1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacStats.inline.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 141 {
 142   // Claim the right to put the region on the dirty cards region list
 143   // by installing a self pointer.
 144   HeapRegion* next = hr->get_next_dirty_cards_region();
 145   if (next == NULL) {
 146     HeapRegion* res = (HeapRegion*)
 147       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 148                           NULL);
 149     if (res == NULL) {
 150       HeapRegion* head;
 151       do {
 152         // Put the region to the dirty cards region list.
 153         head = _dirty_cards_region_list;
 154         next = (HeapRegion*)
 155           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 156         if (next == head) {
 157           assert(hr->get_next_dirty_cards_region() == hr,
 158                  "hr->get_next_dirty_cards_region() != hr");
 159           if (next == NULL) {
 160             // The last region in the list points to itself.
 161             hr->set_next_dirty_cards_region(hr);
 162           } else {
 163             hr->set_next_dirty_cards_region(next);
 164           }
 165         }
 166       } while (next != head);
 167     }
 168   }
 169 }
 170 
 171 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 172 {
 173   HeapRegion* head;
 174   HeapRegion* hr;
 175   do {
 176     head = _dirty_cards_region_list;
 177     if (head == NULL) {
 178       return NULL;
 179     }
 180     HeapRegion* new_head = head->get_next_dirty_cards_region();
 181     if (head == new_head) {
 182       // The last region.
 183       new_head = NULL;
 184     }
 185     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 186                                           head);
 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);
 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series.
 304   uint last = first + num_regions - 1;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new top of the new object.
 324   HeapWord* obj_top = new_obj + word_size;
 325 
 326   // First, we need to zero the header of the space that we will be
 327   // allocating. When we update top further down, some refinement
 328   // threads might try to scan the region. By zeroing the header we
 329   // ensure that any thread that will try to scan the region will
 330   // come across the zero klass word and bail out.
 331   //
 332   // NOTE: It would not have been correct to have used
 333   // CollectedHeap::fill_with_object() and make the space look like
 334   // an int array. The thread that is doing the allocation will
 335   // later update the object header to a potentially different array
 336   // type and, for a very short period of time, the klass and length
 337   // fields will be inconsistent. This could cause a refinement
 338   // thread to calculate the object size incorrectly.
 339   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 340 
 341   // How many words we use for filler objects.
 342   size_t word_fill_size = word_size_sum - word_size;
 343 
 344   // How many words memory we "waste" which cannot hold a filler object.
 345   size_t words_not_fillable = 0;
 346 
 347   if (word_fill_size >= min_fill_size()) {
 348     fill_with_objects(obj_top, word_fill_size);
 349   } else if (word_fill_size > 0) {
 350     // We have space to fill, but we cannot fit an object there.
 351     words_not_fillable = word_fill_size;
 352     word_fill_size = 0;
 353   }
 354 
 355   // We will set up the first region as "starts humongous". This
 356   // will also update the BOT covering all the regions to reflect
 357   // that there is a single object that starts at the bottom of the
 358   // first region.
 359   first_hr->set_starts_humongous(obj_top, word_fill_size);
 360   first_hr->set_allocation_context(context);
 361   // Then, if there are any, we will set up the "continues
 362   // humongous" regions.
 363   HeapRegion* hr = NULL;
 364   for (uint i = first + 1; i <= last; ++i) {
 365     hr = region_at(i);
 366     hr->set_continues_humongous(first_hr);
 367     hr->set_allocation_context(context);
 368   }
 369 
 370   // Up to this point no concurrent thread would have been able to
 371   // do any scanning on any region in this series. All the top
 372   // fields still point to bottom, so the intersection between
 373   // [bottom,top] and [card_start,card_end] will be empty. Before we
 374   // update the top fields, we'll do a storestore to make sure that
 375   // no thread sees the update to top before the zeroing of the
 376   // object header and the BOT initialization.
 377   OrderAccess::storestore();
 378 
 379   // Now, we will update the top fields of the "continues humongous"
 380   // regions except the last one.
 381   for (uint i = first; i < last; ++i) {
 382     hr = region_at(i);
 383     hr->set_top(hr->end());
 384   }
 385 
 386   hr = region_at(last);
 387   // If we cannot fit a filler object, we must set top to the end
 388   // of the humongous object, otherwise we cannot iterate the heap
 389   // and the BOT will not be complete.
 390   hr->set_top(hr->end() - words_not_fillable);
 391 
 392   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 393          "obj_top should be in last region");
 394 
 395   check_bitmaps("Humongous Region Allocation", first_hr);
 396 
 397   assert(words_not_fillable == 0 ||
 398          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 399          "Miscalculation in humongous allocation");
 400 
 401   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 402 
 403   for (uint i = first; i <= last; ++i) {
 404     hr = region_at(i);
 405     _humongous_set.add(hr);
 406     if (i == first) {
 407       _hr_printer.alloc(G1HRPrinter::StartsHumongous, hr, hr->top());
 408     } else {
 409       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->top());
 410     }
 411   }
 412 
 413   return new_obj;
 414 }
 415 
 416 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 417   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 418   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 419 }
 420 
 421 // If could fit into free regions w/o expansion, try.
 422 // Otherwise, if can expand, do so.
 423 // Otherwise, if using ex regions might help, try with ex given back.
 424 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 425   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 426 
 427   verify_region_sets_optional();
 428 
 429   uint first = G1_NO_HRM_INDEX;
 430   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 431 
 432   if (obj_regions == 1) {
 433     // Only one region to allocate, try to use a fast path by directly allocating
 434     // from the free lists. Do not try to expand here, we will potentially do that
 435     // later.
 436     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 437     if (hr != NULL) {
 438       first = hr->hrm_index();
 439     }
 440   } else {
 441     // We can't allocate humongous regions spanning more than one region while
 442     // cleanupComplete() is running, since some of the regions we find to be
 443     // empty might not yet be added to the free list. It is not straightforward
 444     // to know in which list they are on so that we can remove them. We only
 445     // need to do this if we need to allocate more than one region to satisfy the
 446     // current humongous allocation request. If we are only allocating one region
 447     // we use the one-region region allocation code (see above), that already
 448     // potentially waits for regions from the secondary free list.
 449     wait_while_free_regions_coming();
 450     append_secondary_free_list_if_not_empty_with_lock();
 451 
 452     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 453     // are lucky enough to find some.
 454     first = _hrm.find_contiguous_only_empty(obj_regions);
 455     if (first != G1_NO_HRM_INDEX) {
 456       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 457     }
 458   }
 459 
 460   if (first == G1_NO_HRM_INDEX) {
 461     // Policy: We could not find enough regions for the humongous object in the
 462     // free list. Look through the heap to find a mix of free and uncommitted regions.
 463     // If so, try expansion.
 464     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 465     if (first != G1_NO_HRM_INDEX) {
 466       // We found something. Make sure these regions are committed, i.e. expand
 467       // the heap. Alternatively we could do a defragmentation GC.
 468       ergo_verbose1(ErgoHeapSizing,
 469                     "attempt heap expansion",
 470                     ergo_format_reason("humongous allocation request failed")
 471                     ergo_format_byte("allocation request"),
 472                     word_size * HeapWordSize);
 473 
 474       _hrm.expand_at(first, obj_regions);
 475       g1_policy()->record_new_heap_size(num_regions());
 476 
 477 #ifdef ASSERT
 478       for (uint i = first; i < first + obj_regions; ++i) {
 479         HeapRegion* hr = region_at(i);
 480         assert(hr->is_free(), "sanity");
 481         assert(hr->is_empty(), "sanity");
 482         assert(is_on_master_free_list(hr), "sanity");
 483       }
 484 #endif
 485       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 486     } else {
 487       // Policy: Potentially trigger a defragmentation GC.
 488     }
 489   }
 490 
 491   HeapWord* result = NULL;
 492   if (first != G1_NO_HRM_INDEX) {
 493     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 494                                                        word_size, context);
 495     assert(result != NULL, "it should always return a valid result");
 496 
 497     // A successful humongous object allocation changes the used space
 498     // information of the old generation so we need to recalculate the
 499     // sizes and update the jstat counters here.
 500     g1mm()->update_sizes();
 501   }
 502 
 503   verify_region_sets_optional();
 504 
 505   return result;
 506 }
 507 
 508 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 509   assert_heap_not_locked_and_not_at_safepoint();
 510   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 511 
 512   uint dummy_gc_count_before;
 513   uint dummy_gclocker_retry_count = 0;
 514   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 515 }
 516 
 517 HeapWord*
 518 G1CollectedHeap::mem_allocate(size_t word_size,
 519                               bool*  gc_overhead_limit_was_exceeded) {
 520   assert_heap_not_locked_and_not_at_safepoint();
 521 
 522   // Loop until the allocation is satisfied, or unsatisfied after GC.
 523   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 524     uint gc_count_before;
 525 
 526     HeapWord* result = NULL;
 527     if (!is_humongous(word_size)) {
 528       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 529     } else {
 530       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 531     }
 532     if (result != NULL) {
 533       return result;
 534     }
 535 
 536     // Create the garbage collection operation...
 537     VM_G1CollectForAllocation op(gc_count_before, word_size);
 538     op.set_allocation_context(AllocationContext::current());
 539 
 540     // ...and get the VM thread to execute it.
 541     VMThread::execute(&op);
 542 
 543     if (op.prologue_succeeded() && op.pause_succeeded()) {
 544       // If the operation was successful we'll return the result even
 545       // if it is NULL. If the allocation attempt failed immediately
 546       // after a Full GC, it's unlikely we'll be able to allocate now.
 547       HeapWord* result = op.result();
 548       if (result != NULL && !is_humongous(word_size)) {
 549         // Allocations that take place on VM operations do not do any
 550         // card dirtying and we have to do it here. We only have to do
 551         // this for non-humongous allocations, though.
 552         dirty_young_block(result, word_size);
 553       }
 554       return result;
 555     } else {
 556       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 557         return NULL;
 558       }
 559       assert(op.result() == NULL,
 560              "the result should be NULL if the VM op did not succeed");
 561     }
 562 
 563     // Give a warning if we seem to be looping forever.
 564     if ((QueuedAllocationWarningCount > 0) &&
 565         (try_count % QueuedAllocationWarningCount == 0)) {
 566       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 567     }
 568   }
 569 
 570   ShouldNotReachHere();
 571   return NULL;
 572 }
 573 
 574 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 575                                                    AllocationContext_t context,
 576                                                    uint* gc_count_before_ret,
 577                                                    uint* gclocker_retry_count_ret) {
 578   // Make sure you read the note in attempt_allocation_humongous().
 579 
 580   assert_heap_not_locked_and_not_at_safepoint();
 581   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 582          "be called for humongous allocation requests");
 583 
 584   // We should only get here after the first-level allocation attempt
 585   // (attempt_allocation()) failed to allocate.
 586 
 587   // We will loop until a) we manage to successfully perform the
 588   // allocation or b) we successfully schedule a collection which
 589   // fails to perform the allocation. b) is the only case when we'll
 590   // return NULL.
 591   HeapWord* result = NULL;
 592   for (int try_count = 1; /* we'll return */; try_count += 1) {
 593     bool should_try_gc;
 594     uint gc_count_before;
 595 
 596     {
 597       MutexLockerEx x(Heap_lock);
 598       result = _allocator->attempt_allocation_locked(word_size, context);
 599       if (result != NULL) {
 600         return result;
 601       }
 602 
 603       if (GC_locker::is_active_and_needs_gc()) {
 604         if (g1_policy()->can_expand_young_list()) {
 605           // No need for an ergo verbose message here,
 606           // can_expand_young_list() does this when it returns true.
 607           result = _allocator->attempt_allocation_force(word_size, context);
 608           if (result != NULL) {
 609             return result;
 610           }
 611         }
 612         should_try_gc = false;
 613       } else {
 614         // The GCLocker may not be active but the GCLocker initiated
 615         // GC may not yet have been performed (GCLocker::needs_gc()
 616         // returns true). In this case we do not try this GC and
 617         // wait until the GCLocker initiated GC is performed, and
 618         // then retry the allocation.
 619         if (GC_locker::needs_gc()) {
 620           should_try_gc = false;
 621         } else {
 622           // Read the GC count while still holding the Heap_lock.
 623           gc_count_before = total_collections();
 624           should_try_gc = true;
 625         }
 626       }
 627     }
 628 
 629     if (should_try_gc) {
 630       bool succeeded;
 631       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 632                                    GCCause::_g1_inc_collection_pause);
 633       if (result != NULL) {
 634         assert(succeeded, "only way to get back a non-NULL result");
 635         return result;
 636       }
 637 
 638       if (succeeded) {
 639         // If we get here we successfully scheduled a collection which
 640         // failed to allocate. No point in trying to allocate
 641         // further. We'll just return NULL.
 642         MutexLockerEx x(Heap_lock);
 643         *gc_count_before_ret = total_collections();
 644         return NULL;
 645       }
 646     } else {
 647       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 648         MutexLockerEx x(Heap_lock);
 649         *gc_count_before_ret = total_collections();
 650         return NULL;
 651       }
 652       // The GCLocker is either active or the GCLocker initiated
 653       // GC has not yet been performed. Stall until it is and
 654       // then retry the allocation.
 655       GC_locker::stall_until_clear();
 656       (*gclocker_retry_count_ret) += 1;
 657     }
 658 
 659     // We can reach here if we were unsuccessful in scheduling a
 660     // collection (because another thread beat us to it) or if we were
 661     // stalled due to the GC locker. In either can we should retry the
 662     // allocation attempt in case another thread successfully
 663     // performed a collection and reclaimed enough space. We do the
 664     // first attempt (without holding the Heap_lock) here and the
 665     // follow-on attempt will be at the start of the next loop
 666     // iteration (after taking the Heap_lock).
 667     result = _allocator->attempt_allocation(word_size, context);
 668     if (result != NULL) {
 669       return result;
 670     }
 671 
 672     // Give a warning if we seem to be looping forever.
 673     if ((QueuedAllocationWarningCount > 0) &&
 674         (try_count % QueuedAllocationWarningCount == 0)) {
 675       warning("G1CollectedHeap::attempt_allocation_slow() "
 676               "retries %d times", try_count);
 677     }
 678   }
 679 
 680   ShouldNotReachHere();
 681   return NULL;
 682 }
 683 
 684 void G1CollectedHeap::begin_archive_alloc_range() {
 685   assert_at_safepoint(true /* should_be_vm_thread */);
 686   if (_archive_allocator == NULL) {
 687     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 688   }
 689 }
 690 
 691 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 692   // Allocations in archive regions cannot be of a size that would be considered
 693   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 694   // may be different at archive-restore time.
 695   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 696 }
 697 
 698 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 699   assert_at_safepoint(true /* should_be_vm_thread */);
 700   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 701   if (is_archive_alloc_too_large(word_size)) {
 702     return NULL;
 703   }
 704   return _archive_allocator->archive_mem_allocate(word_size);
 705 }
 706 
 707 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 708                                               size_t end_alignment_in_bytes) {
 709   assert_at_safepoint(true /* should_be_vm_thread */);
 710   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 711 
 712   // Call complete_archive to do the real work, filling in the MemRegion
 713   // array with the archive regions.
 714   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 715   delete _archive_allocator;
 716   _archive_allocator = NULL;
 717 }
 718 
 719 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 720   assert(ranges != NULL, "MemRegion array NULL");
 721   assert(count != 0, "No MemRegions provided");
 722   MemRegion reserved = _hrm.reserved();
 723   for (size_t i = 0; i < count; i++) {
 724     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 725       return false;
 726     }
 727   }
 728   return true;
 729 }
 730 
 731 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 732   assert(!is_init_completed(), "Expect to be called at JVM init time");
 733   assert(ranges != NULL, "MemRegion array NULL");
 734   assert(count != 0, "No MemRegions provided");
 735   MutexLockerEx x(Heap_lock);
 736 
 737   MemRegion reserved = _hrm.reserved();
 738   HeapWord* prev_last_addr = NULL;
 739   HeapRegion* prev_last_region = NULL;
 740 
 741   // Temporarily disable pretouching of heap pages. This interface is used
 742   // when mmap'ing archived heap data in, so pre-touching is wasted.
 743   FlagSetting fs(AlwaysPreTouch, false);
 744 
 745   // Enable archive object checking in G1MarkSweep. We have to let it know
 746   // about each archive range, so that objects in those ranges aren't marked.
 747   G1MarkSweep::enable_archive_object_check();
 748 
 749   // For each specified MemRegion range, allocate the corresponding G1
 750   // regions and mark them as archive regions. We expect the ranges in
 751   // ascending starting address order, without overlap.
 752   for (size_t i = 0; i < count; i++) {
 753     MemRegion curr_range = ranges[i];
 754     HeapWord* start_address = curr_range.start();
 755     size_t word_size = curr_range.word_size();
 756     HeapWord* last_address = curr_range.last();
 757     size_t commits = 0;
 758 
 759     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 760               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 761               p2i(start_address), p2i(last_address));
 762     guarantee(start_address > prev_last_addr,
 763               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 764               p2i(start_address), p2i(prev_last_addr));
 765     prev_last_addr = last_address;
 766 
 767     // Check for ranges that start in the same G1 region in which the previous
 768     // range ended, and adjust the start address so we don't try to allocate
 769     // the same region again. If the current range is entirely within that
 770     // region, skip it, just adjusting the recorded top.
 771     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 772     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 773       start_address = start_region->end();
 774       if (start_address > last_address) {
 775         increase_used(word_size * HeapWordSize);
 776         start_region->set_top(last_address + 1);
 777         continue;
 778       }
 779       start_region->set_top(start_address);
 780       curr_range = MemRegion(start_address, last_address + 1);
 781       start_region = _hrm.addr_to_region(start_address);
 782     }
 783 
 784     // Perform the actual region allocation, exiting if it fails.
 785     // Then note how much new space we have allocated.
 786     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 787       return false;
 788     }
 789     increase_used(word_size * HeapWordSize);
 790     if (commits != 0) {
 791       ergo_verbose1(ErgoHeapSizing,
 792                     "attempt heap expansion",
 793                     ergo_format_reason("allocate archive regions")
 794                     ergo_format_byte("total size"),
 795                     HeapRegion::GrainWords * HeapWordSize * commits);
 796     }
 797 
 798     // Mark each G1 region touched by the range as archive, add it to the old set,
 799     // and set the allocation context and top.
 800     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 801     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 802     prev_last_region = last_region;
 803 
 804     while (curr_region != NULL) {
 805       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 806              "Region already in use (index %u)", curr_region->hrm_index());
 807       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 808       curr_region->set_allocation_context(AllocationContext::system());
 809       curr_region->set_archive();
 810       _old_set.add(curr_region);
 811       if (curr_region != last_region) {
 812         curr_region->set_top(curr_region->end());
 813         curr_region = _hrm.next_region_in_heap(curr_region);
 814       } else {
 815         curr_region->set_top(last_address + 1);
 816         curr_region = NULL;
 817       }
 818     }
 819 
 820     // Notify mark-sweep of the archive range.
 821     G1MarkSweep::set_range_archive(curr_range, true);
 822   }
 823   return true;
 824 }
 825 
 826 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 827   assert(!is_init_completed(), "Expect to be called at JVM init time");
 828   assert(ranges != NULL, "MemRegion array NULL");
 829   assert(count != 0, "No MemRegions provided");
 830   MemRegion reserved = _hrm.reserved();
 831   HeapWord *prev_last_addr = NULL;
 832   HeapRegion* prev_last_region = NULL;
 833 
 834   // For each MemRegion, create filler objects, if needed, in the G1 regions
 835   // that contain the address range. The address range actually within the
 836   // MemRegion will not be modified. That is assumed to have been initialized
 837   // elsewhere, probably via an mmap of archived heap data.
 838   MutexLockerEx x(Heap_lock);
 839   for (size_t i = 0; i < count; i++) {
 840     HeapWord* start_address = ranges[i].start();
 841     HeapWord* last_address = ranges[i].last();
 842 
 843     assert(reserved.contains(start_address) && reserved.contains(last_address),
 844            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 845            p2i(start_address), p2i(last_address));
 846     assert(start_address > prev_last_addr,
 847            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 848            p2i(start_address), p2i(prev_last_addr));
 849 
 850     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 851     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 852     HeapWord* bottom_address = start_region->bottom();
 853 
 854     // Check for a range beginning in the same region in which the
 855     // previous one ended.
 856     if (start_region == prev_last_region) {
 857       bottom_address = prev_last_addr + 1;
 858     }
 859 
 860     // Verify that the regions were all marked as archive regions by
 861     // alloc_archive_regions.
 862     HeapRegion* curr_region = start_region;
 863     while (curr_region != NULL) {
 864       guarantee(curr_region->is_archive(),
 865                 "Expected archive region at index %u", curr_region->hrm_index());
 866       if (curr_region != last_region) {
 867         curr_region = _hrm.next_region_in_heap(curr_region);
 868       } else {
 869         curr_region = NULL;
 870       }
 871     }
 872 
 873     prev_last_addr = last_address;
 874     prev_last_region = last_region;
 875 
 876     // Fill the memory below the allocated range with dummy object(s),
 877     // if the region bottom does not match the range start, or if the previous
 878     // range ended within the same G1 region, and there is a gap.
 879     if (start_address != bottom_address) {
 880       size_t fill_size = pointer_delta(start_address, bottom_address);
 881       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 882       increase_used(fill_size * HeapWordSize);
 883     }
 884   }
 885 }
 886 
 887 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 888                                                      uint* gc_count_before_ret,
 889                                                      uint* gclocker_retry_count_ret) {
 890   assert_heap_not_locked_and_not_at_safepoint();
 891   assert(!is_humongous(word_size), "attempt_allocation() should not "
 892          "be called for humongous allocation requests");
 893 
 894   AllocationContext_t context = AllocationContext::current();
 895   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 896 
 897   if (result == NULL) {
 898     result = attempt_allocation_slow(word_size,
 899                                      context,
 900                                      gc_count_before_ret,
 901                                      gclocker_retry_count_ret);
 902   }
 903   assert_heap_not_locked();
 904   if (result != NULL) {
 905     dirty_young_block(result, word_size);
 906   }
 907   return result;
 908 }
 909 
 910 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 911   assert(!is_init_completed(), "Expect to be called at JVM init time");
 912   assert(ranges != NULL, "MemRegion array NULL");
 913   assert(count != 0, "No MemRegions provided");
 914   MemRegion reserved = _hrm.reserved();
 915   HeapWord* prev_last_addr = NULL;
 916   HeapRegion* prev_last_region = NULL;
 917   size_t size_used = 0;
 918   size_t uncommitted_regions = 0;
 919 
 920   // For each Memregion, free the G1 regions that constitute it, and
 921   // notify mark-sweep that the range is no longer to be considered 'archive.'
 922   MutexLockerEx x(Heap_lock);
 923   for (size_t i = 0; i < count; i++) {
 924     HeapWord* start_address = ranges[i].start();
 925     HeapWord* last_address = ranges[i].last();
 926 
 927     assert(reserved.contains(start_address) && reserved.contains(last_address),
 928            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 929            p2i(start_address), p2i(last_address));
 930     assert(start_address > prev_last_addr,
 931            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 932            p2i(start_address), p2i(prev_last_addr));
 933     size_used += ranges[i].byte_size();
 934     prev_last_addr = last_address;
 935 
 936     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 937     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 938 
 939     // Check for ranges that start in the same G1 region in which the previous
 940     // range ended, and adjust the start address so we don't try to free
 941     // the same region again. If the current range is entirely within that
 942     // region, skip it.
 943     if (start_region == prev_last_region) {
 944       start_address = start_region->end();
 945       if (start_address > last_address) {
 946         continue;
 947       }
 948       start_region = _hrm.addr_to_region(start_address);
 949     }
 950     prev_last_region = last_region;
 951 
 952     // After verifying that each region was marked as an archive region by
 953     // alloc_archive_regions, set it free and empty and uncommit it.
 954     HeapRegion* curr_region = start_region;
 955     while (curr_region != NULL) {
 956       guarantee(curr_region->is_archive(),
 957                 "Expected archive region at index %u", curr_region->hrm_index());
 958       uint curr_index = curr_region->hrm_index();
 959       _old_set.remove(curr_region);
 960       curr_region->set_free();
 961       curr_region->set_top(curr_region->bottom());
 962       if (curr_region != last_region) {
 963         curr_region = _hrm.next_region_in_heap(curr_region);
 964       } else {
 965         curr_region = NULL;
 966       }
 967       _hrm.shrink_at(curr_index, 1);
 968       uncommitted_regions++;
 969     }
 970 
 971     // Notify mark-sweep that this is no longer an archive range.
