1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1BarrierSet.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CardTable.hpp"
  32 #include "gc/g1/g1CollectionSet.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1ConcurrentMark.hpp"
  35 #include "gc/g1/g1EdenRegions.hpp"
  36 #include "gc/g1/g1EvacFailure.hpp"
  37 #include "gc/g1/g1EvacStats.hpp"
  38 #include "gc/g1/g1HeapTransition.hpp"
  39 #include "gc/g1/g1HeapVerifier.hpp"
  40 #include "gc/g1/g1HRPrinter.hpp"
  41 #include "gc/g1/g1InCSetState.hpp"
  42 #include "gc/g1/g1MonitoringSupport.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/heapRegionManager.hpp"
  46 #include "gc/g1/heapRegionSet.hpp"
  47 #include "gc/shared/barrierSet.hpp"
  48 #include "gc/shared/collectedHeap.hpp"
  49 #include "gc/shared/gcHeapSummary.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "gc/shared/softRefPolicy.hpp"
  53 #include "memory/memRegion.hpp"
  54 #include "services/memoryManager.hpp"
  55 #include "utilities/stack.hpp"
  56 
  57 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  58 // It uses the "Garbage First" heap organization and algorithm, which
  59 // may combine concurrent marking with parallel, incremental compaction of
  60 // heap subsets that will yield large amounts of garbage.
  61 
  62 // Forward declarations
  63 class HeapRegion;
  64 class HRRSCleanupTask;
  65 class GenerationSpec;
  66 class G1ParScanThreadState;
  67 class G1ParScanThreadStateSet;
  68 class G1ParScanThreadState;
  69 class MemoryPool;
  70 class ObjectClosure;
  71 class SpaceClosure;
  72 class CompactibleSpaceClosure;
  73 class Space;
  74 class G1CollectionSet;
  75 class G1CollectorPolicy;
  76 class G1Policy;
  77 class G1HotCardCache;
  78 class G1RemSet;
  79 class G1YoungRemSetSamplingThread;
  80 class HeapRegionRemSetIterator;
  81 class G1ConcurrentMark;
  82 class G1ConcurrentMarkThread;
  83 class G1ConcurrentRefine;
  84 class GenerationCounters;
  85 class STWGCTimer;
  86 class G1NewTracer;
  87 class EvacuationFailedInfo;
  88 class nmethod;
  89 class Ticks;
  90 class WorkGang;
  91 class G1Allocator;
  92 class G1ArchiveAllocator;
  93 class G1FullGCScope;
  94 class G1HeapVerifier;
  95 class G1HeapSizingPolicy;
  96 class G1HeapSummary;
  97 class G1EvacSummary;
  98 
  99 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
 100 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 101 
 102 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 103 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 104 
 105 // The G1 STW is alive closure.
 106 // An instance is embedded into the G1CH and used as the
 107 // (optional) _is_alive_non_header closure in the STW
 108 // reference processor. It is also extensively used during
 109 // reference processing during STW evacuation pauses.
 110 class G1STWIsAliveClosure: public BoolObjectClosure {
 111   G1CollectedHeap* _g1h;
 112 public:
 113   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 114   bool do_object_b(oop p);
 115 };
 116 
 117 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 118  private:
 119   void reset_from_card_cache(uint start_idx, size_t num_regions);
 120  public:
 121   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 122 };
 123 
 124 class G1CollectedHeap : public CollectedHeap {
 125   friend class G1FreeCollectionSetTask;
 126   friend class VM_CollectForMetadataAllocation;
 127   friend class VM_G1CollectForAllocation;
 128   friend class VM_G1CollectFull;
 129   friend class VMStructs;
 130   friend class MutatorAllocRegion;
 131   friend class G1FullCollector;
 132   friend class G1GCAllocRegion;
 133   friend class G1HeapVerifier;
 134 
 135   // Closures used in implementation.
 136   friend class G1ParScanThreadState;
 137   friend class G1ParScanThreadStateSet;
 138   friend class G1ParTask;
 139   friend class G1PLABAllocator;
 140   friend class G1PrepareCompactClosure;
 141 
 142   // Other related classes.
 143   friend class HeapRegionClaimer;
 144 
 145   // Testing classes.
 146   friend class G1CheckCSetFastTableClosure;
 147 
 148 private:
 149   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 150 
 151   WorkGang* _workers;
 152   G1CollectorPolicy* _collector_policy;
 153   G1CardTable* _card_table;
 154 
 155   SoftRefPolicy      _soft_ref_policy;
 156 
 157   GCMemoryManager _memory_manager;
 158   GCMemoryManager _full_gc_memory_manager;
 159 
 160   MemoryPool* _eden_pool;
 161   MemoryPool* _survivor_pool;
 162   MemoryPool* _old_pool;
 163 
 164   static size_t _humongous_object_threshold_in_words;
 165 
 166   // It keeps track of the old regions.
 167   HeapRegionSet _old_set;
 168 
 169   // It keeps track of the humongous regions.
 170   HeapRegionSet _humongous_set;
 171 
 172   virtual void initialize_serviceability();
 173 
 174   void eagerly_reclaim_humongous_regions();
 175   // Start a new incremental collection set for the next pause.
 176   void start_new_collection_set();
 177 
 178   // The number of regions we could create by expansion.
 179   uint _expansion_regions;
 180 
 181   // The block offset table for the G1 heap.
 182   G1BlockOffsetTable* _bot;
 183 
 184   // Tears down the region sets / lists so that they are empty and the
 185   // regions on the heap do not belong to a region set / list. The
 186   // only exception is the humongous set which we leave unaltered. If
 187   // free_list_only is true, it will only tear down the master free
 188   // list. It is called before a Full GC (free_list_only == false) or
 189   // before heap shrinking (free_list_only == true).
 190   void tear_down_region_sets(bool free_list_only);
 191 
 192   // Rebuilds the region sets / lists so that they are repopulated to
 193   // reflect the contents of the heap. The only exception is the
 194   // humongous set which was not torn down in the first place. If
 195   // free_list_only is true, it will only rebuild the master free
 196   // list. It is called after a Full GC (free_list_only == false) or
 197   // after heap shrinking (free_list_only == true).
 198   void rebuild_region_sets(bool free_list_only);
 199 
 200   // Callback for region mapping changed events.
 201   G1RegionMappingChangedListener _listener;
 202 
 203   // The sequence of all heap regions in the heap.
 204   HeapRegionManager _hrm;
 205 
 206   // Manages all allocations with regions except humongous object allocations.
 207   G1Allocator* _allocator;
 208 
 209   // Manages all heap verification.
