1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/g1Allocator.inline.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1EvacStats.inline.hpp"
  42 #include "gc/g1/g1FullCollector.hpp"
  43 #include "gc/g1/g1GCPhaseTimes.hpp"
  44 #include "gc/g1/g1HeapSizingPolicy.hpp"
  45 #include "gc/g1/g1HeapTransition.hpp"
  46 #include "gc/g1/g1HeapVerifier.hpp"
  47 #include "gc/g1/g1HotCardCache.hpp"
  48 #include "gc/g1/g1MemoryPool.hpp"
  49 #include "gc/g1/g1OopClosures.inline.hpp"
  50 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  51 #include "gc/g1/g1Policy.hpp"
  52 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  53 #include "gc/g1/g1RemSet.hpp"
  54 #include "gc/g1/g1RootClosures.hpp"
  55 #include "gc/g1/g1RootProcessor.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/gcHeapSummary.hpp"
  66 #include "gc/shared/gcId.hpp"
  67 #include "gc/shared/gcLocker.hpp"
  68 #include "gc/shared/gcTimer.hpp"
  69 #include "gc/shared/gcTrace.hpp"
  70 #include "gc/shared/gcTraceTime.inline.hpp"
  71 #include "gc/shared/generationSpec.hpp"
  72 #include "gc/shared/isGCActiveMark.hpp"
  73 #include "gc/shared/preservedMarks.inline.hpp"
  74 #include "gc/shared/suspendibleThreadSet.hpp"
  75 #include "gc/shared/referenceProcessor.inline.hpp"
  76 #include "gc/shared/taskqueue.inline.hpp"
  77 #include "gc/shared/weakProcessor.hpp"
  78 #include "logging/log.hpp"
  79 #include "memory/allocation.hpp"
  80 #include "memory/iterator.hpp"
  81 #include "memory/resourceArea.hpp"
  82 #include "oops/access.inline.hpp"
  83 #include "oops/compressedOops.inline.hpp"
  84 #include "oops/oop.inline.hpp"
  85 #include "prims/resolvedMethodTable.hpp"
  86 #include "runtime/atomic.hpp"
  87 #include "runtime/handles.inline.hpp"
  88 #include "runtime/init.hpp"
  89 #include "runtime/orderAccess.inline.hpp"
  90 #include "runtime/threadSMR.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "utilities/align.hpp"
  93 #include "utilities/globalDefinitions.hpp"
  94 #include "utilities/stack.inline.hpp"
  95 
  96 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  97 
  98 // INVARIANTS/NOTES
  99 //
 100 // All allocation activity covered by the G1CollectedHeap interface is
 101 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 102 // and allocate_new_tlab, which are the "entry" points to the
 103 // allocation code from the rest of the JVM.  (Note that this does not
 104 // apply to TLAB allocation, which is not part of this interface: it
 105 // is done by clients of this interface.)
 106 
 107 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 108  private:
 109   size_t _num_dirtied;
 110   G1CollectedHeap* _g1h;
 111   G1CardTable* _g1_ct;
 112 
 113   HeapRegion* region_for_card(jbyte* card_ptr) const {
 114     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 115   }
 116 
 117   bool will_become_free(HeapRegion* hr) const {
 118     // A region will be freed by free_collection_set if the region is in the
 119     // collection set and has not had an evacuation failure.
 120     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 121   }
 122 
 123  public:
 124   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 125     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 126 
 127   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 128     HeapRegion* hr = region_for_card(card_ptr);
 129 
 130     // Should only dirty cards in regions that won't be freed.
 131     if (!will_become_free(hr)) {
 132       *card_ptr = G1CardTable::dirty_card_val();
 133       _num_dirtied++;
 134     }
 135 
 136     return true;
 137   }
 138 
 139   size_t num_dirtied()   const { return _num_dirtied; }
 140 };
 141 
 142 
 143 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 144   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 145 }
 146 
 147 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 148   // The from card cache is not the memory that is actually committed. So we cannot
 149   // take advantage of the zero_filled parameter.
 150   reset_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 
 154 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 155                                              MemRegion mr) {
 156   return new HeapRegion(hrs_index, bot(), mr);
 157 }
 158 
 159 // Private methods.
 160 
 161 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 162   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 163          "the only time we use this to allocate a humongous region is "
 164          "when we are allocating a single humongous region");
 165 
 166   HeapRegion* res = _hrm.allocate_free_region(is_old);
 167 
 168   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 169     // Currently, only attempts to allocate GC alloc regions set
 170     // do_expand to true. So, we should only reach here during a
 171     // safepoint. If this assumption changes we might have to
 172     // reconsider the use of _expand_heap_after_alloc_failure.
 173     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 174 
 175     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 176                               word_size * HeapWordSize);
 177 
 178     if (expand(word_size * HeapWordSize)) {
 179       // Given that expand() succeeded in expanding the heap, and we
 180       // always expand the heap by an amount aligned to the heap
 181       // region size, the free list should in theory not be empty.
 182       // In either case allocate_free_region() will check for NULL.
 183       res = _hrm.allocate_free_region(is_old);
 184     } else {
 185       _expand_heap_after_alloc_failure = false;
 186     }
 187   }
 188   return res;
 189 }
 190 
 191 HeapWord*
 192 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 193                                                            uint num_regions,
 194                                                            size_t word_size) {
 195   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 196   assert(is_humongous(word_size), "word_size should be humongous");
 197   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 198 
 199   // Index of last region in the series.
 200   uint last = first + num_regions - 1;
 201 
 202   // We need to initialize the region(s) we just discovered. This is
 203   // a bit tricky given that it can happen concurrently with
 204   // refinement threads refining cards on these regions and
 205   // potentially wanting to refine the BOT as they are scanning
 206   // those cards (this can happen shortly after a cleanup; see CR
 207   // 6991377). So we have to set up the region(s) carefully and in
 208   // a specific order.
 209 
 210   // The word size sum of all the regions we will allocate.
 211   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 212   assert(word_size <= word_size_sum, "sanity");
 213 
 214   // This will be the "starts humongous" region.
 215   HeapRegion* first_hr = region_at(first);
 216   // The header of the new object will be placed at the bottom of
 217   // the first region.
 218   HeapWord* new_obj = first_hr->bottom();
 219   // This will be the new top of the new object.
 220   HeapWord* obj_top = new_obj + word_size;
 221 
 222   // First, we need to zero the header of the space that we will be
 223   // allocating. When we update top further down, some refinement
 224   // threads might try to scan the region. By zeroing the header we
 225   // ensure that any thread that will try to scan the region will
 226   // come across the zero klass word and bail out.
 227   //
 228   // NOTE: It would not have been correct to have used
 229   // CollectedHeap::fill_with_object() and make the space look like
 230   // an int array. The thread that is doing the allocation will
 231   // later update the object header to a potentially different array
 232   // type and, for a very short period of time, the klass and length
 233   // fields will be inconsistent. This could cause a refinement
 234   // thread to calculate the object size incorrectly.
 235   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 236 
 237   // Next, pad out the unused tail of the last region with filler
 238   // objects, for improved usage accounting.
 239   // How many words we use for filler objects.
 240   size_t word_fill_size = word_size_sum - word_size;
 241 
 242   // How many words memory we "waste" which cannot hold a filler object.
 243   size_t words_not_fillable = 0;
 244 
 245   if (word_fill_size >= min_fill_size()) {
 246     fill_with_objects(obj_top, word_fill_size);
 247   } else if (word_fill_size > 0) {
 248     // We have space to fill, but we cannot fit an object there.
 249     words_not_fillable = word_fill_size;
 250     word_fill_size = 0;
 251   }
 252 
 253   // We will set up the first region as "starts humongous". This
 254   // will also update the BOT covering all the regions to reflect
 255   // that there is a single object that starts at the bottom of the
 256   // first region.
 257   first_hr->set_starts_humongous(obj_top, word_fill_size);
 258   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 259   // Then, if there are any, we will set up the "continues
 260   // humongous" regions.
 261   HeapRegion* hr = NULL;
 262   for (uint i = first + 1; i <= last; ++i) {
 263     hr = region_at(i);
 264     hr->set_continues_humongous(first_hr);
 265     _g1_policy->remset_tracker()->update_at_allocate(hr);
 266   }
 267 
 268   // Up to this point no concurrent thread would have been able to
 269   // do any scanning on any region in this series. All the top
 270   // fields still point to bottom, so the intersection between
 271   // [bottom,top] and [card_start,card_end] will be empty. Before we
 272   // update the top fields, we'll do a storestore to make sure that
 273   // no thread sees the update to top before the zeroing of the
 274   // object header and the BOT initialization.
 275   OrderAccess::storestore();
 276 
 277   // Now, we will update the top fields of the "continues humongous"
 278   // regions except the last one.
 279   for (uint i = first; i < last; ++i) {
 280     hr = region_at(i);
 281     hr->set_top(hr->end());
 282   }
 283 
 284   hr = region_at(last);
 285   // If we cannot fit a filler object, we must set top to the end
 286   // of the humongous object, otherwise we cannot iterate the heap
 287   // and the BOT will not be complete.
 288   hr->set_top(hr->end() - words_not_fillable);
 289 
 290   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 291          "obj_top should be in last region");
 292 
 293   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 294 
 295   assert(words_not_fillable == 0 ||
 296          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 297          "Miscalculation in humongous allocation");
 298 
 299   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 300 
 301   for (uint i = first; i <= last; ++i) {
 302     hr = region_at(i);
 303     _humongous_set.add(hr);
 304     _hr_printer.alloc(hr);
 305   }
 306 
 307   return new_obj;
 308 }
 309 
 310 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 311   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 312   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 313 }
 314 
 315 // If could fit into free regions w/o expansion, try.
 316 // Otherwise, if can expand, do so.
 317 // Otherwise, if using ex regions might help, try with ex given back.
 318 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 319   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 320 
 321   _verifier->verify_region_sets_optional();
 322 
 323   uint first = G1_NO_HRM_INDEX;
 324   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 325 
 326   if (obj_regions == 1) {
 327     // Only one region to allocate, try to use a fast path by directly allocating
 328     // from the free lists. Do not try to expand here, we will potentially do that
 329     // later.
 330     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 331     if (hr != NULL) {
 332       first = hr->hrm_index();
 333     }
 334   } else {
 335     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 336     // are lucky enough to find some.
 337     first = _hrm.find_contiguous_only_empty(obj_regions);
 338     if (first != G1_NO_HRM_INDEX) {
 339       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 340     }
 341   }
 342 
 343   if (first == G1_NO_HRM_INDEX) {
 344     // Policy: We could not find enough regions for the humongous object in the
 345     // free list. Look through the heap to find a mix of free and uncommitted regions.
 346     // If so, try expansion.
 347     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 348     if (first != G1_NO_HRM_INDEX) {
 349       // We found something. Make sure these regions are committed, i.e. expand
 350       // the heap. Alternatively we could do a defragmentation GC.
 351       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 352                                     word_size * HeapWordSize);
 353 
 354       _hrm.expand_at(first, obj_regions, workers());
 355       g1_policy()->record_new_heap_size(num_regions());
 356 
 357 #ifdef ASSERT
 358       for (uint i = first; i < first + obj_regions; ++i) {
 359         HeapRegion* hr = region_at(i);
 360         assert(hr->is_free(), "sanity");
 361         assert(hr->is_empty(), "sanity");
 362         assert(is_on_master_free_list(hr), "sanity");
 363       }
 364 #endif
 365       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 366     } else {
 367       // Policy: Potentially trigger a defragmentation GC.
 368     }
 369   }
 370 
 371   HeapWord* result = NULL;
 372   if (first != G1_NO_HRM_INDEX) {
 373     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 374     assert(result != NULL, "it should always return a valid result");
 375 
 376     // A successful humongous object allocation changes the used space
 377     // information of the old generation so we need to recalculate the
 378     // sizes and update the jstat counters here.
 379     g1mm()->update_sizes();
 380   }
 381 
 382   _verifier->verify_region_sets_optional();
 383 
 384   return result;
 385 }
 386 
 387 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_word_size,
 388                                              size_t desired_word_size,
 389                                              size_t* actual_word_size) {
 390   assert_heap_not_locked_and_not_at_safepoint();
 391   assert(!is_humongous(desired_word_size), "we do not allow humongous TLABs");
 392 
 393   return attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 394 }
 395 
 396 HeapWord*
 397 G1CollectedHeap::mem_allocate(size_t word_size,
 398                               bool*  gc_overhead_limit_was_exceeded) {
 399   assert_heap_not_locked_and_not_at_safepoint();
 400 
 401   if (is_humongous(word_size)) {
 402     return attempt_allocation_humongous(word_size);
 403   }
 404   size_t dummy = 0;
 405   return attempt_allocation(word_size, word_size, &dummy);
 406 }
 407 
 408 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 409   ResourceMark rm; // For retrieving the thread names in log messages.
 410 
 411   // Make sure you read the note in attempt_allocation_humongous().
 412 
 413   assert_heap_not_locked_and_not_at_safepoint();
 414   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 415          "be called for humongous allocation requests");
 416 
 417   // We should only get here after the first-level allocation attempt
 418   // (attempt_allocation()) failed to allocate.
 419 
 420   // We will loop until a) we manage to successfully perform the
 421   // allocation or b) we successfully schedule a collection which
 422   // fails to perform the allocation. b) is the only case when we'll
 423   // return NULL.
 424   HeapWord* result = NULL;
 425   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 426     bool should_try_gc;
 427     uint gc_count_before;
 428 
 429     {
 430       MutexLockerEx x(Heap_lock);
 431       result = _allocator->attempt_allocation_locked(word_size);
 432       if (result != NULL) {
 433         return result;
 434       }
 435 
 436       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 437       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 438       // waiting because the GCLocker is active to not wait too long.
 439       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 440         // No need for an ergo message here, can_expand_young_list() does this when
 441         // it returns true.
 442         result = _allocator->attempt_allocation_force(word_size);
 443         if (result != NULL) {
 444           return result;
 445         }
 446       }
 447       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 448       // the GCLocker initiated GC has been performed and then retry. This includes
 449       // the case when the GC Locker is not active but has not been performed.
 450       should_try_gc = !GCLocker::needs_gc();
 451       // Read the GC count while still holding the Heap_lock.
 452       gc_count_before = total_collections();
 453     }
 454 
 455     if (should_try_gc) {
 456       bool succeeded;
 457       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 458                                    GCCause::_g1_inc_collection_pause);
 459       if (result != NULL) {
 460         assert(succeeded, "only way to get back a non-NULL result");
 461         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 462                              Thread::current()->name(), p2i(result));
 463         return result;
 464       }
 465 
 466       if (succeeded) {
 467         // We successfully scheduled a collection which failed to allocate. No
 468         // point in trying to allocate further. We'll just return NULL.
 469         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 470                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 471         return NULL;
 472       }
 473       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 474                            Thread::current()->name(), word_size);
 475     } else {
 476       // Failed to schedule a collection.
 477       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 478         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 479                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 480         return NULL;
 481       }
 482       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 483       // The GCLocker is either active or the GCLocker initiated
 484       // GC has not yet been performed. Stall until it is and
 485       // then retry the allocation.
 486       GCLocker::stall_until_clear();
 487       gclocker_retry_count += 1;
 488     }
 489 
 490     // We can reach here if we were unsuccessful in scheduling a
 491     // collection (because another thread beat us to it) or if we were
 492     // stalled due to the GC locker. In either can we should retry the
 493     // allocation attempt in case another thread successfully
 494     // performed a collection and reclaimed enough space. We do the
 495     // first attempt (without holding the Heap_lock) here and the
 496     // follow-on attempt will be at the start of the next loop
 497     // iteration (after taking the Heap_lock).
 498     size_t dummy = 0;
 499     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 500     if (result != NULL) {
 501       return result;
 502     }
 503 
 504     // Give a warning if we seem to be looping forever.
 505     if ((QueuedAllocationWarningCount > 0) &&
 506         (try_count % QueuedAllocationWarningCount == 0)) {
 507       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 508                              Thread::current()->name(), try_count, word_size);
 509     }
 510   }
 511 
 512   ShouldNotReachHere();
 513   return NULL;
 514 }
 515 
 516 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 517   assert_at_safepoint_on_vm_thread();
 518   if (_archive_allocator == NULL) {
 519     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 520   }
 521 }
 522 
 523 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 524   // Allocations in archive regions cannot be of a size that would be considered
 525   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 526   // may be different at archive-restore time.
 527   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 528 }
 529 
 530 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 531   assert_at_safepoint_on_vm_thread();
 532   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 533   if (is_archive_alloc_too_large(word_size)) {
 534     return NULL;
 535   }
 536   return _archive_allocator->archive_mem_allocate(word_size);
 537 }
 538 
 539 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 540                                               size_t end_alignment_in_bytes) {
 541   assert_at_safepoint_on_vm_thread();
 542   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 543 
 544   // Call complete_archive to do the real work, filling in the MemRegion
 545   // array with the archive regions.
 546   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 547   delete _archive_allocator;
 548   _archive_allocator = NULL;
 549 }
 550 
 551 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 552   assert(ranges != NULL, "MemRegion array NULL");
 553   assert(count != 0, "No MemRegions provided");
 554   MemRegion reserved = _hrm.reserved();
 555   for (size_t i = 0; i < count; i++) {
 556     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 557       return false;
 558     }
 559   }
 560   return true;
 561 }
 562 
 563 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 564                                             size_t count,
 565                                             bool open) {
 566   assert(!is_init_completed(), "Expect to be called at JVM init time");
 567   assert(ranges != NULL, "MemRegion array NULL");
 568   assert(count != 0, "No MemRegions provided");
 569   MutexLockerEx x(Heap_lock);
 570 
 571   MemRegion reserved = _hrm.reserved();
 572   HeapWord* prev_last_addr = NULL;
 573   HeapRegion* prev_last_region = NULL;
 574 
 575   // Temporarily disable pretouching of heap pages. This interface is used
 576   // when mmap'ing archived heap data in, so pre-touching is wasted.
 577   FlagSetting fs(AlwaysPreTouch, false);
 578 
 579   // Enable archive object checking used by G1MarkSweep. We have to let it know
 580   // about each archive range, so that objects in those ranges aren't marked.
 581   G1ArchiveAllocator::enable_archive_object_check();
 582 
 583   // For each specified MemRegion range, allocate the corresponding G1
 584   // regions and mark them as archive regions. We expect the ranges
 585   // in ascending starting address order, without overlap.
 586   for (size_t i = 0; i < count; i++) {
 587     MemRegion curr_range = ranges[i];
 588     HeapWord* start_address = curr_range.start();
 589     size_t word_size = curr_range.word_size();
 590     HeapWord* last_address = curr_range.last();
 591     size_t commits = 0;
 592 
 593     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 594               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 595               p2i(start_address), p2i(last_address));
 596     guarantee(start_address > prev_last_addr,
 597               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 598               p2i(start_address), p2i(prev_last_addr));
 599     prev_last_addr = last_address;
 600 
 601     // Check for ranges that start in the same G1 region in which the previous
 602     // range ended, and adjust the start address so we don't try to allocate
 603     // the same region again. If the current range is entirely within that
 604     // region, skip it, just adjusting the recorded top.
 605     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 606     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 607       start_address = start_region->end();
 608       if (start_address > last_address) {
 609         increase_used(word_size * HeapWordSize);
 610         start_region->set_top(last_address + 1);
 611         continue;
 612       }
 613       start_region->set_top(start_address);
 614       curr_range = MemRegion(start_address, last_address + 1);
 615       start_region = _hrm.addr_to_region(start_address);
 616     }
 617 
 618     // Perform the actual region allocation, exiting if it fails.
 619     // Then note how much new space we have allocated.
 620     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 621       return false;
 622     }
 623     increase_used(word_size * HeapWordSize);
 624     if (commits != 0) {
 625       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 626                                 HeapRegion::GrainWords * HeapWordSize * commits);
 627 
 628     }
 629 
 630     // Mark each G1 region touched by the range as archive, add it to
 631     // the old set, and set top.