 972     G1MarkSweep::set_range_archive(ranges[i], false);
 973   }
 974 
 975   if (uncommitted_regions != 0) {
 976     ergo_verbose1(ErgoHeapSizing,
 977                   "attempt heap shrinking",
 978                   ergo_format_reason("uncommitted archive regions")
 979                   ergo_format_byte("total size"),
 980                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 981   }
 982   decrease_used(size_used);
 983 }
 984 
 985 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 986                                                         uint* gc_count_before_ret,
 987                                                         uint* gclocker_retry_count_ret) {
 988   // The structure of this method has a lot of similarities to
 989   // attempt_allocation_slow(). The reason these two were not merged
 990   // into a single one is that such a method would require several "if
 991   // allocation is not humongous do this, otherwise do that"
 992   // conditional paths which would obscure its flow. In fact, an early
 993   // version of this code did use a unified method which was harder to
 994   // follow and, as a result, it had subtle bugs that were hard to
 995   // track down. So keeping these two methods separate allows each to
 996   // be more readable. It will be good to keep these two in sync as
 997   // much as possible.
 998 
 999   assert_heap_not_locked_and_not_at_safepoint();
1000   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1001          "should only be called for humongous allocations");
1002 
1003   // Humongous objects can exhaust the heap quickly, so we should check if we
1004   // need to start a marking cycle at each humongous object allocation. We do
1005   // the check before we do the actual allocation. The reason for doing it
1006   // before the allocation is that we avoid having to keep track of the newly
1007   // allocated memory while we do a GC.
1008   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1009                                            word_size)) {
1010     collect(GCCause::_g1_humongous_allocation);
1011   }
1012 
1013   // We will loop until a) we manage to successfully perform the
1014   // allocation or b) we successfully schedule a collection which
1015   // fails to perform the allocation. b) is the only case when we'll
1016   // return NULL.
1017   HeapWord* result = NULL;
1018   for (int try_count = 1; /* we'll return */; try_count += 1) {
1019     bool should_try_gc;
1020     uint gc_count_before;
1021 
1022     {
1023       MutexLockerEx x(Heap_lock);
1024 
1025       // Given that humongous objects are not allocated in young
1026       // regions, we'll first try to do the allocation without doing a
1027       // collection hoping that there's enough space in the heap.
1028       result = humongous_obj_allocate(word_size, AllocationContext::current());
1029       if (result != NULL) {
1030         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
1031         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
1032         return result;
1033       }
1034 
1035       if (GC_locker::is_active_and_needs_gc()) {
1036         should_try_gc = false;
1037       } else {
1038          // The GCLocker may not be active but the GCLocker initiated
1039         // GC may not yet have been performed (GCLocker::needs_gc()
1040         // returns true). In this case we do not try this GC and
1041         // wait until the GCLocker initiated GC is performed, and
1042         // then retry the allocation.
1043         if (GC_locker::needs_gc()) {
1044           should_try_gc = false;
1045         } else {
1046           // Read the GC count while still holding the Heap_lock.
1047           gc_count_before = total_collections();
1048           should_try_gc = true;
1049         }
1050       }
1051     }
1052 
1053     if (should_try_gc) {
1054       // If we failed to allocate the humongous object, we should try to
1055       // do a collection pause (if we're allowed) in case it reclaims
1056       // enough space for the allocation to succeed after the pause.
1057 
1058       bool succeeded;
1059       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1060                                    GCCause::_g1_humongous_allocation);
1061       if (result != NULL) {
1062         assert(succeeded, "only way to get back a non-NULL result");
1063         return result;
1064       }
1065 
1066       if (succeeded) {
1067         // If we get here we successfully scheduled a collection which
1068         // failed to allocate. No point in trying to allocate
1069         // further. We'll just return NULL.
1070         MutexLockerEx x(Heap_lock);
1071         *gc_count_before_ret = total_collections();
1072         return NULL;
1073       }
1074     } else {
1075       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1076         MutexLockerEx x(Heap_lock);
1077         *gc_count_before_ret = total_collections();
1078         return NULL;
1079       }
1080       // The GCLocker is either active or the GCLocker initiated
1081       // GC has not yet been performed. Stall until it is and
1082       // then retry the allocation.
1083       GC_locker::stall_until_clear();
1084       (*gclocker_retry_count_ret) += 1;
1085     }
1086 
1087     // We can reach here if we were unsuccessful in scheduling a
1088     // collection (because another thread beat us to it) or if we were
1089     // stalled due to the GC locker. In either can we should retry the
1090     // allocation attempt in case another thread successfully
1091     // performed a collection and reclaimed enough space.  Give a
1092     // warning if we seem to be looping forever.
1093 
1094     if ((QueuedAllocationWarningCount > 0) &&
1095         (try_count % QueuedAllocationWarningCount == 0)) {
1096       warning("G1CollectedHeap::attempt_allocation_humongous() "
1097               "retries %d times", try_count);
1098     }
1099   }
1100 
1101   ShouldNotReachHere();
1102   return NULL;
1103 }
1104 
1105 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1106                                                            AllocationContext_t context,
1107                                                            bool expect_null_mutator_alloc_region) {
1108   assert_at_safepoint(true /* should_be_vm_thread */);
1109   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1110          "the current alloc region was unexpectedly found to be non-NULL");
1111 
1112   if (!is_humongous(word_size)) {
1113     return _allocator->attempt_allocation_locked(word_size, context);
1114   } else {
1115     HeapWord* result = humongous_obj_allocate(word_size, context);
1116     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1117       collector_state()->set_initiate_conc_mark_if_possible(true);
1118     }
1119     return result;
1120   }
1121 
1122   ShouldNotReachHere();
1123 }
1124 
1125 class PostMCRemSetClearClosure: public HeapRegionClosure {
1126   G1CollectedHeap* _g1h;
1127   ModRefBarrierSet* _mr_bs;
1128 public:
1129   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1130     _g1h(g1h), _mr_bs(mr_bs) {}
1131 
1132   bool doHeapRegion(HeapRegion* r) {
1133     HeapRegionRemSet* hrrs = r->rem_set();
1134 
1135     _g1h->reset_gc_time_stamps(r);
1136 
1137     if (r->is_continues_humongous()) {
1138       // We'll assert that the strong code root list and RSet is empty
1139       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1140       assert(hrrs->occupied() == 0, "RSet should be empty");
1141     } else {
1142       hrrs->clear();
1143     }
1144     // You might think here that we could clear just the cards
1145     // corresponding to the used region.  But no: if we leave a dirty card
1146     // in a region we might allocate into, then it would prevent that card
1147     // from being enqueued, and cause it to be missed.
1148     // Re: the performance cost: we shouldn't be doing full GC anyway!
1149     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1150 
1151     return false;
1152   }
1153 };
1154 
1155 void G1CollectedHeap::clear_rsets_post_compaction() {
1156   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1157   heap_region_iterate(&rs_clear);
1158 }
1159 
1160 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1161   G1CollectedHeap*   _g1h;
1162   UpdateRSOopClosure _cl;
1163 public:
1164   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1165     _cl(g1->g1_rem_set(), worker_i),
1166     _g1h(g1)
1167   { }
1168 
1169   bool doHeapRegion(HeapRegion* r) {
1170     if (!r->is_continues_humongous()) {
1171       _cl.set_from(r);
1172       r->oop_iterate(&_cl);
1173     }
1174     return false;
1175   }
1176 };
1177 
1178 class ParRebuildRSTask: public AbstractGangTask {
1179   G1CollectedHeap* _g1;
1180   HeapRegionClaimer _hrclaimer;
1181 
1182 public:
1183   ParRebuildRSTask(G1CollectedHeap* g1) :
1184       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1185 
1186   void work(uint worker_id) {
1187     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1188     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1189   }
1190 };
1191 
1192 class PostCompactionPrinterClosure: public HeapRegionClosure {
1193 private:
1194   G1HRPrinter* _hr_printer;
1195 public:
1196   bool doHeapRegion(HeapRegion* hr) {
1197     assert(!hr->is_young(), "not expecting to find young regions");
1198     if (hr->is_free()) {
1199       // We only generate output for non-empty regions.
1200     } else if (hr->is_starts_humongous()) {
1201       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1202     } else if (hr->is_continues_humongous()) {
1203       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1204     } else if (hr->is_archive()) {
1205       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1206     } else if (hr->is_old()) {
1207       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1208     } else {
1209       ShouldNotReachHere();
1210     }
1211     return false;
1212   }
1213 
1214   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1215     : _hr_printer(hr_printer) { }
1216 };
1217 
1218 void G1CollectedHeap::print_hrm_post_compaction() {
1219   PostCompactionPrinterClosure cl(hr_printer());
1220   heap_region_iterate(&cl);
1221 }
1222 
1223 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1224                                          bool clear_all_soft_refs) {
1225   assert_at_safepoint(true /* should_be_vm_thread */);
1226 
1227   if (GC_locker::check_active_before_gc()) {
1228     return false;
1229   }
1230 
1231   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1232   gc_timer->register_gc_start();
1233 
1234   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1235   GCIdMark gc_id_mark;
1236   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1237 
1238   SvcGCMarker sgcm(SvcGCMarker::FULL);
1239   ResourceMark rm;
1240 
1241   G1Log::update_level();
1242   print_heap_before_gc();
1243   trace_heap_before_gc(gc_tracer);
1244 
1245   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1246 
1247   verify_region_sets_optional();
1248 
1249   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1250                            collector_policy()->should_clear_all_soft_refs();
1251 
1252   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1253 
1254   {
1255     IsGCActiveMark x;
1256 
1257     // Timing
1258     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1259     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1260 
1261     {
1262       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1263       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1264       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1265 
1266       g1_policy()->record_full_collection_start();
1267 
1268       // Note: When we have a more flexible GC logging framework that
1269       // allows us to add optional attributes to a GC log record we
1270       // could consider timing and reporting how long we wait in the
1271       // following two methods.
1272       wait_while_free_regions_coming();
1273       // If we start the compaction before the CM threads finish
1274       // scanning the root regions we might trip them over as we'll
1275       // be moving objects / updating references. So let's wait until
1276       // they are done. By telling them to abort, they should complete
1277       // early.
1278       _cm->root_regions()->abort();
1279       _cm->root_regions()->wait_until_scan_finished();
1280       append_secondary_free_list_if_not_empty_with_lock();
1281 
1282       gc_prologue(true);
1283       increment_total_collections(true /* full gc */);
1284       increment_old_marking_cycles_started();
1285 
1286       assert(used() == recalculate_used(), "Should be equal");
1287 
1288       verify_before_gc();
1289 
1290       check_bitmaps("Full GC Start");
1291       pre_full_gc_dump(gc_timer);
1292 
1293 #if defined(COMPILER2) || INCLUDE_JVMCI
1294       DerivedPointerTable::clear();
1295 #endif
1296 
1297       // Disable discovery and empty the discovered lists
1298       // for the CM ref processor.
1299       ref_processor_cm()->disable_discovery();
1300       ref_processor_cm()->abandon_partial_discovery();
1301       ref_processor_cm()->verify_no_references_recorded();
1302 
1303       // Abandon current iterations of concurrent marking and concurrent
1304       // refinement, if any are in progress. We have to do this before
1305       // wait_until_scan_finished() below.
1306       concurrent_mark()->abort();
1307 
1308       // Make sure we'll choose a new allocation region afterwards.
1309       _allocator->release_mutator_alloc_region();
1310       _allocator->abandon_gc_alloc_regions();
1311       g1_rem_set()->cleanupHRRS();
1312 
1313       // We should call this after we retire any currently active alloc
1314       // regions so that all the ALLOC / RETIRE events are generated
1315       // before the start GC event.
1316       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1317 
1318       // We may have added regions to the current incremental collection
1319       // set between the last GC or pause and now. We need to clear the
1320       // incremental collection set and then start rebuilding it afresh
1321       // after this full GC.
1322       abandon_collection_set(g1_policy()->inc_cset_head());
1323       g1_policy()->clear_incremental_cset();
1324       g1_policy()->stop_incremental_cset_building();
1325 
1326       tear_down_region_sets(false /* free_list_only */);
1327       collector_state()->set_gcs_are_young(true);
1328 
1329       // See the comments in g1CollectedHeap.hpp and
1330       // G1CollectedHeap::ref_processing_init() about
1331       // how reference processing currently works in G1.
1332 
1333       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1334       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1335 
1336       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1337       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1338 
1339       ref_processor_stw()->enable_discovery();
1340       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1341 
1342       // Do collection work
1343       {
1344         HandleMark hm;  // Discard invalid handles created during gc
1345         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1346       }
1347 
1348       assert(num_free_regions() == 0, "we should not have added any free regions");
1349       rebuild_region_sets(false /* free_list_only */);
1350 
1351       // Enqueue any discovered reference objects that have
1352       // not been removed from the discovered lists.
1353       ref_processor_stw()->enqueue_discovered_references();
1354 
1355 #if defined(COMPILER2) || INCLUDE_JVMCI
1356       DerivedPointerTable::update_pointers();
1357 #endif
1358 
1359       MemoryService::track_memory_usage();
1360 
1361       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1362       ref_processor_stw()->verify_no_references_recorded();
1363 
1364       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1365       ClassLoaderDataGraph::purge();
1366       MetaspaceAux::verify_metrics();
1367 
1368       // Note: since we've just done a full GC, concurrent
1369       // marking is no longer active. Therefore we need not
1370       // re-enable reference discovery for the CM ref processor.
1371       // That will be done at the start of the next marking cycle.
1372       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1373       ref_processor_cm()->verify_no_references_recorded();
1374 
1375       reset_gc_time_stamp();
1376       // Since everything potentially moved, we will clear all remembered
1377       // sets, and clear all cards.  Later we will rebuild remembered
1378       // sets. We will also reset the GC time stamps of the regions.
1379       clear_rsets_post_compaction();
1380       check_gc_time_stamps();
1381 
1382       resize_if_necessary_after_full_collection();
1383 
1384       if (_hr_printer.is_active()) {
1385         // We should do this after we potentially resize the heap so
1386         // that all the COMMIT / UNCOMMIT events are generated before
1387         // the end GC event.
1388 
1389         print_hrm_post_compaction();
1390         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1391       }
1392 
1393       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1394       if (hot_card_cache->use_cache()) {
1395         hot_card_cache->reset_card_counts();
1396         hot_card_cache->reset_hot_cache();
1397       }
1398 
1399       // Rebuild remembered sets of all regions.
1400       uint n_workers =
1401         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1402                                                 workers()->active_workers(),
1403                                                 Threads::number_of_non_daemon_threads());
1404       workers()->set_active_workers(n_workers);
1405 
1406       ParRebuildRSTask rebuild_rs_task(this);
1407       workers()->run_task(&rebuild_rs_task);
1408 
1409       // Rebuild the strong code root lists for each region
1410       rebuild_strong_code_roots();
1411 
1412       if (true) { // FIXME
1413         MetaspaceGC::compute_new_size();
1414       }
1415 
1416 #ifdef TRACESPINNING
1417       ParallelTaskTerminator::print_termination_counts();
1418 #endif
1419 
1420       // Discard all rset updates
1421       JavaThread::dirty_card_queue_set().abandon_logs();
1422       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1423 
1424       _young_list->reset_sampled_info();
1425       // At this point there should be no regions in the
1426       // entire heap tagged as young.
1427       assert(check_young_list_empty(true /* check_heap */),
1428              "young list should be empty at this point");
1429 
1430       // Update the number of full collections that have been completed.
1431       increment_old_marking_cycles_completed(false /* concurrent */);
1432 
1433       _hrm.verify_optional();
1434       verify_region_sets_optional();
1435 
1436       verify_after_gc();
1437 
1438       // Clear the previous marking bitmap, if needed for bitmap verification.
1439       // Note we cannot do this when we clear the next marking bitmap in
1440       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1441       // objects marked during a full GC against the previous bitmap.
1442       // But we need to clear it before calling check_bitmaps below since
1443       // the full GC has compacted objects and updated TAMS but not updated
1444       // the prev bitmap.
1445       if (G1VerifyBitmaps) {
1446         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1447       }
1448       check_bitmaps("Full GC End");
1449 
1450       // Start a new incremental collection set for the next pause
1451       assert(g1_policy()->collection_set() == NULL, "must be");
1452       g1_policy()->start_incremental_cset_building();
1453 
1454       clear_cset_fast_test();
1455 
1456       _allocator->init_mutator_alloc_region();
1457 
1458       g1_policy()->record_full_collection_end();
1459 
1460       if (G1Log::fine()) {
1461         g1_policy()->print_heap_transition();
1462       }
1463 
1464       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1465       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1466       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1467       // before any GC notifications are raised.
1468       g1mm()->update_sizes();
1469 
1470       gc_epilogue(true);
1471     }
1472 
1473     if (G1Log::finer()) {
1474       g1_policy()->print_detailed_heap_transition(true /* full */);
1475     }
1476 
1477     print_heap_after_gc();
1478     trace_heap_after_gc(gc_tracer);
1479 
1480     post_full_gc_dump(gc_timer);
1481 
1482     gc_timer->register_gc_end();
1483     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1484   }
1485 
1486   return true;
1487 }
1488 
1489 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1490   // Currently, there is no facility in the do_full_collection(bool) API to notify
1491   // the caller that the collection did not succeed (e.g., because it was locked
1492   // out by the GC locker). So, right now, we'll ignore the return value.
1493   bool dummy = do_full_collection(true,                /* explicit_gc */
1494                                   clear_all_soft_refs);
1495 }
1496 
1497 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1498   // Include bytes that will be pre-allocated to support collections, as "used".
1499   const size_t used_after_gc = used();
1500   const size_t capacity_after_gc = capacity();
1501   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1502 
1503   // This is enforced in arguments.cpp.
1504   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1505          "otherwise the code below doesn't make sense");
1506 
1507   // We don't have floating point command-line arguments
1508   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1509   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1510   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1511   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1512 
1513   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1514   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1515 
1516   // We have to be careful here as these two calculations can overflow
1517   // 32-bit size_t's.
1518   double used_after_gc_d = (double) used_after_gc;
1519   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1520   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1521 
1522   // Let's make sure that they are both under the max heap size, which
1523   // by default will make them fit into a size_t.
1524   double desired_capacity_upper_bound = (double) max_heap_size;
1525   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1526                                     desired_capacity_upper_bound);
1527   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1528                                     desired_capacity_upper_bound);
1529 
1530   // We can now safely turn them into size_t's.
1531   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1532   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1533 
1534   // This assert only makes sense here, before we adjust them
1535   // with respect to the min and max heap size.
1536   assert(minimum_desired_capacity <= maximum_desired_capacity,
1537          "minimum_desired_capacity = " SIZE_FORMAT ", "
1538          "maximum_desired_capacity = " SIZE_FORMAT,
1539          minimum_desired_capacity, maximum_desired_capacity);
1540 
1541   // Should not be greater than the heap max size. No need to adjust
1542   // it with respect to the heap min size as it's a lower bound (i.e.,
1543   // we'll try to make the capacity larger than it, not smaller).
1544   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1545   // Should not be less than the heap min size. No need to adjust it
1546   // with respect to the heap max size as it's an upper bound (i.e.,
1547   // we'll try to make the capacity smaller than it, not greater).
1548   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1549 
1550   if (capacity_after_gc < minimum_desired_capacity) {
1551     // Don't expand unless it's significant
1552     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1553     ergo_verbose4(ErgoHeapSizing,
1554                   "attempt heap expansion",
1555                   ergo_format_reason("capacity lower than "
1556                                      "min desired capacity after Full GC")
1557                   ergo_format_byte("capacity")
1558                   ergo_format_byte("occupancy")
1559                   ergo_format_byte_perc("min desired capacity"),
1560                   capacity_after_gc, used_after_gc,
1561                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1562     expand(expand_bytes);
1563 
1564     // No expansion, now see if we want to shrink
1565   } else if (capacity_after_gc > maximum_desired_capacity) {
1566     // Capacity too large, compute shrinking size
1567     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1568     ergo_verbose4(ErgoHeapSizing,
1569                   "attempt heap shrinking",
1570                   ergo_format_reason("capacity higher than "
1571                                      "max desired capacity after Full GC")
1572                   ergo_format_byte("capacity")
1573                   ergo_format_byte("occupancy")
1574                   ergo_format_byte_perc("max desired capacity"),
1575                   capacity_after_gc, used_after_gc,
1576                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1577     shrink(shrink_bytes);
1578   }
1579 }
1580 
1581 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1582                                                             AllocationContext_t context,
1583                                                             bool do_gc,
1584                                                             bool clear_all_soft_refs,
1585                                                             bool expect_null_mutator_alloc_region,
1586                                                             bool* gc_succeeded) {
1587   *gc_succeeded = true;
1588   // Let's attempt the allocation first.
1589   HeapWord* result =
1590     attempt_allocation_at_safepoint(word_size,
1591                                     context,
1592                                     expect_null_mutator_alloc_region);
1593   if (result != NULL) {
1594     assert(*gc_succeeded, "sanity");
1595     return result;
1596   }
1597 
1598   // In a G1 heap, we're supposed to keep allocation from failing by
1599   // incremental pauses.  Therefore, at least for now, we'll favor
1600   // expansion over collection.  (This might change in the future if we can
1601   // do something smarter than full collection to satisfy a failed alloc.)
1602   result = expand_and_allocate(word_size, context);
1603   if (result != NULL) {
1604     assert(*gc_succeeded, "sanity");
1605     return result;
1606   }
1607 
1608   if (do_gc) {
1609     // Expansion didn't work, we'll try to do a Full GC.
1610     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1611                                        clear_all_soft_refs);
1612   }
1613 
1614   return NULL;
1615 }
1616 
1617 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1618                                                      AllocationContext_t context,
1619                                                      bool* succeeded) {
1620   assert_at_safepoint(true /* should_be_vm_thread */);
1621 
1622   // Attempts to allocate followed by Full GC.
1623   HeapWord* result =
1624     satisfy_failed_allocation_helper(word_size,
1625                                      context,
1626                                      true,  /* do_gc */
1627                                      false, /* clear_all_soft_refs */
1628                                      false, /* expect_null_mutator_alloc_region */
1629                                      succeeded);
1630 
1631   if (result != NULL || !*succeeded) {
1632     return result;
1633   }
1634 
1635   // Attempts to allocate followed by Full GC that will collect all soft references.
1636   result = satisfy_failed_allocation_helper(word_size,
1637                                             context,
1638                                             true, /* do_gc */
1639                                             true, /* clear_all_soft_refs */
1640                                             true, /* expect_null_mutator_alloc_region */
1641                                             succeeded);
1642 
1643   if (result != NULL || !*succeeded) {
1644     return result;
1645   }
1646 
1647   // Attempts to allocate, no GC
1648   result = satisfy_failed_allocation_helper(word_size,
1649                                             context,
1650                                             false, /* do_gc */
1651                                             false, /* clear_all_soft_refs */
1652                                             true,  /* expect_null_mutator_alloc_region */
1653                                             succeeded);
1654 
1655   if (result != NULL) {
1656     assert(*succeeded, "sanity");
1657     return result;
1658   }
1659 
1660   assert(!collector_policy()->should_clear_all_soft_refs(),
1661          "Flag should have been handled and cleared prior to this point");
1662 
1663   // What else?  We might try synchronous finalization later.  If the total
1664   // space available is large enough for the allocation, then a more
1665   // complete compaction phase than we've tried so far might be
1666   // appropriate.
1667   assert(*succeeded, "sanity");
1668   return NULL;
1669 }
1670 
1671 // Attempting to expand the heap sufficiently
1672 // to support an allocation of the given "word_size".  If
1673 // successful, perform the allocation and return the address of the
1674 // allocated block, or else "NULL".
1675 
1676 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1677   assert_at_safepoint(true /* should_be_vm_thread */);
1678 
1679   verify_region_sets_optional();
1680 
1681   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1682   ergo_verbose1(ErgoHeapSizing,
1683                 "attempt heap expansion",
1684                 ergo_format_reason("allocation request failed")
1685                 ergo_format_byte("allocation request"),
1686                 word_size * HeapWordSize);
1687   if (expand(expand_bytes)) {
1688     _hrm.verify_optional();
1689     verify_region_sets_optional();
1690     return attempt_allocation_at_safepoint(word_size,
1691                                            context,
1692                                            false /* expect_null_mutator_alloc_region */);
1693   }
1694   return NULL;
1695 }
1696 
1697 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1698   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1699   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1700                                        HeapRegion::GrainBytes);
1701   ergo_verbose2(ErgoHeapSizing,
1702                 "expand the heap",
1703                 ergo_format_byte("requested expansion amount")
1704                 ergo_format_byte("attempted expansion amount"),
1705                 expand_bytes, aligned_expand_bytes);
1706 
1707   if (is_maximal_no_gc()) {
1708     ergo_verbose0(ErgoHeapSizing,
1709                       "did not expand the heap",
1710                       ergo_format_reason("heap already fully expanded"));
1711     return false;
1712   }
1713 
1714   double expand_heap_start_time_sec = os::elapsedTime();
1715   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1716   assert(regions_to_expand > 0, "Must expand by at least one region");
1717 
1718   uint expanded_by = _hrm.expand_by(regions_to_expand);
1719   if (expand_time_ms != NULL) {
1720     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1721   }
1722 
1723   if (expanded_by > 0) {
1724     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1725     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1726     g1_policy()->record_new_heap_size(num_regions());
1727   } else {
1728     ergo_verbose0(ErgoHeapSizing,
1729                   "did not expand the heap",
1730                   ergo_format_reason("heap expansion operation failed"));
1731     // The expansion of the virtual storage space was unsuccessful.
1732     // Let's see if it was because we ran out of swap.
1733     if (G1ExitOnExpansionFailure &&
1734         _hrm.available() >= regions_to_expand) {
1735       // We had head room...
1736       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1737     }
1738   }
1739   return regions_to_expand > 0;
1740 }
1741 
1742 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1743   size_t aligned_shrink_bytes =
1744     ReservedSpace::page_align_size_down(shrink_bytes);
1745   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1746                                          HeapRegion::GrainBytes);
1747   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1748 
1749   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1750   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1751 
1752   ergo_verbose3(ErgoHeapSizing,
1753                 "shrink the heap",
1754                 ergo_format_byte("requested shrinking amount")
1755                 ergo_format_byte("aligned shrinking amount")
1756                 ergo_format_byte("attempted shrinking amount"),
1757                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1758   if (num_regions_removed > 0) {
1759     g1_policy()->record_new_heap_size(num_regions());
1760   } else {
1761     ergo_verbose0(ErgoHeapSizing,
1762                   "did not shrink the heap",
1763                   ergo_format_reason("heap shrinking operation failed"));
1764   }
1765 }
1766 
1767 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1768   verify_region_sets_optional();
1769 
1770   // We should only reach here at the end of a Full GC which means we
1771   // should not not be holding to any GC alloc regions. The method
1772   // below will make sure of that and do any remaining clean up.
1773   _allocator->abandon_gc_alloc_regions();
1774 
1775   // Instead of tearing down / rebuilding the free lists here, we
1776   // could instead use the remove_all_pending() method on free_list to
1777   // remove only the ones that we need to remove.
1778   tear_down_region_sets(true /* free_list_only */);
1779   shrink_helper(shrink_bytes);
1780   rebuild_region_sets(true /* free_list_only */);
1781 
1782   _hrm.verify_optional();
1783   verify_region_sets_optional();
1784 }
1785 
1786 // Public methods.
1787 
1788 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1789   CollectedHeap(),
1790   _g1_policy(policy_),
1791   _dirty_card_queue_set(false),
1792   _is_alive_closure_cm(this),
1793   _is_alive_closure_stw(this),
1794   _ref_processor_cm(NULL),
1795   _ref_processor_stw(NULL),
1796   _bot_shared(NULL),
1797   _cg1r(NULL),
1798   _g1mm(NULL),
1799   _refine_cte_cl(NULL),
1800   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1801   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1802   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1803   _humongous_reclaim_candidates(),
1804   _has_humongous_reclaim_candidates(false),
1805   _archive_allocator(NULL),
1806   _free_regions_coming(false),
1807   _young_list(new YoungList(this)),
1808   _gc_time_stamp(0),
1809   _summary_bytes_used(0),
1810   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1811   _old_evac_stats(OldPLABSize, PLABWeight),
1812   _expand_heap_after_alloc_failure(true),
1813   _old_marking_cycles_started(0),
1814   _old_marking_cycles_completed(0),
1815   _heap_summary_sent(false),
1816   _in_cset_fast_test(),
1817   _dirty_cards_region_list(NULL),
1818   _worker_cset_start_region(NULL),
1819   _worker_cset_start_region_time_stamp(NULL),
1820   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1821   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1822   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1823   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1824 
1825   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1826                           /* are_GC_task_threads */true,
1827                           /* are_ConcurrentGC_threads */false);
1828   _workers->initialize_workers();
1829 
1830   _allocator = G1Allocator::create_allocator(this);
1831   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1832 
1833   // Override the default _filler_array_max_size so that no humongous filler
1834   // objects are created.
1835   _filler_array_max_size = _humongous_object_threshold_in_words;
1836 
1837   uint n_queues = ParallelGCThreads;
1838   _task_queues = new RefToScanQueueSet(n_queues);
1839 
1840   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1841   assert(n_rem_sets > 0, "Invariant.");
1842 
1843   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1844   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1845   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1846 
1847   for (uint i = 0; i < n_queues; i++) {
1848     RefToScanQueue* q = new RefToScanQueue();
1849     q->initialize();
1850     _task_queues->register_queue(i, q);
1851     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1852   }
1853   clear_cset_start_regions();
1854 
1855   // Initialize the G1EvacuationFailureALot counters and flags.
1856   NOT_PRODUCT(reset_evacuation_should_fail();)
1857 
1858   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1859 }
1860 
1861 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1862                                                                  size_t size,
1863                                                                  size_t translation_factor) {
1864   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1865   // Allocate a new reserved space, preferring to use large pages.
1866   ReservedSpace rs(size, preferred_page_size);
1867   G1RegionToSpaceMapper* result  =
1868     G1RegionToSpaceMapper::create_mapper(rs,
1869                                          size,
1870                                          rs.alignment(),
1871                                          HeapRegion::GrainBytes,
1872                                          translation_factor,
1873                                          mtGC);
1874   if (TracePageSizes) {
1875     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1876                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1877   }
1878   return result;
1879 }
1880 
1881 jint G1CollectedHeap::initialize() {
1882   CollectedHeap::pre_initialize();
1883   os::enable_vtime();
1884 
1885   G1Log::init();
1886 
1887   // Necessary to satisfy locking discipline assertions.
1888 
1889   MutexLocker x(Heap_lock);
1890 
1891   // We have to initialize the printer before committing the heap, as
1892   // it will be used then.
1893   _hr_printer.set_active(G1PrintHeapRegions);
1894 
1895   // While there are no constraints in the GC code that HeapWordSize
1896   // be any particular value, there are multiple other areas in the
1897   // system which believe this to be true (e.g. oop->object_size in some
1898   // cases incorrectly returns the size in wordSize units rather than
1899   // HeapWordSize).
1900   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1901 
1902   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1903   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1904   size_t heap_alignment = collector_policy()->heap_alignment();
1905 
1906   // Ensure that the sizes are properly aligned.
1907   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1908   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1909   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1910 
1911   _refine_cte_cl = new RefineCardTableEntryClosure();
1912 
1913   jint ecode = JNI_OK;
1914   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1915   if (_cg1r == NULL) {
1916     return ecode;
1917   }
1918 
1919   // Reserve the maximum.
1920 
1921   // When compressed oops are enabled, the preferred heap base
1922   // is calculated by subtracting the requested size from the
1923   // 32Gb boundary and using the result as the base address for
1924   // heap reservation. If the requested size is not aligned to
1925   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1926   // into the ReservedHeapSpace constructor) then the actual
1927   // base of the reserved heap may end up differing from the
1928   // address that was requested (i.e. the preferred heap base).
1929   // If this happens then we could end up using a non-optimal
1930   // compressed oops mode.
1931 
1932   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1933                                                  heap_alignment);
1934 
1935   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1936 
1937   // Create the barrier set for the entire reserved region.
1938   G1SATBCardTableLoggingModRefBS* bs
1939     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1940   bs->initialize();
1941   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1942   set_barrier_set(bs);
1943 
1944   // Also create a G1 rem set.
1945   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1946 
1947   // Carve out the G1 part of the heap.
1948 
1949   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1950   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1951   G1RegionToSpaceMapper* heap_storage =
1952     G1RegionToSpaceMapper::create_mapper(g1_rs,
1953                                          g1_rs.size(),
1954                                          page_size,
1955                                          HeapRegion::GrainBytes,
1956                                          1,
1957                                          mtJavaHeap);
1958   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1959                        max_byte_size, page_size,
1960                        heap_rs.base(),
1961                        heap_rs.size());
1962   heap_storage->set_mapping_changed_listener(&_listener);
1963 
1964   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1965   G1RegionToSpaceMapper* bot_storage =
1966     create_aux_memory_mapper("Block offset table",
1967                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1968                              G1BlockOffsetSharedArray::heap_map_factor());
1969 
1970   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1971   G1RegionToSpaceMapper* cardtable_storage =
1972     create_aux_memory_mapper("Card table",
1973                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1974                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1975 
1976   G1RegionToSpaceMapper* card_counts_storage =
1977     create_aux_memory_mapper("Card counts table",
1978                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1979                              G1CardCounts::heap_map_factor());
1980 
1981   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1982   G1RegionToSpaceMapper* prev_bitmap_storage =
1983     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1984   G1RegionToSpaceMapper* next_bitmap_storage =
1985     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1986 
1987   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1988   g1_barrier_set()->initialize(cardtable_storage);
1989    // Do later initialization work for concurrent refinement.
1990   _cg1r->init(card_counts_storage);
1991 
1992   // 6843694 - ensure that the maximum region index can fit
1993   // in the remembered set structures.
1994   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1995   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1996 
1997   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1998   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1999   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2000             "too many cards per region");
2001 
2002   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2003 
2004   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2005 
2006   {
2007     HeapWord* start = _hrm.reserved().start();
2008     HeapWord* end = _hrm.reserved().end();
2009     size_t granularity = HeapRegion::GrainBytes;
2010 
2011     _in_cset_fast_test.initialize(start, end, granularity);
2012     _humongous_reclaim_candidates.initialize(start, end, granularity);
2013   }
2014 
2015   // Create the ConcurrentMark data structure and thread.
2016   // (Must do this late, so that "max_regions" is defined.)
2017   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2018   if (_cm == NULL || !_cm->completed_initialization()) {
2019     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2020     return JNI_ENOMEM;
2021   }
2022   _cmThread = _cm->cmThread();
2023 
2024   // Initialize the from_card cache structure of HeapRegionRemSet.
2025   HeapRegionRemSet::init_heap(max_regions());
2026 
2027   // Now expand into the initial heap size.
2028   if (!expand(init_byte_size)) {
2029     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2030     return JNI_ENOMEM;
2031   }
2032 
2033   // Perform any initialization actions delegated to the policy.
2034   g1_policy()->init();
2035 
2036   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2037                                                SATB_Q_FL_lock,
2038                                                G1SATBProcessCompletedThreshold,
2039                                                Shared_SATB_Q_lock);
2040 
2041   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2042                                                 DirtyCardQ_CBL_mon,
2043                                                 DirtyCardQ_FL_lock,
2044                                                 concurrent_g1_refine()->yellow_zone(),
2045                                                 concurrent_g1_refine()->red_zone(),
2046                                                 Shared_DirtyCardQ_lock);
2047 
2048   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2049                                     DirtyCardQ_CBL_mon,
2050                                     DirtyCardQ_FL_lock,
2051                                     -1, // never trigger processing
2052                                     -1, // no limit on length
2053                                     Shared_DirtyCardQ_lock,
2054                                     &JavaThread::dirty_card_queue_set());
2055 
2056   // Here we allocate the dummy HeapRegion that is required by the
2057   // G1AllocRegion class.
2058   HeapRegion* dummy_region = _hrm.get_dummy_region();
2059 
2060   // We'll re-use the same region whether the alloc region will
2061   // require BOT updates or not and, if it doesn't, then a non-young
2062   // region will complain that it cannot support allocations without
2063   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2064   dummy_region->set_eden();
2065   // Make sure it's full.
2066   dummy_region->set_top(dummy_region->end());
2067   G1AllocRegion::setup(this, dummy_region);
2068 
2069   _allocator->init_mutator_alloc_region();
2070 
2071   // Do create of the monitoring and management support so that
2072   // values in the heap have been properly initialized.
2073   _g1mm = new G1MonitoringSupport(this);
2074 
2075   G1StringDedup::initialize();
2076 
2077   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2078   for (uint i = 0; i < ParallelGCThreads; i++) {
2079     new (&_preserved_objs[i]) OopAndMarkOopStack();
2080   }
2081 
2082   return JNI_OK;
2083 }
2084 
2085 void G1CollectedHeap::stop() {
2086   // Stop all concurrent threads. We do this to make sure these threads
2087   // do not continue to execute and access resources (e.g. gclog_or_tty)
2088   // that are destroyed during shutdown.
2089   _cg1r->stop();
2090   _cmThread->stop();
2091   if (G1StringDedup::is_enabled()) {
2092     G1StringDedup::stop();
2093   }
2094 }
2095 
2096 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2097   return HeapRegion::max_region_size();
2098 }
2099 
2100 void G1CollectedHeap::post_initialize() {
2101   CollectedHeap::post_initialize();
2102   ref_processing_init();
2103 }
2104 
2105 void G1CollectedHeap::ref_processing_init() {
2106   // Reference processing in G1 currently works as follows:
2107   //
2108   // * There are two reference processor instances. One is
2109   //   used to record and process discovered references
2110   //   during concurrent marking; the other is used to
2111   //   record and process references during STW pauses
2112   //   (both full and incremental).
2113   // * Both ref processors need to 'span' the entire heap as
2114   //   the regions in the collection set may be dotted around.
2115   //
2116   // * For the concurrent marking ref processor:
2117   //   * Reference discovery is enabled at initial marking.
2118   //   * Reference discovery is disabled and the discovered
2119   //     references processed etc during remarking.
2120   //   * Reference discovery is MT (see below).
2121   //   * Reference discovery requires a barrier (see below).
2122   //   * Reference processing may or may not be MT
2123   //     (depending on the value of ParallelRefProcEnabled
2124   //     and ParallelGCThreads).
2125   //   * A full GC disables reference discovery by the CM
2126   //     ref processor and abandons any entries on it's
2127   //     discovered lists.
2128   //
2129   // * For the STW processor:
2130   //   * Non MT discovery is enabled at the start of a full GC.
2131   //   * Processing and enqueueing during a full GC is non-MT.
2132   //   * During a full GC, references are processed after marking.
2133   //
2134   //   * Discovery (may or may not be MT) is enabled at the start
2135   //     of an incremental evacuation pause.
2136   //   * References are processed near the end of a STW evacuation pause.
2137   //   * For both types of GC:
2138   //     * Discovery is atomic - i.e. not concurrent.
2139   //     * Reference discovery will not need a barrier.
2140 
2141   MemRegion mr = reserved_region();
2142 
2143   // Concurrent Mark ref processor
2144   _ref_processor_cm =
2145     new ReferenceProcessor(mr,    // span
2146                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2147                                 // mt processing
2148                            ParallelGCThreads,
2149                                 // degree of mt processing
2150                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2151                                 // mt discovery
2152                            MAX2(ParallelGCThreads, ConcGCThreads),
2153                                 // degree of mt discovery
2154                            false,
2155                                 // Reference discovery is not atomic
2156                            &_is_alive_closure_cm);
2157                                 // is alive closure
2158                                 // (for efficiency/performance)
2159 
2160   // STW ref processor
2161   _ref_processor_stw =
2162     new ReferenceProcessor(mr,    // span
2163                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2164                                 // mt processing
2165                            ParallelGCThreads,
2166                                 // degree of mt processing
2167                            (ParallelGCThreads > 1),
2168                                 // mt discovery
2169                            ParallelGCThreads,
2170                                 // degree of mt discovery
2171                            true,
2172                                 // Reference discovery is atomic
2173                            &_is_alive_closure_stw);
2174                                 // is alive closure
2175                                 // (for efficiency/performance)
2176 }
2177 
2178 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2179   return g1_policy();
2180 }
2181 
2182 size_t G1CollectedHeap::capacity() const {
2183   return _hrm.length() * HeapRegion::GrainBytes;
2184 }
2185 
2186 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2187   hr->reset_gc_time_stamp();
2188 }
2189 
2190 #ifndef PRODUCT
2191 
2192 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2193 private:
2194   unsigned _gc_time_stamp;
2195   bool _failures;
2196 
2197 public:
2198   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2199     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2200 
2201   virtual bool doHeapRegion(HeapRegion* hr) {
2202     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2203     if (_gc_time_stamp != region_gc_time_stamp) {
2204       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2205                              "expected %d", HR_FORMAT_PARAMS(hr),
2206                              region_gc_time_stamp, _gc_time_stamp);
2207       _failures = true;
2208     }
2209     return false;
2210   }
2211 
2212   bool failures() { return _failures; }
2213 };
2214 
2215 void G1CollectedHeap::check_gc_time_stamps() {
2216   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2217   heap_region_iterate(&cl);
2218   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2219 }
2220 #endif // PRODUCT
2221 
2222 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2223   _cg1r->hot_card_cache()->drain(cl, worker_i);
2224 }
2225 
2226 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2227   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2228   size_t n_completed_buffers = 0;
2229   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2230     n_completed_buffers++;
2231   }
2232   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2233   dcqs.clear_n_completed_buffers();
2234   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2235 }
2236 
2237 // Computes the sum of the storage used by the various regions.
2238 size_t G1CollectedHeap::used() const {
2239   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2240   if (_archive_allocator != NULL) {
2241     result += _archive_allocator->used();
2242   }
2243   return result;
2244 }
2245 
2246 size_t G1CollectedHeap::used_unlocked() const {
2247   return _summary_bytes_used;
2248 }
2249 
2250 class SumUsedClosure: public HeapRegionClosure {
2251   size_t _used;
2252 public:
2253   SumUsedClosure() : _used(0) {}
2254   bool doHeapRegion(HeapRegion* r) {
2255     _used += r->used();
2256     return false;
2257   }
2258   size_t result() { return _used; }
2259 };
2260 
2261 size_t G1CollectedHeap::recalculate_used() const {
2262   double recalculate_used_start = os::elapsedTime();
2263 
2264   SumUsedClosure blk;
2265   heap_region_iterate(&blk);
2266 
2267   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2268   return blk.result();
2269 }
2270 
2271 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2272   switch (cause) {
2273     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2274     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2275     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2276     case GCCause::_g1_humongous_allocation: return true;
2277     case GCCause::_update_allocation_context_stats_inc: return true;
2278     case GCCause::_wb_conc_mark:            return true;
2279     default:                                return false;
2280   }
2281 }
2282 
2283 #ifndef PRODUCT
2284 void G1CollectedHeap::allocate_dummy_regions() {
2285   // Let's fill up most of the region
2286   size_t word_size = HeapRegion::GrainWords - 1024;
2287   // And as a result the region we'll allocate will be humongous.
2288   guarantee(is_humongous(word_size), "sanity");
2289 
2290   // _filler_array_max_size is set to humongous object threshold
2291   // but temporarily change it to use CollectedHeap::fill_with_object().
2292   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2293 
2294   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2295     // Let's use the existing mechanism for the allocation
2296     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2297                                                  AllocationContext::system());
2298     if (dummy_obj != NULL) {
2299       MemRegion mr(dummy_obj, word_size);
2300       CollectedHeap::fill_with_object(mr);
2301     } else {
2302       // If we can't allocate once, we probably cannot allocate
2303       // again. Let's get out of the loop.
2304       break;
2305     }
2306   }
2307 }
2308 #endif // !PRODUCT
2309 
2310 void G1CollectedHeap::increment_old_marking_cycles_started() {
2311   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2312          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2313          "Wrong marking cycle count (started: %d, completed: %d)",
2314          _old_marking_cycles_started, _old_marking_cycles_completed);
2315 
2316   _old_marking_cycles_started++;
2317 }
2318 
2319 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2320   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2321 
2322   // We assume that if concurrent == true, then the caller is a
2323   // concurrent thread that was joined the Suspendible Thread
2324   // Set. If there's ever a cheap way to check this, we should add an
2325   // assert here.
2326 
2327   // Given that this method is called at the end of a Full GC or of a
2328   // concurrent cycle, and those can be nested (i.e., a Full GC can
2329   // interrupt a concurrent cycle), the number of full collections
2330   // completed should be either one (in the case where there was no
2331   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2332   // behind the number of full collections started.
2333 
2334   // This is the case for the inner caller, i.e. a Full GC.
2335   assert(concurrent ||
2336          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2337          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2338          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2339          "is inconsistent with _old_marking_cycles_completed = %u",
2340          _old_marking_cycles_started, _old_marking_cycles_completed);
2341 
2342   // This is the case for the outer caller, i.e. the concurrent cycle.
2343   assert(!concurrent ||
2344          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2345          "for outer caller (concurrent cycle): "
2346          "_old_marking_cycles_started = %u "
2347          "is inconsistent with _old_marking_cycles_completed = %u",
2348          _old_marking_cycles_started, _old_marking_cycles_completed);
2349 
2350   _old_marking_cycles_completed += 1;
2351 
2352   // We need to clear the "in_progress" flag in the CM thread before
2353   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2354   // is set) so that if a waiter requests another System.gc() it doesn't
2355   // incorrectly see that a marking cycle is still in progress.
2356   if (concurrent) {
2357     _cmThread->set_idle();
2358   }
2359 
2360   // This notify_all() will ensure that a thread that called
2361   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2362   // and it's waiting for a full GC to finish will be woken up. It is
2363   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2364   FullGCCount_lock->notify_all();
2365 }
2366 
2367 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2368   GCIdMarkAndRestore conc_gc_id_mark;
2369   collector_state()->set_concurrent_cycle_started(true);
2370   _gc_timer_cm->register_gc_start(start_time);
2371 
2372   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2373   trace_heap_before_gc(_gc_tracer_cm);
2374   _cmThread->set_gc_id(GCId::current());
2375 }
2376 
2377 void G1CollectedHeap::register_concurrent_cycle_end() {
2378   if (collector_state()->concurrent_cycle_started()) {
2379     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2380     if (_cm->has_aborted()) {
2381       _gc_tracer_cm->report_concurrent_mode_failure();
2382     }
2383 
2384     _gc_timer_cm->register_gc_end();
2385     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2386 
2387     // Clear state variables to prepare for the next concurrent cycle.
2388      collector_state()->set_concurrent_cycle_started(false);
2389     _heap_summary_sent = false;
2390   }
2391 }
2392 
2393 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2394   if (collector_state()->concurrent_cycle_started()) {
2395     // This function can be called when:
2396     //  the cleanup pause is run
2397     //  the concurrent cycle is aborted before the cleanup pause.
2398     //  the concurrent cycle is aborted after the cleanup pause,
2399     //   but before the concurrent cycle end has been registered.
2400     // Make sure that we only send the heap information once.
2401     if (!_heap_summary_sent) {
2402       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2403       trace_heap_after_gc(_gc_tracer_cm);
2404       _heap_summary_sent = true;
2405     }
2406   }
2407 }
2408 
2409 void G1CollectedHeap::collect(GCCause::Cause cause) {
2410   assert_heap_not_locked();
2411 
2412   uint gc_count_before;
2413   uint old_marking_count_before;
2414   uint full_gc_count_before;
2415   bool retry_gc;
2416 
2417   do {
2418     retry_gc = false;
2419 
2420     {
2421       MutexLocker ml(Heap_lock);
2422 
2423       // Read the GC count while holding the Heap_lock
2424       gc_count_before = total_collections();
2425       full_gc_count_before = total_full_collections();
2426       old_marking_count_before = _old_marking_cycles_started;
2427     }
2428 
2429     if (should_do_concurrent_full_gc(cause)) {
2430       // Schedule an initial-mark evacuation pause that will start a
2431       // concurrent cycle. We're setting word_size to 0 which means that
2432       // we are not requesting a post-GC allocation.
2433       VM_G1IncCollectionPause op(gc_count_before,
2434                                  0,     /* word_size */
2435                                  true,  /* should_initiate_conc_mark */
2436                                  g1_policy()->max_pause_time_ms(),
2437                                  cause);
2438       op.set_allocation_context(AllocationContext::current());
2439 
2440       VMThread::execute(&op);
2441       if (!op.pause_succeeded()) {
2442         if (old_marking_count_before == _old_marking_cycles_started) {
2443           retry_gc = op.should_retry_gc();
2444         } else {
2445           // A Full GC happened while we were trying to schedule the
2446           // initial-mark GC. No point in starting a new cycle given
2447           // that the whole heap was collected anyway.
2448         }
2449 
2450         if (retry_gc) {
2451           if (GC_locker::is_active_and_needs_gc()) {
2452             GC_locker::stall_until_clear();
2453           }
2454         }
2455       }
2456     } else {
2457       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2458           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2459 
2460         // Schedule a standard evacuation pause. We're setting word_size
2461         // to 0 which means that we are not requesting a post-GC allocation.
2462         VM_G1IncCollectionPause op(gc_count_before,
2463                                    0,     /* word_size */
2464                                    false, /* should_initiate_conc_mark */
2465                                    g1_policy()->max_pause_time_ms(),
2466                                    cause);
2467         VMThread::execute(&op);
2468       } else {
2469         // Schedule a Full GC.
2470         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2471         VMThread::execute(&op);
2472       }
2473     }
2474   } while (retry_gc);
2475 }
2476 
2477 bool G1CollectedHeap::is_in(const void* p) const {
2478   if (_hrm.reserved().contains(p)) {
2479     // Given that we know that p is in the reserved space,
2480     // heap_region_containing() should successfully
2481     // return the containing region.
2482     HeapRegion* hr = heap_region_containing(p);
2483     return hr->is_in(p);
2484   } else {
2485     return false;
2486   }
2487 }
2488 
2489 #ifdef ASSERT
2490 bool G1CollectedHeap::is_in_exact(const void* p) const {
2491   bool contains = reserved_region().contains(p);
2492   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2493   if (contains && available) {
2494     return true;
2495   } else {
2496     return false;
2497   }
2498 }
2499 #endif
2500 
2501 bool G1CollectedHeap::obj_in_cs(oop obj) {
2502   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2503   return r != NULL && r->in_collection_set();
2504 }
2505 
2506 // Iteration functions.
2507 
2508 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2509 
2510 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2511   ExtendedOopClosure* _cl;
2512 public:
2513   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2514   bool doHeapRegion(HeapRegion* r) {
2515     if (!r->is_continues_humongous()) {
2516       r->oop_iterate(_cl);
2517     }
2518     return false;
2519   }
2520 };
2521 
2522 // Iterates an ObjectClosure over all objects within a HeapRegion.
2523 
2524 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2525   ObjectClosure* _cl;
2526 public:
2527   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2528   bool doHeapRegion(HeapRegion* r) {
2529     if (!r->is_continues_humongous()) {
2530       r->object_iterate(_cl);
2531     }
2532     return false;
2533   }
2534 };
2535 
2536 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2537   IterateObjectClosureRegionClosure blk(cl);
2538   heap_region_iterate(&blk);
2539 }
2540 
2541 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2542   _hrm.iterate(cl);
2543 }
2544 
2545 void
2546 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2547                                          uint worker_id,
2548                                          HeapRegionClaimer *hrclaimer,
2549                                          bool concurrent) const {
2550   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2551 }
2552 
2553 // Clear the cached CSet starting regions and (more importantly)
2554 // the time stamps. Called when we reset the GC time stamp.
2555 void G1CollectedHeap::clear_cset_start_regions() {
2556   assert(_worker_cset_start_region != NULL, "sanity");
2557   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2558 
2559   for (uint i = 0; i < ParallelGCThreads; i++) {
2560     _worker_cset_start_region[i] = NULL;
2561     _worker_cset_start_region_time_stamp[i] = 0;
2562   }
2563 }
2564 
2565 // Given the id of a worker, obtain or calculate a suitable
2566 // starting region for iterating over the current collection set.
2567 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2568   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2569 
2570   HeapRegion* result = NULL;
2571   unsigned gc_time_stamp = get_gc_time_stamp();
2572 
2573   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2574     // Cached starting region for current worker was set
2575     // during the current pause - so it's valid.
2576     // Note: the cached starting heap region may be NULL
2577     // (when the collection set is empty).
2578     result = _worker_cset_start_region[worker_i];
2579     assert(result == NULL || result->in_collection_set(), "sanity");
2580     return result;
2581   }
2582 
2583   // The cached entry was not valid so let's calculate
2584   // a suitable starting heap region for this worker.
2585 
2586   // We want the parallel threads to start their collection
2587   // set iteration at different collection set regions to
2588   // avoid contention.
2589   // If we have:
2590   //          n collection set regions
2591   //          p threads
2592   // Then thread t will start at region floor ((t * n) / p)
2593 
2594   result = g1_policy()->collection_set();
2595   uint cs_size = g1_policy()->cset_region_length();
2596   uint active_workers = workers()->active_workers();
2597 
2598   uint end_ind   = (cs_size * worker_i) / active_workers;
2599   uint start_ind = 0;
2600 
2601   if (worker_i > 0 &&
2602       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2603     // Previous workers starting region is valid
2604     // so let's iterate from there
2605     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2606     result = _worker_cset_start_region[worker_i - 1];
2607   }
2608 
2609   for (uint i = start_ind; i < end_ind; i++) {
2610     result = result->next_in_collection_set();
2611   }
2612 
2613   // Note: the calculated starting heap region may be NULL
2614   // (when the collection set is empty).
2615   assert(result == NULL || result->in_collection_set(), "sanity");
2616   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2617          "should be updated only once per pause");
2618   _worker_cset_start_region[worker_i] = result;
2619   OrderAccess::storestore();
2620   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2621   return result;
2622 }
2623 
2624 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2625   HeapRegion* r = g1_policy()->collection_set();
2626   while (r != NULL) {
2627     HeapRegion* next = r->next_in_collection_set();
2628     if (cl->doHeapRegion(r)) {
2629       cl->incomplete();
2630       return;
2631     }
2632     r = next;
2633   }
2634 }
2635 
2636 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2637                                                   HeapRegionClosure *cl) {
2638   if (r == NULL) {
2639     // The CSet is empty so there's nothing to do.
2640     return;
2641   }
2642 
2643   assert(r->in_collection_set(),
2644          "Start region must be a member of the collection set.");
2645   HeapRegion* cur = r;
2646   while (cur != NULL) {
2647     HeapRegion* next = cur->next_in_collection_set();
2648     if (cl->doHeapRegion(cur) && false) {
2649       cl->incomplete();
2650       return;
2651     }
2652     cur = next;
2653   }
2654   cur = g1_policy()->collection_set();
2655   while (cur != r) {
2656     HeapRegion* next = cur->next_in_collection_set();
2657     if (cl->doHeapRegion(cur) && false) {
2658       cl->incomplete();
2659       return;
2660     }
2661     cur = next;
2662   }
2663 }
2664 
2665 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2666   HeapRegion* result = _hrm.next_region_in_heap(from);
2667   while (result != NULL && result->is_pinned()) {
2668     result = _hrm.next_region_in_heap(result);
2669   }
2670   return result;
2671 }
2672 
2673 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2674   HeapRegion* hr = heap_region_containing(addr);
2675   return hr->block_start(addr);
2676 }
2677 
2678 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2679   HeapRegion* hr = heap_region_containing(addr);
2680   return hr->block_size(addr);
2681 }
2682 
2683 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2684   HeapRegion* hr = heap_region_containing(addr);
2685   return hr->block_is_obj(addr);
2686 }
2687 
2688 bool G1CollectedHeap::supports_tlab_allocation() const {
2689   return true;
2690 }
2691 
2692 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2693   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2694 }
2695 
2696 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2697   return young_list()->eden_used_bytes();
2698 }
2699 
2700 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2701 // must be equal to the humongous object limit.
2702 size_t G1CollectedHeap::max_tlab_size() const {
2703   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2704 }
2705 
2706 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2707   AllocationContext_t context = AllocationContext::current();
2708   return _allocator->unsafe_max_tlab_alloc(context);
2709 }
2710 
2711 size_t G1CollectedHeap::max_capacity() const {
2712   return _hrm.reserved().byte_size();
2713 }
2714 
2715 jlong G1CollectedHeap::millis_since_last_gc() {
2716   // assert(false, "NYI");
2717   return 0;
2718 }
2719 
2720 void G1CollectedHeap::prepare_for_verify() {
2721   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2722     ensure_parsability(false);
2723   }
2724   g1_rem_set()->prepare_for_verify();
2725 }
2726 
2727 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2728                                               VerifyOption vo) {
2729   switch (vo) {
2730   case VerifyOption_G1UsePrevMarking:
2731     return hr->obj_allocated_since_prev_marking(obj);
2732   case VerifyOption_G1UseNextMarking:
2733     return hr->obj_allocated_since_next_marking(obj);
2734   case VerifyOption_G1UseMarkWord:
2735     return false;
2736   default:
2737     ShouldNotReachHere();
2738   }
2739   return false; // keep some compilers happy
2740 }
2741 
2742 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2743   switch (vo) {
2744   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2745   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2746   case VerifyOption_G1UseMarkWord:    return NULL;
2747   default:                            ShouldNotReachHere();
2748   }
2749   return NULL; // keep some compilers happy
2750 }
2751 
2752 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2753   switch (vo) {
2754   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2755   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2756   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2757   default:                            ShouldNotReachHere();
2758   }
2759   return false; // keep some compilers happy
2760 }
2761 
2762 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2763   switch (vo) {
2764   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2765   case VerifyOption_G1UseNextMarking: return "NTAMS";
2766   case VerifyOption_G1UseMarkWord:    return "NONE";
2767   default:                            ShouldNotReachHere();
2768   }
2769   return NULL; // keep some compilers happy
2770 }
2771 
2772 class VerifyRootsClosure: public OopClosure {
2773 private:
2774   G1CollectedHeap* _g1h;
2775   VerifyOption     _vo;
2776   bool             _failures;
2777 public:
2778   // _vo == UsePrevMarking -> use "prev" marking information,
2779   // _vo == UseNextMarking -> use "next" marking information,
2780   // _vo == UseMarkWord    -> use mark word from object header.
2781   VerifyRootsClosure(VerifyOption vo) :
2782     _g1h(G1CollectedHeap::heap()),
2783     _vo(vo),
2784     _failures(false) { }
2785 
2786   bool failures() { return _failures; }
2787 
2788   template <class T> void do_oop_nv(T* p) {
2789     T heap_oop = oopDesc::load_heap_oop(p);
2790     if (!oopDesc::is_null(heap_oop)) {
2791       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2792       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2793         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2794                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2795         if (_vo == VerifyOption_G1UseMarkWord) {
2796           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2797         }
2798         obj->print_on(gclog_or_tty);
2799         _failures = true;
2800       }
2801     }
2802   }
2803 
2804   void do_oop(oop* p)       { do_oop_nv(p); }
2805   void do_oop(narrowOop* p) { do_oop_nv(p); }
2806 };
2807 
2808 class G1VerifyCodeRootOopClosure: public OopClosure {
2809   G1CollectedHeap* _g1h;
2810   OopClosure* _root_cl;
2811   nmethod* _nm;
2812   VerifyOption _vo;
2813   bool _failures;
2814 
2815   template <class T> void do_oop_work(T* p) {
2816     // First verify that this root is live
2817     _root_cl->do_oop(p);
2818 
2819     if (!G1VerifyHeapRegionCodeRoots) {
2820       // We're not verifying the code roots attached to heap region.
2821       return;
2822     }
2823 
2824     // Don't check the code roots during marking verification in a full GC
2825     if (_vo == VerifyOption_G1UseMarkWord) {
2826       return;
2827     }
2828 
2829     // Now verify that the current nmethod (which contains p) is
2830     // in the code root list of the heap region containing the
2831     // object referenced by p.
2832 
2833     T heap_oop = oopDesc::load_heap_oop(p);
2834     if (!oopDesc::is_null(heap_oop)) {
2835       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2836 
2837       // Now fetch the region containing the object
2838       HeapRegion* hr = _g1h->heap_region_containing(obj);
2839       HeapRegionRemSet* hrrs = hr->rem_set();
2840       // Verify that the strong code root list for this region
2841       // contains the nmethod
2842       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2843         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2844                                "from nmethod " PTR_FORMAT " not in strong "
2845                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2846                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2847         _failures = true;
2848       }
2849     }
2850   }
2851 
2852 public:
2853   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2854     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2855 
2856   void do_oop(oop* p) { do_oop_work(p); }
2857   void do_oop(narrowOop* p) { do_oop_work(p); }
2858 
2859   void set_nmethod(nmethod* nm) { _nm = nm; }
2860   bool failures() { return _failures; }
2861 };
2862 
2863 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2864   G1VerifyCodeRootOopClosure* _oop_cl;
2865 
2866 public:
2867   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2868     _oop_cl(oop_cl) {}
2869 
2870   void do_code_blob(CodeBlob* cb) {
2871     nmethod* nm = cb->as_nmethod_or_null();
2872     if (nm != NULL) {
2873       _oop_cl->set_nmethod(nm);
2874       nm->oops_do(_oop_cl);
2875     }
2876   }
2877 };
2878 
2879 class YoungRefCounterClosure : public OopClosure {
2880   G1CollectedHeap* _g1h;
2881   int              _count;
2882  public:
2883   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2884   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2885   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2886 
2887   int count() { return _count; }
2888   void reset_count() { _count = 0; };
2889 };
2890 
2891 class VerifyKlassClosure: public KlassClosure {
2892   YoungRefCounterClosure _young_ref_counter_closure;
2893   OopClosure *_oop_closure;
2894  public:
2895   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2896   void do_klass(Klass* k) {
2897     k->oops_do(_oop_closure);
2898 
2899     _young_ref_counter_closure.reset_count();
2900     k->oops_do(&_young_ref_counter_closure);
2901     if (_young_ref_counter_closure.count() > 0) {
2902       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2903     }
2904   }
2905 };
2906 
2907 class VerifyLivenessOopClosure: public OopClosure {
2908   G1CollectedHeap* _g1h;
2909   VerifyOption _vo;
2910 public:
2911   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2912     _g1h(g1h), _vo(vo)
2913   { }
2914   void do_oop(narrowOop *p) { do_oop_work(p); }
2915   void do_oop(      oop *p) { do_oop_work(p); }
2916 
2917   template <class T> void do_oop_work(T *p) {
2918     oop obj = oopDesc::load_decode_heap_oop(p);
2919     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2920               "Dead object referenced by a not dead object");
2921   }
2922 };
2923 
2924 class VerifyObjsInRegionClosure: public ObjectClosure {
2925 private:
2926   G1CollectedHeap* _g1h;
2927   size_t _live_bytes;
2928   HeapRegion *_hr;
2929   VerifyOption _vo;
2930 public:
2931   // _vo == UsePrevMarking -> use "prev" marking information,
2932   // _vo == UseNextMarking -> use "next" marking information,
2933   // _vo == UseMarkWord    -> use mark word from object header.
2934   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2935     : _live_bytes(0), _hr(hr), _vo(vo) {
2936     _g1h = G1CollectedHeap::heap();
2937   }
2938   void do_object(oop o) {
2939     VerifyLivenessOopClosure isLive(_g1h, _vo);
2940     assert(o != NULL, "Huh?");
2941     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2942       // If the object is alive according to the mark word,
2943       // then verify that the marking information agrees.
2944       // Note we can't verify the contra-positive of the
2945       // above: if the object is dead (according to the mark
2946       // word), it may not be marked, or may have been marked
2947       // but has since became dead, or may have been allocated
2948       // since the last marking.
2949       if (_vo == VerifyOption_G1UseMarkWord) {
2950         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2951       }
2952 
2953       o->oop_iterate_no_header(&isLive);
2954       if (!_hr->obj_allocated_since_prev_marking(o)) {
2955         size_t obj_size = o->size();    // Make sure we don't overflow
2956         _live_bytes += (obj_size * HeapWordSize);
2957       }
2958     }
2959   }
2960   size_t live_bytes() { return _live_bytes; }
2961 };
2962 
2963 class VerifyArchiveOopClosure: public OopClosure {
2964 public:
2965   VerifyArchiveOopClosure(HeapRegion *hr) { }
2966   void do_oop(narrowOop *p) { do_oop_work(p); }
2967   void do_oop(      oop *p) { do_oop_work(p); }
2968 
2969   template <class T> void do_oop_work(T *p) {
2970     oop obj = oopDesc::load_decode_heap_oop(p);
2971     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2972               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2973               p2i(p), p2i(obj));
2974   }
2975 };
2976 
2977 class VerifyArchiveRegionClosure: public ObjectClosure {
2978 public:
2979   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2980   // Verify that all object pointers are to archive regions.
2981   void do_object(oop o) {
2982     VerifyArchiveOopClosure checkOop(NULL);
2983     assert(o != NULL, "Should not be here for NULL oops");
2984     o->oop_iterate_no_header(&checkOop);
2985   }
2986 };
2987 
2988 class VerifyRegionClosure: public HeapRegionClosure {
2989 private:
2990   bool             _par;
2991   VerifyOption     _vo;
2992   bool             _failures;
2993 public:
2994   // _vo == UsePrevMarking -> use "prev" marking information,
2995   // _vo == UseNextMarking -> use "next" marking information,
2996   // _vo == UseMarkWord    -> use mark word from object header.
2997   VerifyRegionClosure(bool par, VerifyOption vo)
2998     : _par(par),
2999       _vo(vo),
3000       _failures(false) {}
3001 
3002   bool failures() {
3003     return _failures;
3004   }
3005 
3006   bool doHeapRegion(HeapRegion* r) {
3007     // For archive regions, verify there are no heap pointers to
3008     // non-pinned regions. For all others, verify liveness info.
3009     if (r->is_archive()) {
3010       VerifyArchiveRegionClosure verify_oop_pointers(r);
3011       r->object_iterate(&verify_oop_pointers);
3012       return true;
3013     }
3014     if (!r->is_continues_humongous()) {
3015       bool failures = false;
3016       r->verify(_vo, &failures);
3017       if (failures) {
3018         _failures = true;
3019       } else if (!r->is_starts_humongous()) {
3020         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3021         r->object_iterate(&not_dead_yet_cl);
3022         if (_vo != VerifyOption_G1UseNextMarking) {
3023           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3024             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3025                                    "max_live_bytes " SIZE_FORMAT " "
3026                                    "< calculated " SIZE_FORMAT,
3027                                    p2i(r->bottom()), p2i(r->end()),
3028                                    r->max_live_bytes(),
3029                                  not_dead_yet_cl.live_bytes());
3030             _failures = true;
3031           }
3032         } else {
3033           // When vo == UseNextMarking we cannot currently do a sanity
3034           // check on the live bytes as the calculation has not been
3035           // finalized yet.
3036         }
3037       }
3038     }
3039     return false; // stop the region iteration if we hit a failure
3040   }
3041 };
3042 
3043 // This is the task used for parallel verification of the heap regions
3044 
3045 class G1ParVerifyTask: public AbstractGangTask {
3046 private:
3047   G1CollectedHeap*  _g1h;
3048   VerifyOption      _vo;
3049   bool              _failures;
3050   HeapRegionClaimer _hrclaimer;
3051 
3052 public:
3053   // _vo == UsePrevMarking -> use "prev" marking information,
3054   // _vo == UseNextMarking -> use "next" marking information,
3055   // _vo == UseMarkWord    -> use mark word from object header.
3056   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3057       AbstractGangTask("Parallel verify task"),
3058       _g1h(g1h),
3059       _vo(vo),
3060       _failures(false),
3061       _hrclaimer(g1h->workers()->active_workers()) {}
3062 
3063   bool failures() {
3064     return _failures;
3065   }
3066 
3067   void work(uint worker_id) {
3068     HandleMark hm;
3069     VerifyRegionClosure blk(true, _vo);
3070     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3071     if (blk.failures()) {
3072       _failures = true;
3073     }
3074   }
3075 };
3076 
3077 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3078   if (SafepointSynchronize::is_at_safepoint()) {
3079     assert(Thread::current()->is_VM_thread(),
3080            "Expected to be executed serially by the VM thread at this point");
3081 
3082     if (!silent) { gclog_or_tty->print("Roots "); }
3083     VerifyRootsClosure rootsCl(vo);
3084     VerifyKlassClosure klassCl(this, &rootsCl);
3085     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3086 
3087     // We apply the relevant closures to all the oops in the
3088     // system dictionary, class loader data graph, the string table
3089     // and the nmethods in the code cache.
3090     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3091     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3092 
3093     {
3094       G1RootProcessor root_processor(this, 1);
3095       root_processor.process_all_roots(&rootsCl,
3096                                        &cldCl,
3097                                        &blobsCl);
3098     }
3099 
3100     bool failures = rootsCl.failures() || codeRootsCl.failures();
3101 
3102     if (vo != VerifyOption_G1UseMarkWord) {
3103       // If we're verifying during a full GC then the region sets
3104       // will have been torn down at the start of the GC. Therefore
3105       // verifying the region sets will fail. So we only verify
3106       // the region sets when not in a full GC.
3107       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3108       verify_region_sets();
3109     }
3110 
3111     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3112     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3113 
3114       G1ParVerifyTask task(this, vo);
3115       workers()->run_task(&task);
3116       if (task.failures()) {
3117         failures = true;
3118       }
3119 
3120     } else {
3121       VerifyRegionClosure blk(false, vo);
3122       heap_region_iterate(&blk);
3123       if (blk.failures()) {
3124         failures = true;
3125       }
3126     }
3127 
3128     if (G1StringDedup::is_enabled()) {
3129       if (!silent) gclog_or_tty->print("StrDedup ");
3130       G1StringDedup::verify();
3131     }
3132 
3133     if (failures) {
3134       gclog_or_tty->print_cr("Heap:");
3135       // It helps to have the per-region information in the output to
3136       // help us track down what went wrong. This is why we call
3137       // print_extended_on() instead of print_on().
3138       print_extended_on(gclog_or_tty);
3139       gclog_or_tty->cr();
3140       gclog_or_tty->flush();
3141     }
3142     guarantee(!failures, "there should not have been any failures");
3143   } else {
3144     if (!silent) {
3145       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3146       if (G1StringDedup::is_enabled()) {
3147         gclog_or_tty->print(", StrDedup");
3148       }
3149       gclog_or_tty->print(") ");
3150     }
3151   }
3152 }
3153 
3154 void G1CollectedHeap::verify(bool silent) {
3155   verify(silent, VerifyOption_G1UsePrevMarking);
3156 }
3157 
3158 double G1CollectedHeap::verify(bool guard, const char* msg) {
3159   double verify_time_ms = 0.0;
3160 
3161   if (guard && total_collections() >= VerifyGCStartAt) {
3162     double verify_start = os::elapsedTime();
3163     HandleMark hm;  // Discard invalid handles created during verification
3164     prepare_for_verify();
3165     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3166     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3167   }
3168 
3169   return verify_time_ms;
3170 }
3171 
3172 void G1CollectedHeap::verify_before_gc() {
3173   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3174   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3175 }
3176 
3177 void G1CollectedHeap::verify_after_gc() {
3178   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3179   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3180 }
3181 
3182 class PrintRegionClosure: public HeapRegionClosure {
3183   outputStream* _st;
3184 public:
3185   PrintRegionClosure(outputStream* st) : _st(st) {}
3186   bool doHeapRegion(HeapRegion* r) {
3187     r->print_on(_st);
3188     return false;
3189   }
3190 };
3191 
3192 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3193                                        const HeapRegion* hr,
3194                                        const VerifyOption vo) const {
3195   switch (vo) {
3196   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3197   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3198   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3199   default:                            ShouldNotReachHere();
3200   }
3201   return false; // keep some compilers happy
3202 }
3203 
3204 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3205                                        const VerifyOption vo) const {
3206   switch (vo) {
3207   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3208   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3209   case VerifyOption_G1UseMarkWord: {
3210     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3211     return !obj->is_gc_marked() && !hr->is_archive();
3212   }
3213   default:                            ShouldNotReachHere();
3214   }
3215   return false; // keep some compilers happy
3216 }
3217 
3218 void G1CollectedHeap::print_on(outputStream* st) const {
3219   st->print(" %-20s", "garbage-first heap");
3220   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3221             capacity()/K, used_unlocked()/K);
3222   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3223             p2i(_hrm.reserved().start()),
3224             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3225             p2i(_hrm.reserved().end()));
3226   st->cr();
3227   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3228   uint young_regions = _young_list->length();
3229   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3230             (size_t) young_regions * HeapRegion::GrainBytes / K);
3231   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3232   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3233             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3234   st->cr();
3235   MetaspaceAux::print_on(st);
3236 }
3237 
3238 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3239   print_on(st);
3240 
3241   // Print the per-region information.
3242   st->cr();
3243   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3244                "HS=humongous(starts), HC=humongous(continues), "
3245                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3246                "PTAMS=previous top-at-mark-start, "
3247                "NTAMS=next top-at-mark-start)");
3248   PrintRegionClosure blk(st);
3249   heap_region_iterate(&blk);
3250 }
3251 
3252 void G1CollectedHeap::print_on_error(outputStream* st) const {
3253   this->CollectedHeap::print_on_error(st);
3254 
3255   if (_cm != NULL) {
3256     st->cr();
3257     _cm->print_on_error(st);
3258   }
3259 }
3260 
3261 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3262   workers()->print_worker_threads_on(st);
3263   _cmThread->print_on(st);
3264   st->cr();
3265   _cm->print_worker_threads_on(st);
3266   _cg1r->print_worker_threads_on(st);
3267   if (G1StringDedup::is_enabled()) {
3268     G1StringDedup::print_worker_threads_on(st);
3269   }
3270 }
3271 
3272 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3273   workers()->threads_do(tc);
3274   tc->do_thread(_cmThread);
3275   _cg1r->threads_do(tc);
3276   if (G1StringDedup::is_enabled()) {
3277     G1StringDedup::threads_do(tc);
3278   }
3279 }
3280 
3281 void G1CollectedHeap::print_tracing_info() const {
3282   // We'll overload this to mean "trace GC pause statistics."
3283   if (TraceYoungGenTime || TraceOldGenTime) {
3284     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3285     // to that.
3286     g1_policy()->print_tracing_info();
3287   }
3288   if (G1SummarizeRSetStats) {
3289     g1_rem_set()->print_summary_info();
3290   }
3291   if (G1SummarizeConcMark) {
3292     concurrent_mark()->print_summary_info();
3293   }
3294   g1_policy()->print_yg_surv_rate_info();
3295 }
3296 
3297 #ifndef PRODUCT
3298 // Helpful for debugging RSet issues.
3299 
3300 class PrintRSetsClosure : public HeapRegionClosure {
3301 private:
3302   const char* _msg;
3303   size_t _occupied_sum;
3304 
3305 public:
3306   bool doHeapRegion(HeapRegion* r) {
3307     HeapRegionRemSet* hrrs = r->rem_set();
3308     size_t occupied = hrrs->occupied();
3309     _occupied_sum += occupied;
3310 
3311     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3312                            HR_FORMAT_PARAMS(r));
3313     if (occupied == 0) {
3314       gclog_or_tty->print_cr("  RSet is empty");
3315     } else {
3316       hrrs->print();
3317     }
3318     gclog_or_tty->print_cr("----------");
3319     return false;
3320   }
3321 
3322   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3323     gclog_or_tty->cr();
3324     gclog_or_tty->print_cr("========================================");
3325     gclog_or_tty->print_cr("%s", msg);
3326     gclog_or_tty->cr();
3327   }
3328 
3329   ~PrintRSetsClosure() {
3330     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3331     gclog_or_tty->print_cr("========================================");
3332     gclog_or_tty->cr();
3333   }
3334 };
3335 
3336 void G1CollectedHeap::print_cset_rsets() {
3337   PrintRSetsClosure cl("Printing CSet RSets");
3338   collection_set_iterate(&cl);
3339 }
3340 
3341 void G1CollectedHeap::print_all_rsets() {
3342   PrintRSetsClosure cl("Printing All RSets");;
3343   heap_region_iterate(&cl);
3344 }
3345 #endif // PRODUCT
3346 
3347 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3348   YoungList* young_list = heap()->young_list();
3349 
3350   size_t eden_used_bytes = young_list->eden_used_bytes();
3351   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3352 
3353   size_t eden_capacity_bytes =
3354     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3355 
3356   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3357   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3358 }
3359 
3360 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3361   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3362                        stats->unused(), stats->used(), stats->region_end_waste(),
3363                        stats->regions_filled(), stats->direct_allocated(),
3364                        stats->failure_used(), stats->failure_waste());
3365 }
3366 
3367 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3368   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3369   gc_tracer->report_gc_heap_summary(when, heap_summary);
3370 
3371   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3372   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3373 }
3374 
3375 
3376 G1CollectedHeap* G1CollectedHeap::heap() {
3377   CollectedHeap* heap = Universe::heap();
3378   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3379   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3380   return (G1CollectedHeap*)heap;
3381 }
3382 
3383 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3384   // always_do_update_barrier = false;
3385   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3386   // Fill TLAB's and such
3387   accumulate_statistics_all_tlabs();
3388   ensure_parsability(true);
3389 
3390   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3391       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3392     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3393   }
3394 }
3395 
3396 void G1CollectedHeap::gc_epilogue(bool full) {
3397 
3398   if (G1SummarizeRSetStats &&
3399       (G1SummarizeRSetStatsPeriod > 0) &&
3400       // we are at the end of the GC. Total collections has already been increased.
3401       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3402     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3403   }
3404 
3405   // FIXME: what is this about?
3406   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3407   // is set.
3408 #if defined(COMPILER2) || INCLUDE_JVMCI
3409   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3410 #endif
3411   // always_do_update_barrier = true;
3412 
3413   resize_all_tlabs();
3414   allocation_context_stats().update(full);
3415 
3416   // We have just completed a GC. Update the soft reference
3417   // policy with the new heap occupancy
3418   Universe::update_heap_info_at_gc();
3419 }
3420 
3421 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3422                                                uint gc_count_before,
3423                                                bool* succeeded,
3424                                                GCCause::Cause gc_cause) {
3425   assert_heap_not_locked_and_not_at_safepoint();
3426   g1_policy()->record_stop_world_start();
3427   VM_G1IncCollectionPause op(gc_count_before,
3428                              word_size,
3429                              false, /* should_initiate_conc_mark */
3430                              g1_policy()->max_pause_time_ms(),
3431                              gc_cause);
3432 
3433   op.set_allocation_context(AllocationContext::current());
3434   VMThread::execute(&op);
3435 
3436   HeapWord* result = op.result();
3437   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3438   assert(result == NULL || ret_succeeded,
3439          "the result should be NULL if the VM did not succeed");
3440   *succeeded = ret_succeeded;
3441 
3442   assert_heap_not_locked();
3443   return result;
3444 }
3445 
3446 void
3447 G1CollectedHeap::doConcurrentMark() {
3448   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3449   if (!_cmThread->in_progress()) {
3450     _cmThread->set_started();
3451     CGC_lock->notify();
3452   }
3453 }
3454 
3455 size_t G1CollectedHeap::pending_card_num() {
3456   size_t extra_cards = 0;
3457   JavaThread *curr = Threads::first();
3458   while (curr != NULL) {
3459     DirtyCardQueue& dcq = curr->dirty_card_queue();
3460     extra_cards += dcq.size();
3461     curr = curr->next();
3462   }
3463   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3464   size_t buffer_size = dcqs.buffer_size();
3465   size_t buffer_num = dcqs.completed_buffers_num();
3466 
3467   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3468   // in bytes - not the number of 'entries'. We need to convert
3469   // into a number of cards.
3470   return (buffer_size * buffer_num + extra_cards) / oopSize;
3471 }
3472 
3473 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3474  private:
3475   size_t _total_humongous;
3476   size_t _candidate_humongous;
3477 
3478   DirtyCardQueue _dcq;
3479 
3480   // We don't nominate objects with many remembered set entries, on
3481   // the assumption that such objects are likely still live.
3482   bool is_remset_small(HeapRegion* region) const {
3483     HeapRegionRemSet* const rset = region->rem_set();
3484     return G1EagerReclaimHumongousObjectsWithStaleRefs
3485       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3486       : rset->is_empty();
3487   }
3488 
3489   bool is_typeArray_region(HeapRegion* region) const {
3490     return oop(region->bottom())->is_typeArray();
3491   }
3492 
3493   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3494     assert(region->is_starts_humongous(), "Must start a humongous object");
3495 
3496     // Candidate selection must satisfy the following constraints
3497     // while concurrent marking is in progress:
3498     //
3499     // * In order to maintain SATB invariants, an object must not be
3500     // reclaimed if it was allocated before the start of marking and
3501     // has not had its references scanned.  Such an object must have
3502     // its references (including type metadata) scanned to ensure no
3503     // live objects are missed by the marking process.  Objects
3504     // allocated after the start of concurrent marking don't need to
3505     // be scanned.
3506     //
3507     // * An object must not be reclaimed if it is on the concurrent
3508     // mark stack.  Objects allocated after the start of concurrent
3509     // marking are never pushed on the mark stack.
3510     //
3511     // Nominating only objects allocated after the start of concurrent
3512     // marking is sufficient to meet both constraints.  This may miss
3513     // some objects that satisfy the constraints, but the marking data
3514     // structures don't support efficiently performing the needed
3515     // additional tests or scrubbing of the mark stack.
3516     //
3517     // However, we presently only nominate is_typeArray() objects.
3518     // A humongous object containing references induces remembered
3519     // set entries on other regions.  In order to reclaim such an
3520     // object, those remembered sets would need to be cleaned up.
3521     //
3522     // We also treat is_typeArray() objects specially, allowing them
3523     // to be reclaimed even if allocated before the start of
3524     // concurrent mark.  For this we rely on mark stack insertion to
3525     // exclude is_typeArray() objects, preventing reclaiming an object
3526     // that is in the mark stack.  We also rely on the metadata for
3527     // such objects to be built-in and so ensured to be kept live.
3528     // Frequent allocation and drop of large binary blobs is an
3529     // important use case for eager reclaim, and this special handling
3530     // may reduce needed headroom.
3531 
3532     return is_typeArray_region(region) && is_remset_small(region);
3533   }
3534 
3535  public:
3536   RegisterHumongousWithInCSetFastTestClosure()
3537   : _total_humongous(0),
3538     _candidate_humongous(0),
3539     _dcq(&JavaThread::dirty_card_queue_set()) {
3540   }
3541 
3542   virtual bool doHeapRegion(HeapRegion* r) {
3543     if (!r->is_starts_humongous()) {
3544       return false;
3545     }
3546     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3547 
3548     bool is_candidate = humongous_region_is_candidate(g1h, r);
3549     uint rindex = r->hrm_index();
3550     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3551     if (is_candidate) {
3552       _candidate_humongous++;
3553       g1h->register_humongous_region_with_cset(rindex);
3554       // Is_candidate already filters out humongous object with large remembered sets.
3555       // If we have a humongous object with a few remembered sets, we simply flush these
3556       // remembered set entries into the DCQS. That will result in automatic
3557       // re-evaluation of their remembered set entries during the following evacuation
3558       // phase.
3559       if (!r->rem_set()->is_empty()) {
3560         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3561                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3562         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3563         HeapRegionRemSetIterator hrrs(r->rem_set());
3564         size_t card_index;
3565         while (hrrs.has_next(card_index)) {
3566           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3567           // The remembered set might contain references to already freed
3568           // regions. Filter out such entries to avoid failing card table
3569           // verification.
3570           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3571             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3572               *card_ptr = CardTableModRefBS::dirty_card_val();
3573               _dcq.enqueue(card_ptr);
3574             }
3575           }
3576         }
3577         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3578                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3579                hrrs.n_yielded(), r->rem_set()->occupied());
3580         r->rem_set()->clear_locked();
3581       }
3582       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3583     }
3584     _total_humongous++;
3585 
3586     return false;
3587   }
3588 
3589   size_t total_humongous() const { return _total_humongous; }
3590   size_t candidate_humongous() const { return _candidate_humongous; }
3591 
3592   void flush_rem_set_entries() { _dcq.flush(); }
3593 };
3594 
3595 void G1CollectedHeap::register_humongous_regions_with_cset() {
3596   if (!G1EagerReclaimHumongousObjects) {
3597     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3598     return;
3599   }
3600   double time = os::elapsed_counter();
3601 
3602   // Collect reclaim candidate information and register candidates with cset.
3603   RegisterHumongousWithInCSetFastTestClosure cl;
3604   heap_region_iterate(&cl);
3605 
3606   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3607   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3608                                                                   cl.total_humongous(),
3609                                                                   cl.candidate_humongous());
3610   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3611 
3612   // Finally flush all remembered set entries to re-check into the global DCQS.
3613   cl.flush_rem_set_entries();
3614 }
3615 
3616 #ifdef ASSERT
3617 class VerifyCSetClosure: public HeapRegionClosure {
3618 public:
3619   bool doHeapRegion(HeapRegion* hr) {
3620     // Here we check that the CSet region's RSet is ready for parallel
3621     // iteration. The fields that we'll verify are only manipulated
3622     // when the region is part of a CSet and is collected. Afterwards,
3623     // we reset these fields when we clear the region's RSet (when the
3624     // region is freed) so they are ready when the region is
3625     // re-allocated. The only exception to this is if there's an
3626     // evacuation failure and instead of freeing the region we leave
3627     // it in the heap. In that case, we reset these fields during
3628     // evacuation failure handling.
3629     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3630 
3631     // Here's a good place to add any other checks we'd like to
3632     // perform on CSet regions.
3633     return false;
3634   }
3635 };
3636 #endif // ASSERT
3637 
3638 uint G1CollectedHeap::num_task_queues() const {
3639   return _task_queues->size();
3640 }
3641 
3642 #if TASKQUEUE_STATS
3643 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3644   st->print_raw_cr("GC Task Stats");
3645   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3646   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3647 }
3648 
3649 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3650   print_taskqueue_stats_hdr(st);
3651 
3652   TaskQueueStats totals;
3653   const uint n = num_task_queues();
3654   for (uint i = 0; i < n; ++i) {
3655     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3656     totals += task_queue(i)->stats;
3657   }
3658   st->print_raw("tot "); totals.print(st); st->cr();
3659 
3660   DEBUG_ONLY(totals.verify());
3661 }
3662 
3663 void G1CollectedHeap::reset_taskqueue_stats() {
3664   const uint n = num_task_queues();
3665   for (uint i = 0; i < n; ++i) {
3666     task_queue(i)->stats.reset();
3667   }
3668 }
3669 #endif // TASKQUEUE_STATS
3670 
3671 void G1CollectedHeap::log_gc_header() {
3672   if (!G1Log::fine()) {
3673     return;
3674   }
3675 
3676   gclog_or_tty->gclog_stamp();
3677 
3678   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3679     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3680     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3681 
3682   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3683 }
3684 
3685 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3686   if (!G1Log::fine()) {
3687     return;
3688   }
3689 
3690   if (G1Log::finer()) {
3691     if (evacuation_failed()) {
3692       gclog_or_tty->print(" (to-space exhausted)");
3693     }
3694     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3695     g1_policy()->print_phases(pause_time_sec);
3696     g1_policy()->print_detailed_heap_transition();
3697   } else {
3698     if (evacuation_failed()) {
3699       gclog_or_tty->print("--");
3700     }
3701     g1_policy()->print_heap_transition();
3702     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3703   }
3704   gclog_or_tty->flush();
3705 }
3706 
3707 void G1CollectedHeap::wait_for_root_region_scanning() {
3708   double scan_wait_start = os::elapsedTime();
3709   // We have to wait until the CM threads finish scanning the
3710   // root regions as it's the only way to ensure that all the
3711   // objects on them have been correctly scanned before we start
3712   // moving them during the GC.
3713   bool waited = _cm->root_regions()->wait_until_scan_finished();
3714   double wait_time_ms = 0.0;
3715   if (waited) {
3716     double scan_wait_end = os::elapsedTime();
3717     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3718   }
3719   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3720 }
3721 
3722 bool
3723 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3724   assert_at_safepoint(true /* should_be_vm_thread */);
3725   guarantee(!is_gc_active(), "collection is not reentrant");
3726 
3727   if (GC_locker::check_active_before_gc()) {
3728     return false;
3729   }
3730 
3731   _gc_timer_stw->register_gc_start();
3732 
3733   GCIdMark gc_id_mark;
3734   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3735 
3736   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3737   ResourceMark rm;
3738 
3739   wait_for_root_region_scanning();
3740 
3741   G1Log::update_level();
3742   print_heap_before_gc();
3743   trace_heap_before_gc(_gc_tracer_stw);
3744 
3745   verify_region_sets_optional();
3746   verify_dirty_young_regions();
3747 
3748   // This call will decide whether this pause is an initial-mark
3749   // pause. If it is, during_initial_mark_pause() will return true
3750   // for the duration of this pause.
3751   g1_policy()->decide_on_conc_mark_initiation();
3752 
3753   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3754   assert(!collector_state()->during_initial_mark_pause() ||
3755           collector_state()->gcs_are_young(), "sanity");
3756 
3757   // We also do not allow mixed GCs during marking.
3758   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3759 
3760   // Record whether this pause is an initial mark. When the current
3761   // thread has completed its logging output and it's safe to signal
3762   // the CM thread, the flag's value in the policy has been reset.
3763   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3764 
3765   // Inner scope for scope based logging, timers, and stats collection
3766   {
3767     EvacuationInfo evacuation_info;
3768 
3769     if (collector_state()->during_initial_mark_pause()) {
3770       // We are about to start a marking cycle, so we increment the
3771       // full collection counter.
3772       increment_old_marking_cycles_started();
3773       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3774     }
3775 
3776     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3777 
3778     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3779 
3780     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3781                                                                   workers()->active_workers(),
3782                                                                   Threads::number_of_non_daemon_threads());
3783     workers()->set_active_workers(active_workers);
3784 
3785     double pause_start_sec = os::elapsedTime();
3786     g1_policy()->note_gc_start(active_workers);
3787     log_gc_header();
3788 
3789     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3790     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3791 
3792     // If the secondary_free_list is not empty, append it to the
3793     // free_list. No need to wait for the cleanup operation to finish;
3794     // the region allocation code will check the secondary_free_list
3795     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3796     // set, skip this step so that the region allocation code has to
3797     // get entries from the secondary_free_list.
3798     if (!G1StressConcRegionFreeing) {
3799       append_secondary_free_list_if_not_empty_with_lock();
3800     }
3801 
3802     assert(check_young_list_well_formed(), "young list should be well formed");
3803 
3804     // Don't dynamically change the number of GC threads this early.  A value of
3805     // 0 is used to indicate serial work.  When parallel work is done,
3806     // it will be set.
3807 
3808     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3809       IsGCActiveMark x;
3810 
3811       gc_prologue(false);
3812       increment_total_collections(false /* full gc */);
3813       increment_gc_time_stamp();
3814 
3815       verify_before_gc();
3816 
3817       check_bitmaps("GC Start");
3818 
3819 #if defined(COMPILER2) || INCLUDE_JVMCI
3820       DerivedPointerTable::clear();
3821 #endif
3822 
3823       // Please see comment in g1CollectedHeap.hpp and
3824       // G1CollectedHeap::ref_processing_init() to see how
3825       // reference processing currently works in G1.
3826 
3827       // Enable discovery in the STW reference processor
3828       if (g1_policy()->should_process_references()) {
3829         ref_processor_stw()->enable_discovery();
3830       } else {
3831         ref_processor_stw()->disable_discovery();
3832       }
3833 
3834       {
3835         // We want to temporarily turn off discovery by the
3836         // CM ref processor, if necessary, and turn it back on
3837         // on again later if we do. Using a scoped
3838         // NoRefDiscovery object will do this.
3839         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3840 
3841         // Forget the current alloc region (we might even choose it to be part
3842         // of the collection set!).
3843         _allocator->release_mutator_alloc_region();
3844 
3845         // We should call this after we retire the mutator alloc
3846         // region(s) so that all the ALLOC / RETIRE events are generated
3847         // before the start GC event.
3848         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3849 
3850         // This timing is only used by the ergonomics to handle our pause target.
3851         // It is unclear why this should not include the full pause. We will
3852         // investigate this in CR 7178365.
3853         //
3854         // Preserving the old comment here if that helps the investigation:
3855         //
3856         // The elapsed time induced by the start time below deliberately elides
3857         // the possible verification above.
3858         double sample_start_time_sec = os::elapsedTime();
3859 
3860         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3861 
3862         if (collector_state()->during_initial_mark_pause()) {
3863           concurrent_mark()->checkpointRootsInitialPre();
3864         }
3865 
3866         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3867         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3868 
3869         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3870 
3871         // Make sure the remembered sets are up to date. This needs to be
3872         // done before register_humongous_regions_with_cset(), because the
3873         // remembered sets are used there to choose eager reclaim candidates.
3874         // If the remembered sets are not up to date we might miss some
3875         // entries that need to be handled.
3876         g1_rem_set()->cleanupHRRS();
3877 
3878         register_humongous_regions_with_cset();
3879 
3880         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3881 
3882         _cm->note_start_of_gc();
3883         // We call this after finalize_cset() to
3884         // ensure that the CSet has been finalized.
3885         _cm->verify_no_cset_oops();
3886 
3887         if (_hr_printer.is_active()) {
3888           HeapRegion* hr = g1_policy()->collection_set();
3889           while (hr != NULL) {
3890             _hr_printer.cset(hr);
3891             hr = hr->next_in_collection_set();
3892           }
3893         }
3894 
3895 #ifdef ASSERT
3896         VerifyCSetClosure cl;
3897         collection_set_iterate(&cl);
3898 #endif // ASSERT
3899 
3900         // Initialize the GC alloc regions.
3901         _allocator->init_gc_alloc_regions(evacuation_info);
3902 
3903         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3904         pre_evacuate_collection_set();
3905 
3906         // Actually do the work...
3907         evacuate_collection_set(evacuation_info, &per_thread_states);
3908 
3909         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3910 
3911         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3912         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3913 
3914         eagerly_reclaim_humongous_regions();
3915 
3916         g1_policy()->clear_collection_set();
3917 
3918         // Start a new incremental collection set for the next pause.
3919         g1_policy()->start_incremental_cset_building();
3920 
3921         clear_cset_fast_test();
3922 
3923         _young_list->reset_sampled_info();
3924 
3925         // Don't check the whole heap at this point as the
3926         // GC alloc regions from this pause have been tagged
3927         // as survivors and moved on to the survivor list.
3928         // Survivor regions will fail the !is_young() check.
3929         assert(check_young_list_empty(false /* check_heap */),
3930           "young list should be empty");
3931 
3932         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3933                                              _young_list->first_survivor_region(),
3934                                              _young_list->last_survivor_region());
3935 
3936         _young_list->reset_auxilary_lists();
3937 
3938         if (evacuation_failed()) {
3939           set_used(recalculate_used());
3940           if (_archive_allocator != NULL) {
3941             _archive_allocator->clear_used();
3942           }
3943           for (uint i = 0; i < ParallelGCThreads; i++) {
3944             if (_evacuation_failed_info_array[i].has_failed()) {
3945               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3946             }
3947           }
3948         } else {
3949           // The "used" of the the collection set have already been subtracted
3950           // when they were freed.  Add in the bytes evacuated.
3951           increase_used(g1_policy()->bytes_copied_during_gc());
3952         }
3953 
3954         if (collector_state()->during_initial_mark_pause()) {
3955           // We have to do this before we notify the CM threads that
3956           // they can start working to make sure that all the
3957           // appropriate initialization is done on the CM object.
3958           concurrent_mark()->checkpointRootsInitialPost();
3959           collector_state()->set_mark_in_progress(true);
3960           // Note that we don't actually trigger the CM thread at
3961           // this point. We do that later when we're sure that
3962           // the current thread has completed its logging output.
3963         }
3964 
3965         allocate_dummy_regions();
3966 
3967         _allocator->init_mutator_alloc_region();
3968 
3969         {
3970           size_t expand_bytes = g1_policy()->expansion_amount();
3971           if (expand_bytes > 0) {
3972             size_t bytes_before = capacity();
3973             // No need for an ergo verbose message here,
3974             // expansion_amount() does this when it returns a value > 0.
3975             double expand_ms;
3976             if (!expand(expand_bytes, &expand_ms)) {
3977               // We failed to expand the heap. Cannot do anything about it.
3978             }
3979             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3980           }
3981         }
3982 
3983         // We redo the verification but now wrt to the new CSet which
3984         // has just got initialized after the previous CSet was freed.
3985         _cm->verify_no_cset_oops();
3986         _cm->note_end_of_gc();
3987 
3988         // This timing is only used by the ergonomics to handle our pause target.
3989         // It is unclear why this should not include the full pause. We will
3990         // investigate this in CR 7178365.
3991         double sample_end_time_sec = os::elapsedTime();
3992         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3993         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3994         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3995 
3996         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3997         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3998 
3999         MemoryService::track_memory_usage();
4000 
4001         // In prepare_for_verify() below we'll need to scan the deferred
4002         // update buffers to bring the RSets up-to-date if
4003         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4004         // the update buffers we'll probably need to scan cards on the
4005         // regions we just allocated to (i.e., the GC alloc
4006         // regions). However, during the last GC we called
4007         // set_saved_mark() on all the GC alloc regions, so card
4008         // scanning might skip the [saved_mark_word()...top()] area of
4009         // those regions (i.e., the area we allocated objects into
4010         // during the last GC). But it shouldn't. Given that
4011         // saved_mark_word() is conditional on whether the GC time stamp
4012         // on the region is current or not, by incrementing the GC time
4013         // stamp here we invalidate all the GC time stamps on all the
4014         // regions and saved_mark_word() will simply return top() for
4015         // all the regions. This is a nicer way of ensuring this rather
4016         // than iterating over the regions and fixing them. In fact, the
4017         // GC time stamp increment here also ensures that
4018         // saved_mark_word() will return top() between pauses, i.e.,
4019         // during concurrent refinement. So we don't need the
4020         // is_gc_active() check to decided which top to use when
4021         // scanning cards (see CR 7039627).
4022         increment_gc_time_stamp();
4023 
4024         verify_after_gc();
4025         check_bitmaps("GC End");
4026 
4027         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4028         ref_processor_stw()->verify_no_references_recorded();
4029 
4030         // CM reference discovery will be re-enabled if necessary.
4031       }
4032 
4033       // We should do this after we potentially expand the heap so
4034       // that all the COMMIT events are generated before the end GC
4035       // event, and after we retire the GC alloc regions so that all
4036       // RETIRE events are generated before the end GC event.
4037       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4038 
4039 #ifdef TRACESPINNING
4040       ParallelTaskTerminator::print_termination_counts();
4041 #endif
4042 
4043       gc_epilogue(false);
4044     }
4045 
4046     // Print the remainder of the GC log output.
4047     log_gc_footer(os::elapsedTime() - pause_start_sec);
4048 
4049     // It is not yet to safe to tell the concurrent mark to
4050     // start as we have some optional output below. We don't want the
4051     // output from the concurrent mark thread interfering with this
4052     // logging output either.
4053 
4054     _hrm.verify_optional();
4055     verify_region_sets_optional();
4056 
4057     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4058     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4059 
4060     print_heap_after_gc();
4061     trace_heap_after_gc(_gc_tracer_stw);
4062 
4063     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4064     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4065     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4066     // before any GC notifications are raised.
4067     g1mm()->update_sizes();
4068 
4069     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4070     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4071     _gc_timer_stw->register_gc_end();
4072     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4073   }
4074   // It should now be safe to tell the concurrent mark thread to start
4075   // without its logging output interfering with the logging output
4076   // that came from the pause.
4077 
4078   if (should_start_conc_mark) {
4079     // CAUTION: after the doConcurrentMark() call below,
4080     // the concurrent marking thread(s) could be running
4081     // concurrently with us. Make sure that anything after
4082     // this point does not assume that we are the only GC thread
4083     // running. Note: of course, the actual marking work will
4084     // not start until the safepoint itself is released in
4085     // SuspendibleThreadSet::desynchronize().
4086     doConcurrentMark();
4087   }
4088 
4089   return true;
4090 }
4091 
4092 void G1CollectedHeap::restore_preserved_marks() {
4093   G1RestorePreservedMarksTask rpm_task(_preserved_objs);
4094   workers()->run_task(&rpm_task);
4095 }
4096 
4097 void G1CollectedHeap::remove_self_forwarding_pointers() {
4098   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4099   workers()->run_task(&rsfp_task);
4100 }
4101 
4102 void G1CollectedHeap::restore_after_evac_failure() {
4103   double remove_self_forwards_start = os::elapsedTime();
4104 
4105   remove_self_forwarding_pointers();
4106   restore_preserved_marks();
4107 
4108   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4109 }
4110 
4111 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4112   if (!_evacuation_failed) {
4113     _evacuation_failed = true;
4114   }
4115 
4116   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4117 
4118   // We want to call the "for_promotion_failure" version only in the
4119   // case of a promotion failure.
4120   if (m->must_be_preserved_for_promotion_failure(obj)) {
4121     OopAndMarkOop elem(obj, m);
4122     _preserved_objs[worker_id].push(elem);
4123   }
4124 }
4125 
4126 bool G1ParEvacuateFollowersClosure::offer_termination() {
4127   G1ParScanThreadState* const pss = par_scan_state();
4128   start_term_time();
4129   const bool res = terminator()->offer_termination();
4130   end_term_time();
4131   return res;
4132 }
4133 
4134 void G1ParEvacuateFollowersClosure::do_void() {
4135   G1ParScanThreadState* const pss = par_scan_state();
4136   pss->trim_queue();
4137   do {
4138     pss->steal_and_trim_queue(queues());
4139   } while (!offer_termination());
4140 }
4141 
4142 class G1ParTask : public AbstractGangTask {
4143 protected:
4144   G1CollectedHeap*         _g1h;
4145   G1ParScanThreadStateSet* _pss;
4146   RefToScanQueueSet*       _queues;
4147   G1RootProcessor*         _root_processor;
4148   ParallelTaskTerminator   _terminator;
4149   uint                     _n_workers;
4150 
4151 public:
4152   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4153     : AbstractGangTask("G1 collection"),
4154       _g1h(g1h),
4155       _pss(per_thread_states),
4156       _queues(task_queues),
4157       _root_processor(root_processor),
4158       _terminator(n_workers, _queues),
4159       _n_workers(n_workers)
4160   {}
4161 
4162   void work(uint worker_id) {
4163     if (worker_id >= _n_workers) return;  // no work needed this round
4164 
4165     double start_sec = os::elapsedTime();
4166     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4167 
4168     {
4169       ResourceMark rm;
4170       HandleMark   hm;
4171 
4172       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4173 
4174       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4175       pss->set_ref_processor(rp);
4176 
4177       double start_strong_roots_sec = os::elapsedTime();
4178 
4179       _root_processor->evacuate_roots(pss->closures(), worker_id);
4180 
4181       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4182 
4183       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4184       // treating the nmethods visited to act as roots for concurrent marking.
4185       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4186       // objects copied by the current evacuation.
4187       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4188                                                                              pss->closures()->weak_codeblobs(),
4189                                                                              worker_id);
4190 
4191       _pss->add_cards_scanned(worker_id, cards_scanned);
4192 
4193       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4194 
4195       double term_sec = 0.0;
4196       size_t evac_term_attempts = 0;
4197       {
4198         double start = os::elapsedTime();
4199         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4200         evac.do_void();
4201 
4202         evac_term_attempts = evac.term_attempts();
4203         term_sec = evac.term_time();
4204         double elapsed_sec = os::elapsedTime() - start;
4205         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4206         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4207         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4208       }
4209 
4210       assert(pss->queue_is_empty(), "should be empty");
4211 
4212       if (PrintTerminationStats) {
4213         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4214         size_t lab_waste;
4215         size_t lab_undo_waste;
4216         pss->waste(lab_waste, lab_undo_waste);
4217         _g1h->print_termination_stats(gclog_or_tty,
4218                                       worker_id,
4219                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4220                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4221                                       term_sec * 1000.0,                          /* evac term time */
4222                                       evac_term_attempts,                         /* evac term attempts */
4223                                       lab_waste,                                  /* alloc buffer waste */
4224                                       lab_undo_waste                              /* undo waste */
4225                                       );
4226       }
4227 
4228       // Close the inner scope so that the ResourceMark and HandleMark
4229       // destructors are executed here and are included as part of the
4230       // "GC Worker Time".
4231     }
4232     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4233   }
4234 };
4235 
4236 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4237   st->print_raw_cr("GC Termination Stats");
4238   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4239   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4240   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4241 }
4242 
4243 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4244                                               uint worker_id,
4245                                               double elapsed_ms,
4246                                               double strong_roots_ms,
4247                                               double term_ms,
4248                                               size_t term_attempts,
4249                                               size_t alloc_buffer_waste,
4250                                               size_t undo_waste) const {
4251   st->print_cr("%3d %9.2f %9.2f %6.2f "
4252                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4253                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4254                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4255                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4256                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4257                alloc_buffer_waste * HeapWordSize / K,
4258                undo_waste * HeapWordSize / K);
4259 }
4260 
4261 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4262 private:
4263   BoolObjectClosure* _is_alive;
4264   int _initial_string_table_size;
4265   int _initial_symbol_table_size;
4266 
4267   bool  _process_strings;
4268   int _strings_processed;
4269   int _strings_removed;
4270 
4271   bool  _process_symbols;
4272   int _symbols_processed;
4273   int _symbols_removed;
4274 
4275 public:
4276   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4277     AbstractGangTask("String/Symbol Unlinking"),
4278     _is_alive(is_alive),
4279     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4280     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4281 
4282     _initial_string_table_size = StringTable::the_table()->table_size();
4283     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4284     if (process_strings) {
4285       StringTable::clear_parallel_claimed_index();
4286     }
4287     if (process_symbols) {
4288       SymbolTable::clear_parallel_claimed_index();
4289     }
4290   }
4291 
4292   ~G1StringSymbolTableUnlinkTask() {
4293     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4294               "claim value %d after unlink less than initial string table size %d",
4295               StringTable::parallel_claimed_index(), _initial_string_table_size);
4296     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4297               "claim value %d after unlink less than initial symbol table size %d",
4298               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4299 
4300     if (G1TraceStringSymbolTableScrubbing) {
4301       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4302                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4303                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4304                              strings_processed(), strings_removed(),
4305                              symbols_processed(), symbols_removed());
4306     }
4307   }
4308 
4309   void work(uint worker_id) {
4310     int strings_processed = 0;
4311     int strings_removed = 0;
4312     int symbols_processed = 0;
4313     int symbols_removed = 0;
4314     if (_process_strings) {
4315       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4316       Atomic::add(strings_processed, &_strings_processed);
4317       Atomic::add(strings_removed, &_strings_removed);
4318     }
4319     if (_process_symbols) {
4320       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4321       Atomic::add(symbols_processed, &_symbols_processed);
4322       Atomic::add(symbols_removed, &_symbols_removed);
4323     }
4324   }
4325 
4326   size_t strings_processed() const { return (size_t)_strings_processed; }
4327   size_t strings_removed()   const { return (size_t)_strings_removed; }
4328 
4329   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4330   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4331 };
4332 
4333 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4334 private:
4335   static Monitor* _lock;
4336 
4337   BoolObjectClosure* const _is_alive;
4338   const bool               _unloading_occurred;
4339   const uint               _num_workers;
4340 
4341   // Variables used to claim nmethods.
4342   nmethod* _first_nmethod;
4343   volatile nmethod* _claimed_nmethod;
4344 
4345   // The list of nmethods that need to be processed by the second pass.
4346   volatile nmethod* _postponed_list;
4347   volatile uint     _num_entered_barrier;
4348 
4349  public:
4350   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4351       _is_alive(is_alive),
4352       _unloading_occurred(unloading_occurred),
4353       _num_workers(num_workers),
4354       _first_nmethod(NULL),
4355       _claimed_nmethod(NULL),
4356       _postponed_list(NULL),
4357       _num_entered_barrier(0)
4358   {
4359     nmethod::increase_unloading_clock();
4360     // Get first alive nmethod
4361     NMethodIterator iter = NMethodIterator();
4362     if(iter.next_alive()) {
4363       _first_nmethod = iter.method();
4364     }
4365     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4366   }
4367 
4368   ~G1CodeCacheUnloadingTask() {
4369     CodeCache::verify_clean_inline_caches();
4370 
4371     CodeCache::set_needs_cache_clean(false);
4372     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4373 
4374     CodeCache::verify_icholder_relocations();
4375   }
4376 
4377  private:
4378   void add_to_postponed_list(nmethod* nm) {
4379       nmethod* old;
4380       do {
4381         old = (nmethod*)_postponed_list;
4382         nm->set_unloading_next(old);
4383       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4384   }
4385 
4386   void clean_nmethod(nmethod* nm) {
4387     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4388 
4389     if (postponed) {
4390       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4391       add_to_postponed_list(nm);
4392     }
4393 
4394     // Mark that this thread has been cleaned/unloaded.
4395     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4396     nm->set_unloading_clock(nmethod::global_unloading_clock());
4397   }
4398 
4399   void clean_nmethod_postponed(nmethod* nm) {
4400     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4401   }
4402 
4403   static const int MaxClaimNmethods = 16;
4404 
4405   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4406     nmethod* first;
4407     NMethodIterator last;
4408 
4409     do {
4410       *num_claimed_nmethods = 0;
4411 
4412       first = (nmethod*)_claimed_nmethod;
4413       last = NMethodIterator(first);
4414 
4415       if (first != NULL) {
4416 
4417         for (int i = 0; i < MaxClaimNmethods; i++) {
4418           if (!last.next_alive()) {
4419             break;
4420           }
4421           claimed_nmethods[i] = last.method();
4422           (*num_claimed_nmethods)++;
4423         }
4424       }
4425 
4426     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4427   }
4428 
4429   nmethod* claim_postponed_nmethod() {
4430     nmethod* claim;
4431     nmethod* next;
4432 
4433     do {
4434       claim = (nmethod*)_postponed_list;
4435       if (claim == NULL) {
4436         return NULL;
4437       }
4438 
4439       next = claim->unloading_next();
4440 
4441     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4442 
4443     return claim;
4444   }
4445 
4446  public:
4447   // Mark that we're done with the first pass of nmethod cleaning.
4448   void barrier_mark(uint worker_id) {
4449     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4450     _num_entered_barrier++;
4451     if (_num_entered_barrier == _num_workers) {
4452       ml.notify_all();
4453     }
4454   }
4455 
4456   // See if we have to wait for the other workers to
4457   // finish their first-pass nmethod cleaning work.
4458   void barrier_wait(uint worker_id) {
4459     if (_num_entered_barrier < _num_workers) {
4460       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4461       while (_num_entered_barrier < _num_workers) {
4462           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4463       }
4464     }
4465   }
4466 
4467   // Cleaning and unloading of nmethods. Some work has to be postponed
4468   // to the second pass, when we know which nmethods survive.
4469   void work_first_pass(uint worker_id) {
4470     // The first nmethods is claimed by the first worker.
4471     if (worker_id == 0 && _first_nmethod != NULL) {
4472       clean_nmethod(_first_nmethod);
4473       _first_nmethod = NULL;
4474     }
4475 
4476     int num_claimed_nmethods;
4477     nmethod* claimed_nmethods[MaxClaimNmethods];
4478 
4479     while (true) {
4480       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4481 
4482       if (num_claimed_nmethods == 0) {
4483         break;
4484       }
4485 
4486       for (int i = 0; i < num_claimed_nmethods; i++) {
4487         clean_nmethod(claimed_nmethods[i]);
4488       }
4489     }
4490   }
4491 
4492   void work_second_pass(uint worker_id) {
4493     nmethod* nm;
4494     // Take care of postponed nmethods.
4495     while ((nm = claim_postponed_nmethod()) != NULL) {
4496       clean_nmethod_postponed(nm);
4497     }
4498   }
4499 };
4500 
4501 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4502 
4503 class G1KlassCleaningTask : public StackObj {
4504   BoolObjectClosure*                      _is_alive;
4505   volatile jint                           _clean_klass_tree_claimed;
4506   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4507 
4508  public:
4509   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4510       _is_alive(is_alive),
4511       _clean_klass_tree_claimed(0),
4512       _klass_iterator() {
4513   }
4514 
4515  private:
4516   bool claim_clean_klass_tree_task() {
4517     if (_clean_klass_tree_claimed) {
4518       return false;
4519     }
4520 
4521     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4522   }
4523 
4524   InstanceKlass* claim_next_klass() {
4525     Klass* klass;
4526     do {
4527       klass =_klass_iterator.next_klass();
4528     } while (klass != NULL && !klass->is_instance_klass());
4529 
4530     // this can be null so don't call InstanceKlass::cast
4531     return static_cast<InstanceKlass*>(klass);
4532   }
4533 
4534 public:
4535 
4536   void clean_klass(InstanceKlass* ik) {
4537     ik->clean_weak_instanceklass_links(_is_alive);
4538   }
4539 
4540   void work() {
4541     ResourceMark rm;
4542 
4543     // One worker will clean the subklass/sibling klass tree.
4544     if (claim_clean_klass_tree_task()) {
4545       Klass::clean_subklass_tree(_is_alive);
4546     }
4547 
4548     // All workers will help cleaning the classes,
4549     InstanceKlass* klass;
4550     while ((klass = claim_next_klass()) != NULL) {
4551       clean_klass(klass);
4552     }
4553   }
4554 };
4555 
4556 // To minimize the remark pause times, the tasks below are done in parallel.
4557 class G1ParallelCleaningTask : public AbstractGangTask {
4558 private:
4559   G1StringSymbolTableUnlinkTask _string_symbol_task;
4560   G1CodeCacheUnloadingTask      _code_cache_task;
4561   G1KlassCleaningTask           _klass_cleaning_task;
4562 
4563 public:
4564   // The constructor is run in the VMThread.
4565   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4566       AbstractGangTask("Parallel Cleaning"),
4567       _string_symbol_task(is_alive, process_strings, process_symbols),
4568       _code_cache_task(num_workers, is_alive, unloading_occurred),
4569       _klass_cleaning_task(is_alive) {
4570   }
4571 
4572   // The parallel work done by all worker threads.
4573   void work(uint worker_id) {
4574     // Do first pass of code cache cleaning.
4575     _code_cache_task.work_first_pass(worker_id);
4576 
4577     // Let the threads mark that the first pass is done.
4578     _code_cache_task.barrier_mark(worker_id);
4579 
4580     // Clean the Strings and Symbols.
4581     _string_symbol_task.work(worker_id);
4582 
4583     // Wait for all workers to finish the first code cache cleaning pass.
4584     _code_cache_task.barrier_wait(worker_id);
4585 
4586     // Do the second code cache cleaning work, which realize on
4587     // the liveness information gathered during the first pass.
4588     _code_cache_task.work_second_pass(worker_id);
4589 
4590     // Clean all klasses that were not unloaded.
4591     _klass_cleaning_task.work();
4592   }
4593 };
4594 
4595 
4596 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4597                                         bool process_strings,
4598                                         bool process_symbols,
4599                                         bool class_unloading_occurred) {
4600   uint n_workers = workers()->active_workers();
4601 
4602   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4603                                         n_workers, class_unloading_occurred);
4604   workers()->run_task(&g1_unlink_task);
4605 }
4606 
4607 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4608                                                      bool process_strings, bool process_symbols) {
4609   {
4610     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4611     workers()->run_task(&g1_unlink_task);
4612   }
4613 
4614   if (G1StringDedup::is_enabled()) {
4615     G1StringDedup::unlink(is_alive);
4616   }
4617 }
4618 
4619 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4620  private:
4621   DirtyCardQueueSet* _queue;
4622  public:
4623   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4624 
4625   virtual void work(uint worker_id) {
4626     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4627     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4628 
4629     RedirtyLoggedCardTableEntryClosure cl;
4630     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4631 
4632     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4633   }
4634 };
4635 
4636 void G1CollectedHeap::redirty_logged_cards() {
4637   double redirty_logged_cards_start = os::elapsedTime();
4638 
4639   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4640   dirty_card_queue_set().reset_for_par_iteration();
4641   workers()->run_task(&redirty_task);
4642 
4643   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4644   dcq.merge_bufferlists(&dirty_card_queue_set());
4645   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4646 
4647   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4648 }
4649 
4650 // Weak Reference Processing support
4651 
4652 // An always "is_alive" closure that is used to preserve referents.
4653 // If the object is non-null then it's alive.  Used in the preservation
4654 // of referent objects that are pointed to by reference objects
4655 // discovered by the CM ref processor.
4656 class G1AlwaysAliveClosure: public BoolObjectClosure {
4657   G1CollectedHeap* _g1;
4658 public:
4659   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4660   bool do_object_b(oop p) {
4661     if (p != NULL) {
4662       return true;
4663     }
4664     return false;
4665   }
4666 };
4667 
4668 bool G1STWIsAliveClosure::do_object_b(oop p) {
4669   // An object is reachable if it is outside the collection set,
4670   // or is inside and copied.
4671   return !_g1->is_in_cset(p) || p->is_forwarded();
4672 }
4673 
4674 // Non Copying Keep Alive closure
4675 class G1KeepAliveClosure: public OopClosure {
4676   G1CollectedHeap* _g1;
4677 public:
4678   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4679   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4680   void do_oop(oop* p) {
4681     oop obj = *p;
4682     assert(obj != NULL, "the caller should have filtered out NULL values");
4683 
4684     const InCSetState cset_state = _g1->in_cset_state(obj);
4685     if (!cset_state.is_in_cset_or_humongous()) {
4686       return;
4687     }
4688     if (cset_state.is_in_cset()) {
4689       assert( obj->is_forwarded(), "invariant" );
4690       *p = obj->forwardee();
4691     } else {
4692       assert(!obj->is_forwarded(), "invariant" );
4693       assert(cset_state.is_humongous(),
4694              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4695       _g1->set_humongous_is_live(obj);
4696     }
4697   }
4698 };
4699 
4700 // Copying Keep Alive closure - can be called from both
4701 // serial and parallel code as long as different worker
4702 // threads utilize different G1ParScanThreadState instances
4703 // and different queues.
4704 
4705 class G1CopyingKeepAliveClosure: public OopClosure {
4706   G1CollectedHeap*         _g1h;
4707   OopClosure*              _copy_non_heap_obj_cl;
4708   G1ParScanThreadState*    _par_scan_state;
4709 
4710 public:
4711   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4712                             OopClosure* non_heap_obj_cl,
4713                             G1ParScanThreadState* pss):
4714     _g1h(g1h),
4715     _copy_non_heap_obj_cl(non_heap_obj_cl),
4716     _par_scan_state(pss)
4717   {}
4718 
4719   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4720   virtual void do_oop(      oop* p) { do_oop_work(p); }
4721 
4722   template <class T> void do_oop_work(T* p) {
4723     oop obj = oopDesc::load_decode_heap_oop(p);
4724 
4725     if (_g1h->is_in_cset_or_humongous(obj)) {
4726       // If the referent object has been forwarded (either copied
4727       // to a new location or to itself in the event of an
4728       // evacuation failure) then we need to update the reference
4729       // field and, if both reference and referent are in the G1
4730       // heap, update the RSet for the referent.
4731       //
4732       // If the referent has not been forwarded then we have to keep
4733       // it alive by policy. Therefore we have copy the referent.
4734       //
4735       // If the reference field is in the G1 heap then we can push
4736       // on the PSS queue. When the queue is drained (after each
4737       // phase of reference processing) the object and it's followers
4738       // will be copied, the reference field set to point to the
4739       // new location, and the RSet updated. Otherwise we need to
4740       // use the the non-heap or metadata closures directly to copy
4741       // the referent object and update the pointer, while avoiding
4742       // updating the RSet.
4743 
4744       if (_g1h->is_in_g1_reserved(p)) {
4745         _par_scan_state->push_on_queue(p);
4746       } else {
4747         assert(!Metaspace::contains((const void*)p),
4748                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4749         _copy_non_heap_obj_cl->do_oop(p);
4750       }
4751     }
4752   }
4753 };
4754 
4755 // Serial drain queue closure. Called as the 'complete_gc'
4756 // closure for each discovered list in some of the
4757 // reference processing phases.
4758 
4759 class G1STWDrainQueueClosure: public VoidClosure {
4760 protected:
4761   G1CollectedHeap* _g1h;
4762   G1ParScanThreadState* _par_scan_state;
4763 
4764   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4765 
4766 public:
4767   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4768     _g1h(g1h),
4769     _par_scan_state(pss)
4770   { }
4771 
4772   void do_void() {
4773     G1ParScanThreadState* const pss = par_scan_state();
4774     pss->trim_queue();
4775   }
4776 };
4777 
4778 // Parallel Reference Processing closures
4779 
4780 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4781 // processing during G1 evacuation pauses.
4782 
4783 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4784 private:
4785   G1CollectedHeap*          _g1h;
4786   G1ParScanThreadStateSet*  _pss;
4787   RefToScanQueueSet*        _queues;
4788   WorkGang*                 _workers;
4789   uint                      _active_workers;
4790 
4791 public:
4792   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4793                            G1ParScanThreadStateSet* per_thread_states,
4794                            WorkGang* workers,
4795                            RefToScanQueueSet *task_queues,
4796                            uint n_workers) :
4797     _g1h(g1h),
4798     _pss(per_thread_states),
4799     _queues(task_queues),
4800     _workers(workers),
4801     _active_workers(n_workers)
4802   {
4803     assert(n_workers > 0, "shouldn't call this otherwise");
4804   }
4805 
4806   // Executes the given task using concurrent marking worker threads.
4807   virtual void execute(ProcessTask& task);
4808   virtual void execute(EnqueueTask& task);
4809 };
4810 
4811 // Gang task for possibly parallel reference processing
4812 
4813 class G1STWRefProcTaskProxy: public AbstractGangTask {
4814   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4815   ProcessTask&     _proc_task;
4816   G1CollectedHeap* _g1h;
4817   G1ParScanThreadStateSet* _pss;
4818   RefToScanQueueSet* _task_queues;
4819   ParallelTaskTerminator* _terminator;
4820 
4821 public:
4822   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4823                         G1CollectedHeap* g1h,
4824                         G1ParScanThreadStateSet* per_thread_states,
4825                         RefToScanQueueSet *task_queues,
4826                         ParallelTaskTerminator* terminator) :
4827     AbstractGangTask("Process reference objects in parallel"),
4828     _proc_task(proc_task),
4829     _g1h(g1h),
4830     _pss(per_thread_states),
4831     _task_queues(task_queues),
4832     _terminator(terminator)
4833   {}
4834 
4835   virtual void work(uint worker_id) {
4836     // The reference processing task executed by a single worker.
4837     ResourceMark rm;
4838     HandleMark   hm;
4839 
4840     G1STWIsAliveClosure is_alive(_g1h);
4841 
4842     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4843     pss->set_ref_processor(NULL);
4844 
4845     // Keep alive closure.
4846     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4847 
4848     // Complete GC closure
4849     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4850 
4851     // Call the reference processing task's work routine.
4852     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4853 
4854     // Note we cannot assert that the refs array is empty here as not all
4855     // of the processing tasks (specifically phase2 - pp2_work) execute
4856     // the complete_gc closure (which ordinarily would drain the queue) so
4857     // the queue may not be empty.
4858   }
4859 };
4860 
4861 // Driver routine for parallel reference processing.
4862 // Creates an instance of the ref processing gang
4863 // task and has the worker threads execute it.
4864 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4865   assert(_workers != NULL, "Need parallel worker threads.");
4866 
4867   ParallelTaskTerminator terminator(_active_workers, _queues);
4868   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4869 
4870   _workers->run_task(&proc_task_proxy);
4871 }
4872 
4873 // Gang task for parallel reference enqueueing.
4874 
4875 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4876   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4877   EnqueueTask& _enq_task;
4878 
4879 public:
4880   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4881     AbstractGangTask("Enqueue reference objects in parallel"),
4882     _enq_task(enq_task)
4883   { }
4884 
4885   virtual void work(uint worker_id) {
4886     _enq_task.work(worker_id);
4887   }
4888 };
4889 
4890 // Driver routine for parallel reference enqueueing.
4891 // Creates an instance of the ref enqueueing gang
4892 // task and has the worker threads execute it.
4893 
4894 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4895   assert(_workers != NULL, "Need parallel worker threads.");
4896 
4897   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4898 
4899   _workers->run_task(&enq_task_proxy);
4900 }
4901 
4902 // End of weak reference support closures
4903 
4904 // Abstract task used to preserve (i.e. copy) any referent objects
4905 // that are in the collection set and are pointed to by reference
4906 // objects discovered by the CM ref processor.
4907 
4908 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4909 protected:
4910   G1CollectedHeap*         _g1h;
4911   G1ParScanThreadStateSet* _pss;
4912   RefToScanQueueSet*       _queues;
4913   ParallelTaskTerminator   _terminator;
4914   uint                     _n_workers;
4915 
4916 public:
4917   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4918     AbstractGangTask("ParPreserveCMReferents"),
4919     _g1h(g1h),
4920     _pss(per_thread_states),
4921     _queues(task_queues),
4922     _terminator(workers, _queues),
4923     _n_workers(workers)
4924   { }
4925 
4926   void work(uint worker_id) {
4927     ResourceMark rm;
4928     HandleMark   hm;
4929 
4930     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4931     pss->set_ref_processor(NULL);
4932     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4933 
4934     // Is alive closure
4935     G1AlwaysAliveClosure always_alive(_g1h);
4936 
4937     // Copying keep alive closure. Applied to referent objects that need
4938     // to be copied.
4939     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4940 
4941     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4942 
4943     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4944     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4945 
4946     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4947     // So this must be true - but assert just in case someone decides to
4948     // change the worker ids.
4949     assert(worker_id < limit, "sanity");
4950     assert(!rp->discovery_is_atomic(), "check this code");
4951 
4952     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4953     for (uint idx = worker_id; idx < limit; idx += stride) {
4954       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4955 
4956       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4957       while (iter.has_next()) {
4958         // Since discovery is not atomic for the CM ref processor, we
4959         // can see some null referent objects.
4960         iter.load_ptrs(DEBUG_ONLY(true));
4961         oop ref = iter.obj();
4962 
4963         // This will filter nulls.
4964         if (iter.is_referent_alive()) {
4965           iter.make_referent_alive();
4966         }
4967         iter.move_to_next();
4968       }
4969     }
4970 
4971     // Drain the queue - which may cause stealing
4972     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4973     drain_queue.do_void();
4974     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4975     assert(pss->queue_is_empty(), "should be");
4976   }
4977 };
4978 
4979 void G1CollectedHeap::process_weak_jni_handles() {
4980   double ref_proc_start = os::elapsedTime();
4981 
4982   G1STWIsAliveClosure is_alive(this);
4983   G1KeepAliveClosure keep_alive(this);
4984   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4985 
4986   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4987   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4988 }
4989 
4990 // Weak Reference processing during an evacuation pause (part 1).
4991 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4992   double ref_proc_start = os::elapsedTime();
4993 
4994   ReferenceProcessor* rp = _ref_processor_stw;
4995   assert(rp->discovery_enabled(), "should have been enabled");
4996 
4997   // Any reference objects, in the collection set, that were 'discovered'
4998   // by the CM ref processor should have already been copied (either by
4999   // applying the external root copy closure to the discovered lists, or
5000   // by following an RSet entry).
5001   //
5002   // But some of the referents, that are in the collection set, that these
5003   // reference objects point to may not have been copied: the STW ref
5004   // processor would have seen that the reference object had already
5005   // been 'discovered' and would have skipped discovering the reference,
5006   // but would not have treated the reference object as a regular oop.
5007   // As a result the copy closure would not have been applied to the
5008   // referent object.
5009   //
5010   // We need to explicitly copy these referent objects - the references
5011   // will be processed at the end of remarking.
5012   //
5013   // We also need to do this copying before we process the reference
5014   // objects discovered by the STW ref processor in case one of these
5015   // referents points to another object which is also referenced by an
5016   // object discovered by the STW ref processor.
5017 
5018   uint no_of_gc_workers = workers()->active_workers();
5019 
5020   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5021                                                  per_thread_states,
5022                                                  no_of_gc_workers,
5023                                                  _task_queues);
5024 
5025   workers()->run_task(&keep_cm_referents);
5026 
5027   // Closure to test whether a referent is alive.
5028   G1STWIsAliveClosure is_alive(this);
5029 
5030   // Even when parallel reference processing is enabled, the processing
5031   // of JNI refs is serial and performed serially by the current thread
5032   // rather than by a worker. The following PSS will be used for processing
5033   // JNI refs.
5034 
5035   // Use only a single queue for this PSS.
5036   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5037   pss->set_ref_processor(NULL);
5038   assert(pss->queue_is_empty(), "pre-condition");
5039 
5040   // Keep alive closure.
5041   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5042 
5043   // Serial Complete GC closure
5044   G1STWDrainQueueClosure drain_queue(this, pss);
5045 
5046   // Setup the soft refs policy...
5047   rp->setup_policy(false);
5048 
5049   ReferenceProcessorStats stats;
5050   if (!rp->processing_is_mt()) {
5051     // Serial reference processing...
5052     stats = rp->process_discovered_references(&is_alive,
5053                                               &keep_alive,
5054                                               &drain_queue,
5055                                               NULL,
5056                                               _gc_timer_stw);
5057   } else {
5058     // Parallel reference processing
5059     assert(rp->num_q() == no_of_gc_workers, "sanity");
5060     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5061 
5062     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5063     stats = rp->process_discovered_references(&is_alive,
5064                                               &keep_alive,
5065                                               &drain_queue,
5066                                               &par_task_executor,
5067                                               _gc_timer_stw);
5068   }
5069 
5070   _gc_tracer_stw->report_gc_reference_stats(stats);
5071 
5072   // We have completed copying any necessary live referent objects.
5073   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5074 
5075   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5076   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5077 }
5078 
5079 // Weak Reference processing during an evacuation pause (part 2).
5080 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5081   double ref_enq_start = os::elapsedTime();
5082 
5083   ReferenceProcessor* rp = _ref_processor_stw;
5084   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5085 
5086   // Now enqueue any remaining on the discovered lists on to
5087   // the pending list.
5088   if (!rp->processing_is_mt()) {
5089     // Serial reference processing...
5090     rp->enqueue_discovered_references();
5091   } else {
5092     // Parallel reference enqueueing
5093 
5094     uint n_workers = workers()->active_workers();
5095 
5096     assert(rp->num_q() == n_workers, "sanity");
5097     assert(n_workers <= rp->max_num_q(), "sanity");
5098 
5099     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5100     rp->enqueue_discovered_references(&par_task_executor);
5101   }
5102 
5103   rp->verify_no_references_recorded();
5104   assert(!rp->discovery_enabled(), "should have been disabled");
5105 
5106   // FIXME
5107   // CM's reference processing also cleans up the string and symbol tables.
5108   // Should we do that here also? We could, but it is a serial operation
5109   // and could significantly increase the pause time.
5110 
5111   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5112   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5113 }
5114 
5115 void G1CollectedHeap::pre_evacuate_collection_set() {
5116   _expand_heap_after_alloc_failure = true;
5117   _evacuation_failed = false;
5118 
5119   // Disable the hot card cache.
5120   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5121   hot_card_cache->reset_hot_cache_claimed_index();
5122   hot_card_cache->set_use_cache(false);
5123 
5124 }
5125 
5126 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5127   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5128 
5129   // Should G1EvacuationFailureALot be in effect for this GC?
5130   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5131 
5132   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5133   double start_par_time_sec = os::elapsedTime();
5134   double end_par_time_sec;
5135 
5136   {
5137     const uint n_workers = workers()->active_workers();
5138     G1RootProcessor root_processor(this, n_workers);
5139     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5140     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5141     if (collector_state()->during_initial_mark_pause()) {
5142       ClassLoaderDataGraph::clear_claimed_marks();
5143     }
5144 
5145     // The individual threads will set their evac-failure closures.
5146     if (PrintTerminationStats) {
5147       print_termination_stats_hdr(gclog_or_tty);
5148     }
5149 
5150     workers()->run_task(&g1_par_task);
5151     end_par_time_sec = os::elapsedTime();
5152 
5153     // Closing the inner scope will execute the destructor
5154     // for the G1RootProcessor object. We record the current
5155     // elapsed time before closing the scope so that time
5156     // taken for the destructor is NOT included in the
5157     // reported parallel time.
5158   }
5159 
5160   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5161 
5162   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5163   phase_times->record_par_time(par_time_ms);
5164 
5165   double code_root_fixup_time_ms =
5166         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5167   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5168 
5169   // Process any discovered reference objects - we have
5170   // to do this _before_ we retire the GC alloc regions
5171   // as we may have to copy some 'reachable' referent
5172   // objects (and their reachable sub-graphs) that were
5173   // not copied during the pause.
5174   if (g1_policy()->should_process_references()) {
5175     process_discovered_references(per_thread_states);
5176   } else {
5177     ref_processor_stw()->verify_no_references_recorded();
5178     process_weak_jni_handles();
5179   }
5180 
5181   if (G1StringDedup::is_enabled()) {
5182     double fixup_start = os::elapsedTime();
5183 
5184     G1STWIsAliveClosure is_alive(this);
5185     G1KeepAliveClosure keep_alive(this);
5186     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5187 
5188     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5189     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5190   }
5191 
5192   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5193 
5194   if (evacuation_failed()) {
5195     restore_after_evac_failure();
5196 
5197     // Reset the G1EvacuationFailureALot counters and flags
5198     // Note: the values are reset only when an actual
5199     // evacuation failure occurs.
5200     NOT_PRODUCT(reset_evacuation_should_fail();)
5201   }
5202 
5203   // Enqueue any remaining references remaining on the STW
5204   // reference processor's discovered lists. We need to do
5205   // this after the card table is cleaned (and verified) as
5206   // the act of enqueueing entries on to the pending list
5207   // will log these updates (and dirty their associated
5208   // cards). We need these updates logged to update any
5209   // RSets.
5210   if (g1_policy()->should_process_references()) {
5211     enqueue_discovered_references(per_thread_states);
5212   } else {
5213     g1_policy()->phase_times()->record_ref_enq_time(0);
5214   }
5215 }
5216 
5217 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5218   _allocator->release_gc_alloc_regions(evacuation_info);
5219 
5220   per_thread_states->flush();
5221 
5222   record_obj_copy_mem_stats();
5223 
5224   _survivor_evac_stats.adjust_desired_plab_sz();
5225   _old_evac_stats.adjust_desired_plab_sz();
5226 
5227   // Reset and re-enable the hot card cache.
5228   // Note the counts for the cards in the regions in the
5229   // collection set are reset when the collection set is freed.
5230   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5231   hot_card_cache->reset_hot_cache();
5232   hot_card_cache->set_use_cache(true);
5233 
5234   purge_code_root_memory();
5235 
5236   redirty_logged_cards();
5237 #if defined(COMPILER2) || INCLUDE_JVMCI
5238   DerivedPointerTable::update_pointers();
5239 #endif
5240 }
5241 
5242 void G1CollectedHeap::record_obj_copy_mem_stats() {
5243   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
5244 
5245   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5246                                                create_g1_evac_summary(&_old_evac_stats));
5247 }
5248 
5249 void G1CollectedHeap::free_region(HeapRegion* hr,
5250                                   FreeRegionList* free_list,
5251                                   bool par,
5252                                   bool locked) {
5253   assert(!hr->is_free(), "the region should not be free");
5254   assert(!hr->is_empty(), "the region should not be empty");
5255   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5256   assert(free_list != NULL, "pre-condition");
5257 
5258   if (G1VerifyBitmaps) {
5259     MemRegion mr(hr->bottom(), hr->end());
5260     concurrent_mark()->clearRangePrevBitmap(mr);
5261   }
5262 
5263   // Clear the card counts for this region.
5264   // Note: we only need to do this if the region is not young
5265   // (since we don't refine cards in young regions).
5266   if (!hr->is_young()) {
5267     _cg1r->hot_card_cache()->reset_card_counts(hr);
5268   }
5269   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5270   free_list->add_ordered(hr);
5271 }
5272 
5273 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5274                                             FreeRegionList* free_list,
5275                                             bool par) {
5276   assert(hr->is_humongous(), "this is only for humongous regions");
5277   assert(free_list != NULL, "pre-condition");
5278   hr->clear_humongous();
5279   free_region(hr, free_list, par);
5280 }
5281 
5282 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5283                                            const HeapRegionSetCount& humongous_regions_removed) {
5284   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5285     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5286     _old_set.bulk_remove(old_regions_removed);
5287     _humongous_set.bulk_remove(humongous_regions_removed);
5288   }
5289 
5290 }
5291 
5292 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5293   assert(list != NULL, "list can't be null");
5294   if (!list->is_empty()) {
5295     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5296     _hrm.insert_list_into_free_list(list);
5297   }
5298 }
5299 
5300 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5301   decrease_used(bytes);
5302 }
5303 
5304 class G1ParCleanupCTTask : public AbstractGangTask {
5305   G1SATBCardTableModRefBS* _ct_bs;
5306   G1CollectedHeap* _g1h;
5307   HeapRegion* volatile _su_head;
5308 public:
5309   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5310                      G1CollectedHeap* g1h) :
5311     AbstractGangTask("G1 Par Cleanup CT Task"),
5312     _ct_bs(ct_bs), _g1h(g1h) { }
5313 
5314   void work(uint worker_id) {
5315     HeapRegion* r;
5316     while (r = _g1h->pop_dirty_cards_region()) {
5317       clear_cards(r);
5318     }
5319   }
5320 
5321   void clear_cards(HeapRegion* r) {
5322     // Cards of the survivors should have already been dirtied.
5323     if (!r->is_survivor()) {
5324       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5325     }
5326   }
5327 };
5328 
5329 #ifndef PRODUCT
5330 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5331   G1CollectedHeap* _g1h;
5332   G1SATBCardTableModRefBS* _ct_bs;
5333 public:
5334   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5335     : _g1h(g1h), _ct_bs(ct_bs) { }
5336   virtual bool doHeapRegion(HeapRegion* r) {
5337     if (r->is_survivor()) {
5338       _g1h->verify_dirty_region(r);
5339     } else {
5340       _g1h->verify_not_dirty_region(r);
5341     }
5342     return false;
5343   }
5344 };
5345 
5346 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5347   // All of the region should be clean.
5348   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5349   MemRegion mr(hr->bottom(), hr->end());
5350   ct_bs->verify_not_dirty_region(mr);
5351 }
5352 
5353 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5354   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5355   // dirty allocated blocks as they allocate them. The thread that
5356   // retires each region and replaces it with a new one will do a
5357   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5358   // not dirty that area (one less thing to have to do while holding
5359   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5360   // is dirty.
5361   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5362   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5363   if (hr->is_young()) {
5364     ct_bs->verify_g1_young_region(mr);
5365   } else {
5366     ct_bs->verify_dirty_region(mr);
5367   }
5368 }
5369 
5370 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5371   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5372   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5373     verify_dirty_region(hr);
5374   }
5375 }
5376 
5377 void G1CollectedHeap::verify_dirty_young_regions() {
5378   verify_dirty_young_list(_young_list->first_region());
5379 }
5380 
5381 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5382                                                HeapWord* tams, HeapWord* end) {
5383   guarantee(tams <= end,
5384             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5385   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5386   if (result < end) {
5387     gclog_or_tty->cr();
5388     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5389                            bitmap_name, p2i(result));
5390     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5391                            bitmap_name, p2i(tams), p2i(end));
5392     return false;
5393   }
5394   return true;
5395 }
5396 
5397 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5398   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5399   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5400 
5401   HeapWord* bottom = hr->bottom();
5402   HeapWord* ptams  = hr->prev_top_at_mark_start();
5403   HeapWord* ntams  = hr->next_top_at_mark_start();
5404   HeapWord* end    = hr->end();
5405 
5406   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5407 
5408   bool res_n = true;
5409   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5410   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5411   // if we happen to be in that state.
5412   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5413     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5414   }
5415   if (!res_p || !res_n) {
5416     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5417                            HR_FORMAT_PARAMS(hr));
5418     gclog_or_tty->print_cr("#### Caller: %s", caller);
5419     return false;
5420   }
5421   return true;
5422 }
5423 
5424 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5425   if (!G1VerifyBitmaps) return;
5426 
5427   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5428 }
5429 
5430 class G1VerifyBitmapClosure : public HeapRegionClosure {
5431 private:
5432   const char* _caller;
5433   G1CollectedHeap* _g1h;
5434   bool _failures;
5435 
5436 public:
5437   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5438     _caller(caller), _g1h(g1h), _failures(false) { }
5439 
5440   bool failures() { return _failures; }
5441 
5442   virtual bool doHeapRegion(HeapRegion* hr) {
5443     bool result = _g1h->verify_bitmaps(_caller, hr);
5444     if (!result) {
5445       _failures = true;
5446     }
5447     return false;
5448   }
5449 };
5450 
5451 void G1CollectedHeap::check_bitmaps(const char* caller) {
5452   if (!G1VerifyBitmaps) return;
5453 
5454   G1VerifyBitmapClosure cl(caller, this);
5455   heap_region_iterate(&cl);
5456   guarantee(!cl.failures(), "bitmap verification");
5457 }
5458 
5459 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5460  private:
5461   bool _failures;
5462  public:
5463   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5464 
5465   virtual bool doHeapRegion(HeapRegion* hr) {
5466     uint i = hr->hrm_index();
5467     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5468     if (hr->is_humongous()) {
5469       if (hr->in_collection_set()) {
5470         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5471         _failures = true;
5472         return true;
5473       }
5474       if (cset_state.is_in_cset()) {
5475         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5476         _failures = true;
5477         return true;
5478       }
5479       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5480         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5481         _failures = true;
5482         return true;
5483       }
5484     } else {
5485       if (cset_state.is_humongous()) {
5486         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5487         _failures = true;
5488         return true;
5489       }
5490       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5491         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5492                                hr->in_collection_set(), cset_state.value(), i);
5493         _failures = true;
5494         return true;
5495       }
5496       if (cset_state.is_in_cset()) {
5497         if (hr->is_young() != (cset_state.is_young())) {
5498           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5499                                  hr->is_young(), cset_state.value(), i);
5500           _failures = true;
5501           return true;
5502         }
5503         if (hr->is_old() != (cset_state.is_old())) {
5504           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5505                                  hr->is_old(), cset_state.value(), i);
5506           _failures = true;
5507           return true;
5508         }
5509       }
5510     }
5511     return false;
5512   }
5513 
5514   bool failures() const { return _failures; }
5515 };
5516 
5517 bool G1CollectedHeap::check_cset_fast_test() {
5518   G1CheckCSetFastTableClosure cl;
5519   _hrm.iterate(&cl);
5520   return !cl.failures();
5521 }
5522 #endif // PRODUCT
5523 
5524 void G1CollectedHeap::cleanUpCardTable() {
5525   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5526   double start = os::elapsedTime();
5527 
5528   {
5529     // Iterate over the dirty cards region list.
5530     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5531 
5532     workers()->run_task(&cleanup_task);
5533 #ifndef PRODUCT
5534     if (G1VerifyCTCleanup || VerifyAfterGC) {
5535       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5536       heap_region_iterate(&cleanup_verifier);
5537     }
5538 #endif
5539   }
5540 
5541   double elapsed = os::elapsedTime() - start;
5542   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5543 }
5544 
5545 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5546   size_t pre_used = 0;
5547   FreeRegionList local_free_list("Local List for CSet Freeing");
5548 
5549   double young_time_ms     = 0.0;
5550   double non_young_time_ms = 0.0;
5551 
5552   // Since the collection set is a superset of the the young list,
5553   // all we need to do to clear the young list is clear its
5554   // head and length, and unlink any young regions in the code below
5555   _young_list->clear();
5556 
5557   G1CollectorPolicy* policy = g1_policy();
5558 
5559   double start_sec = os::elapsedTime();
5560   bool non_young = true;
5561 
5562   HeapRegion* cur = cs_head;
5563   int age_bound = -1;
5564   size_t rs_lengths = 0;
5565 
5566   while (cur != NULL) {
5567     assert(!is_on_master_free_list(cur), "sanity");
5568     if (non_young) {
5569       if (cur->is_young()) {
5570         double end_sec = os::elapsedTime();
5571         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5572         non_young_time_ms += elapsed_ms;
5573 
5574         start_sec = os::elapsedTime();
5575         non_young = false;
5576       }
5577     } else {
5578       if (!cur->is_young()) {
5579         double end_sec = os::elapsedTime();
5580         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5581         young_time_ms += elapsed_ms;
5582 
5583         start_sec = os::elapsedTime();
5584         non_young = true;
5585       }
5586     }
5587 
5588     rs_lengths += cur->rem_set()->occupied_locked();
5589 
5590     HeapRegion* next = cur->next_in_collection_set();
5591     assert(cur->in_collection_set(), "bad CS");
5592     cur->set_next_in_collection_set(NULL);
5593     clear_in_cset(cur);
5594 
5595     if (cur->is_young()) {
5596       int index = cur->young_index_in_cset();
5597       assert(index != -1, "invariant");
5598       assert((uint) index < policy->young_cset_region_length(), "invariant");
5599       size_t words_survived = surviving_young_words[index];
5600       cur->record_surv_words_in_group(words_survived);
5601 
5602       // At this point the we have 'popped' cur from the collection set
5603       // (linked via next_in_collection_set()) but it is still in the
5604       // young list (linked via next_young_region()). Clear the
5605       // _next_young_region field.
5606       cur->set_next_young_region(NULL);
5607     } else {
5608       int index = cur->young_index_in_cset();
5609       assert(index == -1, "invariant");
5610     }
5611 
5612     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5613             (!cur->is_young() && cur->young_index_in_cset() == -1),
5614             "invariant" );
5615 
5616     if (!cur->evacuation_failed()) {
5617       MemRegion used_mr = cur->used_region();
5618 
5619       // And the region is empty.
5620       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5621       pre_used += cur->used();
5622       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5623     } else {
5624       cur->uninstall_surv_rate_group();
5625       if (cur->is_young()) {
5626         cur->set_young_index_in_cset(-1);
5627       }
5628       cur->set_evacuation_failed(false);
5629       // When moving a young gen region to old gen, we "allocate" that whole region
5630       // there. This is in addition to any already evacuated objects. Notify the
5631       // policy about that.
5632       // Old gen regions do not cause an additional allocation: both the objects
5633       // still in the region and the ones already moved are accounted for elsewhere.
5634       if (cur->is_young()) {
5635         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
5636       }
5637       // The region is now considered to be old.
5638       cur->set_old();
5639       // Do some allocation statistics accounting. Regions that failed evacuation
5640       // are always made old, so there is no need to update anything in the young
5641       // gen statistics, but we need to update old gen statistics.
5642       size_t used_words = cur->marked_bytes() / HeapWordSize;
5643       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5644       _old_set.add(cur);
5645       evacuation_info.increment_collectionset_used_after(cur->used());
5646     }
5647     cur = next;
5648   }
5649 
5650   evacuation_info.set_regions_freed(local_free_list.length());
5651   policy->record_max_rs_lengths(rs_lengths);
5652   policy->cset_regions_freed();
5653 
5654   double end_sec = os::elapsedTime();
5655   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5656 
5657   if (non_young) {
5658     non_young_time_ms += elapsed_ms;
5659   } else {
5660     young_time_ms += elapsed_ms;
5661   }
5662 
5663   prepend_to_freelist(&local_free_list);
5664   decrement_summary_bytes(pre_used);
5665   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5666   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5667 }
5668 
5669 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5670  private:
5671   FreeRegionList* _free_region_list;
5672   HeapRegionSet* _proxy_set;
5673   HeapRegionSetCount _humongous_regions_removed;
5674   size_t _freed_bytes;
5675  public:
5676 
5677   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5678     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5679   }
5680 
5681   virtual bool doHeapRegion(HeapRegion* r) {
5682     if (!r->is_starts_humongous()) {
5683       return false;
5684     }
5685 
5686     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5687 
5688     oop obj = (oop)r->bottom();
5689     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5690 
5691     // The following checks whether the humongous object is live are sufficient.
5692     // The main additional check (in addition to having a reference from the roots
5693     // or the young gen) is whether the humongous object has a remembered set entry.
5694     //
5695     // A humongous object cannot be live if there is no remembered set for it
5696     // because:
5697     // - there can be no references from within humongous starts regions referencing
5698     // the object because we never allocate other objects into them.
5699     // (I.e. there are no intra-region references that may be missed by the
5700     // remembered set)
5701     // - as soon there is a remembered set entry to the humongous starts region
5702     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5703     // until the end of a concurrent mark.
5704     //
5705     // It is not required to check whether the object has been found dead by marking
5706     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5707     // all objects allocated during that time are considered live.
5708     // SATB marking is even more conservative than the remembered set.
5709     // So if at this point in the collection there is no remembered set entry,
5710     // nobody has a reference to it.
5711     // At the start of collection we flush all refinement logs, and remembered sets
5712     // are completely up-to-date wrt to references to the humongous object.
5713     //
5714     // Other implementation considerations:
5715     // - never consider object arrays at this time because they would pose
5716     // considerable effort for cleaning up the the remembered sets. This is
5717     // required because stale remembered sets might reference locations that
5718     // are currently allocated into.
5719     uint region_idx = r->hrm_index();
5720     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5721         !r->rem_set()->is_empty()) {
5722 
5723       if (G1TraceEagerReclaimHumongousObjects) {
5724         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5725                                region_idx,
5726                                (size_t)obj->size() * HeapWordSize,
5727                                p2i(r->bottom()),
5728                                r->rem_set()->occupied(),
5729                                r->rem_set()->strong_code_roots_list_length(),
5730                                next_bitmap->isMarked(r->bottom()),
5731                                g1h->is_humongous_reclaim_candidate(region_idx),
5732                                obj->is_typeArray()
5733                               );
5734       }
5735 
5736       return false;
5737     }
5738 
5739     guarantee(obj->is_typeArray(),
5740               "Only eagerly reclaiming type arrays is supported, but the object "
5741               PTR_FORMAT " is not.", p2i(r->bottom()));
5742 
5743     if (G1TraceEagerReclaimHumongousObjects) {
5744       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5745                              region_idx,
5746                              (size_t)obj->size() * HeapWordSize,
5747                              p2i(r->bottom()),
5748                              r->rem_set()->occupied(),
5749                              r->rem_set()->strong_code_roots_list_length(),
5750                              next_bitmap->isMarked(r->bottom()),
5751                              g1h->is_humongous_reclaim_candidate(region_idx),
5752                              obj->is_typeArray()
5753                             );
5754     }
5755     // Need to clear mark bit of the humongous object if already set.
5756     if (next_bitmap->isMarked(r->bottom())) {
5757       next_bitmap->clear(r->bottom());
5758     }
5759     do {
5760       HeapRegion* next = g1h->next_region_in_humongous(r);
5761       _freed_bytes += r->used();
5762       r->set_containing_set(NULL);
5763       _humongous_regions_removed.increment(1u, r->capacity());
5764       g1h->free_humongous_region(r, _free_region_list, false);
5765       r = next;
5766     } while (r != NULL);
5767 
5768     return false;
5769   }
5770 
5771   HeapRegionSetCount& humongous_free_count() {
5772     return _humongous_regions_removed;
5773   }
5774 
5775   size_t bytes_freed() const {
5776     return _freed_bytes;
5777   }
5778 
5779   size_t humongous_reclaimed() const {
5780     return _humongous_regions_removed.length();
5781   }
5782 };
5783 
5784 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5785   assert_at_safepoint(true);
5786 
5787   if (!G1EagerReclaimHumongousObjects ||
5788       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5789     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5790     return;
5791   }
5792 
5793   double start_time = os::elapsedTime();
5794 
5795   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5796 
5797   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5798   heap_region_iterate(&cl);
5799 
5800   HeapRegionSetCount empty_set;
5801   remove_from_old_sets(empty_set, cl.humongous_free_count());
5802 
5803   G1HRPrinter* hrp = hr_printer();
5804   if (hrp->is_active()) {
5805     FreeRegionListIterator iter(&local_cleanup_list);
5806     while (iter.more_available()) {
5807       HeapRegion* hr = iter.get_next();
5808       hrp->cleanup(hr);
5809     }
5810   }
5811 
5812   prepend_to_freelist(&local_cleanup_list);
5813   decrement_summary_bytes(cl.bytes_freed());
5814 
5815   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5816                                                                     cl.humongous_reclaimed());
5817 }
5818 
5819 // This routine is similar to the above but does not record
5820 // any policy statistics or update free lists; we are abandoning
5821 // the current incremental collection set in preparation of a
5822 // full collection. After the full GC we will start to build up
5823 // the incremental collection set again.
5824 // This is only called when we're doing a full collection
5825 // and is immediately followed by the tearing down of the young list.
5826 
5827 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5828   HeapRegion* cur = cs_head;
5829 
5830   while (cur != NULL) {
5831     HeapRegion* next = cur->next_in_collection_set();
5832     assert(cur->in_collection_set(), "bad CS");
5833     cur->set_next_in_collection_set(NULL);
5834     clear_in_cset(cur);
5835     cur->set_young_index_in_cset(-1);
5836     cur = next;
5837   }
5838 }
5839 
5840 void G1CollectedHeap::set_free_regions_coming() {
5841   if (G1ConcRegionFreeingVerbose) {
5842     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5843                            "setting free regions coming");
5844   }
5845 
5846   assert(!free_regions_coming(), "pre-condition");
5847   _free_regions_coming = true;
5848 }
5849 
5850 void G1CollectedHeap::reset_free_regions_coming() {
5851   assert(free_regions_coming(), "pre-condition");
5852 
5853   {
5854     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5855     _free_regions_coming = false;
5856     SecondaryFreeList_lock->notify_all();
5857   }
5858 
5859   if (G1ConcRegionFreeingVerbose) {
5860     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5861                            "reset free regions coming");
5862   }
5863 }
5864 
5865 void G1CollectedHeap::wait_while_free_regions_coming() {
5866   // Most of the time we won't have to wait, so let's do a quick test
5867   // first before we take the lock.
5868   if (!free_regions_coming()) {
5869     return;
5870   }
5871 
5872   if (G1ConcRegionFreeingVerbose) {
5873     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5874                            "waiting for free regions");
5875   }
5876 
5877   {
5878     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5879     while (free_regions_coming()) {
5880       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5881     }
5882   }
5883 
5884   if (G1ConcRegionFreeingVerbose) {
5885     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5886                            "done waiting for free regions");
5887   }
5888 }
5889 
5890 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5891   return _allocator->is_retained_old_region(hr);
5892 }
5893 
5894 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5895   _young_list->push_region(hr);
5896 }
5897 
5898 class NoYoungRegionsClosure: public HeapRegionClosure {
5899 private:
5900   bool _success;
5901 public:
5902   NoYoungRegionsClosure() : _success(true) { }
5903   bool doHeapRegion(HeapRegion* r) {
5904     if (r->is_young()) {
5905       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5906                              p2i(r->bottom()), p2i(r->end()));
5907       _success = false;
5908     }
5909     return false;
5910   }
5911   bool success() { return _success; }
5912 };
5913 
5914 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5915   bool ret = _young_list->check_list_empty(check_sample);
5916 
5917   if (check_heap) {
5918     NoYoungRegionsClosure closure;
5919     heap_region_iterate(&closure);
5920     ret = ret && closure.success();
5921   }
5922 
5923   return ret;
5924 }
5925 
5926 class TearDownRegionSetsClosure : public HeapRegionClosure {
5927 private:
5928   HeapRegionSet *_old_set;
5929 
5930 public:
5931   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5932 
5933   bool doHeapRegion(HeapRegion* r) {
5934     if (r->is_old()) {
5935       _old_set->remove(r);
5936     } else {
5937       // We ignore free regions, we'll empty the free list afterwards.
5938       // We ignore young regions, we'll empty the young list afterwards.
5939       // We ignore humongous regions, we're not tearing down the
5940       // humongous regions set.
5941       assert(r->is_free() || r->is_young() || r->is_humongous(),
5942              "it cannot be another type");
5943     }
5944     return false;
5945   }
5946 
5947   ~TearDownRegionSetsClosure() {
5948     assert(_old_set->is_empty(), "post-condition");
5949   }
5950 };
5951 
5952 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5953   assert_at_safepoint(true /* should_be_vm_thread */);
5954 
5955   if (!free_list_only) {
5956     TearDownRegionSetsClosure cl(&_old_set);
5957     heap_region_iterate(&cl);
5958 
5959     // Note that emptying the _young_list is postponed and instead done as
5960     // the first step when rebuilding the regions sets again. The reason for
5961     // this is that during a full GC string deduplication needs to know if
5962     // a collected region was young or old when the full GC was initiated.
5963   }
5964   _hrm.remove_all_free_regions();
5965 }
5966 
5967 void G1CollectedHeap::increase_used(size_t bytes) {
5968   _summary_bytes_used += bytes;
5969 }
5970 
5971 void G1CollectedHeap::decrease_used(size_t bytes) {
5972   assert(_summary_bytes_used >= bytes,
5973          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5974          _summary_bytes_used, bytes);
5975   _summary_bytes_used -= bytes;
5976 }
5977 
5978 void G1CollectedHeap::set_used(size_t bytes) {
5979   _summary_bytes_used = bytes;
5980 }
5981 
5982 class RebuildRegionSetsClosure : public HeapRegionClosure {
5983 private:
5984   bool            _free_list_only;
5985   HeapRegionSet*   _old_set;
5986   HeapRegionManager*   _hrm;
5987   size_t          _total_used;
5988 
5989 public:
5990   RebuildRegionSetsClosure(bool free_list_only,
5991                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5992     _free_list_only(free_list_only),
5993     _old_set(old_set), _hrm(hrm), _total_used(0) {
5994     assert(_hrm->num_free_regions() == 0, "pre-condition");
5995     if (!free_list_only) {
5996       assert(_old_set->is_empty(), "pre-condition");
5997     }
5998   }
5999 
6000   bool doHeapRegion(HeapRegion* r) {
6001     if (r->is_empty()) {
6002       // Add free regions to the free list
6003       r->set_free();
6004       r->set_allocation_context(AllocationContext::system());
6005       _hrm->insert_into_free_list(r);
6006     } else if (!_free_list_only) {
6007       assert(!r->is_young(), "we should not come across young regions");
6008 
6009       if (r->is_humongous()) {
6010         // We ignore humongous regions. We left the humongous set unchanged.
6011       } else {
6012         // Objects that were compacted would have ended up on regions
6013         // that were previously old or free.  Archive regions (which are
6014         // old) will not have been touched.
6015         assert(r->is_free() || r->is_old(), "invariant");
6016         // We now consider them old, so register as such. Leave
6017         // archive regions set that way, however, while still adding
6018         // them to the old set.
6019         if (!r->is_archive()) {
6020           r->set_old();
6021         }
6022         _old_set->add(r);
6023       }
6024       _total_used += r->used();
6025     }
6026 
6027     return false;
6028   }
6029 
6030   size_t total_used() {
6031     return _total_used;
6032   }
6033 };
6034 
6035 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6036   assert_at_safepoint(true /* should_be_vm_thread */);
6037 
6038   if (!free_list_only) {
6039     _young_list->empty_list();
6040   }
6041 
6042   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6043   heap_region_iterate(&cl);
6044 
6045   if (!free_list_only) {
6046     set_used(cl.total_used());
6047     if (_archive_allocator != NULL) {
6048       _archive_allocator->clear_used();
6049     }
6050   }
6051   assert(used_unlocked() == recalculate_used(),
6052          "inconsistent used_unlocked(), "
6053          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6054          used_unlocked(), recalculate_used());
6055 }
6056 
6057 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6058   _refine_cte_cl->set_concurrent(concurrent);
6059 }
6060 
6061 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6062   HeapRegion* hr = heap_region_containing(p);
6063   return hr->is_in(p);
6064 }
6065 
6066 // Methods for the mutator alloc region
6067 
6068 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6069                                                       bool force) {
6070   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6071   assert(!force || g1_policy()->can_expand_young_list(),
6072          "if force is true we should be able to expand the young list");
6073   bool young_list_full = g1_policy()->is_young_list_full();
6074   if (force || !young_list_full) {
6075     HeapRegion* new_alloc_region = new_region(word_size,
6076                                               false /* is_old */,
6077                                               false /* do_expand */);
6078     if (new_alloc_region != NULL) {
6079       set_region_short_lived_locked(new_alloc_region);
6080       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6081       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6082       return new_alloc_region;
6083     }
6084   }
6085   return NULL;
6086 }
6087 
6088 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6089                                                   size_t allocated_bytes) {
6090   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6091   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6092 
6093   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6094   increase_used(allocated_bytes);
6095   _hr_printer.retire(alloc_region);
6096   // We update the eden sizes here, when the region is retired,
6097   // instead of when it's allocated, since this is the point that its
6098   // used space has been recored in _summary_bytes_used.
6099   g1mm()->update_eden_size();
6100 }
6101 
6102 // Methods for the GC alloc regions
6103 
6104 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6105                                                  uint count,
6106                                                  InCSetState dest) {
6107   assert(FreeList_lock->owned_by_self(), "pre-condition");
6108 
6109   if (count < g1_policy()->max_regions(dest)) {
6110     const bool is_survivor = (dest.is_young());
6111     HeapRegion* new_alloc_region = new_region(word_size,
6112                                               !is_survivor,
6113                                               true /* do_expand */);
6114     if (new_alloc_region != NULL) {
6115       // We really only need to do this for old regions given that we
6116       // should never scan survivors. But it doesn't hurt to do it
6117       // for survivors too.
6118       new_alloc_region->record_timestamp();
6119       if (is_survivor) {
6120         new_alloc_region->set_survivor();
6121         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6122         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6123       } else {
6124         new_alloc_region->set_old();
6125         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6126         check_bitmaps("Old Region Allocation", new_alloc_region);
6127       }
6128       bool during_im = collector_state()->during_initial_mark_pause();
6129       new_alloc_region->note_start_of_copying(during_im);
6130       return new_alloc_region;
6131     }
6132   }
6133   return NULL;
6134 }
6135 
6136 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6137                                              size_t allocated_bytes,
6138                                              InCSetState dest) {
6139   bool during_im = collector_state()->during_initial_mark_pause();
6140   alloc_region->note_end_of_copying(during_im);
6141   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6142   if (dest.is_young()) {
6143     young_list()->add_survivor_region(alloc_region);
6144   } else {
6145     _old_set.add(alloc_region);
6146   }
6147   _hr_printer.retire(alloc_region);
6148 }
6149 
6150 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6151   bool expanded = false;
6152   uint index = _hrm.find_highest_free(&expanded);
6153 
6154   if (index != G1_NO_HRM_INDEX) {
6155     if (expanded) {
6156       ergo_verbose1(ErgoHeapSizing,
6157                     "attempt heap expansion",
6158                     ergo_format_reason("requested address range outside heap bounds")
6159                     ergo_format_byte("region size"),
6160                     HeapRegion::GrainWords * HeapWordSize);
6161     }
6162     _hrm.allocate_free_regions_starting_at(index, 1);
6163     return region_at(index);
6164   }
6165   return NULL;
6166 }
6167 
6168 // Heap region set verification
6169 
6170 class VerifyRegionListsClosure : public HeapRegionClosure {
6171 private:
6172   HeapRegionSet*   _old_set;
6173   HeapRegionSet*   _humongous_set;
6174   HeapRegionManager*   _hrm;
6175 
6176 public:
6177   HeapRegionSetCount _old_count;
6178   HeapRegionSetCount _humongous_count;
6179   HeapRegionSetCount _free_count;
6180 
6181   VerifyRegionListsClosure(HeapRegionSet* old_set,
6182                            HeapRegionSet* humongous_set,
6183                            HeapRegionManager* hrm) :
6184     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6185     _old_count(), _humongous_count(), _free_count(){ }
6186 
6187   bool doHeapRegion(HeapRegion* hr) {
6188     if (hr->is_young()) {
6189       // TODO
6190     } else if (hr->is_humongous()) {
6191       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6192       _humongous_count.increment(1u, hr->capacity());
6193     } else if (hr->is_empty()) {
6194       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6195       _free_count.increment(1u, hr->capacity());
6196     } else if (hr->is_old()) {
6197       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6198       _old_count.increment(1u, hr->capacity());
6199     } else {
6200       // There are no other valid region types. Check for one invalid
6201       // one we can identify: pinned without old or humongous set.
6202       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6203       ShouldNotReachHere();
6204     }
6205     return false;
6206   }
6207 
6208   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6209     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6210     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6211               old_set->total_capacity_bytes(), _old_count.capacity());
6212 
6213     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6214     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6215               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6216 
6217     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6218     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6219               free_list->total_capacity_bytes(), _free_count.capacity());
6220   }
6221 };
6222 
6223 void G1CollectedHeap::verify_region_sets() {
6224   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6225 
6226   // First, check the explicit lists.
6227   _hrm.verify();
6228   {
6229     // Given that a concurrent operation might be adding regions to
6230     // the secondary free list we have to take the lock before
6231     // verifying it.
6232     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6233     _secondary_free_list.verify_list();
6234   }
6235 
6236   // If a concurrent region freeing operation is in progress it will
6237   // be difficult to correctly attributed any free regions we come
6238   // across to the correct free list given that they might belong to
6239   // one of several (free_list, secondary_free_list, any local lists,
6240   // etc.). So, if that's the case we will skip the rest of the
6241   // verification operation. Alternatively, waiting for the concurrent
6242   // operation to complete will have a non-trivial effect on the GC's
6243   // operation (no concurrent operation will last longer than the
6244   // interval between two calls to verification) and it might hide
6245   // any issues that we would like to catch during testing.
6246   if (free_regions_coming()) {
6247     return;
6248   }
6249 
6250   // Make sure we append the secondary_free_list on the free_list so
6251   // that all free regions we will come across can be safely
6252   // attributed to the free_list.
6253   append_secondary_free_list_if_not_empty_with_lock();
6254 
6255   // Finally, make sure that the region accounting in the lists is
6256   // consistent with what we see in the heap.
6257 
6258   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6259   heap_region_iterate(&cl);
6260   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6261 }
6262 
6263 // Optimized nmethod scanning
6264 
6265 class RegisterNMethodOopClosure: public OopClosure {
6266   G1CollectedHeap* _g1h;
6267   nmethod* _nm;
6268 
6269   template <class T> void do_oop_work(T* p) {
6270     T heap_oop = oopDesc::load_heap_oop(p);
6271     if (!oopDesc::is_null(heap_oop)) {
6272       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6273       HeapRegion* hr = _g1h->heap_region_containing(obj);
6274       assert(!hr->is_continues_humongous(),
6275              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6276              " starting at " HR_FORMAT,
6277              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6278 
6279       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6280       hr->add_strong_code_root_locked(_nm);
6281     }
6282   }
6283 
6284 public:
6285   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6286     _g1h(g1h), _nm(nm) {}
6287 
6288   void do_oop(oop* p)       { do_oop_work(p); }
6289   void do_oop(narrowOop* p) { do_oop_work(p); }
6290 };
6291 
6292 class UnregisterNMethodOopClosure: public OopClosure {
6293   G1CollectedHeap* _g1h;
6294   nmethod* _nm;
6295 
6296   template <class T> void do_oop_work(T* p) {
6297     T heap_oop = oopDesc::load_heap_oop(p);
6298     if (!oopDesc::is_null(heap_oop)) {
6299       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6300       HeapRegion* hr = _g1h->heap_region_containing(obj);
6301       assert(!hr->is_continues_humongous(),
6302              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6303              " starting at " HR_FORMAT,
6304              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6305 
6306       hr->remove_strong_code_root(_nm);
6307     }
6308   }
6309 
6310 public:
6311   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6312     _g1h(g1h), _nm(nm) {}
6313 
6314   void do_oop(oop* p)       { do_oop_work(p); }
6315   void do_oop(narrowOop* p) { do_oop_work(p); }
6316 };
6317 
6318 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6319   CollectedHeap::register_nmethod(nm);
6320 
6321   guarantee(nm != NULL, "sanity");
6322   RegisterNMethodOopClosure reg_cl(this, nm);
6323   nm->oops_do(&reg_cl);
6324 }
6325 
6326 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6327   CollectedHeap::unregister_nmethod(nm);
6328 
6329   guarantee(nm != NULL, "sanity");
6330   UnregisterNMethodOopClosure reg_cl(this, nm);
6331   nm->oops_do(&reg_cl, true);
6332 }
6333 
6334 void G1CollectedHeap::purge_code_root_memory() {
6335   double purge_start = os::elapsedTime();
6336   G1CodeRootSet::purge();
6337   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6338   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6339 }
6340 
6341 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6342   G1CollectedHeap* _g1h;
6343 
6344 public:
6345   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6346     _g1h(g1h) {}
6347 
6348   void do_code_blob(CodeBlob* cb) {
6349     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6350     if (nm == NULL) {
6351       return;
6352     }
6353 
6354     if (ScavengeRootsInCode) {
6355       _g1h->register_nmethod(nm);
6356     }
6357   }
6358 };
6359 
6360 void G1CollectedHeap::rebuild_strong_code_roots() {
6361   RebuildStrongCodeRootClosure blob_cl(this);
6362   CodeCache::blobs_do(&blob_cl);
6363 }