 210   G1HeapVerifier* _verifier;
 211 
 212   // Outside of GC pauses, the number of bytes used in all regions other
 213   // than the current allocation region(s).
 214   size_t _summary_bytes_used;
 215 
 216   void increase_used(size_t bytes);
 217   void decrease_used(size_t bytes);
 218 
 219   void set_used(size_t bytes);
 220 
 221   // Class that handles archive allocation ranges.
 222   G1ArchiveAllocator* _archive_allocator;
 223 
 224   // GC allocation statistics policy for survivors.
 225   G1EvacStats _survivor_evac_stats;
 226 
 227   // GC allocation statistics policy for tenured objects.
 228   G1EvacStats _old_evac_stats;
 229 
 230   // It specifies whether we should attempt to expand the heap after a
 231   // region allocation failure. If heap expansion fails we set this to
 232   // false so that we don't re-attempt the heap expansion (it's likely
 233   // that subsequent expansion attempts will also fail if one fails).
 234   // Currently, it is only consulted during GC and it's reset at the
 235   // start of each GC.
 236   bool _expand_heap_after_alloc_failure;
 237 
 238   // Helper for monitoring and management support.
 239   G1MonitoringSupport* _g1mm;
 240 
 241   // Records whether the region at the given index is (still) a
 242   // candidate for eager reclaim.  Only valid for humongous start
 243   // regions; other regions have unspecified values.  Humongous start
 244   // regions are initialized at start of collection pause, with
 245   // candidates removed from the set as they are found reachable from
 246   // roots or the young generation.
 247   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 248    protected:
 249     bool default_value() const { return false; }
 250    public:
 251     void clear() { G1BiasedMappedArray<bool>::clear(); }
 252     void set_candidate(uint region, bool value) {
 253       set_by_index(region, value);
 254     }
 255     bool is_candidate(uint region) {
 256       return get_by_index(region);
 257     }
 258   };
 259 
 260   HumongousReclaimCandidates _humongous_reclaim_candidates;
 261   // Stores whether during humongous object registration we found candidate regions.
 262   // If not, we can skip a few steps.
 263   bool _has_humongous_reclaim_candidates;
 264 
 265   G1HRPrinter _hr_printer;
 266 
 267   // It decides whether an explicit GC should start a concurrent cycle
 268   // instead of doing a STW GC. Currently, a concurrent cycle is
 269   // explicitly started if:
 270   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 271   // (b) cause == _g1_humongous_allocation
 272   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 273   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 274   // (e) cause == _wb_conc_mark
 275   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 276 
 277   // indicates whether we are in young or mixed GC mode
 278   G1CollectorState _collector_state;
 279 
 280   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 281   // concurrent cycles) we have started.
 282   volatile uint _old_marking_cycles_started;
 283 
 284   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 285   // concurrent cycles) we have completed.
 286   volatile uint _old_marking_cycles_completed;
 287 
 288   // This is a non-product method that is helpful for testing. It is
 289   // called at the end of a GC and artificially expands the heap by
 290   // allocating a number of dead regions. This way we can induce very
 291   // frequent marking cycles and stress the cleanup / concurrent
 292   // cleanup code more (as all the regions that will be allocated by
 293   // this method will be found dead by the marking cycle).
 294   void allocate_dummy_regions() PRODUCT_RETURN;
 295 
 296   // If the HR printer is active, dump the state of the regions in the
 297   // heap after a compaction.
 298   void print_hrm_post_compaction();
 299 
 300   // Create a memory mapper for auxiliary data structures of the given size and
 301   // translation factor.
 302   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 303                                                          size_t size,
 304                                                          size_t translation_factor);
 305 
 306   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 307 
 308   // These are macros so that, if the assert fires, we get the correct
 309   // line number, file, etc.
 310 
 311 #define heap_locking_asserts_params(_extra_message_)                          \
 312   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 313   (_extra_message_),                                                          \
 314   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 315   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 316   BOOL_TO_STR(Thread::current()->is_VM_thread())
 317 
 318 #define assert_heap_locked()                                                  \
 319   do {                                                                        \
 320     assert(Heap_lock->owned_by_self(),                                        \
 321            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 322   } while (0)
 323 
 324 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 325   do {                                                                        \
 326     assert(Heap_lock->owned_by_self() ||                                      \
 327            (SafepointSynchronize::is_at_safepoint() &&                        \
 328              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 329            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 330                                         "should be at a safepoint"));         \
 331   } while (0)
 332 
 333 #define assert_heap_locked_and_not_at_safepoint()                             \
 334   do {                                                                        \
 335     assert(Heap_lock->owned_by_self() &&                                      \
 336                                     !SafepointSynchronize::is_at_safepoint(), \
 337           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 338                                        "should not be at a safepoint"));      \
 339   } while (0)
 340 
 341 #define assert_heap_not_locked()                                              \
 342   do {                                                                        \
 343     assert(!Heap_lock->owned_by_self(),                                       \
 344         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 345   } while (0)
 346 
 347 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 348   do {                                                                        \
 349     assert(!Heap_lock->owned_by_self() &&                                     \
 350                                     !SafepointSynchronize::is_at_safepoint(), \
 351       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 352                                    "should not be at a safepoint"));          \
 353   } while (0)
 354 
 355 #define assert_at_safepoint_on_vm_thread()                                    \
 356   do {                                                                        \
 357     assert_at_safepoint();                                                    \
 358     assert(Thread::current_or_null() != NULL, "no current thread");           \
 359     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 360   } while (0)
 361 
 362   // The young region list.
 363   G1EdenRegions _eden;
 364   G1SurvivorRegions _survivor;
 365 
 366   STWGCTimer* _gc_timer_stw;
 367 
 368   G1NewTracer* _gc_tracer_stw;
 369 
 370   // The current policy object for the collector.
 371   G1Policy* _g1_policy;
 372   G1HeapSizingPolicy* _heap_sizing_policy;
 373 
 374   G1CollectionSet _collection_set;
 375 
 376   // Try to allocate a single non-humongous HeapRegion sufficient for
 377   // an allocation of the given word_size. If do_expand is true,
 378   // attempt to expand the heap if necessary to satisfy the allocation
 379   // request. If the region is to be used as an old region or for a
 380   // humongous object, set is_old to true. If not, to false.
 381   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 382 
 383   // Initialize a contiguous set of free regions of length num_regions
 384   // and starting at index first so that they appear as a single
 385   // humongous region.
 386   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 387                                                       uint num_regions,
 388                                                       size_t word_size);
 389 
 390   // Attempt to allocate a humongous object of the given size. Return
 391   // NULL if unsuccessful.
