1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.inline.hpp"
  60 #include "memory/padded.hpp"
  61 #include "memory/resourceArea.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/globals_extension.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/memoryService.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 // statics
  76 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  77 bool CMSCollector::_full_gc_requested = false;
  78 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  79 
  80 //////////////////////////////////////////////////////////////////
  81 // In support of CMS/VM thread synchronization
  82 //////////////////////////////////////////////////////////////////
  83 // We split use of the CGC_lock into 2 "levels".
  84 // The low-level locking is of the usual CGC_lock monitor. We introduce
  85 // a higher level "token" (hereafter "CMS token") built on top of the
  86 // low level monitor (hereafter "CGC lock").
  87 // The token-passing protocol gives priority to the VM thread. The
  88 // CMS-lock doesn't provide any fairness guarantees, but clients
  89 // should ensure that it is only held for very short, bounded
  90 // durations.
  91 //
  92 // When either of the CMS thread or the VM thread is involved in
  93 // collection operations during which it does not want the other
  94 // thread to interfere, it obtains the CMS token.
  95 //
  96 // If either thread tries to get the token while the other has
  97 // it, that thread waits. However, if the VM thread and CMS thread
  98 // both want the token, then the VM thread gets priority while the
  99 // CMS thread waits. This ensures, for instance, that the "concurrent"
 100 // phases of the CMS thread's work do not block out the VM thread
 101 // for long periods of time as the CMS thread continues to hog
 102 // the token. (See bug 4616232).
 103 //
 104 // The baton-passing functions are, however, controlled by the
 105 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 106 // and here the low-level CMS lock, not the high level token,
 107 // ensures mutual exclusion.
 108 //
 109 // Two important conditions that we have to satisfy:
 110 // 1. if a thread does a low-level wait on the CMS lock, then it
 111 //    relinquishes the CMS token if it were holding that token
 112 //    when it acquired the low-level CMS lock.
 113 // 2. any low-level notifications on the low-level lock
 114 //    should only be sent when a thread has relinquished the token.
 115 //
 116 // In the absence of either property, we'd have potential deadlock.
 117 //
 118 // We protect each of the CMS (concurrent and sequential) phases
 119 // with the CMS _token_, not the CMS _lock_.
 120 //
 121 // The only code protected by CMS lock is the token acquisition code
 122 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 123 // baton-passing code.
 124 //
 125 // Unfortunately, i couldn't come up with a good abstraction to factor and
 126 // hide the naked CGC_lock manipulation in the baton-passing code
 127 // further below. That's something we should try to do. Also, the proof
 128 // of correctness of this 2-level locking scheme is far from obvious,
 129 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 130 // that there may be a theoretical possibility of delay/starvation in the
 131 // low-level lock/wait/notify scheme used for the baton-passing because of
 132 // potential interference with the priority scheme embodied in the
 133 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 134 // invocation further below and marked with "XXX 20011219YSR".
 135 // Indeed, as we note elsewhere, this may become yet more slippery
 136 // in the presence of multiple CMS and/or multiple VM threads. XXX
 137 
 138 class CMSTokenSync: public StackObj {
 139  private:
 140   bool _is_cms_thread;
 141  public:
 142   CMSTokenSync(bool is_cms_thread):
 143     _is_cms_thread(is_cms_thread) {
 144     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 145            "Incorrect argument to constructor");
 146     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 147   }
 148 
 149   ~CMSTokenSync() {
 150     assert(_is_cms_thread ?
 151              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 152              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 153           "Incorrect state");
 154     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 155   }
 156 };
 157 
 158 // Convenience class that does a CMSTokenSync, and then acquires
 159 // upto three locks.
 160 class CMSTokenSyncWithLocks: public CMSTokenSync {
 161  private:
 162   // Note: locks are acquired in textual declaration order
 163   // and released in the opposite order
 164   MutexLockerEx _locker1, _locker2, _locker3;
 165  public:
 166   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 167                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 168     CMSTokenSync(is_cms_thread),
 169     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 170     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 171     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 172   { }
 173 };
 174 
 175 
 176 //////////////////////////////////////////////////////////////////
 177 //  Concurrent Mark-Sweep Generation /////////////////////////////
 178 //////////////////////////////////////////////////////////////////
 179 
 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 181 
 182 // This struct contains per-thread things necessary to support parallel
 183 // young-gen collection.
 184 class CMSParGCThreadState: public CHeapObj<mtGC> {
 185  public:
 186   CompactibleFreeListSpaceLAB lab;
 187   PromotionInfo promo;
 188 
 189   // Constructor.
 190   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 191     promo.setSpace(cfls);
 192   }
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 197   CardGeneration(rs, initial_byte_size, ct),
 198   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 199   _did_compact(false)
 200 {
 201   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 202   HeapWord* end    = (HeapWord*) _virtual_space.high();
 203 
 204   _direct_allocated_words = 0;
 205   NOT_PRODUCT(
 206     _numObjectsPromoted = 0;
 207     _numWordsPromoted = 0;
 208     _numObjectsAllocated = 0;
 209     _numWordsAllocated = 0;
 210   )
 211 
 212   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_old_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              ParallelGCThreads,                   // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 307   // Generation Counters - generation 1, 1 subspace
 308   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 309       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 310 
 311   _space_counters = new GSpaceCounters(gen_name, 0,
 312                                        _virtual_space.reserved_size(),
 313                                        this, _gen_counters);
 314 }
 315 
 316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 317   _cms_gen(cms_gen)
 318 {
 319   assert(alpha <= 100, "bad value");
 320   _saved_alpha = alpha;
 321 
 322   // Initialize the alphas to the bootstrap value of 100.
 323   _gc0_alpha = _cms_alpha = 100;
 324 
 325   _cms_begin_time.update();
 326   _cms_end_time.update();
 327 
 328   _gc0_duration = 0.0;
 329   _gc0_period = 0.0;
 330   _gc0_promoted = 0;
 331 
 332   _cms_duration = 0.0;
 333   _cms_period = 0.0;
 334   _cms_allocated = 0;
 335 
 336   _cms_used_at_gc0_begin = 0;
 337   _cms_used_at_gc0_end = 0;
 338   _allow_duty_cycle_reduction = false;
 339   _valid_bits = 0;
 340 }
 341 
 342 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 343   // TBD: CR 6909490
 344   return 1.0;
 345 }
 346 
 347 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 348 }
 349 
 350 // If promotion failure handling is on use
 351 // the padded average size of the promotion for each
 352 // young generation collection.
 353 double CMSStats::time_until_cms_gen_full() const {
 354   size_t cms_free = _cms_gen->cmsSpace()->free();
 355   GenCollectedHeap* gch = GenCollectedHeap::heap();
 356   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 357                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 358   if (cms_free > expected_promotion) {
 359     // Start a cms collection if there isn't enough space to promote
 360     // for the next young collection.  Use the padded average as
 361     // a safety factor.
 362     cms_free -= expected_promotion;
 363 
 364     // Adjust by the safety factor.
 365     double cms_free_dbl = (double)cms_free;
 366     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 367     // Apply a further correction factor which tries to adjust
 368     // for recent occurance of concurrent mode failures.
 369     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 370     cms_free_dbl = cms_free_dbl * cms_adjustment;
 371 
 372     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 373                   cms_free, expected_promotion);
 374     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 375     // Add 1 in case the consumption rate goes to zero.
 376     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 377   }
 378   return 0.0;
 379 }
 380 
 381 // Compare the duration of the cms collection to the
 382 // time remaining before the cms generation is empty.
 383 // Note that the time from the start of the cms collection
 384 // to the start of the cms sweep (less than the total
 385 // duration of the cms collection) can be used.  This
 386 // has been tried and some applications experienced
 387 // promotion failures early in execution.  This was
 388 // possibly because the averages were not accurate
 389 // enough at the beginning.
 390 double CMSStats::time_until_cms_start() const {
 391   // We add "gc0_period" to the "work" calculation
 392   // below because this query is done (mostly) at the
 393   // end of a scavenge, so we need to conservatively
 394   // account for that much possible delay
 395   // in the query so as to avoid concurrent mode failures
 396   // due to starting the collection just a wee bit too
 397   // late.
 398   double work = cms_duration() + gc0_period();
 399   double deadline = time_until_cms_gen_full();
 400   // If a concurrent mode failure occurred recently, we want to be
 401   // more conservative and halve our expected time_until_cms_gen_full()
 402   if (work > deadline) {
 403     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 404                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 405     return 0.0;
 406   }
 407   return work - deadline;
 408 }
 409 
 410 #ifndef PRODUCT
 411 void CMSStats::print_on(outputStream *st) const {
 412   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 413   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 414                gc0_duration(), gc0_period(), gc0_promoted());
 415   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 416             cms_duration(), cms_period(), cms_allocated());
 417   st->print(",cms_since_beg=%g,cms_since_end=%g",
 418             cms_time_since_begin(), cms_time_since_end());
 419   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 420             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 421 
 422   if (valid()) {
 423     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 424               promotion_rate(), cms_allocation_rate());
 425     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 426               cms_consumption_rate(), time_until_cms_gen_full());
 427   }
 428   st->cr();
 429 }
 430 #endif // #ifndef PRODUCT
 431 
 432 CMSCollector::CollectorState CMSCollector::_collectorState =
 433                              CMSCollector::Idling;
 434 bool CMSCollector::_foregroundGCIsActive = false;
 435 bool CMSCollector::_foregroundGCShouldWait = false;
 436 
 437 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 438                            CardTableRS*                   ct,
 439                            ConcurrentMarkSweepPolicy*     cp):
 440   _cmsGen(cmsGen),
 441   _ct(ct),
 442   _ref_processor(NULL),    // will be set later
 443   _conc_workers(NULL),     // may be set later
 444   _abort_preclean(false),
 445   _start_sampling(false),
 446   _between_prologue_and_epilogue(false),
 447   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 448   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 449                  -1 /* lock-free */, "No_lock" /* dummy */),
 450   _modUnionClosurePar(&_modUnionTable),
 451   // Adjust my span to cover old (cms) gen
 452   _span(cmsGen->reserved()),
 453   // Construct the is_alive_closure with _span & markBitMap
 454   _is_alive_closure(_span, &_markBitMap),
 455   _restart_addr(NULL),
 456   _overflow_list(NULL),
 457   _stats(cmsGen),
 458   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 459                              //verify that this lock should be acquired with safepoint check.
 460                              Monitor::_safepoint_check_sometimes)),
 461   _eden_chunk_array(NULL),     // may be set in ctor body
 462   _eden_chunk_capacity(0),     // -- ditto --
 463   _eden_chunk_index(0),        // -- ditto --
 464   _survivor_plab_array(NULL),  // -- ditto --
 465   _survivor_chunk_array(NULL), // -- ditto --
 466   _survivor_chunk_capacity(0), // -- ditto --
 467   _survivor_chunk_index(0),    // -- ditto --
 468   _ser_pmc_preclean_ovflw(0),
 469   _ser_kac_preclean_ovflw(0),
 470   _ser_pmc_remark_ovflw(0),
 471   _par_pmc_remark_ovflw(0),
 472   _ser_kac_ovflw(0),
 473   _par_kac_ovflw(0),
 474 #ifndef PRODUCT
 475   _num_par_pushes(0),
 476 #endif
 477   _collection_count_start(0),
 478   _verifying(false),
 479   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 480   _completed_initialization(false),
 481   _collector_policy(cp),
 482   _should_unload_classes(CMSClassUnloadingEnabled),
 483   _concurrent_cycles_since_last_unload(0),
 484   _roots_scanning_options(GenCollectedHeap::SO_None),
 485   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 486   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 487   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 488   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 489   _cms_start_registered(false)
 490 {
 491   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 492     ExplicitGCInvokesConcurrent = true;
 493   }
 494   // Now expand the span and allocate the collection support structures
 495   // (MUT, marking bit map etc.) to cover both generations subject to
 496   // collection.
 497 
 498   // For use by dirty card to oop closures.
 499   _cmsGen->cmsSpace()->set_collector(this);
 500 
 501   // Allocate MUT and marking bit map
 502   {
 503     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 504     if (!_markBitMap.allocate(_span)) {
 505       log_warning(gc)("Failed to allocate CMS Bit Map");
 506       return;
 507     }
 508     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 509   }
 510   {
 511     _modUnionTable.allocate(_span);
 512     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 513   }
 514 
 515   if (!_markStack.allocate(MarkStackSize)) {
 516     log_warning(gc)("Failed to allocate CMS Marking Stack");
 517     return;
 518   }
 519 
 520   // Support for multi-threaded concurrent phases
 521   if (CMSConcurrentMTEnabled) {
 522     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 523       // just for now
 524       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 525     }
 526     if (ConcGCThreads > 1) {
 527       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 528                                  ConcGCThreads, true);
 529       if (_conc_workers == NULL) {
 530         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 531         CMSConcurrentMTEnabled = false;
 532       } else {
 533         _conc_workers->initialize_workers();
 534       }
 535     } else {
 536       CMSConcurrentMTEnabled = false;
 537     }
 538   }
 539   if (!CMSConcurrentMTEnabled) {
 540     ConcGCThreads = 0;
 541   } else {
 542     // Turn off CMSCleanOnEnter optimization temporarily for
 543     // the MT case where it's not fixed yet; see 6178663.
 544     CMSCleanOnEnter = false;
 545   }
 546   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 547          "Inconsistency");
 548   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 549   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 550 
 551   // Parallel task queues; these are shared for the
 552   // concurrent and stop-world phases of CMS, but
 553   // are not shared with parallel scavenge (ParNew).
 554   {
 555     uint i;
 556     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 557 
 558     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 559          || ParallelRefProcEnabled)
 560         && num_queues > 0) {
 561       _task_queues = new OopTaskQueueSet(num_queues);
 562       if (_task_queues == NULL) {
 563         log_warning(gc)("task_queues allocation failure.");
 564         return;
 565       }
 566       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 567       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 568       for (i = 0; i < num_queues; i++) {
 569         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 570         if (q == NULL) {
 571           log_warning(gc)("work_queue allocation failure.");
 572           return;
 573         }
 574         _task_queues->register_queue(i, q);
 575       }
 576       for (i = 0; i < num_queues; i++) {
 577         _task_queues->queue(i)->initialize();
 578         _hash_seed[i] = 17;  // copied from ParNew
 579       }
 580     }
 581   }
 582 
 583   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 584 
 585   // Clip CMSBootstrapOccupancy between 0 and 100.
 586   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 587 
 588   // Now tell CMS generations the identity of their collector
 589   ConcurrentMarkSweepGeneration::set_collector(this);
 590 
 591   // Create & start a CMS thread for this CMS collector
 592   _cmsThread = ConcurrentMarkSweepThread::start(this);
 593   assert(cmsThread() != NULL, "CMS Thread should have been created");
 594   assert(cmsThread()->collector() == this,
 595          "CMS Thread should refer to this gen");
 596   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 597 
 598   // Support for parallelizing young gen rescan
 599   GenCollectedHeap* gch = GenCollectedHeap::heap();
 600   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 601   _young_gen = (ParNewGeneration*)gch->young_gen();
 602   if (gch->supports_inline_contig_alloc()) {
 603     _top_addr = gch->top_addr();
 604     _end_addr = gch->end_addr();
 605     assert(_young_gen != NULL, "no _young_gen");
 606     _eden_chunk_index = 0;
 607     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 608     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 609   }
 610 
 611   // Support for parallelizing survivor space rescan
 612   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 613     const size_t max_plab_samples =
 614       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 615 
 616     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 617     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 618     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 619     _survivor_chunk_capacity = max_plab_samples;
 620     for (uint i = 0; i < ParallelGCThreads; i++) {
 621       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 622       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 623       assert(cur->end() == 0, "Should be 0");
 624       assert(cur->array() == vec, "Should be vec");
 625       assert(cur->capacity() == max_plab_samples, "Error");
 626     }
 627   }
 628 
 629   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 630   _gc_counters = new CollectorCounters("CMS", 1);
 631   _completed_initialization = true;
 632   _inter_sweep_timer.start();  // start of time
 633 }
 634 
 635 const char* ConcurrentMarkSweepGeneration::name() const {
 636   return "concurrent mark-sweep generation";
 637 }
 638 void ConcurrentMarkSweepGeneration::update_counters() {
 639   if (UsePerfData) {
 640     _space_counters->update_all();
 641     _gen_counters->update_all();
 642   }
 643 }
 644 
 645 // this is an optimized version of update_counters(). it takes the
 646 // used value as a parameter rather than computing it.
 647 //
 648 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 649   if (UsePerfData) {
 650     _space_counters->update_used(used);
 651     _space_counters->update_capacity();
 652     _gen_counters->update_all();
 653   }
 654 }
 655 
 656 void ConcurrentMarkSweepGeneration::print() const {
 657   Generation::print();
 658   cmsSpace()->print();
 659 }
 660 
 661 #ifndef PRODUCT
 662 void ConcurrentMarkSweepGeneration::print_statistics() {
 663   cmsSpace()->printFLCensus(0);
 664 }
 665 #endif
 666 
 667 size_t
 668 ConcurrentMarkSweepGeneration::contiguous_available() const {
 669   // dld proposes an improvement in precision here. If the committed
 670   // part of the space ends in a free block we should add that to
 671   // uncommitted size in the calculation below. Will make this
 672   // change later, staying with the approximation below for the
 673   // time being. -- ysr.
 674   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 675 }
 676 
 677 size_t
 678 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 679   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 680 }
 681 
 682 size_t ConcurrentMarkSweepGeneration::max_available() const {
 683   return free() + _virtual_space.uncommitted_size();
 684 }
 685 
 686 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 687   size_t available = max_available();
 688   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 689   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 690   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 691                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 692   return res;
 693 }
 694 
 695 // At a promotion failure dump information on block layout in heap
 696 // (cms old generation).
 697 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 698   Log(gc, promotion) log;
 699   if (log.is_trace()) {
 700     ResourceMark rm;
 701     cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
 702   }
 703 }
 704 
 705 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 706   // Clear the promotion information.  These pointers can be adjusted
 707   // along with all the other pointers into the heap but
 708   // compaction is expected to be a rare event with
 709   // a heap using cms so don't do it without seeing the need.
 710   for (uint i = 0; i < ParallelGCThreads; i++) {
 711     _par_gc_thread_states[i]->promo.reset();
 712   }
 713 }
 714 
 715 void ConcurrentMarkSweepGeneration::compute_new_size() {
 716   assert_locked_or_safepoint(Heap_lock);
 717 
 718   // If incremental collection failed, we just want to expand
 719   // to the limit.
 720   if (incremental_collection_failed()) {
 721     clear_incremental_collection_failed();
 722     grow_to_reserved();
 723     return;
 724   }
 725 
 726   // The heap has been compacted but not reset yet.
 727   // Any metric such as free() or used() will be incorrect.
 728 
 729   CardGeneration::compute_new_size();
 730 
 731   // Reset again after a possible resizing
 732   if (did_compact()) {
 733     cmsSpace()->reset_after_compaction();
 734   }
 735 }
 736 
 737 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 738   assert_locked_or_safepoint(Heap_lock);
 739 
 740   // If incremental collection failed, we just want to expand
 741   // to the limit.
 742   if (incremental_collection_failed()) {
 743     clear_incremental_collection_failed();
 744     grow_to_reserved();
 745     return;
 746   }
 747 
 748   double free_percentage = ((double) free()) / capacity();
 749   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 750   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 751 
 752   // compute expansion delta needed for reaching desired free percentage
 753   if (free_percentage < desired_free_percentage) {
 754     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 755     assert(desired_capacity >= capacity(), "invalid expansion size");
 756     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 757     Log(gc) log;
 758     if (log.is_trace()) {
 759       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 760       log.trace("From compute_new_size: ");
 761       log.trace("  Free fraction %f", free_percentage);
 762       log.trace("  Desired free fraction %f", desired_free_percentage);
 763       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 764       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 765       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 766       GenCollectedHeap* gch = GenCollectedHeap::heap();
 767       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 768       size_t young_size = gch->young_gen()->capacity();
 769       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 770       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 771       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 772       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 773     }
 774     // safe if expansion fails
 775     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 776     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 777   } else {
 778     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 779     assert(desired_capacity <= capacity(), "invalid expansion size");
 780     size_t shrink_bytes = capacity() - desired_capacity;
 781     // Don't shrink unless the delta is greater than the minimum shrink we want
 782     if (shrink_bytes >= MinHeapDeltaBytes) {
 783       shrink_free_list_by(shrink_bytes);
 784     }
 785   }
 786 }
 787 
 788 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 789   return cmsSpace()->freelistLock();
 790 }
 791 
 792 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 793   CMSSynchronousYieldRequest yr;
 794   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 795   return have_lock_and_allocate(size, tlab);
 796 }
 797 
 798 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 799                                                                 bool   tlab /* ignored */) {
 800   assert_lock_strong(freelistLock());
 801   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 802   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 803   // Allocate the object live (grey) if the background collector has
 804   // started marking. This is necessary because the marker may
 805   // have passed this address and consequently this object will
 806   // not otherwise be greyed and would be incorrectly swept up.
 807   // Note that if this object contains references, the writing
 808   // of those references will dirty the card containing this object
 809   // allowing the object to be blackened (and its references scanned)
 810   // either during a preclean phase or at the final checkpoint.
 811   if (res != NULL) {
 812     // We may block here with an uninitialized object with
 813     // its mark-bit or P-bits not yet set. Such objects need
 814     // to be safely navigable by block_start().
 815     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 816     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 817     collector()->direct_allocated(res, adjustedSize);
 818     _direct_allocated_words += adjustedSize;
 819     // allocation counters
 820     NOT_PRODUCT(
 821       _numObjectsAllocated++;
 822       _numWordsAllocated += (int)adjustedSize;
 823     )
 824   }
 825   return res;
 826 }
 827 
 828 // In the case of direct allocation by mutators in a generation that
 829 // is being concurrently collected, the object must be allocated
 830 // live (grey) if the background collector has started marking.
 831 // This is necessary because the marker may
 832 // have passed this address and consequently this object will
 833 // not otherwise be greyed and would be incorrectly swept up.
 834 // Note that if this object contains references, the writing
 835 // of those references will dirty the card containing this object
 836 // allowing the object to be blackened (and its references scanned)
 837 // either during a preclean phase or at the final checkpoint.
 838 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 839   assert(_markBitMap.covers(start, size), "Out of bounds");
 840   if (_collectorState >= Marking) {
 841     MutexLockerEx y(_markBitMap.lock(),
 842                     Mutex::_no_safepoint_check_flag);
 843     // [see comments preceding SweepClosure::do_blk() below for details]
 844     //
 845     // Can the P-bits be deleted now?  JJJ
 846     //
 847     // 1. need to mark the object as live so it isn't collected
 848     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 849     // 3. need to mark the end of the object so marking, precleaning or sweeping
 850     //    can skip over uninitialized or unparsable objects. An allocated
 851     //    object is considered uninitialized for our purposes as long as
 852     //    its klass word is NULL.  All old gen objects are parsable
 853     //    as soon as they are initialized.)
 854     _markBitMap.mark(start);          // object is live
 855     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 856     _markBitMap.mark(start + size - 1);
 857                                       // mark end of object
 858   }
 859   // check that oop looks uninitialized
 860   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 861 }
 862 
 863 void CMSCollector::promoted(bool par, HeapWord* start,
 864                             bool is_obj_array, size_t obj_size) {
 865   assert(_markBitMap.covers(start), "Out of bounds");
 866   // See comment in direct_allocated() about when objects should
 867   // be allocated live.
 868   if (_collectorState >= Marking) {
 869     // we already hold the marking bit map lock, taken in
 870     // the prologue
 871     if (par) {
 872       _markBitMap.par_mark(start);
 873     } else {
 874       _markBitMap.mark(start);
 875     }
 876     // We don't need to mark the object as uninitialized (as
 877     // in direct_allocated above) because this is being done with the
 878     // world stopped and the object will be initialized by the
 879     // time the marking, precleaning or sweeping get to look at it.
 880     // But see the code for copying objects into the CMS generation,
 881     // where we need to ensure that concurrent readers of the
 882     // block offset table are able to safely navigate a block that
 883     // is in flux from being free to being allocated (and in
 884     // transition while being copied into) and subsequently
 885     // becoming a bona-fide object when the copy/promotion is complete.
 886     assert(SafepointSynchronize::is_at_safepoint(),
 887            "expect promotion only at safepoints");
 888 
 889     if (_collectorState < Sweeping) {
 890       // Mark the appropriate cards in the modUnionTable, so that
 891       // this object gets scanned before the sweep. If this is
 892       // not done, CMS generation references in the object might
 893       // not get marked.
 894       // For the case of arrays, which are otherwise precisely
 895       // marked, we need to dirty the entire array, not just its head.
 896       if (is_obj_array) {
 897         // The [par_]mark_range() method expects mr.end() below to
 898         // be aligned to the granularity of a bit's representation
 899         // in the heap. In the case of the MUT below, that's a
 900         // card size.
 901         MemRegion mr(start,
 902                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 903                         CardTableModRefBS::card_size /* bytes */));
 904         if (par) {
 905           _modUnionTable.par_mark_range(mr);
 906         } else {
 907           _modUnionTable.mark_range(mr);
 908         }
 909       } else {  // not an obj array; we can just mark the head
 910         if (par) {
 911           _modUnionTable.par_mark(start);
 912         } else {
 913           _modUnionTable.mark(start);
 914         }
 915       }
 916     }
 917   }
 918 }
 919 
 920 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 921   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 922   // allocate, copy and if necessary update promoinfo --
 923   // delegate to underlying space.
 924   assert_lock_strong(freelistLock());
 925 
 926 #ifndef PRODUCT
 927   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 928     return NULL;
 929   }
 930 #endif  // #ifndef PRODUCT
 931 
 932   oop res = _cmsSpace->promote(obj, obj_size);
 933   if (res == NULL) {
 934     // expand and retry
 935     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 936     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 937     // Since this is the old generation, we don't try to promote
 938     // into a more senior generation.
 939     res = _cmsSpace->promote(obj, obj_size);
 940   }
 941   if (res != NULL) {
 942     // See comment in allocate() about when objects should
 943     // be allocated live.
 944     assert(obj->is_oop(), "Will dereference klass pointer below");
 945     collector()->promoted(false,           // Not parallel
 946                           (HeapWord*)res, obj->is_objArray(), obj_size);
 947     // promotion counters
 948     NOT_PRODUCT(
 949       _numObjectsPromoted++;
 950       _numWordsPromoted +=
 951         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 952     )
 953   }
 954   return res;
 955 }
 956 
 957 
 958 // IMPORTANT: Notes on object size recognition in CMS.
 959 // ---------------------------------------------------
 960 // A block of storage in the CMS generation is always in
 961 // one of three states. A free block (FREE), an allocated
 962 // object (OBJECT) whose size() method reports the correct size,
 963 // and an intermediate state (TRANSIENT) in which its size cannot
 964 // be accurately determined.
 965 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 966 // -----------------------------------------------------
 967 // FREE:      klass_word & 1 == 1; mark_word holds block size
 968 //
 969 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 970 //            obj->size() computes correct size
 971 //
 972 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 973 //
 974 // STATE IDENTIFICATION: (64 bit+COOPS)
 975 // ------------------------------------
 976 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 977 //
 978 // OBJECT:    klass_word installed; klass_word != 0;
 979 //            obj->size() computes correct size
 980 //
 981 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 982 //
 983 //
 984 // STATE TRANSITION DIAGRAM
 985 //
 986 //        mut / parnew                     mut  /  parnew
 987 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 988 //  ^                                                                   |
 989 //  |------------------------ DEAD <------------------------------------|
 990 //         sweep                            mut
 991 //
 992 // While a block is in TRANSIENT state its size cannot be determined
 993 // so readers will either need to come back later or stall until
 994 // the size can be determined. Note that for the case of direct
 995 // allocation, P-bits, when available, may be used to determine the
 996 // size of an object that may not yet have been initialized.
 997 
 998 // Things to support parallel young-gen collection.
 999 oop
1000 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1001                                            oop old, markOop m,
1002                                            size_t word_sz) {
1003 #ifndef PRODUCT
1004   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1005     return NULL;
1006   }
1007 #endif  // #ifndef PRODUCT
1008 
1009   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1010   PromotionInfo* promoInfo = &ps->promo;
1011   // if we are tracking promotions, then first ensure space for
1012   // promotion (including spooling space for saving header if necessary).
1013   // then allocate and copy, then track promoted info if needed.
1014   // When tracking (see PromotionInfo::track()), the mark word may
1015   // be displaced and in this case restoration of the mark word
1016   // occurs in the (oop_since_save_marks_)iterate phase.
1017   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1018     // Out of space for allocating spooling buffers;
1019     // try expanding and allocating spooling buffers.
1020     if (!expand_and_ensure_spooling_space(promoInfo)) {
1021       return NULL;
1022     }
1023   }
1024   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1025   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1026   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1027   if (obj_ptr == NULL) {
1028      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1029      if (obj_ptr == NULL) {
1030        return NULL;
1031      }
1032   }
1033   oop obj = oop(obj_ptr);
1034   OrderAccess::storestore();
1035   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1036   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1037   // IMPORTANT: See note on object initialization for CMS above.
1038   // Otherwise, copy the object.  Here we must be careful to insert the
1039   // klass pointer last, since this marks the block as an allocated object.
1040   // Except with compressed oops it's the mark word.
1041   HeapWord* old_ptr = (HeapWord*)old;
1042   // Restore the mark word copied above.
1043   obj->set_mark(m);
1044   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1045   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1046   OrderAccess::storestore();
1047 
1048   if (UseCompressedClassPointers) {
1049     // Copy gap missed by (aligned) header size calculation below
1050     obj->set_klass_gap(old->klass_gap());
1051   }
1052   if (word_sz > (size_t)oopDesc::header_size()) {
1053     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1054                                  obj_ptr + oopDesc::header_size(),
1055                                  word_sz - oopDesc::header_size());
1056   }
1057 
1058   // Now we can track the promoted object, if necessary.  We take care
1059   // to delay the transition from uninitialized to full object
1060   // (i.e., insertion of klass pointer) until after, so that it
1061   // atomically becomes a promoted object.
1062   if (promoInfo->tracking()) {
1063     promoInfo->track((PromotedObject*)obj, old->klass());
1064   }
1065   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1066   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1067   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1068 
1069   // Finally, install the klass pointer (this should be volatile).
1070   OrderAccess::storestore();
1071   obj->set_klass(old->klass());
1072   // We should now be able to calculate the right size for this object
1073   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1074 
1075   collector()->promoted(true,          // parallel
1076                         obj_ptr, old->is_objArray(), word_sz);
1077 
1078   NOT_PRODUCT(
1079     Atomic::inc_ptr(&_numObjectsPromoted);
1080     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1081   )
1082 
1083   return obj;
1084 }
1085 
1086 void
1087 ConcurrentMarkSweepGeneration::
1088 par_promote_alloc_done(int thread_num) {
1089   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1090   ps->lab.retire(thread_num);
1091 }
1092 
1093 void
1094 ConcurrentMarkSweepGeneration::
1095 par_oop_since_save_marks_iterate_done(int thread_num) {
1096   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1097   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1098   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1099 
1100   // Because card-scanning has been completed, subsequent phases
1101   // (e.g., reference processing) will not need to recognize which
1102   // objects have been promoted during this GC. So, we can now disable
1103   // promotion tracking.
1104   ps->promo.stopTrackingPromotions();
1105 }
1106 
1107 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1108                                                    size_t size,
1109                                                    bool   tlab)
1110 {
1111   // We allow a STW collection only if a full
1112   // collection was requested.
1113   return full || should_allocate(size, tlab); // FIX ME !!!
1114   // This and promotion failure handling are connected at the
1115   // hip and should be fixed by untying them.
1116 }
1117 
1118 bool CMSCollector::shouldConcurrentCollect() {
1119   LogTarget(Trace, gc) log;
1120 
1121   if (_full_gc_requested) {
1122     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1123     return true;
1124   }
1125 
1126   FreelistLocker x(this);
1127   // ------------------------------------------------------------------
1128   // Print out lots of information which affects the initiation of
1129   // a collection.
1130   if (log.is_enabled() && stats().valid()) {
1131     log.print("CMSCollector shouldConcurrentCollect: ");
1132 
1133     LogStream out(log);
1134     stats().print_on(&out);
1135 
1136     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1137     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1138     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1139     log.print("promotion_rate=%g", stats().promotion_rate());
1140     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1141     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1142     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1143     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1144     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1145     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1146   }
1147   // ------------------------------------------------------------------
1148 
1149   // If the estimated time to complete a cms collection (cms_duration())
1150   // is less than the estimated time remaining until the cms generation
1151   // is full, start a collection.
1152   if (!UseCMSInitiatingOccupancyOnly) {
1153     if (stats().valid()) {
1154       if (stats().time_until_cms_start() == 0.0) {
1155         return true;
1156       }
1157     } else {
1158       // We want to conservatively collect somewhat early in order
1159       // to try and "bootstrap" our CMS/promotion statistics;
1160       // this branch will not fire after the first successful CMS
1161       // collection because the stats should then be valid.
1162       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1163         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1164                   _cmsGen->occupancy(), _bootstrap_occupancy);
1165         return true;
1166       }
1167     }
1168   }
1169 
1170   // Otherwise, we start a collection cycle if
1171   // old gen want a collection cycle started. Each may use
1172   // an appropriate criterion for making this decision.
1173   // XXX We need to make sure that the gen expansion
1174   // criterion dovetails well with this. XXX NEED TO FIX THIS
1175   if (_cmsGen->should_concurrent_collect()) {
1176     log.print("CMS old gen initiated");
1177     return true;
1178   }
1179 
1180   // We start a collection if we believe an incremental collection may fail;
1181   // this is not likely to be productive in practice because it's probably too
1182   // late anyway.
1183   GenCollectedHeap* gch = GenCollectedHeap::heap();
1184   assert(gch->collector_policy()->is_generation_policy(),
1185          "You may want to check the correctness of the following");
1186   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1187     log.print("CMSCollector: collect because incremental collection will fail ");
1188     return true;
1189   }
1190 
1191   if (MetaspaceGC::should_concurrent_collect()) {
1192     log.print("CMSCollector: collect for metadata allocation ");
1193     return true;
1194   }
1195 
1196   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1197   if (CMSTriggerInterval >= 0) {
1198     if (CMSTriggerInterval == 0) {
1199       // Trigger always
1200       return true;
1201     }
1202 
1203     // Check the CMS time since begin (we do not check the stats validity
1204     // as we want to be able to trigger the first CMS cycle as well)
1205     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1206       if (stats().valid()) {
1207         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1208                   stats().cms_time_since_begin());
1209       } else {
1210         log.print("CMSCollector: collect because of trigger interval (first collection)");
1211       }
1212       return true;
1213     }
1214   }
1215 
1216   return false;
1217 }
1218 
1219 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1220 
1221 // Clear _expansion_cause fields of constituent generations
1222 void CMSCollector::clear_expansion_cause() {
1223   _cmsGen->clear_expansion_cause();
1224 }
1225 
1226 // We should be conservative in starting a collection cycle.  To
1227 // start too eagerly runs the risk of collecting too often in the
1228 // extreme.  To collect too rarely falls back on full collections,
1229 // which works, even if not optimum in terms of concurrent work.
