1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 141 {
 142   // Claim the right to put the region on the dirty cards region list
 143   // by installing a self pointer.
 144   HeapRegion* next = hr->get_next_dirty_cards_region();
 145   if (next == NULL) {
 146     HeapRegion* res = (HeapRegion*)
 147       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 148                           NULL);
 149     if (res == NULL) {
 150       HeapRegion* head;
 151       do {
 152         // Put the region to the dirty cards region list.
 153         head = _dirty_cards_region_list;
 154         next = (HeapRegion*)
 155           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 156         if (next == head) {
 157           assert(hr->get_next_dirty_cards_region() == hr,
 158                  "hr->get_next_dirty_cards_region() != hr");
 159           if (next == NULL) {
 160             // The last region in the list points to itself.
 161             hr->set_next_dirty_cards_region(hr);
 162           } else {
 163             hr->set_next_dirty_cards_region(next);
 164           }
 165         }
 166       } while (next != head);
 167     }
 168   }
 169 }
 170 
 171 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 172 {
 173   HeapRegion* head;
 174   HeapRegion* hr;
 175   do {
 176     head = _dirty_cards_region_list;
 177     if (head == NULL) {
 178       return NULL;
 179     }
 180     HeapRegion* new_head = head->get_next_dirty_cards_region();
 181     if (head == new_head) {
 182       // The last region.
 183       new_head = NULL;
 184     }
 185     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 186                                           head);
 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);
 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new top of the new object.
 324   HeapWord* obj_top = new_obj + word_size;
 325 
 326   // First, we need to zero the header of the space that we will be
 327   // allocating. When we update top further down, some refinement
 328   // threads might try to scan the region. By zeroing the header we
 329   // ensure that any thread that will try to scan the region will
 330   // come across the zero klass word and bail out.
 331   //
 332   // NOTE: It would not have been correct to have used
 333   // CollectedHeap::fill_with_object() and make the space look like
 334   // an int array. The thread that is doing the allocation will
 335   // later update the object header to a potentially different array
 336   // type and, for a very short period of time, the klass and length
 337   // fields will be inconsistent. This could cause a refinement
 338   // thread to calculate the object size incorrectly.
 339   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 340 
 341   // We will set up the first region as "starts humongous". This
 342   // will also update the BOT covering all the regions to reflect
 343   // that there is a single object that starts at the bottom of the
 344   // first region.
 345   first_hr->set_starts_humongous(obj_top);
 346   first_hr->set_allocation_context(context);
 347   // Then, if there are any, we will set up the "continues
 348   // humongous" regions.
 349   HeapRegion* hr = NULL;
 350   for (uint i = first + 1; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_continues_humongous(first_hr);
 353     hr->set_allocation_context(context);
 354   }
 355 
 356   // Up to this point no concurrent thread would have been able to
 357   // do any scanning on any region in this series. All the top
 358   // fields still point to bottom, so the intersection between
 359   // [bottom,top] and [card_start,card_end] will be empty. Before we
 360   // update the top fields, we'll do a storestore to make sure that
 361   // no thread sees the update to top before the zeroing of the
 362   // object header and the BOT initialization.
 363   OrderAccess::storestore();
 364 
 365   // Now that the BOT and the object header have been initialized,
 366   // we can update top of the "starts humongous" region.
 367   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 368   if (_hr_printer.is_active()) {
 369     _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->top());
 370   }
 371 
 372   // Now, we will update the top fields of the "continues humongous"
 373   // regions.
 374   hr = NULL;
 375   for (uint i = first + 1; i < last; ++i) {
 376     hr = region_at(i);
 377     if ((i + 1) == last) {
 378       // last continues humongous region
 379       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 380              "new_top should fall on this region");
 381       hr->set_top(obj_top);
 382       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 383     } else {
 384       // not last one
 385       assert(obj_top > hr->end(), "obj_top should be above this region");
 386       hr->set_top(hr->end());
 387       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 388     }
 389   }
 390   // If we have continues humongous regions (hr != NULL), its top should
 391   // match obj_top.
 392   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 393   check_bitmaps("Humongous Region Allocation", first_hr);
 394 
 395   increase_used(word_size * HeapWordSize);
 396 
 397   for (uint i = first; i < last; ++i) {
 398     _humongous_set.add(region_at(i));
 399   }
 400 
 401   return new_obj;
 402 }
 403 
 404 // If could fit into free regions w/o expansion, try.
 405 // Otherwise, if can expand, do so.
 406 // Otherwise, if using ex regions might help, try with ex given back.
 407 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 408   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 409 
 410   verify_region_sets_optional();
 411 
 412   uint first = G1_NO_HRM_INDEX;
 413   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 414 
 415   if (obj_regions == 1) {
 416     // Only one region to allocate, try to use a fast path by directly allocating
 417     // from the free lists. Do not try to expand here, we will potentially do that
 418     // later.
 419     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 420     if (hr != NULL) {
 421       first = hr->hrm_index();
 422     }
 423   } else {
 424     // We can't allocate humongous regions spanning more than one region while
 425     // cleanupComplete() is running, since some of the regions we find to be
 426     // empty might not yet be added to the free list. It is not straightforward
 427     // to know in which list they are on so that we can remove them. We only
 428     // need to do this if we need to allocate more than one region to satisfy the
 429     // current humongous allocation request. If we are only allocating one region
 430     // we use the one-region region allocation code (see above), that already
 431     // potentially waits for regions from the secondary free list.
 432     wait_while_free_regions_coming();
 433     append_secondary_free_list_if_not_empty_with_lock();
 434 
 435     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 436     // are lucky enough to find some.
 437     first = _hrm.find_contiguous_only_empty(obj_regions);
 438     if (first != G1_NO_HRM_INDEX) {
 439       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 440     }
 441   }
 442 
 443   if (first == G1_NO_HRM_INDEX) {
 444     // Policy: We could not find enough regions for the humongous object in the
 445     // free list. Look through the heap to find a mix of free and uncommitted regions.
 446     // If so, try expansion.
 447     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 448     if (first != G1_NO_HRM_INDEX) {
 449       // We found something. Make sure these regions are committed, i.e. expand
 450       // the heap. Alternatively we could do a defragmentation GC.
 451       ergo_verbose1(ErgoHeapSizing,
 452                     "attempt heap expansion",
 453                     ergo_format_reason("humongous allocation request failed")
 454                     ergo_format_byte("allocation request"),
 455                     word_size * HeapWordSize);
 456 
 457       _hrm.expand_at(first, obj_regions);
 458       g1_policy()->record_new_heap_size(num_regions());
 459 
 460 #ifdef ASSERT
 461       for (uint i = first; i < first + obj_regions; ++i) {
 462         HeapRegion* hr = region_at(i);
 463         assert(hr->is_free(), "sanity");
 464         assert(hr->is_empty(), "sanity");
 465         assert(is_on_master_free_list(hr), "sanity");
 466       }
 467 #endif
 468       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 469     } else {
 470       // Policy: Potentially trigger a defragmentation GC.
 471     }
 472   }
 473 
 474   HeapWord* result = NULL;
 475   if (first != G1_NO_HRM_INDEX) {
 476     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 477                                                        word_size, context);
 478     assert(result != NULL, "it should always return a valid result");
 479 
 480     // A successful humongous object allocation changes the used space
 481     // information of the old generation so we need to recalculate the
 482     // sizes and update the jstat counters here.
 483     g1mm()->update_sizes();
 484   }
 485 
 486   verify_region_sets_optional();
 487 
 488   return result;
 489 }
 490 
 491 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 492   assert_heap_not_locked_and_not_at_safepoint();
 493   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 494 
 495   uint dummy_gc_count_before;
 496   uint dummy_gclocker_retry_count = 0;
 497   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 498 }
 499 
 500 HeapWord*
 501 G1CollectedHeap::mem_allocate(size_t word_size,
 502                               bool*  gc_overhead_limit_was_exceeded) {
 503   assert_heap_not_locked_and_not_at_safepoint();
 504 
 505   // Loop until the allocation is satisfied, or unsatisfied after GC.
 506   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 507     uint gc_count_before;
 508 
 509     HeapWord* result = NULL;
 510     if (!is_humongous(word_size)) {
 511       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 512     } else {
 513       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 514     }
 515     if (result != NULL) {
 516       return result;
 517     }
 518 
 519     // Create the garbage collection operation...
 520     VM_G1CollectForAllocation op(gc_count_before, word_size);
 521     op.set_allocation_context(AllocationContext::current());
 522 
 523     // ...and get the VM thread to execute it.
 524     VMThread::execute(&op);
 525 
 526     if (op.prologue_succeeded() && op.pause_succeeded()) {
 527       // If the operation was successful we'll return the result even
 528       // if it is NULL. If the allocation attempt failed immediately
 529       // after a Full GC, it's unlikely we'll be able to allocate now.
 530       HeapWord* result = op.result();
 531       if (result != NULL && !is_humongous(word_size)) {
 532         // Allocations that take place on VM operations do not do any
 533         // card dirtying and we have to do it here. We only have to do
 534         // this for non-humongous allocations, though.
 535         dirty_young_block(result, word_size);
 536       }
 537       return result;
 538     } else {
 539       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 540         return NULL;
 541       }
 542       assert(op.result() == NULL,
 543              "the result should be NULL if the VM op did not succeed");
 544     }
 545 
 546     // Give a warning if we seem to be looping forever.
 547     if ((QueuedAllocationWarningCount > 0) &&
 548         (try_count % QueuedAllocationWarningCount == 0)) {
 549       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 550     }
 551   }
 552 
 553   ShouldNotReachHere();
 554   return NULL;
 555 }
 556 
 557 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 558                                                    AllocationContext_t context,
 559                                                    uint* gc_count_before_ret,
 560                                                    uint* gclocker_retry_count_ret) {
 561   // Make sure you read the note in attempt_allocation_humongous().
 562 
 563   assert_heap_not_locked_and_not_at_safepoint();
 564   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 565          "be called for humongous allocation requests");
 566 
 567   // We should only get here after the first-level allocation attempt
 568   // (attempt_allocation()) failed to allocate.
 569 
 570   // We will loop until a) we manage to successfully perform the
 571   // allocation or b) we successfully schedule a collection which
 572   // fails to perform the allocation. b) is the only case when we'll
 573   // return NULL.
 574   HeapWord* result = NULL;
 575   for (int try_count = 1; /* we'll return */; try_count += 1) {
 576     bool should_try_gc;
 577     uint gc_count_before;
 578 
 579     {
 580       MutexLockerEx x(Heap_lock);
 581       result = _allocator->attempt_allocation_locked(word_size, context);
 582       if (result != NULL) {
 583         return result;
 584       }
 585 
 586       if (GC_locker::is_active_and_needs_gc()) {
 587         if (g1_policy()->can_expand_young_list()) {
 588           // No need for an ergo verbose message here,
 589           // can_expand_young_list() does this when it returns true.
 590           result = _allocator->attempt_allocation_force(word_size, context);
 591           if (result != NULL) {
 592             return result;
 593           }
 594         }
 595         should_try_gc = false;
 596       } else {
 597         // The GCLocker may not be active but the GCLocker initiated
 598         // GC may not yet have been performed (GCLocker::needs_gc()
 599         // returns true). In this case we do not try this GC and
 600         // wait until the GCLocker initiated GC is performed, and
 601         // then retry the allocation.
 602         if (GC_locker::needs_gc()) {
 603           should_try_gc = false;
 604         } else {
 605           // Read the GC count while still holding the Heap_lock.
 606           gc_count_before = total_collections();
 607           should_try_gc = true;
 608         }
 609       }
 610     }
 611 
 612     if (should_try_gc) {
 613       bool succeeded;
 614       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 615                                    GCCause::_g1_inc_collection_pause);
 616       if (result != NULL) {
 617         assert(succeeded, "only way to get back a non-NULL result");
 618         return result;
 619       }
 620 
 621       if (succeeded) {
 622         // If we get here we successfully scheduled a collection which
 623         // failed to allocate. No point in trying to allocate
 624         // further. We'll just return NULL.
 625         MutexLockerEx x(Heap_lock);
 626         *gc_count_before_ret = total_collections();
 627         return NULL;
 628       }
 629     } else {
 630       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 631         MutexLockerEx x(Heap_lock);
 632         *gc_count_before_ret = total_collections();
 633         return NULL;
 634       }
 635       // The GCLocker is either active or the GCLocker initiated
 636       // GC has not yet been performed. Stall until it is and
 637       // then retry the allocation.
 638       GC_locker::stall_until_clear();
 639       (*gclocker_retry_count_ret) += 1;
 640     }
 641 
 642     // We can reach here if we were unsuccessful in scheduling a
 643     // collection (because another thread beat us to it) or if we were
 644     // stalled due to the GC locker. In either can we should retry the
 645     // allocation attempt in case another thread successfully
 646     // performed a collection and reclaimed enough space. We do the
 647     // first attempt (without holding the Heap_lock) here and the
 648     // follow-on attempt will be at the start of the next loop
 649     // iteration (after taking the Heap_lock).
 650     result = _allocator->attempt_allocation(word_size, context);
 651     if (result != NULL) {
 652       return result;
 653     }
 654 
 655     // Give a warning if we seem to be looping forever.
 656     if ((QueuedAllocationWarningCount > 0) &&
 657         (try_count % QueuedAllocationWarningCount == 0)) {
 658       warning("G1CollectedHeap::attempt_allocation_slow() "
 659               "retries %d times", try_count);
 660     }
 661   }
 662 
 663   ShouldNotReachHere();
 664   return NULL;
 665 }
 666 
 667 void G1CollectedHeap::begin_archive_alloc_range() {
 668   assert_at_safepoint(true /* should_be_vm_thread */);
 669   if (_archive_allocator == NULL) {
 670     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 671   }
 672 }
 673 
 674 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 675   // Allocations in archive regions cannot be of a size that would be considered
 676   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 677   // may be different at archive-restore time.
 678   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 679 }
 680 
 681 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 682   assert_at_safepoint(true /* should_be_vm_thread */);
 683   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 684   if (is_archive_alloc_too_large(word_size)) {
 685     return NULL;
 686   }
 687   return _archive_allocator->archive_mem_allocate(word_size);
 688 }
 689 
 690 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 691                                               size_t end_alignment_in_bytes) {
 692   assert_at_safepoint(true /* should_be_vm_thread */);
 693   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 694 
 695   // Call complete_archive to do the real work, filling in the MemRegion
 696   // array with the archive regions.
 697   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 698   delete _archive_allocator;
 699   _archive_allocator = NULL;
 700 }
 701 
 702 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 703   assert(ranges != NULL, "MemRegion array NULL");
 704   assert(count != 0, "No MemRegions provided");
 705   MemRegion reserved = _hrm.reserved();
 706   for (size_t i = 0; i < count; i++) {
 707     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 708       return false;
 709     }
 710   }
 711   return true;
 712 }
 713 
 714 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 715   assert(!is_init_completed(), "Expect to be called at JVM init time");
 716   assert(ranges != NULL, "MemRegion array NULL");
 717   assert(count != 0, "No MemRegions provided");
 718   MutexLockerEx x(Heap_lock);
 719 
 720   MemRegion reserved = _hrm.reserved();
 721   HeapWord* prev_last_addr = NULL;
 722   HeapRegion* prev_last_region = NULL;
 723 
 724   // Temporarily disable pretouching of heap pages. This interface is used
 725   // when mmap'ing archived heap data in, so pre-touching is wasted.
 726   FlagSetting fs(AlwaysPreTouch, false);
 727 
 728   // Enable archive object checking in G1MarkSweep. We have to let it know
 729   // about each archive range, so that objects in those ranges aren't marked.
 730   G1MarkSweep::enable_archive_object_check();
 731 
 732   // For each specified MemRegion range, allocate the corresponding G1
 733   // regions and mark them as archive regions. We expect the ranges in
 734   // ascending starting address order, without overlap.
 735   for (size_t i = 0; i < count; i++) {
 736     MemRegion curr_range = ranges[i];
 737     HeapWord* start_address = curr_range.start();
 738     size_t word_size = curr_range.word_size();
 739     HeapWord* last_address = curr_range.last();
 740     size_t commits = 0;
 741 
 742     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 743               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 744               p2i(start_address), p2i(last_address));
 745     guarantee(start_address > prev_last_addr,
 746               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 747               p2i(start_address), p2i(prev_last_addr));
 748     prev_last_addr = last_address;
 749 
 750     // Check for ranges that start in the same G1 region in which the previous
 751     // range ended, and adjust the start address so we don't try to allocate
 752     // the same region again. If the current range is entirely within that
 753     // region, skip it, just adjusting the recorded top.
 754     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 755     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 756       start_address = start_region->end();
 757       if (start_address > last_address) {
 758         increase_used(word_size * HeapWordSize);
 759         start_region->set_top(last_address + 1);
 760         continue;
 761       }
 762       start_region->set_top(start_address);
 763       curr_range = MemRegion(start_address, last_address + 1);
 764       start_region = _hrm.addr_to_region(start_address);
 765     }
 766 
 767     // Perform the actual region allocation, exiting if it fails.
 768     // Then note how much new space we have allocated.
 769     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 770       return false;
 771     }
 772     increase_used(word_size * HeapWordSize);
 773     if (commits != 0) {
 774       ergo_verbose1(ErgoHeapSizing,
 775                     "attempt heap expansion",
 776                     ergo_format_reason("allocate archive regions")
 777                     ergo_format_byte("total size"),
 778                     HeapRegion::GrainWords * HeapWordSize * commits);
 779     }
 780 
 781     // Mark each G1 region touched by the range as archive, add it to the old set,
 782     // and set the allocation context and top.
 783     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 784     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 785     prev_last_region = last_region;
 786 
 787     while (curr_region != NULL) {
 788       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 789              "Region already in use (index %u)", curr_region->hrm_index());
 790       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 791       curr_region->set_allocation_context(AllocationContext::system());
 792       curr_region->set_archive();
 793       _old_set.add(curr_region);
 794       if (curr_region != last_region) {
 795         curr_region->set_top(curr_region->end());
 796         curr_region = _hrm.next_region_in_heap(curr_region);
 797       } else {
 798         curr_region->set_top(last_address + 1);
 799         curr_region = NULL;
 800       }
 801     }
 802 
 803     // Notify mark-sweep of the archive range.
 804     G1MarkSweep::set_range_archive(curr_range, true);
 805   }
 806   return true;
 807 }
 808 
 809 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 810   assert(!is_init_completed(), "Expect to be called at JVM init time");
 811   assert(ranges != NULL, "MemRegion array NULL");
 812   assert(count != 0, "No MemRegions provided");
 813   MemRegion reserved = _hrm.reserved();
 814   HeapWord *prev_last_addr = NULL;
 815   HeapRegion* prev_last_region = NULL;
 816 
 817   // For each MemRegion, create filler objects, if needed, in the G1 regions
 818   // that contain the address range. The address range actually within the
 819   // MemRegion will not be modified. That is assumed to have been initialized
 820   // elsewhere, probably via an mmap of archived heap data.
 821   MutexLockerEx x(Heap_lock);
 822   for (size_t i = 0; i < count; i++) {
 823     HeapWord* start_address = ranges[i].start();
 824     HeapWord* last_address = ranges[i].last();
 825 
 826     assert(reserved.contains(start_address) && reserved.contains(last_address),
 827            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 828            p2i(start_address), p2i(last_address));
 829     assert(start_address > prev_last_addr,
 830            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 831            p2i(start_address), p2i(prev_last_addr));
 832 
 833     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 834     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 835     HeapWord* bottom_address = start_region->bottom();
 836 
 837     // Check for a range beginning in the same region in which the
 838     // previous one ended.
 839     if (start_region == prev_last_region) {
 840       bottom_address = prev_last_addr + 1;
 841     }
 842 
 843     // Verify that the regions were all marked as archive regions by
 844     // alloc_archive_regions.
 845     HeapRegion* curr_region = start_region;
 846     while (curr_region != NULL) {
 847       guarantee(curr_region->is_archive(),
 848                 "Expected archive region at index %u", curr_region->hrm_index());
 849       if (curr_region != last_region) {
 850         curr_region = _hrm.next_region_in_heap(curr_region);
 851       } else {
 852         curr_region = NULL;
 853       }
 854     }
 855 
 856     prev_last_addr = last_address;
 857     prev_last_region = last_region;
 858 
 859     // Fill the memory below the allocated range with dummy object(s),
 860     // if the region bottom does not match the range start, or if the previous
 861     // range ended within the same G1 region, and there is a gap.
 862     if (start_address != bottom_address) {
 863       size_t fill_size = pointer_delta(start_address, bottom_address);
 864       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 865       increase_used(fill_size * HeapWordSize);
 866     }
 867   }
 868 }
 869 
 870 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 871                                                      uint* gc_count_before_ret,
 872                                                      uint* gclocker_retry_count_ret) {
 873   assert_heap_not_locked_and_not_at_safepoint();
 874   assert(!is_humongous(word_size), "attempt_allocation() should not "
 875          "be called for humongous allocation requests");
 876 
 877   AllocationContext_t context = AllocationContext::current();
 878   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 879 
 880   if (result == NULL) {
 881     result = attempt_allocation_slow(word_size,
 882                                      context,
 883                                      gc_count_before_ret,
 884                                      gclocker_retry_count_ret);
 885   }
 886   assert_heap_not_locked();
 887   if (result != NULL) {
 888     dirty_young_block(result, word_size);
 889   }
 890   return result;
 891 }
 892 
 893 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 894   assert(!is_init_completed(), "Expect to be called at JVM init time");
 895   assert(ranges != NULL, "MemRegion array NULL");
 896   assert(count != 0, "No MemRegions provided");
 897   MemRegion reserved = _hrm.reserved();
 898   HeapWord* prev_last_addr = NULL;
 899   HeapRegion* prev_last_region = NULL;
 900   size_t size_used = 0;
 901   size_t uncommitted_regions = 0;
 902 
 903   // For each Memregion, free the G1 regions that constitute it, and
 904   // notify mark-sweep that the range is no longer to be considered 'archive.'
 905   MutexLockerEx x(Heap_lock);
 906   for (size_t i = 0; i < count; i++) {
 907     HeapWord* start_address = ranges[i].start();
 908     HeapWord* last_address = ranges[i].last();
 909 
 910     assert(reserved.contains(start_address) && reserved.contains(last_address),
 911            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 912            p2i(start_address), p2i(last_address));
 913     assert(start_address > prev_last_addr,
 914            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 915            p2i(start_address), p2i(prev_last_addr));
 916     size_used += ranges[i].byte_size();
 917     prev_last_addr = last_address;
 918 
 919     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 920     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 921 
 922     // Check for ranges that start in the same G1 region in which the previous
 923     // range ended, and adjust the start address so we don't try to free
 924     // the same region again. If the current range is entirely within that
 925     // region, skip it.
 926     if (start_region == prev_last_region) {
 927       start_address = start_region->end();
 928       if (start_address > last_address) {
 929         continue;
 930       }
 931       start_region = _hrm.addr_to_region(start_address);
 932     }
 933     prev_last_region = last_region;
 934 
 935     // After verifying that each region was marked as an archive region by
 936     // alloc_archive_regions, set it free and empty and uncommit it.
 937     HeapRegion* curr_region = start_region;
 938     while (curr_region != NULL) {
 939       guarantee(curr_region->is_archive(),
 940                 "Expected archive region at index %u", curr_region->hrm_index());
 941       uint curr_index = curr_region->hrm_index();
 942       _old_set.remove(curr_region);
 943       curr_region->set_free();
 944       curr_region->set_top(curr_region->bottom());
 945       if (curr_region != last_region) {
 946         curr_region = _hrm.next_region_in_heap(curr_region);
 947       } else {
 948         curr_region = NULL;
 949       }
 950       _hrm.shrink_at(curr_index, 1);
 951       uncommitted_regions++;
 952     }
 953 
 954     // Notify mark-sweep that this is no longer an archive range.