 392   HeapWord* humongous_obj_allocate(size_t word_size);
 393 
 394   // The following two methods, allocate_new_tlab() and
 395   // mem_allocate(), are the two main entry points from the runtime
 396   // into the G1's allocation routines. They have the following
 397   // assumptions:
 398   //
 399   // * They should both be called outside safepoints.
 400   //
 401   // * They should both be called without holding the Heap_lock.
 402   //
 403   // * All allocation requests for new TLABs should go to
 404   //   allocate_new_tlab().
 405   //
 406   // * All non-TLAB allocation requests should go to mem_allocate().
 407   //
 408   // * If either call cannot satisfy the allocation request using the
 409   //   current allocating region, they will try to get a new one. If
 410   //   this fails, they will attempt to do an evacuation pause and
 411   //   retry the allocation.
 412   //
 413   // * If all allocation attempts fail, even after trying to schedule
 414   //   an evacuation pause, allocate_new_tlab() will return NULL,
 415   //   whereas mem_allocate() will attempt a heap expansion and/or
 416   //   schedule a Full GC.
 417   //
 418   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 419   //   should never be called with word_size being humongous. All
 420   //   humongous allocation requests should go to mem_allocate() which
 421   //   will satisfy them with a special path.
 422 
 423   virtual HeapWord* allocate_new_tlab(size_t min_word_size,
 424                                       size_t desired_word_size,
 425                                       size_t* actual_word_size);
 426 
 427   virtual HeapWord* mem_allocate(size_t word_size,
 428                                  bool*  gc_overhead_limit_was_exceeded);
 429 
 430   // First-level mutator allocation attempt: try to allocate out of
 431   // the mutator alloc region without taking the Heap_lock. This
 432   // should only be used for non-humongous allocations.
 433   inline HeapWord* attempt_allocation(size_t min_word_size,
 434                                       size_t desired_word_size,
 435                                       size_t* actual_word_size);
 436 
 437 
 438   // Second-level mutator allocation attempt: take the Heap_lock and
 439   // retry the allocation attempt, potentially scheduling a GC
 440   // pause. This should only be used for non-humongous allocations.
 441   HeapWord* attempt_allocation_slow(size_t word_size);
 442 
 443   // Takes the Heap_lock and attempts a humongous allocation. It can
 444   // potentially schedule a GC pause.
 445   HeapWord* attempt_allocation_humongous(size_t word_size);
 446 
 447   // Allocation attempt that should be called during safepoints (e.g.,
 448   // at the end of a successful GC). expect_null_mutator_alloc_region
 449   // specifies whether the mutator alloc region is expected to be NULL
 450   // or not.
 451   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 452                                             bool expect_null_mutator_alloc_region);
 453 
 454   // These methods are the "callbacks" from the G1AllocRegion class.
 455 
 456   // For mutator alloc regions.
 457   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 458   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 459                                    size_t allocated_bytes);
 460 
 461   // For GC alloc regions.
 462   bool has_more_regions(InCSetState dest);
 463   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 464   void retire_gc_alloc_region(HeapRegion* alloc_region,
 465                               size_t allocated_bytes, InCSetState dest);
 466 
 467   // - if explicit_gc is true, the GC is for a System.gc() etc,
 468   //   otherwise it's for a failed allocation.
 469   // - if clear_all_soft_refs is true, all soft references should be
 470   //   cleared during the GC.
 471   // - it returns false if it is unable to do the collection due to the
 472   //   GC locker being active, true otherwise.
 473   bool do_full_collection(bool explicit_gc,
 474                           bool clear_all_soft_refs);
 475 
 476   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 477   virtual void do_full_collection(bool clear_all_soft_refs);
 478 
 479   // Resize the heap if necessary after a full collection.
 480   void resize_if_necessary_after_full_collection();
 481 
 482   // Callback from VM_G1CollectForAllocation operation.
 483   // This function does everything necessary/possible to satisfy a
 484   // failed allocation request (including collection, expansion, etc.)
 485   HeapWord* satisfy_failed_allocation(size_t word_size,
 486                                       bool* succeeded);
 487   // Internal helpers used during full GC to split it up to
 488   // increase readability.
 489   void abort_concurrent_cycle();
 490   void verify_before_full_collection(bool explicit_gc);
 491   void prepare_heap_for_full_collection();
 492   void prepare_heap_for_mutators();
 493   void abort_refinement();
 494   void verify_after_full_collection();
 495   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 496 
 497   // Helper method for satisfy_failed_allocation()
 498   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 499                                              bool do_gc,
 500                                              bool clear_all_soft_refs,
 501                                              bool expect_null_mutator_alloc_region,
 502                                              bool* gc_succeeded);
 503 
 504   // Attempting to expand the heap sufficiently
 505   // to support an allocation of the given "word_size".  If
 506   // successful, perform the allocation and return the address of the
 507   // allocated block, or else "NULL".
 508   HeapWord* expand_and_allocate(size_t word_size);
 509 
 510   // Preserve any referents discovered by concurrent marking that have not yet been
 511   // copied by the STW pause.
 512   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 513   // Process any reference objects discovered during
 514   // an incremental evacuation pause.
 515   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 516 
 517   // Enqueue any remaining discovered references
 518   // after processing.
 519   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 520 
 521   // Merges the information gathered on a per-thread basis for all worker threads
 522   // during GC into global variables.
 523   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 524 public:
 525   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 526 
 527   WorkGang* workers() const { return _workers; }
 528 
 529   G1Allocator* allocator() {
 530     return _allocator;
 531   }
 532 
 533   G1HeapVerifier* verifier() {
 534     return _verifier;
 535   }
 536 
 537   G1MonitoringSupport* g1mm() {
 538     assert(_g1mm != NULL, "should have been initialized");
 539     return _g1mm;
 540   }
 541 
 542   // Expand the garbage-first heap by at least the given size (in bytes!).
 543   // Returns true if the heap was expanded by the requested amount;
 544   // false otherwise.
 545   // (Rounds up to a HeapRegion boundary.)
 546   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 547 
 548   // Returns the PLAB statistics for a given destination.
 549   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 550 
 551   // Determines PLAB size for a given destination.
 552   inline size_t desired_plab_sz(InCSetState dest);
 553 
 554   // Do anything common to GC's.
 555   void gc_prologue(bool full);
 556   void gc_epilogue(bool full);
 557 
 558   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 559   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 560 
 561   // Modify the reclaim candidate set and test for presence.
 562   // These are only valid for starts_humongous regions.
 563   inline void set_humongous_reclaim_candidate(uint region, bool value);
 564   inline bool is_humongous_reclaim_candidate(uint region);
 565 
 566   // Remove from the reclaim candidate set.  Also remove from the
 567   // collection set so that later encounters avoid the slow path.