1230 // As a work around for too eagerly collecting, use the flag
1231 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1232 // giving the user an easily understandable way of controlling the
1233 // collections.
1234 // We want to start a new collection cycle if any of the following
1235 // conditions hold:
1236 // . our current occupancy exceeds the configured initiating occupancy
1237 //   for this generation, or
1238 // . we recently needed to expand this space and have not, since that
1239 //   expansion, done a collection of this generation, or
1240 // . the underlying space believes that it may be a good idea to initiate
1241 //   a concurrent collection (this may be based on criteria such as the
1242 //   following: the space uses linear allocation and linear allocation is
1243 //   going to fail, or there is believed to be excessive fragmentation in
1244 //   the generation, etc... or ...
1245 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1246 //   the case of the old generation; see CR 6543076):
1247 //   we may be approaching a point at which allocation requests may fail because
1248 //   we will be out of sufficient free space given allocation rate estimates.]
1249 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1250 
1251   assert_lock_strong(freelistLock());
1252   if (occupancy() > initiating_occupancy()) {
1253     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1254                   short_name(), occupancy(), initiating_occupancy());
1255     return true;
1256   }
1257   if (UseCMSInitiatingOccupancyOnly) {
1258     return false;
1259   }
1260   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1261     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1262     return true;
1263   }
1264   return false;
1265 }
1266 
1267 void ConcurrentMarkSweepGeneration::collect(bool   full,
1268                                             bool   clear_all_soft_refs,
1269                                             size_t size,
1270                                             bool   tlab)
1271 {
1272   collector()->collect(full, clear_all_soft_refs, size, tlab);
1273 }
1274 
1275 void CMSCollector::collect(bool   full,
1276                            bool   clear_all_soft_refs,
1277                            size_t size,
1278                            bool   tlab)
1279 {
1280   // The following "if" branch is present for defensive reasons.
1281   // In the current uses of this interface, it can be replaced with:
1282   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1283   // But I am not placing that assert here to allow future
1284   // generality in invoking this interface.
1285   if (GCLocker::is_active()) {
1286     // A consistency test for GCLocker
1287     assert(GCLocker::needs_gc(), "Should have been set already");
1288     // Skip this foreground collection, instead
1289     // expanding the heap if necessary.
1290     // Need the free list locks for the call to free() in compute_new_size()
1291     compute_new_size();
1292     return;
1293   }
1294   acquire_control_and_collect(full, clear_all_soft_refs);
1295 }
1296 
1297 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1298   GenCollectedHeap* gch = GenCollectedHeap::heap();
1299   unsigned int gc_count = gch->total_full_collections();
1300   if (gc_count == full_gc_count) {
1301     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1302     _full_gc_requested = true;
1303     _full_gc_cause = cause;
1304     CGC_lock->notify();   // nudge CMS thread
1305   } else {
1306     assert(gc_count > full_gc_count, "Error: causal loop");
1307   }
1308 }
1309 
1310 bool CMSCollector::is_external_interruption() {
1311   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1312   return GCCause::is_user_requested_gc(cause) ||
1313          GCCause::is_serviceability_requested_gc(cause);
1314 }
1315 
1316 void CMSCollector::report_concurrent_mode_interruption() {
1317   if (is_external_interruption()) {
1318     log_debug(gc)("Concurrent mode interrupted");
1319   } else {
1320     log_debug(gc)("Concurrent mode failure");
1321     _gc_tracer_cm->report_concurrent_mode_failure();
1322   }
1323 }
1324 
1325 
1326 // The foreground and background collectors need to coordinate in order
1327 // to make sure that they do not mutually interfere with CMS collections.
1328 // When a background collection is active,
1329 // the foreground collector may need to take over (preempt) and
1330 // synchronously complete an ongoing collection. Depending on the
1331 // frequency of the background collections and the heap usage
1332 // of the application, this preemption can be seldom or frequent.
1333 // There are only certain
1334 // points in the background collection that the "collection-baton"
1335 // can be passed to the foreground collector.
1336 //
1337 // The foreground collector will wait for the baton before
1338 // starting any part of the collection.  The foreground collector
1339 // will only wait at one location.
1340 //
1341 // The background collector will yield the baton before starting a new
1342 // phase of the collection (e.g., before initial marking, marking from roots,
1343 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1344 // of the loop which switches the phases. The background collector does some
1345 // of the phases (initial mark, final re-mark) with the world stopped.
1346 // Because of locking involved in stopping the world,
1347 // the foreground collector should not block waiting for the background
1348 // collector when it is doing a stop-the-world phase.  The background
1349 // collector will yield the baton at an additional point just before
1350 // it enters a stop-the-world phase.  Once the world is stopped, the
1351 // background collector checks the phase of the collection.  If the
1352 // phase has not changed, it proceeds with the collection.  If the
1353 // phase has changed, it skips that phase of the collection.  See
1354 // the comments on the use of the Heap_lock in collect_in_background().
1355 //
1356 // Variable used in baton passing.
1357 //   _foregroundGCIsActive - Set to true by the foreground collector when
1358 //      it wants the baton.  The foreground clears it when it has finished
1359 //      the collection.
1360 //   _foregroundGCShouldWait - Set to true by the background collector
1361 //        when it is running.  The foreground collector waits while
1362 //      _foregroundGCShouldWait is true.
1363 //  CGC_lock - monitor used to protect access to the above variables
1364 //      and to notify the foreground and background collectors.
1365 //  _collectorState - current state of the CMS collection.
1366 //
1367 // The foreground collector
1368 //   acquires the CGC_lock
1369 //   sets _foregroundGCIsActive
1370 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1371 //     various locks acquired in preparation for the collection
1372 //     are released so as not to block the background collector
1373 //     that is in the midst of a collection
1374 //   proceeds with the collection
1375 //   clears _foregroundGCIsActive
1376 //   returns
1377 //
1378 // The background collector in a loop iterating on the phases of the
1379 //      collection
1380 //   acquires the CGC_lock
1381 //   sets _foregroundGCShouldWait
1382 //   if _foregroundGCIsActive is set
1383 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1384 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1385 //     and exits the loop.
1386 //   otherwise
1387 //     proceed with that phase of the collection
1388 //     if the phase is a stop-the-world phase,
1389 //       yield the baton once more just before enqueueing
1390 //       the stop-world CMS operation (executed by the VM thread).
1391 //   returns after all phases of the collection are done
1392 //
1393 
1394 void CMSCollector::acquire_control_and_collect(bool full,
1395         bool clear_all_soft_refs) {
1396   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1397   assert(!Thread::current()->is_ConcurrentGC_thread(),
1398          "shouldn't try to acquire control from self!");
1399 
1400   // Start the protocol for acquiring control of the
1401   // collection from the background collector (aka CMS thread).
1402   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1403          "VM thread should have CMS token");
1404   // Remember the possibly interrupted state of an ongoing
1405   // concurrent collection
1406   CollectorState first_state = _collectorState;
1407 
1408   // Signal to a possibly ongoing concurrent collection that
1409   // we want to do a foreground collection.
1410   _foregroundGCIsActive = true;
1411 
1412   // release locks and wait for a notify from the background collector
1413   // releasing the locks in only necessary for phases which
1414   // do yields to improve the granularity of the collection.
1415   assert_lock_strong(bitMapLock());
1416   // We need to lock the Free list lock for the space that we are
1417   // currently collecting.
1418   assert(haveFreelistLocks(), "Must be holding free list locks");
1419   bitMapLock()->unlock();
1420   releaseFreelistLocks();
1421   {
1422     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1423     if (_foregroundGCShouldWait) {
1424       // We are going to be waiting for action for the CMS thread;
1425       // it had better not be gone (for instance at shutdown)!
1426       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1427              "CMS thread must be running");
1428       // Wait here until the background collector gives us the go-ahead
1429       ConcurrentMarkSweepThread::clear_CMS_flag(
1430         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1431       // Get a possibly blocked CMS thread going:
1432       //   Note that we set _foregroundGCIsActive true above,
1433       //   without protection of the CGC_lock.
1434       CGC_lock->notify();
1435       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1436              "Possible deadlock");
1437       while (_foregroundGCShouldWait) {
1438         // wait for notification
1439         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1440         // Possibility of delay/starvation here, since CMS token does
1441         // not know to give priority to VM thread? Actually, i think
1442         // there wouldn't be any delay/starvation, but the proof of
1443         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1444       }
1445       ConcurrentMarkSweepThread::set_CMS_flag(
1446         ConcurrentMarkSweepThread::CMS_vm_has_token);
1447     }
1448   }
1449   // The CMS_token is already held.  Get back the other locks.
1450   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1451          "VM thread should have CMS token");
1452   getFreelistLocks();
1453   bitMapLock()->lock_without_safepoint_check();
1454   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1455                        p2i(Thread::current()), first_state);
1456   log_debug(gc, state)("    gets control with state %d", _collectorState);
1457 
1458   // Inform cms gen if this was due to partial collection failing.
1459   // The CMS gen may use this fact to determine its expansion policy.
1460   GenCollectedHeap* gch = GenCollectedHeap::heap();
1461   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1462     assert(!_cmsGen->incremental_collection_failed(),
1463            "Should have been noticed, reacted to and cleared");
1464     _cmsGen->set_incremental_collection_failed();
1465   }
1466 
1467   if (first_state > Idling) {
1468     report_concurrent_mode_interruption();
1469   }
1470 
1471   set_did_compact(true);
1472 
1473   // If the collection is being acquired from the background
1474   // collector, there may be references on the discovered
1475   // references lists.  Abandon those references, since some
1476   // of them may have become unreachable after concurrent
1477   // discovery; the STW compacting collector will redo discovery
1478   // more precisely, without being subject to floating garbage.
1479   // Leaving otherwise unreachable references in the discovered
1480   // lists would require special handling.
1481   ref_processor()->disable_discovery();
1482   ref_processor()->abandon_partial_discovery();
1483   ref_processor()->verify_no_references_recorded();
1484 
1485   if (first_state > Idling) {
1486     save_heap_summary();
1487   }
1488 
1489   do_compaction_work(clear_all_soft_refs);
1490 
1491   // Has the GC time limit been exceeded?
1492   size_t max_eden_size = _young_gen->max_eden_size();
1493   GCCause::Cause gc_cause = gch->gc_cause();
1494   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1495                                          _young_gen->eden()->used(),
1496                                          _cmsGen->max_capacity(),
1497                                          max_eden_size,
1498                                          full,
1499                                          gc_cause,
1500                                          gch->collector_policy());
1501 
1502   // Reset the expansion cause, now that we just completed
1503   // a collection cycle.
1504   clear_expansion_cause();
1505   _foregroundGCIsActive = false;
1506   return;
1507 }
1508 
1509 // Resize the tenured generation
1510 // after obtaining the free list locks for the
1511 // two generations.
1512 void CMSCollector::compute_new_size() {
1513   assert_locked_or_safepoint(Heap_lock);
1514   FreelistLocker z(this);
1515   MetaspaceGC::compute_new_size();
1516   _cmsGen->compute_new_size_free_list();
1517 }
1518 
1519 // A work method used by the foreground collector to do
1520 // a mark-sweep-compact.
1521 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1522   GenCollectedHeap* gch = GenCollectedHeap::heap();
1523 
1524   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1525   gc_timer->register_gc_start();
1526 
1527   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1528   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1529 
1530   gch->pre_full_gc_dump(gc_timer);
1531 
1532   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1533 
1534   // Temporarily widen the span of the weak reference processing to
1535   // the entire heap.
1536   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1537   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1538   // Temporarily, clear the "is_alive_non_header" field of the
1539   // reference processor.
1540   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1541   // Temporarily make reference _processing_ single threaded (non-MT).
1542   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1543   // Temporarily make refs discovery atomic
1544   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1545   // Temporarily make reference _discovery_ single threaded (non-MT)
1546   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1547 
1548   ref_processor()->set_enqueuing_is_done(false);
1549   ref_processor()->enable_discovery();
1550   ref_processor()->setup_policy(clear_all_soft_refs);
1551   // If an asynchronous collection finishes, the _modUnionTable is
1552   // all clear.  If we are assuming the collection from an asynchronous
1553   // collection, clear the _modUnionTable.
1554   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1555     "_modUnionTable should be clear if the baton was not passed");
1556   _modUnionTable.clear_all();
1557   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1558     "mod union for klasses should be clear if the baton was passed");
1559   _ct->klass_rem_set()->clear_mod_union();
1560 
1561   // We must adjust the allocation statistics being maintained
1562   // in the free list space. We do so by reading and clearing
1563   // the sweep timer and updating the block flux rate estimates below.
1564   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1565   if (_inter_sweep_timer.is_active()) {
1566     _inter_sweep_timer.stop();
1567     // Note that we do not use this sample to update the _inter_sweep_estimate.
1568     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1569                                             _inter_sweep_estimate.padded_average(),
1570                                             _intra_sweep_estimate.padded_average());
1571   }
1572 
1573   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1574   #ifdef ASSERT
1575     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1576     size_t free_size = cms_space->free();
1577     assert(free_size ==
1578            pointer_delta(cms_space->end(), cms_space->compaction_top())
1579            * HeapWordSize,
1580       "All the free space should be compacted into one chunk at top");
1581     assert(cms_space->dictionary()->total_chunk_size(
1582                                       debug_only(cms_space->freelistLock())) == 0 ||
1583            cms_space->totalSizeInIndexedFreeLists() == 0,
1584       "All the free space should be in a single chunk");
1585     size_t num = cms_space->totalCount();
1586     assert((free_size == 0 && num == 0) ||
1587            (free_size > 0  && (num == 1 || num == 2)),
1588          "There should be at most 2 free chunks after compaction");
1589   #endif // ASSERT
1590   _collectorState = Resetting;
1591   assert(_restart_addr == NULL,
1592          "Should have been NULL'd before baton was passed");
1593   reset_stw();
1594   _cmsGen->reset_after_compaction();
1595   _concurrent_cycles_since_last_unload = 0;
1596 
1597   // Clear any data recorded in the PLAB chunk arrays.
1598   if (_survivor_plab_array != NULL) {
1599     reset_survivor_plab_arrays();
1600   }
1601 
1602   // Adjust the per-size allocation stats for the next epoch.
1603   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1604   // Restart the "inter sweep timer" for the next epoch.
1605   _inter_sweep_timer.reset();
1606   _inter_sweep_timer.start();
1607 
1608   // No longer a need to do a concurrent collection for Metaspace.
1609   MetaspaceGC::set_should_concurrent_collect(false);
1610 
1611   gch->post_full_gc_dump(gc_timer);
1612 
1613   gc_timer->register_gc_end();
1614 
1615   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1616 
1617   // For a mark-sweep-compact, compute_new_size() will be called
1618   // in the heap's do_collection() method.
1619 }
1620 
1621 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1622   Log(gc, heap) log;
1623   if (!log.is_trace()) {
1624     return;
1625   }
1626 
1627   ContiguousSpace* eden_space = _young_gen->eden();
1628   ContiguousSpace* from_space = _young_gen->from();
1629   ContiguousSpace* to_space   = _young_gen->to();
1630   // Eden
1631   if (_eden_chunk_array != NULL) {
1632     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1633               p2i(eden_space->bottom()), p2i(eden_space->top()),
1634               p2i(eden_space->end()), eden_space->capacity());
1635     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1636               _eden_chunk_index, _eden_chunk_capacity);
1637     for (size_t i = 0; i < _eden_chunk_index; i++) {
1638       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1639     }
1640   }
1641   // Survivor
1642   if (_survivor_chunk_array != NULL) {
1643     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1644               p2i(from_space->bottom()), p2i(from_space->top()),
1645               p2i(from_space->end()), from_space->capacity());
1646     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1647               _survivor_chunk_index, _survivor_chunk_capacity);
1648     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1649       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1650     }
1651   }
1652 }
1653 
1654 void CMSCollector::getFreelistLocks() const {
1655   // Get locks for all free lists in all generations that this
1656   // collector is responsible for
1657   _cmsGen->freelistLock()->lock_without_safepoint_check();
1658 }
1659 
1660 void CMSCollector::releaseFreelistLocks() const {
1661   // Release locks for all free lists in all generations that this
1662   // collector is responsible for
1663   _cmsGen->freelistLock()->unlock();
1664 }
1665 
1666 bool CMSCollector::haveFreelistLocks() const {
1667   // Check locks for all free lists in all generations that this
1668   // collector is responsible for
1669   assert_lock_strong(_cmsGen->freelistLock());
1670   PRODUCT_ONLY(ShouldNotReachHere());
1671   return true;
1672 }
1673 
1674 // A utility class that is used by the CMS collector to
1675 // temporarily "release" the foreground collector from its
1676 // usual obligation to wait for the background collector to
1677 // complete an ongoing phase before proceeding.
1678 class ReleaseForegroundGC: public StackObj {
1679  private:
1680   CMSCollector* _c;
1681  public:
1682   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1683     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1684     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1685     // allow a potentially blocked foreground collector to proceed
1686     _c->_foregroundGCShouldWait = false;
1687     if (_c->_foregroundGCIsActive) {
1688       CGC_lock->notify();
1689     }
1690     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1691            "Possible deadlock");
1692   }
1693 
1694   ~ReleaseForegroundGC() {
1695     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1696     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1697     _c->_foregroundGCShouldWait = true;
1698   }
1699 };
1700 
1701 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1702   assert(Thread::current()->is_ConcurrentGC_thread(),
1703     "A CMS asynchronous collection is only allowed on a CMS thread.");
1704 
1705   GenCollectedHeap* gch = GenCollectedHeap::heap();
1706   {
1707     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1708     MutexLockerEx hl(Heap_lock, safepoint_check);
1709     FreelistLocker fll(this);
1710     MutexLockerEx x(CGC_lock, safepoint_check);
1711     if (_foregroundGCIsActive) {
1712       // The foreground collector is. Skip this
1713       // background collection.
1714       assert(!_foregroundGCShouldWait, "Should be clear");
1715       return;
1716     } else {
1717       assert(_collectorState == Idling, "Should be idling before start.");
1718       _collectorState = InitialMarking;
1719       register_gc_start(cause);
1720       // Reset the expansion cause, now that we are about to begin
1721       // a new cycle.
1722       clear_expansion_cause();
1723 
1724       // Clear the MetaspaceGC flag since a concurrent collection
1725       // is starting but also clear it after the collection.
1726       MetaspaceGC::set_should_concurrent_collect(false);
1727     }
1728     // Decide if we want to enable class unloading as part of the
1729     // ensuing concurrent GC cycle.
1730     update_should_unload_classes();
1731     _full_gc_requested = false;           // acks all outstanding full gc requests
1732     _full_gc_cause = GCCause::_no_gc;
1733     // Signal that we are about to start a collection
1734     gch->increment_total_full_collections();  // ... starting a collection cycle
1735     _collection_count_start = gch->total_full_collections();
1736   }
1737 
1738   size_t prev_used = _cmsGen->used();
1739 
1740   // The change of the collection state is normally done at this level;
1741   // the exceptions are phases that are executed while the world is
1742   // stopped.  For those phases the change of state is done while the
1743   // world is stopped.  For baton passing purposes this allows the
1744   // background collector to finish the phase and change state atomically.
1745   // The foreground collector cannot wait on a phase that is done
1746   // while the world is stopped because the foreground collector already
1747   // has the world stopped and would deadlock.
1748   while (_collectorState != Idling) {
1749     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1750                          p2i(Thread::current()), _collectorState);
1751     // The foreground collector
1752     //   holds the Heap_lock throughout its collection.
1753     //   holds the CMS token (but not the lock)
1754     //     except while it is waiting for the background collector to yield.
1755     //
1756     // The foreground collector should be blocked (not for long)
1757     //   if the background collector is about to start a phase
1758     //   executed with world stopped.  If the background
1759     //   collector has already started such a phase, the
1760     //   foreground collector is blocked waiting for the
1761     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1762     //   are executed in the VM thread.
1763     //
1764     // The locking order is
1765     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1766     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1767     //   CMS token  (claimed in
1768     //                stop_world_and_do() -->
1769     //                  safepoint_synchronize() -->
1770     //                    CMSThread::synchronize())
1771 
1772     {
1773       // Check if the FG collector wants us to yield.
1774       CMSTokenSync x(true); // is cms thread
1775       if (waitForForegroundGC()) {
1776         // We yielded to a foreground GC, nothing more to be
1777         // done this round.
1778         assert(_foregroundGCShouldWait == false, "We set it to false in "
1779                "waitForForegroundGC()");
1780         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1781                              p2i(Thread::current()), _collectorState);
1782         return;
1783       } else {
1784         // The background collector can run but check to see if the
1785         // foreground collector has done a collection while the
1786         // background collector was waiting to get the CGC_lock
1787         // above.  If yes, break so that _foregroundGCShouldWait
1788         // is cleared before returning.
1789         if (_collectorState == Idling) {
1790           break;
1791         }
1792       }
1793     }
1794 
1795     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1796       "should be waiting");
1797 
1798     switch (_collectorState) {
1799       case InitialMarking:
1800         {
1801           ReleaseForegroundGC x(this);
1802           stats().record_cms_begin();
1803           VM_CMS_Initial_Mark initial_mark_op(this);
1804           VMThread::execute(&initial_mark_op);
1805         }
1806         // The collector state may be any legal state at this point
1807         // since the background collector may have yielded to the
1808         // foreground collector.
1809         break;
1810       case Marking:
1811         // initial marking in checkpointRootsInitialWork has been completed
1812         if (markFromRoots()) { // we were successful
1813           assert(_collectorState == Precleaning, "Collector state should "
1814             "have changed");
1815         } else {
1816           assert(_foregroundGCIsActive, "Internal state inconsistency");
1817         }
1818         break;
1819       case Precleaning:
1820         // marking from roots in markFromRoots has been completed
1821         preclean();
1822         assert(_collectorState == AbortablePreclean ||
1823                _collectorState == FinalMarking,
1824                "Collector state should have changed");
1825         break;
1826       case AbortablePreclean:
1827         abortable_preclean();
1828         assert(_collectorState == FinalMarking, "Collector state should "
1829           "have changed");
1830         break;
1831       case FinalMarking:
1832         {
1833           ReleaseForegroundGC x(this);
1834 
1835           VM_CMS_Final_Remark final_remark_op(this);
1836           VMThread::execute(&final_remark_op);
1837         }
1838         assert(_foregroundGCShouldWait, "block post-condition");
1839         break;
1840       case Sweeping:
1841         // final marking in checkpointRootsFinal has been completed
1842         sweep();
1843         assert(_collectorState == Resizing, "Collector state change "
1844           "to Resizing must be done under the free_list_lock");
1845 
1846       case Resizing: {
1847         // Sweeping has been completed...
1848         // At this point the background collection has completed.
1849         // Don't move the call to compute_new_size() down
1850         // into code that might be executed if the background
1851         // collection was preempted.
1852         {
1853           ReleaseForegroundGC x(this);   // unblock FG collection
1854           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1855           CMSTokenSync        z(true);   // not strictly needed.
1856           if (_collectorState == Resizing) {
1857             compute_new_size();
1858             save_heap_summary();
1859             _collectorState = Resetting;
1860           } else {
1861             assert(_collectorState == Idling, "The state should only change"
1862                    " because the foreground collector has finished the collection");
1863           }
1864         }
1865         break;
1866       }
1867       case Resetting:
1868         // CMS heap resizing has been completed
1869         reset_concurrent();
1870         assert(_collectorState == Idling, "Collector state should "
1871           "have changed");
1872 
1873         MetaspaceGC::set_should_concurrent_collect(false);
1874 
1875         stats().record_cms_end();
1876         // Don't move the concurrent_phases_end() and compute_new_size()
1877         // calls to here because a preempted background collection
1878         // has it's state set to "Resetting".
1879         break;
1880       case Idling:
1881       default:
1882         ShouldNotReachHere();
1883         break;
1884     }
1885     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1886                          p2i(Thread::current()), _collectorState);
1887     assert(_foregroundGCShouldWait, "block post-condition");
1888   }
1889 
1890   // Should this be in gc_epilogue?
1891   collector_policy()->counters()->update_counters();
1892 
1893   {
1894     // Clear _foregroundGCShouldWait and, in the event that the
1895     // foreground collector is waiting, notify it, before
1896     // returning.
1897     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1898     _foregroundGCShouldWait = false;
1899     if (_foregroundGCIsActive) {
1900       CGC_lock->notify();
1901     }
1902     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1903            "Possible deadlock");
1904   }
1905   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1906                        p2i(Thread::current()), _collectorState);
1907   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1908                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1909 }
1910 
1911 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1912   _cms_start_registered = true;
1913   _gc_timer_cm->register_gc_start();
1914   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1915 }
1916 
1917 void CMSCollector::register_gc_end() {
1918   if (_cms_start_registered) {
1919     report_heap_summary(GCWhen::AfterGC);
1920 
1921     _gc_timer_cm->register_gc_end();
1922     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1923     _cms_start_registered = false;
1924   }
1925 }
1926 
1927 void CMSCollector::save_heap_summary() {
1928   GenCollectedHeap* gch = GenCollectedHeap::heap();
1929   _last_heap_summary = gch->create_heap_summary();
1930   _last_metaspace_summary = gch->create_metaspace_summary();
1931 }
1932 
1933 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1934   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1935   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1936 }
1937 
1938 bool CMSCollector::waitForForegroundGC() {
1939   bool res = false;
1940   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1941          "CMS thread should have CMS token");
1942   // Block the foreground collector until the
1943   // background collectors decides whether to
1944   // yield.
1945   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1946   _foregroundGCShouldWait = true;
1947   if (_foregroundGCIsActive) {
1948     // The background collector yields to the
1949     // foreground collector and returns a value
1950     // indicating that it has yielded.  The foreground
1951     // collector can proceed.
1952     res = true;
1953     _foregroundGCShouldWait = false;
1954     ConcurrentMarkSweepThread::clear_CMS_flag(
1955       ConcurrentMarkSweepThread::CMS_cms_has_token);
1956     ConcurrentMarkSweepThread::set_CMS_flag(
1957       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1958     // Get a possibly blocked foreground thread going
1959     CGC_lock->notify();
1960     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1961                          p2i(Thread::current()), _collectorState);
1962     while (_foregroundGCIsActive) {
1963       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1964     }
1965     ConcurrentMarkSweepThread::set_CMS_flag(
1966       ConcurrentMarkSweepThread::CMS_cms_has_token);
1967     ConcurrentMarkSweepThread::clear_CMS_flag(
1968       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1969   }
1970   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1971                        p2i(Thread::current()), _collectorState);
1972   return res;
1973 }
1974 
1975 // Because of the need to lock the free lists and other structures in
1976 // the collector, common to all the generations that the collector is
1977 // collecting, we need the gc_prologues of individual CMS generations
1978 // delegate to their collector. It may have been simpler had the
1979 // current infrastructure allowed one to call a prologue on a
1980 // collector. In the absence of that we have the generation's
1981 // prologue delegate to the collector, which delegates back
1982 // some "local" work to a worker method in the individual generations
1983 // that it's responsible for collecting, while itself doing any
1984 // work common to all generations it's responsible for. A similar
1985 // comment applies to the  gc_epilogue()'s.
1986 // The role of the variable _between_prologue_and_epilogue is to
1987 // enforce the invocation protocol.
1988 void CMSCollector::gc_prologue(bool full) {
1989   // Call gc_prologue_work() for the CMSGen
1990   // we are responsible for.
1991 
1992   // The following locking discipline assumes that we are only called
1993   // when the world is stopped.
1994   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1995 
1996   // The CMSCollector prologue must call the gc_prologues for the
1997   // "generations" that it's responsible
1998   // for.
1999 
2000   assert(   Thread::current()->is_VM_thread()
2001          || (   CMSScavengeBeforeRemark
2002              && Thread::current()->is_ConcurrentGC_thread()),
2003          "Incorrect thread type for prologue execution");
2004 
2005   if (_between_prologue_and_epilogue) {
2006     // We have already been invoked; this is a gc_prologue delegation
2007     // from yet another CMS generation that we are responsible for, just
2008     // ignore it since all relevant work has already been done.
2009     return;
2010   }
2011 
2012   // set a bit saying prologue has been called; cleared in epilogue
2013   _between_prologue_and_epilogue = true;
2014   // Claim locks for common data structures, then call gc_prologue_work()
2015   // for each CMSGen.
2016 
2017   getFreelistLocks();   // gets free list locks on constituent spaces
2018   bitMapLock()->lock_without_safepoint_check();
2019 
2020   // Should call gc_prologue_work() for all cms gens we are responsible for
2021   bool duringMarking =    _collectorState >= Marking
2022                          && _collectorState < Sweeping;
2023 
2024   // The young collections clear the modified oops state, which tells if
2025   // there are any modified oops in the class. The remark phase also needs
2026   // that information. Tell the young collection to save the union of all
2027   // modified klasses.
2028   if (duringMarking) {
2029     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2030   }
2031 
2032   bool registerClosure = duringMarking;
2033 
2034   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2035 
2036   if (!full) {
2037     stats().record_gc0_begin();
2038   }
2039 }
2040 
2041 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2042 
2043   _capacity_at_prologue = capacity();
2044   _used_at_prologue = used();
2045 
2046   // We enable promotion tracking so that card-scanning can recognize
2047   // which objects have been promoted during this GC and skip them.
2048   for (uint i = 0; i < ParallelGCThreads; i++) {
2049     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2050   }
2051 
2052   // Delegate to CMScollector which knows how to coordinate between
2053   // this and any other CMS generations that it is responsible for
2054   // collecting.
2055   collector()->gc_prologue(full);
2056 }
2057 
2058 // This is a "private" interface for use by this generation's CMSCollector.
2059 // Not to be called directly by any other entity (for instance,
2060 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2061 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2062   bool registerClosure, ModUnionClosure* modUnionClosure) {
2063   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2064   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2065     "Should be NULL");
2066   if (registerClosure) {
2067     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2068   }
2069   cmsSpace()->gc_prologue();
2070   // Clear stat counters
2071   NOT_PRODUCT(
2072     assert(_numObjectsPromoted == 0, "check");
2073     assert(_numWordsPromoted   == 0, "check");
2074     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2075                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2076     _numObjectsAllocated = 0;
2077     _numWordsAllocated   = 0;
2078   )
2079 }
2080 
2081 void CMSCollector::gc_epilogue(bool full) {
2082   // The following locking discipline assumes that we are only called
2083   // when the world is stopped.
2084   assert(SafepointSynchronize::is_at_safepoint(),
2085          "world is stopped assumption");
2086 
2087   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2088   // if linear allocation blocks need to be appropriately marked to allow the
2089   // the blocks to be parsable. We also check here whether we need to nudge the
2090   // CMS collector thread to start a new cycle (if it's not already active).
2091   assert(   Thread::current()->is_VM_thread()
2092          || (   CMSScavengeBeforeRemark
2093              && Thread::current()->is_ConcurrentGC_thread()),
2094          "Incorrect thread type for epilogue execution");
2095 
2096   if (!_between_prologue_and_epilogue) {
2097     // We have already been invoked; this is a gc_epilogue delegation
2098     // from yet another CMS generation that we are responsible for, just
2099     // ignore it since all relevant work has already been done.
2100     return;
2101   }
2102   assert(haveFreelistLocks(), "must have freelist locks");
2103   assert_lock_strong(bitMapLock());
2104 
2105   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2106 
2107   _cmsGen->gc_epilogue_work(full);
2108 
2109   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2110     // in case sampling was not already enabled, enable it
2111     _start_sampling = true;
2112   }
2113   // reset _eden_chunk_array so sampling starts afresh
2114   _eden_chunk_index = 0;
2115 
2116   size_t cms_used   = _cmsGen->cmsSpace()->used();
2117 
2118   // update performance counters - this uses a special version of
2119   // update_counters() that allows the utilization to be passed as a
2120   // parameter, avoiding multiple calls to used().
2121   //
2122   _cmsGen->update_counters(cms_used);
2123 
2124   bitMapLock()->unlock();
2125   releaseFreelistLocks();
2126 
2127   if (!CleanChunkPoolAsync) {
2128     Chunk::clean_chunk_pool();
2129   }
2130 
2131   set_did_compact(false);
2132   _between_prologue_and_epilogue = false;  // ready for next cycle
2133 }
2134 
2135 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2136   collector()->gc_epilogue(full);
2137 
2138   // When using ParNew, promotion tracking should have already been
2139   // disabled. However, the prologue (which enables promotion
2140   // tracking) and epilogue are called irrespective of the type of
2141   // GC. So they will also be called before and after Full GCs, during
2142   // which promotion tracking will not be explicitly disabled. So,
2143   // it's safer to also disable it here too (to be symmetric with
2144   // enabling it in the prologue).
2145   for (uint i = 0; i < ParallelGCThreads; i++) {
2146     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2147   }
2148 }
2149 
2150 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2151   assert(!incremental_collection_failed(), "Should have been cleared");
2152   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2153   cmsSpace()->gc_epilogue();
2154     // Print stat counters
2155   NOT_PRODUCT(
2156     assert(_numObjectsAllocated == 0, "check");
2157     assert(_numWordsAllocated == 0, "check");
2158     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2159                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2160     _numObjectsPromoted = 0;
2161     _numWordsPromoted   = 0;
2162   )
2163 
2164   // Call down the chain in contiguous_available needs the freelistLock
2165   // so print this out before releasing the freeListLock.
2166   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2167 }
2168 
2169 #ifndef PRODUCT
2170 bool CMSCollector::have_cms_token() {
2171   Thread* thr = Thread::current();
2172   if (thr->is_VM_thread()) {
2173     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2174   } else if (thr->is_ConcurrentGC_thread()) {
2175     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2176   } else if (thr->is_GC_task_thread()) {
2177     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2178            ParGCRareEvent_lock->owned_by_self();
2179   }
2180   return false;
2181 }
2182 
2183 // Check reachability of the given heap address in CMS generation,
2184 // treating all other generations as roots.
2185 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2186   // We could "guarantee" below, rather than assert, but I'll
2187   // leave these as "asserts" so that an adventurous debugger
2188   // could try this in the product build provided some subset of
2189   // the conditions were met, provided they were interested in the
2190   // results and knew that the computation below wouldn't interfere
2191   // with other concurrent computations mutating the structures
2192   // being read or written.
