_free();
5983       r->set_allocation_context(AllocationContext::system());
5984       _hrm->insert_into_free_list(r);
5985     } else if (!_free_list_only) {
5986       assert(!r->is_young(), "we should not come across young regions");
5987 
5988       if (r->is_humongous()) {
5989         // We ignore humongous regions. We left the humongous set unchanged.
5990       } else {
5991         // Objects that were compacted would have ended up on regions
5992         // that were previously old or free.  Archive regions (which are
5993         // old) will not have been touched.
5994         assert(r->is_free() || r->is_old(), "invariant");
5995         // We now consider them old, so register as such. Leave
5996         // archive regions set that way, however, while still adding
5997         // them to the old set.
5998         if (!r->is_archive()) {
5999           r->set_old();
6000         }
6001         _old_set->add(r);
6002       }
6003       _total_used += r->used();
6004     }
6005 
6006     return false;
6007   }
6008 
6009   size_t total_used() {
6010     return _total_used;
6011   }
6012 };
6013 
6014 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6015   assert_at_safepoint(true /* should_be_vm_thread */);
6016 
6017   if (!free_list_only) {
6018     _young_list->empty_list();
6019   }
6020 
6021   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6022   heap_region_iterate(&cl);
6023 
6024   if (!free_list_only) {
6025     set_used(cl.total_used());
6026     if (_archive_allocator != NULL) {
6027       _archive_allocator->clear_used();
6028     }
6029   }
6030   assert(used_unlocked() == recalculate_used(),
6031          "inconsistent used_unlocked(), "
6032          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6033          used_unlocked(), recalculate_used());
6034 }
6035 
6036 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6037   _refine_cte_cl->set_concurrent(concurrent);
6038 }
6039 
6040 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6041   HeapRegion* hr = heap_region_containing(p);
6042   return hr->is_in(p);
6043 }
6044 
6045 // Methods for the mutator alloc region
6046 
6047 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6048                                                       bool force) {
6049   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6050   assert(!force || g1_policy()->can_expand_young_list(),
6051          "if force is true we should be able to expand the young list");
6052   bool young_list_full = g1_policy()->is_young_list_full();
6053   if (force || !young_list_full) {
6054     HeapRegion* new_alloc_region = new_region(word_size,
6055                                               false /* is_old */,
6056                                               false /* do_expand */);
6057     if (new_alloc_region != NULL) {
6058       set_region_short_lived_locked(new_alloc_region);
6059       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6060       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6061       return new_alloc_region;
6062     }
6063   }
6064   return NULL;
6065 }
6066 
6067 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6068                                                   size_t allocated_bytes) {
6069   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6070   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6071 
6072   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6073   increase_used(allocated_bytes);
6074   _hr_printer.retire(alloc_region);
6075   // We update the eden sizes here, when the region is retired,
6076   // instead of when it's allocated, since this is the point that its
6077   // used space has been recored in _summary_bytes_used.
6078   g1mm()->update_eden_size();
6079 }
6080 
6081 // Methods for the GC alloc regions
6082 
6083 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6084                                                  uint count,
6085                                                  InCSetState dest) {
6086   assert(FreeList_lock->owned_by_self(), "pre-condition");
6087 
6088   if (count < g1_policy()->max_regions(dest)) {
6089     const bool is_survivor = (dest.is_young());
6090     HeapRegion* new_alloc_region = new_region(word_size,
6091                                               !is_survivor,
6092                                               true /* do_expand */);
6093     if (new_alloc_region != NULL) {
6094       // We really only need to do this for old regions given that we
6095       // should never scan survivors. But it doesn't hurt to do it
6096       // for survivors too.