 568   inline void set_humongous_is_live(oop obj);
 569 
 570   // Register the given region to be part of the collection set.
 571   inline void register_humongous_region_with_cset(uint index);
 572   // Register regions with humongous objects (actually on the start region) in
 573   // the in_cset_fast_test table.
 574   void register_humongous_regions_with_cset();
 575   // We register a region with the fast "in collection set" test. We
 576   // simply set to true the array slot corresponding to this region.
 577   void register_young_region_with_cset(HeapRegion* r) {
 578     _in_cset_fast_test.set_in_young(r->hrm_index());
 579   }
 580   void register_old_region_with_cset(HeapRegion* r) {
 581     _in_cset_fast_test.set_in_old(r->hrm_index());
 582   }
 583   void clear_in_cset(const HeapRegion* hr) {
 584     _in_cset_fast_test.clear(hr);
 585   }
 586 
 587   void clear_cset_fast_test() {
 588     _in_cset_fast_test.clear();
 589   }
 590 
 591   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 592 
 593   // This is called at the start of either a concurrent cycle or a Full
 594   // GC to update the number of old marking cycles started.
 595   void increment_old_marking_cycles_started();
 596 
 597   // This is called at the end of either a concurrent cycle or a Full
 598   // GC to update the number of old marking cycles completed. Those two
 599   // can happen in a nested fashion, i.e., we start a concurrent
 600   // cycle, a Full GC happens half-way through it which ends first,
 601   // and then the cycle notices that a Full GC happened and ends
 602   // too. The concurrent parameter is a boolean to help us do a bit
 603   // tighter consistency checking in the method. If concurrent is
 604   // false, the caller is the inner caller in the nesting (i.e., the
 605   // Full GC). If concurrent is true, the caller is the outer caller
 606   // in this nesting (i.e., the concurrent cycle). Further nesting is
 607   // not currently supported. The end of this call also notifies
 608   // the FullGCCount_lock in case a Java thread is waiting for a full
 609   // GC to happen (e.g., it called System.gc() with
 610   // +ExplicitGCInvokesConcurrent).
 611   void increment_old_marking_cycles_completed(bool concurrent);
 612 
 613   uint old_marking_cycles_completed() {
 614     return _old_marking_cycles_completed;
 615   }
 616 
 617   G1HRPrinter* hr_printer() { return &_hr_printer; }
 618 
 619   // Allocates a new heap region instance.
 620   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 621 
 622   // Allocate the highest free region in the reserved heap. This will commit
 623   // regions as necessary.
 624   HeapRegion* alloc_highest_free_region();
 625 
 626   // Frees a non-humongous region by initializing its contents and
 627   // adding it to the free list that's passed as a parameter (this is
 628   // usually a local list which will be appended to the master free
 629   // list later). The used bytes of freed regions are accumulated in
 630   // pre_used. If skip_remset is true, the region's RSet will not be freed
 631   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 632   // be freed up. The assumption is that this will be done later.
 633   // The locked parameter indicates if the caller has already taken
 634   // care of proper synchronization. This may allow some optimizations.
 635   void free_region(HeapRegion* hr,
 636                    FreeRegionList* free_list,
 637                    bool skip_remset,
 638                    bool skip_hot_card_cache = false,
 639                    bool locked = false);
 640 
 641   // It dirties the cards that cover the block so that the post
 642   // write barrier never queues anything when updating objects on this
 643   // block. It is assumed (and in fact we assert) that the block
 644   // belongs to a young region.
 645   inline void dirty_young_block(HeapWord* start, size_t word_size);
 646 
 647   // Frees a humongous region by collapsing it into individual regions
 648   // and calling free_region() for each of them. The freed regions
 649   // will be added to the free list that's passed as a parameter (this
 650   // is usually a local list which will be appended to the master free
 651   // list later).
 652   // The method assumes that only a single thread is ever calling
 653   // this for a particular region at once.
 654   void free_humongous_region(HeapRegion* hr,
 655                              FreeRegionList* free_list);
 656 
 657   // Facility for allocating in 'archive' regions in high heap memory and
 658   // recording the allocated ranges. These should all be called from the
 659   // VM thread at safepoints, without the heap lock held. They can be used
 660   // to create and archive a set of heap regions which can be mapped at the
 661   // same fixed addresses in a subsequent JVM invocation.
 662   void begin_archive_alloc_range(bool open = false);
 663 
 664   // Check if the requested size would be too large for an archive allocation.
 665   bool is_archive_alloc_too_large(size_t word_size);
 666 
 667   // Allocate memory of the requested size from the archive region. This will
 668   // return NULL if the size is too large or if no memory is available. It
 669   // does not trigger a garbage collection.
 670   HeapWord* archive_mem_allocate(size_t word_size);
 671 
 672   // Optionally aligns the end address and returns the allocated ranges in
 673   // an array of MemRegions in order of ascending addresses.
 674   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 675                                size_t end_alignment_in_bytes = 0);
 676 
 677   // Facility for allocating a fixed range within the heap and marking
 678   // the containing regions as 'archive'. For use at JVM init time, when the
 679   // caller may mmap archived heap data at the specified range(s).
 680   // Verify that the MemRegions specified in the argument array are within the
 681   // reserved heap.
 682   bool check_archive_addresses(MemRegion* range, size_t count);
 683 
 684   // Commit the appropriate G1 regions containing the specified MemRegions
 685   // and mark them as 'archive' regions. The regions in the array must be
 686   // non-overlapping and in order of ascending address.
 687   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 688 
 689   // Insert any required filler objects in the G1 regions around the specified
 690   // ranges to make the regions parseable. This must be called after
 691   // alloc_archive_regions, and after class loading has occurred.
 692   void fill_archive_regions(MemRegion* range, size_t count);
 693 
 694   // For each of the specified MemRegions, uncommit the containing G1 regions
 695   // which had been allocated by alloc_archive_regions. This should be called
 696   // rather than fill_archive_regions at JVM init time if the archive file
 697   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 698   void dealloc_archive_regions(MemRegion* range, size_t count);
 699 
 700 private:
 701 
 702   // Shrink the garbage-first heap by at most the given size (in bytes!).
 703   // (Rounds down to a HeapRegion boundary.)