 955     G1MarkSweep::set_range_archive(ranges[i], false);
 956   }
 957 
 958   if (uncommitted_regions != 0) {
 959     ergo_verbose1(ErgoHeapSizing,
 960                   "attempt heap shrinking",
 961                   ergo_format_reason("uncommitted archive regions")
 962                   ergo_format_byte("total size"),
 963                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 964   }
 965   decrease_used(size_used);
 966 }
 967 
 968 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 969                                                         uint* gc_count_before_ret,
 970                                                         uint* gclocker_retry_count_ret) {
 971   // The structure of this method has a lot of similarities to
 972   // attempt_allocation_slow(). The reason these two were not merged
 973   // into a single one is that such a method would require several "if
 974   // allocation is not humongous do this, otherwise do that"
 975   // conditional paths which would obscure its flow. In fact, an early
 976   // version of this code did use a unified method which was harder to
 977   // follow and, as a result, it had subtle bugs that were hard to
 978   // track down. So keeping these two methods separate allows each to
 979   // be more readable. It will be good to keep these two in sync as
 980   // much as possible.
 981 
 982   assert_heap_not_locked_and_not_at_safepoint();
 983   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 984          "should only be called for humongous allocations");
 985 
 986   // Humongous objects can exhaust the heap quickly, so we should check if we
 987   // need to start a marking cycle at each humongous object allocation. We do
 988   // the check before we do the actual allocation. The reason for doing it
 989   // before the allocation is that we avoid having to keep track of the newly
 990   // allocated memory while we do a GC.
 991   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 992                                            word_size)) {
 993     collect(GCCause::_g1_humongous_allocation);
 994   }
 995 
 996   // We will loop until a) we manage to successfully perform the
 997   // allocation or b) we successfully schedule a collection which
 998   // fails to perform the allocation. b) is the only case when we'll
 999   // return NULL.
1000   HeapWord* result = NULL;
1001   for (int try_count = 1; /* we'll return */; try_count += 1) {
1002     bool should_try_gc;
1003     uint gc_count_before;
1004 
1005     {
1006       MutexLockerEx x(Heap_lock);
1007 
1008       // Given that humongous objects are not allocated in young
1009       // regions, we'll first try to do the allocation without doing a
1010       // collection hoping that there's enough space in the heap.
1011       result = humongous_obj_allocate(word_size, AllocationContext::current());
1012       if (result != NULL) {
1013         return result;
1014       }
1015 
1016       if (GC_locker::is_active_and_needs_gc()) {
1017         should_try_gc = false;
1018       } else {
1019          // The GCLocker may not be active but the GCLocker initiated
1020         // GC may not yet have been performed (GCLocker::needs_gc()
1021         // returns true). In this case we do not try this GC and
1022         // wait until the GCLocker initiated GC is performed, and
1023         // then retry the allocation.
1024         if (GC_locker::needs_gc()) {
1025           should_try_gc = false;
1026         } else {
1027           // Read the GC count while still holding the Heap_lock.
1028           gc_count_before = total_collections();
1029           should_try_gc = true;
1030         }
1031       }
1032     }
1033 
1034     if (should_try_gc) {
1035       // If we failed to allocate the humongous object, we should try to
1036       // do a collection pause (if we're allowed) in case it reclaims
1037       // enough space for the allocation to succeed after the pause.
1038 
1039       bool succeeded;
1040       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1041                                    GCCause::_g1_humongous_allocation);
1042       if (result != NULL) {
1043         assert(succeeded, "only way to get back a non-NULL result");
1044         return result;
1045       }
1046 
1047       if (succeeded) {
1048         // If we get here we successfully scheduled a collection which
1049         // failed to allocate. No point in trying to allocate
1050         // further. We'll just return NULL.
1051         MutexLockerEx x(Heap_lock);
1052         *gc_count_before_ret = total_collections();
1053         return NULL;
1054       }
1055     } else {
1056       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1057         MutexLockerEx x(Heap_lock);
1058         *gc_count_before_ret = total_collections();
1059         return NULL;
1060       }
1061       // The GCLocker is either active or the GCLocker initiated
1062       // GC has not yet been performed. Stall until it is and
1063       // then retry the allocation.
1064       GC_locker::stall_until_clear();
1065       (*gclocker_retry_count_ret) += 1;
1066     }
1067 
1068     // We can reach here if we were unsuccessful in scheduling a
1069     // collection (because another thread beat us to it) or if we were
1070     // stalled due to the GC locker. In either can we should retry the
1071     // allocation attempt in case another thread successfully
1072     // performed a collection and reclaimed enough space.  Give a
1073     // warning if we seem to be looping forever.
1074 
1075     if ((QueuedAllocationWarningCount > 0) &&
1076         (try_count % QueuedAllocationWarningCount == 0)) {
1077       warning("G1CollectedHeap::attempt_allocation_humongous() "
1078               "retries %d times", try_count);
1079     }
1080   }
1081 
1082   ShouldNotReachHere();
1083   return NULL;
1084 }
1085 
1086 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1087                                                            AllocationContext_t context,
1088                                                            bool expect_null_mutator_alloc_region) {
1089   assert_at_safepoint(true /* should_be_vm_thread */);
1090   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1091          "the current alloc region was unexpectedly found to be non-NULL");
1092 
1093   if (!is_humongous(word_size)) {
1094     return _allocator->attempt_allocation_locked(word_size, context);
1095   } else {
1096     HeapWord* result = humongous_obj_allocate(word_size, context);
1097     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1098       collector_state()->set_initiate_conc_mark_if_possible(true);
1099     }
1100     return result;
1101   }
1102 
1103   ShouldNotReachHere();
1104 }
1105 
1106 class PostMCRemSetClearClosure: public HeapRegionClosure {
1107   G1CollectedHeap* _g1h;
1108   ModRefBarrierSet* _mr_bs;
1109 public:
1110   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1111     _g1h(g1h), _mr_bs(mr_bs) {}
1112 
1113   bool doHeapRegion(HeapRegion* r) {
1114     HeapRegionRemSet* hrrs = r->rem_set();
1115 
1116     _g1h->reset_gc_time_stamps(r);
1117 
1118     if (r->is_continues_humongous()) {
1119       // We'll assert that the strong code root list and RSet is empty
1120       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1121       assert(hrrs->occupied() == 0, "RSet should be empty");
1122     } else {
1123       hrrs->clear();
1124     }
1125     // You might think here that we could clear just the cards
1126     // corresponding to the used region.  But no: if we leave a dirty card
1127     // in a region we might allocate into, then it would prevent that card
1128     // from being enqueued, and cause it to be missed.
1129     // Re: the performance cost: we shouldn't be doing full GC anyway!
1130     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1131 
1132     return false;
1133   }
1134 };
1135 
1136 void G1CollectedHeap::clear_rsets_post_compaction() {
1137   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1138   heap_region_iterate(&rs_clear);
1139 }
1140 
1141 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1142   G1CollectedHeap*   _g1h;
1143   UpdateRSOopClosure _cl;
1144 public:
1145   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1146     _cl(g1->g1_rem_set(), worker_i),
1147     _g1h(g1)
1148   { }
1149 
1150   bool doHeapRegion(HeapRegion* r) {
1151     if (!r->is_continues_humongous()) {
1152       _cl.set_from(r);
1153       r->oop_iterate(&_cl);
1154     }
1155     return false;
1156   }
1157 };
1158 
1159 class ParRebuildRSTask: public AbstractGangTask {
1160   G1CollectedHeap* _g1;
1161   HeapRegionClaimer _hrclaimer;
1162 
1163 public:
1164   ParRebuildRSTask(G1CollectedHeap* g1) :
1165       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1166 
1167   void work(uint worker_id) {
1168     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1169     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1170   }
1171 };
1172 
1173 class PostCompactionPrinterClosure: public HeapRegionClosure {
1174 private:
1175   G1HRPrinter* _hr_printer;
1176 public:
1177   bool doHeapRegion(HeapRegion* hr) {
1178     assert(!hr->is_young(), "not expecting to find young regions");
1179     if (hr->is_free()) {
1180       // We only generate output for non-empty regions.
1181     } else if (hr->is_starts_humongous()) {
1182       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1183     } else if (hr->is_continues_humongous()) {
1184       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1185     } else if (hr->is_archive()) {
1186       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1187     } else if (hr->is_old()) {
1188       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1189     } else {
1190       ShouldNotReachHere();
1191     }
1192     return false;
1193   }
1194 
1195   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1196     : _hr_printer(hr_printer) { }
1197 };
1198 
1199 void G1CollectedHeap::print_hrm_post_compaction() {
1200   PostCompactionPrinterClosure cl(hr_printer());
1201   heap_region_iterate(&cl);
1202 }
1203 
1204 bool G1CollectedHeap::do_collection(bool explicit_gc,
1205                                     bool clear_all_soft_refs,
1206                                     size_t word_size) {
1207   assert_at_safepoint(true /* should_be_vm_thread */);
1208 
1209   if (GC_locker::check_active_before_gc()) {
1210     return false;
1211   }
1212 
1213   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1214   gc_timer->register_gc_start();
1215 
1216   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1217   GCIdMark gc_id_mark;
1218   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1219 
1220   SvcGCMarker sgcm(SvcGCMarker::FULL);
1221   ResourceMark rm;
1222 
1223   G1Log::update_level();
1224   print_heap_before_gc();
1225   trace_heap_before_gc(gc_tracer);
1226 
1227   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1228 
1229   verify_region_sets_optional();
1230 
1231   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1232                            collector_policy()->should_clear_all_soft_refs();
1233 
1234   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1235 
1236   {
1237     IsGCActiveMark x;
1238 
1239     // Timing
1240     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1241     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1242 
1243     {
1244       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1245       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1246       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1247 
1248       g1_policy()->record_full_collection_start();
1249 
1250       // Note: When we have a more flexible GC logging framework that
1251       // allows us to add optional attributes to a GC log record we
1252       // could consider timing and reporting how long we wait in the
1253       // following two methods.
1254       wait_while_free_regions_coming();
1255       // If we start the compaction before the CM threads finish
1256       // scanning the root regions we might trip them over as we'll
1257       // be moving objects / updating references. So let's wait until
1258       // they are done. By telling them to abort, they should complete
1259       // early.
1260       _cm->root_regions()->abort();
1261       _cm->root_regions()->wait_until_scan_finished();
1262       append_secondary_free_list_if_not_empty_with_lock();
1263 
1264       gc_prologue(true);
1265       increment_total_collections(true /* full gc */);
1266       increment_old_marking_cycles_started();
1267 
1268       assert(used() == recalculate_used(), "Should be equal");
1269 
1270       verify_before_gc();
1271 
1272       check_bitmaps("Full GC Start");
1273       pre_full_gc_dump(gc_timer);
1274 
1275 #if defined(COMPILER2) || INCLUDE_JVMCI
1276       DerivedPointerTable::clear();
1277 #endif
1278 
1279       // Disable discovery and empty the discovered lists
1280       // for the CM ref processor.
1281       ref_processor_cm()->disable_discovery();
1282       ref_processor_cm()->abandon_partial_discovery();
1283       ref_processor_cm()->verify_no_references_recorded();
1284 
1285       // Abandon current iterations of concurrent marking and concurrent
1286       // refinement, if any are in progress. We have to do this before
1287       // wait_until_scan_finished() below.
1288       concurrent_mark()->abort();
1289 
1290       // Make sure we'll choose a new allocation region afterwards.
1291       _allocator->release_mutator_alloc_region();
1292       _allocator->abandon_gc_alloc_regions();
1293       g1_rem_set()->cleanupHRRS();
1294 
1295       // We should call this after we retire any currently active alloc
1296       // regions so that all the ALLOC / RETIRE events are generated
1297       // before the start GC event.
1298       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1299 
1300       // We may have added regions to the current incremental collection
1301       // set between the last GC or pause and now. We need to clear the
1302       // incremental collection set and then start rebuilding it afresh
1303       // after this full GC.
1304       abandon_collection_set(g1_policy()->inc_cset_head());
1305       g1_policy()->clear_incremental_cset();
1306       g1_policy()->stop_incremental_cset_building();
1307 
1308       tear_down_region_sets(false /* free_list_only */);
1309       collector_state()->set_gcs_are_young(true);
1310 
1311       // See the comments in g1CollectedHeap.hpp and
1312       // G1CollectedHeap::ref_processing_init() about
1313       // how reference processing currently works in G1.
1314 
1315       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1316       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1317 
1318       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1319       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1320 
1321       ref_processor_stw()->enable_discovery();
1322       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1323 
1324       // Do collection work
1325       {
1326         HandleMark hm;  // Discard invalid handles created during gc
1327         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1328       }
1329 
1330       assert(num_free_regions() == 0, "we should not have added any free regions");
1331       rebuild_region_sets(false /* free_list_only */);
1332 
1333       // Enqueue any discovered reference objects that have
1334       // not been removed from the discovered lists.
1335       ref_processor_stw()->enqueue_discovered_references();
1336 
1337 #if defined(COMPILER2) || INCLUDE_JVMCI
1338       DerivedPointerTable::update_pointers();
1339 #endif
1340 
1341       MemoryService::track_memory_usage();
1342 
1343       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1344       ref_processor_stw()->verify_no_references_recorded();
1345 
1346       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1347       ClassLoaderDataGraph::purge();
1348       MetaspaceAux::verify_metrics();
1349 
1350       // Note: since we've just done a full GC, concurrent
1351       // marking is no longer active. Therefore we need not
1352       // re-enable reference discovery for the CM ref processor.
1353       // That will be done at the start of the next marking cycle.
1354       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1355       ref_processor_cm()->verify_no_references_recorded();
1356 
1357       reset_gc_time_stamp();
1358       // Since everything potentially moved, we will clear all remembered
1359       // sets, and clear all cards.  Later we will rebuild remembered
1360       // sets. We will also reset the GC time stamps of the regions.
1361       clear_rsets_post_compaction();
1362       check_gc_time_stamps();
1363 
1364       // Resize the heap if necessary.
1365       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1366 
1367       if (_hr_printer.is_active()) {
1368         // We should do this after we potentially resize the heap so
1369         // that all the COMMIT / UNCOMMIT events are generated before
1370         // the end GC event.
1371 
1372         print_hrm_post_compaction();
1373         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1374       }
1375 
1376       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1377       if (hot_card_cache->use_cache()) {
1378         hot_card_cache->reset_card_counts();
1379         hot_card_cache->reset_hot_cache();
1380       }
1381 
1382       // Rebuild remembered sets of all regions.
1383       uint n_workers =
1384         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1385                                                 workers()->active_workers(),
1386                                                 Threads::number_of_non_daemon_threads());
1387       workers()->set_active_workers(n_workers);
1388 
1389       ParRebuildRSTask rebuild_rs_task(this);
1390       workers()->run_task(&rebuild_rs_task);
1391 
1392       // Rebuild the strong code root lists for each region
1393       rebuild_strong_code_roots();
1394 
1395       if (true) { // FIXME
1396         MetaspaceGC::compute_new_size();
1397       }
1398 
1399 #ifdef TRACESPINNING
1400       ParallelTaskTerminator::print_termination_counts();
1401 #endif
1402 
1403       // Discard all rset updates
1404       JavaThread::dirty_card_queue_set().abandon_logs();
1405       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1406 
1407       _young_list->reset_sampled_info();
1408       // At this point there should be no regions in the
1409       // entire heap tagged as young.
1410       assert(check_young_list_empty(true /* check_heap */),
1411              "young list should be empty at this point");
1412 
1413       // Update the number of full collections that have been completed.
1414       increment_old_marking_cycles_completed(false /* concurrent */);
1415 
1416       _hrm.verify_optional();
1417       verify_region_sets_optional();
1418 
1419       verify_after_gc();
1420 
1421       // Clear the previous marking bitmap, if needed for bitmap verification.
1422       // Note we cannot do this when we clear the next marking bitmap in
1423       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1424       // objects marked during a full GC against the previous bitmap.
1425       // But we need to clear it before calling check_bitmaps below since
1426       // the full GC has compacted objects and updated TAMS but not updated
1427       // the prev bitmap.
1428       if (G1VerifyBitmaps) {
1429         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1430       }
1431       check_bitmaps("Full GC End");
1432 
1433       // Start a new incremental collection set for the next pause
1434       assert(g1_policy()->collection_set() == NULL, "must be");
1435       g1_policy()->start_incremental_cset_building();
1436 
1437       clear_cset_fast_test();
1438 
1439       _allocator->init_mutator_alloc_region();
1440 
1441       g1_policy()->record_full_collection_end();
1442 
1443       if (G1Log::fine()) {
1444         g1_policy()->print_heap_transition();
1445       }
1446 
1447       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1448       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1449       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1450       // before any GC notifications are raised.
1451       g1mm()->update_sizes();
1452 
1453       gc_epilogue(true);
1454     }
1455 
1456     if (G1Log::finer()) {
1457       g1_policy()->print_detailed_heap_transition(true /* full */);
1458     }
1459 
1460     print_heap_after_gc();
1461     trace_heap_after_gc(gc_tracer);
1462 
1463     post_full_gc_dump(gc_timer);
1464 
1465     gc_timer->register_gc_end();
1466     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1467   }
1468 
1469   return true;
1470 }
1471 
1472 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1473   // do_collection() will return whether it succeeded in performing
1474   // the GC. Currently, there is no facility on the
1475   // do_full_collection() API to notify the caller than the collection
1476   // did not succeed (e.g., because it was locked out by the GC
1477   // locker). So, right now, we'll ignore the return value.
1478   bool dummy = do_collection(true,                /* explicit_gc */
1479                              clear_all_soft_refs,
1480                              0                    /* word_size */);
1481 }
1482 
1483 // This code is mostly copied from TenuredGeneration.
1484 void
1485 G1CollectedHeap::
1486 resize_if_necessary_after_full_collection(size_t word_size) {
1487   // Include the current allocation, if any, and bytes that will be
1488   // pre-allocated to support collections, as "used".
1489   const size_t used_after_gc = used();
1490   const size_t capacity_after_gc = capacity();
1491   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1492 
1493   // This is enforced in arguments.cpp.
1494   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1495          "otherwise the code below doesn't make sense");
1496 
1497   // We don't have floating point command-line arguments
1498   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1499   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1500   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1501   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1502 
1503   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1504   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1505 
1506   // We have to be careful here as these two calculations can overflow
1507   // 32-bit size_t's.
1508   double used_after_gc_d = (double) used_after_gc;
1509   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1510   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1511 
1512   // Let's make sure that they are both under the max heap size, which
1513   // by default will make them fit into a size_t.
1514   double desired_capacity_upper_bound = (double) max_heap_size;
1515   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1516                                     desired_capacity_upper_bound);
1517   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1518                                     desired_capacity_upper_bound);
1519 
1520   // We can now safely turn them into size_t's.
1521   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1522   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1523 
1524   // This assert only makes sense here, before we adjust them
1525   // with respect to the min and max heap size.
1526   assert(minimum_desired_capacity <= maximum_desired_capacity,
1527          "minimum_desired_capacity = " SIZE_FORMAT ", "
1528          "maximum_desired_capacity = " SIZE_FORMAT,
1529          minimum_desired_capacity, maximum_desired_capacity);
1530 
1531   // Should not be greater than the heap max size. No need to adjust
1532   // it with respect to the heap min size as it's a lower bound (i.e.,
1533   // we'll try to make the capacity larger than it, not smaller).
1534   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1535   // Should not be less than the heap min size. No need to adjust it
1536   // with respect to the heap max size as it's an upper bound (i.e.,
1537   // we'll try to make the capacity smaller than it, not greater).
1538   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1539 
1540   if (capacity_after_gc < minimum_desired_capacity) {
1541     // Don't expand unless it's significant
1542     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1543     ergo_verbose4(ErgoHeapSizing,
1544                   "attempt heap expansion",
1545                   ergo_format_reason("capacity lower than "
1546                                      "min desired capacity after Full GC")
1547                   ergo_format_byte("capacity")
1548                   ergo_format_byte("occupancy")
1549                   ergo_format_byte_perc("min desired capacity"),
1550                   capacity_after_gc, used_after_gc,
1551                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1552     expand(expand_bytes);
1553 
1554     // No expansion, now see if we want to shrink
1555   } else if (capacity_after_gc > maximum_desired_capacity) {
1556     // Capacity too large, compute shrinking size
1557     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1558     ergo_verbose4(ErgoHeapSizing,
1559                   "attempt heap shrinking",
1560                   ergo_format_reason("capacity higher than "
1561                                      "max desired capacity after Full GC")
1562                   ergo_format_byte("capacity")
1563                   ergo_format_byte("occupancy")
1564                   ergo_format_byte_perc("max desired capacity"),
1565                   capacity_after_gc, used_after_gc,
1566                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1567     shrink(shrink_bytes);
1568   }
1569 }
1570 
1571 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1572                                                             AllocationContext_t context,
1573                                                             bool do_gc,
1574                                                             bool clear_all_soft_refs,
1575                                                             bool expect_null_mutator_alloc_region,
1576                                                             bool* gc_succeeded) {
1577   *gc_succeeded = true;
1578   // Let's attempt the allocation first.
1579   HeapWord* result =
1580     attempt_allocation_at_safepoint(word_size,
1581                                     context,
1582                                     expect_null_mutator_alloc_region);
1583   if (result != NULL) {
1584     assert(*gc_succeeded, "sanity");
1585     return result;
1586   }
1587 
1588   // In a G1 heap, we're supposed to keep allocation from failing by
1589   // incremental pauses.  Therefore, at least for now, we'll favor
1590   // expansion over collection.  (This might change in the future if we can
1591   // do something smarter than full collection to satisfy a failed alloc.)
1592   result = expand_and_allocate(word_size, context);
1593   if (result != NULL) {
1594     assert(*gc_succeeded, "sanity");
1595     return result;
1596   }
1597 
1598   if (do_gc) {
1599     // Expansion didn't work, we'll try to do a Full GC.
1600     *gc_succeeded = do_collection(false, /* explicit_gc */
1601                                   clear_all_soft_refs,
1602                                   word_size);
1603   }
1604 
1605   return NULL;
1606 }
1607 
1608 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1609                                                      AllocationContext_t context,
1610                                                      bool* succeeded) {
1611   assert_at_safepoint(true /* should_be_vm_thread */);
1612 
1613   // Attempts to allocate followed by Full GC.
1614   HeapWord* result =
1615     satisfy_failed_allocation_helper(word_size,
1616                                      context,
1617                                      true,  /* do_gc */
1618                                      false, /* clear_all_soft_refs */
1619                                      false, /* expect_null_mutator_alloc_region */
1620                                      succeeded);
1621 
1622   if (result != NULL || !*succeeded) {
1623     return result;
1624   }
1625 
1626   // Attempts to allocate followed by Full GC that will collect all soft references.
1627   result = satisfy_failed_allocation_helper(word_size,
1628                                             context,
1629                                             true, /* do_gc */
1630                                             true, /* clear_all_soft_refs */
1631                                             true, /* expect_null_mutator_alloc_region */
1632                                             succeeded);
1633 
1634   if (result != NULL || !*succeeded) {
1635     return result;
1636   }
1637 
1638   // Attempts to allocate, no GC
1639   result = satisfy_failed_allocation_helper(word_size,
1640                                             context,
1641                                             false, /* do_gc */
1642                                             false, /* clear_all_soft_refs */
1643                                             true,  /* expect_null_mutator_alloc_region */
1644                                             succeeded);
1645 
1646   if (result != NULL) {
1647     assert(*succeeded, "sanity");
1648     return result;
1649   }
1650 
1651   assert(!collector_policy()->should_clear_all_soft_refs(),
1652          "Flag should have been handled and cleared prior to this point");
1653 
1654   // What else?  We might try synchronous finalization later.  If the total
1655   // space available is large enough for the allocation, then a more
1656   // complete compaction phase than we've tried so far might be
1657   // appropriate.
1658   assert(*succeeded, "sanity");
1659   return NULL;
1660 }
1661 
1662 // Attempting to expand the heap sufficiently
1663 // to support an allocation of the given "word_size".  If
1664 // successful, perform the allocation and return the address of the
1665 // allocated block, or else "NULL".
1666 
1667 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1668   assert_at_safepoint(true /* should_be_vm_thread */);
1669 
1670   verify_region_sets_optional();
1671 
1672   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1673   ergo_verbose1(ErgoHeapSizing,
1674                 "attempt heap expansion",
1675                 ergo_format_reason("allocation request failed")
1676                 ergo_format_byte("allocation request"),
1677                 word_size * HeapWordSize);
1678   if (expand(expand_bytes)) {
1679     _hrm.verify_optional();
1680     verify_region_sets_optional();
1681     return attempt_allocation_at_safepoint(word_size,
1682                                            context,
1683                                            false /* expect_null_mutator_alloc_region */);
1684   }
1685   return NULL;
1686 }
1687 
1688 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1689   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1690   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1691                                        HeapRegion::GrainBytes);
1692   ergo_verbose2(ErgoHeapSizing,
1693                 "expand the heap",
1694                 ergo_format_byte("requested expansion amount")
1695                 ergo_format_byte("attempted expansion amount"),
1696                 expand_bytes, aligned_expand_bytes);
1697 
1698   if (is_maximal_no_gc()) {
1699     ergo_verbose0(ErgoHeapSizing,
1700                       "did not expand the heap",
1701                       ergo_format_reason("heap already fully expanded"));
1702     return false;
1703   }
1704 
1705   double expand_heap_start_time_sec = os::elapsedTime();
1706   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1707   assert(regions_to_expand > 0, "Must expand by at least one region");
1708 
1709   uint expanded_by = _hrm.expand_by(regions_to_expand);
1710   if (expand_time_ms != NULL) {
1711     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1712   }
1713 
1714   if (expanded_by > 0) {
1715     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1716     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1717     g1_policy()->record_new_heap_size(num_regions());
1718   } else {
1719     ergo_verbose0(ErgoHeapSizing,
1720                   "did not expand the heap",
1721                   ergo_format_reason("heap expansion operation failed"));
1722     // The expansion of the virtual storage space was unsuccessful.
1723     // Let's see if it was because we ran out of swap.
1724     if (G1ExitOnExpansionFailure &&
1725         _hrm.available() >= regions_to_expand) {
1726       // We had head room...
1727       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1728     }
1729   }
1730   return regions_to_expand > 0;
1731 }
1732 
1733 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1734   size_t aligned_shrink_bytes =
1735     ReservedSpace::page_align_size_down(shrink_bytes);
1736   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1737                                          HeapRegion::GrainBytes);
1738   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1739 
1740   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1741   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1742 
1743   ergo_verbose3(ErgoHeapSizing,
1744                 "shrink the heap",
1745                 ergo_format_byte("requested shrinking amount")
1746                 ergo_format_byte("aligned shrinking amount")
1747                 ergo_format_byte("attempted shrinking amount"),
1748                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1749   if (num_regions_removed > 0) {
1750     g1_policy()->record_new_heap_size(num_regions());
1751   } else {
1752     ergo_verbose0(ErgoHeapSizing,
1753                   "did not shrink the heap",
1754                   ergo_format_reason("heap shrinking operation failed"));
1755   }
1756 }
1757 
1758 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1759   verify_region_sets_optional();
1760 
1761   // We should only reach here at the end of a Full GC which means we
1762   // should not not be holding to any GC alloc regions. The method
1763   // below will make sure of that and do any remaining clean up.
1764   _allocator->abandon_gc_alloc_regions();
1765 
1766   // Instead of tearing down / rebuilding the free lists here, we
1767   // could instead use the remove_all_pending() method on free_list to
1768   // remove only the ones that we need to remove.
1769   tear_down_region_sets(true /* free_list_only */);
1770   shrink_helper(shrink_bytes);
1771   rebuild_region_sets(true /* free_list_only */);
1772 
1773   _hrm.verify_optional();
1774   verify_region_sets_optional();
1775 }
1776 
1777 // Public methods.
1778 
1779 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1780   CollectedHeap(),
1781   _g1_policy(policy_),
1782   _dirty_card_queue_set(false),
1783   _is_alive_closure_cm(this),
1784   _is_alive_closure_stw(this),
1785   _ref_processor_cm(NULL),
1786   _ref_processor_stw(NULL),
1787   _bot_shared(NULL),
1788   _cg1r(NULL),
1789   _g1mm(NULL),
1790   _refine_cte_cl(NULL),
1791   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1792   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1793   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1794   _humongous_reclaim_candidates(),
1795   _has_humongous_reclaim_candidates(false),
1796   _archive_allocator(NULL),
1797   _free_regions_coming(false),
1798   _young_list(new YoungList(this)),
1799   _gc_time_stamp(0),
1800   _summary_bytes_used(0),
1801   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1802   _old_evac_stats(OldPLABSize, PLABWeight),
1803   _expand_heap_after_alloc_failure(true),
1804   _old_marking_cycles_started(0),
1805   _old_marking_cycles_completed(0),
1806   _heap_summary_sent(false),
1807   _in_cset_fast_test(),
1808   _dirty_cards_region_list(NULL),
1809   _worker_cset_start_region(NULL),
1810   _worker_cset_start_region_time_stamp(NULL),
1811   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1812   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1813   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1814   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1815 
1816   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1817                           /* are_GC_task_threads */true,
1818                           /* are_ConcurrentGC_threads */false);
1819   _workers->initialize_workers();
1820 
1821   _allocator = G1Allocator::create_allocator(this);
1822   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1823 
1824   // Override the default _filler_array_max_size so that no humongous filler
1825   // objects are created.
1826   _filler_array_max_size = _humongous_object_threshold_in_words;
1827 
1828   uint n_queues = ParallelGCThreads;
1829   _task_queues = new RefToScanQueueSet(n_queues);
1830 
1831   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1832   assert(n_rem_sets > 0, "Invariant.");
1833 
1834   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1835   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1836   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1837 
1838   for (uint i = 0; i < n_queues; i++) {
1839     RefToScanQueue* q = new RefToScanQueue();
1840     q->initialize();
1841     _task_queues->register_queue(i, q);
1842     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1843   }
1844   clear_cset_start_regions();
1845 
1846   // Initialize the G1EvacuationFailureALot counters and flags.
1847   NOT_PRODUCT(reset_evacuation_should_fail();)
1848 
1849   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1850 }
1851 
1852 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1853                                                                  size_t size,
1854                                                                  size_t translation_factor) {
1855   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1856   // Allocate a new reserved space, preferring to use large pages.
1857   ReservedSpace rs(size, preferred_page_size);
1858   G1RegionToSpaceMapper* result  =
1859     G1RegionToSpaceMapper::create_mapper(rs,
1860                                          size,
1861                                          rs.alignment(),
1862                                          HeapRegion::GrainBytes,
1863                                          translation_factor,
1864                                          mtGC);
1865   if (TracePageSizes) {
1866     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1867                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1868   }
1869   return result;
1870 }
1871 
1872 jint G1CollectedHeap::initialize() {
1873   CollectedHeap::pre_initialize();
1874   os::enable_vtime();
1875 
1876   G1Log::init();
1877 
1878   // Necessary to satisfy locking discipline assertions.
1879 
1880   MutexLocker x(Heap_lock);
1881 
1882   // We have to initialize the printer before committing the heap, as
1883   // it will be used then.
1884   _hr_printer.set_active(G1PrintHeapRegions);
1885 
1886   // While there are no constraints in the GC code that HeapWordSize
1887   // be any particular value, there are multiple other areas in the
1888   // system which believe this to be true (e.g. oop->object_size in some
1889   // cases incorrectly returns the size in wordSize units rather than
1890   // HeapWordSize).
1891   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1892 
1893   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1894   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1895   size_t heap_alignment = collector_policy()->heap_alignment();
1896 
1897   // Ensure that the sizes are properly aligned.
1898   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1899   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1900   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1901 
1902   _refine_cte_cl = new RefineCardTableEntryClosure();
1903 
1904   jint ecode = JNI_OK;
1905   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1906   if (_cg1r == NULL) {
1907     return ecode;
1908   }
1909 
1910   // Reserve the maximum.
1911 
1912   // When compressed oops are enabled, the preferred heap base
1913   // is calculated by subtracting the requested size from the
1914   // 32Gb boundary and using the result as the base address for
1915   // heap reservation. If the requested size is not aligned to
1916   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1917   // into the ReservedHeapSpace constructor) then the actual
1918   // base of the reserved heap may end up differing from the
1919   // address that was requested (i.e. the preferred heap base).
1920   // If this happens then we could end up using a non-optimal
1921   // compressed oops mode.
1922 
1923   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1924                                                  heap_alignment);
1925 
1926   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1927 
1928   // Create the barrier set for the entire reserved region.
1929   G1SATBCardTableLoggingModRefBS* bs
1930     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1931   bs->initialize();
1932   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1933   set_barrier_set(bs);
1934 
1935   // Also create a G1 rem set.
1936   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1937 
1938   // Carve out the G1 part of the heap.
1939 
1940   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1941   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1942   G1RegionToSpaceMapper* heap_storage =
1943     G1RegionToSpaceMapper::create_mapper(g1_rs,
1944                                          g1_rs.size(),
1945                                          page_size,
1946                                          HeapRegion::GrainBytes,
1947                                          1,
1948                                          mtJavaHeap);
1949   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1950                        max_byte_size, page_size,
1951                        heap_rs.base(),
1952                        heap_rs.size());
1953   heap_storage->set_mapping_changed_listener(&_listener);
1954 
1955   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1956   G1RegionToSpaceMapper* bot_storage =
1957     create_aux_memory_mapper("Block offset table",
1958                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1959                              G1BlockOffsetSharedArray::heap_map_factor());
1960 
1961   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1962   G1RegionToSpaceMapper* cardtable_storage =
1963     create_aux_memory_mapper("Card table",
1964                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1965                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1966 
1967   G1RegionToSpaceMapper* card_counts_storage =
1968     create_aux_memory_mapper("Card counts table",
1969                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1970                              G1CardCounts::heap_map_factor());
1971 
1972   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1973   G1RegionToSpaceMapper* prev_bitmap_storage =
1974     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1975   G1RegionToSpaceMapper* next_bitmap_storage =
1976     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1977 
1978   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1979   g1_barrier_set()->initialize(cardtable_storage);
1980    // Do later initialization work for concurrent refinement.
1981   _cg1r->init(card_counts_storage);
1982 
1983   // 6843694 - ensure that the maximum region index can fit
1984   // in the remembered set structures.
1985   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1986   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1987 
1988   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1989   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1990   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1991             "too many cards per region");
1992 
1993   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1994 
1995   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1996 
1997   {
1998     HeapWord* start = _hrm.reserved().start();
1999     HeapWord* end = _hrm.reserved().end();
2000     size_t granularity = HeapRegion::GrainBytes;
2001 
2002     _in_cset_fast_test.initialize(start, end, granularity);
2003     _humongous_reclaim_candidates.initialize(start, end, granularity);
2004   }
2005 
2006   // Create the ConcurrentMark data structure and thread.
2007   // (Must do this late, so that "max_regions" is defined.)
2008   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2009   if (_cm == NULL || !_cm->completed_initialization()) {
2010     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2011     return JNI_ENOMEM;
2012   }
2013   _cmThread = _cm->cmThread();
2014 
2015   // Initialize the from_card cache structure of HeapRegionRemSet.
2016   HeapRegionRemSet::init_heap(max_regions());
2017 
2018   // Now expand into the initial heap size.
2019   if (!expand(init_byte_size)) {
2020     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2021     return JNI_ENOMEM;
2022   }
2023 
2024   // Perform any initialization actions delegated to the policy.
2025   g1_policy()->init();
2026 
2027   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2028                                                SATB_Q_FL_lock,
2029                                                G1SATBProcessCompletedThreshold,
2030                                                Shared_SATB_Q_lock);
2031 
2032   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2033                                                 DirtyCardQ_CBL_mon,
2034                                                 DirtyCardQ_FL_lock,
2035                                                 concurrent_g1_refine()->yellow_zone(),
2036                                                 concurrent_g1_refine()->red_zone(),
2037                                                 Shared_DirtyCardQ_lock);
2038 
2039   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2040                                     DirtyCardQ_CBL_mon,
2041                                     DirtyCardQ_FL_lock,
2042                                     -1, // never trigger processing
2043                                     -1, // no limit on length
2044                                     Shared_DirtyCardQ_lock,
2045                                     &JavaThread::dirty_card_queue_set());
2046 
2047   // Here we allocate the dummy HeapRegion that is required by the
2048   // G1AllocRegion class.
2049   HeapRegion* dummy_region = _hrm.get_dummy_region();
2050 
2051   // We'll re-use the same region whether the alloc region will
2052   // require BOT updates or not and, if it doesn't, then a non-young
2053   // region will complain that it cannot support allocations without
2054   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2055   dummy_region->set_eden();
2056   // Make sure it's full.
2057   dummy_region->set_top(dummy_region->end());
2058   G1AllocRegion::setup(this, dummy_region);
2059 
2060   _allocator->init_mutator_alloc_region();
2061 
2062   // Do create of the monitoring and management support so that
2063   // values in the heap have been properly initialized.
2064   _g1mm = new G1MonitoringSupport(this);
2065 
2066   G1StringDedup::initialize();
2067 
2068   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2069   for (uint i = 0; i < ParallelGCThreads; i++) {
2070     new (&_preserved_objs[i]) OopAndMarkOopStack();
2071   }
2072 
2073   return JNI_OK;
2074 }
2075 
2076 void G1CollectedHeap::stop() {
2077   // Stop all concurrent threads. We do this to make sure these threads
2078   // do not continue to execute and access resources (e.g. gclog_or_tty)
2079   // that are destroyed during shutdown.
2080   _cg1r->stop();
2081   _cmThread->stop();
2082   if (G1StringDedup::is_enabled()) {
2083     G1StringDedup::stop();
2084   }
2085 }
2086 
2087 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2088   return HeapRegion::max_region_size();
2089 }
2090 
2091 void G1CollectedHeap::post_initialize() {
2092   CollectedHeap::post_initialize();
2093   ref_processing_init();
2094 }
2095 
2096 void G1CollectedHeap::ref_processing_init() {
2097   // Reference processing in G1 currently works as follows:
2098   //
2099   // * There are two reference processor instances. One is
2100   //   used to record and process discovered references
2101   //   during concurrent marking; the other is used to
2102   //   record and process references during STW pauses
2103   //   (both full and incremental).
2104   // * Both ref processors need to 'span' the entire heap as
2105   //   the regions in the collection set may be dotted around.
2106   //
2107   // * For the concurrent marking ref processor:
2108   //   * Reference discovery is enabled at initial marking.
2109   //   * Reference discovery is disabled and the discovered
2110   //     references processed etc during remarking.
2111   //   * Reference discovery is MT (see below).
2112   //   * Reference discovery requires a barrier (see below).
2113   //   * Reference processing may or may not be MT
2114   //     (depending on the value of ParallelRefProcEnabled
2115   //     and ParallelGCThreads).
2116   //   * A full GC disables reference discovery by the CM
2117   //     ref processor and abandons any entries on it's
2118   //     discovered lists.
2119   //
2120   // * For the STW processor:
2121   //   * Non MT discovery is enabled at the start of a full GC.
2122   //   * Processing and enqueueing during a full GC is non-MT.
2123   //   * During a full GC, references are processed after marking.
2124   //
2125   //   * Discovery (may or may not be MT) is enabled at the start
2126   //     of an incremental evacuation pause.
2127   //   * References are processed near the end of a STW evacuation pause.
2128   //   * For both types of GC:
2129   //     * Discovery is atomic - i.e. not concurrent.
2130   //     * Reference discovery will not need a barrier.
2131 
2132   MemRegion mr = reserved_region();
2133 
2134   // Concurrent Mark ref processor
2135   _ref_processor_cm =
2136     new ReferenceProcessor(mr,    // span
2137                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2138                                 // mt processing
2139                            ParallelGCThreads,
2140                                 // degree of mt processing
2141                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2142                                 // mt discovery
2143                            MAX2(ParallelGCThreads, ConcGCThreads),
2144                                 // degree of mt discovery
2145                            false,
2146                                 // Reference discovery is not atomic
2147                            &_is_alive_closure_cm);
2148                                 // is alive closure
2149                                 // (for efficiency/performance)
2150 
2151   // STW ref processor
2152   _ref_processor_stw =
2153     new ReferenceProcessor(mr,    // span
2154                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2155                                 // mt processing
2156                            ParallelGCThreads,
2157                                 // degree of mt processing
2158                            (ParallelGCThreads > 1),
2159                                 // mt discovery
2160                            ParallelGCThreads,
2161                                 // degree of mt discovery
2162                            true,
2163                                 // Reference discovery is atomic
2164                            &_is_alive_closure_stw);
2165                                 // is alive closure
2166                                 // (for efficiency/performance)
2167 }
2168 
2169 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2170   return g1_policy();
2171 }
2172 
2173 size_t G1CollectedHeap::capacity() const {
2174   return _hrm.length() * HeapRegion::GrainBytes;
2175 }
2176 
2177 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2178   hr->reset_gc_time_stamp();
2179 }
2180 
2181 #ifndef PRODUCT
2182 
2183 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2184 private:
2185   unsigned _gc_time_stamp;
2186   bool _failures;
2187 
2188 public:
2189   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2190     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2191 
2192   virtual bool doHeapRegion(HeapRegion* hr) {
2193     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2194     if (_gc_time_stamp != region_gc_time_stamp) {
2195       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2196                              "expected %d", HR_FORMAT_PARAMS(hr),
2197                              region_gc_time_stamp, _gc_time_stamp);
2198       _failures = true;
2199     }
2200     return false;
2201   }
2202 
2203   bool failures() { return _failures; }
2204 };
2205 
2206 void G1CollectedHeap::check_gc_time_stamps() {
2207   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2208   heap_region_iterate(&cl);
2209   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2210 }
2211 #endif // PRODUCT
2212 
2213 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2214   _cg1r->hot_card_cache()->drain(cl, worker_i);
2215 }
2216 
2217 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2218   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2219   size_t n_completed_buffers = 0;
2220   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2221     n_completed_buffers++;
2222   }
2223   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2224   dcqs.clear_n_completed_buffers();
2225   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2226 }
2227 
2228 // Computes the sum of the storage used by the various regions.
2229 size_t G1CollectedHeap::used() const {
2230   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2231   if (_archive_allocator != NULL) {
2232     result += _archive_allocator->used();
2233   }
2234   return result;
2235 }
2236 
2237 size_t G1CollectedHeap::used_unlocked() const {
2238   return _summary_bytes_used;
2239 }
2240 
2241 class SumUsedClosure: public HeapRegionClosure {
2242   size_t _used;
2243 public:
2244   SumUsedClosure() : _used(0) {}
2245   bool doHeapRegion(HeapRegion* r) {
2246     _used += r->used();
2247     return false;
2248   }
2249   size_t result() { return _used; }
2250 };
2251 
2252 size_t G1CollectedHeap::recalculate_used() const {
2253   double recalculate_used_start = os::elapsedTime();
2254 
2255   SumUsedClosure blk;
2256   heap_region_iterate(&blk);
2257 
2258   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2259   return blk.result();
2260 }
2261 
2262 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2263   switch (cause) {
2264     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2265     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2266     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2267     case GCCause::_g1_humongous_allocation: return true;
2268     case GCCause::_update_allocation_context_stats_inc: return true;
2269     case GCCause::_wb_conc_mark:            return true;
2270     default:                                return false;
2271   }
2272 }
2273 
2274 #ifndef PRODUCT
2275 void G1CollectedHeap::allocate_dummy_regions() {
2276   // Let's fill up most of the region
2277   size_t word_size = HeapRegion::GrainWords - 1024;
2278   // And as a result the region we'll allocate will be humongous.
2279   guarantee(is_humongous(word_size), "sanity");
2280 
2281   // _filler_array_max_size is set to humongous object threshold
2282   // but temporarily change it to use CollectedHeap::fill_with_object().
2283   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2284 
2285   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2286     // Let's use the existing mechanism for the allocation
2287     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2288                                                  AllocationContext::system());
2289     if (dummy_obj != NULL) {
2290       MemRegion mr(dummy_obj, word_size);
2291       CollectedHeap::fill_with_object(mr);
2292     } else {
2293       // If we can't allocate once, we probably cannot allocate
2294       // again. Let's get out of the loop.
2295       break;
2296     }
2297   }
2298 }
2299 #endif // !PRODUCT
2300 
2301 void G1CollectedHeap::increment_old_marking_cycles_started() {
2302   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2303          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2304          "Wrong marking cycle count (started: %d, completed: %d)",
2305          _old_marking_cycles_started, _old_marking_cycles_completed);
2306 
2307   _old_marking_cycles_started++;
2308 }
2309 
2310 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2311   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2312 
2313   // We assume that if concurrent == true, then the caller is a
2314   // concurrent thread that was joined the Suspendible Thread
2315   // Set. If there's ever a cheap way to check this, we should add an
2316   // assert here.
2317 
2318   // Given that this method is called at the end of a Full GC or of a
2319   // concurrent cycle, and those can be nested (i.e., a Full GC can
2320   // interrupt a concurrent cycle), the number of full collections
2321   // completed should be either one (in the case where there was no
2322   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2323   // behind the number of full collections started.
2324 
2325   // This is the case for the inner caller, i.e. a Full GC.
2326   assert(concurrent ||
2327          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2328          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2329          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2330          "is inconsistent with _old_marking_cycles_completed = %u",
2331          _old_marking_cycles_started, _old_marking_cycles_completed);
2332 
2333   // This is the case for the outer caller, i.e. the concurrent cycle.
2334   assert(!concurrent ||
2335          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2336          "for outer caller (concurrent cycle): "
2337          "_old_marking_cycles_started = %u "
2338          "is inconsistent with _old_marking_cycles_completed = %u",
2339          _old_marking_cycles_started, _old_marking_cycles_completed);
2340 
2341   _old_marking_cycles_completed += 1;
2342 
2343   // We need to clear the "in_progress" flag in the CM thread before
2344   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2345   // is set) so that if a waiter requests another System.gc() it doesn't
2346   // incorrectly see that a marking cycle is still in progress.
2347   if (concurrent) {
2348     _cmThread->set_idle();
2349   }
2350 
2351   // This notify_all() will ensure that a thread that called
2352   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2353   // and it's waiting for a full GC to finish will be woken up. It is
2354   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2355   FullGCCount_lock->notify_all();
2356 }
2357 
2358 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2359   GCIdMarkAndRestore conc_gc_id_mark;
2360   collector_state()->set_concurrent_cycle_started(true);
2361   _gc_timer_cm->register_gc_start(start_time);
2362 
2363   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2364   trace_heap_before_gc(_gc_tracer_cm);
2365   _cmThread->set_gc_id(GCId::current());
2366 }
2367 
2368 void G1CollectedHeap::register_concurrent_cycle_end() {
2369   if (collector_state()->concurrent_cycle_started()) {
2370     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2371     if (_cm->has_aborted()) {
2372       _gc_tracer_cm->report_concurrent_mode_failure();
2373     }
2374 
2375     _gc_timer_cm->register_gc_end();
2376     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2377 
2378     // Clear state variables to prepare for the next concurrent cycle.
2379      collector_state()->set_concurrent_cycle_started(false);
2380     _heap_summary_sent = false;
2381   }
2382 }
2383 
2384 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2385   if (collector_state()->concurrent_cycle_started()) {
2386     // This function can be called when:
2387     //  the cleanup pause is run
2388     //  the concurrent cycle is aborted before the cleanup pause.
2389     //  the concurrent cycle is aborted after the cleanup pause,
2390     //   but before the concurrent cycle end has been registered.
2391     // Make sure that we only send the heap information once.
2392     if (!_heap_summary_sent) {
2393       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2394       trace_heap_after_gc(_gc_tracer_cm);
2395       _heap_summary_sent = true;
2396     }
2397   }
2398 }
2399 
2400 void G1CollectedHeap::collect(GCCause::Cause cause) {
2401   assert_heap_not_locked();
2402 
2403   uint gc_count_before;
2404   uint old_marking_count_before;
2405   uint full_gc_count_before;
2406   bool retry_gc;
2407 
2408   do {
2409     retry_gc = false;
2410 
2411     {
2412       MutexLocker ml(Heap_lock);
2413 
2414       // Read the GC count while holding the Heap_lock
2415       gc_count_before = total_collections();
2416       full_gc_count_before = total_full_collections();
2417       old_marking_count_before = _old_marking_cycles_started;
2418     }
2419 
2420     if (should_do_concurrent_full_gc(cause)) {
2421       // Schedule an initial-mark evacuation pause that will start a
2422       // concurrent cycle. We're setting word_size to 0 which means that
2423       // we are not requesting a post-GC allocation.
2424       VM_G1IncCollectionPause op(gc_count_before,
2425                                  0,     /* word_size */
2426                                  true,  /* should_initiate_conc_mark */
2427                                  g1_policy()->max_pause_time_ms(),
2428                                  cause);
2429       op.set_allocation_context(AllocationContext::current());
2430 
2431       VMThread::execute(&op);
2432       if (!op.pause_succeeded()) {
2433         if (old_marking_count_before == _old_marking_cycles_started) {
2434           retry_gc = op.should_retry_gc();
2435         } else {
2436           // A Full GC happened while we were trying to schedule the
2437           // initial-mark GC. No point in starting a new cycle given
2438           // that the whole heap was collected anyway.
2439         }
2440 
2441         if (retry_gc) {
2442           if (GC_locker::is_active_and_needs_gc()) {
2443             GC_locker::stall_until_clear();
2444           }
2445         }
2446       }
2447     } else {
2448       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2449           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2450 
2451         // Schedule a standard evacuation pause. We're setting word_size
2452         // to 0 which means that we are not requesting a post-GC allocation.
2453         VM_G1IncCollectionPause op(gc_count_before,
2454                                    0,     /* word_size */
2455                                    false, /* should_initiate_conc_mark */
2456                                    g1_policy()->max_pause_time_ms(),
2457                                    cause);
2458         VMThread::execute(&op);
2459       } else {
2460         // Schedule a Full GC.
2461         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2462         VMThread::execute(&op);
2463       }
2464     }
2465   } while (retry_gc);
2466 }
2467 
2468 bool G1CollectedHeap::is_in(const void* p) const {
2469   if (_hrm.reserved().contains(p)) {
2470     // Given that we know that p is in the reserved space,
2471     // heap_region_containing() should successfully
2472     // return the containing region.
2473     HeapRegion* hr = heap_region_containing(p);
2474     return hr->is_in(p);
2475   } else {
2476     return false;
2477   }
2478 }
2479 
2480 #ifdef ASSERT
2481 bool G1CollectedHeap::is_in_exact(const void* p) const {
2482   bool contains = reserved_region().contains(p);
2483   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2484   if (contains && available) {
2485     return true;
2486   } else {
2487     return false;
2488   }
2489 }
2490 #endif
2491 
2492 bool G1CollectedHeap::obj_in_cs(oop obj) {
2493   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2494   return r != NULL && r->in_collection_set();
2495 }
2496 
2497 // Iteration functions.
2498 
2499 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2500 
2501 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2502   ExtendedOopClosure* _cl;
2503 public:
2504   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2505   bool doHeapRegion(HeapRegion* r) {
2506     if (!r->is_continues_humongous()) {
2507       r->oop_iterate(_cl);
2508     }
2509     return false;
2510   }
2511 };
2512 
2513 // Iterates an ObjectClosure over all objects within a HeapRegion.
2514 
2515 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2516   ObjectClosure* _cl;
2517 public:
2518   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2519   bool doHeapRegion(HeapRegion* r) {
2520     if (!r->is_continues_humongous()) {
2521       r->object_iterate(_cl);
2522     }
2523     return false;
2524   }
2525 };
2526 
2527 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2528   IterateObjectClosureRegionClosure blk(cl);
2529   heap_region_iterate(&blk);
2530 }
2531 
2532 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2533   _hrm.iterate(cl);
2534 }
2535 
2536 void
2537 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2538                                          uint worker_id,
2539                                          HeapRegionClaimer *hrclaimer,
2540                                          bool concurrent) const {
2541   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2542 }
2543 
2544 // Clear the cached CSet starting regions and (more importantly)
2545 // the time stamps. Called when we reset the GC time stamp.
2546 void G1CollectedHeap::clear_cset_start_regions() {
2547   assert(_worker_cset_start_region != NULL, "sanity");
2548   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2549 
2550   for (uint i = 0; i < ParallelGCThreads; i++) {
2551     _worker_cset_start_region[i] = NULL;
2552     _worker_cset_start_region_time_stamp[i] = 0;
2553   }
2554 }
2555 
2556 // Given the id of a worker, obtain or calculate a suitable
2557 // starting region for iterating over the current collection set.
2558 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2559   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2560 
2561   HeapRegion* result = NULL;
2562   unsigned gc_time_stamp = get_gc_time_stamp();
2563 
2564   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2565     // Cached starting region for current worker was set
2566     // during the current pause - so it's valid.
2567     // Note: the cached starting heap region may be NULL
2568     // (when the collection set is empty).
2569     result = _worker_cset_start_region[worker_i];
2570     assert(result == NULL || result->in_collection_set(), "sanity");
2571     return result;
2572   }
2573 
2574   // The cached entry was not valid so let's calculate
2575   // a suitable starting heap region for this worker.
2576 
2577   // We want the parallel threads to start their collection
2578   // set iteration at different collection set regions to
2579   // avoid contention.
2580   // If we have:
2581   //          n collection set regions
2582   //          p threads
2583   // Then thread t will start at region floor ((t * n) / p)
2584 
2585   result = g1_policy()->collection_set();
2586   uint cs_size = g1_policy()->cset_region_length();
2587   uint active_workers = workers()->active_workers();
2588 
2589   uint end_ind   = (cs_size * worker_i) / active_workers;
2590   uint start_ind = 0;
2591 
2592   if (worker_i > 0 &&
2593       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2594     // Previous workers starting region is valid
2595     // so let's iterate from there
2596     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2597     result = _worker_cset_start_region[worker_i - 1];
2598   }
2599 
2600   for (uint i = start_ind; i < end_ind; i++) {
2601     result = result->next_in_collection_set();
2602   }
2603 
2604   // Note: the calculated starting heap region may be NULL
2605   // (when the collection set is empty).
2606   assert(result == NULL || result->in_collection_set(), "sanity");
2607   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2608          "should be updated only once per pause");
2609   _worker_cset_start_region[worker_i] = result;
2610   OrderAccess::storestore();
2611   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2612   return result;
2613 }
2614 
2615 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2616   HeapRegion* r = g1_policy()->collection_set();
2617   while (r != NULL) {
2618     HeapRegion* next = r->next_in_collection_set();
2619     if (cl->doHeapRegion(r)) {
2620       cl->incomplete();
2621       return;
2622     }
2623     r = next;
2624   }
2625 }
2626 
2627 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2628                                                   HeapRegionClosure *cl) {
2629   if (r == NULL) {
2630     // The CSet is empty so there's nothing to do.
2631     return;
2632   }
2633 
2634   assert(r->in_collection_set(),
2635          "Start region must be a member of the collection set.");
2636   HeapRegion* cur = r;
2637   while (cur != NULL) {
2638     HeapRegion* next = cur->next_in_collection_set();
2639     if (cl->doHeapRegion(cur) && false) {
2640       cl->incomplete();
2641       return;
2642     }
2643     cur = next;
2644   }
2645   cur = g1_policy()->collection_set();
2646   while (cur != r) {
2647     HeapRegion* next = cur->next_in_collection_set();
2648     if (cl->doHeapRegion(cur) && false) {
2649       cl->incomplete();
2650       return;
2651     }
2652     cur = next;
2653   }
2654 }
2655 
2656 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2657   HeapRegion* result = _hrm.next_region_in_heap(from);
2658   while (result != NULL && result->is_pinned()) {
2659     result = _hrm.next_region_in_heap(result);
2660   }
2661   return result;
2662 }
2663 
2664 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2665   HeapRegion* hr = heap_region_containing(addr);
2666   return hr->block_start(addr);
2667 }
2668 
2669 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2670   HeapRegion* hr = heap_region_containing(addr);
2671   return hr->block_size(addr);
2672 }
2673 
2674 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2675   HeapRegion* hr = heap_region_containing(addr);
2676   return hr->block_is_obj(addr);
2677 }
2678 
2679 bool G1CollectedHeap::supports_tlab_allocation() const {
2680   return true;
2681 }
2682 
2683 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2684   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2685 }
2686 
2687 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2688   return young_list()->eden_used_bytes();
2689 }
2690 
2691 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2692 // must be equal to the humongous object limit.
2693 size_t G1CollectedHeap::max_tlab_size() const {
2694   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2695 }
2696 
2697 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2698   AllocationContext_t context = AllocationContext::current();
2699   return _allocator->unsafe_max_tlab_alloc(context);
2700 }
2701 
2702 size_t G1CollectedHeap::max_capacity() const {
2703   return _hrm.reserved().byte_size();
2704 }
2705 
2706 jlong G1CollectedHeap::millis_since_last_gc() {
2707   // assert(false, "NYI");
2708   return 0;
2709 }
2710 
2711 void G1CollectedHeap::prepare_for_verify() {
2712   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2713     ensure_parsability(false);
2714   }
2715   g1_rem_set()->prepare_for_verify();
2716 }
2717 
2718 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2719                                               VerifyOption vo) {
2720   switch (vo) {
2721   case VerifyOption_G1UsePrevMarking:
2722     return hr->obj_allocated_since_prev_marking(obj);
2723   case VerifyOption_G1UseNextMarking:
2724     return hr->obj_allocated_since_next_marking(obj);
2725   case VerifyOption_G1UseMarkWord:
2726     return false;
2727   default:
2728     ShouldNotReachHere();
2729   }
2730   return false; // keep some compilers happy
2731 }
2732 
2733 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2734   switch (vo) {
2735   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2736   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2737   case VerifyOption_G1UseMarkWord:    return NULL;
2738   default:                            ShouldNotReachHere();
2739   }
2740   return NULL; // keep some compilers happy
2741 }
2742 
2743 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2744   switch (vo) {
2745   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2746   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2747   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2748   default:                            ShouldNotReachHere();
2749   }
2750   return false; // keep some compilers happy
2751 }
2752 
2753 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2754   switch (vo) {
2755   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2756   case VerifyOption_G1UseNextMarking: return "NTAMS";
2757   case VerifyOption_G1UseMarkWord:    return "NONE";
2758   default:                            ShouldNotReachHere();
2759   }
2760   return NULL; // keep some compilers happy
2761 }
2762 
2763 class VerifyRootsClosure: public OopClosure {
2764 private:
2765   G1CollectedHeap* _g1h;
2766   VerifyOption     _vo;
2767   bool             _failures;
2768 public:
2769   // _vo == UsePrevMarking -> use "prev" marking information,
2770   // _vo == UseNextMarking -> use "next" marking information,
2771   // _vo == UseMarkWord    -> use mark word from object header.
2772   VerifyRootsClosure(VerifyOption vo) :
2773     _g1h(G1CollectedHeap::heap()),
2774     _vo(vo),
2775     _failures(false) { }
2776 
2777   bool failures() { return _failures; }
2778 
2779   template <class T> void do_oop_nv(T* p) {
2780     T heap_oop = oopDesc::load_heap_oop(p);
2781     if (!oopDesc::is_null(heap_oop)) {
2782       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2783       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2784         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2785                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2786         if (_vo == VerifyOption_G1UseMarkWord) {
2787           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2788         }
2789         obj->print_on(gclog_or_tty);
2790         _failures = true;
2791       }
2792     }
2793   }
2794 
2795   void do_oop(oop* p)       { do_oop_nv(p); }
2796   void do_oop(narrowOop* p) { do_oop_nv(p); }
2797 };
2798 
2799 class G1VerifyCodeRootOopClosure: public OopClosure {
2800   G1CollectedHeap* _g1h;
2801   OopClosure* _root_cl;
2802   nmethod* _nm;
2803   VerifyOption _vo;
2804   bool _failures;
2805 
2806   template <class T> void do_oop_work(T* p) {
2807     // First verify that this root is live
2808     _root_cl->do_oop(p);
2809 
2810     if (!G1VerifyHeapRegionCodeRoots) {
2811       // We're not verifying the code roots attached to heap region.
2812       return;
2813     }
2814 
2815     // Don't check the code roots during marking verification in a full GC
2816     if (_vo == VerifyOption_G1UseMarkWord) {
2817       return;
2818     }
2819 
2820     // Now verify that the current nmethod (which contains p) is
2821     // in the code root list of the heap region containing the
2822     // object referenced by p.
2823 
2824     T heap_oop = oopDesc::load_heap_oop(p);
2825     if (!oopDesc::is_null(heap_oop)) {
2826       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2827 
2828       // Now fetch the region containing the object
2829       HeapRegion* hr = _g1h->heap_region_containing(obj);
2830       HeapRegionRemSet* hrrs = hr->rem_set();
2831       // Verify that the strong code root list for this region
2832       // contains the nmethod
2833       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2834         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2835                                "from nmethod " PTR_FORMAT " not in strong "
2836                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2837                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2838         _failures = true;
2839       }
2840     }
2841   }
2842 
2843 public:
2844   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2845     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2846 
2847   void do_oop(oop* p) { do_oop_work(p); }
2848   void do_oop(narrowOop* p) { do_oop_work(p); }
2849 
2850   void set_nmethod(nmethod* nm) { _nm = nm; }
2851   bool failures() { return _failures; }
2852 };
2853 
2854 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2855   G1VerifyCodeRootOopClosure* _oop_cl;
2856 
2857 public:
2858   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2859     _oop_cl(oop_cl) {}
2860 
2861   void do_code_blob(CodeBlob* cb) {
2862     nmethod* nm = cb->as_nmethod_or_null();
2863     if (nm != NULL) {
2864       _oop_cl->set_nmethod(nm);
2865       nm->oops_do(_oop_cl);
2866     }
2867   }
2868 };
2869 
2870 class YoungRefCounterClosure : public OopClosure {
2871   G1CollectedHeap* _g1h;
2872   int              _count;
2873  public:
2874   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2875   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2876   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2877 
2878   int count() { return _count; }
2879   void reset_count() { _count = 0; };
2880 };
2881 
2882 class VerifyKlassClosure: public KlassClosure {
2883   YoungRefCounterClosure _young_ref_counter_closure;
2884   OopClosure *_oop_closure;
2885  public:
2886   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2887   void do_klass(Klass* k) {
2888     k->oops_do(_oop_closure);
2889 
2890     _young_ref_counter_closure.reset_count();
2891     k->oops_do(&_young_ref_counter_closure);
2892     if (_young_ref_counter_closure.count() > 0) {
2893       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2894     }
2895   }
2896 };
2897 
2898 class VerifyLivenessOopClosure: public OopClosure {
2899   G1CollectedHeap* _g1h;
2900   VerifyOption _vo;
2901 public:
2902   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2903     _g1h(g1h), _vo(vo)
2904   { }
2905   void do_oop(narrowOop *p) { do_oop_work(p); }
2906   void do_oop(      oop *p) { do_oop_work(p); }
2907 
2908   template <class T> void do_oop_work(T *p) {
2909     oop obj = oopDesc::load_decode_heap_oop(p);
2910     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2911               "Dead object referenced by a not dead object");
2912   }
2913 };
2914 
2915 class VerifyObjsInRegionClosure: public ObjectClosure {
2916 private:
2917   G1CollectedHeap* _g1h;
2918   size_t _live_bytes;
2919   HeapRegion *_hr;
2920   VerifyOption _vo;
2921 public:
2922   // _vo == UsePrevMarking -> use "prev" marking information,
2923   // _vo == UseNextMarking -> use "next" marking information,
2924   // _vo == UseMarkWord    -> use mark word from object header.
2925   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2926     : _live_bytes(0), _hr(hr), _vo(vo) {
2927     _g1h = G1CollectedHeap::heap();
2928   }
2929   void do_object(oop o) {
2930     VerifyLivenessOopClosure isLive(_g1h, _vo);
2931     assert(o != NULL, "Huh?");
2932     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2933       // If the object is alive according to the mark word,
2934       // then verify that the marking information agrees.
2935       // Note we can't verify the contra-positive of the
2936       // above: if the object is dead (according to the mark
2937       // word), it may not be marked, or may have been marked
2938       // but has since became dead, or may have been allocated
2939       // since the last marking.
2940       if (_vo == VerifyOption_G1UseMarkWord) {
2941         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2942       }
2943 
2944       o->oop_iterate_no_header(&isLive);
2945       if (!_hr->obj_allocated_since_prev_marking(o)) {
2946         size_t obj_size = o->size();    // Make sure we don't overflow
2947         _live_bytes += (obj_size * HeapWordSize);
2948       }
2949     }
2950   }
2951   size_t live_bytes() { return _live_bytes; }
2952 };
2953 
2954 class VerifyArchiveOopClosure: public OopClosure {
2955 public:
2956   VerifyArchiveOopClosure(HeapRegion *hr) { }
2957   void do_oop(narrowOop *p) { do_oop_work(p); }
2958   void do_oop(      oop *p) { do_oop_work(p); }
2959 
2960   template <class T> void do_oop_work(T *p) {
2961     oop obj = oopDesc::load_decode_heap_oop(p);
2962     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2963               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2964               p2i(p), p2i(obj));
2965   }
2966 };
2967 
2968 class VerifyArchiveRegionClosure: public ObjectClosure {
2969 public:
2970   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2971   // Verify that all object pointers are to archive regions.
2972   void do_object(oop o) {
2973     VerifyArchiveOopClosure checkOop(NULL);
2974     assert(o != NULL, "Should not be here for NULL oops");
2975     o->oop_iterate_no_header(&checkOop);
2976   }
2977 };
2978 
2979 class VerifyRegionClosure: public HeapRegionClosure {
2980 private:
2981   bool             _par;
2982   VerifyOption     _vo;
2983   bool             _failures;
2984 public:
2985   // _vo == UsePrevMarking -> use "prev" marking information,
2986   // _vo == UseNextMarking -> use "next" marking information,
2987   // _vo == UseMarkWord    -> use mark word from object header.
2988   VerifyRegionClosure(bool par, VerifyOption vo)
2989     : _par(par),
2990       _vo(vo),
2991       _failures(false) {}
2992 
2993   bool failures() {
2994     return _failures;
2995   }
2996 
2997   bool doHeapRegion(HeapRegion* r) {
2998     // For archive regions, verify there are no heap pointers to
2999     // non-pinned regions. For all others, verify liveness info.
3000     if (r->is_archive()) {
3001       VerifyArchiveRegionClosure verify_oop_pointers(r);
3002       r->object_iterate(&verify_oop_pointers);
3003       return true;
3004     }
3005     if (!r->is_continues_humongous()) {
3006       bool failures = false;
3007       r->verify(_vo, &failures);
3008       if (failures) {
3009         _failures = true;
3010       } else if (!r->is_starts_humongous()) {
3011         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3012         r->object_iterate(&not_dead_yet_cl);
3013         if (_vo != VerifyOption_G1UseNextMarking) {
3014           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3015             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3016                                    "max_live_bytes " SIZE_FORMAT " "
3017                                    "< calculated " SIZE_FORMAT,
3018                                    p2i(r->bottom()), p2i(r->end()),
3019                                    r->max_live_bytes(),
3020                                  not_dead_yet_cl.live_bytes());
3021             _failures = true;
3022           }
3023         } else {
3024           // When vo == UseNextMarking we cannot currently do a sanity
3025           // check on the live bytes as the calculation has not been
3026           // finalized yet.
3027         }
3028       }
3029     }
3030     return false; // stop the region iteration if we hit a failure
3031   }
3032 };
3033 
3034 // This is the task used for parallel verification of the heap regions
3035 
3036 class G1ParVerifyTask: public AbstractGangTask {
3037 private:
3038   G1CollectedHeap*  _g1h;
3039   VerifyOption      _vo;
3040   bool              _failures;
3041   HeapRegionClaimer _hrclaimer;
3042 
3043 public:
3044   // _vo == UsePrevMarking -> use "prev" marking information,
3045   // _vo == UseNextMarking -> use "next" marking information,
3046   // _vo == UseMarkWord    -> use mark word from object header.
3047   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3048       AbstractGangTask("Parallel verify task"),
3049       _g1h(g1h),
3050       _vo(vo),
3051       _failures(false),
3052       _hrclaimer(g1h->workers()->active_workers()) {}
3053 
3054   bool failures() {
3055     return _failures;
3056   }
3057 
3058   void work(uint worker_id) {
3059     HandleMark hm;
3060     VerifyRegionClosure blk(true, _vo);
3061     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3062     if (blk.failures()) {
3063       _failures = true;
3064     }
3065   }
3066 };
3067 
3068 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3069   if (SafepointSynchronize::is_at_safepoint()) {
3070     assert(Thread::current()->is_VM_thread(),
3071            "Expected to be executed serially by the VM thread at this point");
3072 
3073     if (!silent) { gclog_or_tty->print("Roots "); }
3074     VerifyRootsClosure rootsCl(vo);
3075     VerifyKlassClosure klassCl(this, &rootsCl);
3076     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3077 
3078     // We apply the relevant closures to all the oops in the
3079     // system dictionary, class loader data graph, the string table
3080     // and the nmethods in the code cache.
3081     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3082     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3083 
3084     {
3085       G1RootProcessor root_processor(this, 1);
3086       root_processor.process_all_roots(&rootsCl,
3087                                        &cldCl,
3088                                        &blobsCl);
3089     }
3090 
3091     bool failures = rootsCl.failures() || codeRootsCl.failures();
3092 
3093     if (vo != VerifyOption_G1UseMarkWord) {
3094       // If we're verifying during a full GC then the region sets
3095       // will have been torn down at the start of the GC. Therefore
3096       // verifying the region sets will fail. So we only verify
3097       // the region sets when not in a full GC.
3098       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3099       verify_region_sets();
3100     }
3101 
3102     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3103     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3104 
3105       G1ParVerifyTask task(this, vo);
3106       workers()->run_task(&task);
3107       if (task.failures()) {
3108         failures = true;
3109       }
3110 
3111     } else {
3112       VerifyRegionClosure blk(false, vo);
3113       heap_region_iterate(&blk);
3114       if (blk.failures()) {
3115         failures = true;
3116       }
3117     }
3118 
3119     if (G1StringDedup::is_enabled()) {
3120       if (!silent) gclog_or_tty->print("StrDedup ");
3121       G1StringDedup::verify();
3122     }
3123 
3124     if (failures) {
3125       gclog_or_tty->print_cr("Heap:");
3126       // It helps to have the per-region information in the output to
3127       // help us track down what went wrong. This is why we call
3128       // print_extended_on() instead of print_on().
3129       print_extended_on(gclog_or_tty);
3130       gclog_or_tty->cr();
3131       gclog_or_tty->flush();
3132     }
3133     guarantee(!failures, "there should not have been any failures");
3134   } else {
3135     if (!silent) {
3136       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3137       if (G1StringDedup::is_enabled()) {
3138         gclog_or_tty->print(", StrDedup");
3139       }
3140       gclog_or_tty->print(") ");
3141     }
3142   }
3143 }
3144 
3145 void G1CollectedHeap::verify(bool silent) {
3146   verify(silent, VerifyOption_G1UsePrevMarking);
3147 }
3148 
3149 double G1CollectedHeap::verify(bool guard, const char* msg) {
3150   double verify_time_ms = 0.0;
3151 
3152   if (guard && total_collections() >= VerifyGCStartAt) {
3153     double verify_start = os::elapsedTime();
3154     HandleMark hm;  // Discard invalid handles created during verification
3155     prepare_for_verify();
3156     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3157     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3158   }
3159 
3160   return verify_time_ms;
3161 }
3162 
3163 void G1CollectedHeap::verify_before_gc() {
3164   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3165   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3166 }
3167 
3168 void G1CollectedHeap::verify_after_gc() {
3169   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3170   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3171 }
3172 
3173 class PrintRegionClosure: public HeapRegionClosure {
3174   outputStream* _st;
3175 public:
3176   PrintRegionClosure(outputStream* st) : _st(st) {}
3177   bool doHeapRegion(HeapRegion* r) {
3178     r->print_on(_st);
3179     return false;
3180   }
3181 };
3182 
3183 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3184                                        const HeapRegion* hr,
3185                                        const VerifyOption vo) const {
3186   switch (vo) {
3187   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3188   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3189   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3190   default:                            ShouldNotReachHere();
3191   }
3192   return false; // keep some compilers happy
3193 }
3194 
3195 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3196                                        const VerifyOption vo) const {
3197   switch (vo) {
3198   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3199   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3200   case VerifyOption_G1UseMarkWord: {
3201     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3202     return !obj->is_gc_marked() && !hr->is_archive();
3203   }
3204   default:                            ShouldNotReachHere();
3205   }
3206   return false; // keep some compilers happy
3207 }
3208 
3209 void G1CollectedHeap::print_on(outputStream* st) const {
3210   st->print(" %-20s", "garbage-first heap");
3211   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3212             capacity()/K, used_unlocked()/K);
3213   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3214             p2i(_hrm.reserved().start()),
3215             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3216             p2i(_hrm.reserved().end()));
3217   st->cr();
3218   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3219   uint young_regions = _young_list->length();
3220   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3221             (size_t) young_regions * HeapRegion::GrainBytes / K);
3222   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3223   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3224             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3225   st->cr();
3226   MetaspaceAux::print_on(st);
3227 }
3228 
3229 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3230   print_on(st);
3231 
3232   // Print the per-region information.
3233   st->cr();
3234   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3235                "HS=humongous(starts), HC=humongous(continues), "
3236                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3237                "PTAMS=previous top-at-mark-start, "
3238                "NTAMS=next top-at-mark-start)");
3239   PrintRegionClosure blk(st);
3240   heap_region_iterate(&blk);
3241 }
3242 
3243 void G1CollectedHeap::print_on_error(outputStream* st) const {
3244   this->CollectedHeap::print_on_error(st);
3245 
3246   if (_cm != NULL) {
3247     st->cr();
3248     _cm->print_on_error(st);
3249   }
3250 }
3251 
3252 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3253   workers()->print_worker_threads_on(st);
3254   _cmThread->print_on(st);
3255   st->cr();
3256   _cm->print_worker_threads_on(st);
3257   _cg1r->print_worker_threads_on(st);
3258   if (G1StringDedup::is_enabled()) {
3259     G1StringDedup::print_worker_threads_on(st);
3260   }
3261 }
3262 
3263 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3264   workers()->threads_do(tc);
3265   tc->do_thread(_cmThread);
3266   _cg1r->threads_do(tc);
3267   if (G1StringDedup::is_enabled()) {
3268     G1StringDedup::threads_do(tc);
3269   }
3270 }
3271 
3272 void G1CollectedHeap::print_tracing_info() const {
3273   // We'll overload this to mean "trace GC pause statistics."
3274   if (TraceYoungGenTime || TraceOldGenTime) {
3275     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3276     // to that.
3277     g1_policy()->print_tracing_info();
3278   }
3279   if (G1SummarizeRSetStats) {
3280     g1_rem_set()->print_summary_info();
3281   }
3282   if (G1SummarizeConcMark) {
3283     concurrent_mark()->print_summary_info();
3284   }
3285   g1_policy()->print_yg_surv_rate_info();
3286 }
3287 
3288 #ifndef PRODUCT
3289 // Helpful for debugging RSet issues.
3290 
3291 class PrintRSetsClosure : public HeapRegionClosure {
3292 private:
3293   const char* _msg;
3294   size_t _occupied_sum;
3295 
3296 public:
3297   bool doHeapRegion(HeapRegion* r) {
3298     HeapRegionRemSet* hrrs = r->rem_set();
3299     size_t occupied = hrrs->occupied();
3300     _occupied_sum += occupied;
3301 
3302     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3303                            HR_FORMAT_PARAMS(r));
3304     if (occupied == 0) {
3305       gclog_or_tty->print_cr("  RSet is empty");
3306     } else {
3307       hrrs->print();
3308     }
3309     gclog_or_tty->print_cr("----------");
3310     return false;
3311   }
3312 
3313   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3314     gclog_or_tty->cr();
3315     gclog_or_tty->print_cr("========================================");
3316     gclog_or_tty->print_cr("%s", msg);
3317     gclog_or_tty->cr();
3318   }
3319 
3320   ~PrintRSetsClosure() {
3321     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3322     gclog_or_tty->print_cr("========================================");
3323     gclog_or_tty->cr();
3324   }
3325 };
3326 
3327 void G1CollectedHeap::print_cset_rsets() {
3328   PrintRSetsClosure cl("Printing CSet RSets");
3329   collection_set_iterate(&cl);
3330 }
3331 
3332 void G1CollectedHeap::print_all_rsets() {
3333   PrintRSetsClosure cl("Printing All RSets");;
3334   heap_region_iterate(&cl);
3335 }
3336 #endif // PRODUCT
3337 
3338 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3339   YoungList* young_list = heap()->young_list();
3340 
3341   size_t eden_used_bytes = young_list->eden_used_bytes();
3342   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3343 
3344   size_t eden_capacity_bytes =
3345     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3346 
3347   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3348   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3349 }
3350 
3351 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3352   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3353                        stats->unused(), stats->used(), stats->region_end_waste(),
3354                        stats->regions_filled(), stats->direct_allocated(),
3355                        stats->failure_used(), stats->failure_waste());
3356 }
3357 
3358 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3359   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3360   gc_tracer->report_gc_heap_summary(when, heap_summary);
3361 
3362   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3363   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3364 }
3365 
3366 
3367 G1CollectedHeap* G1CollectedHeap::heap() {
3368   CollectedHeap* heap = Universe::heap();
3369   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3370   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3371   return (G1CollectedHeap*)heap;
3372 }
3373 
3374 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3375   // always_do_update_barrier = false;
3376   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3377   // Fill TLAB's and such
3378   accumulate_statistics_all_tlabs();
3379   ensure_parsability(true);
3380 
3381   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3382       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3383     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3384   }
3385 }
3386 
3387 void G1CollectedHeap::gc_epilogue(bool full) {
3388 
3389   if (G1SummarizeRSetStats &&
3390       (G1SummarizeRSetStatsPeriod > 0) &&
3391       // we are at the end of the GC. Total collections has already been increased.
3392       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3393     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3394   }
3395 
3396   // FIXME: what is this about?
3397   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3398   // is set.
3399 #if defined(COMPILER2) || INCLUDE_JVMCI
3400   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3401 #endif
3402   // always_do_update_barrier = true;
3403 
3404   resize_all_tlabs();
3405   allocation_context_stats().update(full);
3406 
3407   // We have just completed a GC. Update the soft reference
3408   // policy with the new heap occupancy
3409   Universe::update_heap_info_at_gc();
3410 }
3411 
3412 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3413                                                uint gc_count_before,
3414                                                bool* succeeded,
3415                                                GCCause::Cause gc_cause) {
3416   assert_heap_not_locked_and_not_at_safepoint();
3417   g1_policy()->record_stop_world_start();
3418   VM_G1IncCollectionPause op(gc_count_before,
3419                              word_size,
3420                              false, /* should_initiate_conc_mark */
3421                              g1_policy()->max_pause_time_ms(),
3422                              gc_cause);
3423 
3424   op.set_allocation_context(AllocationContext::current());
3425   VMThread::execute(&op);
3426 
3427   HeapWord* result = op.result();
3428   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3429   assert(result == NULL || ret_succeeded,
3430          "the result should be NULL if the VM did not succeed");
3431   *succeeded = ret_succeeded;
3432 
3433   assert_heap_not_locked();
3434   return result;
3435 }
3436 
3437 void
3438 G1CollectedHeap::doConcurrentMark() {
3439   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3440   if (!_cmThread->in_progress()) {
3441     _cmThread->set_started();
3442     CGC_lock->notify();
3443   }
3444 }
3445 
3446 size_t G1CollectedHeap::pending_card_num() {
3447   size_t extra_cards = 0;
3448   JavaThread *curr = Threads::first();
3449   while (curr != NULL) {
3450     DirtyCardQueue& dcq = curr->dirty_card_queue();
3451     extra_cards += dcq.size();
3452     curr = curr->next();
3453   }
3454   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3455   size_t buffer_size = dcqs.buffer_size();
3456   size_t buffer_num = dcqs.completed_buffers_num();
3457 
3458   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3459   // in bytes - not the number of 'entries'. We need to convert
3460   // into a number of cards.
3461   return (buffer_size * buffer_num + extra_cards) / oopSize;
3462 }
3463 
3464 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3465  private:
3466   size_t _total_humongous;
3467   size_t _candidate_humongous;
3468 
3469   DirtyCardQueue _dcq;
3470 
3471   // We don't nominate objects with many remembered set entries, on
3472   // the assumption that such objects are likely still live.
3473   bool is_remset_small(HeapRegion* region) const {
3474     HeapRegionRemSet* const rset = region->rem_set();
3475     return G1EagerReclaimHumongousObjectsWithStaleRefs
3476       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3477       : rset->is_empty();
3478   }
3479 
3480   bool is_typeArray_region(HeapRegion* region) const {
3481     return oop(region->bottom())->is_typeArray();
3482   }
3483 
3484   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3485     assert(region->is_starts_humongous(), "Must start a humongous object");
3486 
3487     // Candidate selection must satisfy the following constraints
3488     // while concurrent marking is in progress:
3489     //
3490     // * In order to maintain SATB invariants, an object must not be
3491     // reclaimed if it was allocated before the start of marking and
3492     // has not had its references scanned.  Such an object must have
3493     // its references (including type metadata) scanned to ensure no
3494     // live objects are missed by the marking process.  Objects
3495     // allocated after the start of concurrent marking don't need to
3496     // be scanned.
3497     //
3498     // * An object must not be reclaimed if it is on the concurrent
3499     // mark stack.  Objects allocated after the start of concurrent
3500     // marking are never pushed on the mark stack.
3501     //
3502     // Nominating only objects allocated after the start of concurrent
3503     // marking is sufficient to meet both constraints.  This may miss
3504     // some objects that satisfy the constraints, but the marking data
3505     // structures don't support efficiently performing the needed
3506     // additional tests or scrubbing of the mark stack.
3507     //
3508     // However, we presently only nominate is_typeArray() objects.
3509     // A humongous object containing references induces remembered
3510     // set entries on other regions.  In order to reclaim such an
3511     // object, those remembered sets would need to be cleaned up.
3512     //
3513     // We also treat is_typeArray() objects specially, allowing them
3514     // to be reclaimed even if allocated before the start of
3515     // concurrent mark.  For this we rely on mark stack insertion to
3516     // exclude is_typeArray() objects, preventing reclaiming an object
3517     // that is in the mark stack.  We also rely on the metadata for
3518     // such objects to be built-in and so ensured to be kept live.
3519     // Frequent allocation and drop of large binary blobs is an
3520     // important use case for eager reclaim, and this special handling
3521     // may reduce needed headroom.
3522 
3523     return is_typeArray_region(region) && is_remset_small(region);
3524   }
3525 
3526  public:
3527   RegisterHumongousWithInCSetFastTestClosure()
3528   : _total_humongous(0),
3529     _candidate_humongous(0),
3530     _dcq(&JavaThread::dirty_card_queue_set()) {
3531   }
3532 
3533   virtual bool doHeapRegion(HeapRegion* r) {
3534     if (!r->is_starts_humongous()) {
3535       return false;
3536     }
3537     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3538 
3539     bool is_candidate = humongous_region_is_candidate(g1h, r);
3540     uint rindex = r->hrm_index();
3541     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3542     if (is_candidate) {
3543       _candidate_humongous++;
3544       g1h->register_humongous_region_with_cset(rindex);
3545       // Is_candidate already filters out humongous object with large remembered sets.
3546       // If we have a humongous object with a few remembered sets, we simply flush these
3547       // remembered set entries into the DCQS. That will result in automatic
3548       // re-evaluation of their remembered set entries during the following evacuation
3549       // phase.
3550       if (!r->rem_set()->is_empty()) {
3551         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3552                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3553         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3554         HeapRegionRemSetIterator hrrs(r->rem_set());
3555         size_t card_index;
3556         while (hrrs.has_next(card_index)) {
3557           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3558           // The remembered set might contain references to already freed
3559           // regions. Filter out such entries to avoid failing card table
3560           // verification.
3561           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3562             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3563               *card_ptr = CardTableModRefBS::dirty_card_val();
3564               _dcq.enqueue(card_ptr);
3565             }
3566           }
3567         }
3568         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3569                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3570                hrrs.n_yielded(), r->rem_set()->occupied());
3571         r->rem_set()->clear_locked();
3572       }
3573       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3574     }
3575     _total_humongous++;
3576 
3577     return false;
3578   }
3579 
3580   size_t total_humongous() const { return _total_humongous; }
3581   size_t candidate_humongous() const { return _candidate_humongous; }
3582 
3583   void flush_rem_set_entries() { _dcq.flush(); }
3584 };
3585 
3586 void G1CollectedHeap::register_humongous_regions_with_cset() {
3587   if (!G1EagerReclaimHumongousObjects) {
3588     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3589     return;
3590   }
3591   double time = os::elapsed_counter();
3592 
3593   // Collect reclaim candidate information and register candidates with cset.
3594   RegisterHumongousWithInCSetFastTestClosure cl;
3595   heap_region_iterate(&cl);
3596 
3597   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3598   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3599                                                                   cl.total_humongous(),
3600                                                                   cl.candidate_humongous());
3601   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3602 
3603   // Finally flush all remembered set entries to re-check into the global DCQS.
3604   cl.flush_rem_set_entries();
3605 }
3606 
3607 #ifdef ASSERT
3608 class VerifyCSetClosure: public HeapRegionClosure {
3609 public:
3610   bool doHeapRegion(HeapRegion* hr) {
3611     // Here we check that the CSet region's RSet is ready for parallel
3612     // iteration. The fields that we'll verify are only manipulated
3613     // when the region is part of a CSet and is collected. Afterwards,
3614     // we reset these fields when we clear the region's RSet (when the
3615     // region is freed) so they are ready when the region is
3616     // re-allocated. The only exception to this is if there's an
3617     // evacuation failure and instead of freeing the region we leave
3618     // it in the heap. In that case, we reset these fields during
3619     // evacuation failure handling.
3620     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3621 
3622     // Here's a good place to add any other checks we'd like to
3623     // perform on CSet regions.
3624     return false;
3625   }
3626 };
3627 #endif // ASSERT
3628 
3629 uint G1CollectedHeap::num_task_queues() const {
3630   return _task_queues->size();
3631 }
3632 
3633 #if TASKQUEUE_STATS
3634 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3635   st->print_raw_cr("GC Task Stats");
3636   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3637   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3638 }
3639 
3640 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3641   print_taskqueue_stats_hdr(st);
3642 
3643   TaskQueueStats totals;
3644   const uint n = num_task_queues();
3645   for (uint i = 0; i < n; ++i) {
3646     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3647     totals += task_queue(i)->stats;
3648   }
3649   st->print_raw("tot "); totals.print(st); st->cr();
3650 
3651   DEBUG_ONLY(totals.verify());
3652 }
3653 
3654 void G1CollectedHeap::reset_taskqueue_stats() {
3655   const uint n = num_task_queues();
3656   for (uint i = 0; i < n; ++i) {
3657     task_queue(i)->stats.reset();
3658   }
3659 }
3660 #endif // TASKQUEUE_STATS
3661 
3662 void G1CollectedHeap::log_gc_header() {
3663   if (!G1Log::fine()) {
3664     return;
3665   }
3666 
3667   gclog_or_tty->gclog_stamp();
3668 
3669   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3670     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3671     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3672 
3673   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3674 }
3675 
3676 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3677   if (!G1Log::fine()) {
3678     return;
3679   }
3680 
3681   if (G1Log::finer()) {
3682     if (evacuation_failed()) {
3683       gclog_or_tty->print(" (to-space exhausted)");
3684     }
3685     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3686     g1_policy()->print_phases(pause_time_sec);
3687     g1_policy()->print_detailed_heap_transition();
3688   } else {
3689     if (evacuation_failed()) {
3690       gclog_or_tty->print("--");
3691     }
3692     g1_policy()->print_heap_transition();
3693     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3694   }
3695   gclog_or_tty->flush();
3696 }
3697 
3698 void G1CollectedHeap::wait_for_root_region_scanning() {
3699   double scan_wait_start = os::elapsedTime();
3700   // We have to wait until the CM threads finish scanning the
3701   // root regions as it's the only way to ensure that all the
3702   // objects on them have been correctly scanned before we start
3703   // moving them during the GC.
3704   bool waited = _cm->root_regions()->wait_until_scan_finished();
3705   double wait_time_ms = 0.0;
3706   if (waited) {
3707     double scan_wait_end = os::elapsedTime();
3708     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3709   }
3710   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3711 }
3712 
3713 bool
3714 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3715   assert_at_safepoint(true /* should_be_vm_thread */);
3716   guarantee(!is_gc_active(), "collection is not reentrant");
3717 
3718   if (GC_locker::check_active_before_gc()) {
3719     return false;
3720   }
3721 
3722   _gc_timer_stw->register_gc_start();
3723 
3724   GCIdMark gc_id_mark;
3725   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3726 
3727   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3728   ResourceMark rm;
3729 
3730   wait_for_root_region_scanning();
3731 
3732   G1Log::update_level();
3733   print_heap_before_gc();
3734   trace_heap_before_gc(_gc_tracer_stw);
3735 
3736   verify_region_sets_optional();
3737   verify_dirty_young_regions();
3738 
3739   // This call will decide whether this pause is an initial-mark
3740   // pause. If it is, during_initial_mark_pause() will return true
3741   // for the duration of this pause.
3742   g1_policy()->decide_on_conc_mark_initiation();
3743 
3744   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3745   assert(!collector_state()->during_initial_mark_pause() ||
3746           collector_state()->gcs_are_young(), "sanity");
3747 
3748   // We also do not allow mixed GCs during marking.
3749   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3750 
3751   // Record whether this pause is an initial mark. When the current
3752   // thread has completed its logging output and it's safe to signal
3753   // the CM thread, the flag's value in the policy has been reset.
3754   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3755 
3756   // Inner scope for scope based logging, timers, and stats collection
3757   {
3758     EvacuationInfo evacuation_info;
3759 
3760     if (collector_state()->during_initial_mark_pause()) {
3761       // We are about to start a marking cycle, so we increment the
3762       // full collection counter.
3763       increment_old_marking_cycles_started();
3764       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3765     }
3766 
3767     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3768 
3769     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3770 
3771     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3772                                                                   workers()->active_workers(),
3773                                                                   Threads::number_of_non_daemon_threads());
3774     workers()->set_active_workers(active_workers);
3775 
3776     double pause_start_sec = os::elapsedTime();
3777     g1_policy()->note_gc_start(active_workers);
3778     log_gc_header();
3779 
3780     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3781     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3782 
3783     // If the secondary_free_list is not empty, append it to the
3784     // free_list. No need to wait for the cleanup operation to finish;
3785     // the region allocation code will check the secondary_free_list
3786     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3787     // set, skip this step so that the region allocation code has to
3788     // get entries from the secondary_free_list.
3789     if (!G1StressConcRegionFreeing) {
3790       append_secondary_free_list_if_not_empty_with_lock();
3791     }
3792 
3793     assert(check_young_list_well_formed(), "young list should be well formed");
3794 
3795     // Don't dynamically change the number of GC threads this early.  A value of
3796     // 0 is used to indicate serial work.  When parallel work is done,
3797     // it will be set.
3798 
3799     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3800       IsGCActiveMark x;
3801 
3802       gc_prologue(false);
3803       increment_total_collections(false /* full gc */);
3804       increment_gc_time_stamp();
3805 
3806       verify_before_gc();
3807 
3808       check_bitmaps("GC Start");
3809 
3810 #if defined(COMPILER2) || INCLUDE_JVMCI
3811       DerivedPointerTable::clear();
3812 #endif
3813 
3814       // Please see comment in g1CollectedHeap.hpp and
3815       // G1CollectedHeap::ref_processing_init() to see how
3816       // reference processing currently works in G1.
3817 
3818       // Enable discovery in the STW reference processor
3819       ref_processor_stw()->enable_discovery();
3820 
3821       {
3822         // We want to temporarily turn off discovery by the
3823         // CM ref processor, if necessary, and turn it back on
3824         // on again later if we do. Using a scoped
3825         // NoRefDiscovery object will do this.
3826         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3827 
3828         // Forget the current alloc region (we might even choose it to be part
3829         // of the collection set!).
3830         _allocator->release_mutator_alloc_region();
3831 
3832         // We should call this after we retire the mutator alloc
3833         // region(s) so that all the ALLOC / RETIRE events are generated
3834         // before the start GC event.
3835         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3836 
3837         // This timing is only used by the ergonomics to handle our pause target.
3838         // It is unclear why this should not include the full pause. We will
3839         // investigate this in CR 7178365.
3840         //
3841         // Preserving the old comment here if that helps the investigation:
3842         //
3843         // The elapsed time induced by the start time below deliberately elides
3844         // the possible verification above.
3845         double sample_start_time_sec = os::elapsedTime();
3846 
3847         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3848 
3849         if (collector_state()->during_initial_mark_pause()) {
3850           concurrent_mark()->checkpointRootsInitialPre();
3851         }
3852 
3853         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3854         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3855 
3856         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3857 
3858         // Make sure the remembered sets are up to date. This needs to be
3859         // done before register_humongous_regions_with_cset(), because the
3860         // remembered sets are used there to choose eager reclaim candidates.
3861         // If the remembered sets are not up to date we might miss some
3862         // entries that need to be handled.
3863         g1_rem_set()->cleanupHRRS();
3864 
3865         register_humongous_regions_with_cset();
3866 
3867         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3868 
3869         _cm->note_start_of_gc();
3870         // We call this after finalize_cset() to
3871         // ensure that the CSet has been finalized.
3872         _cm->verify_no_cset_oops();
3873 
3874         if (_hr_printer.is_active()) {
3875           HeapRegion* hr = g1_policy()->collection_set();
3876           while (hr != NULL) {
3877             _hr_printer.cset(hr);
3878             hr = hr->next_in_collection_set();
3879           }
3880         }
3881 
3882 #ifdef ASSERT
3883         VerifyCSetClosure cl;
3884         collection_set_iterate(&cl);
3885 #endif // ASSERT
3886 
3887         // Initialize the GC alloc regions.
3888         _allocator->init_gc_alloc_regions(evacuation_info);
3889 
3890         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3891         pre_evacuate_collection_set();
3892 
3893         // Actually do the work...
3894         evacuate_collection_set(evacuation_info, &per_thread_states);
3895 
3896         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3897 
3898         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3899         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3900 
3901         eagerly_reclaim_humongous_regions();
3902 
3903         g1_policy()->clear_collection_set();
3904 
3905         // Start a new incremental collection set for the next pause.
3906         g1_policy()->start_incremental_cset_building();
3907 
3908         clear_cset_fast_test();
3909 
3910         _young_list->reset_sampled_info();
3911 
3912         // Don't check the whole heap at this point as the
3913         // GC alloc regions from this pause have been tagged
3914         // as survivors and moved on to the survivor list.
3915         // Survivor regions will fail the !is_young() check.
3916         assert(check_young_list_empty(false /* check_heap */),
3917           "young list should be empty");
3918 
3919         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3920                                              _young_list->first_survivor_region(),
3921                                              _young_list->last_survivor_region());
3922 
3923         _young_list->reset_auxilary_lists();
3924 
3925         if (evacuation_failed()) {
3926           set_used(recalculate_used());
3927           if (_archive_allocator != NULL) {
3928             _archive_allocator->clear_used();
3929           }
3930           for (uint i = 0; i < ParallelGCThreads; i++) {
3931             if (_evacuation_failed_info_array[i].has_failed()) {
3932               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3933             }
3934           }
3935         } else {
3936           // The "used" of the the collection set have already been subtracted
3937           // when they were freed.  Add in the bytes evacuated.
3938           increase_used(g1_policy()->bytes_copied_during_gc());
3939         }
3940 
3941         if (collector_state()->during_initial_mark_pause()) {
3942           // We have to do this before we notify the CM threads that
3943           // they can start working to make sure that all the
3944           // appropriate initialization is done on the CM object.
3945           concurrent_mark()->checkpointRootsInitialPost();
3946           collector_state()->set_mark_in_progress(true);
3947           // Note that we don't actually trigger the CM thread at
3948           // this point. We do that later when we're sure that
3949           // the current thread has completed its logging output.
3950         }
3951 
3952         allocate_dummy_regions();
3953 
3954         _allocator->init_mutator_alloc_region();
3955 
3956         {
3957           size_t expand_bytes = g1_policy()->expansion_amount();
3958           if (expand_bytes > 0) {
3959             size_t bytes_before = capacity();
3960             // No need for an ergo verbose message here,
3961             // expansion_amount() does this when it returns a value > 0.
3962             double expand_ms;
3963             if (!expand(expand_bytes, &expand_ms)) {
3964               // We failed to expand the heap. Cannot do anything about it.
3965             }
3966             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3967           }
3968         }
3969 
3970         // We redo the verification but now wrt to the new CSet which
3971         // has just got initialized after the previous CSet was freed.
3972         _cm->verify_no_cset_oops();
3973         _cm->note_end_of_gc();
3974 
3975         // This timing is only used by the ergonomics to handle our pause target.
3976         // It is unclear why this should not include the full pause. We will
3977         // investigate this in CR 7178365.
3978         double sample_end_time_sec = os::elapsedTime();
3979         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3980         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3981         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3982 
3983         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3984         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3985 
3986         MemoryService::track_memory_usage();
3987 
3988         // In prepare_for_verify() below we'll need to scan the deferred
3989         // update buffers to bring the RSets up-to-date if
3990         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3991         // the update buffers we'll probably need to scan cards on the
3992         // regions we just allocated to (i.e., the GC alloc
3993         // regions). However, during the last GC we called
3994         // set_saved_mark() on all the GC alloc regions, so card
3995         // scanning might skip the [saved_mark_word()...top()] area of
3996         // those regions (i.e., the area we allocated objects into
3997         // during the last GC). But it shouldn't. Given that
3998         // saved_mark_word() is conditional on whether the GC time stamp
3999         // on the region is current or not, by incrementing the GC time
4000         // stamp here we invalidate all the GC time stamps on all the
4001         // regions and saved_mark_word() will simply return top() for
4002         // all the regions. This is a nicer way of ensuring this rather
4003         // than iterating over the regions and fixing them. In fact, the
4004         // GC time stamp increment here also ensures that
4005         // saved_mark_word() will return top() between pauses, i.e.,
4006         // during concurrent refinement. So we don't need the
4007         // is_gc_active() check to decided which top to use when
4008         // scanning cards (see CR 7039627).
4009         increment_gc_time_stamp();
4010 
4011         verify_after_gc();
4012         check_bitmaps("GC End");
4013 
4014         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4015         ref_processor_stw()->verify_no_references_recorded();
4016 
4017         // CM reference discovery will be re-enabled if necessary.
4018       }
4019 
4020       // We should do this after we potentially expand the heap so
4021       // that all the COMMIT events are generated before the end GC
4022       // event, and after we retire the GC alloc regions so that all
4023       // RETIRE events are generated before the end GC event.
4024       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4025 
4026 #ifdef TRACESPINNING
4027       ParallelTaskTerminator::print_termination_counts();
4028 #endif
4029 
4030       gc_epilogue(false);
4031     }
4032 
4033     // Print the remainder of the GC log output.
4034     log_gc_footer(os::elapsedTime() - pause_start_sec);
4035 
4036     // It is not yet to safe to tell the concurrent mark to
4037     // start as we have some optional output below. We don't want the
4038     // output from the concurrent mark thread interfering with this
4039     // logging output either.
4040 
4041     _hrm.verify_optional();
4042     verify_region_sets_optional();
4043 
4044     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4045     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4046 
4047     print_heap_after_gc();
4048     trace_heap_after_gc(_gc_tracer_stw);
4049 
4050     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4051     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4052     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4053     // before any GC notifications are raised.
4054     g1mm()->update_sizes();
4055 
4056     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4057     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4058     _gc_timer_stw->register_gc_end();
4059     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4060   }
4061   // It should now be safe to tell the concurrent mark thread to start
4062   // without its logging output interfering with the logging output
4063   // that came from the pause.
4064 
4065   if (should_start_conc_mark) {
4066     // CAUTION: after the doConcurrentMark() call below,
4067     // the concurrent marking thread(s) could be running
4068     // concurrently with us. Make sure that anything after
4069     // this point does not assume that we are the only GC thread
4070     // running. Note: of course, the actual marking work will
4071     // not start until the safepoint itself is released in
4072     // SuspendibleThreadSet::desynchronize().
4073     doConcurrentMark();
4074   }
4075 
4076   return true;
4077 }
4078 
4079 void G1CollectedHeap::remove_self_forwarding_pointers() {
4080   double remove_self_forwards_start = os::elapsedTime();
4081 
4082   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4083   workers()->run_task(&rsfp_task);
4084 
4085   // Now restore saved marks, if any.
4086   for (uint i = 0; i < ParallelGCThreads; i++) {
4087     OopAndMarkOopStack& cur = _preserved_objs[i];
4088     while (!cur.is_empty()) {
4089       OopAndMarkOop elem = cur.pop();
4090       elem.set_mark();
4091     }
4092     cur.clear(true);
4093   }
4094 
4095   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4096 }
4097 
4098 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4099   if (!_evacuation_failed) {
4100     _evacuation_failed = true;
4101   }
4102 
4103   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4104 
4105   // We want to call the "for_promotion_failure" version only in the
4106   // case of a promotion failure.
4107   if (m->must_be_preserved_for_promotion_failure(obj)) {
4108     OopAndMarkOop elem(obj, m);
4109     _preserved_objs[worker_id].push(elem);
4110   }
4111 }
4112 
4113 class G1ParEvacuateFollowersClosure : public VoidClosure {
4114 private:
4115   double _start_term;
4116   double _term_time;
4117   size_t _term_attempts;
4118 
4119   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4120   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4121 protected:
4122   G1CollectedHeap*              _g1h;
4123   G1ParScanThreadState*         _par_scan_state;
4124   RefToScanQueueSet*            _queues;
4125   ParallelTaskTerminator*       _terminator;
4126 
4127   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4128   RefToScanQueueSet*      queues()         { return _queues; }
4129   ParallelTaskTerminator* terminator()     { return _terminator; }
4130 
4131 public:
4132   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4133                                 G1ParScanThreadState* par_scan_state,
4134                                 RefToScanQueueSet* queues,
4135                                 ParallelTaskTerminator* terminator)
4136     : _g1h(g1h), _par_scan_state(par_scan_state),
4137       _queues(queues), _terminator(terminator),
4138       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4139 
4140   void do_void();
4141 
4142   double term_time() const { return _term_time; }
4143   size_t term_attempts() const { return _term_attempts; }
4144 
4145 private:
4146   inline bool offer_termination();
4147 };
4148 
4149 bool G1ParEvacuateFollowersClosure::offer_termination() {
4150   G1ParScanThreadState* const pss = par_scan_state();
4151   start_term_time();
4152   const bool res = terminator()->offer_termination();
4153   end_term_time();
4154   return res;
4155 }
4156 
4157 void G1ParEvacuateFollowersClosure::do_void() {
4158   G1ParScanThreadState* const pss = par_scan_state();
4159   pss->trim_queue();
4160   do {
4161     pss->steal_and_trim_queue(queues());
4162   } while (!offer_termination());
4163 }
4164 
4165 class G1ParTask : public AbstractGangTask {
4166 protected:
4167   G1CollectedHeap*         _g1h;
4168   G1ParScanThreadStateSet* _pss;
4169   RefToScanQueueSet*       _queues;
4170   G1RootProcessor*         _root_processor;
4171   ParallelTaskTerminator   _terminator;
4172   uint                     _n_workers;
4173 
4174 public:
4175   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4176     : AbstractGangTask("G1 collection"),
4177       _g1h(g1h),
4178       _pss(per_thread_states),
4179       _queues(task_queues),
4180       _root_processor(root_processor),
4181       _terminator(n_workers, _queues),
4182       _n_workers(n_workers)
4183   {}
4184 
4185   void work(uint worker_id) {
4186     if (worker_id >= _n_workers) return;  // no work needed this round
4187 
4188     double start_sec = os::elapsedTime();
4189     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4190 
4191     {
4192       ResourceMark rm;
4193       HandleMark   hm;
4194 
4195       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4196 
4197       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4198       pss->set_ref_processor(rp);
4199 
4200       double start_strong_roots_sec = os::elapsedTime();
4201 
4202       _root_processor->evacuate_roots(pss->closures(), worker_id);
4203 
4204       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4205 
4206       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4207       // treating the nmethods visited to act as roots for concurrent marking.
4208       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4209       // objects copied by the current evacuation.
4210       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4211                                                                              pss->closures()->weak_codeblobs(),
4212                                                                              worker_id);
4213 
4214       _pss->add_cards_scanned(worker_id, cards_scanned);
4215 
4216       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4217 
4218       double term_sec = 0.0;
4219       size_t evac_term_attempts = 0;
4220       {
4221         double start = os::elapsedTime();
4222         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4223         evac.do_void();
4224 
4225         evac_term_attempts = evac.term_attempts();
4226         term_sec = evac.term_time();
4227         double elapsed_sec = os::elapsedTime() - start;
4228         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4229         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4230         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4231       }
4232 
4233       assert(pss->queue_is_empty(), "should be empty");
4234 
4235       if (PrintTerminationStats) {
4236         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4237         size_t lab_waste;
4238         size_t lab_undo_waste;
4239         pss->waste(lab_waste, lab_undo_waste);
4240         _g1h->print_termination_stats(gclog_or_tty,
4241                                       worker_id,
4242                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4243                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4244                                       term_sec * 1000.0,                          /* evac term time */
4245                                       evac_term_attempts,                         /* evac term attempts */
4246                                       lab_waste,                                  /* alloc buffer waste */
4247                                       lab_undo_waste                              /* undo waste */
4248                                       );
4249       }
4250 
4251       // Close the inner scope so that the ResourceMark and HandleMark
4252       // destructors are executed here and are included as part of the
4253       // "GC Worker Time".
4254     }
4255     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4256   }
4257 };
4258 
4259 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4260   st->print_raw_cr("GC Termination Stats");
4261   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4262   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4263   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4264 }
4265 
4266 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4267                                               uint worker_id,
4268                                               double elapsed_ms,
4269                                               double strong_roots_ms,
4270                                               double term_ms,
4271                                               size_t term_attempts,
4272                                               size_t alloc_buffer_waste,
4273                                               size_t undo_waste) const {
4274   st->print_cr("%3d %9.2f %9.2f %6.2f "
4275                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4276                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4277                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4278                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4279                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4280                alloc_buffer_waste * HeapWordSize / K,
4281                undo_waste * HeapWordSize / K);
4282 }
4283 
4284 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4285 private:
4286   BoolObjectClosure* _is_alive;
4287   int _initial_string_table_size;
4288   int _initial_symbol_table_size;
4289 
4290   bool  _process_strings;
4291   int _strings_processed;
4292   int _strings_removed;
4293 
4294   bool  _process_symbols;
4295   int _symbols_processed;
4296   int _symbols_removed;
4297 
4298 public:
4299   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4300     AbstractGangTask("String/Symbol Unlinking"),
4301     _is_alive(is_alive),
4302     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4303     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4304 
4305     _initial_string_table_size = StringTable::the_table()->table_size();
4306     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4307     if (process_strings) {
4308       StringTable::clear_parallel_claimed_index();
4309     }
4310     if (process_symbols) {
4311       SymbolTable::clear_parallel_claimed_index();
4312     }
4313   }
4314 
4315   ~G1StringSymbolTableUnlinkTask() {
4316     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4317               "claim value %d after unlink less than initial string table size %d",
4318               StringTable::parallel_claimed_index(), _initial_string_table_size);
4319     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4320               "claim value %d after unlink less than initial symbol table size %d",
4321               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4322 
4323     if (G1TraceStringSymbolTableScrubbing) {
4324       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4325                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4326                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4327                              strings_processed(), strings_removed(),
4328                              symbols_processed(), symbols_removed());
4329     }
4330   }
4331 
4332   void work(uint worker_id) {
4333     int strings_processed = 0;
4334     int strings_removed = 0;
4335     int symbols_processed = 0;
4336     int symbols_removed = 0;
4337     if (_process_strings) {
4338       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4339       Atomic::add(strings_processed, &_strings_processed);
4340       Atomic::add(strings_removed, &_strings_removed);
4341     }
4342     if (_process_symbols) {
4343       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4344       Atomic::add(symbols_processed, &_symbols_processed);
4345       Atomic::add(symbols_removed, &_symbols_removed);
4346     }
4347   }
4348 
4349   size_t strings_processed() const { return (size_t)_strings_processed; }
4350   size_t strings_removed()   const { return (size_t)_strings_removed; }
4351 
4352   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4353   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4354 };
4355 
4356 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4357 private:
4358   static Monitor* _lock;
4359 
4360   BoolObjectClosure* const _is_alive;
4361   const bool               _unloading_occurred;
4362   const uint               _num_workers;
4363 
4364   // Variables used to claim nmethods.
4365   nmethod* _first_nmethod;
4366   volatile nmethod* _claimed_nmethod;
4367 
4368   // The list of nmethods that need to be processed by the second pass.
4369   volatile nmethod* _postponed_list;
4370   volatile uint     _num_entered_barrier;
4371 
4372  public:
4373   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4374       _is_alive(is_alive),
4375       _unloading_occurred(unloading_occurred),
4376       _num_workers(num_workers),
4377       _first_nmethod(NULL),
4378       _claimed_nmethod(NULL),
4379       _postponed_list(NULL),
4380       _num_entered_barrier(0)
4381   {
4382     nmethod::increase_unloading_clock();
4383     // Get first alive nmethod
4384     NMethodIterator iter = NMethodIterator();
4385     if(iter.next_alive()) {
4386       _first_nmethod = iter.method();
4387     }
4388     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4389   }
4390 
4391   ~G1CodeCacheUnloadingTask() {
4392     CodeCache::verify_clean_inline_caches();
4393 
4394     CodeCache::set_needs_cache_clean(false);
4395     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4396 
4397     CodeCache::verify_icholder_relocations();
4398   }
4399 
4400  private:
4401   void add_to_postponed_list(nmethod* nm) {
4402       nmethod* old;
4403       do {
4404         old = (nmethod*)_postponed_list;
4405         nm->set_unloading_next(old);
4406       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4407   }
4408 
4409   void clean_nmethod(nmethod* nm) {
4410     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4411 
4412     if (postponed) {
4413       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4414       add_to_postponed_list(nm);
4415     }
4416 
4417     // Mark that this thread has been cleaned/unloaded.
4418     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4419     nm->set_unloading_clock(nmethod::global_unloading_clock());
4420   }
4421 
4422   void clean_nmethod_postponed(nmethod* nm) {
4423     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4424   }
4425 
4426   static const int MaxClaimNmethods = 16;
4427 
4428   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4429     nmethod* first;
4430     NMethodIterator last;
4431 
4432     do {
4433       *num_claimed_nmethods = 0;
4434 
4435       first = (nmethod*)_claimed_nmethod;
4436       last = NMethodIterator(first);
4437 
4438       if (first != NULL) {
4439 
4440         for (int i = 0; i < MaxClaimNmethods; i++) {
4441           if (!last.next_alive()) {
4442             break;
4443           }
4444           claimed_nmethods[i] = last.method();
4445           (*num_claimed_nmethods)++;
4446         }
4447       }
4448 
4449     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4450   }
4451 
4452   nmethod* claim_postponed_nmethod() {
4453     nmethod* claim;
4454     nmethod* next;
4455 
4456     do {
4457       claim = (nmethod*)_postponed_list;
4458       if (claim == NULL) {
4459         return NULL;
4460       }
4461 
4462       next = claim->unloading_next();
4463 
4464     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4465 
4466     return claim;
4467   }
4468 
4469  public:
4470   // Mark that we're done with the first pass of nmethod cleaning.
4471   void barrier_mark(uint worker_id) {
4472     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4473     _num_entered_barrier++;
4474     if (_num_entered_barrier == _num_workers) {
4475       ml.notify_all();
4476     }
4477   }
4478 
4479   // See if we have to wait for the other workers to
4480   // finish their first-pass nmethod cleaning work.
4481   void barrier_wait(uint worker_id) {
4482     if (_num_entered_barrier < _num_workers) {
4483       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4484       while (_num_entered_barrier < _num_workers) {
4485           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4486       }
4487     }
4488   }
4489 
4490   // Cleaning and unloading of nmethods. Some work has to be postponed
4491   // to the second pass, when we know which nmethods survive.
4492   void work_first_pass(uint worker_id) {
4493     // The first nmethods is claimed by the first worker.
4494     if (worker_id == 0 && _first_nmethod != NULL) {
4495       clean_nmethod(_first_nmethod);
4496       _first_nmethod = NULL;
4497     }
4498 
4499     int num_claimed_nmethods;
4500     nmethod* claimed_nmethods[MaxClaimNmethods];
4501 
4502     while (true) {
4503       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4504 
4505       if (num_claimed_nmethods == 0) {
4506         break;
4507       }
4508 
4509       for (int i = 0; i < num_claimed_nmethods; i++) {
4510         clean_nmethod(claimed_nmethods[i]);
4511       }
4512     }
4513   }
4514 
4515   void work_second_pass(uint worker_id) {
4516     nmethod* nm;
4517     // Take care of postponed nmethods.
4518     while ((nm = claim_postponed_nmethod()) != NULL) {
4519       clean_nmethod_postponed(nm);
4520     }
4521   }
4522 };
4523 
4524 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4525 
4526 class G1KlassCleaningTask : public StackObj {
4527   BoolObjectClosure*                      _is_alive;
4528   volatile jint                           _clean_klass_tree_claimed;
4529   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4530 
4531  public:
4532   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4533       _is_alive(is_alive),
4534       _clean_klass_tree_claimed(0),
4535       _klass_iterator() {
4536   }
4537 
4538  private:
4539   bool claim_clean_klass_tree_task() {
4540     if (_clean_klass_tree_claimed) {
4541       return false;
4542     }
4543 
4544     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4545   }
4546 
4547   InstanceKlass* claim_next_klass() {
4548     Klass* klass;
4549     do {
4550       klass =_klass_iterator.next_klass();
4551     } while (klass != NULL && !klass->is_instance_klass());
4552 
4553     // this can be null so don't call InstanceKlass::cast
4554     return static_cast<InstanceKlass*>(klass);
4555   }
4556 
4557 public:
4558 
4559   void clean_klass(InstanceKlass* ik) {
4560     ik->clean_weak_instanceklass_links(_is_alive);
4561   }
4562 
4563   void work() {
4564     ResourceMark rm;
4565 
4566     // One worker will clean the subklass/sibling klass tree.
4567     if (claim_clean_klass_tree_task()) {
4568       Klass::clean_subklass_tree(_is_alive);
4569     }
4570 
4571     // All workers will help cleaning the classes,
4572     InstanceKlass* klass;
4573     while ((klass = claim_next_klass()) != NULL) {
4574       clean_klass(klass);
4575     }
4576   }
4577 };
4578 
4579 // To minimize the remark pause times, the tasks below are done in parallel.
4580 class G1ParallelCleaningTask : public AbstractGangTask {
4581 private:
4582   G1StringSymbolTableUnlinkTask _string_symbol_task;
4583   G1CodeCacheUnloadingTask      _code_cache_task;
4584   G1KlassCleaningTask           _klass_cleaning_task;
4585 
4586 public:
4587   // The constructor is run in the VMThread.
4588   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4589       AbstractGangTask("Parallel Cleaning"),
4590       _string_symbol_task(is_alive, process_strings, process_symbols),
4591       _code_cache_task(num_workers, is_alive, unloading_occurred),
4592       _klass_cleaning_task(is_alive) {
4593   }
4594 
4595   // The parallel work done by all worker threads.
4596   void work(uint worker_id) {
4597     // Do first pass of code cache cleaning.
4598     _code_cache_task.work_first_pass(worker_id);
4599 
4600     // Let the threads mark that the first pass is done.
4601     _code_cache_task.barrier_mark(worker_id);
4602 
4603     // Clean the Strings and Symbols.
4604     _string_symbol_task.work(worker_id);
4605 
4606     // Wait for all workers to finish the first code cache cleaning pass.
4607     _code_cache_task.barrier_wait(worker_id);
4608 
4609     // Do the second code cache cleaning work, which realize on
4610     // the liveness information gathered during the first pass.
4611     _code_cache_task.work_second_pass(worker_id);
4612 
4613     // Clean all klasses that were not unloaded.
4614     _klass_cleaning_task.work();
4615   }
4616 };
4617 
4618 
4619 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4620                                         bool process_strings,
4621                                         bool process_symbols,
4622                                         bool class_unloading_occurred) {
4623   uint n_workers = workers()->active_workers();
4624 
4625   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4626                                         n_workers, class_unloading_occurred);
4627   workers()->run_task(&g1_unlink_task);
4628 }
4629 
4630 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4631                                                      bool process_strings, bool process_symbols) {
4632   {
4633     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4634     workers()->run_task(&g1_unlink_task);
4635   }
4636 
4637   if (G1StringDedup::is_enabled()) {
4638     G1StringDedup::unlink(is_alive);
4639   }
4640 }
4641 
4642 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4643  private:
4644   DirtyCardQueueSet* _queue;
4645  public:
4646   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4647 
4648   virtual void work(uint worker_id) {
4649     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4650     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4651 
4652     RedirtyLoggedCardTableEntryClosure cl;
4653     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4654 
4655     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4656   }
4657 };
4658 
4659 void G1CollectedHeap::redirty_logged_cards() {
4660   double redirty_logged_cards_start = os::elapsedTime();
4661 
4662   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4663   dirty_card_queue_set().reset_for_par_iteration();
4664   workers()->run_task(&redirty_task);
4665 
4666   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4667   dcq.merge_bufferlists(&dirty_card_queue_set());
4668   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4669 
4670   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4671 }
4672 
4673 // Weak Reference Processing support
4674 
4675 // An always "is_alive" closure that is used to preserve referents.
4676 // If the object is non-null then it's alive.  Used in the preservation
4677 // of referent objects that are pointed to by reference objects
4678 // discovered by the CM ref processor.
4679 class G1AlwaysAliveClosure: public BoolObjectClosure {
4680   G1CollectedHeap* _g1;
4681 public:
4682   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4683   bool do_object_b(oop p) {
4684     if (p != NULL) {
4685       return true;
4686     }
4687     return false;
4688   }
4689 };
4690 
4691 bool G1STWIsAliveClosure::do_object_b(oop p) {
4692   // An object is reachable if it is outside the collection set,
4693   // or is inside and copied.
4694   return !_g1->is_in_cset(p) || p->is_forwarded();
4695 }
4696 
4697 // Non Copying Keep Alive closure
4698 class G1KeepAliveClosure: public OopClosure {
4699   G1CollectedHeap* _g1;
4700 public:
4701   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4702   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4703   void do_oop(oop* p) {
4704     oop obj = *p;
4705     assert(obj != NULL, "the caller should have filtered out NULL values");
4706 
4707     const InCSetState cset_state = _g1->in_cset_state(obj);
4708     if (!cset_state.is_in_cset_or_humongous()) {
4709       return;
4710     }
4711     if (cset_state.is_in_cset()) {
4712       assert( obj->is_forwarded(), "invariant" );
4713       *p = obj->forwardee();
4714     } else {
4715       assert(!obj->is_forwarded(), "invariant" );
4716       assert(cset_state.is_humongous(),
4717              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4718       _g1->set_humongous_is_live(obj);
4719     }
4720   }
4721 };
4722 
4723 // Copying Keep Alive closure - can be called from both
4724 // serial and parallel code as long as different worker
4725 // threads utilize different G1ParScanThreadState instances
4726 // and different queues.
4727 
4728 class G1CopyingKeepAliveClosure: public OopClosure {
4729   G1CollectedHeap*         _g1h;
4730   OopClosure*              _copy_non_heap_obj_cl;
4731   G1ParScanThreadState*    _par_scan_state;
4732 
4733 public:
4734   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4735                             OopClosure* non_heap_obj_cl,
4736                             G1ParScanThreadState* pss):
4737     _g1h(g1h),
4738     _copy_non_heap_obj_cl(non_heap_obj_cl),
4739     _par_scan_state(pss)
4740   {}
4741 
4742   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4743   virtual void do_oop(      oop* p) { do_oop_work(p); }
4744 
4745   template <class T> void do_oop_work(T* p) {
4746     oop obj = oopDesc::load_decode_heap_oop(p);
4747 
4748     if (_g1h->is_in_cset_or_humongous(obj)) {
4749       // If the referent object has been forwarded (either copied
4750       // to a new location or to itself in the event of an
4751       // evacuation failure) then we need to update the reference
4752       // field and, if both reference and referent are in the G1
4753       // heap, update the RSet for the referent.
4754       //
4755       // If the referent has not been forwarded then we have to keep
4756       // it alive by policy. Therefore we have copy the referent.
4757       //
4758       // If the reference field is in the G1 heap then we can push
4759       // on the PSS queue. When the queue is drained (after each
4760       // phase of reference processing) the object and it's followers
4761       // will be copied, the reference field set to point to the
4762       // new location, and the RSet updated. Otherwise we need to
4763       // use the the non-heap or metadata closures directly to copy
4764       // the referent object and update the pointer, while avoiding
4765       // updating the RSet.
4766 
4767       if (_g1h->is_in_g1_reserved(p)) {
4768         _par_scan_state->push_on_queue(p);
4769       } else {
4770         assert(!Metaspace::contains((const void*)p),
4771                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4772         _copy_non_heap_obj_cl->do_oop(p);
4773       }
4774     }
4775   }
4776 };
4777 
4778 // Serial drain queue closure. Called as the 'complete_gc'
4779 // closure for each discovered list in some of the
4780 // reference processing phases.
4781 
4782 class G1STWDrainQueueClosure: public VoidClosure {
4783 protected:
4784   G1CollectedHeap* _g1h;
4785   G1ParScanThreadState* _par_scan_state;
4786 
4787   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4788 
4789 public:
4790   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4791     _g1h(g1h),
4792     _par_scan_state(pss)
4793   { }
4794 
4795   void do_void() {
4796     G1ParScanThreadState* const pss = par_scan_state();
4797     pss->trim_queue();
4798   }
4799 };
4800 
4801 // Parallel Reference Processing closures
4802 
4803 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4804 // processing during G1 evacuation pauses.
4805 
4806 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4807 private:
4808   G1CollectedHeap*          _g1h;
4809   G1ParScanThreadStateSet*  _pss;
4810   RefToScanQueueSet*        _queues;
4811   WorkGang*                 _workers;
4812   uint                      _active_workers;
4813 
4814 public:
4815   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4816                            G1ParScanThreadStateSet* per_thread_states,
4817                            WorkGang* workers,
4818                            RefToScanQueueSet *task_queues,
4819                            uint n_workers) :
4820     _g1h(g1h),
4821     _pss(per_thread_states),
4822     _queues(task_queues),
4823     _workers(workers),
4824     _active_workers(n_workers)
4825   {
4826     assert(n_workers > 0, "shouldn't call this otherwise");
4827   }
4828 
4829   // Executes the given task using concurrent marking worker threads.
4830   virtual void execute(ProcessTask& task);
4831   virtual void execute(EnqueueTask& task);
4832 };
4833 
4834 // Gang task for possibly parallel reference processing
4835 
4836 class G1STWRefProcTaskProxy: public AbstractGangTask {
4837   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4838   ProcessTask&     _proc_task;
4839   G1CollectedHeap* _g1h;
4840   G1ParScanThreadStateSet* _pss;
4841   RefToScanQueueSet* _task_queues;
4842   ParallelTaskTerminator* _terminator;
4843 
4844 public:
4845   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4846                         G1CollectedHeap* g1h,
4847                         G1ParScanThreadStateSet* per_thread_states,
4848                         RefToScanQueueSet *task_queues,
4849                         ParallelTaskTerminator* terminator) :
4850     AbstractGangTask("Process reference objects in parallel"),
4851     _proc_task(proc_task),
4852     _g1h(g1h),
4853     _pss(per_thread_states),
4854     _task_queues(task_queues),
4855     _terminator(terminator)
4856   {}
4857 
4858   virtual void work(uint worker_id) {
4859     // The reference processing task executed by a single worker.
4860     ResourceMark rm;
4861     HandleMark   hm;
4862 
4863     G1STWIsAliveClosure is_alive(_g1h);
4864 
4865     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4866     pss->set_ref_processor(NULL);
4867 
4868     // Keep alive closure.
4869     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4870 
4871     // Complete GC closure
4872     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4873 
4874     // Call the reference processing task's work routine.
4875     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4876 
4877     // Note we cannot assert that the refs array is empty here as not all
4878     // of the processing tasks (specifically phase2 - pp2_work) execute
4879     // the complete_gc closure (which ordinarily would drain the queue) so
4880     // the queue may not be empty.
4881   }
4882 };
4883 
4884 // Driver routine for parallel reference processing.
4885 // Creates an instance of the ref processing gang
4886 // task and has the worker threads execute it.
4887 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4888   assert(_workers != NULL, "Need parallel worker threads.");
4889 
4890   ParallelTaskTerminator terminator(_active_workers, _queues);
4891   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4892 
4893   _workers->run_task(&proc_task_proxy);
4894 }
4895 
4896 // Gang task for parallel reference enqueueing.
4897 
4898 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4899   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4900   EnqueueTask& _enq_task;
4901 
4902 public:
4903   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4904     AbstractGangTask("Enqueue reference objects in parallel"),
4905     _enq_task(enq_task)
4906   { }
4907 
4908   virtual void work(uint worker_id) {
4909     _enq_task.work(worker_id);
4910   }
4911 };
4912 
4913 // Driver routine for parallel reference enqueueing.
4914 // Creates an instance of the ref enqueueing gang
4915 // task and has the worker threads execute it.
4916 
4917 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4918   assert(_workers != NULL, "Need parallel worker threads.");
4919 
4920   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4921 
4922   _workers->run_task(&enq_task_proxy);
4923 }
4924 
4925 // End of weak reference support closures
4926 
4927 // Abstract task used to preserve (i.e. copy) any referent objects
4928 // that are in the collection set and are pointed to by reference
4929 // objects discovered by the CM ref processor.
4930 
4931 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4932 protected:
4933   G1CollectedHeap*         _g1h;
4934   G1ParScanThreadStateSet* _pss;
4935   RefToScanQueueSet*       _queues;
4936   ParallelTaskTerminator   _terminator;
4937   uint                     _n_workers;
4938 
4939 public:
4940   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4941     AbstractGangTask("ParPreserveCMReferents"),
4942     _g1h(g1h),
4943     _pss(per_thread_states),
4944     _queues(task_queues),
4945     _terminator(workers, _queues),
4946     _n_workers(workers)
4947   { }
4948 
4949   void work(uint worker_id) {
4950     ResourceMark rm;
4951     HandleMark   hm;
4952 
4953     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4954     pss->set_ref_processor(NULL);
4955     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4956 
4957     // Is alive closure
4958     G1AlwaysAliveClosure always_alive(_g1h);
4959 
4960     // Copying keep alive closure. Applied to referent objects that need
4961     // to be copied.
4962     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4963 
4964     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4965 
4966     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4967     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4968 
4969     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4970     // So this must be true - but assert just in case someone decides to
4971     // change the worker ids.
4972     assert(worker_id < limit, "sanity");
4973     assert(!rp->discovery_is_atomic(), "check this code");
4974 
4975     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4976     for (uint idx = worker_id; idx < limit; idx += stride) {
4977       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4978 
4979       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4980       while (iter.has_next()) {
4981         // Since discovery is not atomic for the CM ref processor, we
4982         // can see some null referent objects.
4983         iter.load_ptrs(DEBUG_ONLY(true));
4984         oop ref = iter.obj();
4985 
4986         // This will filter nulls.
4987         if (iter.is_referent_alive()) {
4988           iter.make_referent_alive();
4989         }
4990         iter.move_to_next();
4991       }
4992     }
4993 
4994     // Drain the queue - which may cause stealing
4995     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4996     drain_queue.do_void();
4997     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4998     assert(pss->queue_is_empty(), "should be");
4999   }
5000 };
5001 
5002 // Weak Reference processing during an evacuation pause (part 1).
5003 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5004   double ref_proc_start = os::elapsedTime();
5005 
5006   ReferenceProcessor* rp = _ref_processor_stw;
5007   assert(rp->discovery_enabled(), "should have been enabled");
5008 
5009   // Any reference objects, in the collection set, that were 'discovered'
5010   // by the CM ref processor should have already been copied (either by
5011   // applying the external root copy closure to the discovered lists, or
5012   // by following an RSet entry).
5013   //
5014   // But some of the referents, that are in the collection set, that these
5015   // reference objects point to may not have been copied: the STW ref
5016   // processor would have seen that the reference object had already
5017   // been 'discovered' and would have skipped discovering the reference,
5018   // but would not have treated the reference object as a regular oop.
5019   // As a result the copy closure would not have been applied to the
5020   // referent object.
5021   //
5022   // We need to explicitly copy these referent objects - the references
5023   // will be processed at the end of remarking.
5024   //
5025   // We also need to do this copying before we process the reference
5026   // objects discovered by the STW ref processor in case one of these
5027   // referents points to another object which is also referenced by an
5028   // object discovered by the STW ref processor.
5029 
5030   uint no_of_gc_workers = workers()->active_workers();
5031 
5032   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5033                                                  per_thread_states,
5034                                                  no_of_gc_workers,
5035                                                  _task_queues);
5036 
5037   workers()->run_task(&keep_cm_referents);
5038 
5039   // Closure to test whether a referent is alive.
5040   G1STWIsAliveClosure is_alive(this);
5041 
5042   // Even when parallel reference processing is enabled, the processing
5043   // of JNI refs is serial and performed serially by the current thread
5044   // rather than by a worker. The following PSS will be used for processing
5045   // JNI refs.
5046 
5047   // Use only a single queue for this PSS.
5048   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5049   pss->set_ref_processor(NULL);
5050   assert(pss->queue_is_empty(), "pre-condition");
5051 
5052   // Keep alive closure.
5053   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5054 
5055   // Serial Complete GC closure
5056   G1STWDrainQueueClosure drain_queue(this, pss);
5057 
5058   // Setup the soft refs policy...
5059   rp->setup_policy(false);
5060 
5061   ReferenceProcessorStats stats;
5062   if (!rp->processing_is_mt()) {
5063     // Serial reference processing...
5064     stats = rp->process_discovered_references(&is_alive,
5065                                               &keep_alive,
5066                                               &drain_queue,
5067                                               NULL,
5068                                               _gc_timer_stw);
5069   } else {
5070     // Parallel reference processing
5071     assert(rp->num_q() == no_of_gc_workers, "sanity");
5072     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5073 
5074     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5075     stats = rp->process_discovered_references(&is_alive,
5076                                               &keep_alive,
5077                                               &drain_queue,
5078                                               &par_task_executor,
5079                                               _gc_timer_stw);
5080   }
5081 
5082   _gc_tracer_stw->report_gc_reference_stats(stats);
5083 
5084   // We have completed copying any necessary live referent objects.
5085   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5086 
5087   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5088   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5089 }
5090 
5091 // Weak Reference processing during an evacuation pause (part 2).
5092 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5093   double ref_enq_start = os::elapsedTime();
5094 
5095   ReferenceProcessor* rp = _ref_processor_stw;
5096   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5097 
5098   // Now enqueue any remaining on the discovered lists on to
5099   // the pending list.
5100   if (!rp->processing_is_mt()) {
5101     // Serial reference processing...
5102     rp->enqueue_discovered_references();
5103   } else {
5104     // Parallel reference enqueueing
5105 
5106     uint n_workers = workers()->active_workers();
5107 
5108     assert(rp->num_q() == n_workers, "sanity");
5109     assert(n_workers <= rp->max_num_q(), "sanity");
5110 
5111     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5112     rp->enqueue_discovered_references(&par_task_executor);
5113   }
5114 
5115   rp->verify_no_references_recorded();
5116   assert(!rp->discovery_enabled(), "should have been disabled");
5117 
5118   // FIXME
5119   // CM's reference processing also cleans up the string and symbol tables.
5120   // Should we do that here also? We could, but it is a serial operation
5121   // and could significantly increase the pause time.
5122 
5123   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5124   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5125 }
5126 
5127 void G1CollectedHeap::pre_evacuate_collection_set() {
5128   _expand_heap_after_alloc_failure = true;
5129   _evacuation_failed = false;
5130 
5131   // Disable the hot card cache.
5132   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5133   hot_card_cache->reset_hot_cache_claimed_index();
5134   hot_card_cache->set_use_cache(false);
5135 
5136 }
5137 
5138 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5139   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5140 
5141   // Should G1EvacuationFailureALot be in effect for this GC?
5142   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5143 
5144   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5145   double start_par_time_sec = os::elapsedTime();
5146   double end_par_time_sec;
5147 
5148   {
5149     const uint n_workers = workers()->active_workers();
5150     G1RootProcessor root_processor(this, n_workers);
5151     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5152     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5153     if (collector_state()->during_initial_mark_pause()) {
5154       ClassLoaderDataGraph::clear_claimed_marks();
5155     }
5156 
5157     // The individual threads will set their evac-failure closures.
5158     if (PrintTerminationStats) {
5159       print_termination_stats_hdr(gclog_or_tty);
5160     }
5161 
5162     workers()->run_task(&g1_par_task);
5163     end_par_time_sec = os::elapsedTime();
5164 
5165     // Closing the inner scope will execute the destructor
5166     // for the G1RootProcessor object. We record the current
5167     // elapsed time before closing the scope so that time
5168     // taken for the destructor is NOT included in the
5169     // reported parallel time.
5170   }
5171 
5172   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5173 
5174   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5175   phase_times->record_par_time(par_time_ms);
5176 
5177   double code_root_fixup_time_ms =
5178         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5179   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5180 
5181   // Process any discovered reference objects - we have
5182   // to do this _before_ we retire the GC alloc regions
5183   // as we may have to copy some 'reachable' referent
5184   // objects (and their reachable sub-graphs) that were
5185   // not copied during the pause.
5186   process_discovered_references(per_thread_states);
5187 
5188   if (G1StringDedup::is_enabled()) {
5189     double fixup_start = os::elapsedTime();
5190 
5191     G1STWIsAliveClosure is_alive(this);
5192     G1KeepAliveClosure keep_alive(this);
5193     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5194 
5195     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5196     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5197   }
5198 
5199   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5200 
5201   if (evacuation_failed()) {
5202     remove_self_forwarding_pointers();
5203 
5204     // Reset the G1EvacuationFailureALot counters and flags
5205     // Note: the values are reset only when an actual
5206     // evacuation failure occurs.
5207     NOT_PRODUCT(reset_evacuation_should_fail();)
5208   }
5209 
5210   // Enqueue any remaining references remaining on the STW
5211   // reference processor's discovered lists. We need to do
5212   // this after the card table is cleaned (and verified) as
5213   // the act of enqueueing entries on to the pending list
5214   // will log these updates (and dirty their associated
5215   // cards). We need these updates logged to update any
5216   // RSets.
5217   enqueue_discovered_references(per_thread_states);
5218 }
5219 
5220 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5221   _allocator->release_gc_alloc_regions(evacuation_info);
5222 
5223   per_thread_states->flush();
5224 
5225   record_obj_copy_mem_stats();
5226 
5227   _survivor_evac_stats.adjust_desired_plab_sz();
5228   _old_evac_stats.adjust_desired_plab_sz();
5229 
5230   // Reset and re-enable the hot card cache.
5231   // Note the counts for the cards in the regions in the
5232   // collection set are reset when the collection set is freed.
5233   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5234   hot_card_cache->reset_hot_cache();
5235   hot_card_cache->set_use_cache(true);
5236 
5237   purge_code_root_memory();
5238 
5239   redirty_logged_cards();
5240 #if defined(COMPILER2) || INCLUDE_JVMCI
5241   DerivedPointerTable::update_pointers();
5242 #endif
5243 }
5244 
5245 void G1CollectedHeap::record_obj_copy_mem_stats() {
5246   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5247                                                create_g1_evac_summary(&_old_evac_stats));
5248 }
5249 
5250 void G1CollectedHeap::free_region(HeapRegion* hr,
5251                                   FreeRegionList* free_list,
5252                                   bool par,
5253                                   bool locked) {
5254   assert(!hr->is_free(), "the region should not be free");
5255   assert(!hr->is_empty(), "the region should not be empty");
5256   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5257   assert(free_list != NULL, "pre-condition");
5258 
5259   if (G1VerifyBitmaps) {
5260     MemRegion mr(hr->bottom(), hr->end());
5261     concurrent_mark()->clearRangePrevBitmap(mr);
5262   }
5263 
5264   // Clear the card counts for this region.
5265   // Note: we only need to do this if the region is not young
5266   // (since we don't refine cards in young regions).
5267   if (!hr->is_young()) {
5268     _cg1r->hot_card_cache()->reset_card_counts(hr);
5269   }
5270   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5271   free_list->add_ordered(hr);
5272 }
5273 
5274 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5275                                             FreeRegionList* free_list,
5276                                             bool par) {
5277   assert(hr->is_humongous(), "this is only for humongous regions");
5278   assert(free_list != NULL, "pre-condition");
5279   hr->clear_humongous();
5280   free_region(hr, free_list, par);
5281 }
5282 
5283 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5284                                            const HeapRegionSetCount& humongous_regions_removed) {
5285   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5286     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5287     _old_set.bulk_remove(old_regions_removed);
5288     _humongous_set.bulk_remove(humongous_regions_removed);
5289   }
5290 
5291 }
5292 
5293 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5294   assert(list != NULL, "list can't be null");
5295   if (!list->is_empty()) {
5296     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5297     _hrm.insert_list_into_free_list(list);
5298   }
5299 }
5300 
5301 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5302   decrease_used(bytes);
5303 }
5304 
5305 class G1ParCleanupCTTask : public AbstractGangTask {
5306   G1SATBCardTableModRefBS* _ct_bs;
5307   G1CollectedHeap* _g1h;
5308   HeapRegion* volatile _su_head;
5309 public:
5310   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5311                      G1CollectedHeap* g1h) :
5312     AbstractGangTask("G1 Par Cleanup CT Task"),
5313     _ct_bs(ct_bs), _g1h(g1h) { }
5314 
5315   void work(uint worker_id) {
5316     HeapRegion* r;
5317     while (r = _g1h->pop_dirty_cards_region()) {
5318       clear_cards(r);
5319     }
5320   }
5321 
5322   void clear_cards(HeapRegion* r) {
5323     // Cards of the survivors should have already been dirtied.
5324     if (!r->is_survivor()) {
5325       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5326     }
5327   }
5328 };
5329 
5330 #ifndef PRODUCT
5331 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5332   G1CollectedHeap* _g1h;
5333   G1SATBCardTableModRefBS* _ct_bs;
5334 public:
5335   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5336     : _g1h(g1h), _ct_bs(ct_bs) { }
5337   virtual bool doHeapRegion(HeapRegion* r) {
5338     if (r->is_survivor()) {
5339       _g1h->verify_dirty_region(r);
5340     } else {
5341       _g1h->verify_not_dirty_region(r);
5342     }
5343     return false;
5344   }
5345 };
5346 
5347 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5348   // All of the region should be clean.
5349   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5350   MemRegion mr(hr->bottom(), hr->end());
5351   ct_bs->verify_not_dirty_region(mr);
5352 }
5353 
5354 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5355   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5356   // dirty allocated blocks as they allocate them. The thread that
5357   // retires each region and replaces it with a new one will do a
5358   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5359   // not dirty that area (one less thing to have to do while holding
5360   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5361   // is dirty.
5362   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5363   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5364   if (hr->is_young()) {
5365     ct_bs->verify_g1_young_region(mr);
5366   } else {
5367     ct_bs->verify_dirty_region(mr);
5368   }
5369 }
5370 
5371 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5372   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5373   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5374     verify_dirty_region(hr);
5375   }
5376 }
5377 
5378 void G1CollectedHeap::verify_dirty_young_regions() {
5379   verify_dirty_young_list(_young_list->first_region());
5380 }
5381 
5382 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5383                                                HeapWord* tams, HeapWord* end) {
5384   guarantee(tams <= end,
5385             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5386   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5387   if (result < end) {
5388     gclog_or_tty->cr();
5389     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5390                            bitmap_name, p2i(result));
5391     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5392                            bitmap_name, p2i(tams), p2i(end));
5393     return false;
5394   }
5395   return true;
5396 }
5397 
5398 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5399   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5400   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5401 
5402   HeapWord* bottom = hr->bottom();
5403   HeapWord* ptams  = hr->prev_top_at_mark_start();
5404   HeapWord* ntams  = hr->next_top_at_mark_start();
5405   HeapWord* end    = hr->end();
5406 
5407   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5408 
5409   bool res_n = true;
5410   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5411   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5412   // if we happen to be in that state.
5413   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5414     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5415   }
5416   if (!res_p || !res_n) {
5417     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5418                            HR_FORMAT_PARAMS(hr));
5419     gclog_or_tty->print_cr("#### Caller: %s", caller);
5420     return false;
5421   }
5422   return true;
5423 }
5424 
5425 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5426   if (!G1VerifyBitmaps) return;
5427 
5428   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5429 }
5430 
5431 class G1VerifyBitmapClosure : public HeapRegionClosure {
5432 private:
5433   const char* _caller;
5434   G1CollectedHeap* _g1h;
5435   bool _failures;
5436 
5437 public:
5438   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5439     _caller(caller), _g1h(g1h), _failures(false) { }
5440 
5441   bool failures() { return _failures; }
5442 
5443   virtual bool doHeapRegion(HeapRegion* hr) {
5444     bool result = _g1h->verify_bitmaps(_caller, hr);
5445     if (!result) {
5446       _failures = true;
5447     }
5448     return false;
5449   }
5450 };
5451 
5452 void G1CollectedHeap::check_bitmaps(const char* caller) {
5453   if (!G1VerifyBitmaps) return;
5454 
5455   G1VerifyBitmapClosure cl(caller, this);
5456   heap_region_iterate(&cl);
5457   guarantee(!cl.failures(), "bitmap verification");
5458 }
5459 
5460 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5461  private:
5462   bool _failures;
5463  public:
5464   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5465 
5466   virtual bool doHeapRegion(HeapRegion* hr) {
5467     uint i = hr->hrm_index();
5468     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5469     if (hr->is_humongous()) {
5470       if (hr->in_collection_set()) {
5471         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5472         _failures = true;
5473         return true;
5474       }
5475       if (cset_state.is_in_cset()) {
5476         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5477         _failures = true;
5478         return true;
5479       }
5480       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5481         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5482         _failures = true;
5483         return true;
5484       }
5485     } else {
5486       if (cset_state.is_humongous()) {
5487         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5488         _failures = true;
5489         return true;
5490       }
5491       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5492         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5493                                hr->in_collection_set(), cset_state.value(), i);
5494         _failures = true;
5495         return true;
5496       }
5497       if (cset_state.is_in_cset()) {
5498         if (hr->is_young() != (cset_state.is_young())) {
5499           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5500                                  hr->is_young(), cset_state.value(), i);
5501           _failures = true;
5502           return true;
5503         }
5504         if (hr->is_old() != (cset_state.is_old())) {
5505           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5506                                  hr->is_old(), cset_state.value(), i);
5507           _failures = true;
5508           return true;
5509         }
5510       }
5511     }
5512     return false;
5513   }
5514 
5515   bool failures() const { return _failures; }
5516 };
5517 
5518 bool G1CollectedHeap::check_cset_fast_test() {
5519   G1CheckCSetFastTableClosure cl;
5520   _hrm.iterate(&cl);
5521   return !cl.failures();
5522 }
5523 #endif // PRODUCT
5524 
5525 void G1CollectedHeap::cleanUpCardTable() {
5526   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5527   double start = os::elapsedTime();
5528 
5529   {
5530     // Iterate over the dirty cards region list.
5531     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5532 
5533     workers()->run_task(&cleanup_task);
5534 #ifndef PRODUCT
5535     if (G1VerifyCTCleanup || VerifyAfterGC) {
5536       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5537       heap_region_iterate(&cleanup_verifier);
5538     }
5539 #endif
5540   }
5541 
5542   double elapsed = os::elapsedTime() - start;
5543   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5544 }
5545 
5546 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5547   size_t pre_used = 0;
5548   FreeRegionList local_free_list("Local List for CSet Freeing");
5549 
5550   double young_time_ms     = 0.0;
5551   double non_young_time_ms = 0.0;
5552 
5553   // Since the collection set is a superset of the the young list,
5554   // all we need to do to clear the young list is clear its
5555   // head and length, and unlink any young regions in the code below
5556   _young_list->clear();
5557 
5558   G1CollectorPolicy* policy = g1_policy();
5559 
5560   double start_sec = os::elapsedTime();
5561   bool non_young = true;
5562 
5563   HeapRegion* cur = cs_head;
5564   int age_bound = -1;
5565   size_t rs_lengths = 0;
5566 
5567   while (cur != NULL) {
5568     assert(!is_on_master_free_list(cur), "sanity");
5569     if (non_young) {
5570       if (cur->is_young()) {
5571         double end_sec = os::elapsedTime();
5572         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5573         non_young_time_ms += elapsed_ms;
5574 
5575         start_sec = os::elapsedTime();
5576         non_young = false;
5577       }
5578     } else {
5579       if (!cur->is_young()) {
5580         double end_sec = os::elapsedTime();
5581         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5582         young_time_ms += elapsed_ms;
5583 
5584         start_sec = os::elapsedTime();
5585         non_young = true;
5586       }
5587     }
5588 
5589     rs_lengths += cur->rem_set()->occupied_locked();
5590 
5591     HeapRegion* next = cur->next_in_collection_set();
5592     assert(cur->in_collection_set(), "bad CS");
5593     cur->set_next_in_collection_set(NULL);
5594     clear_in_cset(cur);
5595 
5596     if (cur->is_young()) {
5597       int index = cur->young_index_in_cset();
5598       assert(index != -1, "invariant");
5599       assert((uint) index < policy->young_cset_region_length(), "invariant");
5600       size_t words_survived = surviving_young_words[index];
5601       cur->record_surv_words_in_group(words_survived);
5602 
5603       // At this point the we have 'popped' cur from the collection set
5604       // (linked via next_in_collection_set()) but it is still in the
5605       // young list (linked via next_young_region()). Clear the
5606       // _next_young_region field.
5607       cur->set_next_young_region(NULL);
5608     } else {
5609       int index = cur->young_index_in_cset();
5610       assert(index == -1, "invariant");
5611     }
5612 
5613     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5614             (!cur->is_young() && cur->young_index_in_cset() == -1),
5615             "invariant" );
5616 
5617     if (!cur->evacuation_failed()) {
5618       MemRegion used_mr = cur->used_region();
5619 
5620       // And the region is empty.
5621       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5622       pre_used += cur->used();
5623       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5624     } else {
5625       cur->uninstall_surv_rate_group();
5626       if (cur->is_young()) {
5627         cur->set_young_index_in_cset(-1);
5628       }
5629       cur->set_evacuation_failed(false);
5630       // The region is now considered to be old.
5631       cur->set_old();
5632       // Do some allocation statistics accounting. Regions that failed evacuation
5633       // are always made old, so there is no need to update anything in the young
5634       // gen statistics, but we need to update old gen statistics.
5635       size_t used_words = cur->marked_bytes() / HeapWordSize;
5636       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5637       _old_set.add(cur);
5638       evacuation_info.increment_collectionset_used_after(cur->used());
5639     }
5640     cur = next;
5641   }
5642 
5643   evacuation_info.set_regions_freed(local_free_list.length());
5644   policy->record_max_rs_lengths(rs_lengths);
5645   policy->cset_regions_freed();
5646 
5647   double end_sec = os::elapsedTime();
5648   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5649 
5650   if (non_young) {
5651     non_young_time_ms += elapsed_ms;
5652   } else {
5653     young_time_ms += elapsed_ms;
5654   }
5655 
5656   prepend_to_freelist(&local_free_list);
5657   decrement_summary_bytes(pre_used);
5658   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5659   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5660 }
5661 
5662 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5663  private:
5664   FreeRegionList* _free_region_list;
5665   HeapRegionSet* _proxy_set;
5666   HeapRegionSetCount _humongous_regions_removed;
5667   size_t _freed_bytes;
5668  public:
5669 
5670   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5671     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5672   }
5673 
5674   virtual bool doHeapRegion(HeapRegion* r) {
5675     if (!r->is_starts_humongous()) {
5676       return false;
5677     }
5678 
5679     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5680 
5681     oop obj = (oop)r->bottom();
5682     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5683 
5684     // The following checks whether the humongous object is live are sufficient.
5685     // The main additional check (in addition to having a reference from the roots
5686     // or the young gen) is whether the humongous object has a remembered set entry.
5687     //
5688     // A humongous object cannot be live if there is no remembered set for it
5689     // because:
5690     // - there can be no references from within humongous starts regions referencing
5691     // the object because we never allocate other objects into them.
5692     // (I.e. there are no intra-region references that may be missed by the
5693     // remembered set)
5694     // - as soon there is a remembered set entry to the humongous starts region
5695     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5696     // until the end of a concurrent mark.
5697     //
5698     // It is not required to check whether the object has been found dead by marking
5699     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5700     // all objects allocated during that time are considered live.
5701     // SATB marking is even more conservative than the remembered set.
5702     // So if at this point in the collection there is no remembered set entry,
5703     // nobody has a reference to it.
5704     // At the start of collection we flush all refinement logs, and remembered sets
5705     // are completely up-to-date wrt to references to the humongous object.
5706     //
5707     // Other implementation considerations:
5708     // - never consider object arrays at this time because they would pose
5709     // considerable effort for cleaning up the the remembered sets. This is
5710     // required because stale remembered sets might reference locations that
5711     // are currently allocated into.
5712     uint region_idx = r->hrm_index();
5713     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5714         !r->rem_set()->is_empty()) {
5715 
5716       if (G1TraceEagerReclaimHumongousObjects) {
5717         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5718                                region_idx,
5719                                (size_t)obj->size() * HeapWordSize,
5720                                p2i(r->bottom()),
5721                                r->rem_set()->occupied(),
5722                                r->rem_set()->strong_code_roots_list_length(),
5723                                next_bitmap->isMarked(r->bottom()),
5724                                g1h->is_humongous_reclaim_candidate(region_idx),
5725                                obj->is_typeArray()
5726                               );
5727       }
5728 
5729       return false;
5730     }
5731 
5732     guarantee(obj->is_typeArray(),
5733               "Only eagerly reclaiming type arrays is supported, but the object "
5734               PTR_FORMAT " is not.", p2i(r->bottom()));
5735 
5736     if (G1TraceEagerReclaimHumongousObjects) {
5737       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5738                              region_idx,
5739                              (size_t)obj->size() * HeapWordSize,
5740                              p2i(r->bottom()),
5741                              r->rem_set()->occupied(),
5742                              r->rem_set()->strong_code_roots_list_length(),
5743                              next_bitmap->isMarked(r->bottom()),
5744                              g1h->is_humongous_reclaim_candidate(region_idx),
5745                              obj->is_typeArray()
5746                             );
5747     }
5748     // Need to clear mark bit of the humongous object if already set.
5749     if (next_bitmap->isMarked(r->bottom())) {
5750       next_bitmap->clear(r->bottom());
5751     }
5752     do {
5753       HeapRegion* next = g1h->next_region_in_humongous(r);
5754       _freed_bytes += r->used();
5755       r->set_containing_set(NULL);
5756       _humongous_regions_removed.increment(1u, r->capacity());
5757       g1h->free_humongous_region(r, _free_region_list, false);
5758       r = next;
5759     } while (r != NULL);
5760 
5761     return false;
5762   }
5763 
5764   HeapRegionSetCount& humongous_free_count() {
5765     return _humongous_regions_removed;
5766   }
5767 
5768   size_t bytes_freed() const {
5769     return _freed_bytes;
5770   }
5771 
5772   size_t humongous_reclaimed() const {
5773     return _humongous_regions_removed.length();
5774   }
5775 };
5776 
5777 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5778   assert_at_safepoint(true);
5779 
5780   if (!G1EagerReclaimHumongousObjects ||
5781       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5782     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5783     return;
5784   }
5785 
5786   double start_time = os::elapsedTime();
5787 
5788   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5789 
5790   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5791   heap_region_iterate(&cl);
5792 
5793   HeapRegionSetCount empty_set;
5794   remove_from_old_sets(empty_set, cl.humongous_free_count());
5795 
5796   G1HRPrinter* hrp = hr_printer();
5797   if (hrp->is_active()) {
5798     FreeRegionListIterator iter(&local_cleanup_list);
5799     while (iter.more_available()) {
5800       HeapRegion* hr = iter.get_next();
5801       hrp->cleanup(hr);
5802     }
5803   }
5804 
5805   prepend_to_freelist(&local_cleanup_list);
5806   decrement_summary_bytes(cl.bytes_freed());
5807 
5808   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5809                                                                     cl.humongous_reclaimed());
5810 }
5811 
5812 // This routine is similar to the above but does not record
5813 // any policy statistics or update free lists; we are abandoning
5814 // the current incremental collection set in preparation of a
5815 // full collection. After the full GC we will start to build up
5816 // the incremental collection set again.
5817 // This is only called when we're doing a full collection
5818 // and is immediately followed by the tearing down of the young list.
5819 
5820 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5821   HeapRegion* cur = cs_head;
5822 
5823   while (cur != NULL) {
5824     HeapRegion* next = cur->next_in_collection_set();
5825     assert(cur->in_collection_set(), "bad CS");
5826     cur->set_next_in_collection_set(NULL);
5827     clear_in_cset(cur);
5828     cur->set_young_index_in_cset(-1);
5829     cur = next;
5830   }
5831 }
5832 
5833 void G1CollectedHeap::set_free_regions_coming() {
5834   if (G1ConcRegionFreeingVerbose) {
5835     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5836                            "setting free regions coming");
5837   }
5838 
5839   assert(!free_regions_coming(), "pre-condition");
5840   _free_regions_coming = true;
5841 }
5842 
5843 void G1CollectedHeap::reset_free_regions_coming() {
5844   assert(free_regions_coming(), "pre-condition");
5845 
5846   {
5847     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5848     _free_regions_coming = false;
5849     SecondaryFreeList_lock->notify_all();
5850   }
5851 
5852   if (G1ConcRegionFreeingVerbose) {
5853     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5854                            "reset free regions coming");
5855   }
5856 }
5857 
5858 void G1CollectedHeap::wait_while_free_regions_coming() {
5859   // Most of the time we won't have to wait, so let's do a quick test
5860   // first before we take the lock.
5861   if (!free_regions_coming()) {
5862     return;
5863   }
5864 
5865   if (G1ConcRegionFreeingVerbose) {
5866     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5867                            "waiting for free regions");
5868   }
5869 
5870   {
5871     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5872     while (free_regions_coming()) {
5873       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5874     }
5875   }
5876 
5877   if (G1ConcRegionFreeingVerbose) {
5878     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5879                            "done waiting for free regions");
5880   }
5881 }
5882 
5883 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5884   return _allocator->is_retained_old_region(hr);
5885 }
5886 
5887 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5888   _young_list->push_region(hr);
5889 }
5890 
5891 class NoYoungRegionsClosure: public HeapRegionClosure {
5892 private:
5893   bool _success;
5894 public:
5895   NoYoungRegionsClosure() : _success(true) { }
5896   bool doHeapRegion(HeapRegion* r) {
5897     if (r->is_young()) {
5898       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5899                              p2i(r->bottom()), p2i(r->end()));
5900       _success = false;
5901     }
5902     return false;
5903   }
5904   bool success() { return _success; }
5905 };
5906 
5907 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5908   bool ret = _young_list->check_list_empty(check_sample);
5909 
5910   if (check_heap) {
5911     NoYoungRegionsClosure closure;
5912     heap_region_iterate(&closure);
5913     ret = ret && closure.success();
5914   }
5915 
5916   return ret;
5917 }
5918 
5919 class TearDownRegionSetsClosure : public HeapRegionClosure {
5920 private:
5921   HeapRegionSet *_old_set;
5922 
5923 public:
5924   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5925 
5926   bool doHeapRegion(HeapRegion* r) {
5927     if (r->is_old()) {
5928       _old_set->remove(r);
5929     } else {
5930       // We ignore free regions, we'll empty the free list afterwards.
5931       // We ignore young regions, we'll empty the young list afterwards.
5932       // We ignore humongous regions, we're not tearing down the
5933       // humongous regions set.
5934       assert(r->is_free() || r->is_young() || r->is_humongous(),
5935              "it cannot be another type");
5936     }
5937     return false;
5938   }
5939 
5940   ~TearDownRegionSetsClosure() {
5941     assert(_old_set->is_empty(), "post-condition");
5942   }
5943 };
5944 
5945 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5946   assert_at_safepoint(true /* should_be_vm_thread */);
5947 
5948   if (!free_list_only) {
5949     TearDownRegionSetsClosure cl(&_old_set);
5950     heap_region_iterate(&cl);
5951 
5952     // Note that emptying the _young_list is postponed and instead done as
5953     // the first step when rebuilding the regions sets again. The reason for
5954     // this is that during a full GC string deduplication needs to know if
5955     // a collected region was young or old when the full GC was initiated.
5956   }
5957   _hrm.remove_all_free_regions();
5958 }
5959 
5960 void G1CollectedHeap::increase_used(size_t bytes) {
5961   _summary_bytes_used += bytes;
5962 }
5963 
5964 void G1CollectedHeap::decrease_used(size_t bytes) {
5965   assert(_summary_bytes_used >= bytes,
5966          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5967          _summary_bytes_used, bytes);
5968   _summary_bytes_used -= bytes;
5969 }
5970 
5971 void G1CollectedHeap::set_used(size_t bytes) {
5972   _summary_bytes_used = bytes;
5973 }
5974 
5975 class RebuildRegionSetsClosure : public HeapRegionClosure {
5976 private:
5977   bool            _free_list_only;
5978   HeapRegionSet*   _old_set;
5979   HeapRegionManager*   _hrm;
5980   size_t          _total_used;
5981 
5982 public:
5983   RebuildRegionSetsClosure(bool free_list_only,
5984                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5985     _free_list_only(free_list_only),
5986     _old_set(old_set), _hrm(hrm), _total_used(0) {
5987     assert(_hrm->num_free_regions() == 0, "pre-condition");
5988     if (!free_list_only) {
5989       assert(_old_set->is_empty(), "pre-condition");
5990     }
5991   }
5992 
5993   bool doHeapRegion(HeapRegion* r) {
5994     if (r->is_empty()) {
5995       // Add free regions to the free list
5996       r->set_free();
5997       r->set_allocation_context(AllocationContext::system());
5998       _hrm->insert_into_free_list(r);
5999     } else if (!_free_list_only) {
6000       assert(!r->is_young(), "we should not come across young regions");
6001 
6002       if (r->is_humongous()) {
6003         // We ignore humongous regions. We left the humongous set unchanged.
6004       } else {
6005         // Objects that were compacted would have ended up on regions
6006         // that were previously old or free.  Archive regions (which are
6007         // old) will not have been touched.
6008         assert(r->is_free() || r->is_old(), "invariant");
6009         // We now consider them old, so register as such. Leave
6010         // archive regions set that way, however, while still adding
6011         // them to the old set.
6012         if (!r->is_archive()) {
6013           r->set_old();
6014         }
6015         _old_set->add(r);
6016       }
6017       _total_used += r->used();
6018     }
6019 
6020     return false;
6021   }
6022 
6023   size_t total_used() {
6024     return _total_used;
6025   }
6026 };
6027 
6028 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6029   assert_at_safepoint(true /* should_be_vm_thread */);
6030 
6031   if (!free_list_only) {
6032     _young_list->empty_list();
6033   }
6034 
6035   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6036   heap_region_iterate(&cl);
6037 
6038   if (!free_list_only) {
6039     set_used(cl.total_used());
6040     if (_archive_allocator != NULL) {
6041       _archive_allocator->clear_used();
6042     }
6043   }
6044   assert(used_unlocked() == recalculate_used(),
6045          "inconsistent used_unlocked(), "
6046          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6047          used_unlocked(), recalculate_used());
6048 }
6049 
6050 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6051   _refine_cte_cl->set_concurrent(concurrent);
6052 }
6053 
6054 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6055   HeapRegion* hr = heap_region_containing(p);
6056   return hr->is_in(p);
6057 }
6058 
6059 // Methods for the mutator alloc region
6060 
6061 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6062                                                       bool force) {
6063   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6064   assert(!force || g1_policy()->can_expand_young_list(),
6065          "if force is true we should be able to expand the young list");
6066   bool young_list_full = g1_policy()->is_young_list_full();
6067   if (force || !young_list_full) {
6068     HeapRegion* new_alloc_region = new_region(word_size,
6069                                               false /* is_old */,
6070                                               false /* do_expand */);
6071     if (new_alloc_region != NULL) {
6072       set_region_short_lived_locked(new_alloc_region);
6073       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6074       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6075       return new_alloc_region;
6076     }
6077   }
6078   return NULL;
6079 }
6080 
6081 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6082                                                   size_t allocated_bytes) {
6083   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6084   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6085 
6086   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6087   increase_used(allocated_bytes);
6088   _hr_printer.retire(alloc_region);
6089   // We update the eden sizes here, when the region is retired,
6090   // instead of when it's allocated, since this is the point that its
6091   // used space has been recored in _summary_bytes_used.
6092   g1mm()->update_eden_size();
6093 }
6094 
6095 // Methods for the GC alloc regions
6096 
6097 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6098                                                  uint count,
6099                                                  InCSetState dest) {
6100   assert(FreeList_lock->owned_by_self(), "pre-condition");
6101 
6102   if (count < g1_policy()->max_regions(dest)) {
6103     const bool is_survivor = (dest.is_young());
6104     HeapRegion* new_alloc_region = new_region(word_size,
6105                                               !is_survivor,
6106                                               true /* do_expand */);
6107     if (new_alloc_region != NULL) {
6108       // We really only need to do this for old regions given that we
6109       // should never scan survivors. But it doesn't hurt to do it
6110       // for survivors too.
6111       new_alloc_region->record_timestamp();
6112       if (is_survivor) {
6113         new_alloc_region->set_survivor();
6114         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6115         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6116       } else {
6117         new_alloc_region->set_old();
6118         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6119         check_bitmaps("Old Region Allocation", new_alloc_region);
6120       }
6121       bool during_im = collector_state()->during_initial_mark_pause();
6122       new_alloc_region->note_start_of_copying(during_im);
6123       return new_alloc_region;
6124     }
6125   }
6126   return NULL;
6127 }
6128 
6129 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6130                                              size_t allocated_bytes,
6131                                              InCSetState dest) {
6132   bool during_im = collector_state()->during_initial_mark_pause();
6133   alloc_region->note_end_of_copying(during_im);
6134   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6135   if (dest.is_young()) {
6136     young_list()->add_survivor_region(alloc_region);
6137   } else {
6138     _old_set.add(alloc_region);
6139   }
6140   _hr_printer.retire(alloc_region);
6141 }
6142 
6143 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6144   bool expanded = false;
6145   uint index = _hrm.find_highest_free(&expanded);
6146 
6147   if (index != G1_NO_HRM_INDEX) {
6148     if (expanded) {
6149       ergo_verbose1(ErgoHeapSizing,
6150                     "attempt heap expansion",
6151                     ergo_format_reason("requested address range outside heap bounds")
6152                     ergo_format_byte("region size"),
6153                     HeapRegion::GrainWords * HeapWordSize);
6154     }
6155     _hrm.allocate_free_regions_starting_at(index, 1);
6156     return region_at(index);
6157   }
6158   return NULL;
6159 }
6160 
6161 // Heap region set verification
6162 
6163 class VerifyRegionListsClosure : public HeapRegionClosure {
6164 private:
6165   HeapRegionSet*   _old_set;
6166   HeapRegionSet*   _humongous_set;
6167   HeapRegionManager*   _hrm;
6168 
6169 public:
6170   HeapRegionSetCount _old_count;
6171   HeapRegionSetCount _humongous_count;
6172   HeapRegionSetCount _free_count;
6173 
6174   VerifyRegionListsClosure(HeapRegionSet* old_set,
6175                            HeapRegionSet* humongous_set,
6176                            HeapRegionManager* hrm) :
6177     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6178     _old_count(), _humongous_count(), _free_count(){ }
6179 
6180   bool doHeapRegion(HeapRegion* hr) {
6181     if (hr->is_young()) {
6182       // TODO
6183     } else if (hr->is_humongous()) {
6184       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6185       _humongous_count.increment(1u, hr->capacity());
6186     } else if (hr->is_empty()) {
6187       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6188       _free_count.increment(1u, hr->capacity());
6189     } else if (hr->is_old()) {
6190       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6191       _old_count.increment(1u, hr->capacity());
6192     } else {
6193       // There are no other valid region types. Check for one invalid
6194       // one we can identify: pinned without old or humongous set.
6195       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6196       ShouldNotReachHere();
6197     }
6198     return false;
6199   }
6200 
6201   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6202     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6203     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6204               old_set->total_capacity_bytes(), _old_count.capacity());
6205 
6206     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6207     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6208               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6209 
6210     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6211     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6212               free_list->total_capacity_bytes(), _free_count.capacity());
6213   }
6214 };
6215 
6216 void G1CollectedHeap::verify_region_sets() {
6217   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6218 
6219   // First, check the explicit lists.
6220   _hrm.verify();
6221   {
6222     // Given that a concurrent operation might be adding regions to
6223     // the secondary free list we have to take the lock before
6224     // verifying it.
6225     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6226     _secondary_free_list.verify_list();
6227   }
6228 
6229   // If a concurrent region freeing operation is in progress it will
6230   // be difficult to correctly attributed any free regions we come
6231   // across to the correct free list given that they might belong to
6232   // one of several (free_list, secondary_free_list, any local lists,
6233   // etc.). So, if that's the case we will skip the rest of the
6234   // verification operation. Alternatively, waiting for the concurrent
6235   // operation to complete will have a non-trivial effect on the GC's
6236   // operation (no concurrent operation will last longer than the
6237   // interval between two calls to verification) and it might hide
6238   // any issues that we would like to catch during testing.
6239   if (free_regions_coming()) {
6240     return;
6241   }
6242 
6243   // Make sure we append the secondary_free_list on the free_list so
6244   // that all free regions we will come across can be safely
6245   // attributed to the free_list.
6246   append_secondary_free_list_if_not_empty_with_lock();
6247 
6248   // Finally, make sure that the region accounting in the lists is
6249   // consistent with what we see in the heap.
6250 
6251   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6252   heap_region_iterate(&cl);
6253   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6254 }
6255 
6256 // Optimized nmethod scanning
6257 
6258 class RegisterNMethodOopClosure: public OopClosure {
6259   G1CollectedHeap* _g1h;
6260   nmethod* _nm;
6261 
6262   template <class T> void do_oop_work(T* p) {
6263     T heap_oop = oopDesc::load_heap_oop(p);
6264     if (!oopDesc::is_null(heap_oop)) {
6265       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6266       HeapRegion* hr = _g1h->heap_region_containing(obj);
6267       assert(!hr->is_continues_humongous(),
6268              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6269              " starting at " HR_FORMAT,
6270              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6271 
6272       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6273       hr->add_strong_code_root_locked(_nm);
6274     }
6275   }
6276 
6277 public:
6278   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6279     _g1h(g1h), _nm(nm) {}
6280 
6281   void do_oop(oop* p)       { do_oop_work(p); }
6282   void do_oop(narrowOop* p) { do_oop_work(p); }
6283 };
6284 
6285 class UnregisterNMethodOopClosure: public OopClosure {
6286   G1CollectedHeap* _g1h;
6287   nmethod* _nm;
6288 
6289   template <class T> void do_oop_work(T* p) {
6290     T heap_oop = oopDesc::load_heap_oop(p);
6291     if (!oopDesc::is_null(heap_oop)) {
6292       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6293       HeapRegion* hr = _g1h->heap_region_containing(obj);
6294       assert(!hr->is_continues_humongous(),
6295              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6296              " starting at " HR_FORMAT,
6297              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6298 
6299       hr->remove_strong_code_root(_nm);
6300     }
6301   }
6302 
6303 public:
6304   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6305     _g1h(g1h), _nm(nm) {}
6306 
6307   void do_oop(oop* p)       { do_oop_work(p); }
6308   void do_oop(narrowOop* p) { do_oop_work(p); }
6309 };
6310 
6311 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6312   CollectedHeap::register_nmethod(nm);
6313 
6314   guarantee(nm != NULL, "sanity");
6315   RegisterNMethodOopClosure reg_cl(this, nm);
6316   nm->oops_do(&reg_cl);
6317 }
6318 
6319 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6320   CollectedHeap::unregister_nmethod(nm);
6321 
6322   guarantee(nm != NULL, "sanity");
6323   UnregisterNMethodOopClosure reg_cl(this, nm);
6324   nm->oops_do(&reg_cl, true);
6325 }
6326 
6327 void G1CollectedHeap::purge_code_root_memory() {
6328   double purge_start = os::elapsedTime();
6329   G1CodeRootSet::purge();
6330   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6331   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6332 }
6333 
6334 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6335   G1CollectedHeap* _g1h;
6336 
6337 public:
6338   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6339     _g1h(g1h) {}
6340 
6341   void do_code_blob(CodeBlob* cb) {
6342     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6343     if (nm == NULL) {
6344       return;
6345     }
6346 
6347     if (ScavengeRootsInCode) {
6348       _g1h->register_nmethod(nm);
6349     }
6350   }
6351 };
6352 
6353 void G1CollectedHeap::rebuild_strong_code_roots() {
6354   RebuildStrongCodeRootClosure blob_cl(this);
6355   CodeCache::blobs_do(&blob_cl);
6356 }