6097       new_alloc_region->record_timestamp();
6098       if (is_survivor) {
6099         new_alloc_region->set_survivor();
6100         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6101         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6102       } else {
6103         new_alloc_region->set_old();
6104         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6105         check_bitmaps("Old Region Allocation", new_alloc_region);
6106       }
6107       bool during_im = collector_state()->during_initial_mark_pause();
6108       new_alloc_region->note_start_of_copying(during_im);
6109       return new_alloc_region;
6110     }
6111   }
6112   return NULL;
6113 }
6114 
6115 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6116                                              size_t allocated_bytes,
6117                                              InCSetState dest) {
6118   bool during_im = collector_state()->during_initial_mark_pause();
6119   alloc_region->note_end_of_copying(during_im);
6120   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6121   if (dest.is_young()) {
6122     young_list()->add_survivor_region(alloc_region);
6123   } else {
6124     _old_set.add(alloc_region);
6125   }
6126   _hr_printer.retire(alloc_region);
6127 }
6128 
6129 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6130   bool expanded = false;
6131   uint index = _hrm.find_highest_free(&expanded);
6132 
6133   if (index != G1_NO_HRM_INDEX) {
6134     if (expanded) {
6135       ergo_verbose1(ErgoHeapSizing,
6136                     "attempt heap expansion",
6137                     ergo_format_reason("requested address range outside heap bounds")
6138                     ergo_format_byte("region size"),
6139                     HeapRegion::GrainWords * HeapWordSize);
6140     }
6141     _hrm.allocate_free_regions_starting_at(index, 1);
6142     return region_at(index);
6143   }
6144   return NULL;
6145 }
6146 
6147 // Heap region set verification
6148 
6149 class VerifyRegionListsClosure : public HeapRegionClosure {
6150 private:
6151   HeapRegionSet*   _old_set;
6152   HeapRegionSet*   _humongous_set;
6153   HeapRegionManager*   _hrm;
6154 
6155 public:
6156   HeapRegionSetCount _old_count;
6157   HeapRegionSetCount _humongous_count;
6158   HeapRegionSetCount _free_count;
6159 
6160   VerifyRegionListsClosure(HeapRegionSet* old_set,
6161                            HeapRegionSet* humongous_set,
6162                            HeapRegionManager* hrm) :
6163     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6164     _old_count(), _humongous_count(), _free_count(){ }
6165 
6166   bool doHeapRegion(HeapRegion* hr) {
6167     if (hr->is_young()) {
6168       // TODO
6169     } else if (hr->is_humongous()) {
6170       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6171       _humongous_count.increment(1u, hr->capacity());
6172     } else if (hr->is_empty()) {
6173       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6174       _free_count.increment(1u, hr->capacity());
6175     } else if (hr->is_old()) {
6176       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6177       _old_count.increment(1u, hr->capacity());
6178     } else {
6179       // There are no other valid region types. Check for one invalid
6180       // one we can identify: pinned without old or humongous set.
6181       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6182       ShouldNotReachHere();
6183     }
6184     return false;
6185   }
6186 
6187   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6188     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6189     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6190               old_set->total_capacity_bytes(), _old_count.capacity());
6191 
6192     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6193     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6194               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6195 
6196     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6197     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6198               free_list->total_capacity_bytes(), _free_count.capacity());
6199   }
6200 };
6201 
6202 void G1CollectedHeap::verify_region_sets() {
6203   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6204 
6205   // First, check the explicit lists.
6206   _hrm.verify();
6207   {
6208     // Given that a concurrent operation might be adding regions to
6209     // the secondary free list we have to take the lock before
6210     // verifying it.
6211     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6212     _secondary_free_list.verify_list();
6213   }
6214 
6215   // If a concurrent region freeing operation is in progress it will
6216   // be difficult to correctly attributed any free regions we come
6217   // across to the correct free list given that they might belong to
6218   // one of several (free_list, secondary_free_list, any local lists,
6219   // etc.). So, if that's the case we will skip the rest of the
6220   // verification operation. Alternatively, waiting for the concurrent
6221   // operation to complete will have a non-trivial effect on the GC's
6222   // operation (no concurrent operation will last longer than the
6223   // interval between two calls to verification) and it might hide
6224   // any issues that we would like to catch during testing.
6225   if (free_regions_coming()) {
6226     return;
6227   }
6228 
6229   // Make sure we append the secondary_free_list on the free_list so
6230   // that all free regions we will come across can be safely
6231   // attributed to the free_list.
6232   append_secondary_free_list_if_not_empty_with_lock();
6233 
6234   // Finally, make sure that the region accounting in the lists is
6235   // consistent with what we see in the heap.
6236 
6237   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6238   heap_region_iterate(&cl);
6239   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6240 }
6241 
6242 // Optimized nmethod scanning
6243 
6244 class RegisterNMethodOopClosure: public OopClosure {
6245   G1CollectedHeap* _g1h;
6246   nmethod* _nm;
6247 
6248   template <class T> void do_oop_work(T* p) {
6249     T heap_oop = oopDesc::load_heap_oop(p);
6250     if (!oopDesc::is_null(heap_oop)) {
6251       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6252       HeapRegion* hr = _g1h->heap_region_containing(obj);
6253       assert(!hr->is_continues_humongous(),
6254              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6255              " starting at " HR_FORMAT,
6256              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6257 
6258       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6259       hr->add_strong_code_root_locked(_nm);
6260     }
6261   }
6262 
6263 public:
6264   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6265     _g1h(g1h), _nm(nm) {}
6266 
6267   void do_oop(oop* p)       { do_oop_work(p); }
6268   void do_oop(narrowOop* p) { do_oop_work(p); }
6269 };
6270 
6271 class UnregisterNMethodOopClosure: public OopClosure {
6272   G1CollectedHeap* _g1h;
6273   nmethod* _nm;
6274 
6275   template <class T> void do_oop_work(T* p) {
6276     T heap_oop = oopDesc::load_heap_oop(p);
6277     if (!oopDesc::is_null(heap_oop)) {
6278       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6279       HeapRegion* hr = _g1h->heap_region_containing(obj);
6280       assert(!hr->is_continues_humongous(),
6281              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6282              " starting at " HR_FORMAT,
6283              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6284 
6285       hr->remove_strong_code_root(_nm);
6286     }
6287   }
6288 
6289 public:
6290   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6291     _g1h(g1h), _nm(nm) {}
6292 
6293   void do_oop(oop* p)       { do_oop_work(p); }
6294   void do_oop(narrowOop* p) { do_oop_work(p); }
6295 };
6296 
6297 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6298   CollectedHeap::register_nmethod(nm);
6299 
6300   guarantee(nm != NULL, "sanity");
6301   RegisterNMethodOopClosure reg_cl(this, nm);
6302   nm->oops_do(&reg_cl);
6303 }
6304 
6305 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6306   CollectedHeap::unregister_nmethod(nm);
6307 
6308   guarantee(nm != NULL, "sanity");
6309   UnregisterNMethodOopClosure reg_cl(this, nm);
6310   nm->oops_do(&reg_cl, true);
6311 }
6312 
6313 void G1CollectedHeap::purge_code_root_memory() {
6314   double purge_start = os::elapsedTime();
6315   G1CodeRootSet::purge();
6316   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6317   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6318 }
6319 
6320 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6321   G1CollectedHeap* _g1h;
6322 
6323 public:
6324   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6325     _g1h(g1h) {}
6326 
6327   void do_code_blob(CodeBlob* cb) {
6328     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6329     if (nm == NULL) {
6330       return;
6331     }
6332 
6333     if (ScavengeRootsInCode) {
6334       _g1h->register_nmethod(nm);
6335     }
6336   }
6337 };
6338 
6339 void G1CollectedHeap::rebuild_strong_code_roots() {
6340   RebuildStrongCodeRootClosure blob_cl(this);
6341   CodeCache::blobs_do(&blob_cl);
6342 }