 704   void shrink(size_t expand_bytes);
 705   void shrink_helper(size_t expand_bytes);
 706 
 707   #if TASKQUEUE_STATS
 708   static void print_taskqueue_stats_hdr(outputStream* const st);
 709   void print_taskqueue_stats() const;
 710   void reset_taskqueue_stats();
 711   #endif // TASKQUEUE_STATS
 712 
 713   // Schedule the VM operation that will do an evacuation pause to
 714   // satisfy an allocation request of word_size. *succeeded will
 715   // return whether the VM operation was successful (it did do an
 716   // evacuation pause) or not (another thread beat us to it or the GC
 717   // locker was active). Given that we should not be holding the
 718   // Heap_lock when we enter this method, we will pass the
 719   // gc_count_before (i.e., total_collections()) as a parameter since
 720   // it has to be read while holding the Heap_lock. Currently, both
 721   // methods that call do_collection_pause() release the Heap_lock
 722   // before the call, so it's easy to read gc_count_before just before.
 723   HeapWord* do_collection_pause(size_t         word_size,
 724                                 uint           gc_count_before,
 725                                 bool*          succeeded,
 726                                 GCCause::Cause gc_cause);
 727 
 728   void wait_for_root_region_scanning();
 729 
 730   // The guts of the incremental collection pause, executed by the vm
 731   // thread. It returns false if it is unable to do the collection due
 732   // to the GC locker being active, true otherwise
 733   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 734 
 735   // Actually do the work of evacuating the collection set.
 736   void evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states);
 737 
 738   void pre_evacuate_collection_set();
 739   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 740 
 741   // Print the header for the per-thread termination statistics.
 742   static void print_termination_stats_hdr();
 743   // Print actual per-thread termination statistics.
 744   void print_termination_stats(uint worker_id,
 745                                double elapsed_ms,
 746                                double strong_roots_ms,
 747                                double term_ms,
 748                                size_t term_attempts,
 749                                size_t alloc_buffer_waste,
 750                                size_t undo_waste) const;
 751   // Update object copying statistics.
 752   void record_obj_copy_mem_stats();
 753 
 754   // The hot card cache for remembered set insertion optimization.
 755   G1HotCardCache* _hot_card_cache;
 756 
 757   // The g1 remembered set of the heap.
 758   G1RemSet* _g1_rem_set;
 759 
 760   // A set of cards that cover the objects for which the Rsets should be updated
 761   // concurrently after the collection.
 762   DirtyCardQueueSet _dirty_card_queue_set;
 763 
 764   // After a collection pause, convert the regions in the collection set into free
 765   // regions.
 766   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 767 
 768   // Abandon the current collection set without recording policy
 769   // statistics or updating free lists.
 770   void abandon_collection_set(G1CollectionSet* collection_set);
 771 
 772   // The concurrent marker (and the thread it runs in.)
 773   G1ConcurrentMark* _cm;
 774   G1ConcurrentMarkThread* _cm_thread;
 775 
 776   // The concurrent refiner.
 777   G1ConcurrentRefine* _cr;
 778 
 779   // The parallel task queues
 780   RefToScanQueueSet *_task_queues;
 781 
 782   // True iff a evacuation has failed in the current collection.
 783   bool _evacuation_failed;
 784 
 785   EvacuationFailedInfo* _evacuation_failed_info_array;
 786 
 787   // Failed evacuations cause some logical from-space objects to have
 788   // forwarding pointers to themselves.  Reset them.
 789   void remove_self_forwarding_pointers();
 790 
 791   // Restore the objects in the regions in the collection set after an
 792   // evacuation failure.
 793   void restore_after_evac_failure();
 794 
 795   PreservedMarksSet _preserved_marks_set;
 796 
 797   // Preserve the mark of "obj", if necessary, in preparation for its mark
 798   // word being overwritten with a self-forwarding-pointer.
 799   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 800 
 801 #ifndef PRODUCT
 802   // Support for forcing evacuation failures. Analogous to
 803   // PromotionFailureALot for the other collectors.
 804 
 805   // Records whether G1EvacuationFailureALot should be in effect
 806   // for the current GC
 807   bool _evacuation_failure_alot_for_current_gc;
 808 
 809   // Used to record the GC number for interval checking when
 810   // determining whether G1EvaucationFailureALot is in effect
 811   // for the current GC.
 812   size_t _evacuation_failure_alot_gc_number;
 813 
 814   // Count of the number of evacuations between failures.
 815   volatile size_t _evacuation_failure_alot_count;
 816 
 817   // Set whether G1EvacuationFailureALot should be in effect
 818   // for the current GC (based upon the type of GC and which
 819   // command line flags are set);
 820   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 821                                                   bool during_initial_mark,
 822                                                   bool mark_or_rebuild_in_progress);
 823 
 824   inline void set_evacuation_failure_alot_for_current_gc();
 825 
 826   // Return true if it's time to cause an evacuation failure.
 827   inline bool evacuation_should_fail();
 828 
 829   // Reset the G1EvacuationFailureALot counters.  Should be called at
 830   // the end of an evacuation pause in which an evacuation failure occurred.
 831   inline void reset_evacuation_should_fail();
 832 #endif // !PRODUCT
 833 
 834   // ("Weak") Reference processing support.
 835   //
 836   // G1 has 2 instances of the reference processor class. One
 837   // (_ref_processor_cm) handles reference object discovery
 838   // and subsequent processing during concurrent marking cycles.
 839   //
 840   // The other (_ref_processor_stw) handles reference object
 841   // discovery and processing during full GCs and incremental
 842   // evacuation pauses.
 843   //
 844   // During an incremental pause, reference discovery will be
 845   // temporarily disabled for _ref_processor_cm and will be
 846   // enabled for _ref_processor_stw. At the end of the evacuation
 847   // pause references discovered by _ref_processor_stw will be
 848   // processed and discovery will be disabled. The previous
 849   // setting for reference object discovery for _ref_processor_cm
 850   // will be re-instated.
 851   //
 852   // At the start of marking:
 853   //  * Discovery by the CM ref processor is verified to be inactive
 854   //    and it's discovered lists are empty.
 855   //  * Discovery by the CM ref processor is then enabled.
 856   //
 857   // At the end of marking:
 858   //  * Any references on the CM ref processor's discovered
 859   //    lists are processed (possibly MT).
 860   //
 861   // At the start of full GC we:
 862   //  * Disable discovery by the CM ref processor and
 863   //    empty CM ref processor's discovered lists
 864   //    (without processing any entries).
 865   //  * Verify that the STW ref processor is inactive and it's
 866   //    discovered lists are empty.
 867   //  * Temporarily set STW ref processor discovery as single threaded.
 868   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 869   //    field.
 870   //  * Finally enable discovery by the STW ref processor.
 871   //
 872   // The STW ref processor is used to record any discovered
 873   // references during the full GC.
 874   //
 875   // At the end of a full GC we:
 876   //  * Enqueue any reference objects discovered by the STW ref processor
 877   //    that have non-live referents. This has the side-effect of
 878   //    making the STW ref processor inactive by disabling discovery.