 632     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 633     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 634     prev_last_region = last_region;
 635 
 636     while (curr_region != NULL) {
 637       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 638              "Region already in use (index %u)", curr_region->hrm_index());
 639       if (open) {
 640         curr_region->set_open_archive();
 641       } else {
 642         curr_region->set_closed_archive();
 643       }
 644       _hr_printer.alloc(curr_region);
 645       _old_set.add(curr_region);
 646       HeapWord* top;
 647       HeapRegion* next_region;
 648       if (curr_region != last_region) {
 649         top = curr_region->end();
 650         next_region = _hrm.next_region_in_heap(curr_region);
 651       } else {
 652         top = last_address + 1;
 653         next_region = NULL;
 654       }
 655       curr_region->set_top(top);
 656       curr_region->set_first_dead(top);
 657       curr_region->set_end_of_live(top);
 658       curr_region = next_region;
 659     }
 660 
 661     // Notify mark-sweep of the archive
 662     G1ArchiveAllocator::set_range_archive(curr_range, open);
 663   }
 664   return true;
 665 }
 666 
 667 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 668   assert(!is_init_completed(), "Expect to be called at JVM init time");
 669   assert(ranges != NULL, "MemRegion array NULL");
 670   assert(count != 0, "No MemRegions provided");
 671   MemRegion reserved = _hrm.reserved();
 672   HeapWord *prev_last_addr = NULL;
 673   HeapRegion* prev_last_region = NULL;
 674 
 675   // For each MemRegion, create filler objects, if needed, in the G1 regions
 676   // that contain the address range. The address range actually within the
 677   // MemRegion will not be modified. That is assumed to have been initialized
 678   // elsewhere, probably via an mmap of archived heap data.
 679   MutexLockerEx x(Heap_lock);
 680   for (size_t i = 0; i < count; i++) {
 681     HeapWord* start_address = ranges[i].start();
 682     HeapWord* last_address = ranges[i].last();
 683 
 684     assert(reserved.contains(start_address) && reserved.contains(last_address),
 685            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 686            p2i(start_address), p2i(last_address));
 687     assert(start_address > prev_last_addr,
 688            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 689            p2i(start_address), p2i(prev_last_addr));
 690 
 691     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 692     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 693     HeapWord* bottom_address = start_region->bottom();
 694 
 695     // Check for a range beginning in the same region in which the
 696     // previous one ended.
 697     if (start_region == prev_last_region) {
 698       bottom_address = prev_last_addr + 1;
 699     }
 700 
 701     // Verify that the regions were all marked as archive regions by
 702     // alloc_archive_regions.
 703     HeapRegion* curr_region = start_region;
 704     while (curr_region != NULL) {
 705       guarantee(curr_region->is_archive(),
 706                 "Expected archive region at index %u", curr_region->hrm_index());
 707       if (curr_region != last_region) {
 708         curr_region = _hrm.next_region_in_heap(curr_region);
 709       } else {
 710         curr_region = NULL;
 711       }
 712     }
 713 
 714     prev_last_addr = last_address;
 715     prev_last_region = last_region;
 716 
 717     // Fill the memory below the allocated range with dummy object(s),
 718     // if the region bottom does not match the range start, or if the previous
 719     // range ended within the same G1 region, and there is a gap.
 720     if (start_address != bottom_address) {
 721       size_t fill_size = pointer_delta(start_address, bottom_address);
 722       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 723       increase_used(fill_size * HeapWordSize);
 724     }
 725   }
 726 }
 727 
 728 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 729                                                      size_t desired_word_size,
 730                                                      size_t* actual_word_size) {
 731   assert_heap_not_locked_and_not_at_safepoint();
 732   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 733          "be called for humongous allocation requests");
 734 
 735   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 736 
 737   if (result == NULL) {
 738     *actual_word_size = desired_word_size;
 739     result = attempt_allocation_slow(desired_word_size);
 740   }
 741 
 742   assert_heap_not_locked();
 743   if (result != NULL) {
 744     assert(*actual_word_size != 0, "Actual size must have been set here");
 745     dirty_young_block(result, *actual_word_size);
 746   }
 747   return result;
 748 }
 749 
 750 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 751   assert(!is_init_completed(), "Expect to be called at JVM init time");
 752   assert(ranges != NULL, "MemRegion array NULL");
 753   assert(count != 0, "No MemRegions provided");
 754   MemRegion reserved = _hrm.reserved();
 755   HeapWord* prev_last_addr = NULL;
 756   HeapRegion* prev_last_region = NULL;
 757   size_t size_used = 0;
 758   size_t uncommitted_regions = 0;
 759 
 760   // For each Memregion, free the G1 regions that constitute it, and
 761   // notify mark-sweep that the range is no longer to be considered 'archive.'
 762   MutexLockerEx x(Heap_lock);
 763   for (size_t i = 0; i < count; i++) {
 764     HeapWord* start_address = ranges[i].start();
 765     HeapWord* last_address = ranges[i].last();
 766 
 767     assert(reserved.contains(start_address) && reserved.contains(last_address),
 768            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 769            p2i(start_address), p2i(last_address));
 770     assert(start_address > prev_last_addr,
 771            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 772            p2i(start_address), p2i(prev_last_addr));
 773     size_used += ranges[i].byte_size();
 774     prev_last_addr = last_address;
 775 
 776     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 777     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 778 
 779     // Check for ranges that start in the same G1 region in which the previous
 780     // range ended, and adjust the start address so we don't try to free
 781     // the same region again. If the current range is entirely within that
 782     // region, skip it.
 783     if (start_region == prev_last_region) {
 784       start_address = start_region->end();
 785       if (start_address > last_address) {
 786         continue;
 787       }
 788       start_region = _hrm.addr_to_region(start_address);
 789     }
 790     prev_last_region = last_region;
 791 
 792     // After verifying that each region was marked as an archive region by
 793     // alloc_archive_regions, set it free and empty and uncommit it.
 794     HeapRegion* curr_region = start_region;
 795     while (curr_region != NULL) {
 796       guarantee(curr_region->is_archive(),
 797                 "Expected archive region at index %u", curr_region->hrm_index());
 798       uint curr_index = curr_region->hrm_index();
 799       _old_set.remove(curr_region);
 800       curr_region->set_free();
 801       curr_region->set_top(curr_region->bottom());
 802       if (curr_region != last_region) {
 803         curr_region = _hrm.next_region_in_heap(curr_region);
 804       } else {
 805         curr_region = NULL;
 806       }
 807       _hrm.shrink_at(curr_index, 1);
 808       uncommitted_regions++;
 809     }
 810 
 811     // Notify mark-sweep that this is no longer an archive range.
 812     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 813   }
 814 
 815   if (uncommitted_regions != 0) {
 816     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 817                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 818   }
 819   decrease_used(size_used);
 820 }
 821 
 822 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 823   ResourceMark rm; // For retrieving the thread names in log messages.
 824 
 825   // The structure of this method has a lot of similarities to
 826   // attempt_allocation_slow(). The reason these two were not merged
 827   // into a single one is that such a method would require several "if
 828   // allocation is not humongous do this, otherwise do that"
 829   // conditional paths which would obscure its flow. In fact, an early
 830   // version of this code did use a unified method which was harder to
 831   // follow and, as a result, it had subtle bugs that were hard to
 832   // track down. So keeping these two methods separate allows each to
 833   // be more readable. It will be good to keep these two in sync as
 834   // much as possible.
 835 
 836   assert_heap_not_locked_and_not_at_safepoint();
 837   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 838          "should only be called for humongous allocations");
 839 
 840   // Humongous objects can exhaust the heap quickly, so we should check if we
 841   // need to start a marking cycle at each humongous object allocation. We do
 842   // the check before we do the actual allocation. The reason for doing it
 843   // before the allocation is that we avoid having to keep track of the newly
 844   // allocated memory while we do a GC.
 845   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 846                                            word_size)) {
 847     collect(GCCause::_g1_humongous_allocation);
 848   }
 849 
 850   // We will loop until a) we manage to successfully perform the
 851   // allocation or b) we successfully schedule a collection which
 852   // fails to perform the allocation. b) is the only case when we'll
 853   // return NULL.
 854   HeapWord* result = NULL;
 855   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 856     bool should_try_gc;
 857     uint gc_count_before;
 858 
 859 
 860     {
 861       MutexLockerEx x(Heap_lock);
 862 
 863       // Given that humongous objects are not allocated in young
 864       // regions, we'll first try to do the allocation without doing a
 865       // collection hoping that there's enough space in the heap.
 866       result = humongous_obj_allocate(word_size);
 867       if (result != NULL) {
 868         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 869         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 870         return result;
 871       }
 872 
 873       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 874       // the GCLocker initiated GC has been performed and then retry. This includes
 875       // the case when the GC Locker is not active but has not been performed.
 876       should_try_gc = !GCLocker::needs_gc();
 877       // Read the GC count while still holding the Heap_lock.
 878       gc_count_before = total_collections();
 879     }
 880 
 881     if (should_try_gc) {
 882       bool succeeded;
 883       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 884                                    GCCause::_g1_humongous_allocation);
 885       if (result != NULL) {
 886         assert(succeeded, "only way to get back a non-NULL result");
 887         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 888                              Thread::current()->name(), p2i(result));
 889         return result;
 890       }
 891 
 892       if (succeeded) {
 893         // We successfully scheduled a collection which failed to allocate. No
 894         // point in trying to allocate further. We'll just return NULL.
 895         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 896                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 897         return NULL;
 898       }
 899       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 900                            Thread::current()->name(), word_size);
 901     } else {
 902       // Failed to schedule a collection.
 903       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 904         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 905                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 906         return NULL;
 907       }
 908       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 909       // The GCLocker is either active or the GCLocker initiated
 910       // GC has not yet been performed. Stall until it is and
 911       // then retry the allocation.
 912       GCLocker::stall_until_clear();
 913       gclocker_retry_count += 1;
 914     }
 915 
 916 
 917     // We can reach here if we were unsuccessful in scheduling a
 918     // collection (because another thread beat us to it) or if we were
 919     // stalled due to the GC locker. In either can we should retry the
 920     // allocation attempt in case another thread successfully
 921     // performed a collection and reclaimed enough space.
 922     // Humongous object allocation always needs a lock, so we wait for the retry
 923     // in the next iteration of the loop, unlike for the regular iteration case.
 924     // Give a warning if we seem to be looping forever.
 925 
 926     if ((QueuedAllocationWarningCount > 0) &&
 927         (try_count % QueuedAllocationWarningCount == 0)) {
 928       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 929                              Thread::current()->name(), try_count, word_size);
 930     }
 931   }
 932 
 933   ShouldNotReachHere();
 934   return NULL;
 935 }
 936 
 937 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 938                                                            bool expect_null_mutator_alloc_region) {
 939   assert_at_safepoint_on_vm_thread();
 940   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 941          "the current alloc region was unexpectedly found to be non-NULL");
 942 
 943   if (!is_humongous(word_size)) {
 944     return _allocator->attempt_allocation_locked(word_size);
 945   } else {
 946     HeapWord* result = humongous_obj_allocate(word_size);
 947     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 948       collector_state()->set_initiate_conc_mark_if_possible(true);
 949     }
 950     return result;
 951   }
 952 
 953   ShouldNotReachHere();
 954 }
 955 
 956 class PostCompactionPrinterClosure: public HeapRegionClosure {
 957 private:
 958   G1HRPrinter* _hr_printer;
 959 public:
 960   bool do_heap_region(HeapRegion* hr) {
 961     assert(!hr->is_young(), "not expecting to find young regions");
 962     _hr_printer->post_compaction(hr);
 963     return false;
 964   }
 965 
 966   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 967     : _hr_printer(hr_printer) { }
 968 };
 969 
 970 void G1CollectedHeap::print_hrm_post_compaction() {
 971   if (_hr_printer.is_active()) {
 972     PostCompactionPrinterClosure cl(hr_printer());
 973     heap_region_iterate(&cl);
 974   }
 975 }
 976 
 977 void G1CollectedHeap::abort_concurrent_cycle() {
 978   // If we start the compaction before the CM threads finish
 979   // scanning the root regions we might trip them over as we'll
 980   // be moving objects / updating references. So let's wait until
 981   // they are done. By telling them to abort, they should complete
 982   // early.
 983   _cm->root_regions()->abort();
 984   _cm->root_regions()->wait_until_scan_finished();
 985 
 986   // Disable discovery and empty the discovered lists
 987   // for the CM ref processor.
 988   ref_processor_cm()->disable_discovery();
 989   ref_processor_cm()->abandon_partial_discovery();
 990   ref_processor_cm()->verify_no_references_recorded();
 991 
 992   // Abandon current iterations of concurrent marking and concurrent
 993   // refinement, if any are in progress.
 994   concurrent_mark()->concurrent_cycle_abort();
 995 }
 996 
 997 void G1CollectedHeap::prepare_heap_for_full_collection() {
 998   // Make sure we'll choose a new allocation region afterwards.
 999   _allocator->release_mutator_alloc_region();
1000   _allocator->abandon_gc_alloc_regions();
1001   g1_rem_set()->cleanupHRRS();
1002 
1003   // We may have added regions to the current incremental collection
1004   // set between the last GC or pause and now. We need to clear the
1005   // incremental collection set and then start rebuilding it afresh
1006   // after this full GC.
1007   abandon_collection_set(collection_set());
1008 
1009   tear_down_region_sets(false /* free_list_only */);
1010 }
1011 
1012 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1013   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1014   assert(used() == recalculate_used(), "Should be equal");
1015   _verifier->verify_region_sets_optional();
1016   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1017   _verifier->check_bitmaps("Full GC Start");
1018 }
1019 
1020 void G1CollectedHeap::prepare_heap_for_mutators() {
1021   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1022   ClassLoaderDataGraph::purge();
1023   MetaspaceUtils::verify_metrics();
1024 
1025   // Prepare heap for normal collections.
1026   assert(num_free_regions() == 0, "we should not have added any free regions");
1027   rebuild_region_sets(false /* free_list_only */);
1028   abort_refinement();
1029   resize_if_necessary_after_full_collection();
1030 
1031   // Rebuild the strong code root lists for each region
1032   rebuild_strong_code_roots();
1033 
1034   // Start a new incremental collection set for the next pause
1035   start_new_collection_set();
1036 
1037   _allocator->init_mutator_alloc_region();
1038 
1039   // Post collection state updates.
1040   MetaspaceGC::compute_new_size();
1041 }
1042 
1043 void G1CollectedHeap::abort_refinement() {
1044   if (_hot_card_cache->use_cache()) {
1045     _hot_card_cache->reset_hot_cache();
1046   }
1047 
1048   // Discard all remembered set updates.
1049   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1050   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1051 }
1052 
1053 void G1CollectedHeap::verify_after_full_collection() {
1054   _hrm.verify_optional();
1055   _verifier->verify_region_sets_optional();
1056   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1057   // Clear the previous marking bitmap, if needed for bitmap verification.
1058   // Note we cannot do this when we clear the next marking bitmap in
1059   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1060   // objects marked during a full GC against the previous bitmap.
1061   // But we need to clear it before calling check_bitmaps below since
1062   // the full GC has compacted objects and updated TAMS but not updated
1063   // the prev bitmap.
1064   if (G1VerifyBitmaps) {
1065     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1066     _cm->clear_prev_bitmap(workers());
1067   }
1068   _verifier->check_bitmaps("Full GC End");
1069 
1070   // At this point there should be no regions in the
1071   // entire heap tagged as young.
1072   assert(check_young_list_empty(), "young list should be empty at this point");
1073 
1074   // Note: since we've just done a full GC, concurrent
1075   // marking is no longer active. Therefore we need not
1076   // re-enable reference discovery for the CM ref processor.
1077   // That will be done at the start of the next marking cycle.
1078   // We also know that the STW processor should no longer
1079   // discover any new references.
1080   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1081   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1082   ref_processor_stw()->verify_no_references_recorded();
1083   ref_processor_cm()->verify_no_references_recorded();
1084 }
1085 
1086 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1087   // Post collection logging.
1088   // We should do this after we potentially resize the heap so
1089   // that all the COMMIT / UNCOMMIT events are generated before
1090   // the compaction events.
1091   print_hrm_post_compaction();
1092   heap_transition->print();
1093   print_heap_after_gc();
1094   print_heap_regions();
1095 #ifdef TRACESPINNING
1096   ParallelTaskTerminator::print_termination_counts();
1097 #endif
1098 }
1099 
1100 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1101                                          bool clear_all_soft_refs) {
1102   assert_at_safepoint_on_vm_thread();
1103 
1104   if (GCLocker::check_active_before_gc()) {
1105     // Full GC was not completed.
1106     return false;
1107   }
1108 
1109   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1110       soft_ref_policy()->should_clear_all_soft_refs();
1111 
1112   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1113   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1114 
1115   collector.prepare_collection();
1116   collector.collect();
1117   collector.complete_collection();
1118 
1119   // Full collection was successfully completed.
1120   return true;
1121 }
1122 
1123 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1124   // Currently, there is no facility in the do_full_collection(bool) API to notify
1125   // the caller that the collection did not succeed (e.g., because it was locked
1126   // out by the GC locker). So, right now, we'll ignore the return value.
1127   bool dummy = do_full_collection(true,                /* explicit_gc */
1128                                   clear_all_soft_refs);
1129 }
1130 
1131 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1132   // Capacity, free and used after the GC counted as full regions to
1133   // include the waste in the following calculations.
1134   const size_t capacity_after_gc = capacity();
1135   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1136 
1137   // This is enforced in arguments.cpp.
1138   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1139          "otherwise the code below doesn't make sense");
1140 
1141   // We don't have floating point command-line arguments
1142   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1143   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1144   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1145   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1146 
1147   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1148   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1149 
1150   // We have to be careful here as these two calculations can overflow
1151   // 32-bit size_t's.
1152   double used_after_gc_d = (double) used_after_gc;
1153   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1154   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1155 
1156   // Let's make sure that they are both under the max heap size, which
1157   // by default will make them fit into a size_t.
1158   double desired_capacity_upper_bound = (double) max_heap_size;
1159   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1160                                     desired_capacity_upper_bound);
1161   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1162                                     desired_capacity_upper_bound);
1163 
1164   // We can now safely turn them into size_t's.
1165   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1166   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1167 
1168   // This assert only makes sense here, before we adjust them
1169   // with respect to the min and max heap size.
1170   assert(minimum_desired_capacity <= maximum_desired_capacity,
1171          "minimum_desired_capacity = " SIZE_FORMAT ", "
1172          "maximum_desired_capacity = " SIZE_FORMAT,
1173          minimum_desired_capacity, maximum_desired_capacity);
1174 
1175   // Should not be greater than the heap max size. No need to adjust
1176   // it with respect to the heap min size as it's a lower bound (i.e.,
1177   // we'll try to make the capacity larger than it, not smaller).
1178   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1179   // Should not be less than the heap min size. No need to adjust it
1180   // with respect to the heap max size as it's an upper bound (i.e.,
1181   // we'll try to make the capacity smaller than it, not greater).
1182   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1183 
1184   if (capacity_after_gc < minimum_desired_capacity) {
1185     // Don't expand unless it's significant
1186     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1187 
1188     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1189                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1190                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1191                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1192 
1193     expand(expand_bytes, _workers);
1194 
1195     // No expansion, now see if we want to shrink
1196   } else if (capacity_after_gc > maximum_desired_capacity) {
1197     // Capacity too large, compute shrinking size
1198     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1199 
1200     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1201                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1202                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1203                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1204 
1205     shrink(shrink_bytes);
1206   }
1207 }
1208 
1209 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1210                                                             bool do_gc,
1211                                                             bool clear_all_soft_refs,
1212                                                             bool expect_null_mutator_alloc_region,
1213                                                             bool* gc_succeeded) {
1214   *gc_succeeded = true;
1215   // Let's attempt the allocation first.
1216   HeapWord* result =
1217     attempt_allocation_at_safepoint(word_size,
1218                                     expect_null_mutator_alloc_region);
1219   if (result != NULL) {
1220     return result;
1221   }
1222 
1223   // In a G1 heap, we're supposed to keep allocation from failing by
1224   // incremental pauses.  Therefore, at least for now, we'll favor
1225   // expansion over collection.  (This might change in the future if we can
1226   // do something smarter than full collection to satisfy a failed alloc.)
1227   result = expand_and_allocate(word_size);
1228   if (result != NULL) {
1229     return result;
1230   }
1231 
1232   if (do_gc) {
1233     // Expansion didn't work, we'll try to do a Full GC.