2193   assert(SafepointSynchronize::is_at_safepoint(),
2194          "Else mutations in object graph will make answer suspect");
2195   assert(have_cms_token(), "Should hold cms token");
2196   assert(haveFreelistLocks(), "must hold free list locks");
2197   assert_lock_strong(bitMapLock());
2198 
2199   // Clear the marking bit map array before starting, but, just
2200   // for kicks, first report if the given address is already marked
2201   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2202                 _markBitMap.isMarked(addr) ? "" : " not");
2203 
2204   if (verify_after_remark()) {
2205     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2206     bool result = verification_mark_bm()->isMarked(addr);
2207     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2208                   result ? "IS" : "is NOT");
2209     return result;
2210   } else {
2211     tty->print_cr("Could not compute result");
2212     return false;
2213   }
2214 }
2215 #endif
2216 
2217 void
2218 CMSCollector::print_on_error(outputStream* st) {
2219   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2220   if (collector != NULL) {
2221     CMSBitMap* bitmap = &collector->_markBitMap;
2222     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2223     bitmap->print_on_error(st, " Bits: ");
2224 
2225     st->cr();
2226 
2227     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2228     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2229     mut_bitmap->print_on_error(st, " Bits: ");
2230   }
2231 }
2232 
2233 ////////////////////////////////////////////////////////
2234 // CMS Verification Support
2235 ////////////////////////////////////////////////////////
2236 // Following the remark phase, the following invariant
2237 // should hold -- each object in the CMS heap which is
2238 // marked in markBitMap() should be marked in the verification_mark_bm().
2239 
2240 class VerifyMarkedClosure: public BitMapClosure {
2241   CMSBitMap* _marks;
2242   bool       _failed;
2243 
2244  public:
2245   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2246 
2247   bool do_bit(size_t offset) {
2248     HeapWord* addr = _marks->offsetToHeapWord(offset);
2249     if (!_marks->isMarked(addr)) {
2250       Log(gc, verify) log;
2251       ResourceMark rm;
2252       oop(addr)->print_on(log.error_stream());
2253       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2254       _failed = true;
2255     }
2256     return true;
2257   }
2258 
2259   bool failed() { return _failed; }
2260 };
2261 
2262 bool CMSCollector::verify_after_remark() {
2263   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2264   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2265   static bool init = false;
2266 
2267   assert(SafepointSynchronize::is_at_safepoint(),
2268          "Else mutations in object graph will make answer suspect");
2269   assert(have_cms_token(),
2270          "Else there may be mutual interference in use of "
2271          " verification data structures");
2272   assert(_collectorState > Marking && _collectorState <= Sweeping,
2273          "Else marking info checked here may be obsolete");
2274   assert(haveFreelistLocks(), "must hold free list locks");
2275   assert_lock_strong(bitMapLock());
2276 
2277 
2278   // Allocate marking bit map if not already allocated
2279   if (!init) { // first time
2280     if (!verification_mark_bm()->allocate(_span)) {
2281       return false;
2282     }
2283     init = true;
2284   }
2285 
2286   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2287 
2288   // Turn off refs discovery -- so we will be tracing through refs.
2289   // This is as intended, because by this time
2290   // GC must already have cleared any refs that need to be cleared,
2291   // and traced those that need to be marked; moreover,
2292   // the marking done here is not going to interfere in any
2293   // way with the marking information used by GC.
2294   NoRefDiscovery no_discovery(ref_processor());
2295 
2296 #if defined(COMPILER2) || INCLUDE_JVMCI
2297   DerivedPointerTableDeactivate dpt_deact;
2298 #endif
2299 
2300   // Clear any marks from a previous round
2301   verification_mark_bm()->clear_all();
2302   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2303   verify_work_stacks_empty();
2304 
2305   GenCollectedHeap* gch = GenCollectedHeap::heap();
2306   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2307   // Update the saved marks which may affect the root scans.
2308   gch->save_marks();
2309 
2310   if (CMSRemarkVerifyVariant == 1) {
2311     // In this first variant of verification, we complete
2312     // all marking, then check if the new marks-vector is
2313     // a subset of the CMS marks-vector.
2314     verify_after_remark_work_1();
2315   } else {
2316     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2317     // In this second variant of verification, we flag an error
2318     // (i.e. an object reachable in the new marks-vector not reachable
2319     // in the CMS marks-vector) immediately, also indicating the
2320     // identify of an object (A) that references the unmarked object (B) --
2321     // presumably, a mutation to A failed to be picked up by preclean/remark?
2322     verify_after_remark_work_2();
2323   }
2324 
2325   return true;
2326 }
2327 
2328 void CMSCollector::verify_after_remark_work_1() {
2329   ResourceMark rm;
2330   HandleMark  hm;
2331   GenCollectedHeap* gch = GenCollectedHeap::heap();
2332 
2333   // Get a clear set of claim bits for the roots processing to work with.
2334   ClassLoaderDataGraph::clear_claimed_marks();
2335 
2336   // Mark from roots one level into CMS
2337   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2338   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2339 
2340   {
2341     StrongRootsScope srs(1);
2342 
2343     gch->old_process_roots(&srs,
2344                            true,   // young gen as roots
2345                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2346                            should_unload_classes(),
2347                            &notOlder,
2348                            NULL);
2349   }
2350 
2351   // Now mark from the roots
2352   MarkFromRootsClosure markFromRootsClosure(this, _span,
2353     verification_mark_bm(), verification_mark_stack(),
2354     false /* don't yield */, true /* verifying */);
2355   assert(_restart_addr == NULL, "Expected pre-condition");
2356   verification_mark_bm()->iterate(&markFromRootsClosure);
2357   while (_restart_addr != NULL) {
2358     // Deal with stack overflow: by restarting at the indicated
2359     // address.
2360     HeapWord* ra = _restart_addr;
2361     markFromRootsClosure.reset(ra);
2362     _restart_addr = NULL;
2363     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2364   }
2365   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2366   verify_work_stacks_empty();
2367 
2368   // Marking completed -- now verify that each bit marked in
2369   // verification_mark_bm() is also marked in markBitMap(); flag all
2370   // errors by printing corresponding objects.
2371   VerifyMarkedClosure vcl(markBitMap());
2372   verification_mark_bm()->iterate(&vcl);
2373   if (vcl.failed()) {
2374     Log(gc, verify) log;
2375     log.error("Failed marking verification after remark");
2376     ResourceMark rm;
2377     gch->print_on(log.error_stream());
2378     fatal("CMS: failed marking verification after remark");
2379   }
2380 }
2381 
2382 class VerifyKlassOopsKlassClosure : public KlassClosure {
2383   class VerifyKlassOopsClosure : public OopClosure {
2384     CMSBitMap* _bitmap;
2385    public:
2386     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2387     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2388     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2389   } _oop_closure;
2390  public:
2391   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2392   void do_klass(Klass* k) {
2393     k->oops_do(&_oop_closure);
2394   }
2395 };
2396 
2397 void CMSCollector::verify_after_remark_work_2() {
2398   ResourceMark rm;
2399   HandleMark  hm;
2400   GenCollectedHeap* gch = GenCollectedHeap::heap();
2401 
2402   // Get a clear set of claim bits for the roots processing to work with.
2403   ClassLoaderDataGraph::clear_claimed_marks();
2404 
2405   // Mark from roots one level into CMS
2406   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2407                                      markBitMap());
2408   CLDToOopClosure cld_closure(&notOlder, true);
2409 
2410   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2411 
2412   {
2413     StrongRootsScope srs(1);
2414 
2415     gch->old_process_roots(&srs,
2416                            true,   // young gen as roots
2417                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2418                            should_unload_classes(),
2419                            &notOlder,
2420                            &cld_closure);
2421   }
2422 
2423   // Now mark from the roots
2424   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2425     verification_mark_bm(), markBitMap(), verification_mark_stack());
2426   assert(_restart_addr == NULL, "Expected pre-condition");
2427   verification_mark_bm()->iterate(&markFromRootsClosure);
2428   while (_restart_addr != NULL) {
2429     // Deal with stack overflow: by restarting at the indicated
2430     // address.
2431     HeapWord* ra = _restart_addr;
2432     markFromRootsClosure.reset(ra);
2433     _restart_addr = NULL;
2434     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2435   }
2436   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2437   verify_work_stacks_empty();
2438 
2439   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2440   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2441 
2442   // Marking completed -- now verify that each bit marked in
2443   // verification_mark_bm() is also marked in markBitMap(); flag all
2444   // errors by printing corresponding objects.
2445   VerifyMarkedClosure vcl(markBitMap());
2446   verification_mark_bm()->iterate(&vcl);
2447   assert(!vcl.failed(), "Else verification above should not have succeeded");
2448 }
2449 
2450 void ConcurrentMarkSweepGeneration::save_marks() {
2451   // delegate to CMS space
2452   cmsSpace()->save_marks();
2453 }
2454 
2455 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2456   return cmsSpace()->no_allocs_since_save_marks();
2457 }
2458 
2459 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2460                                                                 \
2461 void ConcurrentMarkSweepGeneration::                            \
2462 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2463   cl->set_generation(this);                                     \
2464   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2465   cl->reset_generation();                                       \
2466   save_marks();                                                 \
2467 }
2468 
2469 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2470 
2471 void
2472 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2473   if (freelistLock()->owned_by_self()) {
2474     Generation::oop_iterate(cl);
2475   } else {
2476     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2477     Generation::oop_iterate(cl);
2478   }
2479 }
2480 
2481 void
2482 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2483   if (freelistLock()->owned_by_self()) {
2484     Generation::object_iterate(cl);
2485   } else {
2486     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2487     Generation::object_iterate(cl);
2488   }
2489 }
2490 
2491 void
2492 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2493   if (freelistLock()->owned_by_self()) {
2494     Generation::safe_object_iterate(cl);
2495   } else {
2496     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2497     Generation::safe_object_iterate(cl);
2498   }
2499 }
2500 
2501 void
2502 ConcurrentMarkSweepGeneration::post_compact() {
2503 }
2504 
2505 void
2506 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2507   // Fix the linear allocation blocks to look like free blocks.
2508 
2509   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2510   // are not called when the heap is verified during universe initialization and
2511   // at vm shutdown.
2512   if (freelistLock()->owned_by_self()) {
2513     cmsSpace()->prepare_for_verify();
2514   } else {
2515     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2516     cmsSpace()->prepare_for_verify();
2517   }
2518 }
2519 
2520 void
2521 ConcurrentMarkSweepGeneration::verify() {
2522   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2523   // are not called when the heap is verified during universe initialization and
2524   // at vm shutdown.
2525   if (freelistLock()->owned_by_self()) {
2526     cmsSpace()->verify();
2527   } else {
2528     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2529     cmsSpace()->verify();
2530   }
2531 }
2532 
2533 void CMSCollector::verify() {
2534   _cmsGen->verify();
2535 }
2536 
2537 #ifndef PRODUCT
2538 bool CMSCollector::overflow_list_is_empty() const {
2539   assert(_num_par_pushes >= 0, "Inconsistency");
2540   if (_overflow_list == NULL) {
2541     assert(_num_par_pushes == 0, "Inconsistency");
2542   }
2543   return _overflow_list == NULL;
2544 }
2545 
2546 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2547 // merely consolidate assertion checks that appear to occur together frequently.
2548 void CMSCollector::verify_work_stacks_empty() const {
2549   assert(_markStack.isEmpty(), "Marking stack should be empty");
2550   assert(overflow_list_is_empty(), "Overflow list should be empty");
2551 }
2552 
2553 void CMSCollector::verify_overflow_empty() const {
2554   assert(overflow_list_is_empty(), "Overflow list should be empty");
2555   assert(no_preserved_marks(), "No preserved marks");
2556 }
2557 #endif // PRODUCT
2558 
2559 // Decide if we want to enable class unloading as part of the
2560 // ensuing concurrent GC cycle. We will collect and
2561 // unload classes if it's the case that:
2562 // (1) an explicit gc request has been made and the flag
2563 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2564 // (2) (a) class unloading is enabled at the command line, and
2565 //     (b) old gen is getting really full
2566 // NOTE: Provided there is no change in the state of the heap between
2567 // calls to this method, it should have idempotent results. Moreover,
2568 // its results should be monotonically increasing (i.e. going from 0 to 1,
2569 // but not 1 to 0) between successive calls between which the heap was
2570 // not collected. For the implementation below, it must thus rely on
2571 // the property that concurrent_cycles_since_last_unload()
2572 // will not decrease unless a collection cycle happened and that
2573 // _cmsGen->is_too_full() are
2574 // themselves also monotonic in that sense. See check_monotonicity()
2575 // below.
2576 void CMSCollector::update_should_unload_classes() {
2577   _should_unload_classes = false;
2578   // Condition 1 above
2579   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2580     _should_unload_classes = true;
2581   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2582     // Disjuncts 2.b.(i,ii,iii) above
2583     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2584                               CMSClassUnloadingMaxInterval)
2585                            || _cmsGen->is_too_full();
2586   }
2587 }
2588 
2589 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2590   bool res = should_concurrent_collect();
2591   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2592   return res;
2593 }
2594 
2595 void CMSCollector::setup_cms_unloading_and_verification_state() {
2596   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2597                              || VerifyBeforeExit;
2598   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2599 
2600   // We set the proper root for this CMS cycle here.
2601   if (should_unload_classes()) {   // Should unload classes this cycle
2602     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2603     set_verifying(should_verify);    // Set verification state for this cycle
2604     return;                            // Nothing else needs to be done at this time
2605   }
2606 
2607   // Not unloading classes this cycle
2608   assert(!should_unload_classes(), "Inconsistency!");
2609 
2610   // If we are not unloading classes then add SO_AllCodeCache to root
2611   // scanning options.
2612   add_root_scanning_option(rso);
2613 
2614   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2615     set_verifying(true);
2616   } else if (verifying() && !should_verify) {
2617     // We were verifying, but some verification flags got disabled.
2618     set_verifying(false);
2619     // Exclude symbols, strings and code cache elements from root scanning to
2620     // reduce IM and RM pauses.
2621     remove_root_scanning_option(rso);
2622   }
2623 }
2624 
2625 
2626 #ifndef PRODUCT
2627 HeapWord* CMSCollector::block_start(const void* p) const {
2628   const HeapWord* addr = (HeapWord*)p;
2629   if (_span.contains(p)) {
2630     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2631       return _cmsGen->cmsSpace()->block_start(p);
2632     }
2633   }
2634   return NULL;
2635 }
2636 #endif
2637 
2638 HeapWord*
2639 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2640                                                    bool   tlab,
2641                                                    bool   parallel) {
2642   CMSSynchronousYieldRequest yr;
2643   assert(!tlab, "Can't deal with TLAB allocation");
2644   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2645   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2646   if (GCExpandToAllocateDelayMillis > 0) {
2647     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2648   }
2649   return have_lock_and_allocate(word_size, tlab);
2650 }
2651 
2652 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2653     size_t bytes,
2654     size_t expand_bytes,
2655     CMSExpansionCause::Cause cause)
2656 {
2657 
2658   bool success = expand(bytes, expand_bytes);
2659 
2660   // remember why we expanded; this information is used
2661   // by shouldConcurrentCollect() when making decisions on whether to start
2662   // a new CMS cycle.
2663   if (success) {
2664     set_expansion_cause(cause);
2665     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2666   }
2667 }
2668 
2669 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2670   HeapWord* res = NULL;
2671   MutexLocker x(ParGCRareEvent_lock);
2672   while (true) {
2673     // Expansion by some other thread might make alloc OK now:
2674     res = ps->lab.alloc(word_sz);
2675     if (res != NULL) return res;
2676     // If there's not enough expansion space available, give up.
2677     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2678       return NULL;
2679     }
2680     // Otherwise, we try expansion.
2681     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2682     // Now go around the loop and try alloc again;
2683     // A competing par_promote might beat us to the expansion space,
2684     // so we may go around the loop again if promotion fails again.
2685     if (GCExpandToAllocateDelayMillis > 0) {
2686       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2687     }
2688   }
2689 }
2690 
2691 
2692 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2693   PromotionInfo* promo) {
2694   MutexLocker x(ParGCRareEvent_lock);
2695   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2696   while (true) {
2697     // Expansion by some other thread might make alloc OK now:
2698     if (promo->ensure_spooling_space()) {
2699       assert(promo->has_spooling_space(),
2700              "Post-condition of successful ensure_spooling_space()");
2701       return true;
2702     }
2703     // If there's not enough expansion space available, give up.
2704     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2705       return false;
2706     }
2707     // Otherwise, we try expansion.
2708     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2709     // Now go around the loop and try alloc again;
2710     // A competing allocation might beat us to the expansion space,
2711     // so we may go around the loop again if allocation fails again.
2712     if (GCExpandToAllocateDelayMillis > 0) {
2713       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2714     }
2715   }
2716 }
2717 
2718 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2719   // Only shrink if a compaction was done so that all the free space
2720   // in the generation is in a contiguous block at the end.
2721   if (did_compact()) {
2722     CardGeneration::shrink(bytes);
2723   }
2724 }
2725 
2726 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2727   assert_locked_or_safepoint(Heap_lock);
2728 }
2729 
2730 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2731   assert_locked_or_safepoint(Heap_lock);
2732   assert_lock_strong(freelistLock());
2733   log_trace(gc)("Shrinking of CMS not yet implemented");
2734   return;
2735 }
2736 
2737 
2738 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2739 // phases.
2740 class CMSPhaseAccounting: public StackObj {
2741  public:
2742   CMSPhaseAccounting(CMSCollector *collector,
2743                      const char *title);
2744   ~CMSPhaseAccounting();
2745 
2746  private:
2747   CMSCollector *_collector;
2748   const char *_title;
2749   GCTraceConcTime(Info, gc) _trace_time;
2750 
2751  public:
2752   // Not MT-safe; so do not pass around these StackObj's
2753   // where they may be accessed by other threads.
2754   double wallclock_millis() {
2755     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2756   }
2757 };
2758 
2759 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2760                                        const char *title) :
2761   _collector(collector), _title(title), _trace_time(title) {
2762 
2763   _collector->resetYields();
2764   _collector->resetTimer();
2765   _collector->startTimer();
2766   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2767 }
2768 
2769 CMSPhaseAccounting::~CMSPhaseAccounting() {
2770   _collector->gc_timer_cm()->register_gc_concurrent_end();
2771   _collector->stopTimer();
2772   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2773   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2774 }
2775 
2776 // CMS work
2777 
2778 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2779 class CMSParMarkTask : public AbstractGangTask {
2780  protected:
2781   CMSCollector*     _collector;
2782   uint              _n_workers;
2783   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2784       AbstractGangTask(name),
2785       _collector(collector),
2786       _n_workers(n_workers) {}
2787   // Work method in support of parallel rescan ... of young gen spaces
2788   void do_young_space_rescan(OopsInGenClosure* cl,
2789                              ContiguousSpace* space,
2790                              HeapWord** chunk_array, size_t chunk_top);
2791   void work_on_young_gen_roots(OopsInGenClosure* cl);
2792 };
2793 
2794 // Parallel initial mark task
2795 class CMSParInitialMarkTask: public CMSParMarkTask {
2796   StrongRootsScope* _strong_roots_scope;
2797  public:
2798   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2799       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2800       _strong_roots_scope(strong_roots_scope) {}
2801   void work(uint worker_id);
2802 };
2803 
2804 // Checkpoint the roots into this generation from outside
2805 // this generation. [Note this initial checkpoint need only
2806 // be approximate -- we'll do a catch up phase subsequently.]
2807 void CMSCollector::checkpointRootsInitial() {
2808   assert(_collectorState == InitialMarking, "Wrong collector state");
2809   check_correct_thread_executing();
2810   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2811 
2812   save_heap_summary();
2813   report_heap_summary(GCWhen::BeforeGC);
2814 
2815   ReferenceProcessor* rp = ref_processor();
2816   assert(_restart_addr == NULL, "Control point invariant");
2817   {
2818     // acquire locks for subsequent manipulations
2819     MutexLockerEx x(bitMapLock(),
2820                     Mutex::_no_safepoint_check_flag);
2821     checkpointRootsInitialWork();
2822     // enable ("weak") refs discovery
2823     rp->enable_discovery();
2824     _collectorState = Marking;
2825   }
2826 }
2827 
2828 void CMSCollector::checkpointRootsInitialWork() {
2829   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2830   assert(_collectorState == InitialMarking, "just checking");
2831 
2832   // Already have locks.
2833   assert_lock_strong(bitMapLock());
2834   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2835 
2836   // Setup the verification and class unloading state for this
2837   // CMS collection cycle.
2838   setup_cms_unloading_and_verification_state();
2839 
2840   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2841 
2842   // Reset all the PLAB chunk arrays if necessary.
2843   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2844     reset_survivor_plab_arrays();
2845   }
2846 
2847   ResourceMark rm;
2848   HandleMark  hm;
2849 
2850   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2851   GenCollectedHeap* gch = GenCollectedHeap::heap();
2852 
2853   verify_work_stacks_empty();
2854   verify_overflow_empty();
2855 
2856   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2857   // Update the saved marks which may affect the root scans.
2858   gch->save_marks();
2859 
2860   // weak reference processing has not started yet.
2861   ref_processor()->set_enqueuing_is_done(false);
2862 
2863   // Need to remember all newly created CLDs,
2864   // so that we can guarantee that the remark finds them.
2865   ClassLoaderDataGraph::remember_new_clds(true);
2866 
2867   // Whenever a CLD is found, it will be claimed before proceeding to mark
2868   // the klasses. The claimed marks need to be cleared before marking starts.
2869   ClassLoaderDataGraph::clear_claimed_marks();
2870 
2871   print_eden_and_survivor_chunk_arrays();
2872 
2873   {
2874 #if defined(COMPILER2) || INCLUDE_JVMCI
2875     DerivedPointerTableDeactivate dpt_deact;
2876 #endif
2877     if (CMSParallelInitialMarkEnabled) {
2878       // The parallel version.
2879       WorkGang* workers = gch->workers();
2880       assert(workers != NULL, "Need parallel worker threads.");
2881       uint n_workers = workers->active_workers();
2882 
2883       StrongRootsScope srs(n_workers);
2884 
2885       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2886       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2887       // If the total workers is greater than 1, then multiple workers
2888       // may be used at some time and the initialization has been set
2889       // such that the single threaded path cannot be used.
2890       if (workers->total_workers() > 1) {
2891         workers->run_task(&tsk);
2892       } else {
2893         tsk.work(0);
2894       }
2895     } else {
2896       // The serial version.
2897       CLDToOopClosure cld_closure(&notOlder, true);
2898       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2899 
2900       StrongRootsScope srs(1);
2901 
2902       gch->old_process_roots(&srs,
2903                              true,   // young gen as roots
2904                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2905                              should_unload_classes(),
2906                              &notOlder,
2907                              &cld_closure);
2908     }
2909   }
2910 
2911   // Clear mod-union table; it will be dirtied in the prologue of
2912   // CMS generation per each young generation collection.
2913 
2914   assert(_modUnionTable.isAllClear(),
2915        "Was cleared in most recent final checkpoint phase"
2916        " or no bits are set in the gc_prologue before the start of the next "
2917        "subsequent marking phase.");
2918 
2919   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2920 
2921   // Save the end of the used_region of the constituent generations
2922   // to be used to limit the extent of sweep in each generation.
2923   save_sweep_limits();
2924   verify_overflow_empty();
2925 }
2926 
2927 bool CMSCollector::markFromRoots() {
2928   // we might be tempted to assert that:
2929   // assert(!SafepointSynchronize::is_at_safepoint(),
2930   //        "inconsistent argument?");
2931   // However that wouldn't be right, because it's possible that
2932   // a safepoint is indeed in progress as a young generation
2933   // stop-the-world GC happens even as we mark in this generation.
2934   assert(_collectorState == Marking, "inconsistent state?");
2935   check_correct_thread_executing();
2936   verify_overflow_empty();
2937 
2938   // Weak ref discovery note: We may be discovering weak
2939   // refs in this generation concurrent (but interleaved) with
2940   // weak ref discovery by the young generation collector.
2941 
2942   CMSTokenSyncWithLocks ts(true, bitMapLock());
2943   GCTraceCPUTime tcpu;
2944   CMSPhaseAccounting pa(this, "Concurrent Mark");
2945   bool res = markFromRootsWork();
2946   if (res) {
2947     _collectorState = Precleaning;
2948   } else { // We failed and a foreground collection wants to take over
2949     assert(_foregroundGCIsActive, "internal state inconsistency");
2950     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2951     log_debug(gc)("bailing out to foreground collection");
2952   }
2953   verify_overflow_empty();
2954   return res;
2955 }
2956 
2957 bool CMSCollector::markFromRootsWork() {
2958   // iterate over marked bits in bit map, doing a full scan and mark
2959   // from these roots using the following algorithm:
2960   // . if oop is to the right of the current scan pointer,
2961   //   mark corresponding bit (we'll process it later)
2962   // . else (oop is to left of current scan pointer)
2963   //   push oop on marking stack
2964   // . drain the marking stack
2965 
2966   // Note that when we do a marking step we need to hold the
2967   // bit map lock -- recall that direct allocation (by mutators)
2968   // and promotion (by the young generation collector) is also
2969   // marking the bit map. [the so-called allocate live policy.]
2970   // Because the implementation of bit map marking is not
2971   // robust wrt simultaneous marking of bits in the same word,
2972   // we need to make sure that there is no such interference
2973   // between concurrent such updates.
2974 
2975   // already have locks
2976   assert_lock_strong(bitMapLock());
2977 
2978   verify_work_stacks_empty();
2979   verify_overflow_empty();
2980   bool result = false;
2981   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2982     result = do_marking_mt();
2983   } else {
2984     result = do_marking_st();
2985   }
2986   return result;
2987 }
2988 
2989 // Forward decl
2990 class CMSConcMarkingTask;
2991 
2992 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2993   CMSCollector*       _collector;
2994   CMSConcMarkingTask* _task;
2995  public:
2996   virtual void yield();
2997 
2998   // "n_threads" is the number of threads to be terminated.
2999   // "queue_set" is a set of work queues of other threads.
3000   // "collector" is the CMS collector associated with this task terminator.
3001   // "yield" indicates whether we need the gang as a whole to yield.
3002   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3003     ParallelTaskTerminator(n_threads, queue_set),
3004     _collector(collector) { }
3005 
3006   void set_task(CMSConcMarkingTask* task) {
3007     _task = task;
3008   }
3009 };
3010 
3011 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3012   CMSConcMarkingTask* _task;
3013  public:
3014   bool should_exit_termination();
3015   void set_task(CMSConcMarkingTask* task) {
3016     _task = task;
3017   }
3018 };
3019 
3020 // MT Concurrent Marking Task
3021 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3022   CMSCollector* _collector;
3023   uint          _n_workers;       // requested/desired # workers
3024   bool          _result;
3025   CompactibleFreeListSpace*  _cms_space;
3026   char          _pad_front[64];   // padding to ...
3027   HeapWord*     _global_finger;   // ... avoid sharing cache line
3028   char          _pad_back[64];
3029   HeapWord*     _restart_addr;
3030 
3031   //  Exposed here for yielding support
3032   Mutex* const _bit_map_lock;
3033 
3034   // The per thread work queues, available here for stealing
3035   OopTaskQueueSet*  _task_queues;
3036 
3037   // Termination (and yielding) support
3038   CMSConcMarkingTerminator _term;
3039   CMSConcMarkingTerminatorTerminator _term_term;
3040 
3041  public:
3042   CMSConcMarkingTask(CMSCollector* collector,
3043                  CompactibleFreeListSpace* cms_space,
3044                  YieldingFlexibleWorkGang* workers,
3045                  OopTaskQueueSet* task_queues):
3046     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3047     _collector(collector),
3048     _cms_space(cms_space),
3049     _n_workers(0), _result(true),
3050     _task_queues(task_queues),
3051     _term(_n_workers, task_queues, _collector),
3052     _bit_map_lock(collector->bitMapLock())
3053   {
3054     _requested_size = _n_workers;
3055     _term.set_task(this);
3056     _term_term.set_task(this);
3057     _restart_addr = _global_finger = _cms_space->bottom();
3058   }
3059 
3060 
3061   OopTaskQueueSet* task_queues()  { return _task_queues; }
3062 
3063   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3064 
3065   HeapWord** global_finger_addr() { return &_global_finger; }
3066 
3067   CMSConcMarkingTerminator* terminator() { return &_term; }
3068 
3069   virtual void set_for_termination(uint active_workers) {
3070     terminator()->reset_for_reuse(active_workers);
3071   }
3072 
3073   void work(uint worker_id);
3074   bool should_yield() {
3075     return    ConcurrentMarkSweepThread::should_yield()
3076            && !_collector->foregroundGCIsActive();
3077   }
3078 
3079   virtual void coordinator_yield();  // stuff done by coordinator
3080   bool result() { return _result; }
3081 
3082   void reset(HeapWord* ra) {
3083     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3084     _restart_addr = _global_finger = ra;
3085     _term.reset_for_reuse();
3086   }
3087 
3088   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3089                                            OopTaskQueue* work_q);
3090 
3091  private:
3092   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3093   void do_work_steal(int i);
3094   void bump_global_finger(HeapWord* f);
3095 };
3096 
3097 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3098   assert(_task != NULL, "Error");
3099   return _task->yielding();
3100   // Note that we do not need the disjunct || _task->should_yield() above
3101   // because we want terminating threads to yield only if the task
3102   // is already in the midst of yielding, which happens only after at least one
3103   // thread has yielded.
3104 }
3105 
3106 void CMSConcMarkingTerminator::yield() {
3107   if (_task->should_yield()) {
3108     _task->yield();
3109   } else {
3110     ParallelTaskTerminator::yield();
3111   }
3112 }
3113 
3114 ////////////////////////////////////////////////////////////////
3115 // Concurrent Marking Algorithm Sketch
3116 ////////////////////////////////////////////////////////////////
3117 // Until all tasks exhausted (both spaces):
3118 // -- claim next available chunk
3119 // -- bump global finger via CAS
3120 // -- find first object that starts in this chunk
3121 //    and start scanning bitmap from that position
3122 // -- scan marked objects for oops
3123 // -- CAS-mark target, and if successful:
3124 //    . if target oop is above global finger (volatile read)
3125 //      nothing to do
3126 //    . if target oop is in chunk and above local finger
3127 //        then nothing to do
3128 //    . else push on work-queue
3129 // -- Deal with possible overflow issues:
3130 //    . local work-queue overflow causes stuff to be pushed on
3131 //      global (common) overflow queue
3132 //    . always first empty local work queue
3133 //    . then get a batch of oops from global work queue if any
3134 //    . then do work stealing
3135 // -- When all tasks claimed (both spaces)
3136 //    and local work queue empty,
3137 //    then in a loop do:
3138 //    . check global overflow stack; steal a batch of oops and trace
3139 //    . try to steal from other threads oif GOS is empty
3140 //    . if neither is available, offer termination
3141 // -- Terminate and return result
3142 //
3143 void CMSConcMarkingTask::work(uint worker_id) {
3144   elapsedTimer _timer;
3145   ResourceMark rm;
3146   HandleMark hm;
3147 
3148   DEBUG_ONLY(_collector->verify_overflow_empty();)
3149 
3150   // Before we begin work, our work queue should be empty
3151   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3152   // Scan the bitmap covering _cms_space, tracing through grey objects.
3153   _timer.start();
3154   do_scan_and_mark(worker_id, _cms_space);
3155   _timer.stop();
3156   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3157 
3158   // ... do work stealing
3159   _timer.reset();
3160   _timer.start();
3161   do_work_steal(worker_id);
3162   _timer.stop();
3163   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3164   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3165   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3166   // Note that under the current task protocol, the
3167   // following assertion is true even of the spaces
3168   // expanded since the completion of the concurrent
3169   // marking. XXX This will likely change under a strict
3170   // ABORT semantics.
3171   // After perm removal the comparison was changed to
3172   // greater than or equal to from strictly greater than.
3173   // Before perm removal the highest address sweep would
3174   // have been at the end of perm gen but now is at the
3175   // end of the tenured gen.
3176   assert(_global_finger >=  _cms_space->end(),
3177          "All tasks have been completed");
3178   DEBUG_ONLY(_collector->verify_overflow_empty();)
3179 }
3180 
3181 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3182   HeapWord* read = _global_finger;
3183   HeapWord* cur  = read;
3184   while (f > read) {
3185     cur = read;
3186     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3187     if (cur == read) {
3188       // our cas succeeded
3189       assert(_global_finger >= f, "protocol consistency");
3190       break;
3191     }
3192   }
3193 }
3194 
3195 // This is really inefficient, and should be redone by
3196 // using (not yet available) block-read and -write interfaces to the
3197 // stack and the work_queue. XXX FIX ME !!!
3198 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3199                                                       OopTaskQueue* work_q) {
3200   // Fast lock-free check
3201   if (ovflw_stk->length() == 0) {
3202     return false;
3203   }
3204   assert(work_q->size() == 0, "Shouldn't steal");
3205   MutexLockerEx ml(ovflw_stk->par_lock(),
3206                    Mutex::_no_safepoint_check_flag);
3207   // Grab up to 1/4 the size of the work queue
3208   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3209                     (size_t)ParGCDesiredObjsFromOverflowList);
3210   num = MIN2(num, ovflw_stk->length());
3211   for (int i = (int) num; i > 0; i--) {
3212     oop cur = ovflw_stk->pop();
3213     assert(cur != NULL, "Counted wrong?");
3214     work_q->push(cur);
3215   }
3216   return num > 0;
3217 }
3218 
3219 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3220   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3221   int n_tasks = pst->n_tasks();
3222   // We allow that there may be no tasks to do here because
3223   // we are restarting after a stack overflow.
3224   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3225   uint nth_task = 0;
3226 
3227   HeapWord* aligned_start = sp->bottom();
3228   if (sp->used_region().contains(_restart_addr)) {
3229     // Align down to a card boundary for the start of 0th task
3230     // for this space.
3231     aligned_start =
3232       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3233                                  CardTableModRefBS::card_size);
3234   }
3235 
3236   size_t chunk_size = sp->marking_task_size();
3237   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3238     // Having claimed the nth task in this space,
3239     // compute the chunk that it corresponds to:
3240     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3241                                aligned_start + (nth_task+1)*chunk_size);
3242     // Try and bump the global finger via a CAS;
3243     // note that we need to do the global finger bump
3244     // _before_ taking the intersection below, because
3245     // the task corresponding to that region will be
3246     // deemed done even if the used_region() expands
3247     // because of allocation -- as it almost certainly will
3248     // during start-up while the threads yield in the
3249     // closure below.
3250     HeapWord* finger = span.end();
3251     bump_global_finger(finger);   // atomically
3252     // There are null tasks here corresponding to chunks
3253     // beyond the "top" address of the space.
3254     span = span.intersection(sp->used_region());
3255     if (!span.is_empty()) {  // Non-null task
3256       HeapWord* prev_obj;
3257       assert(!span.contains(_restart_addr) || nth_task == 0,
3258              "Inconsistency");
3259       if (nth_task == 0) {
3260         // For the 0th task, we'll not need to compute a block_start.