 879   //  * Verify that the CM ref processor is still inactive
 880   //    and no references have been placed on it's discovered
 881   //    lists (also checked as a precondition during initial marking).
 882 
 883   // The (stw) reference processor...
 884   ReferenceProcessor* _ref_processor_stw;
 885 
 886   // During reference object discovery, the _is_alive_non_header
 887   // closure (if non-null) is applied to the referent object to
 888   // determine whether the referent is live. If so then the
 889   // reference object does not need to be 'discovered' and can
 890   // be treated as a regular oop. This has the benefit of reducing
 891   // the number of 'discovered' reference objects that need to
 892   // be processed.
 893   //
 894   // Instance of the is_alive closure for embedding into the
 895   // STW reference processor as the _is_alive_non_header field.
 896   // Supplying a value for the _is_alive_non_header field is
 897   // optional but doing so prevents unnecessary additions to
 898   // the discovered lists during reference discovery.
 899   G1STWIsAliveClosure _is_alive_closure_stw;
 900 
 901   // The (concurrent marking) reference processor...
 902   ReferenceProcessor* _ref_processor_cm;
 903 
 904   // Instance of the concurrent mark is_alive closure for embedding
 905   // into the Concurrent Marking reference processor as the
 906   // _is_alive_non_header field. Supplying a value for the
 907   // _is_alive_non_header field is optional but doing so prevents
 908   // unnecessary additions to the discovered lists during reference
 909   // discovery.
 910   G1CMIsAliveClosure _is_alive_closure_cm;
 911 
 912 public:
 913 
 914   RefToScanQueue *task_queue(uint i) const;
 915 
 916   uint num_task_queues() const;
 917 
 918   // A set of cards where updates happened during the GC
 919   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 920 
 921   // Create a G1CollectedHeap with the specified policy.
 922   // Must call the initialize method afterwards.
 923   // May not return if something goes wrong.
 924   G1CollectedHeap(G1CollectorPolicy* policy);
 925 
 926 private:
 927   jint initialize_concurrent_refinement();
 928   jint initialize_young_gen_sampling_thread();
 929 public:
 930   // Initialize the G1CollectedHeap to have the initial and
 931   // maximum sizes and remembered and barrier sets
 932   // specified by the policy object.
 933   jint initialize();
 934 
 935   virtual void stop();
 936   virtual void safepoint_synchronize_begin();
 937   virtual void safepoint_synchronize_end();
 938 
 939   // Return the (conservative) maximum heap alignment for any G1 heap
 940   static size_t conservative_max_heap_alignment();
 941 
 942   // Does operations required after initialization has been done.
 943   void post_initialize();
 944 
 945   // Initialize weak reference processing.
 946   void ref_processing_init();
 947 
 948   virtual Name kind() const {
 949     return CollectedHeap::G1;
 950   }
 951 
 952   virtual const char* name() const {
 953     return "G1";
 954   }
 955 
 956   const G1CollectorState* collector_state() const { return &_collector_state; }
 957   G1CollectorState* collector_state() { return &_collector_state; }
 958 
 959   // The current policy object for the collector.
 960   G1Policy* g1_policy() const { return _g1_policy; }
 961 
 962   const G1CollectionSet* collection_set() const { return &_collection_set; }
 963   G1CollectionSet* collection_set() { return &_collection_set; }
 964 
 965   virtual CollectorPolicy* collector_policy() const;
 966 
 967   virtual SoftRefPolicy* soft_ref_policy();
 968 
 969   virtual GrowableArray<GCMemoryManager*> memory_managers();
 970   virtual GrowableArray<MemoryPool*> memory_pools();
 971 
 972   // The rem set and barrier set.
 973   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 974 
 975   // Try to minimize the remembered set.
 976   void scrub_rem_set();
 977 
 978   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
 979   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
 980 
 981   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
 982   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
 983 
 984   // The shared block offset table array.
 985   G1BlockOffsetTable* bot() const { return _bot; }
 986 
 987   // Reference Processing accessors
 988 
 989   // The STW reference processor....
 990   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
 991 
 992   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
 993 
 994   // The Concurrent Marking reference processor...
 995   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
 996 
 997   size_t unused_committed_regions_in_bytes() const;
 998   virtual size_t capacity() const;
 999   virtual size_t used() const;
1000   // This should be called when we're not holding the heap lock. The
1001   // result might be a bit inaccurate.
1002   size_t used_unlocked() const;
1003   size_t recalculate_used() const;
1004 
1005   // These virtual functions do the actual allocation.
1006   // Some heaps may offer a contiguous region for shared non-blocking
1007   // allocation, via inlined code (by exporting the address of the top and
1008   // end fields defining the extent of the contiguous allocation region.)
1009   // But G1CollectedHeap doesn't yet support this.
1010 
1011   virtual bool is_maximal_no_gc() const {
1012     return _hrm.available() == 0;
1013   }
1014 
1015   // Returns whether there are any regions left in the heap for allocation.
1016   bool has_regions_left_for_allocation() const {
1017     return !is_maximal_no_gc() || num_free_regions() != 0;
1018   }
1019 
1020   // The current number of regions in the heap.
1021   uint num_regions() const { return _hrm.length(); }
1022 
1023   // The max number of regions in the heap.
1024   uint max_regions() const { return _hrm.max_length(); }
1025 
1026   // The number of regions that are completely free.
1027   uint num_free_regions() const { return _hrm.num_free_regions(); }
1028 
1029   MemoryUsage get_auxiliary_data_memory_usage() const {
1030     return _hrm.get_auxiliary_data_memory_usage();
1031   }
1032 
1033   // The number of regions that are not completely free.
1034   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1035 
1036 #ifdef ASSERT
1037   bool is_on_master_free_list(HeapRegion* hr) {
1038     return _hrm.is_free(hr);
1039   }
1040 #endif // ASSERT
1041 
1042   inline void old_set_add(HeapRegion* hr);
1043   inline void old_set_remove(HeapRegion* hr);
1044 
1045   size_t non_young_capacity_bytes() {
1046     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1047   }
1048 
1049   // Determine whether the given region is one that we are using as an
1050   // old GC alloc region.
1051   bool is_old_gc_alloc_region(HeapRegion* hr);
1052 
1053   // Perform a collection of the heap; intended for use in implementing
1054   // "System.gc".  This probably implies as full a collection as the
1055   // "CollectedHeap" supports.
1056   virtual void collect(GCCause::Cause cause);
1057 
1058   // True iff an evacuation has failed in the most-recent collection.