1234     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1235                                        clear_all_soft_refs);
1236   }
1237 
1238   return NULL;
1239 }
1240 
1241 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1242                                                      bool* succeeded) {
1243   assert_at_safepoint_on_vm_thread();
1244 
1245   // Attempts to allocate followed by Full GC.
1246   HeapWord* result =
1247     satisfy_failed_allocation_helper(word_size,
1248                                      true,  /* do_gc */
1249                                      false, /* clear_all_soft_refs */
1250                                      false, /* expect_null_mutator_alloc_region */
1251                                      succeeded);
1252 
1253   if (result != NULL || !*succeeded) {
1254     return result;
1255   }
1256 
1257   // Attempts to allocate followed by Full GC that will collect all soft references.
1258   result = satisfy_failed_allocation_helper(word_size,
1259                                             true, /* do_gc */
1260                                             true, /* clear_all_soft_refs */
1261                                             true, /* expect_null_mutator_alloc_region */
1262                                             succeeded);
1263 
1264   if (result != NULL || !*succeeded) {
1265     return result;
1266   }
1267 
1268   // Attempts to allocate, no GC
1269   result = satisfy_failed_allocation_helper(word_size,
1270                                             false, /* do_gc */
1271                                             false, /* clear_all_soft_refs */
1272                                             true,  /* expect_null_mutator_alloc_region */
1273                                             succeeded);
1274 
1275   if (result != NULL) {
1276     return result;
1277   }
1278 
1279   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1280          "Flag should have been handled and cleared prior to this point");
1281 
1282   // What else?  We might try synchronous finalization later.  If the total
1283   // space available is large enough for the allocation, then a more
1284   // complete compaction phase than we've tried so far might be
1285   // appropriate.
1286   return NULL;
1287 }
1288 
1289 // Attempting to expand the heap sufficiently
1290 // to support an allocation of the given "word_size".  If
1291 // successful, perform the allocation and return the address of the
1292 // allocated block, or else "NULL".
1293 
1294 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1295   assert_at_safepoint_on_vm_thread();
1296 
1297   _verifier->verify_region_sets_optional();
1298 
1299   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1300   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1301                             word_size * HeapWordSize);
1302 
1303 
1304   if (expand(expand_bytes, _workers)) {
1305     _hrm.verify_optional();
1306     _verifier->verify_region_sets_optional();
1307     return attempt_allocation_at_safepoint(word_size,
1308                                            false /* expect_null_mutator_alloc_region */);
1309   }
1310   return NULL;
1311 }
1312 
1313 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1314   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1315   aligned_expand_bytes = align_up(aligned_expand_bytes,
1316                                        HeapRegion::GrainBytes);
1317 
1318   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1319                             expand_bytes, aligned_expand_bytes);
1320 
1321   if (is_maximal_no_gc()) {
1322     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1323     return false;
1324   }
1325 
1326   double expand_heap_start_time_sec = os::elapsedTime();
1327   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1328   assert(regions_to_expand > 0, "Must expand by at least one region");
1329 
1330   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1331   if (expand_time_ms != NULL) {
1332     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1333   }
1334 
1335   if (expanded_by > 0) {
1336     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1337     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1338     g1_policy()->record_new_heap_size(num_regions());
1339   } else {
1340     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1341 
1342     // The expansion of the virtual storage space was unsuccessful.
1343     // Let's see if it was because we ran out of swap.
1344     if (G1ExitOnExpansionFailure &&
1345         _hrm.available() >= regions_to_expand) {
1346       // We had head room...
1347       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1348     }
1349   }
1350   return regions_to_expand > 0;
1351 }
1352 
1353 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1354   size_t aligned_shrink_bytes =
1355     ReservedSpace::page_align_size_down(shrink_bytes);
1356   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1357                                          HeapRegion::GrainBytes);
1358   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1359 
1360   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1361   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1362 
1363 
1364   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1365                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1366   if (num_regions_removed > 0) {
1367     g1_policy()->record_new_heap_size(num_regions());
1368   } else {
1369     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1370   }
1371 }
1372 
1373 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1374   _verifier->verify_region_sets_optional();
1375 
1376   // We should only reach here at the end of a Full GC which means we
1377   // should not not be holding to any GC alloc regions. The method
1378   // below will make sure of that and do any remaining clean up.
1379   _allocator->abandon_gc_alloc_regions();
1380 
1381   // Instead of tearing down / rebuilding the free lists here, we
1382   // could instead use the remove_all_pending() method on free_list to
1383   // remove only the ones that we need to remove.
1384   tear_down_region_sets(true /* free_list_only */);
1385   shrink_helper(shrink_bytes);
1386   rebuild_region_sets(true /* free_list_only */);
1387 
1388   _hrm.verify_optional();
1389   _verifier->verify_region_sets_optional();
1390 }
1391 
1392 // Public methods.
1393 
1394 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1395   CollectedHeap(),
1396   _young_gen_sampling_thread(NULL),
1397   _collector_policy(collector_policy),
1398   _soft_ref_policy(),
1399   _card_table(NULL),
1400   _memory_manager("G1 Young Generation", "end of minor GC"),
1401   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1402   _eden_pool(NULL),
1403   _survivor_pool(NULL),
1404   _old_pool(NULL),
1405   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1406   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1407   _g1_policy(new G1Policy(_gc_timer_stw)),
1408   _collection_set(this, _g1_policy),
1409   _dirty_card_queue_set(false),
1410   _is_alive_closure_cm(this),
1411   _is_alive_closure_stw(this),
1412   _ref_processor_cm(NULL),
1413   _ref_processor_stw(NULL),
1414   _bot(NULL),
1415   _hot_card_cache(NULL),
1416   _g1_rem_set(NULL),
1417   _cr(NULL),
1418   _g1mm(NULL),
1419   _preserved_marks_set(true /* in_c_heap */),
1420   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1421   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1422   _humongous_reclaim_candidates(),
1423   _has_humongous_reclaim_candidates(false),
1424   _archive_allocator(NULL),
1425   _summary_bytes_used(0),
1426   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1427   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1428   _expand_heap_after_alloc_failure(true),
1429   _old_marking_cycles_started(0),
1430   _old_marking_cycles_completed(0),
1431   _in_cset_fast_test() {
1432 
1433   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1434                           /* are_GC_task_threads */true,
1435                           /* are_ConcurrentGC_threads */false);
1436   _workers->initialize_workers();
1437   _verifier = new G1HeapVerifier(this);
1438 
1439   _allocator = new G1Allocator(this);
1440 
1441   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1442 
1443   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1444 
1445   // Override the default _filler_array_max_size so that no humongous filler
1446   // objects are created.
1447   _filler_array_max_size = _humongous_object_threshold_in_words;
1448 
1449   uint n_queues = ParallelGCThreads;
1450   _task_queues = new RefToScanQueueSet(n_queues);
1451 
1452   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1453 
1454   for (uint i = 0; i < n_queues; i++) {
1455     RefToScanQueue* q = new RefToScanQueue();
1456     q->initialize();
1457     _task_queues->register_queue(i, q);
1458     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1459   }
1460 
1461   // Initialize the G1EvacuationFailureALot counters and flags.
1462   NOT_PRODUCT(reset_evacuation_should_fail();)
1463 
1464   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1465 }
1466 
1467 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1468                                                                  size_t size,
1469                                                                  size_t translation_factor) {
1470   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1471   // Allocate a new reserved space, preferring to use large pages.
1472   ReservedSpace rs(size, preferred_page_size);
1473   G1RegionToSpaceMapper* result  =
1474     G1RegionToSpaceMapper::create_mapper(rs,
1475                                          size,
1476                                          rs.alignment(),
1477                                          HeapRegion::GrainBytes,
1478                                          translation_factor,
1479                                          mtGC);
1480 
1481   os::trace_page_sizes_for_requested_size(description,
1482                                           size,
1483                                           preferred_page_size,
1484                                           rs.alignment(),
1485                                           rs.base(),
1486                                           rs.size());
1487 
1488   return result;
1489 }
1490 
1491 jint G1CollectedHeap::initialize_concurrent_refinement() {
1492   jint ecode = JNI_OK;
1493   _cr = G1ConcurrentRefine::create(&ecode);
1494   return ecode;
1495 }
1496 
1497 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1498   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1499   if (_young_gen_sampling_thread->osthread() == NULL) {
1500     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1501     return JNI_ENOMEM;
1502   }
1503   return JNI_OK;
1504 }
1505 
1506 jint G1CollectedHeap::initialize() {
1507   os::enable_vtime();
1508 
1509   // Necessary to satisfy locking discipline assertions.
1510 
1511   MutexLocker x(Heap_lock);
1512 
1513   // While there are no constraints in the GC code that HeapWordSize
1514   // be any particular value, there are multiple other areas in the
1515   // system which believe this to be true (e.g. oop->object_size in some
1516   // cases incorrectly returns the size in wordSize units rather than
1517   // HeapWordSize).
1518   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1519 
1520   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1521   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1522   size_t heap_alignment = collector_policy()->heap_alignment();
1523 
1524   // Ensure that the sizes are properly aligned.
1525   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1526   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1527   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1528 
1529   // Reserve the maximum.
1530 
1531   // When compressed oops are enabled, the preferred heap base
1532   // is calculated by subtracting the requested size from the
1533   // 32Gb boundary and using the result as the base address for
1534   // heap reservation. If the requested size is not aligned to
1535   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1536   // into the ReservedHeapSpace constructor) then the actual
1537   // base of the reserved heap may end up differing from the
1538   // address that was requested (i.e. the preferred heap base).
1539   // If this happens then we could end up using a non-optimal
1540   // compressed oops mode.
1541 
1542   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1543                                                  heap_alignment);
1544 
1545   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1546 
1547   // Create the barrier set for the entire reserved region.
1548   G1CardTable* ct = new G1CardTable(reserved_region());
1549   ct->initialize();
1550   G1BarrierSet* bs = new G1BarrierSet(ct);
1551   bs->initialize();
1552   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1553   BarrierSet::set_barrier_set(bs);
1554   _card_table = ct;
1555 
1556   // Create the hot card cache.
1557   _hot_card_cache = new G1HotCardCache(this);
1558 
1559   // Carve out the G1 part of the heap.
1560   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1561   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1562   G1RegionToSpaceMapper* heap_storage =
1563     G1RegionToSpaceMapper::create_mapper(g1_rs,
1564                                          g1_rs.size(),
1565                                          page_size,
1566                                          HeapRegion::GrainBytes,
1567                                          1,
1568                                          mtJavaHeap);
1569   os::trace_page_sizes("Heap",
1570                        collector_policy()->min_heap_byte_size(),
1571                        max_byte_size,
1572                        page_size,
1573                        heap_rs.base(),
1574                        heap_rs.size());
1575   heap_storage->set_mapping_changed_listener(&_listener);
1576 
1577   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1578   G1RegionToSpaceMapper* bot_storage =
1579     create_aux_memory_mapper("Block Offset Table",
1580                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1581                              G1BlockOffsetTable::heap_map_factor());
1582 
1583   G1RegionToSpaceMapper* cardtable_storage =
1584     create_aux_memory_mapper("Card Table",
1585                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1586                              G1CardTable::heap_map_factor());
1587 
1588   G1RegionToSpaceMapper* card_counts_storage =
1589     create_aux_memory_mapper("Card Counts Table",
1590                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1591                              G1CardCounts::heap_map_factor());
1592 
1593   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1594   G1RegionToSpaceMapper* prev_bitmap_storage =
1595     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1596   G1RegionToSpaceMapper* next_bitmap_storage =
1597     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1598 
1599   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1600   _card_table->initialize(cardtable_storage);
1601   // Do later initialization work for concurrent refinement.
1602   _hot_card_cache->initialize(card_counts_storage);
1603 
1604   // 6843694 - ensure that the maximum region index can fit
1605   // in the remembered set structures.
1606   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1607   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1608 
1609   // Also create a G1 rem set.
1610   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1611   _g1_rem_set->initialize(max_capacity(), max_regions());
1612 
1613   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1614   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1615   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1616             "too many cards per region");
1617 
1618   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1619 
1620   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1621 
1622   {
1623     HeapWord* start = _hrm.reserved().start();
1624     HeapWord* end = _hrm.reserved().end();
1625     size_t granularity = HeapRegion::GrainBytes;
1626 
1627     _in_cset_fast_test.initialize(start, end, granularity);
1628     _humongous_reclaim_candidates.initialize(start, end, granularity);
1629   }
1630 
1631   // Create the G1ConcurrentMark data structure and thread.
1632   // (Must do this late, so that "max_regions" is defined.)
1633   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1634   if (_cm == NULL || !_cm->completed_initialization()) {
1635     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1636     return JNI_ENOMEM;
1637   }
1638   _cm_thread = _cm->cm_thread();
1639 
1640   // Now expand into the initial heap size.
1641   if (!expand(init_byte_size, _workers)) {
1642     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1643     return JNI_ENOMEM;
1644   }
1645 
1646   // Perform any initialization actions delegated to the policy.
1647   g1_policy()->init(this, &_collection_set);
1648 
1649   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1650                                                  SATB_Q_FL_lock,
1651                                                  G1SATBProcessCompletedThreshold,
1652                                                  Shared_SATB_Q_lock);
1653 
1654   jint ecode = initialize_concurrent_refinement();
1655   if (ecode != JNI_OK) {
1656     return ecode;
1657   }
1658 
1659   ecode = initialize_young_gen_sampling_thread();
1660   if (ecode != JNI_OK) {
1661     return ecode;
1662   }
1663 
1664   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1665                                                   DirtyCardQ_FL_lock,
1666                                                   (int)concurrent_refine()->yellow_zone(),
1667                                                   (int)concurrent_refine()->red_zone(),
1668                                                   Shared_DirtyCardQ_lock,
1669                                                   NULL,  // fl_owner
1670                                                   true); // init_free_ids
1671 
1672   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1673                                     DirtyCardQ_FL_lock,
1674                                     -1, // never trigger processing
1675                                     -1, // no limit on length
1676                                     Shared_DirtyCardQ_lock,
1677                                     &G1BarrierSet::dirty_card_queue_set());
1678 
1679   // Here we allocate the dummy HeapRegion that is required by the
1680   // G1AllocRegion class.
1681   HeapRegion* dummy_region = _hrm.get_dummy_region();
1682 
1683   // We'll re-use the same region whether the alloc region will
1684   // require BOT updates or not and, if it doesn't, then a non-young
1685   // region will complain that it cannot support allocations without
1686   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1687   dummy_region->set_eden();
1688   // Make sure it's full.
1689   dummy_region->set_top(dummy_region->end());
1690   G1AllocRegion::setup(this, dummy_region);
1691 
1692   _allocator->init_mutator_alloc_region();
1693 
1694   // Do create of the monitoring and management support so that
1695   // values in the heap have been properly initialized.
1696   _g1mm = new G1MonitoringSupport(this);
1697 
1698   G1StringDedup::initialize();
1699 
1700   _preserved_marks_set.init(ParallelGCThreads);
1701 
1702   _collection_set.initialize(max_regions());
1703 
1704   return JNI_OK;
1705 }
1706 
1707 void G1CollectedHeap::initialize_serviceability() {
1708   _eden_pool = new G1EdenPool(this);
1709   _survivor_pool = new G1SurvivorPool(this);
1710   _old_pool = new G1OldGenPool(this);
1711 
1712   _full_gc_memory_manager.add_pool(_eden_pool);
1713   _full_gc_memory_manager.add_pool(_survivor_pool);
1714   _full_gc_memory_manager.add_pool(_old_pool);
1715 
1716   _memory_manager.add_pool(_eden_pool);
1717   _memory_manager.add_pool(_survivor_pool);
1718 
1719 }
1720 
1721 void G1CollectedHeap::stop() {
1722   // Stop all concurrent threads. We do this to make sure these threads
1723   // do not continue to execute and access resources (e.g. logging)
1724   // that are destroyed during shutdown.
1725   _cr->stop();
1726   _young_gen_sampling_thread->stop();
1727   _cm_thread->stop();
1728   if (G1StringDedup::is_enabled()) {
1729     G1StringDedup::stop();
1730   }
1731 }
1732 
1733 void G1CollectedHeap::safepoint_synchronize_begin() {
1734   SuspendibleThreadSet::synchronize();
1735 }
1736 
1737 void G1CollectedHeap::safepoint_synchronize_end() {
1738   SuspendibleThreadSet::desynchronize();
1739 }
1740 
1741 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1742   return HeapRegion::max_region_size();
1743 }
1744 
1745 void G1CollectedHeap::post_initialize() {
1746   CollectedHeap::post_initialize();
1747   ref_processing_init();
1748 }
1749 
1750 void G1CollectedHeap::ref_processing_init() {
1751   // Reference processing in G1 currently works as follows:
1752   //
1753   // * There are two reference processor instances. One is
1754   //   used to record and process discovered references
1755   //   during concurrent marking; the other is used to
1756   //   record and process references during STW pauses
1757   //   (both full and incremental).
1758   // * Both ref processors need to 'span' the entire heap as
1759   //   the regions in the collection set may be dotted around.
1760   //
1761   // * For the concurrent marking ref processor:
1762   //   * Reference discovery is enabled at initial marking.
1763   //   * Reference discovery is disabled and the discovered
1764   //     references processed etc during remarking.
1765   //   * Reference discovery is MT (see below).
1766   //   * Reference discovery requires a barrier (see below).
1767   //   * Reference processing may or may not be MT
1768   //     (depending on the value of ParallelRefProcEnabled
1769   //     and ParallelGCThreads).
1770   //   * A full GC disables reference discovery by the CM
1771   //     ref processor and abandons any entries on it's
1772   //     discovered lists.
1773   //
1774   // * For the STW processor:
1775   //   * Non MT discovery is enabled at the start of a full GC.
1776   //   * Processing and enqueueing during a full GC is non-MT.
1777   //   * During a full GC, references are processed after marking.
1778   //
1779   //   * Discovery (may or may not be MT) is enabled at the start
1780   //     of an incremental evacuation pause.
1781   //   * References are processed near the end of a STW evacuation pause.
1782   //   * For both types of GC:
1783   //     * Discovery is atomic - i.e. not concurrent.
1784   //     * Reference discovery will not need a barrier.
1785 
1786   MemRegion mr = reserved_region();
1787 
1788   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1789 
1790   // Concurrent Mark ref processor
1791   _ref_processor_cm =
1792     new ReferenceProcessor(mr,    // span
1793                            mt_processing,
1794                                 // mt processing
1795                            ParallelGCThreads,
1796                                 // degree of mt processing
1797                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1798                                 // mt discovery
1799                            MAX2(ParallelGCThreads, ConcGCThreads),
1800                                 // degree of mt discovery
1801                            false,
1802                                 // Reference discovery is not atomic
1803                            &_is_alive_closure_cm);
1804                                 // is alive closure
1805                                 // (for efficiency/performance)
1806 
1807   // STW ref processor
1808   _ref_processor_stw =
1809     new ReferenceProcessor(mr,    // span
1810                            mt_processing,
1811                                 // mt processing
1812                            ParallelGCThreads,
1813                                 // degree of mt processing
1814                            (ParallelGCThreads > 1),
1815                                 // mt discovery
1816                            ParallelGCThreads,
1817                                 // degree of mt discovery
1818                            true,
1819                                 // Reference discovery is atomic
1820                            &_is_alive_closure_stw);
1821                                 // is alive closure
1822                                 // (for efficiency/performance)
1823 }
1824 
1825 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1826   return _collector_policy;
1827 }
1828 
1829 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1830   return &_soft_ref_policy;
1831 }
1832 
1833 size_t G1CollectedHeap::capacity() const {
1834   return _hrm.length() * HeapRegion::GrainBytes;
1835 }
1836 
1837 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1838   return _hrm.total_free_bytes();
1839 }
1840 
1841 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1842   _hot_card_cache->drain(cl, worker_i);
1843 }
1844 
1845 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1846   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1847   size_t n_completed_buffers = 0;
1848   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1849     n_completed_buffers++;
1850   }
1851   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1852   dcqs.clear_n_completed_buffers();
1853   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1854 }
1855 
1856 // Computes the sum of the storage used by the various regions.
1857 size_t G1CollectedHeap::used() const {
1858   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1859   if (_archive_allocator != NULL) {
1860     result += _archive_allocator->used();
1861   }
1862   return result;
1863 }
1864 
1865 size_t G1CollectedHeap::used_unlocked() const {
1866   return _summary_bytes_used;
1867 }
1868 
1869 class SumUsedClosure: public HeapRegionClosure {
1870   size_t _used;
1871 public:
1872   SumUsedClosure() : _used(0) {}
1873   bool do_heap_region(HeapRegion* r) {
1874     _used += r->used();
1875     return false;
1876   }
1877   size_t result() { return _used; }
1878 };
1879 
1880 size_t G1CollectedHeap::recalculate_used() const {
1881   double recalculate_used_start = os::elapsedTime();
1882 
1883   SumUsedClosure blk;
1884   heap_region_iterate(&blk);
1885 
1886   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1887   return blk.result();
1888 }
1889 
1890 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1891   switch (cause) {
1892     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1893     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1894     case GCCause::_wb_conc_mark:                        return true;
1895     default :                                           return false;
1896   }
1897 }
1898 
1899 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1900   switch (cause) {
1901     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1902     case GCCause::_g1_humongous_allocation: return true;
1903     default:                                return is_user_requested_concurrent_full_gc(cause);
1904   }
1905 }
1906 
1907 #ifndef PRODUCT
1908 void G1CollectedHeap::allocate_dummy_regions() {
1909   // Let's fill up most of the region
1910   size_t word_size = HeapRegion::GrainWords - 1024;
1911   // And as a result the region we'll allocate will be humongous.
1912   guarantee(is_humongous(word_size), "sanity");
1913 
1914   // _filler_array_max_size is set to humongous object threshold
1915   // but temporarily change it to use CollectedHeap::fill_with_object().
1916   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1917 
1918   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1919     // Let's use the existing mechanism for the allocation
1920     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1921     if (dummy_obj != NULL) {
1922       MemRegion mr(dummy_obj, word_size);
1923       CollectedHeap::fill_with_object(mr);
1924     } else {
1925       // If we can't allocate once, we probably cannot allocate
1926       // again. Let's get out of the loop.
1927       break;
1928     }
1929   }
1930 }
1931 #endif // !PRODUCT
1932 
1933 void G1CollectedHeap::increment_old_marking_cycles_started() {
1934   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1935          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1936          "Wrong marking cycle count (started: %d, completed: %d)",
1937          _old_marking_cycles_started, _old_marking_cycles_completed);
1938 
1939   _old_marking_cycles_started++;
1940 }
1941 
1942 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1943   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1944 
1945   // We assume that if concurrent == true, then the caller is a
1946   // concurrent thread that was joined the Suspendible Thread
1947   // Set. If there's ever a cheap way to check this, we should add an
1948   // assert here.
1949 
1950   // Given that this method is called at the end of a Full GC or of a
1951   // concurrent cycle, and those can be nested (i.e., a Full GC can
1952   // interrupt a concurrent cycle), the number of full collections
1953   // completed should be either one (in the case where there was no
1954   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1955   // behind the number of full collections started.
1956 
1957   // This is the case for the inner caller, i.e. a Full GC.
1958   assert(concurrent ||
1959          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1960          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1961          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1962          "is inconsistent with _old_marking_cycles_completed = %u",
1963          _old_marking_cycles_started, _old_marking_cycles_completed);
1964 
1965   // This is the case for the outer caller, i.e. the concurrent cycle.
1966   assert(!concurrent ||
1967          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1968          "for outer caller (concurrent cycle): "
1969          "_old_marking_cycles_started = %u "
1970          "is inconsistent with _old_marking_cycles_completed = %u",
1971          _old_marking_cycles_started, _old_marking_cycles_completed);
1972 
1973   _old_marking_cycles_completed += 1;
1974 
1975   // We need to clear the "in_progress" flag in the CM thread before
1976   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1977   // is set) so that if a waiter requests another System.gc() it doesn't
1978   // incorrectly see that a marking cycle is still in progress.
1979   if (concurrent) {
1980     _cm_thread->set_idle();
1981   }
1982 
1983   // This notify_all() will ensure that a thread that called
1984   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1985   // and it's waiting for a full GC to finish will be woken up. It is
1986   // waiting in VM_G1CollectForAllocation::doit_epilogue().
1987   FullGCCount_lock->notify_all();
1988 }
1989 
1990 void G1CollectedHeap::collect(GCCause::Cause cause) {
1991   assert_heap_not_locked();
1992 
1993   uint gc_count_before;
1994   uint old_marking_count_before;
1995   uint full_gc_count_before;
1996   bool retry_gc;
1997 
1998   do {
1999     retry_gc = false;
2000 
2001     {
2002       MutexLocker ml(Heap_lock);
2003 
2004       // Read the GC count while holding the Heap_lock
2005       gc_count_before = total_collections();
2006       full_gc_count_before = total_full_collections();
2007       old_marking_count_before = _old_marking_cycles_started;
2008     }
2009 
2010     if (should_do_concurrent_full_gc(cause)) {
2011       // Schedule an initial-mark evacuation pause that will start a
2012       // concurrent cycle. We're setting word_size to 0 which means that
2013       // we are not requesting a post-GC allocation.
2014       VM_G1CollectForAllocation op(0,     /* word_size */
2015                                    gc_count_before,
2016                                    cause,
2017                                    true,  /* should_initiate_conc_mark */
2018                                    g1_policy()->max_pause_time_ms());
2019       VMThread::execute(&op);
2020       if (!op.pause_succeeded()) {
2021         if (old_marking_count_before == _old_marking_cycles_started) {
2022           retry_gc = op.should_retry_gc();
2023         } else {
2024           // A Full GC happened while we were trying to schedule the
2025           // initial-mark GC. No point in starting a new cycle given
2026           // that the whole heap was collected anyway.
2027         }
2028 
2029         if (retry_gc) {
2030           if (GCLocker::is_active_and_needs_gc()) {
2031             GCLocker::stall_until_clear();
2032           }
2033         }
2034       }
2035     } else {
2036       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2037           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2038 
2039         // Schedule a standard evacuation pause. We're setting word_size
2040         // to 0 which means that we are not requesting a post-GC allocation.
2041         VM_G1CollectForAllocation op(0,     /* word_size */
2042                                      gc_count_before,
2043                                      cause,
2044                                      false, /* should_initiate_conc_mark */
2045                                      g1_policy()->max_pause_time_ms());
2046         VMThread::execute(&op);
2047       } else {
2048         // Schedule a Full GC.
2049         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2050         VMThread::execute(&op);
2051       }
2052     }
2053   } while (retry_gc);
2054 }
2055 
2056 bool G1CollectedHeap::is_in(const void* p) const {
2057   if (_hrm.reserved().contains(p)) {
2058     // Given that we know that p is in the reserved space,
2059     // heap_region_containing() should successfully
2060     // return the containing region.
2061     HeapRegion* hr = heap_region_containing(p);
2062     return hr->is_in(p);
2063   } else {
2064     return false;
2065   }
2066 }
2067 
2068 #ifdef ASSERT
2069 bool G1CollectedHeap::is_in_exact(const void* p) const {
2070   bool contains = reserved_region().contains(p);
2071   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2072   if (contains && available) {
2073     return true;
2074   } else {
2075     return false;
2076   }
2077 }
2078 #endif
2079 
2080 // Iteration functions.
2081 
2082 // Iterates an ObjectClosure over all objects within a HeapRegion.
2083 
2084 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2085   ObjectClosure* _cl;
2086 public:
2087   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2088   bool do_heap_region(HeapRegion* r) {
2089     if (!r->is_continues_humongous()) {
2090       r->object_iterate(_cl);
2091     }
2092     return false;
2093   }
2094 };
2095 
2096 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2097   IterateObjectClosureRegionClosure blk(cl);
2098   heap_region_iterate(&blk);
2099 }
2100 
2101 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2102   _hrm.iterate(cl);
2103 }
2104 
2105 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2106                                                                  HeapRegionClaimer *hrclaimer,
2107                                                                  uint worker_id) const {
2108   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2109 }
2110 
2111 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2112                                                          HeapRegionClaimer *hrclaimer) const {
2113   _hrm.par_iterate(cl, hrclaimer, 0);
2114 }
2115 
2116 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2117   _collection_set.iterate(cl);
2118 }
2119 
2120 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2121   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2122 }
2123 
2124 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2125   HeapRegion* hr = heap_region_containing(addr);
2126   return hr->block_start(addr);
2127 }
2128 
2129 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2130   HeapRegion* hr = heap_region_containing(addr);
2131   return hr->block_size(addr);
2132 }
2133 
2134 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2135   HeapRegion* hr = heap_region_containing(addr);
2136   return hr->block_is_obj(addr);
2137 }
2138 
2139 bool G1CollectedHeap::supports_tlab_allocation() const {
2140   return true;
2141 }
2142 
2143 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2144   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2145 }
2146 
2147 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2148   return _eden.length() * HeapRegion::GrainBytes;
2149 }
2150 
2151 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2152 // must be equal to the humongous object limit.
2153 size_t G1CollectedHeap::max_tlab_size() const {
2154   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2155 }
2156 
2157 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2158   return _allocator->unsafe_max_tlab_alloc();
2159 }
2160 
2161 size_t G1CollectedHeap::max_capacity() const {
2162   return _hrm.reserved().byte_size();
2163 }
2164 
2165 jlong G1CollectedHeap::millis_since_last_gc() {
2166   // See the notes in GenCollectedHeap::millis_since_last_gc()
2167   // for more information about the implementation.
2168   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2169     _g1_policy->collection_pause_end_millis();
2170   if (ret_val < 0) {
2171     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2172       ". returning zero instead.", ret_val);
2173     return 0;
2174   }
2175   return ret_val;
2176 }
2177 
2178 void G1CollectedHeap::prepare_for_verify() {
2179   _verifier->prepare_for_verify();
2180 }
2181 
2182 void G1CollectedHeap::verify(VerifyOption vo) {
2183   _verifier->verify(vo);
2184 }
2185 
2186 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2187   return true;
2188 }
2189 
2190 const char* const* G1CollectedHeap::concurrent_phases() const {
2191   return _cm_thread->concurrent_phases();
2192 }
2193 
2194 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2195   return _cm_thread->request_concurrent_phase(phase);
2196 }
2197 
2198 class PrintRegionClosure: public HeapRegionClosure {
2199   outputStream* _st;
2200 public:
2201   PrintRegionClosure(outputStream* st) : _st(st) {}
2202   bool do_heap_region(HeapRegion* r) {
2203     r->print_on(_st);
2204     return false;
2205   }
2206 };
2207 
2208 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2209                                        const HeapRegion* hr,
2210                                        const VerifyOption vo) const {
2211   switch (vo) {
2212   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2213   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2214   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2215   default:                            ShouldNotReachHere();
2216   }
2217   return false; // keep some compilers happy
2218 }
2219 
2220 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2221                                        const VerifyOption vo) const {
2222   switch (vo) {
2223   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2224   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2225   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2226   default:                            ShouldNotReachHere();
2227   }
2228   return false; // keep some compilers happy
2229 }
2230 
2231 void G1CollectedHeap::print_heap_regions() const {
2232   LogTarget(Trace, gc, heap, region) lt;
2233   if (lt.is_enabled()) {
2234     LogStream ls(lt);
2235     print_regions_on(&ls);
2236   }
2237 }
2238 
2239 void G1CollectedHeap::print_on(outputStream* st) const {
2240   st->print(" %-20s", "garbage-first heap");
2241   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2242             capacity()/K, used_unlocked()/K);
2243   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2244             p2i(_hrm.reserved().start()),
2245             p2i(_hrm.reserved().end()));
2246   st->cr();
2247   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2248   uint young_regions = young_regions_count();
2249   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2250             (size_t) young_regions * HeapRegion::GrainBytes / K);
2251   uint survivor_regions = survivor_regions_count();
2252   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2253             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2254   st->cr();
2255   MetaspaceUtils::print_on(st);
2256 }
2257 
2258 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2259   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2260                "HS=humongous(starts), HC=humongous(continues), "
2261                "CS=collection set, F=free, A=archive, "
2262                "TAMS=top-at-mark-start (previous, next)");
2263   PrintRegionClosure blk(st);
2264   heap_region_iterate(&blk);
2265 }
2266 
2267 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2268   print_on(st);
2269 
2270   // Print the per-region information.
2271   print_regions_on(st);
2272 }
2273 
2274 void G1CollectedHeap::print_on_error(outputStream* st) const {
2275   this->CollectedHeap::print_on_error(st);
2276 
2277   if (_cm != NULL) {
2278     st->cr();
2279     _cm->print_on_error(st);
2280   }
2281 }
2282 
2283 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2284   workers()->print_worker_threads_on(st);
2285   _cm_thread->print_on(st);
2286   st->cr();
2287   _cm->print_worker_threads_on(st);
2288   _cr->print_threads_on(st);
2289   _young_gen_sampling_thread->print_on(st);
2290   if (G1StringDedup::is_enabled()) {
2291     G1StringDedup::print_worker_threads_on(st);
2292   }
2293 }
2294 
2295 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2296   workers()->threads_do(tc);
2297   tc->do_thread(_cm_thread);
2298   _cm->threads_do(tc);
2299   _cr->threads_do(tc);
2300   tc->do_thread(_young_gen_sampling_thread);
2301   if (G1StringDedup::is_enabled()) {
2302     G1StringDedup::threads_do(tc);
2303   }
2304 }
2305 
2306 void G1CollectedHeap::print_tracing_info() const {
2307   g1_rem_set()->print_summary_info();
2308   concurrent_mark()->print_summary_info();
2309 }
2310 
2311 #ifndef PRODUCT
2312 // Helpful for debugging RSet issues.
2313 
2314 class PrintRSetsClosure : public HeapRegionClosure {
2315 private:
2316   const char* _msg;
2317   size_t _occupied_sum;
2318 
2319 public:
2320   bool do_heap_region(HeapRegion* r) {
2321     HeapRegionRemSet* hrrs = r->rem_set();
2322     size_t occupied = hrrs->occupied();
2323     _occupied_sum += occupied;
2324 
2325     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2326     if (occupied == 0) {
2327       tty->print_cr("  RSet is empty");
2328     } else {
2329       hrrs->print();
2330     }
2331     tty->print_cr("----------");
2332     return false;
2333   }
2334 
2335   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2336     tty->cr();
2337     tty->print_cr("========================================");
2338     tty->print_cr("%s", msg);
2339     tty->cr();
2340   }
2341 
2342   ~PrintRSetsClosure() {
2343     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2344     tty->print_cr("========================================");
2345     tty->cr();
2346   }
2347 };
2348 
2349 void G1CollectedHeap::print_cset_rsets() {
2350   PrintRSetsClosure cl("Printing CSet RSets");
2351   collection_set_iterate(&cl);
2352 }
2353 
2354 void G1CollectedHeap::print_all_rsets() {
2355   PrintRSetsClosure cl("Printing All RSets");;
2356   heap_region_iterate(&cl);
2357 }
2358 #endif // PRODUCT
2359 
2360 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2361 
2362   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2363   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2364   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2365 
2366   size_t eden_capacity_bytes =
2367     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2368 
2369   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2370   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2371                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2372 }
2373 
2374 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2375   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2376                        stats->unused(), stats->used(), stats->region_end_waste(),
2377                        stats->regions_filled(), stats->direct_allocated(),
2378                        stats->failure_used(), stats->failure_waste());
2379 }
2380 
2381 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2382   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2383   gc_tracer->report_gc_heap_summary(when, heap_summary);
2384 
2385   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2386   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2387 }
2388 
2389 G1CollectedHeap* G1CollectedHeap::heap() {
2390   CollectedHeap* heap = Universe::heap();
2391   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2392   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2393   return (G1CollectedHeap*)heap;
2394 }
2395 
2396 void G1CollectedHeap::gc_prologue(bool full) {
2397   // always_do_update_barrier = false;
2398   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2399 
2400   // This summary needs to be printed before incrementing total collections.
2401   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2402 
2403   // Update common counters.
2404   increment_total_collections(full /* full gc */);
2405   if (full) {
2406     increment_old_marking_cycles_started();
2407   }
2408 
2409   // Fill TLAB's and such
2410   double start = os::elapsedTime();
2411   accumulate_statistics_all_tlabs();
2412   ensure_parsability(true);
2413   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2414 }
2415 
2416 void G1CollectedHeap::gc_epilogue(bool full) {
2417   // Update common counters.
2418   if (full) {
2419     // Update the number of full collections that have been completed.
2420     increment_old_marking_cycles_completed(false /* concurrent */);
2421   }
2422 
2423   // We are at the end of the GC. Total collections has already been increased.
2424   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2425 
2426   // FIXME: what is this about?
2427   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2428   // is set.
2429 #if COMPILER2_OR_JVMCI
2430   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2431 #endif
2432   // always_do_update_barrier = true;
2433 
2434   double start = os::elapsedTime();
2435   resize_all_tlabs();
2436   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2437 
2438   MemoryService::track_memory_usage();
2439   // We have just completed a GC. Update the soft reference
2440   // policy with the new heap occupancy
2441   Universe::update_heap_info_at_gc();
2442 }
2443 
2444 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2445                                                uint gc_count_before,
2446                                                bool* succeeded,
2447                                                GCCause::Cause gc_cause) {
2448   assert_heap_not_locked_and_not_at_safepoint();
2449   VM_G1CollectForAllocation op(word_size,
2450                                gc_count_before,
2451                                gc_cause,
2452                                false, /* should_initiate_conc_mark */
2453                                g1_policy()->max_pause_time_ms());
2454   VMThread::execute(&op);
2455 
2456   HeapWord* result = op.result();
2457   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2458   assert(result == NULL || ret_succeeded,
2459          "the result should be NULL if the VM did not succeed");
2460   *succeeded = ret_succeeded;
2461 
2462   assert_heap_not_locked();
2463   return result;
2464 }
2465 
2466 void G1CollectedHeap::do_concurrent_mark() {
2467   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2468   if (!_cm_thread->in_progress()) {
2469     _cm_thread->set_started();
2470     CGC_lock->notify();
2471   }
2472 }
2473 
2474 size_t G1CollectedHeap::pending_card_num() {
2475   size_t extra_cards = 0;
2476   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2477     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2478     extra_cards += dcq.size();
2479   }
2480   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2481   size_t buffer_size = dcqs.buffer_size();
2482   size_t buffer_num = dcqs.completed_buffers_num();
2483 
2484   return buffer_size * buffer_num + extra_cards;
2485 }
2486 
2487 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2488   // We don't nominate objects with many remembered set entries, on
2489   // the assumption that such objects are likely still live.
2490   HeapRegionRemSet* rem_set = r->rem_set();
2491 
2492   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2493          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2494          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2495 }
2496 
2497 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2498  private:
2499   size_t _total_humongous;
2500   size_t _candidate_humongous;
2501 
2502   DirtyCardQueue _dcq;
2503 
2504   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2505     assert(region->is_starts_humongous(), "Must start a humongous object");
2506 
2507     oop obj = oop(region->bottom());
2508 
2509     // Dead objects cannot be eager reclaim candidates. Due to class
2510     // unloading it is unsafe to query their classes so we return early.
2511     if (g1h->is_obj_dead(obj, region)) {
2512       return false;
2513     }
2514 
2515     // If we do not have a complete remembered set for the region, then we can
2516     // not be sure that we have all references to it.
2517     if (!region->rem_set()->is_complete()) {
2518       return false;
2519     }
2520     // Candidate selection must satisfy the following constraints
2521     // while concurrent marking is in progress:
2522     //
2523     // * In order to maintain SATB invariants, an object must not be
2524     // reclaimed if it was allocated before the start of marking and
2525     // has not had its references scanned.  Such an object must have
2526     // its references (including type metadata) scanned to ensure no
2527     // live objects are missed by the marking process.  Objects
2528     // allocated after the start of concurrent marking don't need to
2529     // be scanned.
2530     //
2531     // * An object must not be reclaimed if it is on the concurrent
2532     // mark stack.  Objects allocated after the start of concurrent
2533     // marking are never pushed on the mark stack.
2534     //
2535     // Nominating only objects allocated after the start of concurrent
2536     // marking is sufficient to meet both constraints.  This may miss
2537     // some objects that satisfy the constraints, but the marking data
2538     // structures don't support efficiently performing the needed
2539     // additional tests or scrubbing of the mark stack.
2540     //
2541     // However, we presently only nominate is_typeArray() objects.
2542     // A humongous object containing references induces remembered
2543     // set entries on other regions.  In order to reclaim such an
2544     // object, those remembered sets would need to be cleaned up.
2545     //
2546     // We also treat is_typeArray() objects specially, allowing them
2547     // to be reclaimed even if allocated before the start of
2548     // concurrent mark.  For this we rely on mark stack insertion to
2549     // exclude is_typeArray() objects, preventing reclaiming an object
2550     // that is in the mark stack.  We also rely on the metadata for
2551     // such objects to be built-in and so ensured to be kept live.
2552     // Frequent allocation and drop of large binary blobs is an
2553     // important use case for eager reclaim, and this special handling
2554     // may reduce needed headroom.
2555 
2556     return obj->is_typeArray() &&
2557            g1h->is_potential_eager_reclaim_candidate(region);
2558   }
2559 
2560  public:
2561   RegisterHumongousWithInCSetFastTestClosure()
2562   : _total_humongous(0),
2563     _candidate_humongous(0),
2564     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2565   }
2566 
2567   virtual bool do_heap_region(HeapRegion* r) {
2568     if (!r->is_starts_humongous()) {
2569       return false;
2570     }
2571     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2572 
2573     bool is_candidate = humongous_region_is_candidate(g1h, r);
2574     uint rindex = r->hrm_index();
2575     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2576     if (is_candidate) {
2577       _candidate_humongous++;
2578       g1h->register_humongous_region_with_cset(rindex);
2579       // Is_candidate already filters out humongous object with large remembered sets.
2580       // If we have a humongous object with a few remembered sets, we simply flush these
2581       // remembered set entries into the DCQS. That will result in automatic
2582       // re-evaluation of their remembered set entries during the following evacuation
2583       // phase.
2584       if (!r->rem_set()->is_empty()) {
2585         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2586                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2587         G1CardTable* ct = g1h->card_table();
2588         HeapRegionRemSetIterator hrrs(r->rem_set());
2589         size_t card_index;
2590         while (hrrs.has_next(card_index)) {
2591           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2592           // The remembered set might contain references to already freed
2593           // regions. Filter out such entries to avoid failing card table
2594           // verification.
2595           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2596             if (*card_ptr != G1CardTable::dirty_card_val()) {
2597               *card_ptr = G1CardTable::dirty_card_val();
2598               _dcq.enqueue(card_ptr);
2599             }
2600           }
2601         }
2602         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2603                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2604                hrrs.n_yielded(), r->rem_set()->occupied());
2605         // We should only clear the card based remembered set here as we will not
2606         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2607         // (and probably never) we do not enter this path if there are other kind of
2608         // remembered sets for this region.
2609         r->rem_set()->clear_locked(true /* only_cardset */);
2610         // Clear_locked() above sets the state to Empty. However we want to continue
2611         // collecting remembered set entries for humongous regions that were not
2612         // reclaimed.
2613         r->rem_set()->set_state_complete();
2614       }
2615       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2616     }
2617     _total_humongous++;
2618 
2619     return false;
2620   }
2621 
2622   size_t total_humongous() const { return _total_humongous; }
2623   size_t candidate_humongous() const { return _candidate_humongous; }
2624 
2625   void flush_rem_set_entries() { _dcq.flush(); }
2626 };
2627 
2628 void G1CollectedHeap::register_humongous_regions_with_cset() {
2629   if (!G1EagerReclaimHumongousObjects) {
2630     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2631     return;
2632   }
2633   double time = os::elapsed_counter();
2634 
2635   // Collect reclaim candidate information and register candidates with cset.
2636   RegisterHumongousWithInCSetFastTestClosure cl;
2637   heap_region_iterate(&cl);
2638 
2639   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2640   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2641                                                                   cl.total_humongous(),
2642                                                                   cl.candidate_humongous());
2643   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2644 
2645   // Finally flush all remembered set entries to re-check into the global DCQS.
2646   cl.flush_rem_set_entries();
2647 }
2648 
2649 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2650   public:
2651     bool do_heap_region(HeapRegion* hr) {
2652       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2653         hr->verify_rem_set();
2654       }
2655       return false;
2656     }
2657 };
2658 
2659 uint G1CollectedHeap::num_task_queues() const {
2660   return _task_queues->size();
2661 }
2662 
2663 #if TASKQUEUE_STATS
2664 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2665   st->print_raw_cr("GC Task Stats");
2666   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2667   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2668 }
2669 
2670 void G1CollectedHeap::print_taskqueue_stats() const {
2671   if (!log_is_enabled(Trace, gc, task, stats)) {
2672     return;
2673   }
2674   Log(gc, task, stats) log;
2675   ResourceMark rm;
2676   LogStream ls(log.trace());
2677   outputStream* st = &ls;
2678 
2679   print_taskqueue_stats_hdr(st);
2680 
2681   TaskQueueStats totals;
2682   const uint n = num_task_queues();
2683   for (uint i = 0; i < n; ++i) {
2684     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2685     totals += task_queue(i)->stats;
2686   }
2687   st->print_raw("tot "); totals.print(st); st->cr();
2688 
2689   DEBUG_ONLY(totals.verify());
2690 }
2691 
2692 void G1CollectedHeap::reset_taskqueue_stats() {
2693   const uint n = num_task_queues();
2694   for (uint i = 0; i < n; ++i) {
2695     task_queue(i)->stats.reset();
2696   }
2697 }
2698 #endif // TASKQUEUE_STATS
2699 
2700 void G1CollectedHeap::wait_for_root_region_scanning() {
2701   double scan_wait_start = os::elapsedTime();
2702   // We have to wait until the CM threads finish scanning the
2703   // root regions as it's the only way to ensure that all the
2704   // objects on them have been correctly scanned before we start
2705   // moving them during the GC.
2706   bool waited = _cm->root_regions()->wait_until_scan_finished();
2707   double wait_time_ms = 0.0;
2708   if (waited) {
2709     double scan_wait_end = os::elapsedTime();
2710     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2711   }
2712   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2713 }
2714 
2715 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2716 private:
2717   G1HRPrinter* _hr_printer;
2718 public:
2719   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2720 
2721   virtual bool do_heap_region(HeapRegion* r) {
2722     _hr_printer->cset(r);
2723     return false;
2724   }
2725 };
2726 
2727 void G1CollectedHeap::start_new_collection_set() {
2728   collection_set()->start_incremental_building();
2729 
2730   clear_cset_fast_test();
2731 
2732   guarantee(_eden.length() == 0, "eden should have been cleared");
2733   g1_policy()->transfer_survivors_to_cset(survivor());
2734 }
2735 
2736 bool
2737 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2738   assert_at_safepoint_on_vm_thread();
2739   guarantee(!is_gc_active(), "collection is not reentrant");
2740 
2741   if (GCLocker::check_active_before_gc()) {
2742     return false;
2743   }
2744 
2745   _gc_timer_stw->register_gc_start();
2746 
2747   GCIdMark gc_id_mark;
2748   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2749 
2750   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2751   ResourceMark rm;
2752 
2753   g1_policy()->note_gc_start();
2754 
2755   wait_for_root_region_scanning();
2756 
2757   print_heap_before_gc();
2758   print_heap_regions();
2759   trace_heap_before_gc(_gc_tracer_stw);
2760 
2761   _verifier->verify_region_sets_optional();
2762   _verifier->verify_dirty_young_regions();
2763 
2764   // We should not be doing initial mark unless the conc mark thread is running
2765   if (!_cm_thread->should_terminate()) {
2766     // This call will decide whether this pause is an initial-mark
2767     // pause. If it is, in_initial_mark_gc() will return true
2768     // for the duration of this pause.
2769     g1_policy()->decide_on_conc_mark_initiation();
2770   }
2771 
2772   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2773   assert(!collector_state()->in_initial_mark_gc() ||
2774           collector_state()->in_young_only_phase(), "sanity");
2775 
2776   // We also do not allow mixed GCs during marking.
2777   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2778 
2779   // Record whether this pause is an initial mark. When the current
2780   // thread has completed its logging output and it's safe to signal
2781   // the CM thread, the flag's value in the policy has been reset.
2782   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2783 
2784   // Inner scope for scope based logging, timers, and stats collection
2785   {
2786     EvacuationInfo evacuation_info;
2787 
2788     if (collector_state()->in_initial_mark_gc()) {
2789       // We are about to start a marking cycle, so we increment the
2790       // full collection counter.
2791       increment_old_marking_cycles_started();
2792       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2793     }
2794 
2795     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2796 
2797     GCTraceCPUTime tcpu;
2798 
2799     G1HeapVerifier::G1VerifyType verify_type;
2800     FormatBuffer<> gc_string("Pause ");
2801     if (collector_state()->in_initial_mark_gc()) {
2802       gc_string.append("Initial Mark");
2803       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2804     } else if (collector_state()->in_young_only_phase()) {
2805       gc_string.append("Young");
2806       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2807     } else {
2808       gc_string.append("Mixed");
2809       verify_type = G1HeapVerifier::G1VerifyMixed;
2810     }
2811     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2812 
2813     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2814                                                                   workers()->active_workers(),
2815                                                                   Threads::number_of_non_daemon_threads());
2816     active_workers = workers()->update_active_workers(active_workers);
2817     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2818 
2819     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2820     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2821 
2822     G1HeapTransition heap_transition(this);
2823     size_t heap_used_bytes_before_gc = used();
2824 
2825     // Don't dynamically change the number of GC threads this early.  A value of
2826     // 0 is used to indicate serial work.  When parallel work is done,
2827     // it will be set.
2828 
2829     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2830       IsGCActiveMark x;
2831 
2832       gc_prologue(false);
2833 
2834       if (VerifyRememberedSets) {
2835         log_info(gc, verify)("[Verifying RemSets before GC]");
2836         VerifyRegionRemSetClosure v_cl;
2837         heap_region_iterate(&v_cl);
2838       }
2839 
2840       _verifier->verify_before_gc(verify_type);
2841 
2842       _verifier->check_bitmaps("GC Start");
2843 
2844 #if COMPILER2_OR_JVMCI
2845       DerivedPointerTable::clear();
2846 #endif
2847 
2848       // Please see comment in g1CollectedHeap.hpp and
2849       // G1CollectedHeap::ref_processing_init() to see how
2850       // reference processing currently works in G1.
2851 
2852       // Enable discovery in the STW reference processor
2853       ref_processor_stw()->enable_discovery();
2854 
2855       {
2856         // We want to temporarily turn off discovery by the
2857         // CM ref processor, if necessary, and turn it back on
2858         // on again later if we do. Using a scoped
2859         // NoRefDiscovery object will do this.
2860         NoRefDiscovery no_cm_discovery(ref_processor_cm());
2861 
2862         // Forget the current alloc region (we might even choose it to be part
2863         // of the collection set!).
2864         _allocator->release_mutator_alloc_region();
2865 
2866         // This timing is only used by the ergonomics to handle our pause target.
2867         // It is unclear why this should not include the full pause. We will
2868         // investigate this in CR 7178365.
2869         //
2870         // Preserving the old comment here if that helps the investigation:
2871         //
2872         // The elapsed time induced by the start time below deliberately elides
2873         // the possible verification above.
2874         double sample_start_time_sec = os::elapsedTime();
2875 
2876         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2877 
2878         if (collector_state()->in_initial_mark_gc()) {
2879           concurrent_mark()->pre_initial_mark();
2880         }
2881 
2882         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2883 
2884         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2885 
2886         // Make sure the remembered sets are up to date. This needs to be
2887         // done before register_humongous_regions_with_cset(), because the
2888         // remembered sets are used there to choose eager reclaim candidates.
2889         // If the remembered sets are not up to date we might miss some
2890         // entries that need to be handled.
2891         g1_rem_set()->cleanupHRRS();
2892 
2893         register_humongous_regions_with_cset();
2894 
2895         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2896 
2897         // We call this after finalize_cset() to
2898         // ensure that the CSet has been finalized.
2899         _cm->verify_no_cset_oops();
2900 
2901         if (_hr_printer.is_active()) {
2902           G1PrintCollectionSetClosure cl(&_hr_printer);
2903           _collection_set.iterate(&cl);
2904         }
2905 
2906         // Initialize the GC alloc regions.
2907         _allocator->init_gc_alloc_regions(evacuation_info);
2908 
2909         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2910         pre_evacuate_collection_set();
2911 
2912         // Actually do the work...
2913         evacuate_collection_set(&per_thread_states);
2914 
2915         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2916 
2917         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2918         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2919 
2920         eagerly_reclaim_humongous_regions();
2921 
2922         record_obj_copy_mem_stats();
2923         _survivor_evac_stats.adjust_desired_plab_sz();
2924         _old_evac_stats.adjust_desired_plab_sz();
2925 
2926         double start = os::elapsedTime();
2927         start_new_collection_set();
2928         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2929 
2930         if (evacuation_failed()) {
2931           set_used(recalculate_used());
2932           if (_archive_allocator != NULL) {
2933             _archive_allocator->clear_used();
2934           }
2935           for (uint i = 0; i < ParallelGCThreads; i++) {
2936             if (_evacuation_failed_info_array[i].has_failed()) {
2937               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2938             }
2939           }
2940         } else {
2941           // The "used" of the the collection set have already been subtracted
2942           // when they were freed.  Add in the bytes evacuated.
2943           increase_used(g1_policy()->bytes_copied_during_gc());
2944         }
2945 
2946         if (collector_state()->in_initial_mark_gc()) {
2947           // We have to do this before we notify the CM threads that
2948           // they can start working to make sure that all the
2949           // appropriate initialization is done on the CM object.
2950           concurrent_mark()->post_initial_mark();
2951           // Note that we don't actually trigger the CM thread at
2952           // this point. We do that later when we're sure that
2953           // the current thread has completed its logging output.
2954         }
2955 
2956         allocate_dummy_regions();
2957 
2958         _allocator->init_mutator_alloc_region();
2959 
2960         {
2961           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2962           if (expand_bytes > 0) {
2963             size_t bytes_before = capacity();
2964             // No need for an ergo logging here,
2965             // expansion_amount() does this when it returns a value > 0.
2966             double expand_ms;
2967             if (!expand(expand_bytes, _workers, &expand_ms)) {
2968               // We failed to expand the heap. Cannot do anything about it.
2969             }
2970             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
2971           }
2972         }
2973 
2974         // We redo the verification but now wrt to the new CSet which
2975         // has just got initialized after the previous CSet was freed.
2976         _cm->verify_no_cset_oops();
2977 
2978         // This timing is only used by the ergonomics to handle our pause target.
2979         // It is unclear why this should not include the full pause. We will
2980         // investigate this in CR 7178365.
2981         double sample_end_time_sec = os::elapsedTime();
2982         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
2983         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
2984         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
2985 
2986         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
2987         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
2988 
2989         if (VerifyRememberedSets) {
2990           log_info(gc, verify)("[Verifying RemSets after GC]");
2991           VerifyRegionRemSetClosure v_cl;
2992           heap_region_iterate(&v_cl);
2993         }
2994 
2995         _verifier->verify_after_gc(verify_type);
2996         _verifier->check_bitmaps("GC End");
2997 
2998         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
2999         ref_processor_stw()->verify_no_references_recorded();
3000 
3001         // CM reference discovery will be re-enabled if necessary.
3002       }
3003 
3004 #ifdef TRACESPINNING
3005       ParallelTaskTerminator::print_termination_counts();
3006 #endif
3007 
3008       gc_epilogue(false);
3009     }
3010 
3011     // Print the remainder of the GC log output.
3012     if (evacuation_failed()) {
3013       log_info(gc)("To-space exhausted");
3014     }
3015 
3016     g1_policy()->print_phases();
3017     heap_transition.print();
3018 
3019     // It is not yet to safe to tell the concurrent mark to
3020     // start as we have some optional output below. We don't want the
3021     // output from the concurrent mark thread interfering with this
3022     // logging output either.
3023 
3024     _hrm.verify_optional();
3025     _verifier->verify_region_sets_optional();
3026 
3027     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3028     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3029 
3030     print_heap_after_gc();
3031     print_heap_regions();
3032     trace_heap_after_gc(_gc_tracer_stw);
3033 
3034     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3035     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3036     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3037     // before any GC notifications are raised.
3038     g1mm()->update_sizes();
3039 
3040     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3041     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3042     _gc_timer_stw->register_gc_end();
3043     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3044   }
3045   // It should now be safe to tell the concurrent mark thread to start
3046   // without its logging output interfering with the logging output
3047   // that came from the pause.
3048 
3049   if (should_start_conc_mark) {
3050     // CAUTION: after the doConcurrentMark() call below,
3051     // the concurrent marking thread(s) could be running
3052     // concurrently with us. Make sure that anything after
3053     // this point does not assume that we are the only GC thread
3054     // running. Note: of course, the actual marking work will
3055     // not start until the safepoint itself is released in
3056     // SuspendibleThreadSet::desynchronize().
3057     do_concurrent_mark();
3058   }
3059 
3060   return true;
3061 }
3062 
3063 void G1CollectedHeap::remove_self_forwarding_pointers() {
3064   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3065   workers()->run_task(&rsfp_task);
3066 }
3067 
3068 void G1CollectedHeap::restore_after_evac_failure() {
3069   double remove_self_forwards_start = os::elapsedTime();
3070 
3071   remove_self_forwarding_pointers();
3072   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3073   _preserved_marks_set.restore(&task_executor);
3074 
3075   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3076 }
3077 
3078 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3079   if (!_evacuation_failed) {
3080     _evacuation_failed = true;
3081   }
3082 
3083   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3084   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3085 }
3086 
3087 bool G1ParEvacuateFollowersClosure::offer_termination() {
3088   G1ParScanThreadState* const pss = par_scan_state();
3089   start_term_time();
3090   const bool res = terminator()->offer_termination();
3091   end_term_time();
3092   return res;
3093 }
3094 
3095 void G1ParEvacuateFollowersClosure::do_void() {
3096   G1ParScanThreadState* const pss = par_scan_state();
3097   pss->trim_queue();
3098   do {
3099     pss->steal_and_trim_queue(queues());
3100   } while (!offer_termination());
3101 }
3102 
3103 class G1ParTask : public AbstractGangTask {
3104 protected:
3105   G1CollectedHeap*         _g1h;
3106   G1ParScanThreadStateSet* _pss;
3107   RefToScanQueueSet*       _queues;
3108   G1RootProcessor*         _root_processor;
3109   ParallelTaskTerminator   _terminator;
3110   uint                     _n_workers;
3111 
3112 public:
3113   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3114     : AbstractGangTask("G1 collection"),
3115       _g1h(g1h),
3116       _pss(per_thread_states),
3117       _queues(task_queues),
3118       _root_processor(root_processor),
3119       _terminator(n_workers, _queues),
3120       _n_workers(n_workers)
3121   {}
3122 
3123   void work(uint worker_id) {
3124     if (worker_id >= _n_workers) return;  // no work needed this round
3125 
3126     double start_sec = os::elapsedTime();
3127     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3128 
3129     {
3130       ResourceMark rm;
3131       HandleMark   hm;
3132 
3133       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3134 
3135       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3136       pss->set_ref_discoverer(rp);
3137 
3138       double start_strong_roots_sec = os::elapsedTime();
3139 
3140       _root_processor->evacuate_roots(pss->closures(), worker_id);
3141 
3142       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3143       // treating the nmethods visited to act as roots for concurrent marking.
3144       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3145       // objects copied by the current evacuation.
3146       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3147                                                       pss->closures()->weak_codeblobs(),
3148                                                       worker_id);
3149 
3150       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3151 
3152       double term_sec = 0.0;
3153       size_t evac_term_attempts = 0;
3154       {
3155         double start = os::elapsedTime();
3156         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3157         evac.do_void();
3158 
3159         evac_term_attempts = evac.term_attempts();
3160         term_sec = evac.term_time();
3161         double elapsed_sec = os::elapsedTime() - start;
3162         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3163         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3164         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3165       }
3166 
3167       assert(pss->queue_is_empty(), "should be empty");
3168 
3169       if (log_is_enabled(Debug, gc, task, stats)) {
3170         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3171         size_t lab_waste;
3172         size_t lab_undo_waste;
3173         pss->waste(lab_waste, lab_undo_waste);
3174         _g1h->print_termination_stats(worker_id,
3175                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3176                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3177                                       term_sec * 1000.0,                          /* evac term time */
3178                                       evac_term_attempts,                         /* evac term attempts */
3179                                       lab_waste,                                  /* alloc buffer waste */
3180                                       lab_undo_waste                              /* undo waste */
3181                                       );
3182       }
3183 
3184       // Close the inner scope so that the ResourceMark and HandleMark
3185       // destructors are executed here and are included as part of the
3186       // "GC Worker Time".
3187     }
3188     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3189   }
3190 };
3191 
3192 void G1CollectedHeap::print_termination_stats_hdr() {
3193   log_debug(gc, task, stats)("GC Termination Stats");
3194   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3195   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3196   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3197 }
3198 
3199 void G1CollectedHeap::print_termination_stats(uint worker_id,
3200                                               double elapsed_ms,
3201                                               double strong_roots_ms,
3202                                               double term_ms,
3203                                               size_t term_attempts,
3204                                               size_t alloc_buffer_waste,
3205                                               size_t undo_waste) const {
3206   log_debug(gc, task, stats)
3207               ("%3d %9.2f %9.2f %6.2f "
3208                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3209                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3210                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3211                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3212                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3213                alloc_buffer_waste * HeapWordSize / K,
3214                undo_waste * HeapWordSize / K);
3215 }
3216 
3217 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3218 private:
3219   BoolObjectClosure* _is_alive;
3220   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3221 
3222   int _initial_string_table_size;
3223   int _initial_symbol_table_size;
3224 
3225   bool  _process_strings;
3226   int _strings_processed;
3227   int _strings_removed;
3228 
3229   bool  _process_symbols;
3230   int _symbols_processed;
3231   int _symbols_removed;
3232 
3233   bool _process_string_dedup;
3234 
3235 public:
3236   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3237     AbstractGangTask("String/Symbol Unlinking"),
3238     _is_alive(is_alive),
3239     _dedup_closure(is_alive, NULL, false),
3240     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3241     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3242     _process_string_dedup(process_string_dedup) {
3243 
3244     _initial_string_table_size = StringTable::the_table()->table_size();
3245     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3246     if (process_strings) {
3247       StringTable::clear_parallel_claimed_index();
3248     }
3249     if (process_symbols) {
3250       SymbolTable::clear_parallel_claimed_index();
3251     }
3252   }
3253 
3254   ~G1StringAndSymbolCleaningTask() {
3255     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3256               "claim value %d after unlink less than initial string table size %d",
3257               StringTable::parallel_claimed_index(), _initial_string_table_size);
3258     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3259               "claim value %d after unlink less than initial symbol table size %d",
3260               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3261 
3262     log_info(gc, stringtable)(
3263         "Cleaned string and symbol table, "
3264         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3265         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3266         strings_processed(), strings_removed(),
3267         symbols_processed(), symbols_removed());
3268   }
3269 
3270   void work(uint worker_id) {
3271     int strings_processed = 0;
3272     int strings_removed = 0;
3273     int symbols_processed = 0;
3274     int symbols_removed = 0;
3275     if (_process_strings) {
3276       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3277       Atomic::add(strings_processed, &_strings_processed);
3278       Atomic::add(strings_removed, &_strings_removed);
3279     }
3280     if (_process_symbols) {
3281       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3282       Atomic::add(symbols_processed, &_symbols_processed);
3283       Atomic::add(symbols_removed, &_symbols_removed);
3284     }
3285     if (_process_string_dedup) {
3286       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3287     }
3288   }
3289 
3290   size_t strings_processed() const { return (size_t)_strings_processed; }
3291   size_t strings_removed()   const { return (size_t)_strings_removed; }
3292 
3293   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3294   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3295 };
3296 
3297 class G1CodeCacheUnloadingTask {
3298 private:
3299   static Monitor* _lock;
3300 
3301   BoolObjectClosure* const _is_alive;
3302   const bool               _unloading_occurred;
3303   const uint               _num_workers;
3304 
3305   // Variables used to claim nmethods.
3306   CompiledMethod* _first_nmethod;
3307   CompiledMethod* volatile _claimed_nmethod;
3308 
3309   // The list of nmethods that need to be processed by the second pass.
3310   CompiledMethod* volatile _postponed_list;
3311   volatile uint            _num_entered_barrier;
3312 
3313  public:
3314   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3315       _is_alive(is_alive),
3316       _unloading_occurred(unloading_occurred),
3317       _num_workers(num_workers),
3318       _first_nmethod(NULL),
3319       _claimed_nmethod(NULL),
3320       _postponed_list(NULL),
3321       _num_entered_barrier(0)
3322   {
3323     CompiledMethod::increase_unloading_clock();
3324     // Get first alive nmethod
3325     CompiledMethodIterator iter = CompiledMethodIterator();
3326     if(iter.next_alive()) {
3327       _first_nmethod = iter.method();
3328     }
3329     _claimed_nmethod = _first_nmethod;
3330   }
3331 
3332   ~G1CodeCacheUnloadingTask() {
3333     CodeCache::verify_clean_inline_caches();
3334 
3335     CodeCache::set_needs_cache_clean(false);
3336     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3337 
3338     CodeCache::verify_icholder_relocations();
3339   }
3340 
3341  private:
3342   void add_to_postponed_list(CompiledMethod* nm) {
3343       CompiledMethod* old;
3344       do {
3345         old = _postponed_list;
3346         nm->set_unloading_next(old);
3347       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3348   }
3349 
3350   void clean_nmethod(CompiledMethod* nm) {
3351     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3352 
3353     if (postponed) {
3354       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3355       add_to_postponed_list(nm);
3356     }
3357 
3358     // Mark that this thread has been cleaned/unloaded.
3359     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3360     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3361   }
3362 
3363   void clean_nmethod_postponed(CompiledMethod* nm) {
3364     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3365   }
3366 
3367   static const int MaxClaimNmethods = 16;
3368 
3369   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3370     CompiledMethod* first;
3371     CompiledMethodIterator last;
3372 
3373     do {
3374       *num_claimed_nmethods = 0;
3375 
3376       first = _claimed_nmethod;
3377       last = CompiledMethodIterator(first);
3378 
3379       if (first != NULL) {
3380 
3381         for (int i = 0; i < MaxClaimNmethods; i++) {
3382           if (!last.next_alive()) {
3383             break;
3384           }
3385           claimed_nmethods[i] = last.method();
3386           (*num_claimed_nmethods)++;
3387         }
3388       }
3389 
3390     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3391   }
3392 
3393   CompiledMethod* claim_postponed_nmethod() {
3394     CompiledMethod* claim;
3395     CompiledMethod* next;
3396 
3397     do {
3398       claim = _postponed_list;
3399       if (claim == NULL) {
3400         return NULL;
3401       }
3402 
3403       next = claim->unloading_next();
3404 
3405     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3406 
3407     return claim;
3408   }
3409 
3410  public:
3411   // Mark that we're done with the first pass of nmethod cleaning.
3412   void barrier_mark(uint worker_id) {
3413     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3414     _num_entered_barrier++;
3415     if (_num_entered_barrier == _num_workers) {
3416       ml.notify_all();
3417     }
3418   }
3419 
3420   // See if we have to wait for the other workers to
3421   // finish their first-pass nmethod cleaning work.
3422   void barrier_wait(uint worker_id) {
3423     if (_num_entered_barrier < _num_workers) {
3424       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3425       while (_num_entered_barrier < _num_workers) {
3426           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3427       }
3428     }
3429   }
3430 
3431   // Cleaning and unloading of nmethods. Some work has to be postponed
3432   // to the second pass, when we know which nmethods survive.
3433   void work_first_pass(uint worker_id) {
3434     // The first nmethods is claimed by the first worker.
3435     if (worker_id == 0 && _first_nmethod != NULL) {
3436       clean_nmethod(_first_nmethod);
3437       _first_nmethod = NULL;
3438     }
3439 
3440     int num_claimed_nmethods;
3441     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3442 
3443     while (true) {
3444       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3445 
3446       if (num_claimed_nmethods == 0) {
3447         break;
3448       }
3449 
3450       for (int i = 0; i < num_claimed_nmethods; i++) {
3451         clean_nmethod(claimed_nmethods[i]);
3452       }
3453     }
3454   }
3455 
3456   void work_second_pass(uint worker_id) {
3457     CompiledMethod* nm;
3458     // Take care of postponed nmethods.
3459     while ((nm = claim_postponed_nmethod()) != NULL) {
3460       clean_nmethod_postponed(nm);
3461     }
3462   }
3463 };
3464 
3465 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3466 
3467 class G1KlassCleaningTask : public StackObj {
3468   volatile int                            _clean_klass_tree_claimed;
3469   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3470 
3471  public:
3472   G1KlassCleaningTask() :
3473       _clean_klass_tree_claimed(0),
3474       _klass_iterator() {
3475   }
3476 
3477  private:
3478   bool claim_clean_klass_tree_task() {
3479     if (_clean_klass_tree_claimed) {
3480       return false;
3481     }
3482 
3483     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3484   }
3485 
3486   InstanceKlass* claim_next_klass() {
3487     Klass* klass;
3488     do {
3489       klass =_klass_iterator.next_klass();
3490     } while (klass != NULL && !klass->is_instance_klass());
3491 
3492     // this can be null so don't call InstanceKlass::cast
3493     return static_cast<InstanceKlass*>(klass);
3494   }
3495 
3496 public:
3497 
3498   void clean_klass(InstanceKlass* ik) {
3499     ik->clean_weak_instanceklass_links();
3500   }
3501 
3502   void work() {
3503     ResourceMark rm;
3504 
3505     // One worker will clean the subklass/sibling klass tree.
3506     if (claim_clean_klass_tree_task()) {
3507       Klass::clean_subklass_tree();
3508     }
3509 
3510     // All workers will help cleaning the classes,
3511     InstanceKlass* klass;
3512     while ((klass = claim_next_klass()) != NULL) {
3513       clean_klass(klass);
3514     }
3515   }
3516 };
3517 
3518 class G1ResolvedMethodCleaningTask : public StackObj {
3519   volatile int       _resolved_method_task_claimed;
3520 public:
3521   G1ResolvedMethodCleaningTask() :
3522       _resolved_method_task_claimed(0) {}
3523 
3524   bool claim_resolved_method_task() {
3525     if (_resolved_method_task_claimed) {
3526       return false;
3527     }
3528     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3529   }
3530 
3531   // These aren't big, one thread can do it all.
3532   void work() {
3533     if (claim_resolved_method_task()) {
3534       ResolvedMethodTable::unlink();
3535     }
3536   }
3537 };
3538 
3539 
3540 // To minimize the remark pause times, the tasks below are done in parallel.
3541 class G1ParallelCleaningTask : public AbstractGangTask {
3542 private:
3543   G1StringAndSymbolCleaningTask _string_symbol_task;
3544   G1CodeCacheUnloadingTask      _code_cache_task;
3545   G1KlassCleaningTask           _klass_cleaning_task;
3546   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3547 
3548 public:
3549   // The constructor is run in the VMThread.
3550   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3551       AbstractGangTask("Parallel Cleaning"),
3552       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3553       _code_cache_task(num_workers, is_alive, unloading_occurred),
3554       _klass_cleaning_task(),
3555       _resolved_method_cleaning_task() {
3556   }
3557 
3558   // The parallel work done by all worker threads.
3559   void work(uint worker_id) {
3560     // Do first pass of code cache cleaning.
3561     _code_cache_task.work_first_pass(worker_id);
3562 
3563     // Let the threads mark that the first pass is done.
3564     _code_cache_task.barrier_mark(worker_id);
3565 
3566     // Clean the Strings and Symbols.
3567     _string_symbol_task.work(worker_id);
3568 
3569     // Clean unreferenced things in the ResolvedMethodTable
3570     _resolved_method_cleaning_task.work();
3571 
3572     // Wait for all workers to finish the first code cache cleaning pass.
3573     _code_cache_task.barrier_wait(worker_id);
3574 
3575     // Do the second code cache cleaning work, which realize on
3576     // the liveness information gathered during the first pass.
3577     _code_cache_task.work_second_pass(worker_id);
3578 
3579     // Clean all klasses that were not unloaded.
3580     _klass_cleaning_task.work();
3581   }
3582 };
3583 
3584 
3585 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3586                                         bool class_unloading_occurred) {
3587   uint n_workers = workers()->active_workers();
3588 
3589   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3590   workers()->run_task(&g1_unlink_task);
3591 }
3592 
3593 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3594                                        bool process_strings,
3595                                        bool process_symbols,
3596                                        bool process_string_dedup) {
3597   if (!process_strings && !process_symbols && !process_string_dedup) {
3598     // Nothing to clean.
3599     return;
3600   }
3601 
3602   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3603   workers()->run_task(&g1_unlink_task);
3604 
3605 }
3606 
3607 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3608  private:
3609   DirtyCardQueueSet* _queue;
3610   G1CollectedHeap* _g1h;
3611  public:
3612   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3613     _queue(queue), _g1h(g1h) { }
3614 
3615   virtual void work(uint worker_id) {
3616     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3617     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3618 
3619     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3620     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3621 
3622     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3623   }
3624 };
3625 
3626 void G1CollectedHeap::redirty_logged_cards() {
3627   double redirty_logged_cards_start = os::elapsedTime();
3628 
3629   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3630   dirty_card_queue_set().reset_for_par_iteration();
3631   workers()->run_task(&redirty_task);
3632 
3633   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3634   dcq.merge_bufferlists(&dirty_card_queue_set());
3635   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3636 
3637   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3638 }
3639 
3640 // Weak Reference Processing support
3641 
3642 // An always "is_alive" closure that is used to preserve referents.
3643 // If the object is non-null then it's alive.  Used in the preservation
3644 // of referent objects that are pointed to by reference objects
3645 // discovered by the CM ref processor.
3646 class G1AlwaysAliveClosure: public BoolObjectClosure {
3647 public:
3648   bool do_object_b(oop p) {
3649     if (p != NULL) {
3650       return true;
3651     }
3652     return false;
3653   }
3654 };
3655 
3656 bool G1STWIsAliveClosure::do_object_b(oop p) {
3657   // An object is reachable if it is outside the collection set,
3658   // or is inside and copied.
3659   return !_g1h->is_in_cset(p) || p->is_forwarded();
3660 }
3661 
3662 // Non Copying Keep Alive closure
3663 class G1KeepAliveClosure: public OopClosure {
3664   G1CollectedHeap*_g1h;
3665 public:
3666   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3667   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3668   void do_oop(oop* p) {
3669     oop obj = *p;
3670     assert(obj != NULL, "the caller should have filtered out NULL values");
3671 
3672     const InCSetState cset_state =_g1h->in_cset_state(obj);
3673     if (!cset_state.is_in_cset_or_humongous()) {
3674       return;
3675     }
3676     if (cset_state.is_in_cset()) {
3677       assert( obj->is_forwarded(), "invariant" );
3678       *p = obj->forwardee();
3679     } else {
3680       assert(!obj->is_forwarded(), "invariant" );
3681       assert(cset_state.is_humongous(),
3682              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3683      _g1h->set_humongous_is_live(obj);
3684     }
3685   }
3686 };
3687 
3688 // Copying Keep Alive closure - can be called from both
3689 // serial and parallel code as long as different worker
3690 // threads utilize different G1ParScanThreadState instances
3691 // and different queues.
3692 
3693 class G1CopyingKeepAliveClosure: public OopClosure {
3694   G1CollectedHeap*         _g1h;
3695   OopClosure*              _copy_non_heap_obj_cl;
3696   G1ParScanThreadState*    _par_scan_state;
3697 
3698 public:
3699   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3700                             OopClosure* non_heap_obj_cl,
3701                             G1ParScanThreadState* pss):
3702     _g1h(g1h),
3703     _copy_non_heap_obj_cl(non_heap_obj_cl),
3704     _par_scan_state(pss)
3705   {}
3706 
3707   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3708   virtual void do_oop(      oop* p) { do_oop_work(p); }
3709 
3710   template <class T> void do_oop_work(T* p) {
3711     oop obj = RawAccess<>::oop_load(p);
3712 
3713     if (_g1h->is_in_cset_or_humongous(obj)) {
3714       // If the referent object has been forwarded (either copied
3715       // to a new location or to itself in the event of an
3716       // evacuation failure) then we need to update the reference
3717       // field and, if both reference and referent are in the G1
3718       // heap, update the RSet for the referent.
3719       //
3720       // If the referent has not been forwarded then we have to keep
3721       // it alive by policy. Therefore we have copy the referent.
3722       //
3723       // If the reference field is in the G1 heap then we can push
3724       // on the PSS queue. When the queue is drained (after each
3725       // phase of reference processing) the object and it's followers
3726       // will be copied, the reference field set to point to the
3727       // new location, and the RSet updated. Otherwise we need to
3728       // use the the non-heap or metadata closures directly to copy
3729       // the referent object and update the pointer, while avoiding
3730       // updating the RSet.
3731 
3732       if (_g1h->is_in_g1_reserved(p)) {
3733         _par_scan_state->push_on_queue(p);
3734       } else {
3735         assert(!Metaspace::contains((const void*)p),
3736                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3737         _copy_non_heap_obj_cl->do_oop(p);
3738       }
3739     }
3740   }
3741 };
3742 
3743 // Serial drain queue closure. Called as the 'complete_gc'
3744 // closure for each discovered list in some of the
3745 // reference processing phases.
3746 
3747 class G1STWDrainQueueClosure: public VoidClosure {
3748 protected:
3749   G1CollectedHeap* _g1h;
3750   G1ParScanThreadState* _par_scan_state;
3751 
3752   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3753 
3754 public:
3755   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3756     _g1h(g1h),
3757     _par_scan_state(pss)
3758   { }
3759 
3760   void do_void() {
3761     G1ParScanThreadState* const pss = par_scan_state();
3762     pss->trim_queue();
3763   }
3764 };
3765 
3766 // Parallel Reference Processing closures
3767 
3768 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3769 // processing during G1 evacuation pauses.
3770 
3771 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3772 private:
3773   G1CollectedHeap*          _g1h;
3774   G1ParScanThreadStateSet*  _pss;
3775   RefToScanQueueSet*        _queues;
3776   WorkGang*                 _workers;
3777   uint                      _active_workers;
3778 
3779 public:
3780   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3781                            G1ParScanThreadStateSet* per_thread_states,
3782                            WorkGang* workers,
3783                            RefToScanQueueSet *task_queues,
3784                            uint n_workers) :
3785     _g1h(g1h),
3786     _pss(per_thread_states),
3787     _queues(task_queues),
3788     _workers(workers),
3789     _active_workers(n_workers)
3790   {
3791     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3792   }
3793 
3794   // Executes the given task using concurrent marking worker threads.
3795   virtual void execute(ProcessTask& task);
3796   virtual void execute(EnqueueTask& task);
3797 };
3798 
3799 // Gang task for possibly parallel reference processing
3800 
3801 class G1STWRefProcTaskProxy: public AbstractGangTask {
3802   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3803   ProcessTask&     _proc_task;
3804   G1CollectedHeap* _g1h;
3805   G1ParScanThreadStateSet* _pss;
3806   RefToScanQueueSet* _task_queues;
3807   ParallelTaskTerminator* _terminator;
3808 
3809 public:
3810   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3811                         G1CollectedHeap* g1h,
3812                         G1ParScanThreadStateSet* per_thread_states,
3813                         RefToScanQueueSet *task_queues,
3814                         ParallelTaskTerminator* terminator) :
3815     AbstractGangTask("Process reference objects in parallel"),
3816     _proc_task(proc_task),
3817     _g1h(g1h),
3818     _pss(per_thread_states),
3819     _task_queues(task_queues),
3820     _terminator(terminator)
3821   {}
3822 
3823   virtual void work(uint worker_id) {
3824     // The reference processing task executed by a single worker.
3825     ResourceMark rm;
3826     HandleMark   hm;
3827 
3828     G1STWIsAliveClosure is_alive(_g1h);
3829 
3830     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3831     pss->set_ref_discoverer(NULL);
3832 
3833     // Keep alive closure.
3834     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3835 
3836     // Complete GC closure
3837     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3838 
3839     // Call the reference processing task's work routine.
3840     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3841 
3842     // Note we cannot assert that the refs array is empty here as not all
3843     // of the processing tasks (specifically phase2 - pp2_work) execute
3844     // the complete_gc closure (which ordinarily would drain the queue) so
3845     // the queue may not be empty.
3846   }
3847 };
3848 
3849 // Driver routine for parallel reference processing.
3850 // Creates an instance of the ref processing gang
3851 // task and has the worker threads execute it.
3852 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3853   assert(_workers != NULL, "Need parallel worker threads.");
3854 
3855   ParallelTaskTerminator terminator(_active_workers, _queues);
3856   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3857 
3858   _workers->run_task(&proc_task_proxy);
3859 }
3860 
3861 // Gang task for parallel reference enqueueing.
3862 
3863 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
3864   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
3865   EnqueueTask& _enq_task;
3866 
3867 public:
3868   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
3869     AbstractGangTask("Enqueue reference objects in parallel"),
3870     _enq_task(enq_task)
3871   { }
3872 
3873   virtual void work(uint worker_id) {
3874     _enq_task.work(worker_id);
3875   }
3876 };
3877 
3878 // Driver routine for parallel reference enqueueing.
3879 // Creates an instance of the ref enqueueing gang
3880 // task and has the worker threads execute it.
3881 
3882 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
3883   assert(_workers != NULL, "Need parallel worker threads.");
3884 
3885   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
3886 
3887   _workers->run_task(&enq_task_proxy);
3888 }
3889 
3890 // End of weak reference support closures
3891 
3892 // Abstract task used to preserve (i.e. copy) any referent objects
3893 // that are in the collection set and are pointed to by reference
3894 // objects discovered by the CM ref processor.
3895 
3896 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
3897 protected:
3898   G1CollectedHeap*         _g1h;
3899   G1ParScanThreadStateSet* _pss;
3900   RefToScanQueueSet*       _queues;
3901   ParallelTaskTerminator   _terminator;
3902   uint                     _n_workers;
3903 
3904 public:
3905   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
3906     AbstractGangTask("ParPreserveCMReferents"),
3907     _g1h(g1h),
3908     _pss(per_thread_states),
3909     _queues(task_queues),
3910     _terminator(workers, _queues),
3911     _n_workers(workers)
3912   {
3913     g1h->ref_processor_cm()->set_active_mt_degree(workers);
3914   }
3915 
3916   void work(uint worker_id) {
3917     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
3918 
3919     ResourceMark rm;
3920     HandleMark   hm;
3921 
3922     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3923     pss->set_ref_discoverer(NULL);
3924     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3925 
3926     // Is alive closure
3927     G1AlwaysAliveClosure always_alive;
3928 
3929     // Copying keep alive closure. Applied to referent objects that need
3930     // to be copied.
3931     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3932 
3933     ReferenceProcessor* rp = _g1h->ref_processor_cm();
3934 
3935     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
3936     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
3937 
3938     // limit is set using max_num_q() - which was set using ParallelGCThreads.
3939     // So this must be true - but assert just in case someone decides to
3940     // change the worker ids.
3941     assert(worker_id < limit, "sanity");
3942     assert(!rp->discovery_is_atomic(), "check this code");
3943 
3944     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
3945     for (uint idx = worker_id; idx < limit; idx += stride) {
3946       DiscoveredList& ref_list = rp->discovered_refs()[idx];
3947 
3948       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
3949       while (iter.has_next()) {
3950         // Since discovery is not atomic for the CM ref processor, we
3951         // can see some null referent objects.
3952         iter.load_ptrs(DEBUG_ONLY(true));
3953         oop ref = iter.obj();
3954 
3955         // This will filter nulls.
3956         if (iter.is_referent_alive()) {
3957           iter.make_referent_alive();
3958         }
3959         iter.move_to_next();
3960       }
3961     }
3962 
3963     // Drain the queue - which may cause stealing
3964     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
3965     drain_queue.do_void();
3966     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
3967     assert(pss->queue_is_empty(), "should be");
3968   }
3969 };
3970 
3971 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
3972   // Any reference objects, in the collection set, that were 'discovered'
3973   // by the CM ref processor should have already been copied (either by
3974   // applying the external root copy closure to the discovered lists, or
3975   // by following an RSet entry).
3976   //
3977   // But some of the referents, that are in the collection set, that these
3978   // reference objects point to may not have been copied: the STW ref
3979   // processor would have seen that the reference object had already
3980   // been 'discovered' and would have skipped discovering the reference,
3981   // but would not have treated the reference object as a regular oop.
3982   // As a result the copy closure would not have been applied to the
3983   // referent object.
3984   //
3985   // We need to explicitly copy these referent objects - the references
3986   // will be processed at the end of remarking.
3987   //
3988   // We also need to do this copying before we process the reference
3989   // objects discovered by the STW ref processor in case one of these
3990   // referents points to another object which is also referenced by an
3991   // object discovered by the STW ref processor.
3992   double preserve_cm_referents_time = 0.0;
3993 
3994   // To avoid spawning task when there is no work to do, check that
3995   // a concurrent cycle is active and that some references have been
3996   // discovered.
3997   if (concurrent_mark()->cm_thread()->during_cycle() &&
3998       ref_processor_cm()->has_discovered_references()) {
3999     double preserve_cm_referents_start = os::elapsedTime();
4000     uint no_of_gc_workers = workers()->active_workers();
4001     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4002                                                    per_thread_states,
4003                                                    no_of_gc_workers,
4004                                                    _task_queues);
4005     workers()->run_task(&keep_cm_referents);
4006     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4007   }
4008 
4009   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4010 }
4011 
4012 // Weak Reference processing during an evacuation pause (part 1).
4013 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4014   double ref_proc_start = os::elapsedTime();
4015 
4016   ReferenceProcessor* rp = _ref_processor_stw;
4017   assert(rp->discovery_enabled(), "should have been enabled");
4018 
4019   // Closure to test whether a referent is alive.
4020   G1STWIsAliveClosure is_alive(this);
4021 
4022   // Even when parallel reference processing is enabled, the processing
4023   // of JNI refs is serial and performed serially by the current thread
4024   // rather than by a worker. The following PSS will be used for processing
4025   // JNI refs.
4026 
4027   // Use only a single queue for this PSS.
4028   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4029   pss->set_ref_discoverer(NULL);
4030   assert(pss->queue_is_empty(), "pre-condition");
4031 
4032   // Keep alive closure.
4033   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4034 
4035   // Serial Complete GC closure
4036   G1STWDrainQueueClosure drain_queue(this, pss);
4037 
4038   // Setup the soft refs policy...
4039   rp->setup_policy(false);
4040 
4041   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4042 
4043   ReferenceProcessorStats stats;
4044   if (!rp->processing_is_mt()) {
4045     // Serial reference processing...
4046     stats = rp->process_discovered_references(&is_alive,
4047                                               &keep_alive,
4048                                               &drain_queue,
4049                                               NULL,
4050                                               pt);
4051   } else {
4052     uint no_of_gc_workers = workers()->active_workers();
4053 
4054     // Parallel reference processing
4055     assert(no_of_gc_workers <= rp->max_num_q(),
4056            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4057            no_of_gc_workers,  rp->max_num_q());
4058 
4059     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4060     stats = rp->process_discovered_references(&is_alive,
4061                                               &keep_alive,
4062                                               &drain_queue,
4063                                               &par_task_executor,
4064                                               pt);
4065   }
4066 
4067   _gc_tracer_stw->report_gc_reference_stats(stats);
4068 
4069   // We have completed copying any necessary live referent objects.
4070   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4071 
4072   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4073   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4074 }
4075 
4076 // Weak Reference processing during an evacuation pause (part 2).
4077 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4078   double ref_enq_start = os::elapsedTime();
4079 
4080   ReferenceProcessor* rp = _ref_processor_stw;
4081   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4082 
4083   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4084 
4085   // Now enqueue any remaining on the discovered lists on to
4086   // the pending list.
4087   if (!rp->processing_is_mt()) {
4088     // Serial reference processing...
4089     rp->enqueue_discovered_references(NULL, pt);
4090   } else {
4091     // Parallel reference enqueueing
4092 
4093     uint n_workers = workers()->active_workers();
4094 
4095     assert(n_workers <= rp->max_num_q(),
4096            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4097            n_workers,  rp->max_num_q());
4098 
4099     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4100     rp->enqueue_discovered_references(&par_task_executor, pt);
4101   }
4102 
4103   rp->verify_no_references_recorded();
4104   assert(!rp->discovery_enabled(), "should have been disabled");
4105 
4106   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4107   // ensure that it is marked in the bitmap for concurrent marking to discover.
4108   if (collector_state()->in_initial_mark_gc()) {
4109     oop pll_head = Universe::reference_pending_list();
4110     if (pll_head != NULL) {
4111       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
4112       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
4113     }
4114   }
4115 
4116   // FIXME
4117   // CM's reference processing also cleans up the string and symbol tables.
4118   // Should we do that here also? We could, but it is a serial operation
4119   // and could significantly increase the pause time.
4120 
4121   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4122   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4123 }
4124 
4125 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4126   double merge_pss_time_start = os::elapsedTime();
4127   per_thread_states->flush();
4128   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4129 }
4130 
4131 void G1CollectedHeap::pre_evacuate_collection_set() {
4132   _expand_heap_after_alloc_failure = true;
4133   _evacuation_failed = false;
4134 
4135   // Disable the hot card cache.
4136   _hot_card_cache->reset_hot_cache_claimed_index();
4137   _hot_card_cache->set_use_cache(false);
4138 
4139   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4140   _preserved_marks_set.assert_empty();
4141 
4142   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4143 
4144   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4145   if (collector_state()->in_initial_mark_gc()) {
4146     double start_clear_claimed_marks = os::elapsedTime();
4147 
4148     ClassLoaderDataGraph::clear_claimed_marks();
4149 
4150     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4151     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4152   }
4153 }
4154 
4155 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
4156   // Should G1EvacuationFailureALot be in effect for this GC?
4157   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4158 
4159   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4160 
4161   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4162 
4163   double start_par_time_sec = os::elapsedTime();
4164   double end_par_time_sec;
4165 
4166   {
4167     const uint n_workers = workers()->active_workers();
4168     G1RootProcessor root_processor(this, n_workers);
4169     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4170 
4171     print_termination_stats_hdr();
4172 
4173     workers()->run_task(&g1_par_task);
4174     end_par_time_sec = os::elapsedTime();
4175 
4176     // Closing the inner scope will execute the destructor
4177     // for the G1RootProcessor object. We record the current
4178     // elapsed time before closing the scope so that time
4179     // taken for the destructor is NOT included in the
4180     // reported parallel time.
4181   }
4182 
4183   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4184   phase_times->record_par_time(par_time_ms);
4185 
4186   double code_root_fixup_time_ms =
4187         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4188   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4189 }
4190 
4191 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4192   // Process any discovered reference objects - we have
4193   // to do this _before_ we retire the GC alloc regions
4194   // as we may have to copy some 'reachable' referent
4195   // objects (and their reachable sub-graphs) that were
4196   // not copied during the pause.
4197   preserve_cm_referents(per_thread_states);
4198   process_discovered_references(per_thread_states);
4199 
4200   G1STWIsAliveClosure is_alive(this);
4201   G1KeepAliveClosure keep_alive(this);
4202 
4203   {
4204     double start = os::elapsedTime();
4205 
4206     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4207 
4208     double time_ms = (os::elapsedTime() - start) * 1000.0;
4209     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4210   }
4211 
4212   if (G1StringDedup::is_enabled()) {
4213     double fixup_start = os::elapsedTime();
4214 
4215     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4216 
4217     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4218     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4219   }
4220 
4221   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4222 
4223   if (evacuation_failed()) {
4224     restore_after_evac_failure();
4225 
4226     // Reset the G1EvacuationFailureALot counters and flags
4227     // Note: the values are reset only when an actual
4228     // evacuation failure occurs.
4229     NOT_PRODUCT(reset_evacuation_should_fail();)
4230   }
4231 
4232   _preserved_marks_set.assert_empty();
4233 
4234   // Enqueue any remaining references remaining on the STW
4235   // reference processor's discovered lists. We need to do
4236   // this after the card table is cleaned (and verified) as
4237   // the act of enqueueing entries on to the pending list
4238   // will log these updates (and dirty their associated
4239   // cards). We need these updates logged to update any
4240   // RSets.
4241   enqueue_discovered_references(per_thread_states);
4242 
4243   _allocator->release_gc_alloc_regions(evacuation_info);
4244 
4245   merge_per_thread_state_info(per_thread_states);
4246 
4247   // Reset and re-enable the hot card cache.
4248   // Note the counts for the cards in the regions in the
4249   // collection set are reset when the collection set is freed.
4250   _hot_card_cache->reset_hot_cache();
4251   _hot_card_cache->set_use_cache(true);
4252 
4253   purge_code_root_memory();
4254 
4255   redirty_logged_cards();
4256 #if COMPILER2_OR_JVMCI
4257   double start = os::elapsedTime();
4258   DerivedPointerTable::update_pointers();
4259   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4260 #endif
4261   g1_policy()->print_age_table();
4262 }
4263 
4264 void G1CollectedHeap::record_obj_copy_mem_stats() {
4265   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4266 
4267   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4268                                                create_g1_evac_summary(&_old_evac_stats));
4269 }
4270 
4271 void G1CollectedHeap::free_region(HeapRegion* hr,
4272                                   FreeRegionList* free_list,
4273                                   bool skip_remset,
4274                                   bool skip_hot_card_cache,
4275                                   bool locked) {
4276   assert(!hr->is_free(), "the region should not be free");
4277   assert(!hr->is_empty(), "the region should not be empty");
4278   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4279   assert(free_list != NULL, "pre-condition");
4280 
4281   if (G1VerifyBitmaps) {
4282     MemRegion mr(hr->bottom(), hr->end());
4283     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4284   }
4285 
4286   // Clear the card counts for this region.
4287   // Note: we only need to do this if the region is not young
4288   // (since we don't refine cards in young regions).
4289   if (!skip_hot_card_cache && !hr->is_young()) {
4290     _hot_card_cache->reset_card_counts(hr);
4291   }
4292   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4293   _g1_policy->remset_tracker()->update_at_free(hr);
4294   free_list->add_ordered(hr);
4295 }
4296 
4297 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4298                                             FreeRegionList* free_list) {
4299   assert(hr->is_humongous(), "this is only for humongous regions");
4300   assert(free_list != NULL, "pre-condition");
4301   hr->clear_humongous();
4302   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4303 }
4304 
4305 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4306                                            const uint humongous_regions_removed) {
4307   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4308     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4309     _old_set.bulk_remove(old_regions_removed);
4310     _humongous_set.bulk_remove(humongous_regions_removed);
4311   }
4312 
4313 }
4314 
4315 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4316   assert(list != NULL, "list can't be null");
4317   if (!list->is_empty()) {
4318     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4319     _hrm.insert_list_into_free_list(list);
4320   }
4321 }
4322 
4323 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4324   decrease_used(bytes);
4325 }
4326 
4327 class G1FreeCollectionSetTask : public AbstractGangTask {
4328 private:
4329 
4330   // Closure applied to all regions in the collection set to do work that needs to
4331   // be done serially in a single thread.
4332   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4333   private:
4334     EvacuationInfo* _evacuation_info;
4335     const size_t* _surviving_young_words;
4336 
4337     // Bytes used in successfully evacuated regions before the evacuation.
4338     size_t _before_used_bytes;
4339     // Bytes used in unsucessfully evacuated regions before the evacuation
4340     size_t _after_used_bytes;
4341 
4342     size_t _bytes_allocated_in_old_since_last_gc;
4343 
4344     size_t _failure_used_words;
4345     size_t _failure_waste_words;
4346 
4347     FreeRegionList _local_free_list;
4348   public:
4349     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4350       HeapRegionClosure(),
4351       _evacuation_info(evacuation_info),
4352       _surviving_young_words(surviving_young_words),
4353       _before_used_bytes(0),
4354       _after_used_bytes(0),
4355       _bytes_allocated_in_old_since_last_gc(0),
4356       _failure_used_words(0),
4357       _failure_waste_words(0),
4358       _local_free_list("Local Region List for CSet Freeing") {
4359     }
4360 
4361     virtual bool do_heap_region(HeapRegion* r) {
4362       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4363 
4364       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4365       g1h->clear_in_cset(r);
4366 
4367       if (r->is_young()) {
4368         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4369                "Young index %d is wrong for region %u of type %s with %u young regions",
4370                r->young_index_in_cset(),
4371                r->hrm_index(),
4372                r->get_type_str(),
4373                g1h->collection_set()->young_region_length());
4374         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4375         r->record_surv_words_in_group(words_survived);
4376       }
4377 
4378       if (!r->evacuation_failed()) {
4379         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4380         _before_used_bytes += r->used();
4381         g1h->free_region(r,
4382                          &_local_free_list,
4383                          true, /* skip_remset */
4384                          true, /* skip_hot_card_cache */
4385                          true  /* locked */);
4386       } else {
4387         r->uninstall_surv_rate_group();
4388         r->set_young_index_in_cset(-1);
4389         r->set_evacuation_failed(false);
4390         // When moving a young gen region to old gen, we "allocate" that whole region
4391         // there. This is in addition to any already evacuated objects. Notify the
4392         // policy about that.
4393         // Old gen regions do not cause an additional allocation: both the objects
4394         // still in the region and the ones already moved are accounted for elsewhere.
4395         if (r->is_young()) {
4396           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4397         }
4398         // The region is now considered to be old.
4399         r->set_old();
4400         // Do some allocation statistics accounting. Regions that failed evacuation
4401         // are always made old, so there is no need to update anything in the young
4402         // gen statistics, but we need to update old gen statistics.
4403         size_t used_words = r->marked_bytes() / HeapWordSize;
4404 
4405         _failure_used_words += used_words;
4406         _failure_waste_words += HeapRegion::GrainWords - used_words;
4407 
4408         g1h->old_set_add(r);
4409         _after_used_bytes += r->used();
4410       }
4411       return false;
4412     }
4413 
4414     void complete_work() {
4415       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4416 
4417       _evacuation_info->set_regions_freed(_local_free_list.length());
4418       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4419 
4420       g1h->prepend_to_freelist(&_local_free_list);
4421       g1h->decrement_summary_bytes(_before_used_bytes);
4422 
4423       G1Policy* policy = g1h->g1_policy();
4424       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4425 
4426       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4427     }
4428   };
4429 
4430   G1CollectionSet* _collection_set;
4431   G1SerialFreeCollectionSetClosure _cl;
4432   const size_t* _surviving_young_words;
4433 
4434   size_t _rs_lengths;
4435 
4436   volatile jint _serial_work_claim;
4437 
4438   struct WorkItem {
4439     uint region_idx;
4440     bool is_young;
4441     bool evacuation_failed;
4442 
4443     WorkItem(HeapRegion* r) {
4444       region_idx = r->hrm_index();
4445       is_young = r->is_young();
4446       evacuation_failed = r->evacuation_failed();
4447     }
4448   };
4449 
4450   volatile size_t _parallel_work_claim;
4451   size_t _num_work_items;
4452   WorkItem* _work_items;
4453 
4454   void do_serial_work() {
4455     // Need to grab the lock to be allowed to modify the old region list.
4456     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4457     _collection_set->iterate(&_cl);
4458   }
4459 
4460   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4461     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4462 
4463     HeapRegion* r = g1h->region_at(region_idx);
4464     assert(!g1h->is_on_master_free_list(r), "sanity");
4465 
4466     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4467 
4468     if (!is_young) {
4469       g1h->_hot_card_cache->reset_card_counts(r);
4470     }
4471 
4472     if (!evacuation_failed) {
4473       r->rem_set()->clear_locked();
4474     }
4475   }
4476 
4477   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4478   private:
4479     size_t _cur_idx;
4480     WorkItem* _work_items;
4481   public:
4482     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4483 
4484     virtual bool do_heap_region(HeapRegion* r) {
4485       _work_items[_cur_idx++] = WorkItem(r);
4486       return false;
4487     }
4488   };
4489 
4490   void prepare_work() {
4491     G1PrepareFreeCollectionSetClosure cl(_work_items);
4492     _collection_set->iterate(&cl);
4493   }
4494 
4495   void complete_work() {
4496     _cl.complete_work();
4497 
4498     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4499     policy->record_max_rs_lengths(_rs_lengths);
4500     policy->cset_regions_freed();
4501   }
4502 public:
4503   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4504     AbstractGangTask("G1 Free Collection Set"),
4505     _cl(evacuation_info, surviving_young_words),
4506     _collection_set(collection_set),
4507     _surviving_young_words(surviving_young_words),
4508     _serial_work_claim(0),
4509     _rs_lengths(0),
4510     _parallel_work_claim(0),
4511     _num_work_items(collection_set->region_length()),
4512     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4513     prepare_work();
4514   }
4515 
4516   ~G1FreeCollectionSetTask() {
4517     complete_work();
4518     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4519   }
4520 
4521   // Chunk size for work distribution. The chosen value has been determined experimentally
4522   // to be a good tradeoff between overhead and achievable parallelism.
4523   static uint chunk_size() { return 32; }
4524 
4525   virtual void work(uint worker_id) {
4526     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4527 
4528     // Claim serial work.
4529     if (_serial_work_claim == 0) {
4530       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4531       if (value == 0) {
4532         double serial_time = os::elapsedTime();
4533         do_serial_work();
4534         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4535       }
4536     }
4537 
4538     // Start parallel work.
4539     double young_time = 0.0;
4540     bool has_young_time = false;
4541     double non_young_time = 0.0;
4542     bool has_non_young_time = false;
4543 
4544     while (true) {
4545       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4546       size_t cur = end - chunk_size();
4547 
4548       if (cur >= _num_work_items) {
4549         break;
4550       }
4551 
4552       double start_time = os::elapsedTime();
4553 
4554       end = MIN2(end, _num_work_items);
4555 
4556       for (; cur < end; cur++) {
4557         bool is_young = _work_items[cur].is_young;
4558 
4559         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4560 
4561         double end_time = os::elapsedTime();
4562         double time_taken = end_time - start_time;
4563         if (is_young) {
4564           young_time += time_taken;
4565           has_young_time = true;
4566         } else {
4567           non_young_time += time_taken;
4568           has_non_young_time = true;
4569         }
4570         start_time = end_time;
4571       }
4572     }
4573 
4574     if (has_young_time) {
4575       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4576     }
4577     if (has_non_young_time) {
4578       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4579     }
4580   }
4581 };
4582 
4583 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4584   _eden.clear();
4585 
4586   double free_cset_start_time = os::elapsedTime();
4587 
4588   {
4589     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4590     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4591 
4592     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4593 
4594     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4595                         cl.name(),
4596                         num_workers,
4597                         _collection_set.region_length());
4598     workers()->run_task(&cl, num_workers);
4599   }
4600   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4601 
4602   collection_set->clear();
4603 }
4604 
4605 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4606  private:
4607   FreeRegionList* _free_region_list;
4608   HeapRegionSet* _proxy_set;
4609   uint _humongous_objects_reclaimed;
4610   uint _humongous_regions_reclaimed;
4611   size_t _freed_bytes;
4612  public:
4613 
4614   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4615     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4616   }
4617 
4618   virtual bool do_heap_region(HeapRegion* r) {
4619     if (!r->is_starts_humongous()) {
4620       return false;
4621     }
4622 
4623     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4624 
4625     oop obj = (oop)r->bottom();
4626     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4627 
4628     // The following checks whether the humongous object is live are sufficient.
4629     // The main additional check (in addition to having a reference from the roots
4630     // or the young gen) is whether the humongous object has a remembered set entry.
4631     //
4632     // A humongous object cannot be live if there is no remembered set for it
4633     // because:
4634     // - there can be no references from within humongous starts regions referencing
4635     // the object because we never allocate other objects into them.
4636     // (I.e. there are no intra-region references that may be missed by the
4637     // remembered set)
4638     // - as soon there is a remembered set entry to the humongous starts region
4639     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4640     // until the end of a concurrent mark.
4641     //
4642     // It is not required to check whether the object has been found dead by marking
4643     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4644     // all objects allocated during that time are considered live.
4645     // SATB marking is even more conservative than the remembered set.
4646     // So if at this point in the collection there is no remembered set entry,
4647     // nobody has a reference to it.
4648     // At the start of collection we flush all refinement logs, and remembered sets
4649     // are completely up-to-date wrt to references to the humongous object.
4650     //
4651     // Other implementation considerations:
4652     // - never consider object arrays at this time because they would pose
4653     // considerable effort for cleaning up the the remembered sets. This is
4654     // required because stale remembered sets might reference locations that
4655     // are currently allocated into.
4656     uint region_idx = r->hrm_index();
4657     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4658         !r->rem_set()->is_empty()) {
4659       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4660                                region_idx,
4661                                (size_t)obj->size() * HeapWordSize,
4662                                p2i(r->bottom()),
4663                                r->rem_set()->occupied(),
4664                                r->rem_set()->strong_code_roots_list_length(),
4665                                next_bitmap->is_marked(r->bottom()),
4666                                g1h->is_humongous_reclaim_candidate(region_idx),
4667                                obj->is_typeArray()
4668                               );
4669       return false;
4670     }
4671 
4672     guarantee(obj->is_typeArray(),
4673               "Only eagerly reclaiming type arrays is supported, but the object "
4674               PTR_FORMAT " is not.", p2i(r->bottom()));
4675 
4676     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4677                              region_idx,
4678                              (size_t)obj->size() * HeapWordSize,
4679                              p2i(r->bottom()),
4680                              r->rem_set()->occupied(),
4681                              r->rem_set()->strong_code_roots_list_length(),
4682                              next_bitmap->is_marked(r->bottom()),
4683                              g1h->is_humongous_reclaim_candidate(region_idx),
4684                              obj->is_typeArray()
4685                             );
4686 
4687     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4688     cm->humongous_object_eagerly_reclaimed(r);
4689     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4690            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4691            region_idx,
4692            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4693            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4694     _humongous_objects_reclaimed++;
4695     do {
4696       HeapRegion* next = g1h->next_region_in_humongous(r);
4697       _freed_bytes += r->used();
4698       r->set_containing_set(NULL);
4699       _humongous_regions_reclaimed++;
4700       g1h->free_humongous_region(r, _free_region_list);
4701       r = next;
4702     } while (r != NULL);
4703 
4704     return false;
4705   }
4706 
4707   uint humongous_objects_reclaimed() {
4708     return _humongous_objects_reclaimed;
4709   }
4710 
4711   uint humongous_regions_reclaimed() {
4712     return _humongous_regions_reclaimed;
4713   }
4714 
4715   size_t bytes_freed() const {
4716     return _freed_bytes;
4717   }
4718 };
4719 
4720 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4721   assert_at_safepoint_on_vm_thread();
4722 
4723   if (!G1EagerReclaimHumongousObjects ||
4724       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4725     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4726     return;
4727   }
4728 
4729   double start_time = os::elapsedTime();
4730 
4731   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4732 
4733   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4734   heap_region_iterate(&cl);
4735 
4736   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4737 
4738   G1HRPrinter* hrp = hr_printer();
4739   if (hrp->is_active()) {
4740     FreeRegionListIterator iter(&local_cleanup_list);
4741     while (iter.more_available()) {
4742       HeapRegion* hr = iter.get_next();
4743       hrp->cleanup(hr);
4744     }
4745   }
4746 
4747   prepend_to_freelist(&local_cleanup_list);
4748   decrement_summary_bytes(cl.bytes_freed());
4749 
4750   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4751                                                                     cl.humongous_objects_reclaimed());
4752 }
4753 
4754 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4755 public:
4756   virtual bool do_heap_region(HeapRegion* r) {
4757     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4758     G1CollectedHeap::heap()->clear_in_cset(r);
4759     r->set_young_index_in_cset(-1);
4760     return false;
4761   }
4762 };
4763 
4764 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4765   G1AbandonCollectionSetClosure cl;
4766   collection_set->iterate(&cl);
4767 
4768   collection_set->clear();
4769   collection_set->stop_incremental_building();
4770 }
4771 
4772 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4773   return _allocator->is_retained_old_region(hr);
4774 }
4775 
4776 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4777   _eden.add(hr);
4778   _g1_policy->set_region_eden(hr);
4779 }
4780 
4781 #ifdef ASSERT
4782 
4783 class NoYoungRegionsClosure: public HeapRegionClosure {
4784 private:
4785   bool _success;
4786 public:
4787   NoYoungRegionsClosure() : _success(true) { }
4788   bool do_heap_region(HeapRegion* r) {
4789     if (r->is_young()) {
4790       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4791                             p2i(r->bottom()), p2i(r->end()));
4792       _success = false;
4793     }
4794     return false;
4795   }
4796   bool success() { return _success; }
4797 };
4798 
4799 bool G1CollectedHeap::check_young_list_empty() {
4800   bool ret = (young_regions_count() == 0);
4801 
4802   NoYoungRegionsClosure closure;
4803   heap_region_iterate(&closure);
4804   ret = ret && closure.success();
4805 
4806   return ret;
4807 }
4808 
4809 #endif // ASSERT
4810 
4811 class TearDownRegionSetsClosure : public HeapRegionClosure {
4812 private:
4813   HeapRegionSet *_old_set;
4814 
4815 public:
4816   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4817 
4818   bool do_heap_region(HeapRegion* r) {
4819     if (r->is_old()) {
4820       _old_set->remove(r);
4821     } else if(r->is_young()) {
4822       r->uninstall_surv_rate_group();
4823     } else {
4824       // We ignore free regions, we'll empty the free list afterwards.
4825       // We ignore humongous regions, we're not tearing down the
4826       // humongous regions set.
4827       assert(r->is_free() || r->is_humongous(),
4828              "it cannot be another type");
4829     }
4830     return false;
4831   }
4832 
4833   ~TearDownRegionSetsClosure() {
4834     assert(_old_set->is_empty(), "post-condition");
4835   }
4836 };
4837 
4838 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4839   assert_at_safepoint_on_vm_thread();
4840 
4841   if (!free_list_only) {
4842     TearDownRegionSetsClosure cl(&_old_set);
4843     heap_region_iterate(&cl);
4844 
4845     // Note that emptying the _young_list is postponed and instead done as
4846     // the first step when rebuilding the regions sets again. The reason for
4847     // this is that during a full GC string deduplication needs to know if
4848     // a collected region was young or old when the full GC was initiated.
4849   }
4850   _hrm.remove_all_free_regions();
4851 }
4852 
4853 void G1CollectedHeap::increase_used(size_t bytes) {
4854   _summary_bytes_used += bytes;
4855 }
4856 
4857 void G1CollectedHeap::decrease_used(size_t bytes) {
4858   assert(_summary_bytes_used >= bytes,
4859          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4860          _summary_bytes_used, bytes);
4861   _summary_bytes_used -= bytes;
4862 }
4863 
4864 void G1CollectedHeap::set_used(size_t bytes) {
4865   _summary_bytes_used = bytes;
4866 }
4867 
4868 class RebuildRegionSetsClosure : public HeapRegionClosure {
4869 private:
4870   bool            _free_list_only;
4871   HeapRegionSet*   _old_set;
4872   HeapRegionManager*   _hrm;
4873   size_t          _total_used;
4874 
4875 public:
4876   RebuildRegionSetsClosure(bool free_list_only,
4877                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4878     _free_list_only(free_list_only),
4879     _old_set(old_set), _hrm(hrm), _total_used(0) {
4880     assert(_hrm->num_free_regions() == 0, "pre-condition");
4881     if (!free_list_only) {
4882       assert(_old_set->is_empty(), "pre-condition");
4883     }
4884   }
4885 
4886   bool do_heap_region(HeapRegion* r) {
4887     // After full GC, no region should have a remembered set.
4888     r->rem_set()->clear(true);
4889     if (r->is_empty()) {
4890       // Add free regions to the free list
4891       r->set_free();
4892       _hrm->insert_into_free_list(r);
4893     } else if (!_free_list_only) {
4894 
4895       if (r->is_humongous()) {
4896         // We ignore humongous regions. We left the humongous set unchanged.
4897       } else {
4898         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4899         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4900         r->move_to_old();
4901         _old_set->add(r);
4902       }
4903       _total_used += r->used();
4904     }
4905 
4906     return false;
4907   }
4908 
4909   size_t total_used() {
4910     return _total_used;
4911   }
4912 };
4913 
4914 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4915   assert_at_safepoint_on_vm_thread();
4916 
4917   if (!free_list_only) {
4918     _eden.clear();
4919     _survivor.clear();
4920   }
4921 
4922   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4923   heap_region_iterate(&cl);
4924 
4925   if (!free_list_only) {
4926     set_used(cl.total_used());
4927     if (_archive_allocator != NULL) {
4928       _archive_allocator->clear_used();
4929     }
4930   }
4931   assert(used_unlocked() == recalculate_used(),
4932          "inconsistent used_unlocked(), "
4933          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4934          used_unlocked(), recalculate_used());
4935 }
4936 
4937 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4938   HeapRegion* hr = heap_region_containing(p);
4939   return hr->is_in(p);
4940 }
4941 
4942 // Methods for the mutator alloc region
4943 
4944 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4945                                                       bool force) {
4946   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4947   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4948   if (force || should_allocate) {
4949     HeapRegion* new_alloc_region = new_region(word_size,
4950                                               false /* is_old */,
4951                                               false /* do_expand */);
4952     if (new_alloc_region != NULL) {
4953       set_region_short_lived_locked(new_alloc_region);
4954       _hr_printer.alloc(new_alloc_region, !should_allocate);
4955       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4956       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4957       return new_alloc_region;
4958     }
4959   }
4960   return NULL;
4961 }
4962 
4963 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4964                                                   size_t allocated_bytes) {
4965   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4966   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4967 
4968   collection_set()->add_eden_region(alloc_region);
4969   increase_used(allocated_bytes);
4970   _hr_printer.retire(alloc_region);
4971   // We update the eden sizes here, when the region is retired,
4972   // instead of when it's allocated, since this is the point that its
4973   // used space has been recored in _summary_bytes_used.
4974   g1mm()->update_eden_size();
4975 }
4976 
4977 // Methods for the GC alloc regions
4978 
4979 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4980   if (dest.is_old()) {
4981     return true;
4982   } else {
4983     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4984   }
4985 }
4986 
4987 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4988   assert(FreeList_lock->owned_by_self(), "pre-condition");
4989 
4990   if (!has_more_regions(dest)) {
4991     return NULL;
4992   }
4993 
4994   const bool is_survivor = dest.is_young();
4995 
4996   HeapRegion* new_alloc_region = new_region(word_size,
4997                                             !is_survivor,
4998                                             true /* do_expand */);
4999   if (new_alloc_region != NULL) {
5000     if (is_survivor) {
5001       new_alloc_region->set_survivor();
5002       _survivor.add(new_alloc_region);
5003       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5004     } else {
5005       new_alloc_region->set_old();
5006       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5007     }
5008     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
5009     _hr_printer.alloc(new_alloc_region);
5010     bool during_im = collector_state()->in_initial_mark_gc();
5011     new_alloc_region->note_start_of_copying(during_im);
5012     return new_alloc_region;
5013   }
5014   return NULL;
5015 }
5016 
5017 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5018                                              size_t allocated_bytes,
5019                                              InCSetState dest) {
5020   bool during_im = collector_state()->in_initial_mark_gc();
5021   alloc_region->note_end_of_copying(during_im);
5022   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5023   if (dest.is_old()) {
5024     _old_set.add(alloc_region);
5025   }
5026   _hr_printer.retire(alloc_region);
5027 }
5028 
5029 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5030   bool expanded = false;
5031   uint index = _hrm.find_highest_free(&expanded);
5032 
5033   if (index != G1_NO_HRM_INDEX) {
5034     if (expanded) {
5035       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5036                                 HeapRegion::GrainWords * HeapWordSize);
5037     }
5038     _hrm.allocate_free_regions_starting_at(index, 1);
5039     return region_at(index);
5040   }
5041   return NULL;
5042 }
5043 
5044 // Optimized nmethod scanning
5045 
5046 class RegisterNMethodOopClosure: public OopClosure {
5047   G1CollectedHeap* _g1h;
5048   nmethod* _nm;
5049 
5050   template <class T> void do_oop_work(T* p) {
5051     T heap_oop = RawAccess<>::oop_load(p);
5052     if (!CompressedOops::is_null(heap_oop)) {
5053       oop obj = CompressedOops::decode_not_null(heap_oop);
5054       HeapRegion* hr = _g1h->heap_region_containing(obj);
5055       assert(!hr->is_continues_humongous(),
5056              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5057              " starting at " HR_FORMAT,
5058              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5059 
5060       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5061       hr->add_strong_code_root_locked(_nm);
5062     }
5063   }
5064 
5065 public:
5066   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5067     _g1h(g1h), _nm(nm) {}
5068 
5069   void do_oop(oop* p)       { do_oop_work(p); }
5070   void do_oop(narrowOop* p) { do_oop_work(p); }
5071 };
5072 
5073 class UnregisterNMethodOopClosure: public OopClosure {
5074   G1CollectedHeap* _g1h;
5075   nmethod* _nm;
5076 
5077   template <class T> void do_oop_work(T* p) {
5078     T heap_oop = RawAccess<>::oop_load(p);
5079     if (!CompressedOops::is_null(heap_oop)) {
5080       oop obj = CompressedOops::decode_not_null(heap_oop);
5081       HeapRegion* hr = _g1h->heap_region_containing(obj);
5082       assert(!hr->is_continues_humongous(),
5083              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5084              " starting at " HR_FORMAT,
5085              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5086 
5087       hr->remove_strong_code_root(_nm);
5088     }
5089   }
5090 
5091 public:
5092   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5093     _g1h(g1h), _nm(nm) {}
5094 
5095   void do_oop(oop* p)       { do_oop_work(p); }
5096   void do_oop(narrowOop* p) { do_oop_work(p); }
5097 };
5098 
5099 // Returns true if the reference points to an object that
5100 // can move in an incremental collection.
5101 bool G1CollectedHeap::is_scavengable(oop obj) {
5102   HeapRegion* hr = heap_region_containing(obj);
5103   return !hr->is_pinned();
5104 }
5105 
5106 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5107   guarantee(nm != NULL, "sanity");
5108   RegisterNMethodOopClosure reg_cl(this, nm);
5109   nm->oops_do(&reg_cl);
5110 }
5111 
5112 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5113   guarantee(nm != NULL, "sanity");
5114   UnregisterNMethodOopClosure reg_cl(this, nm);
5115   nm->oops_do(&reg_cl, true);
5116 }
5117 
5118 void G1CollectedHeap::purge_code_root_memory() {
5119   double purge_start = os::elapsedTime();
5120   G1CodeRootSet::purge();
5121   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5122   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5123 }
5124 
5125 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5126   G1CollectedHeap* _g1h;
5127 
5128 public:
5129   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5130     _g1h(g1h) {}
5131 
5132   void do_code_blob(CodeBlob* cb) {
5133     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5134     if (nm == NULL) {
5135       return;
5136     }
5137 
5138     if (ScavengeRootsInCode) {
5139       _g1h->register_nmethod(nm);
5140     }
5141   }
5142 };
5143 
5144 void G1CollectedHeap::rebuild_strong_code_roots() {
5145   RebuildStrongCodeRootClosure blob_cl(this);
5146   CodeCache::blobs_do(&blob_cl);
5147 }
5148 
5149 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5150   GrowableArray<GCMemoryManager*> memory_managers(2);
5151   memory_managers.append(&_memory_manager);
5152   memory_managers.append(&_full_gc_memory_manager);
5153   return memory_managers;
5154 }
5155 
5156 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5157   GrowableArray<MemoryPool*> memory_pools(3);
5158   memory_pools.append(_eden_pool);
5159   memory_pools.append(_survivor_pool);
5160   memory_pools.append(_old_pool);
5161   return memory_pools;
5162 }