3261         if (span.contains(_restart_addr)) {
3262           // In the case of a restart because of stack overflow,
3263           // we might additionally skip a chunk prefix.
3264           prev_obj = _restart_addr;
3265         } else {
3266           prev_obj = span.start();
3267         }
3268       } else {
3269         // We want to skip the first object because
3270         // the protocol is to scan any object in its entirety
3271         // that _starts_ in this span; a fortiori, any
3272         // object starting in an earlier span is scanned
3273         // as part of an earlier claimed task.
3274         // Below we use the "careful" version of block_start
3275         // so we do not try to navigate uninitialized objects.
3276         prev_obj = sp->block_start_careful(span.start());
3277         // Below we use a variant of block_size that uses the
3278         // Printezis bits to avoid waiting for allocated
3279         // objects to become initialized/parsable.
3280         while (prev_obj < span.start()) {
3281           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3282           if (sz > 0) {
3283             prev_obj += sz;
3284           } else {
3285             // In this case we may end up doing a bit of redundant
3286             // scanning, but that appears unavoidable, short of
3287             // locking the free list locks; see bug 6324141.
3288             break;
3289           }
3290         }
3291       }
3292       if (prev_obj < span.end()) {
3293         MemRegion my_span = MemRegion(prev_obj, span.end());
3294         // Do the marking work within a non-empty span --
3295         // the last argument to the constructor indicates whether the
3296         // iteration should be incremental with periodic yields.
3297         ParMarkFromRootsClosure cl(this, _collector, my_span,
3298                                    &_collector->_markBitMap,
3299                                    work_queue(i),
3300                                    &_collector->_markStack);
3301         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3302       } // else nothing to do for this task
3303     }   // else nothing to do for this task
3304   }
3305   // We'd be tempted to assert here that since there are no
3306   // more tasks left to claim in this space, the global_finger
3307   // must exceed space->top() and a fortiori space->end(). However,
3308   // that would not quite be correct because the bumping of
3309   // global_finger occurs strictly after the claiming of a task,
3310   // so by the time we reach here the global finger may not yet
3311   // have been bumped up by the thread that claimed the last
3312   // task.
3313   pst->all_tasks_completed();
3314 }
3315 
3316 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3317  private:
3318   CMSCollector* _collector;
3319   CMSConcMarkingTask* _task;
3320   MemRegion     _span;
3321   CMSBitMap*    _bit_map;
3322   CMSMarkStack* _overflow_stack;
3323   OopTaskQueue* _work_queue;
3324  protected:
3325   DO_OOP_WORK_DEFN
3326  public:
3327   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3328                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3329     MetadataAwareOopClosure(collector->ref_processor()),
3330     _collector(collector),
3331     _task(task),
3332     _span(collector->_span),
3333     _work_queue(work_queue),
3334     _bit_map(bit_map),
3335     _overflow_stack(overflow_stack)
3336   { }
3337   virtual void do_oop(oop* p);
3338   virtual void do_oop(narrowOop* p);
3339 
3340   void trim_queue(size_t max);
3341   void handle_stack_overflow(HeapWord* lost);
3342   void do_yield_check() {
3343     if (_task->should_yield()) {
3344       _task->yield();
3345     }
3346   }
3347 };
3348 
3349 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3350 
3351 // Grey object scanning during work stealing phase --
3352 // the salient assumption here is that any references
3353 // that are in these stolen objects being scanned must
3354 // already have been initialized (else they would not have
3355 // been published), so we do not need to check for
3356 // uninitialized objects before pushing here.
3357 void ParConcMarkingClosure::do_oop(oop obj) {
3358   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3359   HeapWord* addr = (HeapWord*)obj;
3360   // Check if oop points into the CMS generation
3361   // and is not marked
3362   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3363     // a white object ...
3364     // If we manage to "claim" the object, by being the
3365     // first thread to mark it, then we push it on our
3366     // marking stack
3367     if (_bit_map->par_mark(addr)) {     // ... now grey
3368       // push on work queue (grey set)
3369       bool simulate_overflow = false;
3370       NOT_PRODUCT(
3371         if (CMSMarkStackOverflowALot &&
3372             _collector->simulate_overflow()) {
3373           // simulate a stack overflow
3374           simulate_overflow = true;
3375         }
3376       )
3377       if (simulate_overflow ||
3378           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3379         // stack overflow
3380         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3381         // We cannot assert that the overflow stack is full because
3382         // it may have been emptied since.
3383         assert(simulate_overflow ||
3384                _work_queue->size() == _work_queue->max_elems(),
3385               "Else push should have succeeded");
3386         handle_stack_overflow(addr);
3387       }
3388     } // Else, some other thread got there first
3389     do_yield_check();
3390   }
3391 }
3392 
3393 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3394 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3395 
3396 void ParConcMarkingClosure::trim_queue(size_t max) {
3397   while (_work_queue->size() > max) {
3398     oop new_oop;
3399     if (_work_queue->pop_local(new_oop)) {
3400       assert(new_oop->is_oop(), "Should be an oop");
3401       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3402       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3403       new_oop->oop_iterate(this);  // do_oop() above
3404       do_yield_check();
3405     }
3406   }
3407 }
3408 
3409 // Upon stack overflow, we discard (part of) the stack,
3410 // remembering the least address amongst those discarded
3411 // in CMSCollector's _restart_address.
3412 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3413   // We need to do this under a mutex to prevent other
3414   // workers from interfering with the work done below.
3415   MutexLockerEx ml(_overflow_stack->par_lock(),
3416                    Mutex::_no_safepoint_check_flag);
3417   // Remember the least grey address discarded
3418   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3419   _collector->lower_restart_addr(ra);
3420   _overflow_stack->reset();  // discard stack contents
3421   _overflow_stack->expand(); // expand the stack if possible
3422 }
3423 
3424 
3425 void CMSConcMarkingTask::do_work_steal(int i) {
3426   OopTaskQueue* work_q = work_queue(i);
3427   oop obj_to_scan;
3428   CMSBitMap* bm = &(_collector->_markBitMap);
3429   CMSMarkStack* ovflw = &(_collector->_markStack);
3430   int* seed = _collector->hash_seed(i);
3431   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3432   while (true) {
3433     cl.trim_queue(0);
3434     assert(work_q->size() == 0, "Should have been emptied above");
3435     if (get_work_from_overflow_stack(ovflw, work_q)) {
3436       // Can't assert below because the work obtained from the
3437       // overflow stack may already have been stolen from us.
3438       // assert(work_q->size() > 0, "Work from overflow stack");
3439       continue;
3440     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3441       assert(obj_to_scan->is_oop(), "Should be an oop");
3442       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3443       obj_to_scan->oop_iterate(&cl);
3444     } else if (terminator()->offer_termination(&_term_term)) {
3445       assert(work_q->size() == 0, "Impossible!");
3446       break;
3447     } else if (yielding() || should_yield()) {
3448       yield();
3449     }
3450   }
3451 }
3452 
3453 // This is run by the CMS (coordinator) thread.
3454 void CMSConcMarkingTask::coordinator_yield() {
3455   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3456          "CMS thread should hold CMS token");
3457   // First give up the locks, then yield, then re-lock
3458   // We should probably use a constructor/destructor idiom to
3459   // do this unlock/lock or modify the MutexUnlocker class to
3460   // serve our purpose. XXX
3461   assert_lock_strong(_bit_map_lock);
3462   _bit_map_lock->unlock();
3463   ConcurrentMarkSweepThread::desynchronize(true);
3464   _collector->stopTimer();
3465   _collector->incrementYields();
3466 
3467   // It is possible for whichever thread initiated the yield request
3468   // not to get a chance to wake up and take the bitmap lock between
3469   // this thread releasing it and reacquiring it. So, while the
3470   // should_yield() flag is on, let's sleep for a bit to give the
3471   // other thread a chance to wake up. The limit imposed on the number
3472   // of iterations is defensive, to avoid any unforseen circumstances
3473   // putting us into an infinite loop. Since it's always been this
3474   // (coordinator_yield()) method that was observed to cause the
3475   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3476   // which is by default non-zero. For the other seven methods that
3477   // also perform the yield operation, as are using a different
3478   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3479   // can enable the sleeping for those methods too, if necessary.
3480   // See 6442774.
3481   //
3482   // We really need to reconsider the synchronization between the GC
3483   // thread and the yield-requesting threads in the future and we
3484   // should really use wait/notify, which is the recommended
3485   // way of doing this type of interaction. Additionally, we should
3486   // consolidate the eight methods that do the yield operation and they
3487   // are almost identical into one for better maintainability and
3488   // readability. See 6445193.
3489   //
3490   // Tony 2006.06.29
3491   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3492                    ConcurrentMarkSweepThread::should_yield() &&
3493                    !CMSCollector::foregroundGCIsActive(); ++i) {
3494     os::sleep(Thread::current(), 1, false);
3495   }
3496 
3497   ConcurrentMarkSweepThread::synchronize(true);
3498   _bit_map_lock->lock_without_safepoint_check();
3499   _collector->startTimer();
3500 }
3501 
3502 bool CMSCollector::do_marking_mt() {
3503   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3504   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3505                                                                   conc_workers()->active_workers(),
3506                                                                   Threads::number_of_non_daemon_threads());
3507   num_workers = conc_workers()->update_active_workers(num_workers);
3508   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3509 
3510   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3511 
3512   CMSConcMarkingTask tsk(this,
3513                          cms_space,
3514                          conc_workers(),
3515                          task_queues());
3516 
3517   // Since the actual number of workers we get may be different
3518   // from the number we requested above, do we need to do anything different
3519   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3520   // class?? XXX
3521   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3522 
3523   // Refs discovery is already non-atomic.
3524   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3525   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3526   conc_workers()->start_task(&tsk);
3527   while (tsk.yielded()) {
3528     tsk.coordinator_yield();
3529     conc_workers()->continue_task(&tsk);
3530   }
3531   // If the task was aborted, _restart_addr will be non-NULL
3532   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3533   while (_restart_addr != NULL) {
3534     // XXX For now we do not make use of ABORTED state and have not
3535     // yet implemented the right abort semantics (even in the original
3536     // single-threaded CMS case). That needs some more investigation
3537     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3538     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3539     // If _restart_addr is non-NULL, a marking stack overflow
3540     // occurred; we need to do a fresh marking iteration from the
3541     // indicated restart address.
3542     if (_foregroundGCIsActive) {
3543       // We may be running into repeated stack overflows, having
3544       // reached the limit of the stack size, while making very
3545       // slow forward progress. It may be best to bail out and
3546       // let the foreground collector do its job.
3547       // Clear _restart_addr, so that foreground GC
3548       // works from scratch. This avoids the headache of
3549       // a "rescan" which would otherwise be needed because
3550       // of the dirty mod union table & card table.
3551       _restart_addr = NULL;
3552       return false;
3553     }
3554     // Adjust the task to restart from _restart_addr
3555     tsk.reset(_restart_addr);
3556     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3557                   _restart_addr);
3558     _restart_addr = NULL;
3559     // Get the workers going again
3560     conc_workers()->start_task(&tsk);
3561     while (tsk.yielded()) {
3562       tsk.coordinator_yield();
3563       conc_workers()->continue_task(&tsk);
3564     }
3565   }
3566   assert(tsk.completed(), "Inconsistency");
3567   assert(tsk.result() == true, "Inconsistency");
3568   return true;
3569 }
3570 
3571 bool CMSCollector::do_marking_st() {
3572   ResourceMark rm;
3573   HandleMark   hm;
3574 
3575   // Temporarily make refs discovery single threaded (non-MT)
3576   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3577   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3578     &_markStack, CMSYield);
3579   // the last argument to iterate indicates whether the iteration
3580   // should be incremental with periodic yields.
3581   _markBitMap.iterate(&markFromRootsClosure);
3582   // If _restart_addr is non-NULL, a marking stack overflow
3583   // occurred; we need to do a fresh iteration from the
3584   // indicated restart address.
3585   while (_restart_addr != NULL) {
3586     if (_foregroundGCIsActive) {
3587       // We may be running into repeated stack overflows, having
3588       // reached the limit of the stack size, while making very
3589       // slow forward progress. It may be best to bail out and
3590       // let the foreground collector do its job.
3591       // Clear _restart_addr, so that foreground GC
3592       // works from scratch. This avoids the headache of
3593       // a "rescan" which would otherwise be needed because
3594       // of the dirty mod union table & card table.
3595       _restart_addr = NULL;
3596       return false;  // indicating failure to complete marking
3597     }
3598     // Deal with stack overflow:
3599     // we restart marking from _restart_addr
3600     HeapWord* ra = _restart_addr;
3601     markFromRootsClosure.reset(ra);
3602     _restart_addr = NULL;
3603     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3604   }
3605   return true;
3606 }
3607 
3608 void CMSCollector::preclean() {
3609   check_correct_thread_executing();
3610   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3611   verify_work_stacks_empty();
3612   verify_overflow_empty();
3613   _abort_preclean = false;
3614   if (CMSPrecleaningEnabled) {
3615     if (!CMSEdenChunksRecordAlways) {
3616       _eden_chunk_index = 0;
3617     }
3618     size_t used = get_eden_used();
3619     size_t capacity = get_eden_capacity();
3620     // Don't start sampling unless we will get sufficiently
3621     // many samples.
3622     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3623                 * CMSScheduleRemarkEdenPenetration)) {
3624       _start_sampling = true;
3625     } else {
3626       _start_sampling = false;
3627     }
3628     GCTraceCPUTime tcpu;
3629     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3630     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3631   }
3632   CMSTokenSync x(true); // is cms thread
3633   if (CMSPrecleaningEnabled) {
3634     sample_eden();
3635     _collectorState = AbortablePreclean;
3636   } else {
3637     _collectorState = FinalMarking;
3638   }
3639   verify_work_stacks_empty();
3640   verify_overflow_empty();
3641 }
3642 
3643 // Try and schedule the remark such that young gen
3644 // occupancy is CMSScheduleRemarkEdenPenetration %.
3645 void CMSCollector::abortable_preclean() {
3646   check_correct_thread_executing();
3647   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3648   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3649 
3650   // If Eden's current occupancy is below this threshold,
3651   // immediately schedule the remark; else preclean
3652   // past the next scavenge in an effort to
3653   // schedule the pause as described above. By choosing
3654   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3655   // we will never do an actual abortable preclean cycle.
3656   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3657     GCTraceCPUTime tcpu;
3658     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3659     // We need more smarts in the abortable preclean
3660     // loop below to deal with cases where allocation
3661     // in young gen is very very slow, and our precleaning
3662     // is running a losing race against a horde of
3663     // mutators intent on flooding us with CMS updates
3664     // (dirty cards).
3665     // One, admittedly dumb, strategy is to give up
3666     // after a certain number of abortable precleaning loops
3667     // or after a certain maximum time. We want to make
3668     // this smarter in the next iteration.
3669     // XXX FIX ME!!! YSR
3670     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3671     while (!(should_abort_preclean() ||
3672              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3673       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3674       cumworkdone += workdone;
3675       loops++;
3676       // Voluntarily terminate abortable preclean phase if we have
3677       // been at it for too long.
3678       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3679           loops >= CMSMaxAbortablePrecleanLoops) {
3680         log_debug(gc)(" CMS: abort preclean due to loops ");
3681         break;
3682       }
3683       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3684         log_debug(gc)(" CMS: abort preclean due to time ");
3685         break;
3686       }
3687       // If we are doing little work each iteration, we should
3688       // take a short break.
3689       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3690         // Sleep for some time, waiting for work to accumulate
3691         stopTimer();
3692         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3693         startTimer();
3694         waited++;
3695       }
3696     }
3697     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3698                                loops, waited, cumworkdone);
3699   }
3700   CMSTokenSync x(true); // is cms thread
3701   if (_collectorState != Idling) {
3702     assert(_collectorState == AbortablePreclean,
3703            "Spontaneous state transition?");
3704     _collectorState = FinalMarking;
3705   } // Else, a foreground collection completed this CMS cycle.
3706   return;
3707 }
3708 
3709 // Respond to an Eden sampling opportunity
3710 void CMSCollector::sample_eden() {
3711   // Make sure a young gc cannot sneak in between our
3712   // reading and recording of a sample.
3713   assert(Thread::current()->is_ConcurrentGC_thread(),
3714          "Only the cms thread may collect Eden samples");
3715   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3716          "Should collect samples while holding CMS token");
3717   if (!_start_sampling) {
3718     return;
3719   }
3720   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3721   // is populated by the young generation.
3722   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3723     if (_eden_chunk_index < _eden_chunk_capacity) {
3724       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3725       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3726              "Unexpected state of Eden");
3727       // We'd like to check that what we just sampled is an oop-start address;
3728       // however, we cannot do that here since the object may not yet have been
3729       // initialized. So we'll instead do the check when we _use_ this sample
3730       // later.
3731       if (_eden_chunk_index == 0 ||
3732           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3733                          _eden_chunk_array[_eden_chunk_index-1])
3734            >= CMSSamplingGrain)) {
3735         _eden_chunk_index++;  // commit sample
3736       }
3737     }
3738   }
3739   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3740     size_t used = get_eden_used();
3741     size_t capacity = get_eden_capacity();
3742     assert(used <= capacity, "Unexpected state of Eden");
3743     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3744       _abort_preclean = true;
3745     }
3746   }
3747 }
3748 
3749 
3750 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3751   assert(_collectorState == Precleaning ||
3752          _collectorState == AbortablePreclean, "incorrect state");
3753   ResourceMark rm;
3754   HandleMark   hm;
3755 
3756   // Precleaning is currently not MT but the reference processor
3757   // may be set for MT.  Disable it temporarily here.
3758   ReferenceProcessor* rp = ref_processor();
3759   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3760 
3761   // Do one pass of scrubbing the discovered reference lists
3762   // to remove any reference objects with strongly-reachable
3763   // referents.
3764   if (clean_refs) {
3765     CMSPrecleanRefsYieldClosure yield_cl(this);
3766     assert(rp->span().equals(_span), "Spans should be equal");
3767     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3768                                    &_markStack, true /* preclean */);
3769     CMSDrainMarkingStackClosure complete_trace(this,
3770                                    _span, &_markBitMap, &_markStack,
3771                                    &keep_alive, true /* preclean */);
3772 
3773     // We don't want this step to interfere with a young
3774     // collection because we don't want to take CPU
3775     // or memory bandwidth away from the young GC threads
3776     // (which may be as many as there are CPUs).
3777     // Note that we don't need to protect ourselves from
3778     // interference with mutators because they can't
3779     // manipulate the discovered reference lists nor affect
3780     // the computed reachability of the referents, the
3781     // only properties manipulated by the precleaning
3782     // of these reference lists.
3783     stopTimer();
3784     CMSTokenSyncWithLocks x(true /* is cms thread */,
3785                             bitMapLock());
3786     startTimer();
3787     sample_eden();
3788 
3789     // The following will yield to allow foreground
3790     // collection to proceed promptly. XXX YSR:
3791     // The code in this method may need further
3792     // tweaking for better performance and some restructuring
3793     // for cleaner interfaces.
3794     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3795     rp->preclean_discovered_references(
3796           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3797           gc_timer);
3798   }
3799 
3800   if (clean_survivor) {  // preclean the active survivor space(s)
3801     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3802                              &_markBitMap, &_modUnionTable,
3803                              &_markStack, true /* precleaning phase */);
3804     stopTimer();
3805     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3806                              bitMapLock());
3807     startTimer();
3808     unsigned int before_count =
3809       GenCollectedHeap::heap()->total_collections();
3810     SurvivorSpacePrecleanClosure
3811       sss_cl(this, _span, &_markBitMap, &_markStack,
3812              &pam_cl, before_count, CMSYield);
3813     _young_gen->from()->object_iterate_careful(&sss_cl);
3814     _young_gen->to()->object_iterate_careful(&sss_cl);
3815   }
3816   MarkRefsIntoAndScanClosure
3817     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3818              &_markStack, this, CMSYield,
3819              true /* precleaning phase */);
3820   // CAUTION: The following closure has persistent state that may need to
3821   // be reset upon a decrease in the sequence of addresses it
3822   // processes.
3823   ScanMarkedObjectsAgainCarefullyClosure
3824     smoac_cl(this, _span,
3825       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3826 
3827   // Preclean dirty cards in ModUnionTable and CardTable using
3828   // appropriate convergence criterion;
3829   // repeat CMSPrecleanIter times unless we find that
3830   // we are losing.
3831   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3832   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3833          "Bad convergence multiplier");
3834   assert(CMSPrecleanThreshold >= 100,
3835          "Unreasonably low CMSPrecleanThreshold");
3836 
3837   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3838   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3839        numIter < CMSPrecleanIter;
3840        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3841     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3842     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3843     // Either there are very few dirty cards, so re-mark
3844     // pause will be small anyway, or our pre-cleaning isn't
3845     // that much faster than the rate at which cards are being
3846     // dirtied, so we might as well stop and re-mark since
3847     // precleaning won't improve our re-mark time by much.
3848     if (curNumCards <= CMSPrecleanThreshold ||
3849         (numIter > 0 &&
3850          (curNumCards * CMSPrecleanDenominator >
3851          lastNumCards * CMSPrecleanNumerator))) {
3852       numIter++;
3853       cumNumCards += curNumCards;
3854       break;
3855     }
3856   }
3857 
3858   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3859 
3860   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3861   cumNumCards += curNumCards;
3862   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3863                              curNumCards, cumNumCards, numIter);
3864   return cumNumCards;   // as a measure of useful work done
3865 }
3866 
3867 // PRECLEANING NOTES:
3868 // Precleaning involves:
3869 // . reading the bits of the modUnionTable and clearing the set bits.
3870 // . For the cards corresponding to the set bits, we scan the
3871 //   objects on those cards. This means we need the free_list_lock
3872 //   so that we can safely iterate over the CMS space when scanning
3873 //   for oops.
3874 // . When we scan the objects, we'll be both reading and setting
3875 //   marks in the marking bit map, so we'll need the marking bit map.
3876 // . For protecting _collector_state transitions, we take the CGC_lock.
3877 //   Note that any races in the reading of of card table entries by the
3878 //   CMS thread on the one hand and the clearing of those entries by the
3879 //   VM thread or the setting of those entries by the mutator threads on the
3880 //   other are quite benign. However, for efficiency it makes sense to keep
3881 //   the VM thread from racing with the CMS thread while the latter is
3882 //   dirty card info to the modUnionTable. We therefore also use the
3883 //   CGC_lock to protect the reading of the card table and the mod union
3884 //   table by the CM thread.
3885 // . We run concurrently with mutator updates, so scanning
3886 //   needs to be done carefully  -- we should not try to scan
3887 //   potentially uninitialized objects.
3888 //
3889 // Locking strategy: While holding the CGC_lock, we scan over and
3890 // reset a maximal dirty range of the mod union / card tables, then lock
3891 // the free_list_lock and bitmap lock to do a full marking, then
3892 // release these locks; and repeat the cycle. This allows for a
3893 // certain amount of fairness in the sharing of these locks between
3894 // the CMS collector on the one hand, and the VM thread and the
3895 // mutators on the other.
3896 
3897 // NOTE: preclean_mod_union_table() and preclean_card_table()
3898 // further below are largely identical; if you need to modify
3899 // one of these methods, please check the other method too.
3900 
3901 size_t CMSCollector::preclean_mod_union_table(
3902   ConcurrentMarkSweepGeneration* old_gen,
3903   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3904   verify_work_stacks_empty();
3905   verify_overflow_empty();
3906 
3907   // strategy: starting with the first card, accumulate contiguous
3908   // ranges of dirty cards; clear these cards, then scan the region
3909   // covered by these cards.
3910 
3911   // Since all of the MUT is committed ahead, we can just use
3912   // that, in case the generations expand while we are precleaning.
3913   // It might also be fine to just use the committed part of the
3914   // generation, but we might potentially miss cards when the
3915   // generation is rapidly expanding while we are in the midst
3916   // of precleaning.
3917   HeapWord* startAddr = old_gen->reserved().start();
3918   HeapWord* endAddr   = old_gen->reserved().end();
3919 
3920   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3921 
3922   size_t numDirtyCards, cumNumDirtyCards;
3923   HeapWord *nextAddr, *lastAddr;
3924   for (cumNumDirtyCards = numDirtyCards = 0,
3925        nextAddr = lastAddr = startAddr;
3926        nextAddr < endAddr;
3927        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3928 
3929     ResourceMark rm;
3930     HandleMark   hm;
3931 
3932     MemRegion dirtyRegion;
3933     {
3934       stopTimer();
3935       // Potential yield point
3936       CMSTokenSync ts(true);
3937       startTimer();
3938       sample_eden();
3939       // Get dirty region starting at nextOffset (inclusive),
3940       // simultaneously clearing it.
3941       dirtyRegion =
3942         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3943       assert(dirtyRegion.start() >= nextAddr,
3944              "returned region inconsistent?");
3945     }
3946     // Remember where the next search should begin.
3947     // The returned region (if non-empty) is a right open interval,
3948     // so lastOffset is obtained from the right end of that
3949     // interval.
3950     lastAddr = dirtyRegion.end();
3951     // Should do something more transparent and less hacky XXX
3952     numDirtyCards =
3953       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3954 
3955     // We'll scan the cards in the dirty region (with periodic
3956     // yields for foreground GC as needed).
3957     if (!dirtyRegion.is_empty()) {
3958       assert(numDirtyCards > 0, "consistency check");
3959       HeapWord* stop_point = NULL;
3960       stopTimer();
3961       // Potential yield point
3962       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3963                                bitMapLock());
3964       startTimer();
3965       {
3966         verify_work_stacks_empty();
3967         verify_overflow_empty();
3968         sample_eden();
3969         stop_point =
3970           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3971       }
3972       if (stop_point != NULL) {
3973         // The careful iteration stopped early either because it found an
3974         // uninitialized object, or because we were in the midst of an
3975         // "abortable preclean", which should now be aborted. Redirty
3976         // the bits corresponding to the partially-scanned or unscanned
3977         // cards. We'll either restart at the next block boundary or
3978         // abort the preclean.
3979         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3980                "Should only be AbortablePreclean.");
3981         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3982         if (should_abort_preclean()) {
3983           break; // out of preclean loop
3984         } else {
3985           // Compute the next address at which preclean should pick up;
3986           // might need bitMapLock in order to read P-bits.
3987           lastAddr = next_card_start_after_block(stop_point);
3988         }
3989       }
3990     } else {
3991       assert(lastAddr == endAddr, "consistency check");
3992       assert(numDirtyCards == 0, "consistency check");
3993       break;
3994     }
3995   }
3996   verify_work_stacks_empty();
3997   verify_overflow_empty();
3998   return cumNumDirtyCards;
3999 }
4000 
4001 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4002 // below are largely identical; if you need to modify
4003 // one of these methods, please check the other method too.
4004 
4005 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4006   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4007   // strategy: it's similar to precleamModUnionTable above, in that
4008   // we accumulate contiguous ranges of dirty cards, mark these cards
4009   // precleaned, then scan the region covered by these cards.
4010   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4011   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4012 
4013   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4014 
4015   size_t numDirtyCards, cumNumDirtyCards;
4016   HeapWord *lastAddr, *nextAddr;
4017 
4018   for (cumNumDirtyCards = numDirtyCards = 0,
4019        nextAddr = lastAddr = startAddr;
4020        nextAddr < endAddr;
4021        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4022 
4023     ResourceMark rm;
4024     HandleMark   hm;
4025 
4026     MemRegion dirtyRegion;
4027     {
4028       // See comments in "Precleaning notes" above on why we
4029       // do this locking. XXX Could the locking overheads be
4030       // too high when dirty cards are sparse? [I don't think so.]
4031       stopTimer();
4032       CMSTokenSync x(true); // is cms thread
4033       startTimer();
4034       sample_eden();
4035       // Get and clear dirty region from card table
4036       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4037                                     MemRegion(nextAddr, endAddr),
4038                                     true,
4039                                     CardTableModRefBS::precleaned_card_val());
4040 
4041       assert(dirtyRegion.start() >= nextAddr,
4042              "returned region inconsistent?");
4043     }
4044     lastAddr = dirtyRegion.end();
4045     numDirtyCards =
4046       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4047 
4048     if (!dirtyRegion.is_empty()) {
4049       stopTimer();
4050       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4051       startTimer();
4052       sample_eden();
4053       verify_work_stacks_empty();
4054       verify_overflow_empty();
4055       HeapWord* stop_point =
4056         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4057       if (stop_point != NULL) {
4058         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4059                "Should only be AbortablePreclean.");
4060         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4061         if (should_abort_preclean()) {
4062           break; // out of preclean loop
4063         } else {
4064           // Compute the next address at which preclean should pick up.
4065           lastAddr = next_card_start_after_block(stop_point);
4066         }
4067       }
4068     } else {
4069       break;
4070     }
4071   }
4072   verify_work_stacks_empty();
4073   verify_overflow_empty();
4074   return cumNumDirtyCards;
4075 }
4076 
4077 class PrecleanKlassClosure : public KlassClosure {
4078   KlassToOopClosure _cm_klass_closure;
4079  public:
4080   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4081   void do_klass(Klass* k) {
4082     if (k->has_accumulated_modified_oops()) {
4083       k->clear_accumulated_modified_oops();
4084 
4085       _cm_klass_closure.do_klass(k);
4086     }
4087   }
4088 };
4089 
4090 // The freelist lock is needed to prevent asserts, is it really needed?
4091 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4092 
4093   cl->set_freelistLock(freelistLock);
4094 
4095   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4096 
4097   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4098   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4099   PrecleanKlassClosure preclean_klass_closure(cl);
4100   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4101 
4102   verify_work_stacks_empty();
4103   verify_overflow_empty();
4104 }
4105 
4106 void CMSCollector::checkpointRootsFinal() {
4107   assert(_collectorState == FinalMarking, "incorrect state transition?");
4108   check_correct_thread_executing();
4109   // world is stopped at this checkpoint
4110   assert(SafepointSynchronize::is_at_safepoint(),
4111          "world should be stopped");
4112   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4113 
4114   verify_work_stacks_empty();
4115   verify_overflow_empty();
4116 
4117   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4118                 _young_gen->used() / K, _young_gen->capacity() / K);
4119   {
4120     if (CMSScavengeBeforeRemark) {
4121       GenCollectedHeap* gch = GenCollectedHeap::heap();
4122       // Temporarily set flag to false, GCH->do_collection will
4123       // expect it to be false and set to true
4124       FlagSetting fl(gch->_is_gc_active, false);
4125 
4126       gch->do_collection(true,                      // full (i.e. force, see below)
4127                          false,                     // !clear_all_soft_refs
4128                          0,                         // size
4129                          false,                     // is_tlab
4130                          GenCollectedHeap::YoungGen // type
4131         );
4132     }
4133     FreelistLocker x(this);
4134     MutexLockerEx y(bitMapLock(),
4135                     Mutex::_no_safepoint_check_flag);
4136     checkpointRootsFinalWork();
4137   }
4138   verify_work_stacks_empty();
4139   verify_overflow_empty();
4140 }
4141 
4142 void CMSCollector::checkpointRootsFinalWork() {
4143   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4144 
4145   assert(haveFreelistLocks(), "must have free list locks");
4146   assert_lock_strong(bitMapLock());
4147 
4148   ResourceMark rm;
4149   HandleMark   hm;
4150 
4151   GenCollectedHeap* gch = GenCollectedHeap::heap();
4152 
4153   if (should_unload_classes()) {
4154     CodeCache::gc_prologue();
4155   }
4156   assert(haveFreelistLocks(), "must have free list locks");
4157   assert_lock_strong(bitMapLock());
4158 
4159   // We might assume that we need not fill TLAB's when
4160   // CMSScavengeBeforeRemark is set, because we may have just done
4161   // a scavenge which would have filled all TLAB's -- and besides
4162   // Eden would be empty. This however may not always be the case --
4163   // for instance although we asked for a scavenge, it may not have
4164   // happened because of a JNI critical section. We probably need
4165   // a policy for deciding whether we can in that case wait until
4166   // the critical section releases and then do the remark following
4167   // the scavenge, and skip it here. In the absence of that policy,
4168   // or of an indication of whether the scavenge did indeed occur,
4169   // we cannot rely on TLAB's having been filled and must do
4170   // so here just in case a scavenge did not happen.
4171   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4172   // Update the saved marks which may affect the root scans.
4173   gch->save_marks();
4174 
4175   print_eden_and_survivor_chunk_arrays();
4176 
4177   {
4178 #if defined(COMPILER2) || INCLUDE_JVMCI
4179     DerivedPointerTableDeactivate dpt_deact;
4180 #endif
4181 
4182     // Note on the role of the mod union table:
4183     // Since the marker in "markFromRoots" marks concurrently with
4184     // mutators, it is possible for some reachable objects not to have been
4185     // scanned. For instance, an only reference to an object A was
4186     // placed in object B after the marker scanned B. Unless B is rescanned,
4187     // A would be collected. Such updates to references in marked objects
4188     // are detected via the mod union table which is the set of all cards
4189     // dirtied since the first checkpoint in this GC cycle and prior to
4190     // the most recent young generation GC, minus those cleaned up by the
4191     // concurrent precleaning.
4192     if (CMSParallelRemarkEnabled) {
4193       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4194       do_remark_parallel();
4195     } else {
4196       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4197       do_remark_non_parallel();
4198     }
4199   }
4200   verify_work_stacks_empty();
4201   verify_overflow_empty();
4202 
4203   {
4204     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4205     refProcessingWork();
4206   }
4207   verify_work_stacks_empty();
4208   verify_overflow_empty();
4209 
4210   if (should_unload_classes()) {
4211     CodeCache::gc_epilogue();
4212   }
4213   JvmtiExport::gc_epilogue();
4214 
4215   // If we encountered any (marking stack / work queue) overflow
4216   // events during the current CMS cycle, take appropriate
4217   // remedial measures, where possible, so as to try and avoid
4218   // recurrence of that condition.
4219   assert(_markStack.isEmpty(), "No grey objects");
4220   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4221                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4222   if (ser_ovflw > 0) {
4223     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4224                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4225     _markStack.expand();
4226     _ser_pmc_remark_ovflw = 0;
4227     _ser_pmc_preclean_ovflw = 0;
4228     _ser_kac_preclean_ovflw = 0;
4229     _ser_kac_ovflw = 0;
4230   }
4231   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4232      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4233                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4234      _par_pmc_remark_ovflw = 0;
4235     _par_kac_ovflw = 0;
4236   }
4237    if (_markStack._hit_limit > 0) {
4238      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4239                           _markStack._hit_limit);
4240    }
4241    if (_markStack._failed_double > 0) {
4242      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4243                           _markStack._failed_double, _markStack.capacity());
4244    }
4245   _markStack._hit_limit = 0;
4246   _markStack._failed_double = 0;
4247 
4248   if ((VerifyAfterGC || VerifyDuringGC) &&
4249       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4250     verify_after_remark();
4251   }
4252 
4253   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4254 
4255   // Change under the freelistLocks.
4256   _collectorState = Sweeping;
4257   // Call isAllClear() under bitMapLock
4258   assert(_modUnionTable.isAllClear(),
4259       "Should be clear by end of the final marking");
4260   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4261       "Should be clear by end of the final marking");
4262 }
4263 
4264 void CMSParInitialMarkTask::work(uint worker_id) {
4265   elapsedTimer _timer;
4266   ResourceMark rm;
4267   HandleMark   hm;
4268 
4269   // ---------- scan from roots --------------
4270   _timer.start();
4271   GenCollectedHeap* gch = GenCollectedHeap::heap();
4272   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4273 
4274   // ---------- young gen roots --------------
4275   {
4276     work_on_young_gen_roots(&par_mri_cl);
4277     _timer.stop();
4278     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4279   }
4280 
4281   // ---------- remaining roots --------------
4282   _timer.reset();
4283   _timer.start();
4284 
4285   CLDToOopClosure cld_closure(&par_mri_cl, true);
4286 
4287   gch->old_process_roots(_strong_roots_scope,
4288                          false,     // yg was scanned above
4289                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4290                          _collector->should_unload_classes(),
4291                          &par_mri_cl,
4292                          &cld_closure);
4293   assert(_collector->should_unload_classes()
4294          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4295          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4296   _timer.stop();
4297   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4298 }
4299 
4300 // Parallel remark task
4301 class CMSParRemarkTask: public CMSParMarkTask {
4302   CompactibleFreeListSpace* _cms_space;
4303 
4304   // The per-thread work queues, available here for stealing.
4305   OopTaskQueueSet*       _task_queues;
4306   ParallelTaskTerminator _term;
4307   StrongRootsScope*      _strong_roots_scope;
4308 
4309  public:
4310   // A value of 0 passed to n_workers will cause the number of
4311   // workers to be taken from the active workers in the work gang.
4312   CMSParRemarkTask(CMSCollector* collector,
4313                    CompactibleFreeListSpace* cms_space,
4314                    uint n_workers, WorkGang* workers,
4315                    OopTaskQueueSet* task_queues,
4316                    StrongRootsScope* strong_roots_scope):
4317     CMSParMarkTask("Rescan roots and grey objects in parallel",
4318                    collector, n_workers),
4319     _cms_space(cms_space),
4320     _task_queues(task_queues),
4321     _term(n_workers, task_queues),
4322     _strong_roots_scope(strong_roots_scope) { }
4323 
4324   OopTaskQueueSet* task_queues() { return _task_queues; }
4325 
4326   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4327 
4328   ParallelTaskTerminator* terminator() { return &_term; }
4329   uint n_workers() { return _n_workers; }
4330 
4331   void work(uint worker_id);
4332 
4333  private:
4334   // ... of  dirty cards in old space
4335   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4336                                   ParMarkRefsIntoAndScanClosure* cl);
4337 
4338   // ... work stealing for the above
4339   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4340 };
4341 
4342 class RemarkKlassClosure : public KlassClosure {
4343   KlassToOopClosure _cm_klass_closure;
4344  public:
4345   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4346   void do_klass(Klass* k) {
4347     // Check if we have modified any oops in the Klass during the concurrent marking.
4348     if (k->has_accumulated_modified_oops()) {
4349       k->clear_accumulated_modified_oops();
4350 
4351       // We could have transfered the current modified marks to the accumulated marks,
4352       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4353     } else if (k->has_modified_oops()) {
4354       // Don't clear anything, this info is needed by the next young collection.
4355     } else {
4356       // No modified oops in the Klass.
4357       return;
4358     }
4359 
4360     // The klass has modified fields, need to scan the klass.
4361     _cm_klass_closure.do_klass(k);
4362   }
4363 };
4364 
4365 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4366   ParNewGeneration* young_gen = _collector->_young_gen;
4367   ContiguousSpace* eden_space = young_gen->eden();
4368   ContiguousSpace* from_space = young_gen->from();
4369   ContiguousSpace* to_space   = young_gen->to();
4370 
4371   HeapWord** eca = _collector->_eden_chunk_array;
4372   size_t     ect = _collector->_eden_chunk_index;
4373   HeapWord** sca = _collector->_survivor_chunk_array;
4374   size_t     sct = _collector->_survivor_chunk_index;
4375 
4376   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4377   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4378 
4379   do_young_space_rescan(cl, to_space, NULL, 0);
4380   do_young_space_rescan(cl, from_space, sca, sct);
4381   do_young_space_rescan(cl, eden_space, eca, ect);
4382 }
4383 
4384 // work_queue(i) is passed to the closure
4385 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4386 // also is passed to do_dirty_card_rescan_tasks() and to
4387 // do_work_steal() to select the i-th task_queue.
4388 
4389 void CMSParRemarkTask::work(uint worker_id) {
4390   elapsedTimer _timer;
4391   ResourceMark rm;
4392   HandleMark   hm;
4393 
4394   // ---------- rescan from roots --------------
4395   _timer.start();
4396   GenCollectedHeap* gch = GenCollectedHeap::heap();
4397   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4398     _collector->_span, _collector->ref_processor(),
4399     &(_collector->_markBitMap),
4400     work_queue(worker_id));
4401 
4402   // Rescan young gen roots first since these are likely
4403   // coarsely partitioned and may, on that account, constitute
4404   // the critical path; thus, it's best to start off that
4405   // work first.
4406   // ---------- young gen roots --------------
4407   {
4408     work_on_young_gen_roots(&par_mrias_cl);
4409     _timer.stop();
4410     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4411   }
4412 
4413   // ---------- remaining roots --------------
4414   _timer.reset();
4415   _timer.start();
4416   gch->old_process_roots(_strong_roots_scope,
4417                          false,     // yg was scanned above
4418                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4419                          _collector->should_unload_classes(),
4420                          &par_mrias_cl,
4421                          NULL);     // The dirty klasses will be handled below
4422 
4423   assert(_collector->should_unload_classes()
4424          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4425          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4426   _timer.stop();
4427   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4428 
4429   // ---------- unhandled CLD scanning ----------
4430   if (worker_id == 0) { // Single threaded at the moment.
4431     _timer.reset();
4432     _timer.start();
4433 
4434     // Scan all new class loader data objects and new dependencies that were
4435     // introduced during concurrent marking.
4436     ResourceMark rm;
4437     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4438     for (int i = 0; i < array->length(); i++) {
4439       par_mrias_cl.do_cld_nv(array->at(i));
4440     }
4441 
4442     // We don't need to keep track of new CLDs anymore.
4443     ClassLoaderDataGraph::remember_new_clds(false);
4444 
4445     _timer.stop();
4446     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4447   }
4448 
4449   // ---------- dirty klass scanning ----------
4450   if (worker_id == 0) { // Single threaded at the moment.
4451     _timer.reset();
4452     _timer.start();
4453 
4454     // Scan all classes that was dirtied during the concurrent marking phase.
4455     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4456     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4457 
4458     _timer.stop();
4459     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4460   }
4461 
4462   // We might have added oops to ClassLoaderData::_handles during the
4463   // concurrent marking phase. These oops point to newly allocated objects
4464   // that are guaranteed to be kept alive. Either by the direct allocation
4465   // code, or when the young collector processes the roots. Hence,
4466   // we don't have to revisit the _handles block during the remark phase.
4467 
4468   // ---------- rescan dirty cards ------------
4469   _timer.reset();
4470   _timer.start();
4471 
4472   // Do the rescan tasks for each of the two spaces
4473   // (cms_space) in turn.
4474   // "worker_id" is passed to select the task_queue for "worker_id"
4475   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4476   _timer.stop();
4477   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4478 
4479   // ---------- steal work from other threads ...
4480   // ---------- ... and drain overflow list.
4481   _timer.reset();
4482   _timer.start();
4483   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4484   _timer.stop();
4485   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4486 }
4487 
4488 void
4489 CMSParMarkTask::do_young_space_rescan(
4490   OopsInGenClosure* cl, ContiguousSpace* space,
4491   HeapWord** chunk_array, size_t chunk_top) {
4492   // Until all tasks completed:
4493   // . claim an unclaimed task
4494   // . compute region boundaries corresponding to task claimed
4495   //   using chunk_array
4496   // . par_oop_iterate(cl) over that region
4497 
4498   ResourceMark rm;
4499   HandleMark   hm;
4500 
4501   SequentialSubTasksDone* pst = space->par_seq_tasks();
4502 
4503   uint nth_task = 0;
4504   uint n_tasks  = pst->n_tasks();
4505 
4506   if (n_tasks > 0) {
4507     assert(pst->valid(), "Uninitialized use?");
4508     HeapWord *start, *end;
4509     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4510       // We claimed task # nth_task; compute its boundaries.
4511       if (chunk_top == 0) {  // no samples were taken
4512         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4513         start = space->bottom();
4514         end   = space->top();
4515       } else if (nth_task == 0) {
4516         start = space->bottom();
4517         end   = chunk_array[nth_task];
4518       } else if (nth_task < (uint)chunk_top) {
4519         assert(nth_task >= 1, "Control point invariant");
4520         start = chunk_array[nth_task - 1];
4521         end   = chunk_array[nth_task];
4522       } else {
4523         assert(nth_task == (uint)chunk_top, "Control point invariant");
4524         start = chunk_array[chunk_top - 1];
4525         end   = space->top();
4526       }
4527       MemRegion mr(start, end);
4528       // Verify that mr is in space
4529       assert(mr.is_empty() || space->used_region().contains(mr),
4530              "Should be in space");
4531       // Verify that "start" is an object boundary
4532       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4533              "Should be an oop");
4534       space->par_oop_iterate(mr, cl);
4535     }
4536     pst->all_tasks_completed();
4537   }
4538 }
4539 
4540 void
4541 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4542   CompactibleFreeListSpace* sp, int i,
4543   ParMarkRefsIntoAndScanClosure* cl) {
4544   // Until all tasks completed:
4545   // . claim an unclaimed task
4546   // . compute region boundaries corresponding to task claimed
4547   // . transfer dirty bits ct->mut for that region
4548   // . apply rescanclosure to dirty mut bits for that region
4549 
4550   ResourceMark rm;
4551   HandleMark   hm;
4552 
4553   OopTaskQueue* work_q = work_queue(i);
4554   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4555   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4556   // CAUTION: This closure has state that persists across calls to
4557   // the work method dirty_range_iterate_clear() in that it has
4558   // embedded in it a (subtype of) UpwardsObjectClosure. The
4559   // use of that state in the embedded UpwardsObjectClosure instance
4560   // assumes that the cards are always iterated (even if in parallel
4561   // by several threads) in monotonically increasing order per each
4562   // thread. This is true of the implementation below which picks
4563   // card ranges (chunks) in monotonically increasing order globally
4564   // and, a-fortiori, in monotonically increasing order per thread
4565   // (the latter order being a subsequence of the former).
4566   // If the work code below is ever reorganized into a more chaotic
4567   // work-partitioning form than the current "sequential tasks"
4568   // paradigm, the use of that persistent state will have to be
4569   // revisited and modified appropriately. See also related
4570   // bug 4756801 work on which should examine this code to make
4571   // sure that the changes there do not run counter to the
4572   // assumptions made here and necessary for correctness and
4573   // efficiency. Note also that this code might yield inefficient
4574   // behavior in the case of very large objects that span one or
4575   // more work chunks. Such objects would potentially be scanned
4576   // several times redundantly. Work on 4756801 should try and
4577   // address that performance anomaly if at all possible. XXX
4578   MemRegion  full_span  = _collector->_span;
4579   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4580   MarkFromDirtyCardsClosure
4581     greyRescanClosure(_collector, full_span, // entire span of interest
4582                       sp, bm, work_q, cl);
4583 
4584   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4585   assert(pst->valid(), "Uninitialized use?");
4586   uint nth_task = 0;
4587   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4588   MemRegion span = sp->used_region();
4589   HeapWord* start_addr = span.start();
4590   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4591                                            alignment);
4592   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4593   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4594          start_addr, "Check alignment");
4595   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4596          chunk_size, "Check alignment");
4597 
4598   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4599     // Having claimed the nth_task, compute corresponding mem-region,
4600     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4601     // The alignment restriction ensures that we do not need any
4602     // synchronization with other gang-workers while setting or
4603     // clearing bits in thus chunk of the MUT.
4604     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4605                                     start_addr + (nth_task+1)*chunk_size);
4606     // The last chunk's end might be way beyond end of the
4607     // used region. In that case pull back appropriately.
4608     if (this_span.end() > end_addr) {
4609       this_span.set_end(end_addr);
4610       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4611     }
4612     // Iterate over the dirty cards covering this chunk, marking them
4613     // precleaned, and setting the corresponding bits in the mod union
4614     // table. Since we have been careful to partition at Card and MUT-word
4615     // boundaries no synchronization is needed between parallel threads.
4616     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4617                                                  &modUnionClosure);
4618 
4619     // Having transferred these marks into the modUnionTable,
4620     // rescan the marked objects on the dirty cards in the modUnionTable.
4621     // Even if this is at a synchronous collection, the initial marking
4622     // may have been done during an asynchronous collection so there
4623     // may be dirty bits in the mod-union table.
4624     _collector->_modUnionTable.dirty_range_iterate_clear(
4625                   this_span, &greyRescanClosure);
4626     _collector->_modUnionTable.verifyNoOneBitsInRange(
4627                                  this_span.start(),
4628                                  this_span.end());
4629   }
4630   pst->all_tasks_completed();  // declare that i am done
4631 }
4632 
4633 // . see if we can share work_queues with ParNew? XXX
4634 void
4635 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4636                                 int* seed) {
4637   OopTaskQueue* work_q = work_queue(i);
4638   NOT_PRODUCT(int num_steals = 0;)
4639   oop obj_to_scan;
4640   CMSBitMap* bm = &(_collector->_markBitMap);
4641 
4642   while (true) {
4643     // Completely finish any left over work from (an) earlier round(s)
4644     cl->trim_queue(0);
4645     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4646                                          (size_t)ParGCDesiredObjsFromOverflowList);
4647     // Now check if there's any work in the overflow list
4648     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4649     // only affects the number of attempts made to get work from the
4650     // overflow list and does not affect the number of workers.  Just
4651     // pass ParallelGCThreads so this behavior is unchanged.
4652     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4653                                                 work_q,
4654                                                 ParallelGCThreads)) {
4655       // found something in global overflow list;
4656       // not yet ready to go stealing work from others.
4657       // We'd like to assert(work_q->size() != 0, ...)
4658       // because we just took work from the overflow list,
4659       // but of course we can't since all of that could have
4660       // been already stolen from us.
4661       // "He giveth and He taketh away."
4662       continue;
4663     }
4664     // Verify that we have no work before we resort to stealing
4665     assert(work_q->size() == 0, "Have work, shouldn't steal");
4666     // Try to steal from other queues that have work
4667     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4668       NOT_PRODUCT(num_steals++;)
4669       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4670       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4671       // Do scanning work
4672       obj_to_scan->oop_iterate(cl);
4673       // Loop around, finish this work, and try to steal some more
4674     } else if (terminator()->offer_termination()) {
4675         break;  // nirvana from the infinite cycle
4676     }
4677   }
4678   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4679   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4680          "Else our work is not yet done");
4681 }
4682 
4683 // Record object boundaries in _eden_chunk_array by sampling the eden
4684 // top in the slow-path eden object allocation code path and record
4685 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4686 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4687 // sampling in sample_eden() that activates during the part of the
4688 // preclean phase.
4689 void CMSCollector::sample_eden_chunk() {
4690   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4691     if (_eden_chunk_lock->try_lock()) {
4692       // Record a sample. This is the critical section. The contents
4693       // of the _eden_chunk_array have to be non-decreasing in the
4694       // address order.
4695       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4696       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4697              "Unexpected state of Eden");
4698       if (_eden_chunk_index == 0 ||
4699           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4700            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4701                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4702         _eden_chunk_index++;  // commit sample
4703       }
4704       _eden_chunk_lock->unlock();
4705     }
4706   }
4707 }
4708 
4709 // Return a thread-local PLAB recording array, as appropriate.
4710 void* CMSCollector::get_data_recorder(int thr_num) {
4711   if (_survivor_plab_array != NULL &&
4712       (CMSPLABRecordAlways ||
4713        (_collectorState > Marking && _collectorState < FinalMarking))) {
4714     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4715     ChunkArray* ca = &_survivor_plab_array[thr_num];
4716     ca->reset();   // clear it so that fresh data is recorded
4717     return (void*) ca;
4718   } else {
4719     return NULL;
4720   }
4721 }
4722 
4723 // Reset all the thread-local PLAB recording arrays
4724 void CMSCollector::reset_survivor_plab_arrays() {
4725   for (uint i = 0; i < ParallelGCThreads; i++) {
4726     _survivor_plab_array[i].reset();
4727   }
4728 }
4729 
4730 // Merge the per-thread plab arrays into the global survivor chunk
4731 // array which will provide the partitioning of the survivor space
4732 // for CMS initial scan and rescan.
4733 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4734                                               int no_of_gc_threads) {
4735   assert(_survivor_plab_array  != NULL, "Error");
4736   assert(_survivor_chunk_array != NULL, "Error");
4737   assert(_collectorState == FinalMarking ||
4738          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4739   for (int j = 0; j < no_of_gc_threads; j++) {
4740     _cursor[j] = 0;
4741   }
4742   HeapWord* top = surv->top();
4743   size_t i;
4744   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4745     HeapWord* min_val = top;          // Higher than any PLAB address
4746     uint      min_tid = 0;            // position of min_val this round
4747     for (int j = 0; j < no_of_gc_threads; j++) {
4748       ChunkArray* cur_sca = &_survivor_plab_array[j];
4749       if (_cursor[j] == cur_sca->end()) {
4750         continue;
4751       }
4752       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4753       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4754       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4755       if (cur_val < min_val) {
4756         min_tid = j;
4757         min_val = cur_val;
4758       } else {
4759         assert(cur_val < top, "All recorded addresses should be less");
4760       }
4761     }
4762     // At this point min_val and min_tid are respectively
4763     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4764     // and the thread (j) that witnesses that address.
4765     // We record this address in the _survivor_chunk_array[i]
4766     // and increment _cursor[min_tid] prior to the next round i.
4767     if (min_val == top) {
4768       break;
4769     }
4770     _survivor_chunk_array[i] = min_val;
4771     _cursor[min_tid]++;
4772   }
4773   // We are all done; record the size of the _survivor_chunk_array
4774   _survivor_chunk_index = i; // exclusive: [0, i)
4775   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4776   // Verify that we used up all the recorded entries
4777   #ifdef ASSERT
4778     size_t total = 0;
4779     for (int j = 0; j < no_of_gc_threads; j++) {
4780       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4781       total += _cursor[j];
4782     }
4783     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4784     // Check that the merged array is in sorted order
4785     if (total > 0) {
4786       for (size_t i = 0; i < total - 1; i++) {
4787         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4788                                      i, p2i(_survivor_chunk_array[i]));
4789         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4790                "Not sorted");
4791       }
4792     }
4793   #endif // ASSERT
4794 }
4795 
4796 // Set up the space's par_seq_tasks structure for work claiming
4797 // for parallel initial scan and rescan of young gen.
4798 // See ParRescanTask where this is currently used.
4799 void
4800 CMSCollector::
4801 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4802   assert(n_threads > 0, "Unexpected n_threads argument");
4803 
4804   // Eden space
4805   if (!_young_gen->eden()->is_empty()) {
4806     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4807     assert(!pst->valid(), "Clobbering existing data?");
4808     // Each valid entry in [0, _eden_chunk_index) represents a task.
4809     size_t n_tasks = _eden_chunk_index + 1;
4810     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4811     // Sets the condition for completion of the subtask (how many threads
4812     // need to finish in order to be done).
4813     pst->set_n_threads(n_threads);
4814     pst->set_n_tasks((int)n_tasks);
4815   }
4816 
4817   // Merge the survivor plab arrays into _survivor_chunk_array
4818   if (_survivor_plab_array != NULL) {
4819     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4820   } else {
4821     assert(_survivor_chunk_index == 0, "Error");
4822   }
4823 
4824   // To space
4825   {
4826     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4827     assert(!pst->valid(), "Clobbering existing data?");
4828     // Sets the condition for completion of the subtask (how many threads
4829     // need to finish in order to be done).
4830     pst->set_n_threads(n_threads);
4831     pst->set_n_tasks(1);
4832     assert(pst->valid(), "Error");
4833   }
4834 
4835   // From space
4836   {
4837     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4838     assert(!pst->valid(), "Clobbering existing data?");
4839     size_t n_tasks = _survivor_chunk_index + 1;
4840     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4841     // Sets the condition for completion of the subtask (how many threads
4842     // need to finish in order to be done).
4843     pst->set_n_threads(n_threads);
4844     pst->set_n_tasks((int)n_tasks);
4845     assert(pst->valid(), "Error");
4846   }
4847 }
4848 
4849 // Parallel version of remark
4850 void CMSCollector::do_remark_parallel() {
4851   GenCollectedHeap* gch = GenCollectedHeap::heap();
4852   WorkGang* workers = gch->workers();
4853   assert(workers != NULL, "Need parallel worker threads.");
4854   // Choose to use the number of GC workers most recently set
4855   // into "active_workers".
4856   uint n_workers = workers->active_workers();
4857 
4858   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4859 
4860   StrongRootsScope srs(n_workers);
4861 
4862   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4863 
4864   // We won't be iterating over the cards in the card table updating
4865   // the younger_gen cards, so we shouldn't call the following else
4866   // the verification code as well as subsequent younger_refs_iterate
4867   // code would get confused. XXX
4868   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4869 
4870   // The young gen rescan work will not be done as part of
4871   // process_roots (which currently doesn't know how to
4872   // parallelize such a scan), but rather will be broken up into
4873   // a set of parallel tasks (via the sampling that the [abortable]
4874   // preclean phase did of eden, plus the [two] tasks of
4875   // scanning the [two] survivor spaces. Further fine-grain
4876   // parallelization of the scanning of the survivor spaces
4877   // themselves, and of precleaning of the young gen itself
4878   // is deferred to the future.
4879   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4880 
4881   // The dirty card rescan work is broken up into a "sequence"
4882   // of parallel tasks (per constituent space) that are dynamically
4883   // claimed by the parallel threads.
4884   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4885 
4886   // It turns out that even when we're using 1 thread, doing the work in a
4887   // separate thread causes wide variance in run times.  We can't help this
4888   // in the multi-threaded case, but we special-case n=1 here to get
4889   // repeatable measurements of the 1-thread overhead of the parallel code.
4890   if (n_workers > 1) {
4891     // Make refs discovery MT-safe, if it isn't already: it may not
4892     // necessarily be so, since it's possible that we are doing
4893     // ST marking.
4894     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4895     workers->run_task(&tsk);
4896   } else {
4897     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4898     tsk.work(0);
4899   }
4900 
4901   // restore, single-threaded for now, any preserved marks
4902   // as a result of work_q overflow
4903   restore_preserved_marks_if_any();
4904 }
4905 
4906 // Non-parallel version of remark
4907 void CMSCollector::do_remark_non_parallel() {
4908   ResourceMark rm;
4909   HandleMark   hm;
4910   GenCollectedHeap* gch = GenCollectedHeap::heap();
4911   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4912 
4913   MarkRefsIntoAndScanClosure
4914     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4915              &_markStack, this,
4916              false /* should_yield */, false /* not precleaning */);
4917   MarkFromDirtyCardsClosure
4918     markFromDirtyCardsClosure(this, _span,
4919                               NULL,  // space is set further below
4920                               &_markBitMap, &_markStack, &mrias_cl);
4921   {
4922     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4923     // Iterate over the dirty cards, setting the corresponding bits in the
4924     // mod union table.
4925     {
4926       ModUnionClosure modUnionClosure(&_modUnionTable);
4927       _ct->ct_bs()->dirty_card_iterate(
4928                       _cmsGen->used_region(),
4929                       &modUnionClosure);
4930     }
4931     // Having transferred these marks into the modUnionTable, we just need
4932     // to rescan the marked objects on the dirty cards in the modUnionTable.
4933     // The initial marking may have been done during an asynchronous
4934     // collection so there may be dirty bits in the mod-union table.
4935     const int alignment =
4936       CardTableModRefBS::card_size * BitsPerWord;
4937     {
4938       // ... First handle dirty cards in CMS gen
4939       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4940       MemRegion ur = _cmsGen->used_region();
4941       HeapWord* lb = ur.start();
4942       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4943       MemRegion cms_span(lb, ub);
4944       _modUnionTable.dirty_range_iterate_clear(cms_span,
4945                                                &markFromDirtyCardsClosure);
4946       verify_work_stacks_empty();
4947       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4948     }
4949   }
4950   if (VerifyDuringGC &&
4951       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4952     HandleMark hm;  // Discard invalid handles created during verification
4953     Universe::verify();
4954   }
4955   {
4956     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4957 
4958     verify_work_stacks_empty();
4959 
4960     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4961     StrongRootsScope srs(1);
4962 
4963     gch->old_process_roots(&srs,
4964                            true,  // young gen as roots
4965                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4966                            should_unload_classes(),
4967                            &mrias_cl,
4968                            NULL); // The dirty klasses will be handled below
4969 
4970     assert(should_unload_classes()
4971            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4972            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4973   }
4974 
4975   {
4976     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4977 
4978     verify_work_stacks_empty();
4979 
4980     // Scan all class loader data objects that might have been introduced
4981     // during concurrent marking.
4982     ResourceMark rm;
4983     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4984     for (int i = 0; i < array->length(); i++) {
4985       mrias_cl.do_cld_nv(array->at(i));
4986     }
4987 
4988     // We don't need to keep track of new CLDs anymore.
4989     ClassLoaderDataGraph::remember_new_clds(false);
4990 
4991     verify_work_stacks_empty();
4992   }
4993 
4994   {
4995     GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
4996 
4997     verify_work_stacks_empty();
4998 
4999     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5000     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5001 
5002     verify_work_stacks_empty();
5003   }
5004 
5005   // We might have added oops to ClassLoaderData::_handles during the
5006   // concurrent marking phase. These oops point to newly allocated objects
5007   // that are guaranteed to be kept alive. Either by the direct allocation
5008   // code, or when the young collector processes the roots. Hence,
5009   // we don't have to revisit the _handles block during the remark phase.
5010 
5011   verify_work_stacks_empty();
5012   // Restore evacuated mark words, if any, used for overflow list links
5013   restore_preserved_marks_if_any();
5014 
5015   verify_overflow_empty();
5016 }
5017 
5018 ////////////////////////////////////////////////////////
5019 // Parallel Reference Processing Task Proxy Class
5020 ////////////////////////////////////////////////////////
5021 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5022   OopTaskQueueSet*       _queues;
5023   ParallelTaskTerminator _terminator;
5024  public:
5025   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5026     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5027   ParallelTaskTerminator* terminator() { return &_terminator; }
5028   OopTaskQueueSet* queues() { return _queues; }
5029 };
5030 
5031 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5032   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5033   CMSCollector*          _collector;
5034   CMSBitMap*             _mark_bit_map;
5035   const MemRegion        _span;
5036   ProcessTask&           _task;
5037 
5038 public:
5039   CMSRefProcTaskProxy(ProcessTask&     task,
5040                       CMSCollector*    collector,
5041                       const MemRegion& span,
5042                       CMSBitMap*       mark_bit_map,
5043                       AbstractWorkGang* workers,
5044                       OopTaskQueueSet* task_queues):
5045     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5046       task_queues,
5047       workers->active_workers()),
5048     _task(task),
5049     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5050   {
5051     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5052            "Inconsistency in _span");
5053   }
5054 
5055   OopTaskQueueSet* task_queues() { return queues(); }
5056 
5057   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5058 
5059   void do_work_steal(int i,
5060                      CMSParDrainMarkingStackClosure* drain,
5061                      CMSParKeepAliveClosure* keep_alive,
5062                      int* seed);
5063 
5064   virtual void work(uint worker_id);
5065 };
5066 
5067 void CMSRefProcTaskProxy::work(uint worker_id) {
5068   ResourceMark rm;
5069   HandleMark hm;
5070   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5071   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5072                                         _mark_bit_map,
5073                                         work_queue(worker_id));
5074   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5075                                                  _mark_bit_map,
5076                                                  work_queue(worker_id));
5077   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5078   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5079   if (_task.marks_oops_alive()) {
5080     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5081                   _collector->hash_seed(worker_id));
5082   }
5083   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5084   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5085 }
5086 
5087 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5088   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5089   EnqueueTask& _task;
5090 
5091 public:
5092   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5093     : AbstractGangTask("Enqueue reference objects in parallel"),
5094       _task(task)
5095   { }
5096 
5097   virtual void work(uint worker_id)
5098   {
5099     _task.work(worker_id);
5100   }
5101 };
5102 
5103 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5104   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5105    _span(span),
5106    _bit_map(bit_map),
5107    _work_queue(work_queue),
5108    _mark_and_push(collector, span, bit_map, work_queue),
5109    _low_water_mark(MIN2((work_queue->max_elems()/4),
5110                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5111 { }
5112 
5113 // . see if we can share work_queues with ParNew? XXX
5114 void CMSRefProcTaskProxy::do_work_steal(int i,
5115   CMSParDrainMarkingStackClosure* drain,
5116   CMSParKeepAliveClosure* keep_alive,
5117   int* seed) {
5118   OopTaskQueue* work_q = work_queue(i);
5119   NOT_PRODUCT(int num_steals = 0;)
5120   oop obj_to_scan;
5121 
5122   while (true) {
5123     // Completely finish any left over work from (an) earlier round(s)
5124     drain->trim_queue(0);
5125     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5126                                          (size_t)ParGCDesiredObjsFromOverflowList);
5127     // Now check if there's any work in the overflow list
5128     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5129     // only affects the number of attempts made to get work from the
5130     // overflow list and does not affect the number of workers.  Just
5131     // pass ParallelGCThreads so this behavior is unchanged.
5132     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5133                                                 work_q,
5134                                                 ParallelGCThreads)) {
5135       // Found something in global overflow list;
5136       // not yet ready to go stealing work from others.
5137       // We'd like to assert(work_q->size() != 0, ...)
5138       // because we just took work from the overflow list,
5139       // but of course we can't, since all of that might have
5140       // been already stolen from us.
5141       continue;
5142     }
5143     // Verify that we have no work before we resort to stealing
5144     assert(work_q->size() == 0, "Have work, shouldn't steal");
5145     // Try to steal from other queues that have work
5146     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5147       NOT_PRODUCT(num_steals++;)
5148       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5149       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5150       // Do scanning work
5151       obj_to_scan->oop_iterate(keep_alive);
5152       // Loop around, finish this work, and try to steal some more
5153     } else if (terminator()->offer_termination()) {
5154       break;  // nirvana from the infinite cycle
5155     }
5156   }
5157   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5158 }
5159 
5160 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5161 {
5162   GenCollectedHeap* gch = GenCollectedHeap::heap();
5163   WorkGang* workers = gch->workers();
5164   assert(workers != NULL, "Need parallel worker threads.");
5165   CMSRefProcTaskProxy rp_task(task, &_collector,
5166                               _collector.ref_processor()->span(),
5167                               _collector.markBitMap(),
5168                               workers, _collector.task_queues());
5169   workers->run_task(&rp_task);
5170 }
5171 
5172 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5173 {
5174 
5175   GenCollectedHeap* gch = GenCollectedHeap::heap();
5176   WorkGang* workers = gch->workers();
5177   assert(workers != NULL, "Need parallel worker threads.");
5178   CMSRefEnqueueTaskProxy enq_task(task);
5179   workers->run_task(&enq_task);
5180 }
5181 
5182 void CMSCollector::refProcessingWork() {
5183   ResourceMark rm;
5184   HandleMark   hm;
5185 
5186   ReferenceProcessor* rp = ref_processor();
5187   assert(rp->span().equals(_span), "Spans should be equal");
5188   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5189   // Process weak references.
5190   rp->setup_policy(false);
5191   verify_work_stacks_empty();
5192 
5193   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5194                                           &_markStack, false /* !preclean */);
5195   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5196                                 _span, &_markBitMap, &_markStack,
5197                                 &cmsKeepAliveClosure, false /* !preclean */);
5198   {
5199     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5200 
5201     ReferenceProcessorStats stats;
5202     if (rp->processing_is_mt()) {
5203       // Set the degree of MT here.  If the discovery is done MT, there
5204       // may have been a different number of threads doing the discovery
5205       // and a different number of discovered lists may have Ref objects.
5206       // That is OK as long as the Reference lists are balanced (see
5207       // balance_all_queues() and balance_queues()).
5208       GenCollectedHeap* gch = GenCollectedHeap::heap();
5209       uint active_workers = ParallelGCThreads;
5210       WorkGang* workers = gch->workers();
5211       if (workers != NULL) {
5212         active_workers = workers->active_workers();
5213         // The expectation is that active_workers will have already
5214         // been set to a reasonable value.  If it has not been set,
5215         // investigate.
5216         assert(active_workers > 0, "Should have been set during scavenge");
5217       }
5218       rp->set_active_mt_degree(active_workers);
5219       CMSRefProcTaskExecutor task_executor(*this);
5220       stats = rp->process_discovered_references(&_is_alive_closure,
5221                                         &cmsKeepAliveClosure,
5222                                         &cmsDrainMarkingStackClosure,
5223                                         &task_executor,
5224                                         _gc_timer_cm);
5225     } else {
5226       stats = rp->process_discovered_references(&_is_alive_closure,
5227                                         &cmsKeepAliveClosure,
5228                                         &cmsDrainMarkingStackClosure,
5229                                         NULL,
5230                                         _gc_timer_cm);
5231     }
5232     _gc_tracer_cm->report_gc_reference_stats(stats);
5233 
5234   }
5235 
5236   // This is the point where the entire marking should have completed.
5237   verify_work_stacks_empty();
5238 
5239   if (should_unload_classes()) {
5240     {
5241       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5242 
5243       // Unload classes and purge the SystemDictionary.
5244       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5245 
5246       // Unload nmethods.
5247       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5248 
5249       // Prune dead klasses from subklass/sibling/implementor lists.
5250       Klass::clean_weak_klass_links(&_is_alive_closure);
5251     }
5252 
5253     {
5254       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5255       // Clean up unreferenced symbols in symbol table.
5256       SymbolTable::unlink();
5257     }
5258 
5259     {
5260       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5261       // Delete entries for dead interned strings.