1059   bool evacuation_failed() { return _evacuation_failed; }
1060 
1061   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1062   void prepend_to_freelist(FreeRegionList* list);
1063   void decrement_summary_bytes(size_t bytes);
1064 
1065   virtual bool is_in(const void* p) const;
1066 #ifdef ASSERT
1067   // Returns whether p is in one of the available areas of the heap. Slow but
1068   // extensive version.
1069   bool is_in_exact(const void* p) const;
1070 #endif
1071 
1072   // Return "TRUE" iff the given object address is within the collection
1073   // set. Assumes that the reference points into the heap.
1074   inline bool is_in_cset(const HeapRegion *hr);
1075   inline bool is_in_cset(oop obj);
1076   inline bool is_in_cset(HeapWord* addr);
1077 
1078   inline bool is_in_cset_or_humongous(const oop obj);
1079 
1080  private:
1081   // This array is used for a quick test on whether a reference points into
1082   // the collection set or not. Each of the array's elements denotes whether the
1083   // corresponding region is in the collection set or not.
1084   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1085 
1086  public:
1087 
1088   inline InCSetState in_cset_state(const oop obj);
1089 
1090   // Return "TRUE" iff the given object address is in the reserved
1091   // region of g1.
1092   bool is_in_g1_reserved(const void* p) const {
1093     return _hrm.reserved().contains(p);
1094   }
1095 
1096   // Returns a MemRegion that corresponds to the space that has been
1097   // reserved for the heap
1098   MemRegion g1_reserved() const {
1099     return _hrm.reserved();
1100   }
1101 
1102   virtual bool is_in_closed_subset(const void* p) const;
1103 
1104   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1105 
1106   G1CardTable* card_table() const {
1107     return _card_table;
1108   }
1109 
1110   // Iteration functions.
1111 
1112   // Iterate over all objects, calling "cl.do_object" on each.
1113   virtual void object_iterate(ObjectClosure* cl);
1114 
1115   virtual void safe_object_iterate(ObjectClosure* cl) {
1116     object_iterate(cl);
1117   }
1118 
1119   // Iterate over heap regions, in address order, terminating the
1120   // iteration early if the "do_heap_region" method returns "true".
1121   void heap_region_iterate(HeapRegionClosure* blk) const;
1122 
1123   // Return the region with the given index. It assumes the index is valid.
1124   inline HeapRegion* region_at(uint index) const;
1125 
1126   // Return the next region (by index) that is part of the same
1127   // humongous object that hr is part of.
1128   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1129 
1130   // Calculate the region index of the given address. Given address must be
1131   // within the heap.
1132   inline uint addr_to_region(HeapWord* addr) const;
1133 
1134   inline HeapWord* bottom_addr_for_region(uint index) const;
1135 
1136   // Two functions to iterate over the heap regions in parallel. Threads
1137   // compete using the HeapRegionClaimer to claim the regions before
1138   // applying the closure on them.
1139   // The _from_worker_offset version uses the HeapRegionClaimer and
1140   // the worker id to calculate a start offset to prevent all workers to
1141   // start from the point.
1142   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1143                                                   HeapRegionClaimer* hrclaimer,
1144                                                   uint worker_id) const;
1145 
1146   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1147                                           HeapRegionClaimer* hrclaimer) const;
1148 
1149   // Iterate over the regions (if any) in the current collection set.
1150   void collection_set_iterate(HeapRegionClosure* blk);
1151 
1152   // Iterate over the regions (if any) in the current collection set. Starts the
1153   // iteration over the entire collection set so that the start regions of a given
1154   // worker id over the set active_workers are evenly spread across the set of
1155   // collection set regions.
1156   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1157 
1158   // Returns the HeapRegion that contains addr. addr must not be NULL.
1159   template <class T>
1160   inline HeapRegion* heap_region_containing(const T addr) const;
1161 
1162   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1163   // each address in the (reserved) heap is a member of exactly
1164   // one block.  The defining characteristic of a block is that it is
1165   // possible to find its size, and thus to progress forward to the next
1166   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1167   // represent Java objects, or they might be free blocks in a
1168   // free-list-based heap (or subheap), as long as the two kinds are
1169   // distinguishable and the size of each is determinable.
1170 
1171   // Returns the address of the start of the "block" that contains the
1172   // address "addr".  We say "blocks" instead of "object" since some heaps
1173   // may not pack objects densely; a chunk may either be an object or a
1174   // non-object.
1175   virtual HeapWord* block_start(const void* addr) const;
1176 
1177   // Requires "addr" to be the start of a chunk, and returns its size.
1178   // "addr + size" is required to be the start of a new chunk, or the end
1179   // of the active area of the heap.
1180   virtual size_t block_size(const HeapWord* addr) const;
1181 
1182   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1183   // the block is an object.
1184   virtual bool block_is_obj(const HeapWord* addr) const;
1185 
1186   // Section on thread-local allocation buffers (TLABs)
1187   // See CollectedHeap for semantics.
1188 
1189   bool supports_tlab_allocation() const;
1190   size_t tlab_capacity(Thread* ignored) const;
1191   size_t tlab_used(Thread* ignored) const;
1192   size_t max_tlab_size() const;
1193   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1194 
1195   inline bool is_in_young(const oop obj);
1196 
1197   // Returns "true" iff the given word_size is "very large".
1198   static bool is_humongous(size_t word_size) {
1199     // Note this has to be strictly greater-than as the TLABs
1200     // are capped at the humongous threshold and we want to
1201     // ensure that we don't try to allocate a TLAB as
1202     // humongous and that we don't allocate a humongous
1203     // object in a TLAB.
1204     return word_size > _humongous_object_threshold_in_words;
1205   }
1206 
1207   // Returns the humongous threshold for a specific region size
1208   static size_t humongous_threshold_for(size_t region_size) {
1209     return (region_size / 2);
1210   }
1211 
1212   // Returns the number of regions the humongous object of the given word size
1213   // requires.
1214   static size_t humongous_obj_size_in_regions(size_t word_size);
1215 
1216   // Print the maximum heap capacity.
1217   virtual size_t max_capacity() const;
1218 
1219   virtual jlong millis_since_last_gc();
1220 
1221 
1222   // Convenience function to be used in situations where the heap type can be
1223   // asserted to be this type.
1224   static G1CollectedHeap* heap();
1225 
1226   void set_region_short_lived_locked(HeapRegion* hr);
1227   // add appropriate methods for any other surv rate groups
1228 
1229   const G1SurvivorRegions* survivor() const { return &_survivor; }
1230 
1231   uint survivor_regions_count() const {
1232     return _survivor.length();
1233   }
1234 
1235   uint eden_regions_count() const {
1236     return _eden.length();
1237   }
1238 
1239   uint young_regions_count() const {
1240     return _eden.length() + _survivor.length();
1241   }
1242 
1243   uint old_regions_count() const { return _old_set.length(); }
1244 
1245   uint humongous_regions_count() const { return _humongous_set.length(); }
1246 
1247 #ifdef ASSERT
1248   bool check_young_list_empty();
1249 #endif
1250 
1251   // *** Stuff related to concurrent marking.  It's not clear to me that so
1252   // many of these need to be public.
