/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1BarrierSet.hpp" #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CardTable.inline.hpp" #include "gc/g1/g1CardTableEntryClosure.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1ConcurrentRefine.hpp" #include "gc/g1/g1DirtyCardQueue.hpp" #include "gc/g1/g1FromCardCache.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1HotCardCache.hpp" #include "gc/g1/g1OopClosures.inline.hpp" #include "gc/g1/g1RootClosures.hpp" #include "gc/g1/g1RemSet.hpp" #include "gc/g1/g1SharedDirtyCardQueue.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionRemSet.inline.hpp" #include "gc/g1/sparsePRT.hpp" #include "gc/shared/gcTraceTime.inline.hpp" #include "gc/shared/ptrQueue.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "jfr/jfrEvents.hpp" #include "memory/iterator.hpp" #include "memory/resourceArea.hpp" #include "oops/access.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/stack.inline.hpp" #include "utilities/ticks.hpp" // Collects information about the overall heap root scan progress during an evacuation. // // Scanning the remembered sets works by first merging all sources of cards to be // scanned (log buffers, hcc, remembered sets) into a single data structure to remove // duplicates and simplify work distribution. // // During the following card scanning we not only scan this combined set of cards, but // also remember that these were completely scanned. The following evacuation passes // do not scan these cards again, and so need to be preserved across increments. // // The representation for all the cards to scan is the card table: cards can have // one of three states during GC: // - clean: these cards will not be scanned in this pass // - dirty: these cards will be scanned in this pass // - scanned: these cards have already been scanned in a previous pass // // After all evacuation is done, we reset the card table to clean. // // Work distribution occurs on "chunk" basis, i.e. contiguous ranges of cards. As an // additional optimization, during card merging we remember which regions and which // chunks actually contain cards to be scanned. Threads iterate only across these // regions, and only compete for chunks containing any cards. // // Within these chunks, a worker scans the card table on "blocks" of cards, i.e. // contiguous ranges of dirty cards to be scanned. These blocks are converted to actual // memory ranges and then passed on to actual scanning. class G1RemSetScanState : public CHeapObj { class G1DirtyRegions; size_t _max_regions; // Has this region that is part of the regions in the collection set been processed yet. typedef bool G1RemsetIterState; G1RemsetIterState volatile* _collection_set_iter_state; // Card table iteration claim for each heap region, from 0 (completely unscanned) // to (>=) HeapRegion::CardsPerRegion (completely scanned). uint volatile* _card_table_scan_state; // Return "optimal" number of chunks per region we want to use for claiming areas // within a region to claim. Dependent on the region size as proxy for the heap // size, we limit the total number of chunks to limit memory usage and maintenance // effort of that table vs. granularity of distributing scanning work. // Testing showed that 8 for 1M/2M region, 16 for 4M/8M regions, 32 for 16/32M regions // seems to be such a good trade-off. static uint get_chunks_per_region(uint log_region_size) { // Limit the expected input values to current known possible values of the // (log) region size. Adjust as necessary after testing if changing the permissible // values for region size. assert(log_region_size >= 20 && log_region_size <= 25, "expected value in [20,25], but got %u", log_region_size); return 1u << (log_region_size / 2 - 7); } uint _scan_chunks_per_region; // Number of chunks per region. uint8_t _log_scan_chunks_per_region; // Log of number of chunks per region. bool* _region_scan_chunks; size_t _num_total_scan_chunks; // Total number of elements in _region_scan_chunks. uint8_t _scan_chunks_shift; // For conversion between card index and chunk index. public: uint scan_chunk_size() const { return (uint)1 << _scan_chunks_shift; } // Returns whether the chunk corresponding to the given region/card in region contain a // dirty card, i.e. actually needs scanning. bool chunk_needs_scan(uint const region_idx, uint const card_in_region) const { size_t const idx = ((size_t)region_idx << _log_scan_chunks_per_region) + (card_in_region >> _scan_chunks_shift); assert(idx < _num_total_scan_chunks, "Index " SIZE_FORMAT " out of bounds " SIZE_FORMAT, idx, _num_total_scan_chunks); return _region_scan_chunks[idx]; } private: // The complete set of regions which card table needs to be cleared at the end of GC because // we scribbled all over them. G1DirtyRegions* _all_dirty_regions; // The set of regions which card table needs to be scanned for new dirty cards // in the current evacuation pass. G1DirtyRegions* _next_dirty_regions; // Set of (unique) regions that can be added to concurrently. class G1DirtyRegions : public CHeapObj { uint* _buffer; uint _cur_idx; size_t _max_regions; bool* _contains; public: G1DirtyRegions(size_t max_regions) : _buffer(NEW_C_HEAP_ARRAY(uint, max_regions, mtGC)), _cur_idx(0), _max_regions(max_regions), _contains(NEW_C_HEAP_ARRAY(bool, max_regions, mtGC)) { reset(); } static size_t chunk_size() { return M; } ~G1DirtyRegions() { FREE_C_HEAP_ARRAY(uint, _buffer); FREE_C_HEAP_ARRAY(bool, _contains); } void reset() { _cur_idx = 0; ::memset(_contains, false, _max_regions * sizeof(bool)); } uint size() const { return _cur_idx; } uint at(uint idx) const { assert(idx < _cur_idx, "Index %u beyond valid regions", idx); return _buffer[idx]; } void add_dirty_region(uint region) { if (_contains[region]) { return; } bool marked_as_dirty = Atomic::cmpxchg(true, &_contains[region], false) == false; if (marked_as_dirty) { uint allocated = Atomic::add(1u, &_cur_idx) - 1; _buffer[allocated] = region; } } // Creates the union of this and the other G1DirtyRegions. void merge(const G1DirtyRegions* other) { for (uint i = 0; i < other->size(); i++) { uint region = other->at(i); if (!_contains[region]) { _buffer[_cur_idx++] = region; _contains[region] = true; } } } }; // For each region, contains the maximum top() value to be used during this garbage // collection. Subsumes common checks like filtering out everything but old and // humongous regions outside the collection set. // This is valid because we are not interested in scanning stray remembered set // entries from free or archive regions. HeapWord** _scan_top; class G1ClearCardTableTask : public AbstractGangTask { G1CollectedHeap* _g1h; G1DirtyRegions* _regions; uint _chunk_length; uint volatile _cur_dirty_regions; G1RemSetScanState* _scan_state; public: G1ClearCardTableTask(G1CollectedHeap* g1h, G1DirtyRegions* regions, uint chunk_length, G1RemSetScanState* scan_state) : AbstractGangTask("G1 Clear Card Table Task"), _g1h(g1h), _regions(regions), _chunk_length(chunk_length), _cur_dirty_regions(0), _scan_state(scan_state) { assert(chunk_length > 0, "must be"); } static uint chunk_size() { return M; } void work(uint worker_id) { while (_cur_dirty_regions < _regions->size()) { uint next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length; uint max = MIN2(next + _chunk_length, _regions->size()); for (uint i = next; i < max; i++) { HeapRegion* r = _g1h->region_at(_regions->at(i)); if (!r->is_survivor()) { r->clear_cardtable(); } } } } }; // Clear the card table of "dirty" regions. void clear_card_table(WorkGang* workers) { uint num_regions = _all_dirty_regions->size(); if (num_regions == 0) { return; } uint const num_chunks = (uint)(align_up((size_t)num_regions << HeapRegion::LogCardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size()); uint const num_workers = MIN2(num_chunks, workers->active_workers()); uint const chunk_length = G1ClearCardTableTask::chunk_size() / (uint)HeapRegion::CardsPerRegion; // Iterate over the dirty cards region list. G1ClearCardTableTask cl(G1CollectedHeap::heap(), _all_dirty_regions, chunk_length, this); log_debug(gc, ergo)("Running %s using %u workers for %u " "units of work for %u regions.", cl.name(), num_workers, num_chunks, num_regions); workers->run_task(&cl, num_workers); #ifndef PRODUCT G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup(); #endif } public: G1RemSetScanState() : _max_regions(0), _collection_set_iter_state(NULL), _card_table_scan_state(NULL), _scan_chunks_per_region(get_chunks_per_region(HeapRegion::LogOfHRGrainBytes)), _log_scan_chunks_per_region(log2_uint(_scan_chunks_per_region)), _region_scan_chunks(NULL), _num_total_scan_chunks(0), _scan_chunks_shift(0), _all_dirty_regions(NULL), _next_dirty_regions(NULL), _scan_top(NULL) { } ~G1RemSetScanState() { FREE_C_HEAP_ARRAY(G1RemsetIterState, _collection_set_iter_state); FREE_C_HEAP_ARRAY(uint, _card_table_scan_state); FREE_C_HEAP_ARRAY(bool, _region_scan_chunks); FREE_C_HEAP_ARRAY(HeapWord*, _scan_top); } void initialize(size_t max_regions) { assert(_collection_set_iter_state == NULL, "Must not be initialized twice"); _max_regions = max_regions; _collection_set_iter_state = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC); _card_table_scan_state = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC); _num_total_scan_chunks = max_regions * _scan_chunks_per_region; _region_scan_chunks = NEW_C_HEAP_ARRAY(bool, _num_total_scan_chunks, mtGC); _scan_chunks_shift = (uint8_t)log2_intptr(HeapRegion::CardsPerRegion / _scan_chunks_per_region); _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC); } void prepare() { _all_dirty_regions = new G1DirtyRegions(_max_regions); _next_dirty_regions = new G1DirtyRegions(_max_regions); } void prepare_for_merge_heap_roots() { _all_dirty_regions->merge(_next_dirty_regions); _next_dirty_regions->reset(); for (size_t i = 0; i < _max_regions; i++) { _card_table_scan_state[i] = 0; } ::memset(_region_scan_chunks, false, _num_total_scan_chunks * sizeof(*_region_scan_chunks)); } // Returns whether the given region contains cards we need to scan. The remembered // set and other sources may contain cards that // - are in uncommitted regions // - are located in the collection set // - are located in free regions // as we do not clean up remembered sets before merging heap roots. bool contains_cards_to_process(uint const region_idx) const { HeapRegion* hr = G1CollectedHeap::heap()->region_at_or_null(region_idx); return (hr != NULL && !hr->in_collection_set() && hr->is_old_or_humongous_or_archive()); } size_t num_visited_cards() const { size_t result = 0; for (uint i = 0; i < _num_total_scan_chunks; i++) { if (_region_scan_chunks[i]) { result++; } } return result * (HeapRegion::CardsPerRegion / _scan_chunks_per_region); } size_t num_cards_in_dirty_regions() const { return _next_dirty_regions->size() * HeapRegion::CardsPerRegion; } void set_chunk_region_dirty(size_t const region_card_idx) { size_t chunk_idx = region_card_idx >> _scan_chunks_shift; for (uint i = 0; i < _scan_chunks_per_region; i++) { _region_scan_chunks[chunk_idx++] = true; } } void set_chunk_dirty(size_t const card_idx) { assert((card_idx >> _scan_chunks_shift) < _num_total_scan_chunks, "Trying to access index " SIZE_FORMAT " out of bounds " SIZE_FORMAT, card_idx >> _scan_chunks_shift, _num_total_scan_chunks); size_t const chunk_idx = card_idx >> _scan_chunks_shift; if (!_region_scan_chunks[chunk_idx]) { _region_scan_chunks[chunk_idx] = true; } } void cleanup(WorkGang* workers) { _all_dirty_regions->merge(_next_dirty_regions); clear_card_table(workers); delete _all_dirty_regions; _all_dirty_regions = NULL; delete _next_dirty_regions; _next_dirty_regions = NULL; } void iterate_dirty_regions_from(HeapRegionClosure* cl, uint worker_id) { uint num_regions = _next_dirty_regions->size(); if (num_regions == 0) { return; } G1CollectedHeap* g1h = G1CollectedHeap::heap(); WorkGang* workers = g1h->workers(); uint const max_workers = workers->active_workers(); uint const start_pos = num_regions * worker_id / max_workers; uint cur = start_pos; do { bool result = cl->do_heap_region(g1h->region_at(_next_dirty_regions->at(cur))); guarantee(!result, "Not allowed to ask for early termination."); cur++; if (cur == _next_dirty_regions->size()) { cur = 0; } } while (cur != start_pos); } void reset_region_claim(uint region_idx) { _collection_set_iter_state[region_idx] = false; } // Attempt to claim the given region in the collection set for iteration. Returns true // if this call caused the transition from Unclaimed to Claimed. inline bool claim_collection_set_region(uint region) { assert(region < _max_regions, "Tried to access invalid region %u", region); if (_collection_set_iter_state[region]) { return false; } return !Atomic::cmpxchg(true, &_collection_set_iter_state[region], false); } bool has_cards_to_scan(uint region) { assert(region < _max_regions, "Tried to access invalid region %u", region); return _card_table_scan_state[region] < HeapRegion::CardsPerRegion; } uint claim_cards_to_scan(uint region, uint increment) { assert(region < _max_regions, "Tried to access invalid region %u", region); return Atomic::add(increment, &_card_table_scan_state[region]) - increment; } void add_dirty_region(uint const region) { #ifdef ASSERT HeapRegion* hr = G1CollectedHeap::heap()->region_at(region); assert(!hr->in_collection_set() && hr->is_old_or_humongous_or_archive(), "Region %u is not suitable for scanning, is %sin collection set or %s", hr->hrm_index(), hr->in_collection_set() ? "" : "not ", hr->get_short_type_str()); #endif _next_dirty_regions->add_dirty_region(region); } void add_all_dirty_region(uint region) { #ifdef ASSERT HeapRegion* hr = G1CollectedHeap::heap()->region_at(region); assert(hr->in_collection_set(), "Only add young regions to all dirty regions directly but %u is %s", hr->hrm_index(), hr->get_short_type_str()); #endif _all_dirty_regions->add_dirty_region(region); } void set_scan_top(uint region_idx, HeapWord* value) { _scan_top[region_idx] = value; } HeapWord* scan_top(uint region_idx) const { return _scan_top[region_idx]; } void clear_scan_top(uint region_idx) { set_scan_top(region_idx, NULL); } }; G1RemSet::G1RemSet(G1CollectedHeap* g1h, G1CardTable* ct, G1HotCardCache* hot_card_cache) : _scan_state(new G1RemSetScanState()), _prev_period_summary(false), _g1h(g1h), _ct(ct), _g1p(_g1h->policy()), _hot_card_cache(hot_card_cache) { } G1RemSet::~G1RemSet() { delete _scan_state; } uint G1RemSet::num_par_rem_sets() { return G1DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads() + MAX2(ConcGCThreads, ParallelGCThreads); } void G1RemSet::initialize(size_t capacity, uint max_regions) { G1FromCardCache::initialize(num_par_rem_sets(), max_regions); _scan_state->initialize(max_regions); } // Helper class to scan and detect ranges of cards that need to be scanned on the // card table. class G1CardTableScanner : public StackObj { public: typedef CardTable::CardValue CardValue; private: CardValue* const _base_addr; CardValue* _cur_addr; CardValue* const _end_addr; static const size_t ToScanMask = G1CardTable::g1_card_already_scanned; static const size_t ExpandedToScanMask = G1CardTable::WordAlreadyScanned; bool cur_addr_aligned() const { return ((uintptr_t)_cur_addr) % sizeof(size_t) == 0; } bool cur_card_is_dirty() const { CardValue value = *_cur_addr; return (value & ToScanMask) == 0; } bool cur_word_of_cards_contains_any_dirty_card() const { assert(cur_addr_aligned(), "Current address should be aligned"); size_t const value = *(size_t*)_cur_addr; return (~value & ExpandedToScanMask) != 0; } bool cur_word_of_cards_all_dirty_cards() const { size_t const value = *(size_t*)_cur_addr; return value == G1CardTable::WordAllDirty; } size_t get_and_advance_pos() { _cur_addr++; return pointer_delta(_cur_addr, _base_addr, sizeof(CardValue)) - 1; } public: G1CardTableScanner(CardValue* start_card, size_t size) : _base_addr(start_card), _cur_addr(start_card), _end_addr(start_card + size) { assert(is_aligned(start_card, sizeof(size_t)), "Unaligned start addr " PTR_FORMAT, p2i(start_card)); assert(is_aligned(size, sizeof(size_t)), "Unaligned size " SIZE_FORMAT, size); } size_t find_next_dirty() { while (!cur_addr_aligned()) { if (cur_card_is_dirty()) { return get_and_advance_pos(); } _cur_addr++; } assert(cur_addr_aligned(), "Current address should be aligned now."); while (_cur_addr != _end_addr) { if (cur_word_of_cards_contains_any_dirty_card()) { for (size_t i = 0; i < sizeof(size_t); i++) { if (cur_card_is_dirty()) { return get_and_advance_pos(); } _cur_addr++; } assert(false, "Should not reach here given we detected a dirty card in the word."); } _cur_addr += sizeof(size_t); } return get_and_advance_pos(); } size_t find_next_non_dirty() { assert(_cur_addr <= _end_addr, "Not allowed to search for marks after area."); while (!cur_addr_aligned()) { if (!cur_card_is_dirty()) { return get_and_advance_pos(); } _cur_addr++; } assert(cur_addr_aligned(), "Current address should be aligned now."); while (_cur_addr != _end_addr) { if (!cur_word_of_cards_all_dirty_cards()) { for (size_t i = 0; i < sizeof(size_t); i++) { if (!cur_card_is_dirty()) { return get_and_advance_pos(); } _cur_addr++; } assert(false, "Should not reach here given we detected a non-dirty card in the word."); } _cur_addr += sizeof(size_t); } return get_and_advance_pos(); } }; // Helper class to claim dirty chunks within the card table. class G1CardTableChunkClaimer { G1RemSetScanState* _scan_state; uint _region_idx; uint _cur_claim; public: G1CardTableChunkClaimer(G1RemSetScanState* scan_state, uint region_idx) : _scan_state(scan_state), _region_idx(region_idx), _cur_claim(0) { guarantee(size() <= HeapRegion::CardsPerRegion, "Should not claim more space than possible."); } bool has_next() { while (true) { _cur_claim = _scan_state->claim_cards_to_scan(_region_idx, size()); if (_cur_claim >= HeapRegion::CardsPerRegion) { return false; } if (_scan_state->chunk_needs_scan(_region_idx, _cur_claim)) { return true; } } } uint value() const { return _cur_claim; } uint size() const { return _scan_state->scan_chunk_size(); } }; // Scans a heap region for dirty cards. class G1ScanHRForRegionClosure : public HeapRegionClosure { G1CollectedHeap* _g1h; G1CardTable* _ct; G1BlockOffsetTable* _bot; G1ParScanThreadState* _pss; G1RemSetScanState* _scan_state; G1GCPhaseTimes::GCParPhases _phase; uint _worker_id; size_t _cards_scanned; size_t _blocks_scanned; size_t _chunks_claimed; Tickspan _rem_set_root_scan_time; Tickspan _rem_set_trim_partially_time; // The address to which this thread already scanned (walked the heap) up to during // card scanning (exclusive). HeapWord* _scanned_to; HeapWord* scan_memregion(uint region_idx_for_card, MemRegion mr) { HeapRegion* const card_region = _g1h->region_at(region_idx_for_card); G1ScanCardClosure card_cl(_g1h, _pss); HeapWord* const scanned_to = card_region->oops_on_memregion_seq_iterate_careful(mr, &card_cl); assert(scanned_to != NULL, "Should be able to scan range"); assert(scanned_to >= mr.end(), "Scanned to " PTR_FORMAT " less than range " PTR_FORMAT, p2i(scanned_to), p2i(mr.end())); _pss->trim_queue_partially(); return scanned_to; } void do_claimed_block(uint const region_idx_for_card, size_t const first_card, size_t const num_cards) { HeapWord* const card_start = _bot->address_for_index_raw(first_card); #ifdef ASSERT HeapRegion* hr = _g1h->region_at_or_null(region_idx_for_card); assert(hr == NULL || hr->is_in_reserved(card_start), "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index()); #endif HeapWord* const top = _scan_state->scan_top(region_idx_for_card); if (card_start >= top) { return; } HeapWord* scan_end = MIN2(card_start + (num_cards << BOTConstants::LogN_words), top); if (_scanned_to >= scan_end) { return; } MemRegion mr(MAX2(card_start, _scanned_to), scan_end); _scanned_to = scan_memregion(region_idx_for_card, mr); _cards_scanned += num_cards; } ALWAYSINLINE void do_card_block(uint const region_idx, size_t const first_card, size_t const num_cards) { _ct->mark_as_scanned(first_card, num_cards); do_claimed_block(region_idx, first_card, num_cards); _blocks_scanned++; } void scan_heap_roots(HeapRegion* r) { EventGCPhaseParallel event; uint const region_idx = r->hrm_index(); ResourceMark rm; G1CardTableChunkClaimer claim(_scan_state, region_idx); // Set the current scan "finger" to NULL for every heap region to scan. Since // the claim value is monotonically increasing, the check to not scan below this // will filter out objects spanning chunks within the region too then, as opposed // to resetting this value for every claim. _scanned_to = NULL; while (claim.has_next()) { size_t const region_card_base_idx = ((size_t)region_idx << HeapRegion::LogCardsPerRegion) + claim.value(); CardTable::CardValue* const base_addr = _ct->byte_for_index(region_card_base_idx); G1CardTableScanner scan(base_addr, claim.size()); size_t first_scan_idx = scan.find_next_dirty(); while (first_scan_idx != claim.size()) { assert(*_ct->byte_for_index(region_card_base_idx + first_scan_idx) <= 0x1, "is %d at region %u idx " SIZE_FORMAT, *_ct->byte_for_index(region_card_base_idx + first_scan_idx), region_idx, first_scan_idx); size_t const last_scan_idx = scan.find_next_non_dirty(); size_t const len = last_scan_idx - first_scan_idx; do_card_block(region_idx, region_card_base_idx + first_scan_idx, len); if (last_scan_idx == claim.size()) { break; } first_scan_idx = scan.find_next_dirty(); } _chunks_claimed++; } event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ScanHR)); } public: G1ScanHRForRegionClosure(G1RemSetScanState* scan_state, G1ParScanThreadState* pss, uint worker_id, G1GCPhaseTimes::GCParPhases phase) : _g1h(G1CollectedHeap::heap()), _ct(_g1h->card_table()), _bot(_g1h->bot()), _pss(pss), _scan_state(scan_state), _phase(phase), _worker_id(worker_id), _cards_scanned(0), _blocks_scanned(0), _chunks_claimed(0), _rem_set_root_scan_time(), _rem_set_trim_partially_time(), _scanned_to(NULL) { } bool do_heap_region(HeapRegion* r) { assert(!r->in_collection_set() && r->is_old_or_humongous_or_archive(), "Should only be called on old gen non-collection set regions but region %u is not.", r->hrm_index()); uint const region_idx = r->hrm_index(); if (_scan_state->has_cards_to_scan(region_idx)) { G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time); scan_heap_roots(r); } return false; } Tickspan rem_set_root_scan_time() const { return _rem_set_root_scan_time; } Tickspan rem_set_trim_partially_time() const { return _rem_set_trim_partially_time; } size_t cards_scanned() const { return _cards_scanned; } size_t blocks_scanned() const { return _blocks_scanned; } size_t chunks_claimed() const { return _chunks_claimed; } }; void G1RemSet::scan_heap_roots(G1ParScanThreadState* pss, uint worker_id, G1GCPhaseTimes::GCParPhases scan_phase, G1GCPhaseTimes::GCParPhases objcopy_phase) { G1ScanHRForRegionClosure cl(_scan_state, pss, worker_id, scan_phase); _scan_state->iterate_dirty_regions_from(&cl, worker_id); G1GCPhaseTimes* p = _g1p->phase_times(); p->record_or_add_time_secs(objcopy_phase, worker_id, cl.rem_set_trim_partially_time().seconds()); p->record_or_add_time_secs(scan_phase, worker_id, cl.rem_set_root_scan_time().seconds()); p->record_or_add_thread_work_item(scan_phase, worker_id, cl.cards_scanned(), G1GCPhaseTimes::ScanHRScannedCards); p->record_or_add_thread_work_item(scan_phase, worker_id, cl.blocks_scanned(), G1GCPhaseTimes::ScanHRScannedBlocks); p->record_or_add_thread_work_item(scan_phase, worker_id, cl.chunks_claimed(), G1GCPhaseTimes::ScanHRClaimedChunks); } // Heap region closure to be applied to all regions in the current collection set // increment to fix up non-card related roots. class G1ScanCollectionSetRegionClosure : public HeapRegionClosure { G1ParScanThreadState* _pss; G1RemSetScanState* _scan_state; G1GCPhaseTimes::GCParPhases _scan_phase; G1GCPhaseTimes::GCParPhases _code_roots_phase; uint _worker_id; size_t _opt_refs_scanned; size_t _opt_refs_memory_used; Tickspan _strong_code_root_scan_time; Tickspan _strong_code_trim_partially_time; Tickspan _rem_set_opt_root_scan_time; Tickspan _rem_set_opt_trim_partially_time; void scan_opt_rem_set_roots(HeapRegion* r) { EventGCPhaseParallel event; G1OopStarChunkedList* opt_rem_set_list = _pss->oops_into_optional_region(r); G1ScanCardClosure scan_cl(G1CollectedHeap::heap(), _pss); G1ScanRSForOptionalClosure cl(G1CollectedHeap::heap(), &scan_cl); _opt_refs_scanned += opt_rem_set_list->oops_do(&cl, _pss->closures()->strong_oops()); _opt_refs_memory_used += opt_rem_set_list->used_memory(); event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(_scan_phase)); } public: G1ScanCollectionSetRegionClosure(G1RemSetScanState* scan_state, G1ParScanThreadState* pss, uint worker_id, G1GCPhaseTimes::GCParPhases scan_phase, G1GCPhaseTimes::GCParPhases code_roots_phase) : _pss(pss), _scan_state(scan_state), _scan_phase(scan_phase), _code_roots_phase(code_roots_phase), _worker_id(worker_id), _opt_refs_scanned(0), _opt_refs_memory_used(0), _strong_code_root_scan_time(), _strong_code_trim_partially_time(), _rem_set_opt_root_scan_time(), _rem_set_opt_trim_partially_time() { } bool do_heap_region(HeapRegion* r) { uint const region_idx = r->hrm_index(); // The individual references for the optional remembered set are per-worker, so we // always need to scan them. if (r->has_index_in_opt_cset()) { G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_opt_root_scan_time, _rem_set_opt_trim_partially_time); scan_opt_rem_set_roots(r); } if (_scan_state->claim_collection_set_region(region_idx)) { EventGCPhaseParallel event; G1EvacPhaseWithTrimTimeTracker timer(_pss, _strong_code_root_scan_time, _strong_code_trim_partially_time); // Scan the strong code root list attached to the current region r->strong_code_roots_do(_pss->closures()->weak_codeblobs()); event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(_code_roots_phase)); } return false; } Tickspan strong_code_root_scan_time() const { return _strong_code_root_scan_time; } Tickspan strong_code_root_trim_partially_time() const { return _strong_code_trim_partially_time; } Tickspan rem_set_opt_root_scan_time() const { return _rem_set_opt_root_scan_time; } Tickspan rem_set_opt_trim_partially_time() const { return _rem_set_opt_trim_partially_time; } size_t opt_refs_scanned() const { return _opt_refs_scanned; } size_t opt_refs_memory_used() const { return _opt_refs_memory_used; } }; void G1RemSet::scan_collection_set_regions(G1ParScanThreadState* pss, uint worker_id, G1GCPhaseTimes::GCParPhases scan_phase, G1GCPhaseTimes::GCParPhases coderoots_phase, G1GCPhaseTimes::GCParPhases objcopy_phase) { G1ScanCollectionSetRegionClosure cl(_scan_state, pss, worker_id, scan_phase, coderoots_phase); _g1h->collection_set_iterate_increment_from(&cl, worker_id); G1GCPhaseTimes* p = _g1h->phase_times(); p->record_or_add_time_secs(scan_phase, worker_id, cl.rem_set_opt_root_scan_time().seconds()); p->record_or_add_time_secs(scan_phase, worker_id, cl.rem_set_opt_trim_partially_time().seconds()); p->record_or_add_time_secs(coderoots_phase, worker_id, cl.strong_code_root_scan_time().seconds()); p->add_time_secs(objcopy_phase, worker_id, cl.strong_code_root_trim_partially_time().seconds()); // At this time we record some metrics only for the evacuations after the initial one. if (scan_phase == G1GCPhaseTimes::OptScanHR) { p->record_or_add_thread_work_item(scan_phase, worker_id, cl.opt_refs_scanned(), G1GCPhaseTimes::ScanHRScannedOptRefs); p->record_or_add_thread_work_item(scan_phase, worker_id, cl.opt_refs_memory_used(), G1GCPhaseTimes::ScanHRUsedMemory); } } void G1RemSet::prepare_region_for_scan(HeapRegion* region) { uint hrm_index = region->hrm_index(); _scan_state->reset_region_claim(hrm_index); if (region->in_collection_set()) { // Young regions had their card table marked as young at their allocation; // we need to make sure that these marks are cleared at the end of GC, *but* // they should not be scanned for cards. // So directly add them to the "all_dirty_regions". // Same for regions in the (initial) collection set: they may contain cards from // the log buffers, make sure they are cleaned. _scan_state->clear_scan_top(hrm_index); _scan_state->add_all_dirty_region(hrm_index); } else if (region->is_old_or_humongous_or_archive()) { _scan_state->set_scan_top(hrm_index, region->top()); } else { assert(region->is_free(), "Should only be free region at this point %s", region->get_type_str()); } } void G1RemSet::prepare_for_scan_heap_roots() { G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); dcqs.concatenate_logs(); _scan_state->prepare(); } class G1MergeHeapRootsTask : public AbstractGangTask { // Visitor for remembered sets, dropping entries onto the card table. class G1MergeCardSetClosure : public HeapRegionClosure { G1RemSetScanState* _scan_state; G1CardTable* _ct; uint _merged_sparse; uint _merged_fine; uint _merged_coarse; // Returns if the region contains cards we need to scan. If so, remember that // region in the current set of dirty regions. bool remember_if_interesting(uint const region_idx) { if (!_scan_state->contains_cards_to_process(region_idx)) { return false; } _scan_state->add_dirty_region(region_idx); return true; } public: G1MergeCardSetClosure(G1RemSetScanState* scan_state) : _scan_state(scan_state), _ct(G1CollectedHeap::heap()->card_table()), _merged_sparse(0), _merged_fine(0), _merged_coarse(0) { } void next_coarse_prt(uint const region_idx) { if (!remember_if_interesting(region_idx)) { return; } _merged_coarse++; size_t region_base_idx = (size_t)region_idx << HeapRegion::LogCardsPerRegion; _ct->mark_region_dirty(region_base_idx, HeapRegion::CardsPerRegion); _scan_state->set_chunk_region_dirty(region_base_idx); } void next_fine_prt(uint const region_idx, BitMap* bm) { if (!remember_if_interesting(region_idx)) { return; } _merged_fine++; size_t const region_base_idx = (size_t)region_idx << HeapRegion::LogCardsPerRegion; BitMap::idx_t cur = bm->get_next_one_offset(0); while (cur != bm->size()) { _ct->mark_clean_as_dirty(region_base_idx + cur); _scan_state->set_chunk_dirty(region_base_idx + cur); cur = bm->get_next_one_offset(cur + 1); } } void next_sparse_prt(uint const region_idx, SparsePRTEntry::card_elem_t* cards, uint const num_cards) { if (!remember_if_interesting(region_idx)) { return; } _merged_sparse++; size_t const region_base_idx = (size_t)region_idx << HeapRegion::LogCardsPerRegion; for (uint i = 0; i < num_cards; i++) { size_t card_idx = region_base_idx + cards[i]; _ct->mark_clean_as_dirty(card_idx); _scan_state->set_chunk_dirty(card_idx); } } virtual bool do_heap_region(HeapRegion* r) { assert(r->in_collection_set() || r->is_starts_humongous(), "must be"); HeapRegionRemSet* rem_set = r->rem_set(); if (!rem_set->is_empty()) { rem_set->iterate_prts(*this); } return false; } size_t merged_sparse() const { return _merged_sparse; } size_t merged_fine() const { return _merged_fine; } size_t merged_coarse() const { return _merged_coarse; } }; // Visitor for the remembered sets of humongous candidate regions to merge their // remembered set into the card table. class G1FlushHumongousCandidateRemSets : public HeapRegionClosure { G1MergeCardSetClosure _cl; public: G1FlushHumongousCandidateRemSets(G1RemSetScanState* scan_state) : _cl(scan_state) { } virtual bool do_heap_region(HeapRegion* r) { G1CollectedHeap* g1h = G1CollectedHeap::heap(); if (!r->is_starts_humongous() || !g1h->region_attr(r->hrm_index()).is_humongous() || r->rem_set()->is_empty()) { return false; } guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries), "Found a not-small remembered set here. This is inconsistent with previous assumptions."); _cl.do_heap_region(r); // We should only clear the card based remembered set here as we will not // implicitly rebuild anything else during eager reclaim. Note that at the moment // (and probably never) we do not enter this path if there are other kind of // remembered sets for this region. r->rem_set()->clear_locked(true /* only_cardset */); // Clear_locked() above sets the state to Empty. However we want to continue // collecting remembered set entries for humongous regions that were not // reclaimed. r->rem_set()->set_state_complete(); #ifdef ASSERT G1HeapRegionAttr region_attr = g1h->region_attr(r->hrm_index()); assert(region_attr.needs_remset_update(), "must be"); #endif assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty."); return false; } size_t merged_sparse() const { return _cl.merged_sparse(); } size_t merged_fine() const { return _cl.merged_fine(); } size_t merged_coarse() const { return _cl.merged_coarse(); } }; // Visitor for the log buffer entries to merge them into the card table. class G1MergeLogBufferCardsClosure : public G1CardTableEntryClosure { G1RemSetScanState* _scan_state; G1CardTable* _ct; size_t _cards_dirty; size_t _cards_skipped; public: G1MergeLogBufferCardsClosure(G1CollectedHeap* g1h, G1RemSetScanState* scan_state) : _scan_state(scan_state), _ct(g1h->card_table()), _cards_dirty(0), _cards_skipped(0) {} void do_card_ptr(CardValue* card_ptr, uint worker_id) { // The only time we care about recording cards that // contain references that point into the collection set // is during RSet updating within an evacuation pause. // In this case worker_id should be the id of a GC worker thread. assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause"); uint const region_idx = _ct->region_idx_for(card_ptr); // The second clause must come after - the log buffers might contain cards to uncommited // regions. // This code may count duplicate entries in the log buffers (even if rare) multiple // times. if (_scan_state->contains_cards_to_process(region_idx) && (*card_ptr == G1CardTable::dirty_card_val())) { _scan_state->add_dirty_region(region_idx); _scan_state->set_chunk_dirty(_ct->index_for_cardvalue(card_ptr)); _cards_dirty++; } else { // We may have had dirty cards in the (initial) collection set (or the // young regions which are always in the initial collection set). We do // not fix their cards here: we already added these regions to the set of // regions to clear the card table at the end during the prepare() phase. _cards_skipped++; } } size_t cards_dirty() const { return _cards_dirty; } size_t cards_skipped() const { return _cards_skipped; } }; HeapRegionClaimer _hr_claimer; G1RemSetScanState* _scan_state; BufferNode::Stack _dirty_card_buffers; bool _initial_evacuation; volatile bool _fast_reclaim_handled; void apply_closure_to_dirty_card_buffers(G1MergeLogBufferCardsClosure* cl, uint worker_id) { G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); size_t buffer_size = dcqs.buffer_size(); while (BufferNode* node = _dirty_card_buffers.pop()) { cl->apply_to_buffer(node, buffer_size, worker_id); dcqs.deallocate_buffer(node); } } public: G1MergeHeapRootsTask(G1RemSetScanState* scan_state, uint num_workers, bool initial_evacuation) : AbstractGangTask("G1 Merge Heap Roots"), _hr_claimer(num_workers), _scan_state(scan_state), _dirty_card_buffers(), _initial_evacuation(initial_evacuation), _fast_reclaim_handled(false) { if (initial_evacuation) { G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set(); G1BufferNodeList buffers = dcqs.take_all_completed_buffers(); if (buffers._entry_count != 0) { _dirty_card_buffers.prepend(*buffers._head, *buffers._tail); } } } virtual void work(uint worker_id) { G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1GCPhaseTimes* p = g1h->phase_times(); G1GCPhaseTimes::GCParPhases merge_remset_phase = _initial_evacuation ? G1GCPhaseTimes::MergeRS : G1GCPhaseTimes::OptMergeRS; // We schedule flushing the remembered sets of humongous fast reclaim candidates // onto the card table first to allow the remaining parallelized tasks hide it. if (_initial_evacuation && p->fast_reclaim_humongous_candidates() > 0 && !_fast_reclaim_handled && !Atomic::cmpxchg(true, &_fast_reclaim_handled, false)) { G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::MergeER, worker_id); G1FlushHumongousCandidateRemSets cl(_scan_state); g1h->heap_region_iterate(&cl); p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_sparse(), G1GCPhaseTimes::MergeRSMergedSparse); p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_fine(), G1GCPhaseTimes::MergeRSMergedFine); p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_coarse(), G1GCPhaseTimes::MergeRSMergedCoarse); } // Merge remembered sets of current candidates. { G1GCParPhaseTimesTracker x(p, merge_remset_phase, worker_id, _initial_evacuation /* must_record */); G1MergeCardSetClosure cl(_scan_state); g1h->collection_set_iterate_increment_from(&cl, &_hr_claimer, worker_id); p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_sparse(), G1GCPhaseTimes::MergeRSMergedSparse); p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_fine(), G1GCPhaseTimes::MergeRSMergedFine); p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_coarse(), G1GCPhaseTimes::MergeRSMergedCoarse); } // Apply closure to log entries in the HCC. if (_initial_evacuation && G1HotCardCache::default_use_cache()) { assert(merge_remset_phase == G1GCPhaseTimes::MergeRS, "Wrong merge phase"); G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::MergeHCC, worker_id); G1MergeLogBufferCardsClosure cl(g1h, _scan_state); g1h->iterate_hcc_closure(&cl, worker_id); p->record_thread_work_item(G1GCPhaseTimes::MergeHCC, worker_id, cl.cards_dirty(), G1GCPhaseTimes::MergeHCCDirtyCards); p->record_thread_work_item(G1GCPhaseTimes::MergeHCC, worker_id, cl.cards_skipped(), G1GCPhaseTimes::MergeHCCSkippedCards); } // Now apply the closure to all remaining log entries. if (_initial_evacuation) { assert(merge_remset_phase == G1GCPhaseTimes::MergeRS, "Wrong merge phase"); G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::MergeLB, worker_id); G1MergeLogBufferCardsClosure cl(g1h, _scan_state); apply_closure_to_dirty_card_buffers(&cl, worker_id); p->record_thread_work_item(G1GCPhaseTimes::MergeLB, worker_id, cl.cards_dirty(), G1GCPhaseTimes::MergeLBDirtyCards); p->record_thread_work_item(G1GCPhaseTimes::MergeLB, worker_id, cl.cards_skipped(), G1GCPhaseTimes::MergeLBSkippedCards); } } }; void G1RemSet::print_merge_heap_roots_stats() { size_t num_visited_cards = _scan_state->num_visited_cards(); size_t total_dirty_region_cards = _scan_state->num_cards_in_dirty_regions(); G1CollectedHeap* g1h = G1CollectedHeap::heap(); size_t total_old_region_cards = (g1h->num_regions() - (g1h->num_free_regions() - g1h->collection_set()->cur_length())) * HeapRegion::CardsPerRegion; log_debug(gc,remset)("Visited cards " SIZE_FORMAT " Total dirty " SIZE_FORMAT " (%.2lf%%) Total old " SIZE_FORMAT " (%.2lf%%)", num_visited_cards, total_dirty_region_cards, percent_of(num_visited_cards, total_dirty_region_cards), total_old_region_cards, percent_of(num_visited_cards, total_old_region_cards)); } void G1RemSet::merge_heap_roots(bool initial_evacuation) { G1CollectedHeap* g1h = G1CollectedHeap::heap(); { Ticks start = Ticks::now(); _scan_state->prepare_for_merge_heap_roots(); Tickspan total = Ticks::now() - start; if (initial_evacuation) { g1h->phase_times()->record_prepare_merge_heap_roots_time(total.seconds() * 1000.0); } else { g1h->phase_times()->record_or_add_optional_prepare_merge_heap_roots_time(total.seconds() * 1000.0); } } WorkGang* workers = g1h->workers(); size_t const increment_length = g1h->collection_set()->increment_length(); uint const num_workers = initial_evacuation ? workers->active_workers() : MIN2(workers->active_workers(), (uint)increment_length); { G1MergeHeapRootsTask cl(_scan_state, num_workers, initial_evacuation); log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " regions", cl.name(), num_workers, increment_length); workers->run_task(&cl, num_workers); } if (log_is_enabled(Debug, gc, remset)) { print_merge_heap_roots_stats(); } } void G1RemSet::exclude_region_from_scan(uint region_idx) { _scan_state->clear_scan_top(region_idx); } void G1RemSet::cleanup_after_scan_heap_roots() { G1GCPhaseTimes* phase_times = _g1h->phase_times(); // Set all cards back to clean. double start = os::elapsedTime(); _scan_state->cleanup(_g1h->workers()); phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0); } inline void check_card_ptr(CardTable::CardValue* card_ptr, G1CardTable* ct) { #ifdef ASSERT G1CollectedHeap* g1h = G1CollectedHeap::heap(); assert(g1h->is_in_exact(ct->addr_for(card_ptr)), "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap", p2i(card_ptr), ct->index_for(ct->addr_for(card_ptr)), p2i(ct->addr_for(card_ptr)), g1h->addr_to_region(ct->addr_for(card_ptr))); #endif } void G1RemSet::refine_card_concurrently(CardValue* card_ptr, uint worker_id) { assert(!_g1h->is_gc_active(), "Only call concurrently"); // Construct the region representing the card. HeapWord* start = _ct->addr_for(card_ptr); // And find the region containing it. HeapRegion* r = _g1h->heap_region_containing_or_null(start); // If this is a (stale) card into an uncommitted region, exit. if (r == NULL) { return; } check_card_ptr(card_ptr, _ct); // If the card is no longer dirty, nothing to do. if (*card_ptr != G1CardTable::dirty_card_val()) { return; } // This check is needed for some uncommon cases where we should // ignore the card. // // The region could be young. Cards for young regions are // distinctly marked (set to g1_young_gen), so the post-barrier will // filter them out. However, that marking is performed // concurrently. A write to a young object could occur before the // card has been marked young, slipping past the filter. // // The card could be stale, because the region has been freed since // the card was recorded. In this case the region type could be // anything. If (still) free or (reallocated) young, just ignore // it. If (reallocated) old or humongous, the later card trimming // and additional checks in iteration may detect staleness. At // worst, we end up processing a stale card unnecessarily. // // In the normal (non-stale) case, the synchronization between the // enqueueing of the card and processing it here will have ensured // we see the up-to-date region type here. if (!r->is_old_or_humongous_or_archive()) { return; } // The result from the hot card cache insert call is either: // * pointer to the current card // (implying that the current card is not 'hot'), // * null // (meaning we had inserted the card ptr into the "hot" card cache, // which had some headroom), // * a pointer to a "hot" card that was evicted from the "hot" cache. // if (_hot_card_cache->use_cache()) { assert(!SafepointSynchronize::is_at_safepoint(), "sanity"); const CardValue* orig_card_ptr = card_ptr; card_ptr = _hot_card_cache->insert(card_ptr); if (card_ptr == NULL) { // There was no eviction. Nothing to do. return; } else if (card_ptr != orig_card_ptr) { // Original card was inserted and an old card was evicted. start = _ct->addr_for(card_ptr); r = _g1h->heap_region_containing(start); // Check whether the region formerly in the cache should be // ignored, as discussed earlier for the original card. The // region could have been freed while in the cache. if (!r->is_old_or_humongous_or_archive()) { return; } } // Else we still have the original card. } // Trim the region designated by the card to what's been allocated // in the region. The card could be stale, or the card could cover // (part of) an object at the end of the allocated space and extend // beyond the end of allocation. // Non-humongous objects are only allocated in the old-gen during // GC, so if region is old then top is stable. Humongous object // allocation sets top last; if top has not yet been set, this is // a stale card and we'll end up with an empty intersection. If // this is not a stale card, the synchronization between the // enqueuing of the card and processing it here will have ensured // we see the up-to-date top here. HeapWord* scan_limit = r->top(); if (scan_limit <= start) { // If the trimmed region is empty, the card must be stale. return; } // Okay to clean and process the card now. There are still some // stale card cases that may be detected by iteration and dealt with // as iteration failure. *const_cast(card_ptr) = G1CardTable::clean_card_val(); // This fence serves two purposes. First, the card must be cleaned // before processing the contents. Second, we can't proceed with // processing until after the read of top, for synchronization with // possibly concurrent humongous object allocation. It's okay that // reading top and reading type were racy wrto each other. We need // both set, in any order, to proceed. OrderAccess::fence(); // Don't use addr_for(card_ptr + 1) which can ask for // a card beyond the heap. HeapWord* end = start + G1CardTable::card_size_in_words; MemRegion dirty_region(start, MIN2(scan_limit, end)); assert(!dirty_region.is_empty(), "sanity"); G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_id); if (r->oops_on_memregion_seq_iterate_careful(dirty_region, &conc_refine_cl) != NULL) { return; } // If unable to process the card then we encountered an unparsable // part of the heap (e.g. a partially allocated object, so only // temporarily a problem) while processing a stale card. Despite // the card being stale, we can't simply ignore it, because we've // already marked the card cleaned, so taken responsibility for // ensuring the card gets scanned. // // However, the card might have gotten re-dirtied and re-enqueued // while we worked. (In fact, it's pretty likely.) if (*card_ptr == G1CardTable::dirty_card_val()) { return; } // Re-dirty the card and enqueue in the *shared* queue. Can't use // the thread-local queue, because that might be the queue that is // being processed by us; we could be a Java thread conscripted to // perform refinement on our queue's current buffer. *card_ptr = G1CardTable::dirty_card_val(); G1BarrierSet::shared_dirty_card_queue().enqueue(card_ptr); } void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) { if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) && (period_count % G1SummarizeRSetStatsPeriod == 0)) { G1RemSetSummary current; _prev_period_summary.subtract_from(¤t); Log(gc, remset) log; log.trace("%s", header); ResourceMark rm; LogStream ls(log.trace()); _prev_period_summary.print_on(&ls); _prev_period_summary.set(¤t); } } void G1RemSet::print_summary_info() { Log(gc, remset, exit) log; if (log.is_trace()) { log.trace(" Cumulative RS summary"); G1RemSetSummary current; ResourceMark rm; LogStream ls(log.trace()); current.print_on(&ls); } } class G1RebuildRemSetTask: public AbstractGangTask { // Aggregate the counting data that was constructed concurrently // with marking. class G1RebuildRemSetHeapRegionClosure : public HeapRegionClosure { G1ConcurrentMark* _cm; G1RebuildRemSetClosure _update_cl; // Applies _update_cl to the references of the given object, limiting objArrays // to the given MemRegion. Returns the amount of words actually scanned. size_t scan_for_references(oop const obj, MemRegion mr) { size_t const obj_size = obj->size(); // All non-objArrays and objArrays completely within the mr // can be scanned without passing the mr. if (!obj->is_objArray() || mr.contains(MemRegion((HeapWord*)obj, obj_size))) { obj->oop_iterate(&_update_cl); return obj_size; } // This path is for objArrays crossing the given MemRegion. Only scan the // area within the MemRegion. obj->oop_iterate(&_update_cl, mr); return mr.intersection(MemRegion((HeapWord*)obj, obj_size)).word_size(); } // A humongous object is live (with respect to the scanning) either // a) it is marked on the bitmap as such // b) its TARS is larger than TAMS, i.e. has been allocated during marking. bool is_humongous_live(oop const humongous_obj, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* tars) const { return bitmap->is_marked(humongous_obj) || (tars > tams); } // Iterator over the live objects within the given MemRegion. class LiveObjIterator : public StackObj { const G1CMBitMap* const _bitmap; const HeapWord* _tams; const MemRegion _mr; HeapWord* _current; bool is_below_tams() const { return _current < _tams; } bool is_live(HeapWord* obj) const { return !is_below_tams() || _bitmap->is_marked(obj); } HeapWord* bitmap_limit() const { return MIN2(const_cast(_tams), _mr.end()); } void move_if_below_tams() { if (is_below_tams() && has_next()) { _current = _bitmap->get_next_marked_addr(_current, bitmap_limit()); } } public: LiveObjIterator(const G1CMBitMap* const bitmap, const HeapWord* tams, const MemRegion mr, HeapWord* first_oop_into_mr) : _bitmap(bitmap), _tams(tams), _mr(mr), _current(first_oop_into_mr) { assert(_current <= _mr.start(), "First oop " PTR_FORMAT " should extend into mr [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(first_oop_into_mr), p2i(mr.start()), p2i(mr.end())); // Step to the next live object within the MemRegion if needed. if (is_live(_current)) { // Non-objArrays were scanned by the previous part of that region. if (_current < mr.start() && !oop(_current)->is_objArray()) { _current += oop(_current)->size(); // We might have positioned _current on a non-live object. Reposition to the next // live one if needed. move_if_below_tams(); } } else { // The object at _current can only be dead if below TAMS, so we can use the bitmap. // immediately. _current = _bitmap->get_next_marked_addr(_current, bitmap_limit()); assert(_current == _mr.end() || is_live(_current), "Current " PTR_FORMAT " should be live (%s) or beyond the end of the MemRegion (" PTR_FORMAT ")", p2i(_current), BOOL_TO_STR(is_live(_current)), p2i(_mr.end())); } } void move_to_next() { _current += next()->size(); move_if_below_tams(); } oop next() const { oop result = oop(_current); assert(is_live(_current), "Object " PTR_FORMAT " must be live TAMS " PTR_FORMAT " below %d mr " PTR_FORMAT " " PTR_FORMAT " outside %d", p2i(_current), p2i(_tams), _tams > _current, p2i(_mr.start()), p2i(_mr.end()), _mr.contains(result)); return result; } bool has_next() const { return _current < _mr.end(); } }; // Rebuild remembered sets in the part of the region specified by mr and hr. // Objects between the bottom of the region and the TAMS are checked for liveness // using the given bitmap. Objects between TAMS and TARS are assumed to be live. // Returns the number of live words between bottom and TAMS. size_t rebuild_rem_set_in_region(const G1CMBitMap* const bitmap, HeapWord* const top_at_mark_start, HeapWord* const top_at_rebuild_start, HeapRegion* hr, MemRegion mr) { size_t marked_words = 0; if (hr->is_humongous()) { oop const humongous_obj = oop(hr->humongous_start_region()->bottom()); if (is_humongous_live(humongous_obj, bitmap, top_at_mark_start, top_at_rebuild_start)) { // We need to scan both [bottom, TAMS) and [TAMS, top_at_rebuild_start); // however in case of humongous objects it is sufficient to scan the encompassing // area (top_at_rebuild_start is always larger or equal to TAMS) as one of the // two areas will be zero sized. I.e. TAMS is either // the same as bottom or top(_at_rebuild_start). There is no way TAMS has a different // value: this would mean that TAMS points somewhere into the object. assert(hr->top() == top_at_mark_start || hr->top() == top_at_rebuild_start, "More than one object in the humongous region?"); humongous_obj->oop_iterate(&_update_cl, mr); return top_at_mark_start != hr->bottom() ? mr.intersection(MemRegion((HeapWord*)humongous_obj, humongous_obj->size())).byte_size() : 0; } else { return 0; } } for (LiveObjIterator it(bitmap, top_at_mark_start, mr, hr->block_start(mr.start())); it.has_next(); it.move_to_next()) { oop obj = it.next(); size_t scanned_size = scan_for_references(obj, mr); if ((HeapWord*)obj < top_at_mark_start) { marked_words += scanned_size; } } return marked_words * HeapWordSize; } public: G1RebuildRemSetHeapRegionClosure(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint worker_id) : HeapRegionClosure(), _cm(cm), _update_cl(g1h, worker_id) { } bool do_heap_region(HeapRegion* hr) { if (_cm->has_aborted()) { return true; } uint const region_idx = hr->hrm_index(); DEBUG_ONLY(HeapWord* const top_at_rebuild_start_check = _cm->top_at_rebuild_start(region_idx);) assert(top_at_rebuild_start_check == NULL || top_at_rebuild_start_check > hr->bottom(), "A TARS (" PTR_FORMAT ") == bottom() (" PTR_FORMAT ") indicates the old region %u is empty (%s)", p2i(top_at_rebuild_start_check), p2i(hr->bottom()), region_idx, hr->get_type_str()); size_t total_marked_bytes = 0; size_t const chunk_size_in_words = G1RebuildRemSetChunkSize / HeapWordSize; HeapWord* const top_at_mark_start = hr->prev_top_at_mark_start(); HeapWord* cur = hr->bottom(); while (cur < hr->end()) { // After every iteration (yield point) we need to check whether the region's // TARS changed due to e.g. eager reclaim. HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx); if (top_at_rebuild_start == NULL) { return false; } MemRegion next_chunk = MemRegion(hr->bottom(), top_at_rebuild_start).intersection(MemRegion(cur, chunk_size_in_words)); if (next_chunk.is_empty()) { break; } const Ticks start = Ticks::now(); size_t marked_bytes = rebuild_rem_set_in_region(_cm->prev_mark_bitmap(), top_at_mark_start, top_at_rebuild_start, hr, next_chunk); Tickspan time = Ticks::now() - start; log_trace(gc, remset, tracking)("Rebuilt region %u " "live " SIZE_FORMAT " " "time %.3fms " "marked bytes " SIZE_FORMAT " " "bot " PTR_FORMAT " " "TAMS " PTR_FORMAT " " "TARS " PTR_FORMAT, region_idx, _cm->liveness(region_idx) * HeapWordSize, time.seconds() * 1000.0, marked_bytes, p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start)); if (marked_bytes > 0) { total_marked_bytes += marked_bytes; } cur += chunk_size_in_words; _cm->do_yield_check(); if (_cm->has_aborted()) { return true; } } // In the final iteration of the loop the region might have been eagerly reclaimed. // Simply filter out those regions. We can not just use region type because there // might have already been new allocations into these regions. DEBUG_ONLY(HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);) assert(top_at_rebuild_start == NULL || total_marked_bytes == hr->marked_bytes(), "Marked bytes " SIZE_FORMAT " for region %u (%s) in [bottom, TAMS) do not match calculated marked bytes " SIZE_FORMAT " " "(" PTR_FORMAT " " PTR_FORMAT " " PTR_FORMAT ")", total_marked_bytes, hr->hrm_index(), hr->get_type_str(), hr->marked_bytes(), p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start)); // Abort state may have changed after the yield check. return _cm->has_aborted(); } }; HeapRegionClaimer _hr_claimer; G1ConcurrentMark* _cm; uint _worker_id_offset; public: G1RebuildRemSetTask(G1ConcurrentMark* cm, uint n_workers, uint worker_id_offset) : AbstractGangTask("G1 Rebuild Remembered Set"), _hr_claimer(n_workers), _cm(cm), _worker_id_offset(worker_id_offset) { } void work(uint worker_id) { SuspendibleThreadSetJoiner sts_join; G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1RebuildRemSetHeapRegionClosure cl(g1h, _cm, _worker_id_offset + worker_id); g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hr_claimer, worker_id); } }; void G1RemSet::rebuild_rem_set(G1ConcurrentMark* cm, WorkGang* workers, uint worker_id_offset) { uint num_workers = workers->active_workers(); G1RebuildRemSetTask cl(cm, num_workers, worker_id_offset); workers->run_task(&cl, num_workers); }