5262       StringTable::unlink(&_is_alive_closure);
5263     }
5264   }
5265 
5266 
5267   // Restore any preserved marks as a result of mark stack or
5268   // work queue overflow
5269   restore_preserved_marks_if_any();  // done single-threaded for now
5270 
5271   rp->set_enqueuing_is_done(true);
5272   if (rp->processing_is_mt()) {
5273     rp->balance_all_queues();
5274     CMSRefProcTaskExecutor task_executor(*this);
5275     rp->enqueue_discovered_references(&task_executor);
5276   } else {
5277     rp->enqueue_discovered_references(NULL);
5278   }
5279   rp->verify_no_references_recorded();
5280   assert(!rp->discovery_enabled(), "should have been disabled");
5281 }
5282 
5283 #ifndef PRODUCT
5284 void CMSCollector::check_correct_thread_executing() {
5285   Thread* t = Thread::current();
5286   // Only the VM thread or the CMS thread should be here.
5287   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5288          "Unexpected thread type");
5289   // If this is the vm thread, the foreground process
5290   // should not be waiting.  Note that _foregroundGCIsActive is
5291   // true while the foreground collector is waiting.
5292   if (_foregroundGCShouldWait) {
5293     // We cannot be the VM thread
5294     assert(t->is_ConcurrentGC_thread(),
5295            "Should be CMS thread");
5296   } else {
5297     // We can be the CMS thread only if we are in a stop-world
5298     // phase of CMS collection.
5299     if (t->is_ConcurrentGC_thread()) {
5300       assert(_collectorState == InitialMarking ||
5301              _collectorState == FinalMarking,
5302              "Should be a stop-world phase");
5303       // The CMS thread should be holding the CMS_token.
5304       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5305              "Potential interference with concurrently "
5306              "executing VM thread");
5307     }
5308   }
5309 }
5310 #endif
5311 
5312 void CMSCollector::sweep() {
5313   assert(_collectorState == Sweeping, "just checking");
5314   check_correct_thread_executing();
5315   verify_work_stacks_empty();
5316   verify_overflow_empty();
5317   increment_sweep_count();
5318   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5319 
5320   _inter_sweep_timer.stop();
5321   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5322 
5323   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5324   _intra_sweep_timer.reset();
5325   _intra_sweep_timer.start();
5326   {
5327     GCTraceCPUTime tcpu;
5328     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5329     // First sweep the old gen
5330     {
5331       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5332                                bitMapLock());
5333       sweepWork(_cmsGen);
5334     }
5335 
5336     // Update Universe::_heap_*_at_gc figures.
5337     // We need all the free list locks to make the abstract state
5338     // transition from Sweeping to Resetting. See detailed note
5339     // further below.
5340     {
5341       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5342       // Update heap occupancy information which is used as
5343       // input to soft ref clearing policy at the next gc.
5344       Universe::update_heap_info_at_gc();
5345       _collectorState = Resizing;
5346     }
5347   }
5348   verify_work_stacks_empty();
5349   verify_overflow_empty();
5350 
5351   if (should_unload_classes()) {
5352     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5353     // requires that the virtual spaces are stable and not deleted.
5354     ClassLoaderDataGraph::set_should_purge(true);
5355   }
5356 
5357   _intra_sweep_timer.stop();
5358   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5359 
5360   _inter_sweep_timer.reset();
5361   _inter_sweep_timer.start();
5362 
5363   // We need to use a monotonically non-decreasing time in ms
5364   // or we will see time-warp warnings and os::javaTimeMillis()
5365   // does not guarantee monotonicity.
5366   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5367   update_time_of_last_gc(now);
5368 
5369   // NOTE on abstract state transitions:
5370   // Mutators allocate-live and/or mark the mod-union table dirty
5371   // based on the state of the collection.  The former is done in
5372   // the interval [Marking, Sweeping] and the latter in the interval
5373   // [Marking, Sweeping).  Thus the transitions into the Marking state
5374   // and out of the Sweeping state must be synchronously visible
5375   // globally to the mutators.
5376   // The transition into the Marking state happens with the world
5377   // stopped so the mutators will globally see it.  Sweeping is
5378   // done asynchronously by the background collector so the transition
5379   // from the Sweeping state to the Resizing state must be done
5380   // under the freelistLock (as is the check for whether to
5381   // allocate-live and whether to dirty the mod-union table).
5382   assert(_collectorState == Resizing, "Change of collector state to"
5383     " Resizing must be done under the freelistLocks (plural)");
5384 
5385   // Now that sweeping has been completed, we clear
5386   // the incremental_collection_failed flag,
5387   // thus inviting a younger gen collection to promote into
5388   // this generation. If such a promotion may still fail,
5389   // the flag will be set again when a young collection is
5390   // attempted.
5391   GenCollectedHeap* gch = GenCollectedHeap::heap();
5392   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5393   gch->update_full_collections_completed(_collection_count_start);
5394 }
5395 
5396 // FIX ME!!! Looks like this belongs in CFLSpace, with
5397 // CMSGen merely delegating to it.
5398 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5399   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5400   HeapWord*  minAddr        = _cmsSpace->bottom();
5401   HeapWord*  largestAddr    =
5402     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5403   if (largestAddr == NULL) {
5404     // The dictionary appears to be empty.  In this case
5405     // try to coalesce at the end of the heap.
5406     largestAddr = _cmsSpace->end();
5407   }
5408   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5409   size_t nearLargestOffset =
5410     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5411   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5412                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5413   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5414 }
5415 
5416 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5417   return addr >= _cmsSpace->nearLargestChunk();
5418 }
5419 
5420 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5421   return _cmsSpace->find_chunk_at_end();
5422 }
5423 
5424 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5425                                                     bool full) {
5426   // If the young generation has been collected, gather any statistics
5427   // that are of interest at this point.
5428   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5429   if (!full && current_is_young) {
5430     // Gather statistics on the young generation collection.
5431     collector()->stats().record_gc0_end(used());
5432   }
5433 }
5434 
5435 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5436   // We iterate over the space(s) underlying this generation,
5437   // checking the mark bit map to see if the bits corresponding
5438   // to specific blocks are marked or not. Blocks that are
5439   // marked are live and are not swept up. All remaining blocks
5440   // are swept up, with coalescing on-the-fly as we sweep up
5441   // contiguous free and/or garbage blocks:
5442   // We need to ensure that the sweeper synchronizes with allocators
5443   // and stop-the-world collectors. In particular, the following
5444   // locks are used:
5445   // . CMS token: if this is held, a stop the world collection cannot occur
5446   // . freelistLock: if this is held no allocation can occur from this
5447   //                 generation by another thread
5448   // . bitMapLock: if this is held, no other thread can access or update
5449   //
5450 
5451   // Note that we need to hold the freelistLock if we use
5452   // block iterate below; else the iterator might go awry if
5453   // a mutator (or promotion) causes block contents to change
5454   // (for instance if the allocator divvies up a block).
5455   // If we hold the free list lock, for all practical purposes
5456   // young generation GC's can't occur (they'll usually need to
5457   // promote), so we might as well prevent all young generation
5458   // GC's while we do a sweeping step. For the same reason, we might
5459   // as well take the bit map lock for the entire duration
5460 
5461   // check that we hold the requisite locks
5462   assert(have_cms_token(), "Should hold cms token");
5463   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5464   assert_lock_strong(old_gen->freelistLock());
5465   assert_lock_strong(bitMapLock());
5466 
5467   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5468   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5469   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5470                                           _inter_sweep_estimate.padded_average(),
5471                                           _intra_sweep_estimate.padded_average());
5472   old_gen->setNearLargestChunk();
5473 
5474   {
5475     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5476     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5477     // We need to free-up/coalesce garbage/blocks from a
5478     // co-terminal free run. This is done in the SweepClosure
5479     // destructor; so, do not remove this scope, else the
5480     // end-of-sweep-census below will be off by a little bit.
5481   }
5482   old_gen->cmsSpace()->sweep_completed();
5483   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5484   if (should_unload_classes()) {                // unloaded classes this cycle,
5485     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5486   } else {                                      // did not unload classes,
5487     _concurrent_cycles_since_last_unload++;     // ... increment count
5488   }
5489 }
5490 
5491 // Reset CMS data structures (for now just the marking bit map)
5492 // preparatory for the next cycle.
5493 void CMSCollector::reset_concurrent() {
5494   CMSTokenSyncWithLocks ts(true, bitMapLock());
5495 
5496   // If the state is not "Resetting", the foreground  thread
5497   // has done a collection and the resetting.
5498   if (_collectorState != Resetting) {
5499     assert(_collectorState == Idling, "The state should only change"
5500       " because the foreground collector has finished the collection");
5501     return;
5502   }
5503 
5504   {
5505     // Clear the mark bitmap (no grey objects to start with)
5506     // for the next cycle.
5507     GCTraceCPUTime tcpu;
5508     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5509 
5510     HeapWord* curAddr = _markBitMap.startWord();
5511     while (curAddr < _markBitMap.endWord()) {
5512       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5513       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5514       _markBitMap.clear_large_range(chunk);
5515       if (ConcurrentMarkSweepThread::should_yield() &&
5516           !foregroundGCIsActive() &&
5517           CMSYield) {
5518         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5519                "CMS thread should hold CMS token");
5520         assert_lock_strong(bitMapLock());
5521         bitMapLock()->unlock();
5522         ConcurrentMarkSweepThread::desynchronize(true);
5523         stopTimer();
5524         incrementYields();
5525 
5526         // See the comment in coordinator_yield()
5527         for (unsigned i = 0; i < CMSYieldSleepCount &&
5528                          ConcurrentMarkSweepThread::should_yield() &&
5529                          !CMSCollector::foregroundGCIsActive(); ++i) {
5530           os::sleep(Thread::current(), 1, false);
5531         }
5532 
5533         ConcurrentMarkSweepThread::synchronize(true);
5534         bitMapLock()->lock_without_safepoint_check();
5535         startTimer();
5536       }
5537       curAddr = chunk.end();
5538     }
5539     // A successful mostly concurrent collection has been done.
5540     // Because only the full (i.e., concurrent mode failure) collections
5541     // are being measured for gc overhead limits, clean the "near" flag
5542     // and count.
5543     size_policy()->reset_gc_overhead_limit_count();
5544     _collectorState = Idling;
5545   }
5546 
5547   register_gc_end();
5548 }
5549 
5550 // Same as above but for STW paths
5551 void CMSCollector::reset_stw() {
5552   // already have the lock
5553   assert(_collectorState == Resetting, "just checking");
5554   assert_lock_strong(bitMapLock());
5555   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5556   _markBitMap.clear_all();
5557   _collectorState = Idling;
5558   register_gc_end();
5559 }
5560 
5561 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5562   GCTraceCPUTime tcpu;
5563   TraceCollectorStats tcs(counters());
5564 
5565   switch (op) {
5566     case CMS_op_checkpointRootsInitial: {
5567       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5568       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5569       checkpointRootsInitial();
5570       break;
5571     }
5572     case CMS_op_checkpointRootsFinal: {
5573       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5574       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5575       checkpointRootsFinal();
5576       break;
5577     }
5578     default:
5579       fatal("No such CMS_op");
5580   }
5581 }
5582 
5583 #ifndef PRODUCT
5584 size_t const CMSCollector::skip_header_HeapWords() {
5585   return FreeChunk::header_size();
5586 }
5587 
5588 // Try and collect here conditions that should hold when
5589 // CMS thread is exiting. The idea is that the foreground GC
5590 // thread should not be blocked if it wants to terminate
5591 // the CMS thread and yet continue to run the VM for a while
5592 // after that.
5593 void CMSCollector::verify_ok_to_terminate() const {
5594   assert(Thread::current()->is_ConcurrentGC_thread(),
5595          "should be called by CMS thread");
5596   assert(!_foregroundGCShouldWait, "should be false");
5597   // We could check here that all the various low-level locks
5598   // are not held by the CMS thread, but that is overkill; see
5599   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5600   // is checked.
5601 }
5602 #endif
5603 
5604 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5605    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5606           "missing Printezis mark?");
5607   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5608   size_t size = pointer_delta(nextOneAddr + 1, addr);
5609   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5610          "alignment problem");
5611   assert(size >= 3, "Necessary for Printezis marks to work");
5612   return size;
5613 }
5614 
5615 // A variant of the above (block_size_using_printezis_bits()) except
5616 // that we return 0 if the P-bits are not yet set.
5617 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5618   if (_markBitMap.isMarked(addr + 1)) {
5619     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5620     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5621     size_t size = pointer_delta(nextOneAddr + 1, addr);
5622     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5623            "alignment problem");
5624     assert(size >= 3, "Necessary for Printezis marks to work");
5625     return size;
5626   }
5627   return 0;
5628 }
5629 
5630 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5631   size_t sz = 0;
5632   oop p = (oop)addr;
5633   if (p->klass_or_null() != NULL) {
5634     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5635   } else {
5636     sz = block_size_using_printezis_bits(addr);
5637   }
5638   assert(sz > 0, "size must be nonzero");
5639   HeapWord* next_block = addr + sz;
5640   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5641                                              CardTableModRefBS::card_size);
5642   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5643          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5644          "must be different cards");
5645   return next_card;
5646 }
5647 
5648 
5649 // CMS Bit Map Wrapper /////////////////////////////////////////
5650 
5651 // Construct a CMS bit map infrastructure, but don't create the
5652 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5653 // further below.
5654 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5655   _bm(),
5656   _shifter(shifter),
5657   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5658                                     Monitor::_safepoint_check_sometimes) : NULL)
5659 {
5660   _bmStartWord = 0;
5661   _bmWordSize  = 0;
5662 }
5663 
5664 bool CMSBitMap::allocate(MemRegion mr) {
5665   _bmStartWord = mr.start();
5666   _bmWordSize  = mr.word_size();
5667   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5668                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5669   if (!brs.is_reserved()) {
5670     log_warning(gc)("CMS bit map allocation failure");
5671     return false;
5672   }
5673   // For now we'll just commit all of the bit map up front.
5674   // Later on we'll try to be more parsimonious with swap.
5675   if (!_virtual_space.initialize(brs, brs.size())) {
5676     log_warning(gc)("CMS bit map backing store failure");
5677     return false;
5678   }
5679   assert(_virtual_space.committed_size() == brs.size(),
5680          "didn't reserve backing store for all of CMS bit map?");
5681   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5682          _bmWordSize, "inconsistency in bit map sizing");
5683   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5684 
5685   // bm.clear(); // can we rely on getting zero'd memory? verify below
5686   assert(isAllClear(),
5687          "Expected zero'd memory from ReservedSpace constructor");
5688   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5689          "consistency check");
5690   return true;
5691 }
5692 
5693 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5694   HeapWord *next_addr, *end_addr, *last_addr;
5695   assert_locked();
5696   assert(covers(mr), "out-of-range error");
5697   // XXX assert that start and end are appropriately aligned
5698   for (next_addr = mr.start(), end_addr = mr.end();
5699        next_addr < end_addr; next_addr = last_addr) {
5700     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5701     last_addr = dirty_region.end();
5702     if (!dirty_region.is_empty()) {
5703       cl->do_MemRegion(dirty_region);
5704     } else {
5705       assert(last_addr == end_addr, "program logic");
5706       return;
5707     }
5708   }
5709 }
5710 
5711 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5712   _bm.print_on_error(st, prefix);
5713 }
5714 
5715 #ifndef PRODUCT
5716 void CMSBitMap::assert_locked() const {
5717   CMSLockVerifier::assert_locked(lock());
5718 }
5719 
5720 bool CMSBitMap::covers(MemRegion mr) const {
5721   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5722   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5723          "size inconsistency");
5724   return (mr.start() >= _bmStartWord) &&
5725          (mr.end()   <= endWord());
5726 }
5727 
5728 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5729     return (start >= _bmStartWord && (start + size) <= endWord());
5730 }
5731 
5732 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5733   // verify that there are no 1 bits in the interval [left, right)
5734   FalseBitMapClosure falseBitMapClosure;
5735   iterate(&falseBitMapClosure, left, right);
5736 }
5737 
5738 void CMSBitMap::region_invariant(MemRegion mr)
5739 {
5740   assert_locked();
5741   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5742   assert(!mr.is_empty(), "unexpected empty region");
5743   assert(covers(mr), "mr should be covered by bit map");
5744   // convert address range into offset range
5745   size_t start_ofs = heapWordToOffset(mr.start());
5746   // Make sure that end() is appropriately aligned
5747   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5748                         (1 << (_shifter+LogHeapWordSize))),
5749          "Misaligned mr.end()");
5750   size_t end_ofs   = heapWordToOffset(mr.end());
5751   assert(end_ofs > start_ofs, "Should mark at least one bit");
5752 }
5753 
5754 #endif
5755 
5756 bool CMSMarkStack::allocate(size_t size) {
5757   // allocate a stack of the requisite depth
5758   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5759                    size * sizeof(oop)));
5760   if (!rs.is_reserved()) {
5761     log_warning(gc)("CMSMarkStack allocation failure");
5762     return false;
5763   }
5764   if (!_virtual_space.initialize(rs, rs.size())) {
5765     log_warning(gc)("CMSMarkStack backing store failure");
5766     return false;
5767   }
5768   assert(_virtual_space.committed_size() == rs.size(),
5769          "didn't reserve backing store for all of CMS stack?");
5770   _base = (oop*)(_virtual_space.low());
5771   _index = 0;
5772   _capacity = size;
5773   NOT_PRODUCT(_max_depth = 0);
5774   return true;
5775 }
5776 
5777 // XXX FIX ME !!! In the MT case we come in here holding a
5778 // leaf lock. For printing we need to take a further lock
5779 // which has lower rank. We need to recalibrate the two
5780 // lock-ranks involved in order to be able to print the
5781 // messages below. (Or defer the printing to the caller.
5782 // For now we take the expedient path of just disabling the
5783 // messages for the problematic case.)
5784 void CMSMarkStack::expand() {
5785   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5786   if (_capacity == MarkStackSizeMax) {
5787     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5788       // We print a warning message only once per CMS cycle.
5789       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5790     }
5791     return;
5792   }
5793   // Double capacity if possible
5794   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5795   // Do not give up existing stack until we have managed to
5796   // get the double capacity that we desired.
5797   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5798                    new_capacity * sizeof(oop)));
5799   if (rs.is_reserved()) {
5800     // Release the backing store associated with old stack
5801     _virtual_space.release();
5802     // Reinitialize virtual space for new stack
5803     if (!_virtual_space.initialize(rs, rs.size())) {
5804       fatal("Not enough swap for expanded marking stack");
5805     }
5806     _base = (oop*)(_virtual_space.low());
5807     _index = 0;
5808     _capacity = new_capacity;
5809   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5810     // Failed to double capacity, continue;
5811     // we print a detail message only once per CMS cycle.
5812     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5813                         _capacity / K, new_capacity / K);
5814   }
5815 }
5816 
5817 
5818 // Closures
5819 // XXX: there seems to be a lot of code  duplication here;
5820 // should refactor and consolidate common code.
5821 
5822 // This closure is used to mark refs into the CMS generation in
5823 // the CMS bit map. Called at the first checkpoint. This closure
5824 // assumes that we do not need to re-mark dirty cards; if the CMS
5825 // generation on which this is used is not an oldest
5826 // generation then this will lose younger_gen cards!
5827 
5828 MarkRefsIntoClosure::MarkRefsIntoClosure(
5829   MemRegion span, CMSBitMap* bitMap):
5830     _span(span),
5831     _bitMap(bitMap)
5832 {
5833   assert(ref_processor() == NULL, "deliberately left NULL");
5834   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5835 }
5836 
5837 void MarkRefsIntoClosure::do_oop(oop obj) {
5838   // if p points into _span, then mark corresponding bit in _markBitMap
5839   assert(obj->is_oop(), "expected an oop");
5840   HeapWord* addr = (HeapWord*)obj;
5841   if (_span.contains(addr)) {
5842     // this should be made more efficient
5843     _bitMap->mark(addr);
5844   }
5845 }
5846 
5847 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5848 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5849 
5850 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5851   MemRegion span, CMSBitMap* bitMap):
5852     _span(span),
5853     _bitMap(bitMap)
5854 {
5855   assert(ref_processor() == NULL, "deliberately left NULL");
5856   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5857 }
5858 
5859 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5860   // if p points into _span, then mark corresponding bit in _markBitMap
5861   assert(obj->is_oop(), "expected an oop");
5862   HeapWord* addr = (HeapWord*)obj;
5863   if (_span.contains(addr)) {
5864     // this should be made more efficient
5865     _bitMap->par_mark(addr);
5866   }
5867 }
5868 
5869 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5870 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5871 
5872 // A variant of the above, used for CMS marking verification.
5873 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5874   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5875     _span(span),
5876     _verification_bm(verification_bm),
5877     _cms_bm(cms_bm)
5878 {
5879   assert(ref_processor() == NULL, "deliberately left NULL");
5880   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5881 }
5882 
5883 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5884   // if p points into _span, then mark corresponding bit in _markBitMap
5885   assert(obj->is_oop(), "expected an oop");
5886   HeapWord* addr = (HeapWord*)obj;
5887   if (_span.contains(addr)) {
5888     _verification_bm->mark(addr);
5889     if (!_cms_bm->isMarked(addr)) {
5890       Log(gc, verify) log;
5891       ResourceMark rm;
5892       oop(addr)->print_on(log.error_stream());
5893       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5894       fatal("... aborting");
5895     }
5896   }
5897 }
5898 
5899 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5900 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5901 
5902 //////////////////////////////////////////////////
5903 // MarkRefsIntoAndScanClosure
5904 //////////////////////////////////////////////////
5905 
5906 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5907                                                        ReferenceProcessor* rp,
5908                                                        CMSBitMap* bit_map,
5909                                                        CMSBitMap* mod_union_table,
5910                                                        CMSMarkStack*  mark_stack,
5911                                                        CMSCollector* collector,
5912                                                        bool should_yield,
5913                                                        bool concurrent_precleaning):
5914   _collector(collector),
5915   _span(span),
5916   _bit_map(bit_map),
5917   _mark_stack(mark_stack),
5918   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5919                       mark_stack, concurrent_precleaning),
5920   _yield(should_yield),
5921   _concurrent_precleaning(concurrent_precleaning),
5922   _freelistLock(NULL)
5923 {
5924   // FIXME: Should initialize in base class constructor.
5925   assert(rp != NULL, "ref_processor shouldn't be NULL");
5926   set_ref_processor_internal(rp);
5927 }
5928 
5929 // This closure is used to mark refs into the CMS generation at the
5930 // second (final) checkpoint, and to scan and transitively follow
5931 // the unmarked oops. It is also used during the concurrent precleaning
5932 // phase while scanning objects on dirty cards in the CMS generation.
5933 // The marks are made in the marking bit map and the marking stack is
5934 // used for keeping the (newly) grey objects during the scan.
5935 // The parallel version (Par_...) appears further below.
5936 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5937   if (obj != NULL) {
5938     assert(obj->is_oop(), "expected an oop");
5939     HeapWord* addr = (HeapWord*)obj;
5940     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5941     assert(_collector->overflow_list_is_empty(),
5942            "overflow list should be empty");
5943     if (_span.contains(addr) &&
5944         !_bit_map->isMarked(addr)) {
5945       // mark bit map (object is now grey)
5946       _bit_map->mark(addr);
5947       // push on marking stack (stack should be empty), and drain the
5948       // stack by applying this closure to the oops in the oops popped
5949       // from the stack (i.e. blacken the grey objects)
5950       bool res = _mark_stack->push(obj);
5951       assert(res, "Should have space to push on empty stack");
5952       do {
5953         oop new_oop = _mark_stack->pop();
5954         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5955         assert(_bit_map->isMarked((HeapWord*)new_oop),
5956                "only grey objects on this stack");
5957         // iterate over the oops in this oop, marking and pushing
5958         // the ones in CMS heap (i.e. in _span).
5959         new_oop->oop_iterate(&_pushAndMarkClosure);
5960         // check if it's time to yield
5961         do_yield_check();
5962       } while (!_mark_stack->isEmpty() ||
5963                (!_concurrent_precleaning && take_from_overflow_list()));
5964         // if marking stack is empty, and we are not doing this
5965         // during precleaning, then check the overflow list
5966     }
5967     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5968     assert(_collector->overflow_list_is_empty(),
5969            "overflow list was drained above");
5970 
5971     assert(_collector->no_preserved_marks(),
5972            "All preserved marks should have been restored above");
5973   }
5974 }
5975 
5976 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5977 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5978 
5979 void MarkRefsIntoAndScanClosure::do_yield_work() {
5980   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5981          "CMS thread should hold CMS token");
5982   assert_lock_strong(_freelistLock);
5983   assert_lock_strong(_bit_map->lock());
5984   // relinquish the free_list_lock and bitMaplock()
5985   _bit_map->lock()->unlock();
5986   _freelistLock->unlock();
5987   ConcurrentMarkSweepThread::desynchronize(true);
5988   _collector->stopTimer();
5989   _collector->incrementYields();
5990 
5991   // See the comment in coordinator_yield()
5992   for (unsigned i = 0;
5993        i < CMSYieldSleepCount &&
5994        ConcurrentMarkSweepThread::should_yield() &&
5995        !CMSCollector::foregroundGCIsActive();
5996        ++i) {
5997     os::sleep(Thread::current(), 1, false);
5998   }
5999 
6000   ConcurrentMarkSweepThread::synchronize(true);
6001   _freelistLock->lock_without_safepoint_check();
6002   _bit_map->lock()->lock_without_safepoint_check();
6003   _collector->startTimer();
6004 }
6005 
6006 ///////////////////////////////////////////////////////////
6007 // ParMarkRefsIntoAndScanClosure: a parallel version of
6008 //                                MarkRefsIntoAndScanClosure
6009 ///////////////////////////////////////////////////////////
6010 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6011   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6012   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6013   _span(span),
6014   _bit_map(bit_map),
6015   _work_queue(work_queue),
6016   _low_water_mark(MIN2((work_queue->max_elems()/4),
6017                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6018   _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6019 {
6020   // FIXME: Should initialize in base class constructor.
6021   assert(rp != NULL, "ref_processor shouldn't be NULL");
6022   set_ref_processor_internal(rp);
6023 }
6024 
6025 // This closure is used to mark refs into the CMS generation at the
6026 // second (final) checkpoint, and to scan and transitively follow
6027 // the unmarked oops. The marks are made in the marking bit map and
6028 // the work_queue is used for keeping the (newly) grey objects during
6029 // the scan phase whence they are also available for stealing by parallel
6030 // threads. Since the marking bit map is shared, updates are
6031 // synchronized (via CAS).
6032 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6033   if (obj != NULL) {
6034     // Ignore mark word because this could be an already marked oop
6035     // that may be chained at the end of the overflow list.
6036     assert(obj->is_oop(true), "expected an oop");
6037     HeapWord* addr = (HeapWord*)obj;
6038     if (_span.contains(addr) &&
6039         !_bit_map->isMarked(addr)) {
6040       // mark bit map (object will become grey):
6041       // It is possible for several threads to be
6042       // trying to "claim" this object concurrently;
6043       // the unique thread that succeeds in marking the
6044       // object first will do the subsequent push on
6045       // to the work queue (or overflow list).
6046       if (_bit_map->par_mark(addr)) {
6047         // push on work_queue (which may not be empty), and trim the
6048         // queue to an appropriate length by applying this closure to
6049         // the oops in the oops popped from the stack (i.e. blacken the
6050         // grey objects)
6051         bool res = _work_queue->push(obj);
6052         assert(res, "Low water mark should be less than capacity?");
6053         trim_queue(_low_water_mark);
6054       } // Else, another thread claimed the object
6055     }
6056   }
6057 }
6058 
6059 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6060 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6061 
6062 // This closure is used to rescan the marked objects on the dirty cards
6063 // in the mod union table and the card table proper.
6064 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6065   oop p, MemRegion mr) {
6066 
6067   size_t size = 0;
6068   HeapWord* addr = (HeapWord*)p;
6069   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6070   assert(_span.contains(addr), "we are scanning the CMS generation");
6071   // check if it's time to yield
6072   if (do_yield_check()) {
6073     // We yielded for some foreground stop-world work,
6074     // and we have been asked to abort this ongoing preclean cycle.
6075     return 0;
6076   }
6077   if (_bitMap->isMarked(addr)) {
6078     // it's marked; is it potentially uninitialized?
6079     if (p->klass_or_null() != NULL) {
6080         // an initialized object; ignore mark word in verification below
6081         // since we are running concurrent with mutators
6082         assert(p->is_oop(true), "should be an oop");
6083         if (p->is_objArray()) {
6084           // objArrays are precisely marked; restrict scanning
6085           // to dirty cards only.
6086           size = CompactibleFreeListSpace::adjustObjectSize(
6087                    p->oop_iterate_size(_scanningClosure, mr));
6088         } else {
6089           // A non-array may have been imprecisely marked; we need
6090           // to scan object in its entirety.
6091           size = CompactibleFreeListSpace::adjustObjectSize(
6092                    p->oop_iterate_size(_scanningClosure));
6093         }
6094       #ifdef ASSERT
6095         size_t direct_size =
6096           CompactibleFreeListSpace::adjustObjectSize(p->size());
6097         assert(size == direct_size, "Inconsistency in size");
6098         assert(size >= 3, "Necessary for Printezis marks to work");
6099         HeapWord* start_pbit = addr + 1;
6100         HeapWord* end_pbit = addr + size - 1;
6101         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6102                "inconsistent Printezis mark");
6103         // Verify inner mark bits (between Printezis bits) are clear,
6104         // but don't repeat if there are multiple dirty regions for
6105         // the same object, to avoid potential O(N^2) performance.
6106         if (addr != _last_scanned_object) {
6107           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6108           _last_scanned_object = addr;
6109         }
6110       #endif // ASSERT
6111     } else {
6112       // An uninitialized object.
6113       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6114       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6115       size = pointer_delta(nextOneAddr + 1, addr);
6116       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6117              "alignment problem");
6118       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6119       // will dirty the card when the klass pointer is installed in the
6120       // object (signaling the completion of initialization).
6121     }
6122   } else {
6123     // Either a not yet marked object or an uninitialized object
6124     if (p->klass_or_null() == NULL) {
6125       // An uninitialized object, skip to the next card, since
6126       // we may not be able to read its P-bits yet.
6127       assert(size == 0, "Initial value");
6128     } else {
6129       // An object not (yet) reached by marking: we merely need to
6130       // compute its size so as to go look at the next block.
6131       assert(p->is_oop(true), "should be an oop");
6132       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6133     }
6134   }
6135   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6136   return size;
6137 }
6138 
6139 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6140   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6141          "CMS thread should hold CMS token");
6142   assert_lock_strong(_freelistLock);
6143   assert_lock_strong(_bitMap->lock());
6144   // relinquish the free_list_lock and bitMaplock()
6145   _bitMap->lock()->unlock();
6146   _freelistLock->unlock();
6147   ConcurrentMarkSweepThread::desynchronize(true);
6148   _collector->stopTimer();
6149   _collector->incrementYields();
6150 
6151   // See the comment in coordinator_yield()
6152   for (unsigned i = 0; i < CMSYieldSleepCount &&
6153                    ConcurrentMarkSweepThread::should_yield() &&
6154                    !CMSCollector::foregroundGCIsActive(); ++i) {
6155     os::sleep(Thread::current(), 1, false);
6156   }
6157 
6158   ConcurrentMarkSweepThread::synchronize(true);
6159   _freelistLock->lock_without_safepoint_check();
6160   _bitMap->lock()->lock_without_safepoint_check();
6161   _collector->startTimer();
6162 }
6163 
6164 
6165 //////////////////////////////////////////////////////////////////
6166 // SurvivorSpacePrecleanClosure
6167 //////////////////////////////////////////////////////////////////
6168 // This (single-threaded) closure is used to preclean the oops in
6169 // the survivor spaces.
6170 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6171 
6172   HeapWord* addr = (HeapWord*)p;
6173   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6174   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6175   assert(p->klass_or_null() != NULL, "object should be initialized");
6176   // an initialized object; ignore mark word in verification below
6177   // since we are running concurrent with mutators
6178   assert(p->is_oop(true), "should be an oop");
6179   // Note that we do not yield while we iterate over
6180   // the interior oops of p, pushing the relevant ones
6181   // on our marking stack.
6182   size_t size = p->oop_iterate_size(_scanning_closure);
6183   do_yield_check();
6184   // Observe that below, we do not abandon the preclean
6185   // phase as soon as we should; rather we empty the
6186   // marking stack before returning. This is to satisfy
6187   // some existing assertions. In general, it may be a
6188   // good idea to abort immediately and complete the marking
6189   // from the grey objects at a later time.
6190   while (!_mark_stack->isEmpty()) {
6191     oop new_oop = _mark_stack->pop();
6192     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6193     assert(_bit_map->isMarked((HeapWord*)new_oop),
6194            "only grey objects on this stack");
6195     // iterate over the oops in this oop, marking and pushing
6196     // the ones in CMS heap (i.e. in _span).
6197     new_oop->oop_iterate(_scanning_closure);
6198     // check if it's time to yield
6199     do_yield_check();
6200   }
6201   unsigned int after_count =
6202     GenCollectedHeap::heap()->total_collections();
6203   bool abort = (_before_count != after_count) ||
6204                _collector->should_abort_preclean();
6205   return abort ? 0 : size;
6206 }
6207 
6208 void SurvivorSpacePrecleanClosure::do_yield_work() {
6209   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6210          "CMS thread should hold CMS token");
6211   assert_lock_strong(_bit_map->lock());
6212   // Relinquish the bit map lock
6213   _bit_map->lock()->unlock();
6214   ConcurrentMarkSweepThread::desynchronize(true);
6215   _collector->stopTimer();
6216   _collector->incrementYields();
6217 
6218   // See the comment in coordinator_yield()
6219   for (unsigned i = 0; i < CMSYieldSleepCount &&
6220                        ConcurrentMarkSweepThread::should_yield() &&
6221                        !CMSCollector::foregroundGCIsActive(); ++i) {
6222     os::sleep(Thread::current(), 1, false);
6223   }
6224 
6225   ConcurrentMarkSweepThread::synchronize(true);
6226   _bit_map->lock()->lock_without_safepoint_check();
6227   _collector->startTimer();
6228 }
6229 
6230 // This closure is used to rescan the marked objects on the dirty cards
6231 // in the mod union table and the card table proper. In the parallel
6232 // case, although the bitMap is shared, we do a single read so the
6233 // isMarked() query is "safe".
6234 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6235   // Ignore mark word because we are running concurrent with mutators
6236   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6237   HeapWord* addr = (HeapWord*)p;
6238   assert(_span.contains(addr), "we are scanning the CMS generation");
6239   bool is_obj_array = false;
6240   #ifdef ASSERT
6241     if (!_parallel) {
6242       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6243       assert(_collector->overflow_list_is_empty(),
6244              "overflow list should be empty");
6245 
6246     }
6247   #endif // ASSERT
6248   if (_bit_map->isMarked(addr)) {
6249     // Obj arrays are precisely marked, non-arrays are not;
6250     // so we scan objArrays precisely and non-arrays in their
6251     // entirety.
6252     if (p->is_objArray()) {
6253       is_obj_array = true;
6254       if (_parallel) {
6255         p->oop_iterate(_par_scan_closure, mr);
6256       } else {
6257         p->oop_iterate(_scan_closure, mr);
6258       }
6259     } else {
6260       if (_parallel) {
6261         p->oop_iterate(_par_scan_closure);
6262       } else {
6263         p->oop_iterate(_scan_closure);
6264       }
6265     }
6266   }
6267   #ifdef ASSERT
6268     if (!_parallel) {
6269       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6270       assert(_collector->overflow_list_is_empty(),
6271              "overflow list should be empty");
6272 
6273     }
6274   #endif // ASSERT
6275   return is_obj_array;
6276 }
6277 
6278 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6279                         MemRegion span,
6280                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6281                         bool should_yield, bool verifying):
6282   _collector(collector),
6283   _span(span),
6284   _bitMap(bitMap),
6285   _mut(&collector->_modUnionTable),
6286   _markStack(markStack),
6287   _yield(should_yield),
6288   _skipBits(0)
6289 {
6290   assert(_markStack->isEmpty(), "stack should be empty");
6291   _finger = _bitMap->startWord();
6292   _threshold = _finger;
6293   assert(_collector->_restart_addr == NULL, "Sanity check");
6294   assert(_span.contains(_finger), "Out of bounds _finger?");
6295   DEBUG_ONLY(_verifying = verifying;)
6296 }
6297 
6298 void MarkFromRootsClosure::reset(HeapWord* addr) {
6299   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6300   assert(_span.contains(addr), "Out of bounds _finger?");
6301   _finger = addr;
6302   _threshold = (HeapWord*)round_to(
6303                  (intptr_t)_finger, CardTableModRefBS::card_size);
6304 }
6305 
6306 // Should revisit to see if this should be restructured for
6307 // greater efficiency.
6308 bool MarkFromRootsClosure::do_bit(size_t offset) {
6309   if (_skipBits > 0) {
6310     _skipBits--;
6311     return true;
6312   }
6313   // convert offset into a HeapWord*
6314   HeapWord* addr = _bitMap->startWord() + offset;
6315   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6316          "address out of range");
6317   assert(_bitMap->isMarked(addr), "tautology");
6318   if (_bitMap->isMarked(addr+1)) {
6319     // this is an allocated but not yet initialized object
6320     assert(_skipBits == 0, "tautology");
6321     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6322     oop p = oop(addr);
6323     if (p->klass_or_null() == NULL) {
6324       DEBUG_ONLY(if (!_verifying) {)
6325         // We re-dirty the cards on which this object lies and increase
6326         // the _threshold so that we'll come back to scan this object
6327         // during the preclean or remark phase. (CMSCleanOnEnter)
6328         if (CMSCleanOnEnter) {
6329           size_t sz = _collector->block_size_using_printezis_bits(addr);
6330           HeapWord* end_card_addr   = (HeapWord*)round_to(
6331                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6332           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6333           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6334           // Bump _threshold to end_card_addr; note that
6335           // _threshold cannot possibly exceed end_card_addr, anyhow.
6336           // This prevents future clearing of the card as the scan proceeds
6337           // to the right.
6338           assert(_threshold <= end_card_addr,
6339                  "Because we are just scanning into this object");
6340           if (_threshold < end_card_addr) {
6341             _threshold = end_card_addr;
6342           }
6343           if (p->klass_or_null() != NULL) {
6344             // Redirty the range of cards...
6345             _mut->mark_range(redirty_range);
6346           } // ...else the setting of klass will dirty the card anyway.
6347         }
6348       DEBUG_ONLY(})
6349       return true;
6350     }
6351   }
6352   scanOopsInOop(addr);
6353   return true;
6354 }
6355 
6356 // We take a break if we've been at this for a while,
6357 // so as to avoid monopolizing the locks involved.
6358 void MarkFromRootsClosure::do_yield_work() {
6359   // First give up the locks, then yield, then re-lock
6360   // We should probably use a constructor/destructor idiom to
6361   // do this unlock/lock or modify the MutexUnlocker class to
6362   // serve our purpose. XXX
6363   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6364          "CMS thread should hold CMS token");
6365   assert_lock_strong(_bitMap->lock());
6366   _bitMap->lock()->unlock();
6367   ConcurrentMarkSweepThread::desynchronize(true);
6368   _collector->stopTimer();
6369   _collector->incrementYields();
6370 
6371   // See the comment in coordinator_yield()
6372   for (unsigned i = 0; i < CMSYieldSleepCount &&
6373                        ConcurrentMarkSweepThread::should_yield() &&
6374                        !CMSCollector::foregroundGCIsActive(); ++i) {
6375     os::sleep(Thread::current(), 1, false);
6376   }
6377 
6378   ConcurrentMarkSweepThread::synchronize(true);
6379   _bitMap->lock()->lock_without_safepoint_check();
6380   _collector->startTimer();
6381 }
6382 
6383 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6384   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6385   assert(_markStack->isEmpty(),
6386          "should drain stack to limit stack usage");
6387   // convert ptr to an oop preparatory to scanning
6388   oop obj = oop(ptr);
6389   // Ignore mark word in verification below, since we
6390   // may be running concurrent with mutators.
6391   assert(obj->is_oop(true), "should be an oop");
6392   assert(_finger <= ptr, "_finger runneth ahead");
6393   // advance the finger to right end of this object
6394   _finger = ptr + obj->size();
6395   assert(_finger > ptr, "we just incremented it above");
6396   // On large heaps, it may take us some time to get through
6397   // the marking phase. During
6398   // this time it's possible that a lot of mutations have
6399   // accumulated in the card table and the mod union table --
6400   // these mutation records are redundant until we have
6401   // actually traced into the corresponding card.
6402   // Here, we check whether advancing the finger would make
6403   // us cross into a new card, and if so clear corresponding
6404   // cards in the MUT (preclean them in the card-table in the
6405   // future).
6406 
6407   DEBUG_ONLY(if (!_verifying) {)
6408     // The clean-on-enter optimization is disabled by default,
6409     // until we fix 6178663.
6410     if (CMSCleanOnEnter && (_finger > _threshold)) {
6411       // [_threshold, _finger) represents the interval
6412       // of cards to be cleared  in MUT (or precleaned in card table).
6413       // The set of cards to be cleared is all those that overlap
6414       // with the interval [_threshold, _finger); note that
6415       // _threshold is always kept card-aligned but _finger isn't
6416       // always card-aligned.
6417       HeapWord* old_threshold = _threshold;
6418       assert(old_threshold == (HeapWord*)round_to(
6419               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6420              "_threshold should always be card-aligned");
6421       _threshold = (HeapWord*)round_to(
6422                      (intptr_t)_finger, CardTableModRefBS::card_size);
6423       MemRegion mr(old_threshold, _threshold);
6424       assert(!mr.is_empty(), "Control point invariant");
6425       assert(_span.contains(mr), "Should clear within span");
6426       _mut->clear_range(mr);
6427     }
6428   DEBUG_ONLY(})
6429   // Note: the finger doesn't advance while we drain
6430   // the stack below.
6431   PushOrMarkClosure pushOrMarkClosure(_collector,
6432                                       _span, _bitMap, _markStack,
6433                                       _finger, this);
6434   bool res = _markStack->push(obj);
6435   assert(res, "Empty non-zero size stack should have space for single push");
6436   while (!_markStack->isEmpty()) {
6437     oop new_oop = _markStack->pop();
6438     // Skip verifying header mark word below because we are
6439     // running concurrent with mutators.
6440     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6441     // now scan this oop's oops
6442     new_oop->oop_iterate(&pushOrMarkClosure);
6443     do_yield_check();
6444   }
6445   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6446 }
6447 
6448 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6449                        CMSCollector* collector, MemRegion span,
6450                        CMSBitMap* bit_map,
6451                        OopTaskQueue* work_queue,
6452                        CMSMarkStack*  overflow_stack):
6453   _collector(collector),
6454   _whole_span(collector->_span),
6455   _span(span),
6456   _bit_map(bit_map),
6457   _mut(&collector->_modUnionTable),
6458   _work_queue(work_queue),
6459   _overflow_stack(overflow_stack),
6460   _skip_bits(0),
6461   _task(task)
6462 {
6463   assert(_work_queue->size() == 0, "work_queue should be empty");
6464   _finger = span.start();
6465   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6466   assert(_span.contains(_finger), "Out of bounds _finger?");
6467 }
6468 
6469 // Should revisit to see if this should be restructured for
6470 // greater efficiency.
6471 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6472   if (_skip_bits > 0) {
6473     _skip_bits--;
6474     return true;
6475   }
6476   // convert offset into a HeapWord*
6477   HeapWord* addr = _bit_map->startWord() + offset;
6478   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6479          "address out of range");
6480   assert(_bit_map->isMarked(addr), "tautology");
6481   if (_bit_map->isMarked(addr+1)) {
6482     // this is an allocated object that might not yet be initialized
6483     assert(_skip_bits == 0, "tautology");
6484     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6485     oop p = oop(addr);
6486     if (p->klass_or_null() == NULL) {
6487       // in the case of Clean-on-Enter optimization, redirty card
6488       // and avoid clearing card by increasing  the threshold.
6489       return true;
6490     }
6491   }
6492   scan_oops_in_oop(addr);
6493   return true;
6494 }
6495 
6496 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6497   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6498   // Should we assert that our work queue is empty or
6499   // below some drain limit?
6500   assert(_work_queue->size() == 0,
6501          "should drain stack to limit stack usage");
6502   // convert ptr to an oop preparatory to scanning
6503   oop obj = oop(ptr);
6504   // Ignore mark word in verification below, since we
6505   // may be running concurrent with mutators.
6506   assert(obj->is_oop(true), "should be an oop");
6507   assert(_finger <= ptr, "_finger runneth ahead");
6508   // advance the finger to right end of this object
6509   _finger = ptr + obj->size();
6510   assert(_finger > ptr, "we just incremented it above");
6511   // On large heaps, it may take us some time to get through
6512   // the marking phase. During
6513   // this time it's possible that a lot of mutations have
6514   // accumulated in the card table and the mod union table --
6515   // these mutation records are redundant until we have
6516   // actually traced into the corresponding card.
6517   // Here, we check whether advancing the finger would make
6518   // us cross into a new card, and if so clear corresponding
6519   // cards in the MUT (preclean them in the card-table in the
6520   // future).
6521 
6522   // The clean-on-enter optimization is disabled by default,
6523   // until we fix 6178663.
6524   if (CMSCleanOnEnter && (_finger > _threshold)) {
6525     // [_threshold, _finger) represents the interval
6526     // of cards to be cleared  in MUT (or precleaned in card table).
6527     // The set of cards to be cleared is all those that overlap
6528     // with the interval [_threshold, _finger); note that
6529     // _threshold is always kept card-aligned but _finger isn't
6530     // always card-aligned.
6531     HeapWord* old_threshold = _threshold;
6532     assert(old_threshold == (HeapWord*)round_to(
6533             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6534            "_threshold should always be card-aligned");
6535     _threshold = (HeapWord*)round_to(
6536                    (intptr_t)_finger, CardTableModRefBS::card_size);
6537     MemRegion mr(old_threshold, _threshold);
6538     assert(!mr.is_empty(), "Control point invariant");
6539     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6540     _mut->clear_range(mr);
6541   }
6542 
6543   // Note: the local finger doesn't advance while we drain
6544   // the stack below, but the global finger sure can and will.
6545   HeapWord** gfa = _task->global_finger_addr();
6546   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6547                                          _span, _bit_map,
6548                                          _work_queue,
6549                                          _overflow_stack,
6550                                          _finger,
6551                                          gfa, this);
6552   bool res = _work_queue->push(obj);   // overflow could occur here
6553   assert(res, "Will hold once we use workqueues");
6554   while (true) {
6555     oop new_oop;
6556     if (!_work_queue->pop_local(new_oop)) {
6557       // We emptied our work_queue; check if there's stuff that can
6558       // be gotten from the overflow stack.
6559       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6560             _overflow_stack, _work_queue)) {
6561         do_yield_check();
6562         continue;
6563       } else {  // done
6564         break;
6565       }
6566     }
6567     // Skip verifying header mark word below because we are
6568     // running concurrent with mutators.
6569     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6570     // now scan this oop's oops
6571     new_oop->oop_iterate(&pushOrMarkClosure);
6572     do_yield_check();
6573   }
6574   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6575 }
6576 
6577 // Yield in response to a request from VM Thread or
6578 // from mutators.
6579 void ParMarkFromRootsClosure::do_yield_work() {
6580   assert(_task != NULL, "sanity");
6581   _task->yield();
6582 }
6583 
6584 // A variant of the above used for verifying CMS marking work.
6585 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6586                         MemRegion span,
6587                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6588                         CMSMarkStack*  mark_stack):
6589   _collector(collector),
6590   _span(span),
6591   _verification_bm(verification_bm),
6592   _cms_bm(cms_bm),
6593   _mark_stack(mark_stack),
6594   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6595                       mark_stack)
6596 {
6597   assert(_mark_stack->isEmpty(), "stack should be empty");
6598   _finger = _verification_bm->startWord();
6599   assert(_collector->_restart_addr == NULL, "Sanity check");
6600   assert(_span.contains(_finger), "Out of bounds _finger?");
6601 }
6602 
6603 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6604   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6605   assert(_span.contains(addr), "Out of bounds _finger?");
6606   _finger = addr;
6607 }
6608 
6609 // Should revisit to see if this should be restructured for
6610 // greater efficiency.
6611 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6612   // convert offset into a HeapWord*
6613   HeapWord* addr = _verification_bm->startWord() + offset;
6614   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6615          "address out of range");
6616   assert(_verification_bm->isMarked(addr), "tautology");
6617   assert(_cms_bm->isMarked(addr), "tautology");
6618 
6619   assert(_mark_stack->isEmpty(),
6620          "should drain stack to limit stack usage");
6621   // convert addr to an oop preparatory to scanning
6622   oop obj = oop(addr);
6623   assert(obj->is_oop(), "should be an oop");
6624   assert(_finger <= addr, "_finger runneth ahead");
6625   // advance the finger to right end of this object
6626   _finger = addr + obj->size();
6627   assert(_finger > addr, "we just incremented it above");
6628   // Note: the finger doesn't advance while we drain
6629   // the stack below.
6630   bool res = _mark_stack->push(obj);
6631   assert(res, "Empty non-zero size stack should have space for single push");
6632   while (!_mark_stack->isEmpty()) {
6633     oop new_oop = _mark_stack->pop();
6634     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6635     // now scan this oop's oops
6636     new_oop->oop_iterate(&_pam_verify_closure);
6637   }
6638   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6639   return true;
6640 }
6641 
6642 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6643   CMSCollector* collector, MemRegion span,
6644   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6645   CMSMarkStack*  mark_stack):
6646   MetadataAwareOopClosure(collector->ref_processor()),
6647   _collector(collector),
6648   _span(span),
6649   _verification_bm(verification_bm),
6650   _cms_bm(cms_bm),
6651   _mark_stack(mark_stack)
6652 { }
6653 
6654 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6655 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6656 
6657 // Upon stack overflow, we discard (part of) the stack,
6658 // remembering the least address amongst those discarded
6659 // in CMSCollector's _restart_address.
6660 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6661   // Remember the least grey address discarded
6662   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6663   _collector->lower_restart_addr(ra);
6664   _mark_stack->reset();  // discard stack contents
6665   _mark_stack->expand(); // expand the stack if possible
6666 }
6667 
6668 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6669   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6670   HeapWord* addr = (HeapWord*)obj;
6671   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6672     // Oop lies in _span and isn't yet grey or black
6673     _verification_bm->mark(addr);            // now grey
6674     if (!_cms_bm->isMarked(addr)) {
6675       Log(gc, verify) log;
6676       ResourceMark rm;
6677       oop(addr)->print_on(log.error_stream());
6678       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6679       fatal("... aborting");
6680     }
6681 
6682     if (!_mark_stack->push(obj)) { // stack overflow
6683       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6684       assert(_mark_stack->isFull(), "Else push should have succeeded");
6685       handle_stack_overflow(addr);
6686     }
6687     // anything including and to the right of _finger
6688     // will be scanned as we iterate over the remainder of the
6689     // bit map
6690   }
6691 }
6692 
6693 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6694                      MemRegion span,
6695                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6696                      HeapWord* finger, MarkFromRootsClosure* parent) :
6697   MetadataAwareOopClosure(collector->ref_processor()),
6698   _collector(collector),
6699   _span(span),
6700   _bitMap(bitMap),
6701   _markStack(markStack),
6702   _finger(finger),
6703   _parent(parent)
6704 { }
6705 
6706 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6707                                            MemRegion span,
6708                                            CMSBitMap* bit_map,
6709                                            OopTaskQueue* work_queue,
6710                                            CMSMarkStack*  overflow_stack,
6711                                            HeapWord* finger,
6712                                            HeapWord** global_finger_addr,
6713                                            ParMarkFromRootsClosure* parent) :
6714   MetadataAwareOopClosure(collector->ref_processor()),
6715   _collector(collector),
6716   _whole_span(collector->_span),
6717   _span(span),
6718   _bit_map(bit_map),
6719   _work_queue(work_queue),
6720   _overflow_stack(overflow_stack),
6721   _finger(finger),
6722   _global_finger_addr(global_finger_addr),
6723   _parent(parent)
6724 { }
6725 
6726 // Assumes thread-safe access by callers, who are
6727 // responsible for mutual exclusion.
6728 void CMSCollector::lower_restart_addr(HeapWord* low) {
6729   assert(_span.contains(low), "Out of bounds addr");
6730   if (_restart_addr == NULL) {
6731     _restart_addr = low;
6732   } else {
6733     _restart_addr = MIN2(_restart_addr, low);
6734   }
6735 }
6736 
6737 // Upon stack overflow, we discard (part of) the stack,
6738 // remembering the least address amongst those discarded
6739 // in CMSCollector's _restart_address.
6740 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6741   // Remember the least grey address discarded
6742   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6743   _collector->lower_restart_addr(ra);
6744   _markStack->reset();  // discard stack contents
6745   _markStack->expand(); // expand the stack if possible
6746 }
6747 
6748 // Upon stack overflow, we discard (part of) the stack,
6749 // remembering the least address amongst those discarded
6750 // in CMSCollector's _restart_address.
6751 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6752   // We need to do this under a mutex to prevent other
6753   // workers from interfering with the work done below.
6754   MutexLockerEx ml(_overflow_stack->par_lock(),
6755                    Mutex::_no_safepoint_check_flag);
6756   // Remember the least grey address discarded
6757   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6758   _collector->lower_restart_addr(ra);
6759   _overflow_stack->reset();  // discard stack contents
6760   _overflow_stack->expand(); // expand the stack if possible
6761 }
6762 
6763 void PushOrMarkClosure::do_oop(oop obj) {
6764   // Ignore mark word because we are running concurrent with mutators.
6765   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6766   HeapWord* addr = (HeapWord*)obj;
6767   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6768     // Oop lies in _span and isn't yet grey or black
6769     _bitMap->mark(addr);            // now grey
6770     if (addr < _finger) {
6771       // the bit map iteration has already either passed, or
6772       // sampled, this bit in the bit map; we'll need to
6773       // use the marking stack to scan this oop's oops.
6774       bool simulate_overflow = false;
6775       NOT_PRODUCT(
6776         if (CMSMarkStackOverflowALot &&
6777             _collector->simulate_overflow()) {
6778           // simulate a stack overflow
6779           simulate_overflow = true;
6780         }
6781       )
6782       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6783         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6784         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6785         handle_stack_overflow(addr);
6786       }
6787     }
6788     // anything including and to the right of _finger
6789     // will be scanned as we iterate over the remainder of the
6790     // bit map
6791     do_yield_check();
6792   }
6793 }
6794 
6795 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6796 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6797 
6798 void ParPushOrMarkClosure::do_oop(oop obj) {
6799   // Ignore mark word because we are running concurrent with mutators.
6800   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6801   HeapWord* addr = (HeapWord*)obj;
6802   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6803     // Oop lies in _span and isn't yet grey or black
6804     // We read the global_finger (volatile read) strictly after marking oop
6805     bool res = _bit_map->par_mark(addr);    // now grey
6806     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6807     // Should we push this marked oop on our stack?
6808     // -- if someone else marked it, nothing to do
6809     // -- if target oop is above global finger nothing to do
6810     // -- if target oop is in chunk and above local finger
6811     //      then nothing to do
6812     // -- else push on work queue
6813     if (   !res       // someone else marked it, they will deal with it
6814         || (addr >= *gfa)  // will be scanned in a later task
6815         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6816       return;
6817     }
6818     // the bit map iteration has already either passed, or
6819     // sampled, this bit in the bit map; we'll need to
6820     // use the marking stack to scan this oop's oops.
6821     bool simulate_overflow = false;
6822     NOT_PRODUCT(
6823       if (CMSMarkStackOverflowALot &&
6824           _collector->simulate_overflow()) {
6825         // simulate a stack overflow
6826         simulate_overflow = true;
6827       }
6828     )
6829     if (simulate_overflow ||
6830         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6831       // stack overflow
6832       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6833       // We cannot assert that the overflow stack is full because
6834       // it may have been emptied since.
6835       assert(simulate_overflow ||
6836              _work_queue->size() == _work_queue->max_elems(),
6837             "Else push should have succeeded");
6838       handle_stack_overflow(addr);
6839     }
6840     do_yield_check();
6841   }
6842 }
6843 
6844 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6845 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6846 
6847 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6848                                        MemRegion span,
6849                                        ReferenceProcessor* rp,
6850                                        CMSBitMap* bit_map,
6851                                        CMSBitMap* mod_union_table,
6852                                        CMSMarkStack*  mark_stack,
6853                                        bool           concurrent_precleaning):
6854   MetadataAwareOopClosure(rp),
6855   _collector(collector),
6856   _span(span),
6857   _bit_map(bit_map),
6858   _mod_union_table(mod_union_table),
6859   _mark_stack(mark_stack),
6860   _concurrent_precleaning(concurrent_precleaning)
6861 {
6862   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6863 }
6864 
6865 // Grey object rescan during pre-cleaning and second checkpoint phases --
6866 // the non-parallel version (the parallel version appears further below.)
6867 void PushAndMarkClosure::do_oop(oop obj) {
6868   // Ignore mark word verification. If during concurrent precleaning,
6869   // the object monitor may be locked. If during the checkpoint
6870   // phases, the object may already have been reached by a  different
6871   // path and may be at the end of the global overflow list (so
6872   // the mark word may be NULL).
6873   assert(obj->is_oop_or_null(true /* ignore mark word */),
6874          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6875   HeapWord* addr = (HeapWord*)obj;
6876   // Check if oop points into the CMS generation
6877   // and is not marked
6878   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6879     // a white object ...
6880     _bit_map->mark(addr);         // ... now grey
6881     // push on the marking stack (grey set)
6882     bool simulate_overflow = false;
6883     NOT_PRODUCT(
6884       if (CMSMarkStackOverflowALot &&
6885           _collector->simulate_overflow()) {
6886         // simulate a stack overflow
6887         simulate_overflow = true;
6888       }
6889     )
6890     if (simulate_overflow || !_mark_stack->push(obj)) {
6891       if (_concurrent_precleaning) {
6892          // During precleaning we can just dirty the appropriate card(s)
6893          // in the mod union table, thus ensuring that the object remains
6894          // in the grey set  and continue. In the case of object arrays
6895          // we need to dirty all of the cards that the object spans,
6896          // since the rescan of object arrays will be limited to the
6897          // dirty cards.
6898          // Note that no one can be interfering with us in this action
6899          // of dirtying the mod union table, so no locking or atomics
6900          // are required.
6901          if (obj->is_objArray()) {
6902            size_t sz = obj->size();
6903            HeapWord* end_card_addr = (HeapWord*)round_to(
6904                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6905            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6906            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6907            _mod_union_table->mark_range(redirty_range);
6908          } else {
6909            _mod_union_table->mark(addr);
6910          }
6911          _collector->_ser_pmc_preclean_ovflw++;
6912       } else {
6913          // During the remark phase, we need to remember this oop
6914          // in the overflow list.
6915          _collector->push_on_overflow_list(obj);
6916          _collector->_ser_pmc_remark_ovflw++;
6917       }
6918     }
6919   }
6920 }
6921 
6922 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6923                                              MemRegion span,
6924                                              ReferenceProcessor* rp,
6925                                              CMSBitMap* bit_map,
6926                                              OopTaskQueue* work_queue):
6927   MetadataAwareOopClosure(rp),
6928   _collector(collector),
6929   _span(span),
6930   _bit_map(bit_map),
6931   _work_queue(work_queue)
6932 {
6933   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6934 }
6935 
6936 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6937 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6938 
6939 // Grey object rescan during second checkpoint phase --
6940 // the parallel version.
6941 void ParPushAndMarkClosure::do_oop(oop obj) {
6942   // In the assert below, we ignore the mark word because
6943   // this oop may point to an already visited object that is
6944   // on the overflow stack (in which case the mark word has
6945   // been hijacked for chaining into the overflow stack --
6946   // if this is the last object in the overflow stack then
6947   // its mark word will be NULL). Because this object may
6948   // have been subsequently popped off the global overflow
6949   // stack, and the mark word possibly restored to the prototypical
6950   // value, by the time we get to examined this failing assert in
6951   // the debugger, is_oop_or_null(false) may subsequently start
6952   // to hold.
6953   assert(obj->is_oop_or_null(true),
6954          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6955   HeapWord* addr = (HeapWord*)obj;
6956   // Check if oop points into the CMS generation
6957   // and is not marked
6958   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6959     // a white object ...
6960     // If we manage to "claim" the object, by being the
6961     // first thread to mark it, then we push it on our
6962     // marking stack
6963     if (_bit_map->par_mark(addr)) {     // ... now grey
6964       // push on work queue (grey set)
6965       bool simulate_overflow = false;
6966       NOT_PRODUCT(
6967         if (CMSMarkStackOverflowALot &&
6968             _collector->par_simulate_overflow()) {
6969           // simulate a stack overflow
6970           simulate_overflow = true;
6971         }
6972       )
6973       if (simulate_overflow || !_work_queue->push(obj)) {
6974         _collector->par_push_on_overflow_list(obj);
6975         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6976       }
6977     } // Else, some other thread got there first
6978   }
6979 }
6980 
6981 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6982 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6983 
6984 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6985   Mutex* bml = _collector->bitMapLock();
6986   assert_lock_strong(bml);
6987   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6988          "CMS thread should hold CMS token");
6989 
6990   bml->unlock();
6991   ConcurrentMarkSweepThread::desynchronize(true);
6992 
6993   _collector->stopTimer();
6994   _collector->incrementYields();
6995 
6996   // See the comment in coordinator_yield()
6997   for (unsigned i = 0; i < CMSYieldSleepCount &&
6998                        ConcurrentMarkSweepThread::should_yield() &&
6999                        !CMSCollector::foregroundGCIsActive(); ++i) {
7000     os::sleep(Thread::current(), 1, false);
7001   }
7002 
7003   ConcurrentMarkSweepThread::synchronize(true);
7004   bml->lock();
7005 
7006   _collector->startTimer();
7007 }
7008 
7009 bool CMSPrecleanRefsYieldClosure::should_return() {
7010   if (ConcurrentMarkSweepThread::should_yield()) {
7011     do_yield_work();
7012   }
7013   return _collector->foregroundGCIsActive();
7014 }
7015 
7016 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7017   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7018          "mr should be aligned to start at a card boundary");
7019   // We'd like to assert:
7020   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7021   //        "mr should be a range of cards");
7022   // However, that would be too strong in one case -- the last
7023   // partition ends at _unallocated_block which, in general, can be
7024   // an arbitrary boundary, not necessarily card aligned.
7025   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7026   _space->object_iterate_mem(mr, &_scan_cl);
7027 }
7028 
7029 SweepClosure::SweepClosure(CMSCollector* collector,
7030                            ConcurrentMarkSweepGeneration* g,
7031                            CMSBitMap* bitMap, bool should_yield) :
7032   _collector(collector),
7033   _g(g),
7034   _sp(g->cmsSpace()),
7035   _limit(_sp->sweep_limit()),
7036   _freelistLock(_sp->freelistLock()),
7037   _bitMap(bitMap),
7038   _yield(should_yield),
7039   _inFreeRange(false),           // No free range at beginning of sweep
7040   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7041   _lastFreeRangeCoalesced(false),
7042   _freeFinger(g->used_region().start())
7043 {
7044   NOT_PRODUCT(
7045     _numObjectsFreed = 0;
7046     _numWordsFreed   = 0;
7047     _numObjectsLive = 0;
7048     _numWordsLive = 0;
7049     _numObjectsAlreadyFree = 0;
7050     _numWordsAlreadyFree = 0;
7051     _last_fc = NULL;
7052 
7053     _sp->initializeIndexedFreeListArrayReturnedBytes();
7054     _sp->dictionary()->initialize_dict_returned_bytes();
7055   )
7056   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7057          "sweep _limit out of bounds");
7058   log_develop_trace(gc, sweep)("====================");
7059   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7060 }
7061 
7062 void SweepClosure::print_on(outputStream* st) const {
7063   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7064                p2i(_sp->bottom()), p2i(_sp->end()));
7065   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7066   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7067   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7068   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7069                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7070 }
7071 
7072 #ifndef PRODUCT
7073 // Assertion checking only:  no useful work in product mode --
7074 // however, if any of the flags below become product flags,
7075 // you may need to review this code to see if it needs to be
7076 // enabled in product mode.
7077 SweepClosure::~SweepClosure() {
7078   assert_lock_strong(_freelistLock);
7079   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7080          "sweep _limit out of bounds");
7081   if (inFreeRange()) {
7082     Log(gc, sweep) log;
7083     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7084     ResourceMark rm;
7085     print_on(log.error_stream());
7086     ShouldNotReachHere();
7087   }
7088 
7089   if (log_is_enabled(Debug, gc, sweep)) {
7090     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7091                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7092     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7093                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7094     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7095     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7096   }
7097 
7098   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7099     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7100     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7101     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7102     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7103                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7104   }
7105   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7106   log_develop_trace(gc, sweep)("================");
7107 }
7108 #endif  // PRODUCT
7109 
7110 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7111     bool freeRangeInFreeLists) {
7112   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7113                                p2i(freeFinger), freeRangeInFreeLists);
7114   assert(!inFreeRange(), "Trampling existing free range");
7115   set_inFreeRange(true);
7116   set_lastFreeRangeCoalesced(false);
7117 
7118   set_freeFinger(freeFinger);
7119   set_freeRangeInFreeLists(freeRangeInFreeLists);
7120   if (CMSTestInFreeList) {
7121     if (freeRangeInFreeLists) {
7122       FreeChunk* fc = (FreeChunk*) freeFinger;
7123       assert(fc->is_free(), "A chunk on the free list should be free.");
7124       assert(fc->size() > 0, "Free range should have a size");
7125       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7126     }
7127   }
7128 }
7129 
7130 // Note that the sweeper runs concurrently with mutators. Thus,
7131 // it is possible for direct allocation in this generation to happen
7132 // in the middle of the sweep. Note that the sweeper also coalesces
7133 // contiguous free blocks. Thus, unless the sweeper and the allocator
7134 // synchronize appropriately freshly allocated blocks may get swept up.
7135 // This is accomplished by the sweeper locking the free lists while
7136 // it is sweeping. Thus blocks that are determined to be free are
7137 // indeed free. There is however one additional complication:
7138 // blocks that have been allocated since the final checkpoint and
7139 // mark, will not have been marked and so would be treated as
7140 // unreachable and swept up. To prevent this, the allocator marks
7141 // the bit map when allocating during the sweep phase. This leads,
7142 // however, to a further complication -- objects may have been allocated
7143 // but not yet initialized -- in the sense that the header isn't yet
7144 // installed. The sweeper can not then determine the size of the block
7145 // in order to skip over it. To deal with this case, we use a technique
7146 // (due to Printezis) to encode such uninitialized block sizes in the
7147 // bit map. Since the bit map uses a bit per every HeapWord, but the
7148 // CMS generation has a minimum object size of 3 HeapWords, it follows
7149 // that "normal marks" won't be adjacent in the bit map (there will
7150 // always be at least two 0 bits between successive 1 bits). We make use
7151 // of these "unused" bits to represent uninitialized blocks -- the bit
7152 // corresponding to the start of the uninitialized object and the next
7153 // bit are both set. Finally, a 1 bit marks the end of the object that
7154 // started with the two consecutive 1 bits to indicate its potentially
7155 // uninitialized state.
7156 
7157 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7158   FreeChunk* fc = (FreeChunk*)addr;
7159   size_t res;
7160 
7161   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7162   // than "addr == _limit" because although _limit was a block boundary when
7163   // we started the sweep, it may no longer be one because heap expansion
7164   // may have caused us to coalesce the block ending at the address _limit
7165   // with a newly expanded chunk (this happens when _limit was set to the
7166   // previous _end of the space), so we may have stepped past _limit:
7167   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7168   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7169     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7170            "sweep _limit out of bounds");
7171     assert(addr < _sp->end(), "addr out of bounds");
7172     // Flush any free range we might be holding as a single
7173     // coalesced chunk to the appropriate free list.
7174     if (inFreeRange()) {
7175       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7176              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7177       flush_cur_free_chunk(freeFinger(),
7178                            pointer_delta(addr, freeFinger()));
7179       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7180                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7181                                    lastFreeRangeCoalesced() ? 1 : 0);
7182     }
7183 
7184     // help the iterator loop finish
7185     return pointer_delta(_sp->end(), addr);
7186   }
7187 
7188   assert(addr < _limit, "sweep invariant");
7189   // check if we should yield
7190   do_yield_check(addr);
7191   if (fc->is_free()) {
7192     // Chunk that is already free
7193     res = fc->size();
7194     do_already_free_chunk(fc);
7195     debug_only(_sp->verifyFreeLists());
7196     // If we flush the chunk at hand in lookahead_and_flush()
7197     // and it's coalesced with a preceding chunk, then the
7198     // process of "mangling" the payload of the coalesced block
7199     // will cause erasure of the size information from the
7200     // (erstwhile) header of all the coalesced blocks but the
7201     // first, so the first disjunct in the assert will not hold
7202     // in that specific case (in which case the second disjunct
7203     // will hold).
7204     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7205            "Otherwise the size info doesn't change at this step");
7206     NOT_PRODUCT(
7207       _numObjectsAlreadyFree++;
7208       _numWordsAlreadyFree += res;
7209     )
7210     NOT_PRODUCT(_last_fc = fc;)
7211   } else if (!_bitMap->isMarked(addr)) {
7212     // Chunk is fresh garbage
7213     res = do_garbage_chunk(fc);
7214     debug_only(_sp->verifyFreeLists());
7215     NOT_PRODUCT(
7216       _numObjectsFreed++;
7217       _numWordsFreed += res;
7218     )
7219   } else {
7220     // Chunk that is alive.
7221     res = do_live_chunk(fc);
7222     debug_only(_sp->verifyFreeLists());
7223     NOT_PRODUCT(
7224         _numObjectsLive++;
7225         _numWordsLive += res;
7226     )
7227   }
7228   return res;
7229 }
7230 
7231 // For the smart allocation, record following
7232 //  split deaths - a free chunk is removed from its free list because
7233 //      it is being split into two or more chunks.
7234 //  split birth - a free chunk is being added to its free list because
7235 //      a larger free chunk has been split and resulted in this free chunk.
7236 //  coal death - a free chunk is being removed from its free list because
7237 //      it is being coalesced into a large free chunk.
7238 //  coal birth - a free chunk is being added to its free list because
7239 //      it was created when two or more free chunks where coalesced into
7240 //      this free chunk.
7241 //
7242 // These statistics are used to determine the desired number of free
7243 // chunks of a given size.  The desired number is chosen to be relative
7244 // to the end of a CMS sweep.  The desired number at the end of a sweep
7245 // is the
7246 //      count-at-end-of-previous-sweep (an amount that was enough)
7247 //              - count-at-beginning-of-current-sweep  (the excess)
7248 //              + split-births  (gains in this size during interval)
7249 //              - split-deaths  (demands on this size during interval)
7250 // where the interval is from the end of one sweep to the end of the
7251 // next.
7252 //
7253 // When sweeping the sweeper maintains an accumulated chunk which is
7254 // the chunk that is made up of chunks that have been coalesced.  That
7255 // will be termed the left-hand chunk.  A new chunk of garbage that
7256 // is being considered for coalescing will be referred to as the
7257 // right-hand chunk.
7258 //
7259 // When making a decision on whether to coalesce a right-hand chunk with
7260 // the current left-hand chunk, the current count vs. the desired count
7261 // of the left-hand chunk is considered.  Also if the right-hand chunk
7262 // is near the large chunk at the end of the heap (see
7263 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7264 // left-hand chunk is coalesced.
7265 //
7266 // When making a decision about whether to split a chunk, the desired count
7267 // vs. the current count of the candidate to be split is also considered.
7268 // If the candidate is underpopulated (currently fewer chunks than desired)
7269 // a chunk of an overpopulated (currently more chunks than desired) size may
7270 // be chosen.  The "hint" associated with a free list, if non-null, points
7271 // to a free list which may be overpopulated.
7272 //
7273 
7274 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7275   const size_t size = fc->size();
7276   // Chunks that cannot be coalesced are not in the
7277   // free lists.
7278   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7279     assert(_sp->verify_chunk_in_free_list(fc),
7280            "free chunk should be in free lists");
7281   }
7282   // a chunk that is already free, should not have been
7283   // marked in the bit map
7284   HeapWord* const addr = (HeapWord*) fc;
7285   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7286   // Verify that the bit map has no bits marked between
7287   // addr and purported end of this block.
7288   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7289 
7290   // Some chunks cannot be coalesced under any circumstances.
7291   // See the definition of cantCoalesce().
7292   if (!fc->cantCoalesce()) {
7293     // This chunk can potentially be coalesced.
7294     // All the work is done in
7295     do_post_free_or_garbage_chunk(fc, size);
7296     // Note that if the chunk is not coalescable (the else arm
7297     // below), we unconditionally flush, without needing to do
7298     // a "lookahead," as we do below.
7299     if (inFreeRange()) lookahead_and_flush(fc, size);
7300   } else {
7301     // Code path common to both original and adaptive free lists.
7302 
7303     // cant coalesce with previous block; this should be treated
7304     // as the end of a free run if any
7305     if (inFreeRange()) {
7306       // we kicked some butt; time to pick up the garbage
7307       assert(freeFinger() < addr, "freeFinger points too high");
7308       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7309     }
7310     // else, nothing to do, just continue
7311   }
7312 }
7313 
7314 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7315   // This is a chunk of garbage.  It is not in any free list.
7316   // Add it to a free list or let it possibly be coalesced into
7317   // a larger chunk.
7318   HeapWord* const addr = (HeapWord*) fc;
7319   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7320 
7321   // Verify that the bit map has no bits marked between
7322   // addr and purported end of just dead object.
7323   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7324   do_post_free_or_garbage_chunk(fc, size);
7325 
7326   assert(_limit >= addr + size,
7327          "A freshly garbage chunk can't possibly straddle over _limit");
7328   if (inFreeRange()) lookahead_and_flush(fc, size);
7329   return size;
7330 }
7331 
7332 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7333   HeapWord* addr = (HeapWord*) fc;
7334   // The sweeper has just found a live object. Return any accumulated
7335   // left hand chunk to the free lists.
7336   if (inFreeRange()) {
7337     assert(freeFinger() < addr, "freeFinger points too high");
7338     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7339   }
7340 
7341   // This object is live: we'd normally expect this to be
7342   // an oop, and like to assert the following:
7343   // assert(oop(addr)->is_oop(), "live block should be an oop");
7344   // However, as we commented above, this may be an object whose
7345   // header hasn't yet been initialized.
7346   size_t size;
7347   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7348   if (_bitMap->isMarked(addr + 1)) {
7349     // Determine the size from the bit map, rather than trying to
7350     // compute it from the object header.
7351     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7352     size = pointer_delta(nextOneAddr + 1, addr);
7353     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7354            "alignment problem");
7355 
7356 #ifdef ASSERT
7357       if (oop(addr)->klass_or_null() != NULL) {
7358         // Ignore mark word because we are running concurrent with mutators
7359         assert(oop(addr)->is_oop(true), "live block should be an oop");
7360         assert(size ==
7361                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7362                "P-mark and computed size do not agree");
7363       }
7364 #endif
7365 
7366   } else {
7367     // This should be an initialized object that's alive.
7368     assert(oop(addr)->klass_or_null() != NULL,
7369            "Should be an initialized object");
7370     // Ignore mark word because we are running concurrent with mutators
7371     assert(oop(addr)->is_oop(true), "live block should be an oop");
7372     // Verify that the bit map has no bits marked between
7373     // addr and purported end of this block.
7374     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7375     assert(size >= 3, "Necessary for Printezis marks to work");
7376     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7377     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7378   }
7379   return size;
7380 }
7381 
7382 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7383                                                  size_t chunkSize) {
7384   // do_post_free_or_garbage_chunk() should only be called in the case
7385   // of the adaptive free list allocator.
7386   const bool fcInFreeLists = fc->is_free();
7387   assert((HeapWord*)fc <= _limit, "sweep invariant");
7388   if (CMSTestInFreeList && fcInFreeLists) {
7389     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7390   }
7391 
7392   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7393 
7394   HeapWord* const fc_addr = (HeapWord*) fc;
7395 
7396   bool coalesce = false;
7397   const size_t left  = pointer_delta(fc_addr, freeFinger());
7398   const size_t right = chunkSize;
7399   switch (FLSCoalescePolicy) {
7400     // numeric value forms a coalition aggressiveness metric
7401     case 0:  { // never coalesce
7402       coalesce = false;
7403       break;
7404     }
7405     case 1: { // coalesce if left & right chunks on overpopulated lists
7406       coalesce = _sp->coalOverPopulated(left) &&
7407                  _sp->coalOverPopulated(right);
7408       break;
7409     }
7410     case 2: { // coalesce if left chunk on overpopulated list (default)
7411       coalesce = _sp->coalOverPopulated(left);
7412       break;
7413     }
7414     case 3: { // coalesce if left OR right chunk on overpopulated list
7415       coalesce = _sp->coalOverPopulated(left) ||
7416                  _sp->coalOverPopulated(right);
7417       break;
7418     }
7419     case 4: { // always coalesce
7420       coalesce = true;
7421       break;
7422     }
7423     default:
7424      ShouldNotReachHere();
7425   }
7426 
7427   // Should the current free range be coalesced?
7428   // If the chunk is in a free range and either we decided to coalesce above
7429   // or the chunk is near the large block at the end of the heap
7430   // (isNearLargestChunk() returns true), then coalesce this chunk.
7431   const bool doCoalesce = inFreeRange()
7432                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7433   if (doCoalesce) {
7434     // Coalesce the current free range on the left with the new
7435     // chunk on the right.  If either is on a free list,
7436     // it must be removed from the list and stashed in the closure.
7437     if (freeRangeInFreeLists()) {
7438       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7439       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7440              "Size of free range is inconsistent with chunk size.");
7441       if (CMSTestInFreeList) {
7442         assert(_sp->verify_chunk_in_free_list(ffc),
7443                "Chunk is not in free lists");
7444       }
7445       _sp->coalDeath(ffc->size());
7446       _sp->removeFreeChunkFromFreeLists(ffc);
7447       set_freeRangeInFreeLists(false);
7448     }
7449     if (fcInFreeLists) {
7450       _sp->coalDeath(chunkSize);
7451       assert(fc->size() == chunkSize,
7452         "The chunk has the wrong size or is not in the free lists");
7453       _sp->removeFreeChunkFromFreeLists(fc);
7454     }
7455     set_lastFreeRangeCoalesced(true);
7456     print_free_block_coalesced(fc);
7457   } else {  // not in a free range and/or should not coalesce
7458     // Return the current free range and start a new one.
7459     if (inFreeRange()) {
7460       // In a free range but cannot coalesce with the right hand chunk.
7461       // Put the current free range into the free lists.
7462       flush_cur_free_chunk(freeFinger(),
7463                            pointer_delta(fc_addr, freeFinger()));
7464     }
7465     // Set up for new free range.  Pass along whether the right hand
7466     // chunk is in the free lists.
7467     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7468   }
7469 }
7470 
7471 // Lookahead flush:
7472 // If we are tracking a free range, and this is the last chunk that
7473 // we'll look at because its end crosses past _limit, we'll preemptively
7474 // flush it along with any free range we may be holding on to. Note that
7475 // this can be the case only for an already free or freshly garbage
7476 // chunk. If this block is an object, it can never straddle
7477 // over _limit. The "straddling" occurs when _limit is set at
7478 // the previous end of the space when this cycle started, and
7479 // a subsequent heap expansion caused the previously co-terminal
7480 // free block to be coalesced with the newly expanded portion,
7481 // thus rendering _limit a non-block-boundary making it dangerous
7482 // for the sweeper to step over and examine.
7483 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7484   assert(inFreeRange(), "Should only be called if currently in a free range.");
7485   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7486   assert(_sp->used_region().contains(eob - 1),
7487          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7488          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7489          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7490          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7491   if (eob >= _limit) {
7492     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7493     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7494                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7495                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7496                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7497     // Return the storage we are tracking back into the free lists.
7498     log_develop_trace(gc, sweep)("Flushing ... ");
7499     assert(freeFinger() < eob, "Error");
7500     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7501   }
7502 }
7503 
7504 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7505   assert(inFreeRange(), "Should only be called if currently in a free range.");
7506   assert(size > 0,
7507     "A zero sized chunk cannot be added to the free lists.");
7508   if (!freeRangeInFreeLists()) {
7509     if (CMSTestInFreeList) {
7510       FreeChunk* fc = (FreeChunk*) chunk;
7511       fc->set_size(size);
7512       assert(!_sp->verify_chunk_in_free_list(fc),
7513              "chunk should not be in free lists yet");
7514     }
7515     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7516     // A new free range is going to be starting.  The current
7517     // free range has not been added to the free lists yet or
7518     // was removed so add it back.
7519     // If the current free range was coalesced, then the death
7520     // of the free range was recorded.  Record a birth now.
7521     if (lastFreeRangeCoalesced()) {
7522       _sp->coalBirth(size);
7523     }
7524     _sp->addChunkAndRepairOffsetTable(chunk, size,
7525             lastFreeRangeCoalesced());
7526   } else {
7527     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7528   }
7529   set_inFreeRange(false);
7530   set_freeRangeInFreeLists(false);
7531 }
7532 
7533 // We take a break if we've been at this for a while,
7534 // so as to avoid monopolizing the locks involved.
7535 void SweepClosure::do_yield_work(HeapWord* addr) {
7536   // Return current free chunk being used for coalescing (if any)
7537   // to the appropriate freelist.  After yielding, the next
7538   // free block encountered will start a coalescing range of
7539   // free blocks.  If the next free block is adjacent to the
7540   // chunk just flushed, they will need to wait for the next
7541   // sweep to be coalesced.
7542   if (inFreeRange()) {
7543     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7544   }
7545 
7546   // First give up the locks, then yield, then re-lock.
7547   // We should probably use a constructor/destructor idiom to
7548   // do this unlock/lock or modify the MutexUnlocker class to
7549   // serve our purpose. XXX
7550   assert_lock_strong(_bitMap->lock());
7551   assert_lock_strong(_freelistLock);
7552   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7553          "CMS thread should hold CMS token");
7554   _bitMap->lock()->unlock();
7555   _freelistLock->unlock();
7556   ConcurrentMarkSweepThread::desynchronize(true);
7557   _collector->stopTimer();
7558   _collector->incrementYields();
7559 
7560   // See the comment in coordinator_yield()
7561   for (unsigned i = 0; i < CMSYieldSleepCount &&
7562                        ConcurrentMarkSweepThread::should_yield() &&
7563                        !CMSCollector::foregroundGCIsActive(); ++i) {
7564     os::sleep(Thread::current(), 1, false);
7565   }
7566 
7567   ConcurrentMarkSweepThread::synchronize(true);
7568   _freelistLock->lock();
7569   _bitMap->lock()->lock_without_safepoint_check();
7570   _collector->startTimer();
7571 }
7572 
7573 #ifndef PRODUCT
7574 // This is actually very useful in a product build if it can
7575 // be called from the debugger.  Compile it into the product
7576 // as needed.
7577 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7578   return debug_cms_space->verify_chunk_in_free_list(fc);
7579 }
7580 #endif
7581 
7582 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7583   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7584                                p2i(fc), fc->size());
7585 }
7586 
7587 // CMSIsAliveClosure
7588 bool CMSIsAliveClosure::do_object_b(oop obj) {
7589   HeapWord* addr = (HeapWord*)obj;
7590   return addr != NULL &&
7591          (!_span.contains(addr) || _bit_map->isMarked(addr));
7592 }
7593 
7594 
7595 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7596                       MemRegion span,
7597                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7598                       bool cpc):
7599   _collector(collector),
7600   _span(span),
7601   _bit_map(bit_map),
7602   _mark_stack(mark_stack),
7603   _concurrent_precleaning(cpc) {
7604   assert(!_span.is_empty(), "Empty span could spell trouble");
7605 }
7606 
7607 
7608 // CMSKeepAliveClosure: the serial version
7609 void CMSKeepAliveClosure::do_oop(oop obj) {
7610   HeapWord* addr = (HeapWord*)obj;
7611   if (_span.contains(addr) &&
7612       !_bit_map->isMarked(addr)) {
7613     _bit_map->mark(addr);
7614     bool simulate_overflow = false;
7615     NOT_PRODUCT(
7616       if (CMSMarkStackOverflowALot &&
7617           _collector->simulate_overflow()) {
7618         // simulate a stack overflow
7619         simulate_overflow = true;
7620       }
7621     )
7622     if (simulate_overflow || !_mark_stack->push(obj)) {
7623       if (_concurrent_precleaning) {
7624         // We dirty the overflown object and let the remark
7625         // phase deal with it.
7626         assert(_collector->overflow_list_is_empty(), "Error");
7627         // In the case of object arrays, we need to dirty all of
7628         // the cards that the object spans. No locking or atomics
7629         // are needed since no one else can be mutating the mod union
7630         // table.
7631         if (obj->is_objArray()) {
7632           size_t sz = obj->size();
7633           HeapWord* end_card_addr =
7634             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7635           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7636           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7637           _collector->_modUnionTable.mark_range(redirty_range);
7638         } else {
7639           _collector->_modUnionTable.mark(addr);
7640         }
7641         _collector->_ser_kac_preclean_ovflw++;
7642       } else {
7643         _collector->push_on_overflow_list(obj);
7644         _collector->_ser_kac_ovflw++;
7645       }
7646     }
7647   }
7648 }
7649 
7650 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7651 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7652 
7653 // CMSParKeepAliveClosure: a parallel version of the above.
7654 // The work queues are private to each closure (thread),
7655 // but (may be) available for stealing by other threads.
7656 void CMSParKeepAliveClosure::do_oop(oop obj) {
7657   HeapWord* addr = (HeapWord*)obj;
7658   if (_span.contains(addr) &&
7659       !_bit_map->isMarked(addr)) {
7660     // In general, during recursive tracing, several threads
7661     // may be concurrently getting here; the first one to
7662     // "tag" it, claims it.
7663     if (_bit_map->par_mark(addr)) {
7664       bool res = _work_queue->push(obj);
7665       assert(res, "Low water mark should be much less than capacity");
7666       // Do a recursive trim in the hope that this will keep
7667       // stack usage lower, but leave some oops for potential stealers
7668       trim_queue(_low_water_mark);
7669     } // Else, another thread got there first
7670   }
7671 }
7672 
7673 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7674 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7675 
7676 void CMSParKeepAliveClosure::trim_queue(uint max) {
7677   while (_work_queue->size() > max) {
7678     oop new_oop;
7679     if (_work_queue->pop_local(new_oop)) {
7680       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7681       assert(_bit_map->isMarked((HeapWord*)new_oop),
7682              "no white objects on this stack!");
7683       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7684       // iterate over the oops in this oop, marking and pushing
7685       // the ones in CMS heap (i.e. in _span).
7686       new_oop->oop_iterate(&_mark_and_push);
7687     }
7688   }
7689 }
7690 
7691 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7692                                 CMSCollector* collector,
7693                                 MemRegion span, CMSBitMap* bit_map,
7694                                 OopTaskQueue* work_queue):
7695   _collector(collector),
7696   _span(span),
7697   _bit_map(bit_map),
7698   _work_queue(work_queue) { }
7699 
7700 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7701   HeapWord* addr = (HeapWord*)obj;
7702   if (_span.contains(addr) &&
7703       !_bit_map->isMarked(addr)) {
7704     if (_bit_map->par_mark(addr)) {
7705       bool simulate_overflow = false;
7706       NOT_PRODUCT(
7707         if (CMSMarkStackOverflowALot &&
7708             _collector->par_simulate_overflow()) {
7709           // simulate a stack overflow
7710           simulate_overflow = true;
7711         }
7712       )
7713       if (simulate_overflow || !_work_queue->push(obj)) {
7714         _collector->par_push_on_overflow_list(obj);
7715         _collector->_par_kac_ovflw++;
7716       }
7717     } // Else another thread got there already
7718   }
7719 }
7720 
7721 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7722 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7723 
7724 //////////////////////////////////////////////////////////////////
7725 //  CMSExpansionCause                /////////////////////////////
7726 //////////////////////////////////////////////////////////////////
7727 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7728   switch (cause) {
7729     case _no_expansion:
7730       return "No expansion";
7731     case _satisfy_free_ratio:
7732       return "Free ratio";
7733     case _satisfy_promotion:
7734       return "Satisfy promotion";
7735     case _satisfy_allocation:
7736       return "allocation";
7737     case _allocate_par_lab:
7738       return "Par LAB";
7739     case _allocate_par_spooling_space:
7740       return "Par Spooling Space";
7741     case _adaptive_size_policy:
7742       return "Ergonomics";
7743     default:
7744       return "unknown";
7745   }
7746 }
7747 
7748 void CMSDrainMarkingStackClosure::do_void() {
7749   // the max number to take from overflow list at a time
7750   const size_t num = _mark_stack->capacity()/4;
7751   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7752          "Overflow list should be NULL during concurrent phases");
7753   while (!_mark_stack->isEmpty() ||
7754          // if stack is empty, check the overflow list
7755          _collector->take_from_overflow_list(num, _mark_stack)) {
7756     oop obj = _mark_stack->pop();
7757     HeapWord* addr = (HeapWord*)obj;
7758     assert(_span.contains(addr), "Should be within span");
7759     assert(_bit_map->isMarked(addr), "Should be marked");
7760     assert(obj->is_oop(), "Should be an oop");
7761     obj->oop_iterate(_keep_alive);
7762   }
7763 }
7764 
7765 void CMSParDrainMarkingStackClosure::do_void() {
7766   // drain queue
7767   trim_queue(0);
7768 }
7769 
7770 // Trim our work_queue so its length is below max at return
7771 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7772   while (_work_queue->size() > max) {
7773     oop new_oop;
7774     if (_work_queue->pop_local(new_oop)) {
7775       assert(new_oop->is_oop(), "Expected an oop");
7776       assert(_bit_map->isMarked((HeapWord*)new_oop),
7777              "no white objects on this stack!");
7778       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7779       // iterate over the oops in this oop, marking and pushing
7780       // the ones in CMS heap (i.e. in _span).
7781       new_oop->oop_iterate(&_mark_and_push);
7782     }
7783   }
7784 }
7785 
7786 ////////////////////////////////////////////////////////////////////
7787 // Support for Marking Stack Overflow list handling and related code
7788 ////////////////////////////////////////////////////////////////////
7789 // Much of the following code is similar in shape and spirit to the
7790 // code used in ParNewGC. We should try and share that code
7791 // as much as possible in the future.
7792 
7793 #ifndef PRODUCT
7794 // Debugging support for CMSStackOverflowALot
7795 
7796 // It's OK to call this multi-threaded;  the worst thing
7797 // that can happen is that we'll get a bunch of closely
7798 // spaced simulated overflows, but that's OK, in fact
7799 // probably good as it would exercise the overflow code
7800 // under contention.
7801 bool CMSCollector::simulate_overflow() {
7802   if (_overflow_counter-- <= 0) { // just being defensive
7803     _overflow_counter = CMSMarkStackOverflowInterval;
7804     return true;
7805   } else {
7806     return false;
7807   }
7808 }
7809 
7810 bool CMSCollector::par_simulate_overflow() {
7811   return simulate_overflow();
7812 }
7813 #endif
7814 
7815 // Single-threaded
7816 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7817   assert(stack->isEmpty(), "Expected precondition");
7818   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7819   size_t i = num;
7820   oop  cur = _overflow_list;
7821   const markOop proto = markOopDesc::prototype();
7822   NOT_PRODUCT(ssize_t n = 0;)
7823   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7824     next = oop(cur->mark());
7825     cur->set_mark(proto);   // until proven otherwise
7826     assert(cur->is_oop(), "Should be an oop");
7827     bool res = stack->push(cur);
7828     assert(res, "Bit off more than can chew?");
7829     NOT_PRODUCT(n++;)
7830   }
7831   _overflow_list = cur;
7832 #ifndef PRODUCT
7833   assert(_num_par_pushes >= n, "Too many pops?");
7834   _num_par_pushes -=n;
7835 #endif
7836   return !stack->isEmpty();
7837 }
7838 
7839 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7840 // (MT-safe) Get a prefix of at most "num" from the list.
7841 // The overflow list is chained through the mark word of
7842 // each object in the list. We fetch the entire list,
7843 // break off a prefix of the right size and return the
7844 // remainder. If other threads try to take objects from
7845 // the overflow list at that time, they will wait for
7846 // some time to see if data becomes available. If (and
7847 // only if) another thread places one or more object(s)
7848 // on the global list before we have returned the suffix
7849 // to the global list, we will walk down our local list
7850 // to find its end and append the global list to
7851 // our suffix before returning it. This suffix walk can
7852 // prove to be expensive (quadratic in the amount of traffic)
7853 // when there are many objects in the overflow list and
7854 // there is much producer-consumer contention on the list.
7855 // *NOTE*: The overflow list manipulation code here and
7856 // in ParNewGeneration:: are very similar in shape,
7857 // except that in the ParNew case we use the old (from/eden)
7858 // copy of the object to thread the list via its klass word.
7859 // Because of the common code, if you make any changes in
7860 // the code below, please check the ParNew version to see if
7861 // similar changes might be needed.
7862 // CR 6797058 has been filed to consolidate the common code.
7863 bool CMSCollector::par_take_from_overflow_list(size_t num,
7864                                                OopTaskQueue* work_q,
7865                                                int no_of_gc_threads) {
7866   assert(work_q->size() == 0, "First empty local work queue");
7867   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7868   if (_overflow_list == NULL) {
7869     return false;
7870   }
7871   // Grab the entire list; we'll put back a suffix
7872   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7873   Thread* tid = Thread::current();
7874   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7875   // set to ParallelGCThreads.
7876   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7877   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7878   // If the list is busy, we spin for a short while,
7879   // sleeping between attempts to get the list.
7880   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7881     os::sleep(tid, sleep_time_millis, false);
7882     if (_overflow_list == NULL) {
7883       // Nothing left to take
7884       return false;
7885     } else if (_overflow_list != BUSY) {
7886       // Try and grab the prefix
7887       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7888     }
7889   }
7890   // If the list was found to be empty, or we spun long
7891   // enough, we give up and return empty-handed. If we leave
7892   // the list in the BUSY state below, it must be the case that
7893   // some other thread holds the overflow list and will set it
7894   // to a non-BUSY state in the future.
7895   if (prefix == NULL || prefix == BUSY) {
7896      // Nothing to take or waited long enough
7897      if (prefix == NULL) {
7898        // Write back the NULL in case we overwrote it with BUSY above
7899        // and it is still the same value.
7900        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7901      }
7902      return false;
7903   }
7904   assert(prefix != NULL && prefix != BUSY, "Error");
7905   size_t i = num;
7906   oop cur = prefix;
7907   // Walk down the first "num" objects, unless we reach the end.
7908   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7909   if (cur->mark() == NULL) {
7910     // We have "num" or fewer elements in the list, so there
7911     // is nothing to return to the global list.
7912     // Write back the NULL in lieu of the BUSY we wrote
7913     // above, if it is still the same value.
7914     if (_overflow_list == BUSY) {
7915       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7916     }
7917   } else {
7918     // Chop off the suffix and return it to the global list.
7919     assert(cur->mark() != BUSY, "Error");
7920     oop suffix_head = cur->mark(); // suffix will be put back on global list
7921     cur->set_mark(NULL);           // break off suffix
7922     // It's possible that the list is still in the empty(busy) state
7923     // we left it in a short while ago; in that case we may be
7924     // able to place back the suffix without incurring the cost
7925     // of a walk down the list.
7926     oop observed_overflow_list = _overflow_list;
7927     oop cur_overflow_list = observed_overflow_list;
7928     bool attached = false;
7929     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7930       observed_overflow_list =
7931         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7932       if (cur_overflow_list == observed_overflow_list) {
7933         attached = true;
7934         break;
7935       } else cur_overflow_list = observed_overflow_list;
7936     }
7937     if (!attached) {
7938       // Too bad, someone else sneaked in (at least) an element; we'll need
7939       // to do a splice. Find tail of suffix so we can prepend suffix to global
7940       // list.
7941       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7942       oop suffix_tail = cur;
7943       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7944              "Tautology");
7945       observed_overflow_list = _overflow_list;
7946       do {
7947         cur_overflow_list = observed_overflow_list;
7948         if (cur_overflow_list != BUSY) {
7949           // Do the splice ...
7950           suffix_tail->set_mark(markOop(cur_overflow_list));
7951         } else { // cur_overflow_list == BUSY
7952           suffix_tail->set_mark(NULL);
7953         }
7954         // ... and try to place spliced list back on overflow_list ...
7955         observed_overflow_list =
7956           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7957       } while (cur_overflow_list != observed_overflow_list);
7958       // ... until we have succeeded in doing so.
7959     }
7960   }
7961 
7962   // Push the prefix elements on work_q
7963   assert(prefix != NULL, "control point invariant");
7964   const markOop proto = markOopDesc::prototype();
7965   oop next;
7966   NOT_PRODUCT(ssize_t n = 0;)
7967   for (cur = prefix; cur != NULL; cur = next) {
7968     next = oop(cur->mark());
7969     cur->set_mark(proto);   // until proven otherwise
7970     assert(cur->is_oop(), "Should be an oop");
7971     bool res = work_q->push(cur);
7972     assert(res, "Bit off more than we can chew?");
7973     NOT_PRODUCT(n++;)
7974   }
7975 #ifndef PRODUCT
7976   assert(_num_par_pushes >= n, "Too many pops?");
7977   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7978 #endif
7979   return true;
7980 }
7981 
7982 // Single-threaded
7983 void CMSCollector::push_on_overflow_list(oop p) {
7984   NOT_PRODUCT(_num_par_pushes++;)
7985   assert(p->is_oop(), "Not an oop");
7986   preserve_mark_if_necessary(p);
7987   p->set_mark((markOop)_overflow_list);
7988   _overflow_list = p;
7989 }
7990 
7991 // Multi-threaded; use CAS to prepend to overflow list
7992 void CMSCollector::par_push_on_overflow_list(oop p) {
7993   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7994   assert(p->is_oop(), "Not an oop");
7995   par_preserve_mark_if_necessary(p);
7996   oop observed_overflow_list = _overflow_list;
7997   oop cur_overflow_list;
7998   do {
7999     cur_overflow_list = observed_overflow_list;
8000     if (cur_overflow_list != BUSY) {
8001       p->set_mark(markOop(cur_overflow_list));
8002     } else {
8003       p->set_mark(NULL);
8004     }
8005     observed_overflow_list =
8006       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8007   } while (cur_overflow_list != observed_overflow_list);
8008 }
8009 #undef BUSY
8010 
8011 // Single threaded
8012 // General Note on GrowableArray: pushes may silently fail
8013 // because we are (temporarily) out of C-heap for expanding
8014 // the stack. The problem is quite ubiquitous and affects
8015 // a lot of code in the JVM. The prudent thing for GrowableArray
8016 // to do (for now) is to exit with an error. However, that may
8017 // be too draconian in some cases because the caller may be
8018 // able to recover without much harm. For such cases, we
8019 // should probably introduce a "soft_push" method which returns
8020 // an indication of success or failure with the assumption that
8021 // the caller may be able to recover from a failure; code in
8022 // the VM can then be changed, incrementally, to deal with such
8023 // failures where possible, thus, incrementally hardening the VM
8024 // in such low resource situations.
8025 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8026   _preserved_oop_stack.push(p);
8027   _preserved_mark_stack.push(m);
8028   assert(m == p->mark(), "Mark word changed");
8029   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8030          "bijection");
8031 }
8032 
8033 // Single threaded
8034 void CMSCollector::preserve_mark_if_necessary(oop p) {
8035   markOop m = p->mark();
8036   if (m->must_be_preserved(p)) {
8037     preserve_mark_work(p, m);
8038   }
8039 }
8040 
8041 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8042   markOop m = p->mark();
8043   if (m->must_be_preserved(p)) {
8044     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8045     // Even though we read the mark word without holding
8046     // the lock, we are assured that it will not change
8047     // because we "own" this oop, so no other thread can
8048     // be trying to push it on the overflow list; see
8049     // the assertion in preserve_mark_work() that checks
8050     // that m == p->mark().
8051     preserve_mark_work(p, m);
8052   }
8053 }
8054 
8055 // We should be able to do this multi-threaded,
8056 // a chunk of stack being a task (this is
8057 // correct because each oop only ever appears
8058 // once in the overflow list. However, it's
8059 // not very easy to completely overlap this with
8060 // other operations, so will generally not be done
8061 // until all work's been completed. Because we
8062 // expect the preserved oop stack (set) to be small,
8063 // it's probably fine to do this single-threaded.
8064 // We can explore cleverer concurrent/overlapped/parallel
8065 // processing of preserved marks if we feel the
8066 // need for this in the future. Stack overflow should
8067 // be so rare in practice and, when it happens, its
8068 // effect on performance so great that this will
8069 // likely just be in the noise anyway.
8070 void CMSCollector::restore_preserved_marks_if_any() {
8071   assert(SafepointSynchronize::is_at_safepoint(),
8072          "world should be stopped");
8073   assert(Thread::current()->is_ConcurrentGC_thread() ||
8074          Thread::current()->is_VM_thread(),
8075          "should be single-threaded");
8076   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8077          "bijection");
8078 
8079   while (!_preserved_oop_stack.is_empty()) {
8080     oop p = _preserved_oop_stack.pop();
8081     assert(p->is_oop(), "Should be an oop");
8082     assert(_span.contains(p), "oop should be in _span");
8083     assert(p->mark() == markOopDesc::prototype(),
8084            "Set when taken from overflow list");
8085     markOop m = _preserved_mark_stack.pop();
8086     p->set_mark(m);
8087   }
8088   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8089          "stacks were cleared above");
8090 }
8091 
8092 #ifndef PRODUCT
8093 bool CMSCollector::no_preserved_marks() const {
8094   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8095 }
8096 #endif
8097 
8098 // Transfer some number of overflown objects to usual marking
8099 // stack. Return true if some objects were transferred.
8100 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8101   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8102                     (size_t)ParGCDesiredObjsFromOverflowList);
8103 
8104   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8105   assert(_collector->overflow_list_is_empty() || res,
8106          "If list is not empty, we should have taken something");
8107   assert(!res || !_mark_stack->isEmpty(),
8108          "If we took something, it should now be on our stack");
8109   return res;
8110 }
8111 
8112 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8113   size_t res = _sp->block_size_no_stall(addr, _collector);
8114   if (_sp->block_is_obj(addr)) {
8115     if (_live_bit_map->isMarked(addr)) {
8116       // It can't have been dead in a previous cycle
8117       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8118     } else {
8119       _dead_bit_map->mark(addr);      // mark the dead object
8120     }
8121   }
8122   // Could be 0, if the block size could not be computed without stalling.
8123   return res;
8124 }
8125 
8126 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8127 
8128   switch (phase) {
8129     case CMSCollector::InitialMarking:
8130       initialize(true  /* fullGC */ ,
8131                  cause /* cause of the GC */,
8132                  true  /* recordGCBeginTime */,
8133                  true  /* recordPreGCUsage */,
8134                  false /* recordPeakUsage */,
8135                  false /* recordPostGCusage */,
8136                  true  /* recordAccumulatedGCTime */,
8137                  false /* recordGCEndTime */,
8138                  false /* countCollection */  );
8139       break;
8140 
8141     case CMSCollector::FinalMarking:
8142       initialize(true  /* fullGC */ ,
8143                  cause /* cause of the GC */,
8144                  false /* recordGCBeginTime */,
8145                  false /* recordPreGCUsage */,
8146                  false /* recordPeakUsage */,
8147                  false /* recordPostGCusage */,
8148                  true  /* recordAccumulatedGCTime */,
8149                  false /* recordGCEndTime */,
8150                  false /* countCollection */  );
8151       break;
8152 
8153     case CMSCollector::Sweeping:
8154       initialize(true  /* fullGC */ ,
8155                  cause /* cause of the GC */,
8156                  false /* recordGCBeginTime */,
8157                  false /* recordPreGCUsage */,
8158                  true  /* recordPeakUsage */,
8159                  true  /* recordPostGCusage */,
8160                  false /* recordAccumulatedGCTime */,
8161                  true  /* recordGCEndTime */,
8162                  true  /* countCollection */  );
8163       break;
8164 
8165     default:
8166       ShouldNotReachHere();
8167   }
8168 }