1253 
1254   // The functions below are helper functions that a subclass of
1255   // "CollectedHeap" can use in the implementation of its virtual
1256   // functions.
1257   // This performs a concurrent marking of the live objects in a
1258   // bitmap off to the side.
1259   void do_concurrent_mark();
1260 
1261   bool is_marked_next(oop obj) const;
1262 
1263   // Determine if an object is dead, given the object and also
1264   // the region to which the object belongs. An object is dead
1265   // iff a) it was not allocated since the last mark, b) it
1266   // is not marked, and c) it is not in an archive region.
1267   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1268     return
1269       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1270       !hr->is_archive();
1271   }
1272 
1273   // This function returns true when an object has been
1274   // around since the previous marking and hasn't yet
1275   // been marked during this marking, and is not in an archive region.
1276   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1277     return
1278       !hr->obj_allocated_since_next_marking(obj) &&
1279       !is_marked_next(obj) &&
1280       !hr->is_archive();
1281   }
1282 
1283   // Determine if an object is dead, given only the object itself.
1284   // This will find the region to which the object belongs and
1285   // then call the region version of the same function.
1286 
1287   // Added if it is NULL it isn't dead.
1288 
1289   inline bool is_obj_dead(const oop obj) const;
1290 
1291   inline bool is_obj_ill(const oop obj) const;
1292 
1293   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1294   inline bool is_obj_dead_full(const oop obj) const;
1295 
1296   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1297 
1298   // Refinement
1299 
1300   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1301 
1302   // Optimized nmethod scanning support routines
1303 
1304   // Is an oop scavengeable
1305   virtual bool is_scavengable(oop obj);
1306 
1307   // Register the given nmethod with the G1 heap.
1308   virtual void register_nmethod(nmethod* nm);
1309 
1310   // Unregister the given nmethod from the G1 heap.
1311   virtual void unregister_nmethod(nmethod* nm);
1312 
1313   // Free up superfluous code root memory.
1314   void purge_code_root_memory();
1315 
1316   // Rebuild the strong code root lists for each region
1317   // after a full GC.
1318   void rebuild_strong_code_roots();
1319 
1320   // Partial cleaning used when class unloading is disabled.
1321   // Let the caller choose what structures to clean out:
1322   // - StringTable
1323   // - SymbolTable
1324   // - StringDeduplication structures
1325   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_symbols, bool unlink_string_dedup);
1326 
1327   // Complete cleaning used when class unloading is enabled.
1328   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1329   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1330 
1331   // Redirty logged cards in the refinement queue.
1332   void redirty_logged_cards();
1333   // Verification
1334 
1335   // Perform any cleanup actions necessary before allowing a verification.
1336   virtual void prepare_for_verify();
1337 
1338   // Perform verification.
1339 
1340   // vo == UsePrevMarking -> use "prev" marking information,
1341   // vo == UseNextMarking -> use "next" marking information
1342   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1343   //
1344   // NOTE: Only the "prev" marking information is guaranteed to be
1345   // consistent most of the time, so most calls to this should use
1346   // vo == UsePrevMarking.
1347   // Currently, there is only one case where this is called with
1348   // vo == UseNextMarking, which is to verify the "next" marking
1349   // information at the end of remark.
1350   // Currently there is only one place where this is called with
1351   // vo == UseFullMarking, which is to verify the marking during a
1352   // full GC.
1353   void verify(VerifyOption vo);
1354 
1355   // WhiteBox testing support.
1356   virtual bool supports_concurrent_phase_control() const;
1357   virtual const char* const* concurrent_phases() const;
1358   virtual bool request_concurrent_phase(const char* phase);
1359 
1360   // The methods below are here for convenience and dispatch the
1361   // appropriate method depending on value of the given VerifyOption
1362   // parameter. The values for that parameter, and their meanings,
1363   // are the same as those above.
1364 
1365   bool is_obj_dead_cond(const oop obj,
1366                         const HeapRegion* hr,
1367                         const VerifyOption vo) const;
1368 
1369   bool is_obj_dead_cond(const oop obj,
1370                         const VerifyOption vo) const;
1371 
1372   G1HeapSummary create_g1_heap_summary();
1373   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1374 
1375   // Printing
1376 private:
1377   void print_heap_regions() const;
1378   void print_regions_on(outputStream* st) const;
1379 
1380 public:
1381   virtual void print_on(outputStream* st) const;
1382   virtual void print_extended_on(outputStream* st) const;
1383   virtual void print_on_error(outputStream* st) const;
1384 
1385   virtual void print_gc_threads_on(outputStream* st) const;
1386   virtual void gc_threads_do(ThreadClosure* tc) const;
1387 
1388   // Override
1389   void print_tracing_info() const;
1390 
1391   // The following two methods are helpful for debugging RSet issues.
1392   void print_cset_rsets() PRODUCT_RETURN;
1393   void print_all_rsets() PRODUCT_RETURN;
1394 
1395 public:
1396   size_t pending_card_num();
1397 
1398 private:
1399   size_t _max_heap_capacity;
1400 };
1401 
1402 class G1ParEvacuateFollowersClosure : public VoidClosure {
1403 private:
1404   double _start_term;
1405   double _term_time;
1406   size_t _term_attempts;
1407 
1408   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1409   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1410 protected:
1411   G1CollectedHeap*              _g1h;
1412   G1ParScanThreadState*         _par_scan_state;
1413   RefToScanQueueSet*            _queues;
1414   ParallelTaskTerminator*       _terminator;
1415 
1416   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1417   RefToScanQueueSet*      queues()         { return _queues; }
1418   ParallelTaskTerminator* terminator()     { return _terminator; }
1419 
1420 public:
1421   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1422                                 G1ParScanThreadState* par_scan_state,
1423                                 RefToScanQueueSet* queues,
1424                                 ParallelTaskTerminator* terminator)
1425     : _g1h(g1h), _par_scan_state(par_scan_state),
1426       _queues(queues), _terminator(terminator),
1427       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1428 
1429   void do_void();
1430 
1431   double term_time() const { return _term_time; }
1432   size_t term_attempts() const { return _term_attempts; }
1433 
1434 private:
1435   inline bool offer_termination();
1436 };
1437 
1438 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP