1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1ThreadLocalData.hpp"
  57 #include "gc/g1/g1YCTypes.hpp"
  58 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  59 #include "gc/g1/heapRegion.inline.hpp"
  60 #include "gc/g1/heapRegionRemSet.hpp"
  61 #include "gc/g1/heapRegionSet.inline.hpp"
  62 #include "gc/g1/vm_operations_g1.hpp"
  63 #include "gc/shared/adaptiveSizePolicy.hpp"
  64 #include "gc/shared/gcHeapSummary.hpp"
  65 #include "gc/shared/gcId.hpp"
  66 #include "gc/shared/gcLocker.hpp"
  67 #include "gc/shared/gcTimer.hpp"
  68 #include "gc/shared/gcTrace.hpp"
  69 #include "gc/shared/gcTraceTime.inline.hpp"
  70 #include "gc/shared/generationSpec.hpp"
  71 #include "gc/shared/isGCActiveMark.hpp"
  72 #include "gc/shared/preservedMarks.inline.hpp"
  73 #include "gc/shared/suspendibleThreadSet.hpp"
  74 #include "gc/shared/referenceProcessor.inline.hpp"
  75 #include "gc/shared/taskqueue.inline.hpp"
  76 #include "gc/shared/weakProcessor.hpp"
  77 #include "logging/log.hpp"
  78 #include "memory/allocation.hpp"
  79 #include "memory/iterator.hpp"
  80 #include "memory/resourceArea.hpp"
  81 #include "oops/access.inline.hpp"
  82 #include "oops/compressedOops.inline.hpp"
  83 #include "oops/oop.inline.hpp"
  84 #include "prims/resolvedMethodTable.hpp"
  85 #include "runtime/atomic.hpp"
  86 #include "runtime/flags/flagSetting.hpp"
  87 #include "runtime/handles.inline.hpp"
  88 #include "runtime/init.hpp"
  89 #include "runtime/orderAccess.inline.hpp"
  90 #include "runtime/threadSMR.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "utilities/align.hpp"
  93 #include "utilities/globalDefinitions.hpp"
  94 #include "utilities/stack.inline.hpp"
  95 
  96 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  97 
  98 // INVARIANTS/NOTES
  99 //
 100 // All allocation activity covered by the G1CollectedHeap interface is
 101 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 102 // and allocate_new_tlab, which are the "entry" points to the
 103 // allocation code from the rest of the JVM.  (Note that this does not
 104 // apply to TLAB allocation, which is not part of this interface: it
 105 // is done by clients of this interface.)
 106 
 107 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 108  private:
 109   size_t _num_dirtied;
 110   G1CollectedHeap* _g1h;
 111   G1CardTable* _g1_ct;
 112 
 113   HeapRegion* region_for_card(jbyte* card_ptr) const {
 114     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 115   }
 116 
 117   bool will_become_free(HeapRegion* hr) const {
 118     // A region will be freed by free_collection_set if the region is in the
 119     // collection set and has not had an evacuation failure.
 120     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 121   }
 122 
 123  public:
 124   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 125     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 126 
 127   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 128     HeapRegion* hr = region_for_card(card_ptr);
 129 
 130     // Should only dirty cards in regions that won't be freed.
 131     if (!will_become_free(hr)) {
 132       *card_ptr = G1CardTable::dirty_card_val();
 133       _num_dirtied++;
 134     }
 135 
 136     return true;
 137   }
 138 
 139   size_t num_dirtied()   const { return _num_dirtied; }
 140 };
 141 
 142 
 143 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 144   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 145 }
 146 
 147 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 148   // The from card cache is not the memory that is actually committed. So we cannot
 149   // take advantage of the zero_filled parameter.
 150   reset_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 
 154 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 155                                              MemRegion mr) {
 156   return new HeapRegion(hrs_index, bot(), mr);
 157 }
 158 
 159 // Private methods.
 160 
 161 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 162   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 163          "the only time we use this to allocate a humongous region is "
 164          "when we are allocating a single humongous region");
 165 
 166   HeapRegion* res = _hrm.allocate_free_region(is_old);
 167 
 168   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 169     // Currently, only attempts to allocate GC alloc regions set
 170     // do_expand to true. So, we should only reach here during a
 171     // safepoint. If this assumption changes we might have to
 172     // reconsider the use of _expand_heap_after_alloc_failure.
 173     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 174 
 175     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 176                               word_size * HeapWordSize);
 177 
 178     if (expand(word_size * HeapWordSize)) {
 179       // Given that expand() succeeded in expanding the heap, and we
 180       // always expand the heap by an amount aligned to the heap
 181       // region size, the free list should in theory not be empty.
 182       // In either case allocate_free_region() will check for NULL.
 183       res = _hrm.allocate_free_region(is_old);
 184     } else {
 185       _expand_heap_after_alloc_failure = false;
 186     }
 187   }
 188   return res;
 189 }
 190 
 191 HeapWord*
 192 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 193                                                            uint num_regions,
 194                                                            size_t word_size) {
 195   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 196   assert(is_humongous(word_size), "word_size should be humongous");
 197   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 198 
 199   // Index of last region in the series.
 200   uint last = first + num_regions - 1;
 201 
 202   // We need to initialize the region(s) we just discovered. This is
 203   // a bit tricky given that it can happen concurrently with
 204   // refinement threads refining cards on these regions and
 205   // potentially wanting to refine the BOT as they are scanning
 206   // those cards (this can happen shortly after a cleanup; see CR
 207   // 6991377). So we have to set up the region(s) carefully and in
 208   // a specific order.
 209 
 210   // The word size sum of all the regions we will allocate.
 211   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 212   assert(word_size <= word_size_sum, "sanity");
 213 
 214   // This will be the "starts humongous" region.
 215   HeapRegion* first_hr = region_at(first);
 216   // The header of the new object will be placed at the bottom of
 217   // the first region.
 218   HeapWord* new_obj = first_hr->bottom();
 219   // This will be the new top of the new object.
 220   HeapWord* obj_top = new_obj + word_size;
 221 
 222   // First, we need to zero the header of the space that we will be
 223   // allocating. When we update top further down, some refinement
 224   // threads might try to scan the region. By zeroing the header we
 225   // ensure that any thread that will try to scan the region will
 226   // come across the zero klass word and bail out.
 227   //
 228   // NOTE: It would not have been correct to have used
 229   // CollectedHeap::fill_with_object() and make the space look like
 230   // an int array. The thread that is doing the allocation will
 231   // later update the object header to a potentially different array
 232   // type and, for a very short period of time, the klass and length
 233   // fields will be inconsistent. This could cause a refinement
 234   // thread to calculate the object size incorrectly.
 235   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 236 
 237   // Next, pad out the unused tail of the last region with filler
 238   // objects, for improved usage accounting.
 239   // How many words we use for filler objects.
 240   size_t word_fill_size = word_size_sum - word_size;
 241 
 242   // How many words memory we "waste" which cannot hold a filler object.
 243   size_t words_not_fillable = 0;
 244 
 245   if (word_fill_size >= min_fill_size()) {
 246     fill_with_objects(obj_top, word_fill_size);
 247   } else if (word_fill_size > 0) {
 248     // We have space to fill, but we cannot fit an object there.
 249     words_not_fillable = word_fill_size;
 250     word_fill_size = 0;
 251   }
 252 
 253   // We will set up the first region as "starts humongous". This
 254   // will also update the BOT covering all the regions to reflect
 255   // that there is a single object that starts at the bottom of the
 256   // first region.
 257   first_hr->set_starts_humongous(obj_top, word_fill_size);
 258   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 259   // Then, if there are any, we will set up the "continues
 260   // humongous" regions.
 261   HeapRegion* hr = NULL;
 262   for (uint i = first + 1; i <= last; ++i) {
 263     hr = region_at(i);
 264     hr->set_continues_humongous(first_hr);
 265     _g1_policy->remset_tracker()->update_at_allocate(hr);
 266   }
 267 
 268   // Up to this point no concurrent thread would have been able to
 269   // do any scanning on any region in this series. All the top
 270   // fields still point to bottom, so the intersection between
 271   // [bottom,top] and [card_start,card_end] will be empty. Before we
 272   // update the top fields, we'll do a storestore to make sure that
 273   // no thread sees the update to top before the zeroing of the
 274   // object header and the BOT initialization.
 275   OrderAccess::storestore();
 276 
 277   // Now, we will update the top fields of the "continues humongous"
 278   // regions except the last one.
 279   for (uint i = first; i < last; ++i) {
 280     hr = region_at(i);
 281     hr->set_top(hr->end());
 282   }
 283 
 284   hr = region_at(last);
 285   // If we cannot fit a filler object, we must set top to the end
 286   // of the humongous object, otherwise we cannot iterate the heap
 287   // and the BOT will not be complete.
 288   hr->set_top(hr->end() - words_not_fillable);
 289 
 290   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 291          "obj_top should be in last region");
 292 
 293   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 294 
 295   assert(words_not_fillable == 0 ||
 296          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 297          "Miscalculation in humongous allocation");
 298 
 299   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 300 
 301   for (uint i = first; i <= last; ++i) {
 302     hr = region_at(i);
 303     _humongous_set.add(hr);
 304     _hr_printer.alloc(hr);
 305   }
 306 
 307   return new_obj;
 308 }
 309 
 310 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 311   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 312   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 313 }
 314 
 315 // If could fit into free regions w/o expansion, try.
 316 // Otherwise, if can expand, do so.
 317 // Otherwise, if using ex regions might help, try with ex given back.
 318 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 319   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 320 
 321   _verifier->verify_region_sets_optional();
 322 
 323   uint first = G1_NO_HRM_INDEX;
 324   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 325 
 326   if (obj_regions == 1) {
 327     // Only one region to allocate, try to use a fast path by directly allocating
 328     // from the free lists. Do not try to expand here, we will potentially do that
 329     // later.
 330     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 331     if (hr != NULL) {
 332       first = hr->hrm_index();
 333     }
 334   } else {
 335     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 336     // are lucky enough to find some.
 337     first = _hrm.find_contiguous_only_empty(obj_regions);
 338     if (first != G1_NO_HRM_INDEX) {
 339       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 340     }
 341   }
 342 
 343   if (first == G1_NO_HRM_INDEX) {
 344     // Policy: We could not find enough regions for the humongous object in the
 345     // free list. Look through the heap to find a mix of free and uncommitted regions.
 346     // If so, try expansion.
 347     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 348     if (first != G1_NO_HRM_INDEX) {
 349       // We found something. Make sure these regions are committed, i.e. expand
 350       // the heap. Alternatively we could do a defragmentation GC.
 351       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 352                                     word_size * HeapWordSize);
 353 
 354       _hrm.expand_at(first, obj_regions, workers());
 355       g1_policy()->record_new_heap_size(num_regions());
 356 
 357 #ifdef ASSERT
 358       for (uint i = first; i < first + obj_regions; ++i) {
 359         HeapRegion* hr = region_at(i);
 360         assert(hr->is_free(), "sanity");
 361         assert(hr->is_empty(), "sanity");
 362         assert(is_on_master_free_list(hr), "sanity");
 363       }
 364 #endif
 365       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 366     } else {
 367       // Policy: Potentially trigger a defragmentation GC.
 368     }
 369   }
 370 
 371   HeapWord* result = NULL;
 372   if (first != G1_NO_HRM_INDEX) {
 373     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 374     assert(result != NULL, "it should always return a valid result");
 375 
 376     // A successful humongous object allocation changes the used space
 377     // information of the old generation so we need to recalculate the
 378     // sizes and update the jstat counters here.
 379     g1mm()->update_sizes();
 380   }
 381 
 382   _verifier->verify_region_sets_optional();
 383 
 384   return result;
 385 }
 386 
 387 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 388                                              size_t requested_size,
 389                                              size_t* actual_size) {
 390   assert_heap_not_locked_and_not_at_safepoint();
 391   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 392 
 393   return attempt_allocation(min_size, requested_size, actual_size);
 394 }
 395 
 396 HeapWord*
 397 G1CollectedHeap::mem_allocate(size_t word_size,
 398                               bool*  gc_overhead_limit_was_exceeded) {
 399   assert_heap_not_locked_and_not_at_safepoint();
 400 
 401   if (is_humongous(word_size)) {
 402     return attempt_allocation_humongous(word_size);
 403   }
 404   size_t dummy = 0;
 405   return attempt_allocation(word_size, word_size, &dummy);
 406 }
 407 
 408 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 409   ResourceMark rm; // For retrieving the thread names in log messages.
 410 
 411   // Make sure you read the note in attempt_allocation_humongous().
 412 
 413   assert_heap_not_locked_and_not_at_safepoint();
 414   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 415          "be called for humongous allocation requests");
 416 
 417   // We should only get here after the first-level allocation attempt
 418   // (attempt_allocation()) failed to allocate.
 419 
 420   // We will loop until a) we manage to successfully perform the
 421   // allocation or b) we successfully schedule a collection which
 422   // fails to perform the allocation. b) is the only case when we'll
 423   // return NULL.
 424   HeapWord* result = NULL;
 425   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 426     bool should_try_gc;
 427     uint gc_count_before;
 428 
 429     {
 430       MutexLockerEx x(Heap_lock);
 431       result = _allocator->attempt_allocation_locked(word_size);
 432       if (result != NULL) {
 433         return result;
 434       }
 435 
 436       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 437       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 438       // waiting because the GCLocker is active to not wait too long.
 439       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 440         // No need for an ergo message here, can_expand_young_list() does this when
 441         // it returns true.
 442         result = _allocator->attempt_allocation_force(word_size);
 443         if (result != NULL) {
 444           return result;
 445         }
 446       }
 447       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 448       // the GCLocker initiated GC has been performed and then retry. This includes
 449       // the case when the GC Locker is not active but has not been performed.
 450       should_try_gc = !GCLocker::needs_gc();
 451       // Read the GC count while still holding the Heap_lock.
 452       gc_count_before = total_collections();
 453     }
 454 
 455     if (should_try_gc) {
 456       bool succeeded;
 457       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 458                                    GCCause::_g1_inc_collection_pause);
 459       if (result != NULL) {
 460         assert(succeeded, "only way to get back a non-NULL result");
 461         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 462                              Thread::current()->name(), p2i(result));
 463         return result;
 464       }
 465 
 466       if (succeeded) {
 467         // We successfully scheduled a collection which failed to allocate. No
 468         // point in trying to allocate further. We'll just return NULL.
 469         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 470                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 471         return NULL;
 472       }
 473       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 474                            Thread::current()->name(), word_size);
 475     } else {
 476       // Failed to schedule a collection.
 477       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 478         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 479                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 480         return NULL;
 481       }
 482       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 483       // The GCLocker is either active or the GCLocker initiated
 484       // GC has not yet been performed. Stall until it is and
 485       // then retry the allocation.
 486       GCLocker::stall_until_clear();
 487       gclocker_retry_count += 1;
 488     }
 489 
 490     // We can reach here if we were unsuccessful in scheduling a
 491     // collection (because another thread beat us to it) or if we were
 492     // stalled due to the GC locker. In either can we should retry the
 493     // allocation attempt in case another thread successfully
 494     // performed a collection and reclaimed enough space. We do the
 495     // first attempt (without holding the Heap_lock) here and the
 496     // follow-on attempt will be at the start of the next loop
 497     // iteration (after taking the Heap_lock).
 498     size_t dummy = 0;
 499     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 500     if (result != NULL) {
 501       return result;
 502     }
 503 
 504     // Give a warning if we seem to be looping forever.
 505     if ((QueuedAllocationWarningCount > 0) &&
 506         (try_count % QueuedAllocationWarningCount == 0)) {
 507       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 508                              Thread::current()->name(), try_count, word_size);
 509     }
 510   }
 511 
 512   ShouldNotReachHere();
 513   return NULL;
 514 }
 515 
 516 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 517   assert_at_safepoint_on_vm_thread();
 518   if (_archive_allocator == NULL) {
 519     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 520   }
 521 }
 522 
 523 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 524   // Allocations in archive regions cannot be of a size that would be considered
 525   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 526   // may be different at archive-restore time.
 527   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 528 }
 529 
 530 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 531   assert_at_safepoint_on_vm_thread();
 532   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 533   if (is_archive_alloc_too_large(word_size)) {
 534     return NULL;
 535   }
 536   return _archive_allocator->archive_mem_allocate(word_size);
 537 }
 538 
 539 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 540                                               size_t end_alignment_in_bytes) {
 541   assert_at_safepoint_on_vm_thread();
 542   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 543 
 544   // Call complete_archive to do the real work, filling in the MemRegion
 545   // array with the archive regions.
 546   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 547   delete _archive_allocator;
 548   _archive_allocator = NULL;
 549 }
 550 
 551 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 552   assert(ranges != NULL, "MemRegion array NULL");
 553   assert(count != 0, "No MemRegions provided");
 554   MemRegion reserved = _hrm.reserved();
 555   for (size_t i = 0; i < count; i++) {
 556     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 557       return false;
 558     }
 559   }
 560   return true;
 561 }
 562 
 563 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 564                                             size_t count,
 565                                             bool open) {
 566   assert(!is_init_completed(), "Expect to be called at JVM init time");
 567   assert(ranges != NULL, "MemRegion array NULL");
 568   assert(count != 0, "No MemRegions provided");
 569   MutexLockerEx x(Heap_lock);
 570 
 571   MemRegion reserved = _hrm.reserved();
 572   HeapWord* prev_last_addr = NULL;
 573   HeapRegion* prev_last_region = NULL;
 574 
 575   // Temporarily disable pretouching of heap pages. This interface is used
 576   // when mmap'ing archived heap data in, so pre-touching is wasted.
 577   FlagSetting fs(AlwaysPreTouch, false);
 578 
 579   // Enable archive object checking used by G1MarkSweep. We have to let it know
 580   // about each archive range, so that objects in those ranges aren't marked.
 581   G1ArchiveAllocator::enable_archive_object_check();
 582 
 583   // For each specified MemRegion range, allocate the corresponding G1
 584   // regions and mark them as archive regions. We expect the ranges
 585   // in ascending starting address order, without overlap.
 586   for (size_t i = 0; i < count; i++) {
 587     MemRegion curr_range = ranges[i];
 588     HeapWord* start_address = curr_range.start();
 589     size_t word_size = curr_range.word_size();
 590     HeapWord* last_address = curr_range.last();
 591     size_t commits = 0;
 592 
 593     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 594               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 595               p2i(start_address), p2i(last_address));
 596     guarantee(start_address > prev_last_addr,
 597               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 598               p2i(start_address), p2i(prev_last_addr));
 599     prev_last_addr = last_address;
 600 
 601     // Check for ranges that start in the same G1 region in which the previous
 602     // range ended, and adjust the start address so we don't try to allocate
 603     // the same region again. If the current range is entirely within that
 604     // region, skip it, just adjusting the recorded top.
 605     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 606     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 607       start_address = start_region->end();
 608       if (start_address > last_address) {
 609         increase_used(word_size * HeapWordSize);
 610         start_region->set_top(last_address + 1);
 611         continue;
 612       }
 613       start_region->set_top(start_address);
 614       curr_range = MemRegion(start_address, last_address + 1);
 615       start_region = _hrm.addr_to_region(start_address);
 616     }
 617 
 618     // Perform the actual region allocation, exiting if it fails.
 619     // Then note how much new space we have allocated.
 620     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 621       return false;
 622     }
 623     increase_used(word_size * HeapWordSize);
 624     if (commits != 0) {
 625       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 626                                 HeapRegion::GrainWords * HeapWordSize * commits);
 627 
 628     }
 629 
 630     // Mark each G1 region touched by the range as archive, add it to
 631     // the old set, and set top.
 632     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 633     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 634     prev_last_region = last_region;
 635 
 636     while (curr_region != NULL) {
 637       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 638              "Region already in use (index %u)", curr_region->hrm_index());
 639       if (open) {
 640         curr_region->set_open_archive();
 641       } else {
 642         curr_region->set_closed_archive();
 643       }
 644       _hr_printer.alloc(curr_region);
 645       _old_set.add(curr_region);
 646       HeapWord* top;
 647       HeapRegion* next_region;
 648       if (curr_region != last_region) {
 649         top = curr_region->end();
 650         next_region = _hrm.next_region_in_heap(curr_region);
 651       } else {
 652         top = last_address + 1;
 653         next_region = NULL;
 654       }
 655       curr_region->set_top(top);
 656       curr_region->set_first_dead(top);
 657       curr_region->set_end_of_live(top);
 658       curr_region = next_region;
 659     }
 660 
 661     // Notify mark-sweep of the archive
 662     G1ArchiveAllocator::set_range_archive(curr_range, open);
 663   }
 664   return true;
 665 }
 666 
 667 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 668   assert(!is_init_completed(), "Expect to be called at JVM init time");
 669   assert(ranges != NULL, "MemRegion array NULL");
 670   assert(count != 0, "No MemRegions provided");
 671   MemRegion reserved = _hrm.reserved();
 672   HeapWord *prev_last_addr = NULL;
 673   HeapRegion* prev_last_region = NULL;
 674 
 675   // For each MemRegion, create filler objects, if needed, in the G1 regions
 676   // that contain the address range. The address range actually within the
 677   // MemRegion will not be modified. That is assumed to have been initialized
 678   // elsewhere, probably via an mmap of archived heap data.
 679   MutexLockerEx x(Heap_lock);
 680   for (size_t i = 0; i < count; i++) {
 681     HeapWord* start_address = ranges[i].start();
 682     HeapWord* last_address = ranges[i].last();
 683 
 684     assert(reserved.contains(start_address) && reserved.contains(last_address),
 685            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 686            p2i(start_address), p2i(last_address));
 687     assert(start_address > prev_last_addr,
 688            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 689            p2i(start_address), p2i(prev_last_addr));
 690 
 691     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 692     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 693     HeapWord* bottom_address = start_region->bottom();
 694 
 695     // Check for a range beginning in the same region in which the
 696     // previous one ended.
 697     if (start_region == prev_last_region) {
 698       bottom_address = prev_last_addr + 1;
 699     }
 700 
 701     // Verify that the regions were all marked as archive regions by
 702     // alloc_archive_regions.
 703     HeapRegion* curr_region = start_region;
 704     while (curr_region != NULL) {
 705       guarantee(curr_region->is_archive(),
 706                 "Expected archive region at index %u", curr_region->hrm_index());
 707       if (curr_region != last_region) {
 708         curr_region = _hrm.next_region_in_heap(curr_region);
 709       } else {
 710         curr_region = NULL;
 711       }
 712     }
 713 
 714     prev_last_addr = last_address;
 715     prev_last_region = last_region;
 716 
 717     // Fill the memory below the allocated range with dummy object(s),
 718     // if the region bottom does not match the range start, or if the previous
 719     // range ended within the same G1 region, and there is a gap.
 720     if (start_address != bottom_address) {
 721       size_t fill_size = pointer_delta(start_address, bottom_address);
 722       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 723       increase_used(fill_size * HeapWordSize);
 724     }
 725   }
 726 }
 727 
 728 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 729                                                      size_t desired_word_size,
 730                                                      size_t* actual_word_size) {
 731   assert_heap_not_locked_and_not_at_safepoint();
 732   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 733          "be called for humongous allocation requests");
 734 
 735   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 736 
 737   if (result == NULL) {
 738     *actual_word_size = desired_word_size;
 739     result = attempt_allocation_slow(desired_word_size);
 740   }
 741 
 742   assert_heap_not_locked();
 743   if (result != NULL) {
 744     assert(*actual_word_size != 0, "Actual size must have been set here");
 745     dirty_young_block(result, *actual_word_size);
 746   } else {
 747     *actual_word_size = 0;
 748   }
 749 
 750   return result;
 751 }
 752 
 753 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 754   assert(!is_init_completed(), "Expect to be called at JVM init time");
 755   assert(ranges != NULL, "MemRegion array NULL");
 756   assert(count != 0, "No MemRegions provided");
 757   MemRegion reserved = _hrm.reserved();
 758   HeapWord* prev_last_addr = NULL;
 759   HeapRegion* prev_last_region = NULL;
 760   size_t size_used = 0;
 761   size_t uncommitted_regions = 0;
 762 
 763   // For each Memregion, free the G1 regions that constitute it, and
 764   // notify mark-sweep that the range is no longer to be considered 'archive.'
 765   MutexLockerEx x(Heap_lock);
 766   for (size_t i = 0; i < count; i++) {
 767     HeapWord* start_address = ranges[i].start();
 768     HeapWord* last_address = ranges[i].last();
 769 
 770     assert(reserved.contains(start_address) && reserved.contains(last_address),
 771            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 772            p2i(start_address), p2i(last_address));
 773     assert(start_address > prev_last_addr,
 774            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 775            p2i(start_address), p2i(prev_last_addr));
 776     size_used += ranges[i].byte_size();
 777     prev_last_addr = last_address;
 778 
 779     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 780     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 781 
 782     // Check for ranges that start in the same G1 region in which the previous
 783     // range ended, and adjust the start address so we don't try to free
 784     // the same region again. If the current range is entirely within that
 785     // region, skip it.
 786     if (start_region == prev_last_region) {
 787       start_address = start_region->end();
 788       if (start_address > last_address) {
 789         continue;
 790       }
 791       start_region = _hrm.addr_to_region(start_address);
 792     }
 793     prev_last_region = last_region;
 794 
 795     // After verifying that each region was marked as an archive region by
 796     // alloc_archive_regions, set it free and empty and uncommit it.
 797     HeapRegion* curr_region = start_region;
 798     while (curr_region != NULL) {
 799       guarantee(curr_region->is_archive(),
 800                 "Expected archive region at index %u", curr_region->hrm_index());
 801       uint curr_index = curr_region->hrm_index();
 802       _old_set.remove(curr_region);
 803       curr_region->set_free();
 804       curr_region->set_top(curr_region->bottom());
 805       if (curr_region != last_region) {
 806         curr_region = _hrm.next_region_in_heap(curr_region);
 807       } else {
 808         curr_region = NULL;
 809       }
 810       _hrm.shrink_at(curr_index, 1);
 811       uncommitted_regions++;
 812     }
 813 
 814     // Notify mark-sweep that this is no longer an archive range.
 815     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 816   }
 817 
 818   if (uncommitted_regions != 0) {
 819     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 820                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 821   }
 822   decrease_used(size_used);
 823 }
 824 
 825 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 826   ResourceMark rm; // For retrieving the thread names in log messages.
 827 
 828   // The structure of this method has a lot of similarities to
 829   // attempt_allocation_slow(). The reason these two were not merged
 830   // into a single one is that such a method would require several "if
 831   // allocation is not humongous do this, otherwise do that"
 832   // conditional paths which would obscure its flow. In fact, an early
 833   // version of this code did use a unified method which was harder to
 834   // follow and, as a result, it had subtle bugs that were hard to
 835   // track down. So keeping these two methods separate allows each to
 836   // be more readable. It will be good to keep these two in sync as
 837   // much as possible.
 838 
 839   assert_heap_not_locked_and_not_at_safepoint();
 840   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 841          "should only be called for humongous allocations");
 842 
 843   // Humongous objects can exhaust the heap quickly, so we should check if we
 844   // need to start a marking cycle at each humongous object allocation. We do
 845   // the check before we do the actual allocation. The reason for doing it
 846   // before the allocation is that we avoid having to keep track of the newly
 847   // allocated memory while we do a GC.
 848   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 849                                            word_size)) {
 850     collect(GCCause::_g1_humongous_allocation);
 851   }
 852 
 853   // We will loop until a) we manage to successfully perform the
 854   // allocation or b) we successfully schedule a collection which
 855   // fails to perform the allocation. b) is the only case when we'll
 856   // return NULL.
 857   HeapWord* result = NULL;
 858   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 859     bool should_try_gc;
 860     uint gc_count_before;
 861 
 862 
 863     {
 864       MutexLockerEx x(Heap_lock);
 865 
 866       // Given that humongous objects are not allocated in young
 867       // regions, we'll first try to do the allocation without doing a
 868       // collection hoping that there's enough space in the heap.
 869       result = humongous_obj_allocate(word_size);
 870       if (result != NULL) {
 871         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 872         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 873         return result;
 874       }
 875 
 876       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 877       // the GCLocker initiated GC has been performed and then retry. This includes
 878       // the case when the GC Locker is not active but has not been performed.
 879       should_try_gc = !GCLocker::needs_gc();
 880       // Read the GC count while still holding the Heap_lock.
 881       gc_count_before = total_collections();
 882     }
 883 
 884     if (should_try_gc) {
 885       bool succeeded;
 886       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 887                                    GCCause::_g1_humongous_allocation);
 888       if (result != NULL) {
 889         assert(succeeded, "only way to get back a non-NULL result");
 890         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 891                              Thread::current()->name(), p2i(result));
 892         return result;
 893       }
 894 
 895       if (succeeded) {
 896         // We successfully scheduled a collection which failed to allocate. No
 897         // point in trying to allocate further. We'll just return NULL.
 898         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 899                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 900         return NULL;
 901       }
 902       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 903                            Thread::current()->name(), word_size);
 904     } else {
 905       // Failed to schedule a collection.
 906       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 907         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 908                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 909         return NULL;
 910       }
 911       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 912       // The GCLocker is either active or the GCLocker initiated
 913       // GC has not yet been performed. Stall until it is and
 914       // then retry the allocation.
 915       GCLocker::stall_until_clear();
 916       gclocker_retry_count += 1;
 917     }
 918 
 919 
 920     // We can reach here if we were unsuccessful in scheduling a
 921     // collection (because another thread beat us to it) or if we were
 922     // stalled due to the GC locker. In either can we should retry the
 923     // allocation attempt in case another thread successfully
 924     // performed a collection and reclaimed enough space.
 925     // Humongous object allocation always needs a lock, so we wait for the retry
 926     // in the next iteration of the loop, unlike for the regular iteration case.
 927     // Give a warning if we seem to be looping forever.
 928 
 929     if ((QueuedAllocationWarningCount > 0) &&
 930         (try_count % QueuedAllocationWarningCount == 0)) {
 931       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 932                              Thread::current()->name(), try_count, word_size);
 933     }
 934   }
 935 
 936   ShouldNotReachHere();
 937   return NULL;
 938 }
 939 
 940 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 941                                                            bool expect_null_mutator_alloc_region) {
 942   assert_at_safepoint_on_vm_thread();
 943   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 944          "the current alloc region was unexpectedly found to be non-NULL");
 945 
 946   if (!is_humongous(word_size)) {
 947     return _allocator->attempt_allocation_locked(word_size);
 948   } else {
 949     HeapWord* result = humongous_obj_allocate(word_size);
 950     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 951       collector_state()->set_initiate_conc_mark_if_possible(true);
 952     }
 953     return result;
 954   }
 955 
 956   ShouldNotReachHere();
 957 }
 958 
 959 class PostCompactionPrinterClosure: public HeapRegionClosure {
 960 private:
 961   G1HRPrinter* _hr_printer;
 962 public:
 963   bool do_heap_region(HeapRegion* hr) {
 964     assert(!hr->is_young(), "not expecting to find young regions");
 965     _hr_printer->post_compaction(hr);
 966     return false;
 967   }
 968 
 969   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 970     : _hr_printer(hr_printer) { }
 971 };
 972 
 973 void G1CollectedHeap::print_hrm_post_compaction() {
 974   if (_hr_printer.is_active()) {
 975     PostCompactionPrinterClosure cl(hr_printer());
 976     heap_region_iterate(&cl);
 977   }
 978 }
 979 
 980 void G1CollectedHeap::abort_concurrent_cycle() {
 981   // If we start the compaction before the CM threads finish
 982   // scanning the root regions we might trip them over as we'll
 983   // be moving objects / updating references. So let's wait until
 984   // they are done. By telling them to abort, they should complete
 985   // early.
 986   _cm->root_regions()->abort();
 987   _cm->root_regions()->wait_until_scan_finished();
 988 
 989   // Disable discovery and empty the discovered lists
 990   // for the CM ref processor.
 991   ref_processor_cm()->disable_discovery();
 992   ref_processor_cm()->abandon_partial_discovery();
 993   ref_processor_cm()->verify_no_references_recorded();
 994 
 995   // Abandon current iterations of concurrent marking and concurrent
 996   // refinement, if any are in progress.
 997   concurrent_mark()->concurrent_cycle_abort();
 998 }
 999 
1000 void G1CollectedHeap::prepare_heap_for_full_collection() {
1001   // Make sure we'll choose a new allocation region afterwards.
1002   _allocator->release_mutator_alloc_region();
1003   _allocator->abandon_gc_alloc_regions();
1004   g1_rem_set()->cleanupHRRS();
1005 
1006   // We may have added regions to the current incremental collection
1007   // set between the last GC or pause and now. We need to clear the
1008   // incremental collection set and then start rebuilding it afresh
1009   // after this full GC.
1010   abandon_collection_set(collection_set());
1011 
1012   tear_down_region_sets(false /* free_list_only */);
1013 }
1014 
1015 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1016   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1017   assert(used() == recalculate_used(), "Should be equal");
1018   _verifier->verify_region_sets_optional();
1019   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1020   _verifier->check_bitmaps("Full GC Start");
1021 }
1022 
1023 void G1CollectedHeap::prepare_heap_for_mutators() {
1024   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1025   ClassLoaderDataGraph::purge();
1026   MetaspaceUtils::verify_metrics();
1027 
1028   // Prepare heap for normal collections.
1029   assert(num_free_regions() == 0, "we should not have added any free regions");
1030   rebuild_region_sets(false /* free_list_only */);
1031   abort_refinement();
1032   resize_if_necessary_after_full_collection();
1033 
1034   // Rebuild the strong code root lists for each region
1035   rebuild_strong_code_roots();
1036 
1037   // Start a new incremental collection set for the next pause
1038   start_new_collection_set();
1039 
1040   _allocator->init_mutator_alloc_region();
1041 
1042   // Post collection state updates.
1043   MetaspaceGC::compute_new_size();
1044 }
1045 
1046 void G1CollectedHeap::abort_refinement() {
1047   if (_hot_card_cache->use_cache()) {
1048     _hot_card_cache->reset_hot_cache();
1049   }
1050 
1051   // Discard all remembered set updates.
1052   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1053   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1054 }
1055 
1056 void G1CollectedHeap::verify_after_full_collection() {
1057   _hrm.verify_optional();
1058   _verifier->verify_region_sets_optional();
1059   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1060   // Clear the previous marking bitmap, if needed for bitmap verification.
1061   // Note we cannot do this when we clear the next marking bitmap in
1062   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1063   // objects marked during a full GC against the previous bitmap.
1064   // But we need to clear it before calling check_bitmaps below since
1065   // the full GC has compacted objects and updated TAMS but not updated
1066   // the prev bitmap.
1067   if (G1VerifyBitmaps) {
1068     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1069     _cm->clear_prev_bitmap(workers());
1070   }
1071   _verifier->check_bitmaps("Full GC End");
1072 
1073   // At this point there should be no regions in the
1074   // entire heap tagged as young.
1075   assert(check_young_list_empty(), "young list should be empty at this point");
1076 
1077   // Note: since we've just done a full GC, concurrent
1078   // marking is no longer active. Therefore we need not
1079   // re-enable reference discovery for the CM ref processor.
1080   // That will be done at the start of the next marking cycle.
1081   // We also know that the STW processor should no longer
1082   // discover any new references.
1083   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1084   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1085   ref_processor_stw()->verify_no_references_recorded();
1086   ref_processor_cm()->verify_no_references_recorded();
1087 }
1088 
1089 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1090   // Post collection logging.
1091   // We should do this after we potentially resize the heap so
1092   // that all the COMMIT / UNCOMMIT events are generated before
1093   // the compaction events.
1094   print_hrm_post_compaction();
1095   heap_transition->print();
1096   print_heap_after_gc();
1097   print_heap_regions();
1098 #ifdef TRACESPINNING
1099   ParallelTaskTerminator::print_termination_counts();
1100 #endif
1101 }
1102 
1103 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1104                                          bool clear_all_soft_refs) {
1105   assert_at_safepoint_on_vm_thread();
1106 
1107   if (GCLocker::check_active_before_gc()) {
1108     // Full GC was not completed.
1109     return false;
1110   }
1111 
1112   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1113       soft_ref_policy()->should_clear_all_soft_refs();
1114 
1115   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1116   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1117 
1118   collector.prepare_collection();
1119   collector.collect();
1120   collector.complete_collection();
1121 
1122   // Full collection was successfully completed.
1123   return true;
1124 }
1125 
1126 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1127   // Currently, there is no facility in the do_full_collection(bool) API to notify
1128   // the caller that the collection did not succeed (e.g., because it was locked
1129   // out by the GC locker). So, right now, we'll ignore the return value.
1130   bool dummy = do_full_collection(true,                /* explicit_gc */
1131                                   clear_all_soft_refs);
1132 }
1133 
1134 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1135   // Capacity, free and used after the GC counted as full regions to
1136   // include the waste in the following calculations.
1137   const size_t capacity_after_gc = capacity();
1138   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1139 
1140   // This is enforced in arguments.cpp.
1141   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1142          "otherwise the code below doesn't make sense");
1143 
1144   // We don't have floating point command-line arguments
1145   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1146   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1147   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1148   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1149 
1150   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1151   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1152 
1153   // We have to be careful here as these two calculations can overflow
1154   // 32-bit size_t's.
1155   double used_after_gc_d = (double) used_after_gc;
1156   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1157   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1158 
1159   // Let's make sure that they are both under the max heap size, which
1160   // by default will make them fit into a size_t.
1161   double desired_capacity_upper_bound = (double) max_heap_size;
1162   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1163                                     desired_capacity_upper_bound);
1164   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1165                                     desired_capacity_upper_bound);
1166 
1167   // We can now safely turn them into size_t's.
1168   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1169   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1170 
1171   // This assert only makes sense here, before we adjust them
1172   // with respect to the min and max heap size.
1173   assert(minimum_desired_capacity <= maximum_desired_capacity,
1174          "minimum_desired_capacity = " SIZE_FORMAT ", "
1175          "maximum_desired_capacity = " SIZE_FORMAT,
1176          minimum_desired_capacity, maximum_desired_capacity);
1177 
1178   // Should not be greater than the heap max size. No need to adjust
1179   // it with respect to the heap min size as it's a lower bound (i.e.,
1180   // we'll try to make the capacity larger than it, not smaller).
1181   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1182   // Should not be less than the heap min size. No need to adjust it
1183   // with respect to the heap max size as it's an upper bound (i.e.,
1184   // we'll try to make the capacity smaller than it, not greater).
1185   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1186 
1187   if (capacity_after_gc < minimum_desired_capacity) {
1188     // Don't expand unless it's significant
1189     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1190 
1191     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1192                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1193                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1194                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1195 
1196     expand(expand_bytes, _workers);
1197 
1198     // No expansion, now see if we want to shrink
1199   } else if (capacity_after_gc > maximum_desired_capacity) {
1200     // Capacity too large, compute shrinking size
1201     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1202 
1203     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1204                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1205                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1206                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1207 
1208     shrink(shrink_bytes);
1209   }
1210 }
1211 
1212 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1213                                                             bool do_gc,
1214                                                             bool clear_all_soft_refs,
1215                                                             bool expect_null_mutator_alloc_region,
1216                                                             bool* gc_succeeded) {
1217   *gc_succeeded = true;
1218   // Let's attempt the allocation first.
1219   HeapWord* result =
1220     attempt_allocation_at_safepoint(word_size,
1221                                     expect_null_mutator_alloc_region);
1222   if (result != NULL) {
1223     return result;
1224   }
1225 
1226   // In a G1 heap, we're supposed to keep allocation from failing by
1227   // incremental pauses.  Therefore, at least for now, we'll favor
1228   // expansion over collection.  (This might change in the future if we can
1229   // do something smarter than full collection to satisfy a failed alloc.)
1230   result = expand_and_allocate(word_size);
1231   if (result != NULL) {
1232     return result;
1233   }
1234 
1235   if (do_gc) {
1236     // Expansion didn't work, we'll try to do a Full GC.
1237     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1238                                        clear_all_soft_refs);
1239   }
1240 
1241   return NULL;
1242 }
1243 
1244 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1245                                                      bool* succeeded) {
1246   assert_at_safepoint_on_vm_thread();
1247 
1248   // Attempts to allocate followed by Full GC.
1249   HeapWord* result =
1250     satisfy_failed_allocation_helper(word_size,
1251                                      true,  /* do_gc */
1252                                      false, /* clear_all_soft_refs */
1253                                      false, /* expect_null_mutator_alloc_region */
1254                                      succeeded);
1255 
1256   if (result != NULL || !*succeeded) {
1257     return result;
1258   }
1259 
1260   // Attempts to allocate followed by Full GC that will collect all soft references.
1261   result = satisfy_failed_allocation_helper(word_size,
1262                                             true, /* do_gc */
1263                                             true, /* clear_all_soft_refs */
1264                                             true, /* expect_null_mutator_alloc_region */
1265                                             succeeded);
1266 
1267   if (result != NULL || !*succeeded) {
1268     return result;
1269   }
1270 
1271   // Attempts to allocate, no GC
1272   result = satisfy_failed_allocation_helper(word_size,
1273                                             false, /* do_gc */
1274                                             false, /* clear_all_soft_refs */
1275                                             true,  /* expect_null_mutator_alloc_region */
1276                                             succeeded);
1277 
1278   if (result != NULL) {
1279     return result;
1280   }
1281 
1282   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1283          "Flag should have been handled and cleared prior to this point");
1284 
1285   // What else?  We might try synchronous finalization later.  If the total
1286   // space available is large enough for the allocation, then a more
1287   // complete compaction phase than we've tried so far might be
1288   // appropriate.
1289   return NULL;
1290 }
1291 
1292 // Attempting to expand the heap sufficiently
1293 // to support an allocation of the given "word_size".  If
1294 // successful, perform the allocation and return the address of the
1295 // allocated block, or else "NULL".
1296 
1297 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1298   assert_at_safepoint_on_vm_thread();
1299 
1300   _verifier->verify_region_sets_optional();
1301 
1302   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1303   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1304                             word_size * HeapWordSize);
1305 
1306 
1307   if (expand(expand_bytes, _workers)) {
1308     _hrm.verify_optional();
1309     _verifier->verify_region_sets_optional();
1310     return attempt_allocation_at_safepoint(word_size,
1311                                            false /* expect_null_mutator_alloc_region */);
1312   }
1313   return NULL;
1314 }
1315 
1316 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1317   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1318   aligned_expand_bytes = align_up(aligned_expand_bytes,
1319                                        HeapRegion::GrainBytes);
1320 
1321   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1322                             expand_bytes, aligned_expand_bytes);
1323 
1324   if (is_maximal_no_gc()) {
1325     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1326     return false;
1327   }
1328 
1329   double expand_heap_start_time_sec = os::elapsedTime();
1330   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1331   assert(regions_to_expand > 0, "Must expand by at least one region");
1332 
1333   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1334   if (expand_time_ms != NULL) {
1335     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1336   }
1337 
1338   if (expanded_by > 0) {
1339     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1340     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1341     g1_policy()->record_new_heap_size(num_regions());
1342   } else {
1343     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1344 
1345     // The expansion of the virtual storage space was unsuccessful.
1346     // Let's see if it was because we ran out of swap.
1347     if (G1ExitOnExpansionFailure &&
1348         _hrm.available() >= regions_to_expand) {
1349       // We had head room...
1350       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1351     }
1352   }
1353   return regions_to_expand > 0;
1354 }
1355 
1356 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1357   size_t aligned_shrink_bytes =
1358     ReservedSpace::page_align_size_down(shrink_bytes);
1359   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1360                                          HeapRegion::GrainBytes);
1361   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1362 
1363   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1364   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1365 
1366 
1367   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1368                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1369   if (num_regions_removed > 0) {
1370     g1_policy()->record_new_heap_size(num_regions());
1371   } else {
1372     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1373   }
1374 }
1375 
1376 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1377   _verifier->verify_region_sets_optional();
1378 
1379   // We should only reach here at the end of a Full GC which means we
1380   // should not not be holding to any GC alloc regions. The method
1381   // below will make sure of that and do any remaining clean up.
1382   _allocator->abandon_gc_alloc_regions();
1383 
1384   // Instead of tearing down / rebuilding the free lists here, we
1385   // could instead use the remove_all_pending() method on free_list to
1386   // remove only the ones that we need to remove.
1387   tear_down_region_sets(true /* free_list_only */);
1388   shrink_helper(shrink_bytes);
1389   rebuild_region_sets(true /* free_list_only */);
1390 
1391   _hrm.verify_optional();
1392   _verifier->verify_region_sets_optional();
1393 }
1394 
1395 // Public methods.
1396 
1397 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1398   CollectedHeap(),
1399   _young_gen_sampling_thread(NULL),
1400   _collector_policy(collector_policy),
1401   _soft_ref_policy(),
1402   _card_table(NULL),
1403   _memory_manager("G1 Young Generation", "end of minor GC"),
1404   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1405   _eden_pool(NULL),
1406   _survivor_pool(NULL),
1407   _old_pool(NULL),
1408   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1409   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1410   _g1_policy(new G1Policy(_gc_timer_stw)),
1411   _collection_set(this, _g1_policy),
1412   _dirty_card_queue_set(false),
1413   _is_alive_closure_cm(this),
1414   _is_alive_closure_stw(this),
1415   _ref_processor_cm(NULL),
1416   _ref_processor_stw(NULL),
1417   _bot(NULL),
1418   _hot_card_cache(NULL),
1419   _g1_rem_set(NULL),
1420   _cr(NULL),
1421   _g1mm(NULL),
1422   _preserved_marks_set(true /* in_c_heap */),
1423   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1424   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1425   _humongous_reclaim_candidates(),
1426   _has_humongous_reclaim_candidates(false),
1427   _archive_allocator(NULL),
1428   _summary_bytes_used(0),
1429   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1430   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1431   _expand_heap_after_alloc_failure(true),
1432   _old_marking_cycles_started(0),
1433   _old_marking_cycles_completed(0),
1434   _in_cset_fast_test() {
1435 
1436   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1437                           /* are_GC_task_threads */true,
1438                           /* are_ConcurrentGC_threads */false);
1439   _workers->initialize_workers();
1440   _verifier = new G1HeapVerifier(this);
1441 
1442   _allocator = new G1Allocator(this);
1443 
1444   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1445 
1446   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1447 
1448   // Override the default _filler_array_max_size so that no humongous filler
1449   // objects are created.
1450   _filler_array_max_size = _humongous_object_threshold_in_words;
1451 
1452   uint n_queues = ParallelGCThreads;
1453   _task_queues = new RefToScanQueueSet(n_queues);
1454 
1455   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1456 
1457   for (uint i = 0; i < n_queues; i++) {
1458     RefToScanQueue* q = new RefToScanQueue();
1459     q->initialize();
1460     _task_queues->register_queue(i, q);
1461     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1462   }
1463 
1464   // Initialize the G1EvacuationFailureALot counters and flags.
1465   NOT_PRODUCT(reset_evacuation_should_fail();)
1466 
1467   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1468 }
1469 
1470 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1471                                                                  size_t size,
1472                                                                  size_t translation_factor) {
1473   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1474   // Allocate a new reserved space, preferring to use large pages.
1475   ReservedSpace rs(size, preferred_page_size);
1476   G1RegionToSpaceMapper* result  =
1477     G1RegionToSpaceMapper::create_mapper(rs,
1478                                          size,
1479                                          rs.alignment(),
1480                                          HeapRegion::GrainBytes,
1481                                          translation_factor,
1482                                          mtGC);
1483 
1484   os::trace_page_sizes_for_requested_size(description,
1485                                           size,
1486                                           preferred_page_size,
1487                                           rs.alignment(),
1488                                           rs.base(),
1489                                           rs.size());
1490 
1491   return result;
1492 }
1493 
1494 jint G1CollectedHeap::initialize_concurrent_refinement() {
1495   jint ecode = JNI_OK;
1496   _cr = G1ConcurrentRefine::create(&ecode);
1497   return ecode;
1498 }
1499 
1500 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1501   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1502   if (_young_gen_sampling_thread->osthread() == NULL) {
1503     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1504     return JNI_ENOMEM;
1505   }
1506   return JNI_OK;
1507 }
1508 
1509 jint G1CollectedHeap::initialize() {
1510   os::enable_vtime();
1511 
1512   // Necessary to satisfy locking discipline assertions.
1513 
1514   MutexLocker x(Heap_lock);
1515 
1516   // While there are no constraints in the GC code that HeapWordSize
1517   // be any particular value, there are multiple other areas in the
1518   // system which believe this to be true (e.g. oop->object_size in some
1519   // cases incorrectly returns the size in wordSize units rather than
1520   // HeapWordSize).
1521   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1522 
1523   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1524   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1525   size_t heap_alignment = collector_policy()->heap_alignment();
1526 
1527   // Ensure that the sizes are properly aligned.
1528   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1529   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1530   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1531 
1532   // Reserve the maximum.
1533 
1534   // When compressed oops are enabled, the preferred heap base
1535   // is calculated by subtracting the requested size from the
1536   // 32Gb boundary and using the result as the base address for
1537   // heap reservation. If the requested size is not aligned to
1538   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1539   // into the ReservedHeapSpace constructor) then the actual
1540   // base of the reserved heap may end up differing from the
1541   // address that was requested (i.e. the preferred heap base).
1542   // If this happens then we could end up using a non-optimal
1543   // compressed oops mode.
1544 
1545   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1546                                                  heap_alignment);
1547 
1548   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1549 
1550   // Create the barrier set for the entire reserved region.
1551   G1CardTable* ct = new G1CardTable(reserved_region());
1552   ct->initialize();
1553   G1BarrierSet* bs = new G1BarrierSet(ct);
1554   bs->initialize();
1555   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1556   BarrierSet::set_barrier_set(bs);
1557   _card_table = ct;
1558 
1559   // Create the hot card cache.
1560   _hot_card_cache = new G1HotCardCache(this);
1561 
1562   // Carve out the G1 part of the heap.
1563   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1564   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1565   G1RegionToSpaceMapper* heap_storage =
1566     G1RegionToSpaceMapper::create_mapper(g1_rs,
1567                                          g1_rs.size(),
1568                                          page_size,
1569                                          HeapRegion::GrainBytes,
1570                                          1,
1571                                          mtJavaHeap);
1572   os::trace_page_sizes("Heap",
1573                        collector_policy()->min_heap_byte_size(),
1574                        max_byte_size,
1575                        page_size,
1576                        heap_rs.base(),
1577                        heap_rs.size());
1578   heap_storage->set_mapping_changed_listener(&_listener);
1579 
1580   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1581   G1RegionToSpaceMapper* bot_storage =
1582     create_aux_memory_mapper("Block Offset Table",
1583                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1584                              G1BlockOffsetTable::heap_map_factor());
1585 
1586   G1RegionToSpaceMapper* cardtable_storage =
1587     create_aux_memory_mapper("Card Table",
1588                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1589                              G1CardTable::heap_map_factor());
1590 
1591   G1RegionToSpaceMapper* card_counts_storage =
1592     create_aux_memory_mapper("Card Counts Table",
1593                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1594                              G1CardCounts::heap_map_factor());
1595 
1596   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1597   G1RegionToSpaceMapper* prev_bitmap_storage =
1598     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1599   G1RegionToSpaceMapper* next_bitmap_storage =
1600     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1601 
1602   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1603   _card_table->initialize(cardtable_storage);
1604   // Do later initialization work for concurrent refinement.
1605   _hot_card_cache->initialize(card_counts_storage);
1606 
1607   // 6843694 - ensure that the maximum region index can fit
1608   // in the remembered set structures.
1609   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1610   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1611 
1612   // Also create a G1 rem set.
1613   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1614   _g1_rem_set->initialize(max_capacity(), max_regions());
1615 
1616   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1617   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1618   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1619             "too many cards per region");
1620 
1621   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1622 
1623   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1624 
1625   {
1626     HeapWord* start = _hrm.reserved().start();
1627     HeapWord* end = _hrm.reserved().end();
1628     size_t granularity = HeapRegion::GrainBytes;
1629 
1630     _in_cset_fast_test.initialize(start, end, granularity);
1631     _humongous_reclaim_candidates.initialize(start, end, granularity);
1632   }
1633 
1634   // Create the G1ConcurrentMark data structure and thread.
1635   // (Must do this late, so that "max_regions" is defined.)
1636   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1637   if (_cm == NULL || !_cm->completed_initialization()) {
1638     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1639     return JNI_ENOMEM;
1640   }
1641   _cm_thread = _cm->cm_thread();
1642 
1643   // Now expand into the initial heap size.
1644   if (!expand(init_byte_size, _workers)) {
1645     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1646     return JNI_ENOMEM;
1647   }
1648 
1649   // Perform any initialization actions delegated to the policy.
1650   g1_policy()->init(this, &_collection_set);
1651 
1652   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1653                                                  SATB_Q_FL_lock,
1654                                                  G1SATBProcessCompletedThreshold,
1655                                                  Shared_SATB_Q_lock);
1656 
1657   jint ecode = initialize_concurrent_refinement();
1658   if (ecode != JNI_OK) {
1659     return ecode;
1660   }
1661 
1662   ecode = initialize_young_gen_sampling_thread();
1663   if (ecode != JNI_OK) {
1664     return ecode;
1665   }
1666 
1667   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1668                                                   DirtyCardQ_FL_lock,
1669                                                   (int)concurrent_refine()->yellow_zone(),
1670                                                   (int)concurrent_refine()->red_zone(),
1671                                                   Shared_DirtyCardQ_lock,
1672                                                   NULL,  // fl_owner
1673                                                   true); // init_free_ids
1674 
1675   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1676                                     DirtyCardQ_FL_lock,
1677                                     -1, // never trigger processing
1678                                     -1, // no limit on length
1679                                     Shared_DirtyCardQ_lock,
1680                                     &G1BarrierSet::dirty_card_queue_set());
1681 
1682   // Here we allocate the dummy HeapRegion that is required by the
1683   // G1AllocRegion class.
1684   HeapRegion* dummy_region = _hrm.get_dummy_region();
1685 
1686   // We'll re-use the same region whether the alloc region will
1687   // require BOT updates or not and, if it doesn't, then a non-young
1688   // region will complain that it cannot support allocations without
1689   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1690   dummy_region->set_eden();
1691   // Make sure it's full.
1692   dummy_region->set_top(dummy_region->end());
1693   G1AllocRegion::setup(this, dummy_region);
1694 
1695   _allocator->init_mutator_alloc_region();
1696 
1697   // Do create of the monitoring and management support so that
1698   // values in the heap have been properly initialized.
1699   _g1mm = new G1MonitoringSupport(this);
1700 
1701   G1StringDedup::initialize();
1702 
1703   _preserved_marks_set.init(ParallelGCThreads);
1704 
1705   _collection_set.initialize(max_regions());
1706 
1707   return JNI_OK;
1708 }
1709 
1710 void G1CollectedHeap::initialize_serviceability() {
1711   _eden_pool = new G1EdenPool(this);
1712   _survivor_pool = new G1SurvivorPool(this);
1713   _old_pool = new G1OldGenPool(this);
1714 
1715   _full_gc_memory_manager.add_pool(_eden_pool);
1716   _full_gc_memory_manager.add_pool(_survivor_pool);
1717   _full_gc_memory_manager.add_pool(_old_pool);
1718 
1719   _memory_manager.add_pool(_eden_pool);
1720   _memory_manager.add_pool(_survivor_pool);
1721 
1722 }
1723 
1724 void G1CollectedHeap::stop() {
1725   // Stop all concurrent threads. We do this to make sure these threads
1726   // do not continue to execute and access resources (e.g. logging)
1727   // that are destroyed during shutdown.
1728   _cr->stop();
1729   _young_gen_sampling_thread->stop();
1730   _cm_thread->stop();
1731   if (G1StringDedup::is_enabled()) {
1732     G1StringDedup::stop();
1733   }
1734 }
1735 
1736 void G1CollectedHeap::safepoint_synchronize_begin() {
1737   SuspendibleThreadSet::synchronize();
1738 }
1739 
1740 void G1CollectedHeap::safepoint_synchronize_end() {
1741   SuspendibleThreadSet::desynchronize();
1742 }
1743 
1744 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1745   return HeapRegion::max_region_size();
1746 }
1747 
1748 void G1CollectedHeap::post_initialize() {
1749   CollectedHeap::post_initialize();
1750   ref_processing_init();
1751 }
1752 
1753 void G1CollectedHeap::ref_processing_init() {
1754   // Reference processing in G1 currently works as follows:
1755   //
1756   // * There are two reference processor instances. One is
1757   //   used to record and process discovered references
1758   //   during concurrent marking; the other is used to
1759   //   record and process references during STW pauses
1760   //   (both full and incremental).
1761   // * Both ref processors need to 'span' the entire heap as
1762   //   the regions in the collection set may be dotted around.
1763   //
1764   // * For the concurrent marking ref processor:
1765   //   * Reference discovery is enabled at initial marking.
1766   //   * Reference discovery is disabled and the discovered
1767   //     references processed etc during remarking.
1768   //   * Reference discovery is MT (see below).
1769   //   * Reference discovery requires a barrier (see below).
1770   //   * Reference processing may or may not be MT
1771   //     (depending on the value of ParallelRefProcEnabled
1772   //     and ParallelGCThreads).
1773   //   * A full GC disables reference discovery by the CM
1774   //     ref processor and abandons any entries on it's
1775   //     discovered lists.
1776   //
1777   // * For the STW processor:
1778   //   * Non MT discovery is enabled at the start of a full GC.
1779   //   * Processing and enqueueing during a full GC is non-MT.
1780   //   * During a full GC, references are processed after marking.
1781   //
1782   //   * Discovery (may or may not be MT) is enabled at the start
1783   //     of an incremental evacuation pause.
1784   //   * References are processed near the end of a STW evacuation pause.
1785   //   * For both types of GC:
1786   //     * Discovery is atomic - i.e. not concurrent.
1787   //     * Reference discovery will not need a barrier.
1788 
1789   MemRegion mr = reserved_region();
1790 
1791   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1792 
1793   // Concurrent Mark ref processor
1794   _ref_processor_cm =
1795     new ReferenceProcessor(mr,    // span
1796                            mt_processing,
1797                                 // mt processing
1798                            ParallelGCThreads,
1799                                 // degree of mt processing
1800                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1801                                 // mt discovery
1802                            MAX2(ParallelGCThreads, ConcGCThreads),
1803                                 // degree of mt discovery
1804                            false,
1805                                 // Reference discovery is not atomic
1806                            &_is_alive_closure_cm);
1807                                 // is alive closure
1808                                 // (for efficiency/performance)
1809 
1810   // STW ref processor
1811   _ref_processor_stw =
1812     new ReferenceProcessor(mr,    // span
1813                            mt_processing,
1814                                 // mt processing
1815                            ParallelGCThreads,
1816                                 // degree of mt processing
1817                            (ParallelGCThreads > 1),
1818                                 // mt discovery
1819                            ParallelGCThreads,
1820                                 // degree of mt discovery
1821                            true,
1822                                 // Reference discovery is atomic
1823                            &_is_alive_closure_stw);
1824                                 // is alive closure
1825                                 // (for efficiency/performance)
1826 }
1827 
1828 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1829   return _collector_policy;
1830 }
1831 
1832 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1833   return &_soft_ref_policy;
1834 }
1835 
1836 size_t G1CollectedHeap::capacity() const {
1837   return _hrm.length() * HeapRegion::GrainBytes;
1838 }
1839 
1840 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1841   return _hrm.total_free_bytes();
1842 }
1843 
1844 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1845   _hot_card_cache->drain(cl, worker_i);
1846 }
1847 
1848 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1849   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1850   size_t n_completed_buffers = 0;
1851   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1852     n_completed_buffers++;
1853   }
1854   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1855   dcqs.clear_n_completed_buffers();
1856   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1857 }
1858 
1859 // Computes the sum of the storage used by the various regions.
1860 size_t G1CollectedHeap::used() const {
1861   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1862   if (_archive_allocator != NULL) {
1863     result += _archive_allocator->used();
1864   }
1865   return result;
1866 }
1867 
1868 size_t G1CollectedHeap::used_unlocked() const {
1869   return _summary_bytes_used;
1870 }
1871 
1872 class SumUsedClosure: public HeapRegionClosure {
1873   size_t _used;
1874 public:
1875   SumUsedClosure() : _used(0) {}
1876   bool do_heap_region(HeapRegion* r) {
1877     _used += r->used();
1878     return false;
1879   }
1880   size_t result() { return _used; }
1881 };
1882 
1883 size_t G1CollectedHeap::recalculate_used() const {
1884   double recalculate_used_start = os::elapsedTime();
1885 
1886   SumUsedClosure blk;
1887   heap_region_iterate(&blk);
1888 
1889   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1890   return blk.result();
1891 }
1892 
1893 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1894   switch (cause) {
1895     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1896     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1897     case GCCause::_wb_conc_mark:                        return true;
1898     default :                                           return false;
1899   }
1900 }
1901 
1902 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1903   switch (cause) {
1904     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1905     case GCCause::_g1_humongous_allocation: return true;
1906     default:                                return is_user_requested_concurrent_full_gc(cause);
1907   }
1908 }
1909 
1910 #ifndef PRODUCT
1911 void G1CollectedHeap::allocate_dummy_regions() {
1912   // Let's fill up most of the region
1913   size_t word_size = HeapRegion::GrainWords - 1024;
1914   // And as a result the region we'll allocate will be humongous.
1915   guarantee(is_humongous(word_size), "sanity");
1916 
1917   // _filler_array_max_size is set to humongous object threshold
1918   // but temporarily change it to use CollectedHeap::fill_with_object().
1919   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1920 
1921   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1922     // Let's use the existing mechanism for the allocation
1923     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1924     if (dummy_obj != NULL) {
1925       MemRegion mr(dummy_obj, word_size);
1926       CollectedHeap::fill_with_object(mr);
1927     } else {
1928       // If we can't allocate once, we probably cannot allocate
1929       // again. Let's get out of the loop.
1930       break;
1931     }
1932   }
1933 }
1934 #endif // !PRODUCT
1935 
1936 void G1CollectedHeap::increment_old_marking_cycles_started() {
1937   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1938          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1939          "Wrong marking cycle count (started: %d, completed: %d)",
1940          _old_marking_cycles_started, _old_marking_cycles_completed);
1941 
1942   _old_marking_cycles_started++;
1943 }
1944 
1945 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1946   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1947 
1948   // We assume that if concurrent == true, then the caller is a
1949   // concurrent thread that was joined the Suspendible Thread
1950   // Set. If there's ever a cheap way to check this, we should add an
1951   // assert here.
1952 
1953   // Given that this method is called at the end of a Full GC or of a
1954   // concurrent cycle, and those can be nested (i.e., a Full GC can
1955   // interrupt a concurrent cycle), the number of full collections
1956   // completed should be either one (in the case where there was no
1957   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1958   // behind the number of full collections started.
1959 
1960   // This is the case for the inner caller, i.e. a Full GC.
1961   assert(concurrent ||
1962          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1963          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1964          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1965          "is inconsistent with _old_marking_cycles_completed = %u",
1966          _old_marking_cycles_started, _old_marking_cycles_completed);
1967 
1968   // This is the case for the outer caller, i.e. the concurrent cycle.
1969   assert(!concurrent ||
1970          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1971          "for outer caller (concurrent cycle): "
1972          "_old_marking_cycles_started = %u "
1973          "is inconsistent with _old_marking_cycles_completed = %u",
1974          _old_marking_cycles_started, _old_marking_cycles_completed);
1975 
1976   _old_marking_cycles_completed += 1;
1977 
1978   // We need to clear the "in_progress" flag in the CM thread before
1979   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1980   // is set) so that if a waiter requests another System.gc() it doesn't
1981   // incorrectly see that a marking cycle is still in progress.
1982   if (concurrent) {
1983     _cm_thread->set_idle();
1984   }
1985 
1986   // This notify_all() will ensure that a thread that called
1987   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1988   // and it's waiting for a full GC to finish will be woken up. It is
1989   // waiting in VM_G1CollectForAllocation::doit_epilogue().
1990   FullGCCount_lock->notify_all();
1991 }
1992 
1993 void G1CollectedHeap::collect(GCCause::Cause cause) {
1994   assert_heap_not_locked();
1995 
1996   uint gc_count_before;
1997   uint old_marking_count_before;
1998   uint full_gc_count_before;
1999   bool retry_gc;
2000 
2001   do {
2002     retry_gc = false;
2003 
2004     {
2005       MutexLocker ml(Heap_lock);
2006 
2007       // Read the GC count while holding the Heap_lock
2008       gc_count_before = total_collections();
2009       full_gc_count_before = total_full_collections();
2010       old_marking_count_before = _old_marking_cycles_started;
2011     }
2012 
2013     if (should_do_concurrent_full_gc(cause)) {
2014       // Schedule an initial-mark evacuation pause that will start a
2015       // concurrent cycle. We're setting word_size to 0 which means that
2016       // we are not requesting a post-GC allocation.
2017       VM_G1CollectForAllocation op(0,     /* word_size */
2018                                    gc_count_before,
2019                                    cause,
2020                                    true,  /* should_initiate_conc_mark */
2021                                    g1_policy()->max_pause_time_ms());
2022       VMThread::execute(&op);
2023       if (!op.pause_succeeded()) {
2024         if (old_marking_count_before == _old_marking_cycles_started) {
2025           retry_gc = op.should_retry_gc();
2026         } else {
2027           // A Full GC happened while we were trying to schedule the
2028           // initial-mark GC. No point in starting a new cycle given
2029           // that the whole heap was collected anyway.
2030         }
2031 
2032         if (retry_gc) {
2033           if (GCLocker::is_active_and_needs_gc()) {
2034             GCLocker::stall_until_clear();
2035           }
2036         }
2037       }
2038     } else {
2039       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2040           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2041 
2042         // Schedule a standard evacuation pause. We're setting word_size
2043         // to 0 which means that we are not requesting a post-GC allocation.
2044         VM_G1CollectForAllocation op(0,     /* word_size */
2045                                      gc_count_before,
2046                                      cause,
2047                                      false, /* should_initiate_conc_mark */
2048                                      g1_policy()->max_pause_time_ms());
2049         VMThread::execute(&op);
2050       } else {
2051         // Schedule a Full GC.
2052         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2053         VMThread::execute(&op);
2054       }
2055     }
2056   } while (retry_gc);
2057 }
2058 
2059 bool G1CollectedHeap::is_in(const void* p) const {
2060   if (_hrm.reserved().contains(p)) {
2061     // Given that we know that p is in the reserved space,
2062     // heap_region_containing() should successfully
2063     // return the containing region.
2064     HeapRegion* hr = heap_region_containing(p);
2065     return hr->is_in(p);
2066   } else {
2067     return false;
2068   }
2069 }
2070 
2071 #ifdef ASSERT
2072 bool G1CollectedHeap::is_in_exact(const void* p) const {
2073   bool contains = reserved_region().contains(p);
2074   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2075   if (contains && available) {
2076     return true;
2077   } else {
2078     return false;
2079   }
2080 }
2081 #endif
2082 
2083 // Iteration functions.
2084 
2085 // Iterates an ObjectClosure over all objects within a HeapRegion.
2086 
2087 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2088   ObjectClosure* _cl;
2089 public:
2090   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2091   bool do_heap_region(HeapRegion* r) {
2092     if (!r->is_continues_humongous()) {
2093       r->object_iterate(_cl);
2094     }
2095     return false;
2096   }
2097 };
2098 
2099 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2100   IterateObjectClosureRegionClosure blk(cl);
2101   heap_region_iterate(&blk);
2102 }
2103 
2104 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2105   _hrm.iterate(cl);
2106 }
2107 
2108 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2109                                                                  HeapRegionClaimer *hrclaimer,
2110                                                                  uint worker_id) const {
2111   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2112 }
2113 
2114 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2115                                                          HeapRegionClaimer *hrclaimer) const {
2116   _hrm.par_iterate(cl, hrclaimer, 0);
2117 }
2118 
2119 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2120   _collection_set.iterate(cl);
2121 }
2122 
2123 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2124   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2125 }
2126 
2127 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2128   HeapRegion* hr = heap_region_containing(addr);
2129   return hr->block_start(addr);
2130 }
2131 
2132 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2133   HeapRegion* hr = heap_region_containing(addr);
2134   return hr->block_size(addr);
2135 }
2136 
2137 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2138   HeapRegion* hr = heap_region_containing(addr);
2139   return hr->block_is_obj(addr);
2140 }
2141 
2142 bool G1CollectedHeap::supports_tlab_allocation() const {
2143   return true;
2144 }
2145 
2146 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2147   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2148 }
2149 
2150 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2151   return _eden.length() * HeapRegion::GrainBytes;
2152 }
2153 
2154 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2155 // must be equal to the humongous object limit.
2156 size_t G1CollectedHeap::max_tlab_size() const {
2157   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2158 }
2159 
2160 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2161   return _allocator->unsafe_max_tlab_alloc();
2162 }
2163 
2164 size_t G1CollectedHeap::max_capacity() const {
2165   return _hrm.reserved().byte_size();
2166 }
2167 
2168 jlong G1CollectedHeap::millis_since_last_gc() {
2169   // See the notes in GenCollectedHeap::millis_since_last_gc()
2170   // for more information about the implementation.
2171   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2172     _g1_policy->collection_pause_end_millis();
2173   if (ret_val < 0) {
2174     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2175       ". returning zero instead.", ret_val);
2176     return 0;
2177   }
2178   return ret_val;
2179 }
2180 
2181 void G1CollectedHeap::prepare_for_verify() {
2182   _verifier->prepare_for_verify();
2183 }
2184 
2185 void G1CollectedHeap::verify(VerifyOption vo) {
2186   _verifier->verify(vo);
2187 }
2188 
2189 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2190   return true;
2191 }
2192 
2193 const char* const* G1CollectedHeap::concurrent_phases() const {
2194   return _cm_thread->concurrent_phases();
2195 }
2196 
2197 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2198   return _cm_thread->request_concurrent_phase(phase);
2199 }
2200 
2201 class PrintRegionClosure: public HeapRegionClosure {
2202   outputStream* _st;
2203 public:
2204   PrintRegionClosure(outputStream* st) : _st(st) {}
2205   bool do_heap_region(HeapRegion* r) {
2206     r->print_on(_st);
2207     return false;
2208   }
2209 };
2210 
2211 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2212                                        const HeapRegion* hr,
2213                                        const VerifyOption vo) const {
2214   switch (vo) {
2215   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2216   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2217   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2218   default:                            ShouldNotReachHere();
2219   }
2220   return false; // keep some compilers happy
2221 }
2222 
2223 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2224                                        const VerifyOption vo) const {
2225   switch (vo) {
2226   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2227   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2228   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2229   default:                            ShouldNotReachHere();
2230   }
2231   return false; // keep some compilers happy
2232 }
2233 
2234 void G1CollectedHeap::print_heap_regions() const {
2235   LogTarget(Trace, gc, heap, region) lt;
2236   if (lt.is_enabled()) {
2237     LogStream ls(lt);
2238     print_regions_on(&ls);
2239   }
2240 }
2241 
2242 void G1CollectedHeap::print_on(outputStream* st) const {
2243   st->print(" %-20s", "garbage-first heap");
2244   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2245             capacity()/K, used_unlocked()/K);
2246   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2247             p2i(_hrm.reserved().start()),
2248             p2i(_hrm.reserved().end()));
2249   st->cr();
2250   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2251   uint young_regions = young_regions_count();
2252   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2253             (size_t) young_regions * HeapRegion::GrainBytes / K);
2254   uint survivor_regions = survivor_regions_count();
2255   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2256             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2257   st->cr();
2258   MetaspaceUtils::print_on(st);
2259 }
2260 
2261 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2262   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2263                "HS=humongous(starts), HC=humongous(continues), "
2264                "CS=collection set, F=free, A=archive, "
2265                "TAMS=top-at-mark-start (previous, next)");
2266   PrintRegionClosure blk(st);
2267   heap_region_iterate(&blk);
2268 }
2269 
2270 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2271   print_on(st);
2272 
2273   // Print the per-region information.
2274   print_regions_on(st);
2275 }
2276 
2277 void G1CollectedHeap::print_on_error(outputStream* st) const {
2278   this->CollectedHeap::print_on_error(st);
2279 
2280   if (_cm != NULL) {
2281     st->cr();
2282     _cm->print_on_error(st);
2283   }
2284 }
2285 
2286 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2287   workers()->print_worker_threads_on(st);
2288   _cm_thread->print_on(st);
2289   st->cr();
2290   _cm->print_worker_threads_on(st);
2291   _cr->print_threads_on(st);
2292   _young_gen_sampling_thread->print_on(st);
2293   if (G1StringDedup::is_enabled()) {
2294     G1StringDedup::print_worker_threads_on(st);
2295   }
2296 }
2297 
2298 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2299   workers()->threads_do(tc);
2300   tc->do_thread(_cm_thread);
2301   _cm->threads_do(tc);
2302   _cr->threads_do(tc);
2303   tc->do_thread(_young_gen_sampling_thread);
2304   if (G1StringDedup::is_enabled()) {
2305     G1StringDedup::threads_do(tc);
2306   }
2307 }
2308 
2309 void G1CollectedHeap::print_tracing_info() const {
2310   g1_rem_set()->print_summary_info();
2311   concurrent_mark()->print_summary_info();
2312 }
2313 
2314 #ifndef PRODUCT
2315 // Helpful for debugging RSet issues.
2316 
2317 class PrintRSetsClosure : public HeapRegionClosure {
2318 private:
2319   const char* _msg;
2320   size_t _occupied_sum;
2321 
2322 public:
2323   bool do_heap_region(HeapRegion* r) {
2324     HeapRegionRemSet* hrrs = r->rem_set();
2325     size_t occupied = hrrs->occupied();
2326     _occupied_sum += occupied;
2327 
2328     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2329     if (occupied == 0) {
2330       tty->print_cr("  RSet is empty");
2331     } else {
2332       hrrs->print();
2333     }
2334     tty->print_cr("----------");
2335     return false;
2336   }
2337 
2338   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2339     tty->cr();
2340     tty->print_cr("========================================");
2341     tty->print_cr("%s", msg);
2342     tty->cr();
2343   }
2344 
2345   ~PrintRSetsClosure() {
2346     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2347     tty->print_cr("========================================");
2348     tty->cr();
2349   }
2350 };
2351 
2352 void G1CollectedHeap::print_cset_rsets() {
2353   PrintRSetsClosure cl("Printing CSet RSets");
2354   collection_set_iterate(&cl);
2355 }
2356 
2357 void G1CollectedHeap::print_all_rsets() {
2358   PrintRSetsClosure cl("Printing All RSets");;
2359   heap_region_iterate(&cl);
2360 }
2361 #endif // PRODUCT
2362 
2363 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2364 
2365   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2366   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2367   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2368 
2369   size_t eden_capacity_bytes =
2370     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2371 
2372   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2373   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2374                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2375 }
2376 
2377 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2378   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2379                        stats->unused(), stats->used(), stats->region_end_waste(),
2380                        stats->regions_filled(), stats->direct_allocated(),
2381                        stats->failure_used(), stats->failure_waste());
2382 }
2383 
2384 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2385   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2386   gc_tracer->report_gc_heap_summary(when, heap_summary);
2387 
2388   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2389   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2390 }
2391 
2392 G1CollectedHeap* G1CollectedHeap::heap() {
2393   CollectedHeap* heap = Universe::heap();
2394   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2395   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2396   return (G1CollectedHeap*)heap;
2397 }
2398 
2399 void G1CollectedHeap::gc_prologue(bool full) {
2400   // always_do_update_barrier = false;
2401   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2402 
2403   // This summary needs to be printed before incrementing total collections.
2404   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2405 
2406   // Update common counters.
2407   increment_total_collections(full /* full gc */);
2408   if (full) {
2409     increment_old_marking_cycles_started();
2410   }
2411 
2412   // Fill TLAB's and such
2413   double start = os::elapsedTime();
2414   accumulate_statistics_all_tlabs();
2415   ensure_parsability(true);
2416   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2417 }
2418 
2419 void G1CollectedHeap::gc_epilogue(bool full) {
2420   // Update common counters.
2421   if (full) {
2422     // Update the number of full collections that have been completed.
2423     increment_old_marking_cycles_completed(false /* concurrent */);
2424   }
2425 
2426   // We are at the end of the GC. Total collections has already been increased.
2427   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2428 
2429   // FIXME: what is this about?
2430   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2431   // is set.
2432 #if COMPILER2_OR_JVMCI
2433   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2434 #endif
2435   // always_do_update_barrier = true;
2436 
2437   double start = os::elapsedTime();
2438   resize_all_tlabs();
2439   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2440 
2441   MemoryService::track_memory_usage();
2442   // We have just completed a GC. Update the soft reference
2443   // policy with the new heap occupancy
2444   Universe::update_heap_info_at_gc();
2445 }
2446 
2447 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2448                                                uint gc_count_before,
2449                                                bool* succeeded,
2450                                                GCCause::Cause gc_cause) {
2451   assert_heap_not_locked_and_not_at_safepoint();
2452   VM_G1CollectForAllocation op(word_size,
2453                                gc_count_before,
2454                                gc_cause,
2455                                false, /* should_initiate_conc_mark */
2456                                g1_policy()->max_pause_time_ms());
2457   VMThread::execute(&op);
2458 
2459   HeapWord* result = op.result();
2460   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2461   assert(result == NULL || ret_succeeded,
2462          "the result should be NULL if the VM did not succeed");
2463   *succeeded = ret_succeeded;
2464 
2465   assert_heap_not_locked();
2466   return result;
2467 }
2468 
2469 void G1CollectedHeap::do_concurrent_mark() {
2470   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2471   if (!_cm_thread->in_progress()) {
2472     _cm_thread->set_started();
2473     CGC_lock->notify();
2474   }
2475 }
2476 
2477 size_t G1CollectedHeap::pending_card_num() {
2478   size_t extra_cards = 0;
2479   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2480     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2481     extra_cards += dcq.size();
2482   }
2483   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2484   size_t buffer_size = dcqs.buffer_size();
2485   size_t buffer_num = dcqs.completed_buffers_num();
2486 
2487   return buffer_size * buffer_num + extra_cards;
2488 }
2489 
2490 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2491   // We don't nominate objects with many remembered set entries, on
2492   // the assumption that such objects are likely still live.
2493   HeapRegionRemSet* rem_set = r->rem_set();
2494 
2495   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2496          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2497          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2498 }
2499 
2500 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2501  private:
2502   size_t _total_humongous;
2503   size_t _candidate_humongous;
2504 
2505   DirtyCardQueue _dcq;
2506 
2507   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2508     assert(region->is_starts_humongous(), "Must start a humongous object");
2509 
2510     oop obj = oop(region->bottom());
2511 
2512     // Dead objects cannot be eager reclaim candidates. Due to class
2513     // unloading it is unsafe to query their classes so we return early.
2514     if (g1h->is_obj_dead(obj, region)) {
2515       return false;
2516     }
2517 
2518     // If we do not have a complete remembered set for the region, then we can
2519     // not be sure that we have all references to it.
2520     if (!region->rem_set()->is_complete()) {
2521       return false;
2522     }
2523     // Candidate selection must satisfy the following constraints
2524     // while concurrent marking is in progress:
2525     //
2526     // * In order to maintain SATB invariants, an object must not be
2527     // reclaimed if it was allocated before the start of marking and
2528     // has not had its references scanned.  Such an object must have
2529     // its references (including type metadata) scanned to ensure no
2530     // live objects are missed by the marking process.  Objects
2531     // allocated after the start of concurrent marking don't need to
2532     // be scanned.
2533     //
2534     // * An object must not be reclaimed if it is on the concurrent
2535     // mark stack.  Objects allocated after the start of concurrent
2536     // marking are never pushed on the mark stack.
2537     //
2538     // Nominating only objects allocated after the start of concurrent
2539     // marking is sufficient to meet both constraints.  This may miss
2540     // some objects that satisfy the constraints, but the marking data
2541     // structures don't support efficiently performing the needed
2542     // additional tests or scrubbing of the mark stack.
2543     //
2544     // However, we presently only nominate is_typeArray() objects.
2545     // A humongous object containing references induces remembered
2546     // set entries on other regions.  In order to reclaim such an
2547     // object, those remembered sets would need to be cleaned up.
2548     //
2549     // We also treat is_typeArray() objects specially, allowing them
2550     // to be reclaimed even if allocated before the start of
2551     // concurrent mark.  For this we rely on mark stack insertion to
2552     // exclude is_typeArray() objects, preventing reclaiming an object
2553     // that is in the mark stack.  We also rely on the metadata for
2554     // such objects to be built-in and so ensured to be kept live.
2555     // Frequent allocation and drop of large binary blobs is an
2556     // important use case for eager reclaim, and this special handling
2557     // may reduce needed headroom.
2558 
2559     return obj->is_typeArray() &&
2560            g1h->is_potential_eager_reclaim_candidate(region);
2561   }
2562 
2563  public:
2564   RegisterHumongousWithInCSetFastTestClosure()
2565   : _total_humongous(0),
2566     _candidate_humongous(0),
2567     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2568   }
2569 
2570   virtual bool do_heap_region(HeapRegion* r) {
2571     if (!r->is_starts_humongous()) {
2572       return false;
2573     }
2574     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2575 
2576     bool is_candidate = humongous_region_is_candidate(g1h, r);
2577     uint rindex = r->hrm_index();
2578     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2579     if (is_candidate) {
2580       _candidate_humongous++;
2581       g1h->register_humongous_region_with_cset(rindex);
2582       // Is_candidate already filters out humongous object with large remembered sets.
2583       // If we have a humongous object with a few remembered sets, we simply flush these
2584       // remembered set entries into the DCQS. That will result in automatic
2585       // re-evaluation of their remembered set entries during the following evacuation
2586       // phase.
2587       if (!r->rem_set()->is_empty()) {
2588         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2589                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2590         G1CardTable* ct = g1h->card_table();
2591         HeapRegionRemSetIterator hrrs(r->rem_set());
2592         size_t card_index;
2593         while (hrrs.has_next(card_index)) {
2594           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2595           // The remembered set might contain references to already freed
2596           // regions. Filter out such entries to avoid failing card table
2597           // verification.
2598           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2599             if (*card_ptr != G1CardTable::dirty_card_val()) {
2600               *card_ptr = G1CardTable::dirty_card_val();
2601               _dcq.enqueue(card_ptr);
2602             }
2603           }
2604         }
2605         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2606                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2607                hrrs.n_yielded(), r->rem_set()->occupied());
2608         // We should only clear the card based remembered set here as we will not
2609         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2610         // (and probably never) we do not enter this path if there are other kind of
2611         // remembered sets for this region.
2612         r->rem_set()->clear_locked(true /* only_cardset */);
2613         // Clear_locked() above sets the state to Empty. However we want to continue
2614         // collecting remembered set entries for humongous regions that were not
2615         // reclaimed.
2616         r->rem_set()->set_state_complete();
2617       }
2618       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2619     }
2620     _total_humongous++;
2621 
2622     return false;
2623   }
2624 
2625   size_t total_humongous() const { return _total_humongous; }
2626   size_t candidate_humongous() const { return _candidate_humongous; }
2627 
2628   void flush_rem_set_entries() { _dcq.flush(); }
2629 };
2630 
2631 void G1CollectedHeap::register_humongous_regions_with_cset() {
2632   if (!G1EagerReclaimHumongousObjects) {
2633     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2634     return;
2635   }
2636   double time = os::elapsed_counter();
2637 
2638   // Collect reclaim candidate information and register candidates with cset.
2639   RegisterHumongousWithInCSetFastTestClosure cl;
2640   heap_region_iterate(&cl);
2641 
2642   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2643   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2644                                                                   cl.total_humongous(),
2645                                                                   cl.candidate_humongous());
2646   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2647 
2648   // Finally flush all remembered set entries to re-check into the global DCQS.
2649   cl.flush_rem_set_entries();
2650 }
2651 
2652 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2653   public:
2654     bool do_heap_region(HeapRegion* hr) {
2655       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2656         hr->verify_rem_set();
2657       }
2658       return false;
2659     }
2660 };
2661 
2662 uint G1CollectedHeap::num_task_queues() const {
2663   return _task_queues->size();
2664 }
2665 
2666 #if TASKQUEUE_STATS
2667 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2668   st->print_raw_cr("GC Task Stats");
2669   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2670   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2671 }
2672 
2673 void G1CollectedHeap::print_taskqueue_stats() const {
2674   if (!log_is_enabled(Trace, gc, task, stats)) {
2675     return;
2676   }
2677   Log(gc, task, stats) log;
2678   ResourceMark rm;
2679   LogStream ls(log.trace());
2680   outputStream* st = &ls;
2681 
2682   print_taskqueue_stats_hdr(st);
2683 
2684   TaskQueueStats totals;
2685   const uint n = num_task_queues();
2686   for (uint i = 0; i < n; ++i) {
2687     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2688     totals += task_queue(i)->stats;
2689   }
2690   st->print_raw("tot "); totals.print(st); st->cr();
2691 
2692   DEBUG_ONLY(totals.verify());
2693 }
2694 
2695 void G1CollectedHeap::reset_taskqueue_stats() {
2696   const uint n = num_task_queues();
2697   for (uint i = 0; i < n; ++i) {
2698     task_queue(i)->stats.reset();
2699   }
2700 }
2701 #endif // TASKQUEUE_STATS
2702 
2703 void G1CollectedHeap::wait_for_root_region_scanning() {
2704   double scan_wait_start = os::elapsedTime();
2705   // We have to wait until the CM threads finish scanning the
2706   // root regions as it's the only way to ensure that all the
2707   // objects on them have been correctly scanned before we start
2708   // moving them during the GC.
2709   bool waited = _cm->root_regions()->wait_until_scan_finished();
2710   double wait_time_ms = 0.0;
2711   if (waited) {
2712     double scan_wait_end = os::elapsedTime();
2713     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2714   }
2715   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2716 }
2717 
2718 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2719 private:
2720   G1HRPrinter* _hr_printer;
2721 public:
2722   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2723 
2724   virtual bool do_heap_region(HeapRegion* r) {
2725     _hr_printer->cset(r);
2726     return false;
2727   }
2728 };
2729 
2730 void G1CollectedHeap::start_new_collection_set() {
2731   collection_set()->start_incremental_building();
2732 
2733   clear_cset_fast_test();
2734 
2735   guarantee(_eden.length() == 0, "eden should have been cleared");
2736   g1_policy()->transfer_survivors_to_cset(survivor());
2737 }
2738 
2739 bool
2740 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2741   assert_at_safepoint_on_vm_thread();
2742   guarantee(!is_gc_active(), "collection is not reentrant");
2743 
2744   if (GCLocker::check_active_before_gc()) {
2745     return false;
2746   }
2747 
2748   _gc_timer_stw->register_gc_start();
2749 
2750   GCIdMark gc_id_mark;
2751   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2752 
2753   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2754   ResourceMark rm;
2755 
2756   g1_policy()->note_gc_start();
2757 
2758   wait_for_root_region_scanning();
2759 
2760   print_heap_before_gc();
2761   print_heap_regions();
2762   trace_heap_before_gc(_gc_tracer_stw);
2763 
2764   _verifier->verify_region_sets_optional();
2765   _verifier->verify_dirty_young_regions();
2766 
2767   // We should not be doing initial mark unless the conc mark thread is running
2768   if (!_cm_thread->should_terminate()) {
2769     // This call will decide whether this pause is an initial-mark
2770     // pause. If it is, in_initial_mark_gc() will return true
2771     // for the duration of this pause.
2772     g1_policy()->decide_on_conc_mark_initiation();
2773   }
2774 
2775   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2776   assert(!collector_state()->in_initial_mark_gc() ||
2777           collector_state()->in_young_only_phase(), "sanity");
2778 
2779   // We also do not allow mixed GCs during marking.
2780   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2781 
2782   // Record whether this pause is an initial mark. When the current
2783   // thread has completed its logging output and it's safe to signal
2784   // the CM thread, the flag's value in the policy has been reset.
2785   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2786 
2787   // Inner scope for scope based logging, timers, and stats collection
2788   {
2789     EvacuationInfo evacuation_info;
2790 
2791     if (collector_state()->in_initial_mark_gc()) {
2792       // We are about to start a marking cycle, so we increment the
2793       // full collection counter.
2794       increment_old_marking_cycles_started();
2795       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2796     }
2797 
2798     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2799 
2800     GCTraceCPUTime tcpu;
2801 
2802     G1HeapVerifier::G1VerifyType verify_type;
2803     FormatBuffer<> gc_string("Pause ");
2804     if (collector_state()->in_initial_mark_gc()) {
2805       gc_string.append("Initial Mark");
2806       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2807     } else if (collector_state()->in_young_only_phase()) {
2808       gc_string.append("Young");
2809       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2810     } else {
2811       gc_string.append("Mixed");
2812       verify_type = G1HeapVerifier::G1VerifyMixed;
2813     }
2814     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2815 
2816     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2817                                                                   workers()->active_workers(),
2818                                                                   Threads::number_of_non_daemon_threads());
2819     active_workers = workers()->update_active_workers(active_workers);
2820     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2821 
2822     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2823     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2824 
2825     G1HeapTransition heap_transition(this);
2826     size_t heap_used_bytes_before_gc = used();
2827 
2828     // Don't dynamically change the number of GC threads this early.  A value of
2829     // 0 is used to indicate serial work.  When parallel work is done,
2830     // it will be set.
2831 
2832     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2833       IsGCActiveMark x;
2834 
2835       gc_prologue(false);
2836 
2837       if (VerifyRememberedSets) {
2838         log_info(gc, verify)("[Verifying RemSets before GC]");
2839         VerifyRegionRemSetClosure v_cl;
2840         heap_region_iterate(&v_cl);
2841       }
2842 
2843       _verifier->verify_before_gc(verify_type);
2844 
2845       _verifier->check_bitmaps("GC Start");
2846 
2847 #if COMPILER2_OR_JVMCI
2848       DerivedPointerTable::clear();
2849 #endif
2850 
2851       // Please see comment in g1CollectedHeap.hpp and
2852       // G1CollectedHeap::ref_processing_init() to see how
2853       // reference processing currently works in G1.
2854 
2855       // Enable discovery in the STW reference processor
2856       ref_processor_stw()->enable_discovery();
2857 
2858       {
2859         // We want to temporarily turn off discovery by the
2860         // CM ref processor, if necessary, and turn it back on
2861         // on again later if we do. Using a scoped
2862         // NoRefDiscovery object will do this.
2863         NoRefDiscovery no_cm_discovery(ref_processor_cm());
2864 
2865         // Forget the current alloc region (we might even choose it to be part
2866         // of the collection set!).
2867         _allocator->release_mutator_alloc_region();
2868 
2869         // This timing is only used by the ergonomics to handle our pause target.
2870         // It is unclear why this should not include the full pause. We will
2871         // investigate this in CR 7178365.
2872         //
2873         // Preserving the old comment here if that helps the investigation:
2874         //
2875         // The elapsed time induced by the start time below deliberately elides
2876         // the possible verification above.
2877         double sample_start_time_sec = os::elapsedTime();
2878 
2879         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2880 
2881         if (collector_state()->in_initial_mark_gc()) {
2882           concurrent_mark()->pre_initial_mark();
2883         }
2884 
2885         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2886 
2887         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2888 
2889         // Make sure the remembered sets are up to date. This needs to be
2890         // done before register_humongous_regions_with_cset(), because the
2891         // remembered sets are used there to choose eager reclaim candidates.
2892         // If the remembered sets are not up to date we might miss some
2893         // entries that need to be handled.
2894         g1_rem_set()->cleanupHRRS();
2895 
2896         register_humongous_regions_with_cset();
2897 
2898         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2899 
2900         // We call this after finalize_cset() to
2901         // ensure that the CSet has been finalized.
2902         _cm->verify_no_cset_oops();
2903 
2904         if (_hr_printer.is_active()) {
2905           G1PrintCollectionSetClosure cl(&_hr_printer);
2906           _collection_set.iterate(&cl);
2907         }
2908 
2909         // Initialize the GC alloc regions.
2910         _allocator->init_gc_alloc_regions(evacuation_info);
2911 
2912         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2913         pre_evacuate_collection_set();
2914 
2915         // Actually do the work...
2916         evacuate_collection_set(&per_thread_states);
2917 
2918         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2919 
2920         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2921         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2922 
2923         eagerly_reclaim_humongous_regions();
2924 
2925         record_obj_copy_mem_stats();
2926         _survivor_evac_stats.adjust_desired_plab_sz();
2927         _old_evac_stats.adjust_desired_plab_sz();
2928 
2929         double start = os::elapsedTime();
2930         start_new_collection_set();
2931         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2932 
2933         if (evacuation_failed()) {
2934           set_used(recalculate_used());
2935           if (_archive_allocator != NULL) {
2936             _archive_allocator->clear_used();
2937           }
2938           for (uint i = 0; i < ParallelGCThreads; i++) {
2939             if (_evacuation_failed_info_array[i].has_failed()) {
2940               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2941             }
2942           }
2943         } else {
2944           // The "used" of the the collection set have already been subtracted
2945           // when they were freed.  Add in the bytes evacuated.
2946           increase_used(g1_policy()->bytes_copied_during_gc());
2947         }
2948 
2949         if (collector_state()->in_initial_mark_gc()) {
2950           // We have to do this before we notify the CM threads that
2951           // they can start working to make sure that all the
2952           // appropriate initialization is done on the CM object.
2953           concurrent_mark()->post_initial_mark();
2954           // Note that we don't actually trigger the CM thread at
2955           // this point. We do that later when we're sure that
2956           // the current thread has completed its logging output.
2957         }
2958 
2959         allocate_dummy_regions();
2960 
2961         _allocator->init_mutator_alloc_region();
2962 
2963         {
2964           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2965           if (expand_bytes > 0) {
2966             size_t bytes_before = capacity();
2967             // No need for an ergo logging here,
2968             // expansion_amount() does this when it returns a value > 0.
2969             double expand_ms;
2970             if (!expand(expand_bytes, _workers, &expand_ms)) {
2971               // We failed to expand the heap. Cannot do anything about it.
2972             }
2973             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
2974           }
2975         }
2976 
2977         // We redo the verification but now wrt to the new CSet which
2978         // has just got initialized after the previous CSet was freed.
2979         _cm->verify_no_cset_oops();
2980 
2981         // This timing is only used by the ergonomics to handle our pause target.
2982         // It is unclear why this should not include the full pause. We will
2983         // investigate this in CR 7178365.
2984         double sample_end_time_sec = os::elapsedTime();
2985         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
2986         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
2987         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
2988 
2989         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
2990         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
2991 
2992         if (VerifyRememberedSets) {
2993           log_info(gc, verify)("[Verifying RemSets after GC]");
2994           VerifyRegionRemSetClosure v_cl;
2995           heap_region_iterate(&v_cl);
2996         }
2997 
2998         _verifier->verify_after_gc(verify_type);
2999         _verifier->check_bitmaps("GC End");
3000 
3001         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3002         ref_processor_stw()->verify_no_references_recorded();
3003 
3004         // CM reference discovery will be re-enabled if necessary.
3005       }
3006 
3007 #ifdef TRACESPINNING
3008       ParallelTaskTerminator::print_termination_counts();
3009 #endif
3010 
3011       gc_epilogue(false);
3012     }
3013 
3014     // Print the remainder of the GC log output.
3015     if (evacuation_failed()) {
3016       log_info(gc)("To-space exhausted");
3017     }
3018 
3019     g1_policy()->print_phases();
3020     heap_transition.print();
3021 
3022     // It is not yet to safe to tell the concurrent mark to
3023     // start as we have some optional output below. We don't want the
3024     // output from the concurrent mark thread interfering with this
3025     // logging output either.
3026 
3027     _hrm.verify_optional();
3028     _verifier->verify_region_sets_optional();
3029 
3030     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3031     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3032 
3033     print_heap_after_gc();
3034     print_heap_regions();
3035     trace_heap_after_gc(_gc_tracer_stw);
3036 
3037     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3038     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3039     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3040     // before any GC notifications are raised.
3041     g1mm()->update_sizes();
3042 
3043     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3044     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3045     _gc_timer_stw->register_gc_end();
3046     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3047   }
3048   // It should now be safe to tell the concurrent mark thread to start
3049   // without its logging output interfering with the logging output
3050   // that came from the pause.
3051 
3052   if (should_start_conc_mark) {
3053     // CAUTION: after the doConcurrentMark() call below,
3054     // the concurrent marking thread(s) could be running
3055     // concurrently with us. Make sure that anything after
3056     // this point does not assume that we are the only GC thread
3057     // running. Note: of course, the actual marking work will
3058     // not start until the safepoint itself is released in
3059     // SuspendibleThreadSet::desynchronize().
3060     do_concurrent_mark();
3061   }
3062 
3063   return true;
3064 }
3065 
3066 void G1CollectedHeap::remove_self_forwarding_pointers() {
3067   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3068   workers()->run_task(&rsfp_task);
3069 }
3070 
3071 void G1CollectedHeap::restore_after_evac_failure() {
3072   double remove_self_forwards_start = os::elapsedTime();
3073 
3074   remove_self_forwarding_pointers();
3075   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3076   _preserved_marks_set.restore(&task_executor);
3077 
3078   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3079 }
3080 
3081 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3082   if (!_evacuation_failed) {
3083     _evacuation_failed = true;
3084   }
3085 
3086   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3087   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3088 }
3089 
3090 bool G1ParEvacuateFollowersClosure::offer_termination() {
3091   G1ParScanThreadState* const pss = par_scan_state();
3092   start_term_time();
3093   const bool res = terminator()->offer_termination();
3094   end_term_time();
3095   return res;
3096 }
3097 
3098 void G1ParEvacuateFollowersClosure::do_void() {
3099   G1ParScanThreadState* const pss = par_scan_state();
3100   pss->trim_queue();
3101   do {
3102     pss->steal_and_trim_queue(queues());
3103   } while (!offer_termination());
3104 }
3105 
3106 class G1ParTask : public AbstractGangTask {
3107 protected:
3108   G1CollectedHeap*         _g1h;
3109   G1ParScanThreadStateSet* _pss;
3110   RefToScanQueueSet*       _queues;
3111   G1RootProcessor*         _root_processor;
3112   ParallelTaskTerminator   _terminator;
3113   uint                     _n_workers;
3114 
3115 public:
3116   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3117     : AbstractGangTask("G1 collection"),
3118       _g1h(g1h),
3119       _pss(per_thread_states),
3120       _queues(task_queues),
3121       _root_processor(root_processor),
3122       _terminator(n_workers, _queues),
3123       _n_workers(n_workers)
3124   {}
3125 
3126   void work(uint worker_id) {
3127     if (worker_id >= _n_workers) return;  // no work needed this round
3128 
3129     double start_sec = os::elapsedTime();
3130     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3131 
3132     {
3133       ResourceMark rm;
3134       HandleMark   hm;
3135 
3136       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3137 
3138       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3139       pss->set_ref_discoverer(rp);
3140 
3141       double start_strong_roots_sec = os::elapsedTime();
3142 
3143       _root_processor->evacuate_roots(pss, worker_id);
3144 
3145       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3146       // treating the nmethods visited to act as roots for concurrent marking.
3147       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3148       // objects copied by the current evacuation.
3149       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3150 
3151       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3152 
3153       double term_sec = 0.0;
3154       size_t evac_term_attempts = 0;
3155       {
3156         double start = os::elapsedTime();
3157         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3158         evac.do_void();
3159 
3160         evac_term_attempts = evac.term_attempts();
3161         term_sec = evac.term_time();
3162         double elapsed_sec = os::elapsedTime() - start;
3163 
3164         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3165         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3166         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3167         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3168       }
3169 
3170       assert(pss->queue_is_empty(), "should be empty");
3171 
3172       if (log_is_enabled(Debug, gc, task, stats)) {
3173         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3174         size_t lab_waste;
3175         size_t lab_undo_waste;
3176         pss->waste(lab_waste, lab_undo_waste);
3177         _g1h->print_termination_stats(worker_id,
3178                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3179                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3180                                       term_sec * 1000.0,                          /* evac term time */
3181                                       evac_term_attempts,                         /* evac term attempts */
3182                                       lab_waste,                                  /* alloc buffer waste */
3183                                       lab_undo_waste                              /* undo waste */
3184                                       );
3185       }
3186 
3187       // Close the inner scope so that the ResourceMark and HandleMark
3188       // destructors are executed here and are included as part of the
3189       // "GC Worker Time".
3190     }
3191     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3192   }
3193 };
3194 
3195 void G1CollectedHeap::print_termination_stats_hdr() {
3196   log_debug(gc, task, stats)("GC Termination Stats");
3197   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3198   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3199   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3200 }
3201 
3202 void G1CollectedHeap::print_termination_stats(uint worker_id,
3203                                               double elapsed_ms,
3204                                               double strong_roots_ms,
3205                                               double term_ms,
3206                                               size_t term_attempts,
3207                                               size_t alloc_buffer_waste,
3208                                               size_t undo_waste) const {
3209   log_debug(gc, task, stats)
3210               ("%3d %9.2f %9.2f %6.2f "
3211                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3212                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3213                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3214                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3215                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3216                alloc_buffer_waste * HeapWordSize / K,
3217                undo_waste * HeapWordSize / K);
3218 }
3219 
3220 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3221 private:
3222   BoolObjectClosure* _is_alive;
3223   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3224 
3225   int _initial_string_table_size;
3226   int _initial_symbol_table_size;
3227 
3228   bool  _process_strings;
3229   int _strings_processed;
3230   int _strings_removed;
3231 
3232   bool  _process_symbols;
3233   int _symbols_processed;
3234   int _symbols_removed;
3235 
3236   bool _process_string_dedup;
3237 
3238 public:
3239   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3240     AbstractGangTask("String/Symbol Unlinking"),
3241     _is_alive(is_alive),
3242     _dedup_closure(is_alive, NULL, false),
3243     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3244     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3245     _process_string_dedup(process_string_dedup) {
3246 
3247     _initial_string_table_size = StringTable::the_table()->table_size();
3248     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3249     if (process_strings) {
3250       StringTable::clear_parallel_claimed_index();
3251     }
3252     if (process_symbols) {
3253       SymbolTable::clear_parallel_claimed_index();
3254     }
3255   }
3256 
3257   ~G1StringAndSymbolCleaningTask() {
3258     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3259               "claim value %d after unlink less than initial string table size %d",
3260               StringTable::parallel_claimed_index(), _initial_string_table_size);
3261     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3262               "claim value %d after unlink less than initial symbol table size %d",
3263               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3264 
3265     log_info(gc, stringtable)(
3266         "Cleaned string and symbol table, "
3267         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3268         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3269         strings_processed(), strings_removed(),
3270         symbols_processed(), symbols_removed());
3271   }
3272 
3273   void work(uint worker_id) {
3274     int strings_processed = 0;
3275     int strings_removed = 0;
3276     int symbols_processed = 0;
3277     int symbols_removed = 0;
3278     if (_process_strings) {
3279       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3280       Atomic::add(strings_processed, &_strings_processed);
3281       Atomic::add(strings_removed, &_strings_removed);
3282     }
3283     if (_process_symbols) {
3284       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3285       Atomic::add(symbols_processed, &_symbols_processed);
3286       Atomic::add(symbols_removed, &_symbols_removed);
3287     }
3288     if (_process_string_dedup) {
3289       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3290     }
3291   }
3292 
3293   size_t strings_processed() const { return (size_t)_strings_processed; }
3294   size_t strings_removed()   const { return (size_t)_strings_removed; }
3295 
3296   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3297   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3298 };
3299 
3300 class G1CodeCacheUnloadingTask {
3301 private:
3302   static Monitor* _lock;
3303 
3304   BoolObjectClosure* const _is_alive;
3305   const bool               _unloading_occurred;
3306   const uint               _num_workers;
3307 
3308   // Variables used to claim nmethods.
3309   CompiledMethod* _first_nmethod;
3310   CompiledMethod* volatile _claimed_nmethod;
3311 
3312   // The list of nmethods that need to be processed by the second pass.
3313   CompiledMethod* volatile _postponed_list;
3314   volatile uint            _num_entered_barrier;
3315 
3316  public:
3317   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3318       _is_alive(is_alive),
3319       _unloading_occurred(unloading_occurred),
3320       _num_workers(num_workers),
3321       _first_nmethod(NULL),
3322       _claimed_nmethod(NULL),
3323       _postponed_list(NULL),
3324       _num_entered_barrier(0)
3325   {
3326     CompiledMethod::increase_unloading_clock();
3327     // Get first alive nmethod
3328     CompiledMethodIterator iter = CompiledMethodIterator();
3329     if(iter.next_alive()) {
3330       _first_nmethod = iter.method();
3331     }
3332     _claimed_nmethod = _first_nmethod;
3333   }
3334 
3335   ~G1CodeCacheUnloadingTask() {
3336     CodeCache::verify_clean_inline_caches();
3337 
3338     CodeCache::set_needs_cache_clean(false);
3339     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3340 
3341     CodeCache::verify_icholder_relocations();
3342   }
3343 
3344  private:
3345   void add_to_postponed_list(CompiledMethod* nm) {
3346       CompiledMethod* old;
3347       do {
3348         old = _postponed_list;
3349         nm->set_unloading_next(old);
3350       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3351   }
3352 
3353   void clean_nmethod(CompiledMethod* nm) {
3354     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3355 
3356     if (postponed) {
3357       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3358       add_to_postponed_list(nm);
3359     }
3360 
3361     // Mark that this thread has been cleaned/unloaded.
3362     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3363     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3364   }
3365 
3366   void clean_nmethod_postponed(CompiledMethod* nm) {
3367     nm->do_unloading_parallel_postponed();
3368   }
3369 
3370   static const int MaxClaimNmethods = 16;
3371 
3372   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3373     CompiledMethod* first;
3374     CompiledMethodIterator last;
3375 
3376     do {
3377       *num_claimed_nmethods = 0;
3378 
3379       first = _claimed_nmethod;
3380       last = CompiledMethodIterator(first);
3381 
3382       if (first != NULL) {
3383 
3384         for (int i = 0; i < MaxClaimNmethods; i++) {
3385           if (!last.next_alive()) {
3386             break;
3387           }
3388           claimed_nmethods[i] = last.method();
3389           (*num_claimed_nmethods)++;
3390         }
3391       }
3392 
3393     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3394   }
3395 
3396   CompiledMethod* claim_postponed_nmethod() {
3397     CompiledMethod* claim;
3398     CompiledMethod* next;
3399 
3400     do {
3401       claim = _postponed_list;
3402       if (claim == NULL) {
3403         return NULL;
3404       }
3405 
3406       next = claim->unloading_next();
3407 
3408     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3409 
3410     return claim;
3411   }
3412 
3413  public:
3414   // Mark that we're done with the first pass of nmethod cleaning.
3415   void barrier_mark(uint worker_id) {
3416     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3417     _num_entered_barrier++;
3418     if (_num_entered_barrier == _num_workers) {
3419       ml.notify_all();
3420     }
3421   }
3422 
3423   // See if we have to wait for the other workers to
3424   // finish their first-pass nmethod cleaning work.
3425   void barrier_wait(uint worker_id) {
3426     if (_num_entered_barrier < _num_workers) {
3427       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3428       while (_num_entered_barrier < _num_workers) {
3429           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3430       }
3431     }
3432   }
3433 
3434   // Cleaning and unloading of nmethods. Some work has to be postponed
3435   // to the second pass, when we know which nmethods survive.
3436   void work_first_pass(uint worker_id) {
3437     // The first nmethods is claimed by the first worker.
3438     if (worker_id == 0 && _first_nmethod != NULL) {
3439       clean_nmethod(_first_nmethod);
3440       _first_nmethod = NULL;
3441     }
3442 
3443     int num_claimed_nmethods;
3444     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3445 
3446     while (true) {
3447       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3448 
3449       if (num_claimed_nmethods == 0) {
3450         break;
3451       }
3452 
3453       for (int i = 0; i < num_claimed_nmethods; i++) {
3454         clean_nmethod(claimed_nmethods[i]);
3455       }
3456     }
3457   }
3458 
3459   void work_second_pass(uint worker_id) {
3460     CompiledMethod* nm;
3461     // Take care of postponed nmethods.
3462     while ((nm = claim_postponed_nmethod()) != NULL) {
3463       clean_nmethod_postponed(nm);
3464     }
3465   }
3466 };
3467 
3468 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3469 
3470 class G1KlassCleaningTask : public StackObj {
3471   volatile int                            _clean_klass_tree_claimed;
3472   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3473 
3474  public:
3475   G1KlassCleaningTask() :
3476       _clean_klass_tree_claimed(0),
3477       _klass_iterator() {
3478   }
3479 
3480  private:
3481   bool claim_clean_klass_tree_task() {
3482     if (_clean_klass_tree_claimed) {
3483       return false;
3484     }
3485 
3486     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3487   }
3488 
3489   InstanceKlass* claim_next_klass() {
3490     Klass* klass;
3491     do {
3492       klass =_klass_iterator.next_klass();
3493     } while (klass != NULL && !klass->is_instance_klass());
3494 
3495     // this can be null so don't call InstanceKlass::cast
3496     return static_cast<InstanceKlass*>(klass);
3497   }
3498 
3499 public:
3500 
3501   void clean_klass(InstanceKlass* ik) {
3502     ik->clean_weak_instanceklass_links();
3503   }
3504 
3505   void work() {
3506     ResourceMark rm;
3507 
3508     // One worker will clean the subklass/sibling klass tree.
3509     if (claim_clean_klass_tree_task()) {
3510       Klass::clean_subklass_tree();
3511     }
3512 
3513     // All workers will help cleaning the classes,
3514     InstanceKlass* klass;
3515     while ((klass = claim_next_klass()) != NULL) {
3516       clean_klass(klass);
3517     }
3518   }
3519 };
3520 
3521 class G1ResolvedMethodCleaningTask : public StackObj {
3522   volatile int       _resolved_method_task_claimed;
3523 public:
3524   G1ResolvedMethodCleaningTask() :
3525       _resolved_method_task_claimed(0) {}
3526 
3527   bool claim_resolved_method_task() {
3528     if (_resolved_method_task_claimed) {
3529       return false;
3530     }
3531     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3532   }
3533 
3534   // These aren't big, one thread can do it all.
3535   void work() {
3536     if (claim_resolved_method_task()) {
3537       ResolvedMethodTable::unlink();
3538     }
3539   }
3540 };
3541 
3542 
3543 // To minimize the remark pause times, the tasks below are done in parallel.
3544 class G1ParallelCleaningTask : public AbstractGangTask {
3545 private:
3546   G1StringAndSymbolCleaningTask _string_symbol_task;
3547   G1CodeCacheUnloadingTask      _code_cache_task;
3548   G1KlassCleaningTask           _klass_cleaning_task;
3549   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3550 
3551 public:
3552   // The constructor is run in the VMThread.
3553   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3554       AbstractGangTask("Parallel Cleaning"),
3555       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3556       _code_cache_task(num_workers, is_alive, unloading_occurred),
3557       _klass_cleaning_task(),
3558       _resolved_method_cleaning_task() {
3559   }
3560 
3561   // The parallel work done by all worker threads.
3562   void work(uint worker_id) {
3563     // Do first pass of code cache cleaning.
3564     _code_cache_task.work_first_pass(worker_id);
3565 
3566     // Let the threads mark that the first pass is done.
3567     _code_cache_task.barrier_mark(worker_id);
3568 
3569     // Clean the Strings and Symbols.
3570     _string_symbol_task.work(worker_id);
3571 
3572     // Clean unreferenced things in the ResolvedMethodTable
3573     _resolved_method_cleaning_task.work();
3574 
3575     // Wait for all workers to finish the first code cache cleaning pass.
3576     _code_cache_task.barrier_wait(worker_id);
3577 
3578     // Do the second code cache cleaning work, which realize on
3579     // the liveness information gathered during the first pass.
3580     _code_cache_task.work_second_pass(worker_id);
3581 
3582     // Clean all klasses that were not unloaded.
3583     _klass_cleaning_task.work();
3584   }
3585 };
3586 
3587 
3588 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3589                                         bool class_unloading_occurred) {
3590   uint n_workers = workers()->active_workers();
3591 
3592   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3593   workers()->run_task(&g1_unlink_task);
3594 }
3595 
3596 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3597                                        bool process_strings,
3598                                        bool process_symbols,
3599                                        bool process_string_dedup) {
3600   if (!process_strings && !process_symbols && !process_string_dedup) {
3601     // Nothing to clean.
3602     return;
3603   }
3604 
3605   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3606   workers()->run_task(&g1_unlink_task);
3607 
3608 }
3609 
3610 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3611  private:
3612   DirtyCardQueueSet* _queue;
3613   G1CollectedHeap* _g1h;
3614  public:
3615   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3616     _queue(queue), _g1h(g1h) { }
3617 
3618   virtual void work(uint worker_id) {
3619     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3620     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3621 
3622     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3623     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3624 
3625     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3626   }
3627 };
3628 
3629 void G1CollectedHeap::redirty_logged_cards() {
3630   double redirty_logged_cards_start = os::elapsedTime();
3631 
3632   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3633   dirty_card_queue_set().reset_for_par_iteration();
3634   workers()->run_task(&redirty_task);
3635 
3636   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3637   dcq.merge_bufferlists(&dirty_card_queue_set());
3638   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3639 
3640   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3641 }
3642 
3643 // Weak Reference Processing support
3644 
3645 // An always "is_alive" closure that is used to preserve referents.
3646 // If the object is non-null then it's alive.  Used in the preservation
3647 // of referent objects that are pointed to by reference objects
3648 // discovered by the CM ref processor.
3649 class G1AlwaysAliveClosure: public BoolObjectClosure {
3650 public:
3651   bool do_object_b(oop p) {
3652     if (p != NULL) {
3653       return true;
3654     }
3655     return false;
3656   }
3657 };
3658 
3659 bool G1STWIsAliveClosure::do_object_b(oop p) {
3660   // An object is reachable if it is outside the collection set,
3661   // or is inside and copied.
3662   return !_g1h->is_in_cset(p) || p->is_forwarded();
3663 }
3664 
3665 // Non Copying Keep Alive closure
3666 class G1KeepAliveClosure: public OopClosure {
3667   G1CollectedHeap*_g1h;
3668 public:
3669   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3670   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3671   void do_oop(oop* p) {
3672     oop obj = *p;
3673     assert(obj != NULL, "the caller should have filtered out NULL values");
3674 
3675     const InCSetState cset_state =_g1h->in_cset_state(obj);
3676     if (!cset_state.is_in_cset_or_humongous()) {
3677       return;
3678     }
3679     if (cset_state.is_in_cset()) {
3680       assert( obj->is_forwarded(), "invariant" );
3681       *p = obj->forwardee();
3682     } else {
3683       assert(!obj->is_forwarded(), "invariant" );
3684       assert(cset_state.is_humongous(),
3685              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3686      _g1h->set_humongous_is_live(obj);
3687     }
3688   }
3689 };
3690 
3691 // Copying Keep Alive closure - can be called from both
3692 // serial and parallel code as long as different worker
3693 // threads utilize different G1ParScanThreadState instances
3694 // and different queues.
3695 
3696 class G1CopyingKeepAliveClosure: public OopClosure {
3697   G1CollectedHeap*         _g1h;
3698   OopClosure*              _copy_non_heap_obj_cl;
3699   G1ParScanThreadState*    _par_scan_state;
3700 
3701 public:
3702   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3703                             OopClosure* non_heap_obj_cl,
3704                             G1ParScanThreadState* pss):
3705     _g1h(g1h),
3706     _copy_non_heap_obj_cl(non_heap_obj_cl),
3707     _par_scan_state(pss)
3708   {}
3709 
3710   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3711   virtual void do_oop(      oop* p) { do_oop_work(p); }
3712 
3713   template <class T> void do_oop_work(T* p) {
3714     oop obj = RawAccess<>::oop_load(p);
3715 
3716     if (_g1h->is_in_cset_or_humongous(obj)) {
3717       // If the referent object has been forwarded (either copied
3718       // to a new location or to itself in the event of an
3719       // evacuation failure) then we need to update the reference
3720       // field and, if both reference and referent are in the G1
3721       // heap, update the RSet for the referent.
3722       //
3723       // If the referent has not been forwarded then we have to keep
3724       // it alive by policy. Therefore we have copy the referent.
3725       //
3726       // If the reference field is in the G1 heap then we can push
3727       // on the PSS queue. When the queue is drained (after each
3728       // phase of reference processing) the object and it's followers
3729       // will be copied, the reference field set to point to the
3730       // new location, and the RSet updated. Otherwise we need to
3731       // use the the non-heap or metadata closures directly to copy
3732       // the referent object and update the pointer, while avoiding
3733       // updating the RSet.
3734 
3735       if (_g1h->is_in_g1_reserved(p)) {
3736         _par_scan_state->push_on_queue(p);
3737       } else {
3738         assert(!Metaspace::contains((const void*)p),
3739                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3740         _copy_non_heap_obj_cl->do_oop(p);
3741       }
3742     }
3743   }
3744 };
3745 
3746 // Serial drain queue closure. Called as the 'complete_gc'
3747 // closure for each discovered list in some of the
3748 // reference processing phases.
3749 
3750 class G1STWDrainQueueClosure: public VoidClosure {
3751 protected:
3752   G1CollectedHeap* _g1h;
3753   G1ParScanThreadState* _par_scan_state;
3754 
3755   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3756 
3757 public:
3758   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3759     _g1h(g1h),
3760     _par_scan_state(pss)
3761   { }
3762 
3763   void do_void() {
3764     G1ParScanThreadState* const pss = par_scan_state();
3765     pss->trim_queue();
3766   }
3767 };
3768 
3769 // Parallel Reference Processing closures
3770 
3771 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3772 // processing during G1 evacuation pauses.
3773 
3774 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3775 private:
3776   G1CollectedHeap*          _g1h;
3777   G1ParScanThreadStateSet*  _pss;
3778   RefToScanQueueSet*        _queues;
3779   WorkGang*                 _workers;
3780   uint                      _active_workers;
3781 
3782 public:
3783   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3784                            G1ParScanThreadStateSet* per_thread_states,
3785                            WorkGang* workers,
3786                            RefToScanQueueSet *task_queues,
3787                            uint n_workers) :
3788     _g1h(g1h),
3789     _pss(per_thread_states),
3790     _queues(task_queues),
3791     _workers(workers),
3792     _active_workers(n_workers)
3793   {
3794     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3795   }
3796 
3797   // Executes the given task using concurrent marking worker threads.
3798   virtual void execute(ProcessTask& task);
3799   virtual void execute(EnqueueTask& task);
3800 };
3801 
3802 // Gang task for possibly parallel reference processing
3803 
3804 class G1STWRefProcTaskProxy: public AbstractGangTask {
3805   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3806   ProcessTask&     _proc_task;
3807   G1CollectedHeap* _g1h;
3808   G1ParScanThreadStateSet* _pss;
3809   RefToScanQueueSet* _task_queues;
3810   ParallelTaskTerminator* _terminator;
3811 
3812 public:
3813   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3814                         G1CollectedHeap* g1h,
3815                         G1ParScanThreadStateSet* per_thread_states,
3816                         RefToScanQueueSet *task_queues,
3817                         ParallelTaskTerminator* terminator) :
3818     AbstractGangTask("Process reference objects in parallel"),
3819     _proc_task(proc_task),
3820     _g1h(g1h),
3821     _pss(per_thread_states),
3822     _task_queues(task_queues),
3823     _terminator(terminator)
3824   {}
3825 
3826   virtual void work(uint worker_id) {
3827     // The reference processing task executed by a single worker.
3828     ResourceMark rm;
3829     HandleMark   hm;
3830 
3831     G1STWIsAliveClosure is_alive(_g1h);
3832 
3833     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3834     pss->set_ref_discoverer(NULL);
3835 
3836     // Keep alive closure.
3837     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3838 
3839     // Complete GC closure
3840     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3841 
3842     // Call the reference processing task's work routine.
3843     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3844 
3845     // Note we cannot assert that the refs array is empty here as not all
3846     // of the processing tasks (specifically phase2 - pp2_work) execute
3847     // the complete_gc closure (which ordinarily would drain the queue) so
3848     // the queue may not be empty.
3849   }
3850 };
3851 
3852 // Driver routine for parallel reference processing.
3853 // Creates an instance of the ref processing gang
3854 // task and has the worker threads execute it.
3855 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3856   assert(_workers != NULL, "Need parallel worker threads.");
3857 
3858   ParallelTaskTerminator terminator(_active_workers, _queues);
3859   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3860 
3861   _workers->run_task(&proc_task_proxy);
3862 }
3863 
3864 // Gang task for parallel reference enqueueing.
3865 
3866 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
3867   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
3868   EnqueueTask& _enq_task;
3869 
3870 public:
3871   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
3872     AbstractGangTask("Enqueue reference objects in parallel"),
3873     _enq_task(enq_task)
3874   { }
3875 
3876   virtual void work(uint worker_id) {
3877     _enq_task.work(worker_id);
3878   }
3879 };
3880 
3881 // Driver routine for parallel reference enqueueing.
3882 // Creates an instance of the ref enqueueing gang
3883 // task and has the worker threads execute it.
3884 
3885 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
3886   assert(_workers != NULL, "Need parallel worker threads.");
3887 
3888   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
3889 
3890   _workers->run_task(&enq_task_proxy);
3891 }
3892 
3893 // End of weak reference support closures
3894 
3895 // Abstract task used to preserve (i.e. copy) any referent objects
3896 // that are in the collection set and are pointed to by reference
3897 // objects discovered by the CM ref processor.
3898 
3899 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
3900 protected:
3901   G1CollectedHeap*         _g1h;
3902   G1ParScanThreadStateSet* _pss;
3903   RefToScanQueueSet*       _queues;
3904   ParallelTaskTerminator   _terminator;
3905   uint                     _n_workers;
3906 
3907 public:
3908   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
3909     AbstractGangTask("ParPreserveCMReferents"),
3910     _g1h(g1h),
3911     _pss(per_thread_states),
3912     _queues(task_queues),
3913     _terminator(workers, _queues),
3914     _n_workers(workers)
3915   {
3916     g1h->ref_processor_cm()->set_active_mt_degree(workers);
3917   }
3918 
3919   void work(uint worker_id) {
3920     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
3921 
3922     ResourceMark rm;
3923     HandleMark   hm;
3924 
3925     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3926     pss->set_ref_discoverer(NULL);
3927     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3928 
3929     // Is alive closure
3930     G1AlwaysAliveClosure always_alive;
3931 
3932     // Copying keep alive closure. Applied to referent objects that need
3933     // to be copied.
3934     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3935 
3936     ReferenceProcessor* rp = _g1h->ref_processor_cm();
3937 
3938     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
3939     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
3940 
3941     // limit is set using max_num_q() - which was set using ParallelGCThreads.
3942     // So this must be true - but assert just in case someone decides to
3943     // change the worker ids.
3944     assert(worker_id < limit, "sanity");
3945     assert(!rp->discovery_is_atomic(), "check this code");
3946 
3947     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
3948     for (uint idx = worker_id; idx < limit; idx += stride) {
3949       DiscoveredList& ref_list = rp->discovered_refs()[idx];
3950 
3951       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
3952       while (iter.has_next()) {
3953         // Since discovery is not atomic for the CM ref processor, we
3954         // can see some null referent objects.
3955         iter.load_ptrs(DEBUG_ONLY(true));
3956         oop ref = iter.obj();
3957 
3958         // This will filter nulls.
3959         if (iter.is_referent_alive()) {
3960           iter.make_referent_alive();
3961         }
3962         iter.move_to_next();
3963       }
3964     }
3965 
3966     // Drain the queue - which may cause stealing
3967     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
3968     drain_queue.do_void();
3969     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
3970     assert(pss->queue_is_empty(), "should be");
3971   }
3972 };
3973 
3974 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
3975   // Any reference objects, in the collection set, that were 'discovered'
3976   // by the CM ref processor should have already been copied (either by
3977   // applying the external root copy closure to the discovered lists, or
3978   // by following an RSet entry).
3979   //
3980   // But some of the referents, that are in the collection set, that these
3981   // reference objects point to may not have been copied: the STW ref
3982   // processor would have seen that the reference object had already
3983   // been 'discovered' and would have skipped discovering the reference,
3984   // but would not have treated the reference object as a regular oop.
3985   // As a result the copy closure would not have been applied to the
3986   // referent object.
3987   //
3988   // We need to explicitly copy these referent objects - the references
3989   // will be processed at the end of remarking.
3990   //
3991   // We also need to do this copying before we process the reference
3992   // objects discovered by the STW ref processor in case one of these
3993   // referents points to another object which is also referenced by an
3994   // object discovered by the STW ref processor.
3995   double preserve_cm_referents_time = 0.0;
3996 
3997   // To avoid spawning task when there is no work to do, check that
3998   // a concurrent cycle is active and that some references have been
3999   // discovered.
4000   if (concurrent_mark()->cm_thread()->during_cycle() &&
4001       ref_processor_cm()->has_discovered_references()) {
4002     double preserve_cm_referents_start = os::elapsedTime();
4003     uint no_of_gc_workers = workers()->active_workers();
4004     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4005                                                    per_thread_states,
4006                                                    no_of_gc_workers,
4007                                                    _task_queues);
4008     workers()->run_task(&keep_cm_referents);
4009     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4010   }
4011 
4012   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4013 }
4014 
4015 // Weak Reference processing during an evacuation pause (part 1).
4016 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4017   double ref_proc_start = os::elapsedTime();
4018 
4019   ReferenceProcessor* rp = _ref_processor_stw;
4020   assert(rp->discovery_enabled(), "should have been enabled");
4021 
4022   // Closure to test whether a referent is alive.
4023   G1STWIsAliveClosure is_alive(this);
4024 
4025   // Even when parallel reference processing is enabled, the processing
4026   // of JNI refs is serial and performed serially by the current thread
4027   // rather than by a worker. The following PSS will be used for processing
4028   // JNI refs.
4029 
4030   // Use only a single queue for this PSS.
4031   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4032   pss->set_ref_discoverer(NULL);
4033   assert(pss->queue_is_empty(), "pre-condition");
4034 
4035   // Keep alive closure.
4036   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4037 
4038   // Serial Complete GC closure
4039   G1STWDrainQueueClosure drain_queue(this, pss);
4040 
4041   // Setup the soft refs policy...
4042   rp->setup_policy(false);
4043 
4044   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4045 
4046   ReferenceProcessorStats stats;
4047   if (!rp->processing_is_mt()) {
4048     // Serial reference processing...
4049     stats = rp->process_discovered_references(&is_alive,
4050                                               &keep_alive,
4051                                               &drain_queue,
4052                                               NULL,
4053                                               pt);
4054   } else {
4055     uint no_of_gc_workers = workers()->active_workers();
4056 
4057     // Parallel reference processing
4058     assert(no_of_gc_workers <= rp->max_num_q(),
4059            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4060            no_of_gc_workers,  rp->max_num_q());
4061 
4062     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4063     stats = rp->process_discovered_references(&is_alive,
4064                                               &keep_alive,
4065                                               &drain_queue,
4066                                               &par_task_executor,
4067                                               pt);
4068   }
4069 
4070   _gc_tracer_stw->report_gc_reference_stats(stats);
4071 
4072   // We have completed copying any necessary live referent objects.
4073   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4074 
4075   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4076   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4077 }
4078 
4079 // Weak Reference processing during an evacuation pause (part 2).
4080 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4081   double ref_enq_start = os::elapsedTime();
4082 
4083   ReferenceProcessor* rp = _ref_processor_stw;
4084   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4085 
4086   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4087 
4088   // Now enqueue any remaining on the discovered lists on to
4089   // the pending list.
4090   if (!rp->processing_is_mt()) {
4091     // Serial reference processing...
4092     rp->enqueue_discovered_references(NULL, pt);
4093   } else {
4094     // Parallel reference enqueueing
4095 
4096     uint n_workers = workers()->active_workers();
4097 
4098     assert(n_workers <= rp->max_num_q(),
4099            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4100            n_workers,  rp->max_num_q());
4101 
4102     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4103     rp->enqueue_discovered_references(&par_task_executor, pt);
4104   }
4105 
4106   rp->verify_no_references_recorded();
4107   assert(!rp->discovery_enabled(), "should have been disabled");
4108 
4109   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4110   // ensure that it is marked in the bitmap for concurrent marking to discover.
4111   if (collector_state()->in_initial_mark_gc()) {
4112     oop pll_head = Universe::reference_pending_list();
4113     if (pll_head != NULL) {
4114       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
4115       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
4116     }
4117   }
4118 
4119   // FIXME
4120   // CM's reference processing also cleans up the string and symbol tables.
4121   // Should we do that here also? We could, but it is a serial operation
4122   // and could significantly increase the pause time.
4123 
4124   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4125   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4126 }
4127 
4128 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4129   double merge_pss_time_start = os::elapsedTime();
4130   per_thread_states->flush();
4131   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4132 }
4133 
4134 void G1CollectedHeap::pre_evacuate_collection_set() {
4135   _expand_heap_after_alloc_failure = true;
4136   _evacuation_failed = false;
4137 
4138   // Disable the hot card cache.
4139   _hot_card_cache->reset_hot_cache_claimed_index();
4140   _hot_card_cache->set_use_cache(false);
4141 
4142   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4143   _preserved_marks_set.assert_empty();
4144 
4145   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4146 
4147   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4148   if (collector_state()->in_initial_mark_gc()) {
4149     double start_clear_claimed_marks = os::elapsedTime();
4150 
4151     ClassLoaderDataGraph::clear_claimed_marks();
4152 
4153     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4154     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4155   }
4156 }
4157 
4158 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
4159   // Should G1EvacuationFailureALot be in effect for this GC?
4160   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4161 
4162   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4163 
4164   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4165 
4166   double start_par_time_sec = os::elapsedTime();
4167   double end_par_time_sec;
4168 
4169   {
4170     const uint n_workers = workers()->active_workers();
4171     G1RootProcessor root_processor(this, n_workers);
4172     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4173 
4174     print_termination_stats_hdr();
4175 
4176     workers()->run_task(&g1_par_task);
4177     end_par_time_sec = os::elapsedTime();
4178 
4179     // Closing the inner scope will execute the destructor
4180     // for the G1RootProcessor object. We record the current
4181     // elapsed time before closing the scope so that time
4182     // taken for the destructor is NOT included in the
4183     // reported parallel time.
4184   }
4185 
4186   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4187   phase_times->record_par_time(par_time_ms);
4188 
4189   double code_root_fixup_time_ms =
4190         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4191   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4192 }
4193 
4194 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4195   // Process any discovered reference objects - we have
4196   // to do this _before_ we retire the GC alloc regions
4197   // as we may have to copy some 'reachable' referent
4198   // objects (and their reachable sub-graphs) that were
4199   // not copied during the pause.
4200   preserve_cm_referents(per_thread_states);
4201   process_discovered_references(per_thread_states);
4202 
4203   G1STWIsAliveClosure is_alive(this);
4204   G1KeepAliveClosure keep_alive(this);
4205 
4206   {
4207     double start = os::elapsedTime();
4208 
4209     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4210 
4211     double time_ms = (os::elapsedTime() - start) * 1000.0;
4212     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4213   }
4214 
4215   if (G1StringDedup::is_enabled()) {
4216     double fixup_start = os::elapsedTime();
4217 
4218     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4219 
4220     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4221     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4222   }
4223 
4224   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4225 
4226   if (evacuation_failed()) {
4227     restore_after_evac_failure();
4228 
4229     // Reset the G1EvacuationFailureALot counters and flags
4230     // Note: the values are reset only when an actual
4231     // evacuation failure occurs.
4232     NOT_PRODUCT(reset_evacuation_should_fail();)
4233   }
4234 
4235   _preserved_marks_set.assert_empty();
4236 
4237   // Enqueue any remaining references remaining on the STW
4238   // reference processor's discovered lists. We need to do
4239   // this after the card table is cleaned (and verified) as
4240   // the act of enqueueing entries on to the pending list
4241   // will log these updates (and dirty their associated
4242   // cards). We need these updates logged to update any
4243   // RSets.
4244   enqueue_discovered_references(per_thread_states);
4245 
4246   _allocator->release_gc_alloc_regions(evacuation_info);
4247 
4248   merge_per_thread_state_info(per_thread_states);
4249 
4250   // Reset and re-enable the hot card cache.
4251   // Note the counts for the cards in the regions in the
4252   // collection set are reset when the collection set is freed.
4253   _hot_card_cache->reset_hot_cache();
4254   _hot_card_cache->set_use_cache(true);
4255 
4256   purge_code_root_memory();
4257 
4258   redirty_logged_cards();
4259 #if COMPILER2_OR_JVMCI
4260   double start = os::elapsedTime();
4261   DerivedPointerTable::update_pointers();
4262   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4263 #endif
4264   g1_policy()->print_age_table();
4265 }
4266 
4267 void G1CollectedHeap::record_obj_copy_mem_stats() {
4268   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4269 
4270   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4271                                                create_g1_evac_summary(&_old_evac_stats));
4272 }
4273 
4274 void G1CollectedHeap::free_region(HeapRegion* hr,
4275                                   FreeRegionList* free_list,
4276                                   bool skip_remset,
4277                                   bool skip_hot_card_cache,
4278                                   bool locked) {
4279   assert(!hr->is_free(), "the region should not be free");
4280   assert(!hr->is_empty(), "the region should not be empty");
4281   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4282   assert(free_list != NULL, "pre-condition");
4283 
4284   if (G1VerifyBitmaps) {
4285     MemRegion mr(hr->bottom(), hr->end());
4286     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4287   }
4288 
4289   // Clear the card counts for this region.
4290   // Note: we only need to do this if the region is not young
4291   // (since we don't refine cards in young regions).
4292   if (!skip_hot_card_cache && !hr->is_young()) {
4293     _hot_card_cache->reset_card_counts(hr);
4294   }
4295   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4296   _g1_policy->remset_tracker()->update_at_free(hr);
4297   free_list->add_ordered(hr);
4298 }
4299 
4300 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4301                                             FreeRegionList* free_list) {
4302   assert(hr->is_humongous(), "this is only for humongous regions");
4303   assert(free_list != NULL, "pre-condition");
4304   hr->clear_humongous();
4305   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4306 }
4307 
4308 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4309                                            const uint humongous_regions_removed) {
4310   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4311     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4312     _old_set.bulk_remove(old_regions_removed);
4313     _humongous_set.bulk_remove(humongous_regions_removed);
4314   }
4315 
4316 }
4317 
4318 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4319   assert(list != NULL, "list can't be null");
4320   if (!list->is_empty()) {
4321     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4322     _hrm.insert_list_into_free_list(list);
4323   }
4324 }
4325 
4326 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4327   decrease_used(bytes);
4328 }
4329 
4330 class G1FreeCollectionSetTask : public AbstractGangTask {
4331 private:
4332 
4333   // Closure applied to all regions in the collection set to do work that needs to
4334   // be done serially in a single thread.
4335   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4336   private:
4337     EvacuationInfo* _evacuation_info;
4338     const size_t* _surviving_young_words;
4339 
4340     // Bytes used in successfully evacuated regions before the evacuation.
4341     size_t _before_used_bytes;
4342     // Bytes used in unsucessfully evacuated regions before the evacuation
4343     size_t _after_used_bytes;
4344 
4345     size_t _bytes_allocated_in_old_since_last_gc;
4346 
4347     size_t _failure_used_words;
4348     size_t _failure_waste_words;
4349 
4350     FreeRegionList _local_free_list;
4351   public:
4352     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4353       HeapRegionClosure(),
4354       _evacuation_info(evacuation_info),
4355       _surviving_young_words(surviving_young_words),
4356       _before_used_bytes(0),
4357       _after_used_bytes(0),
4358       _bytes_allocated_in_old_since_last_gc(0),
4359       _failure_used_words(0),
4360       _failure_waste_words(0),
4361       _local_free_list("Local Region List for CSet Freeing") {
4362     }
4363 
4364     virtual bool do_heap_region(HeapRegion* r) {
4365       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4366 
4367       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4368       g1h->clear_in_cset(r);
4369 
4370       if (r->is_young()) {
4371         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4372                "Young index %d is wrong for region %u of type %s with %u young regions",
4373                r->young_index_in_cset(),
4374                r->hrm_index(),
4375                r->get_type_str(),
4376                g1h->collection_set()->young_region_length());
4377         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4378         r->record_surv_words_in_group(words_survived);
4379       }
4380 
4381       if (!r->evacuation_failed()) {
4382         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4383         _before_used_bytes += r->used();
4384         g1h->free_region(r,
4385                          &_local_free_list,
4386                          true, /* skip_remset */
4387                          true, /* skip_hot_card_cache */
4388                          true  /* locked */);
4389       } else {
4390         r->uninstall_surv_rate_group();
4391         r->set_young_index_in_cset(-1);
4392         r->set_evacuation_failed(false);
4393         // When moving a young gen region to old gen, we "allocate" that whole region
4394         // there. This is in addition to any already evacuated objects. Notify the
4395         // policy about that.
4396         // Old gen regions do not cause an additional allocation: both the objects
4397         // still in the region and the ones already moved are accounted for elsewhere.
4398         if (r->is_young()) {
4399           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4400         }
4401         // The region is now considered to be old.
4402         r->set_old();
4403         // Do some allocation statistics accounting. Regions that failed evacuation
4404         // are always made old, so there is no need to update anything in the young
4405         // gen statistics, but we need to update old gen statistics.
4406         size_t used_words = r->marked_bytes() / HeapWordSize;
4407 
4408         _failure_used_words += used_words;
4409         _failure_waste_words += HeapRegion::GrainWords - used_words;
4410 
4411         g1h->old_set_add(r);
4412         _after_used_bytes += r->used();
4413       }
4414       return false;
4415     }
4416 
4417     void complete_work() {
4418       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4419 
4420       _evacuation_info->set_regions_freed(_local_free_list.length());
4421       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4422 
4423       g1h->prepend_to_freelist(&_local_free_list);
4424       g1h->decrement_summary_bytes(_before_used_bytes);
4425 
4426       G1Policy* policy = g1h->g1_policy();
4427       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4428 
4429       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4430     }
4431   };
4432 
4433   G1CollectionSet* _collection_set;
4434   G1SerialFreeCollectionSetClosure _cl;
4435   const size_t* _surviving_young_words;
4436 
4437   size_t _rs_lengths;
4438 
4439   volatile jint _serial_work_claim;
4440 
4441   struct WorkItem {
4442     uint region_idx;
4443     bool is_young;
4444     bool evacuation_failed;
4445 
4446     WorkItem(HeapRegion* r) {
4447       region_idx = r->hrm_index();
4448       is_young = r->is_young();
4449       evacuation_failed = r->evacuation_failed();
4450     }
4451   };
4452 
4453   volatile size_t _parallel_work_claim;
4454   size_t _num_work_items;
4455   WorkItem* _work_items;
4456 
4457   void do_serial_work() {
4458     // Need to grab the lock to be allowed to modify the old region list.
4459     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4460     _collection_set->iterate(&_cl);
4461   }
4462 
4463   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4464     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4465 
4466     HeapRegion* r = g1h->region_at(region_idx);
4467     assert(!g1h->is_on_master_free_list(r), "sanity");
4468 
4469     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4470 
4471     if (!is_young) {
4472       g1h->_hot_card_cache->reset_card_counts(r);
4473     }
4474 
4475     if (!evacuation_failed) {
4476       r->rem_set()->clear_locked();
4477     }
4478   }
4479 
4480   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4481   private:
4482     size_t _cur_idx;
4483     WorkItem* _work_items;
4484   public:
4485     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4486 
4487     virtual bool do_heap_region(HeapRegion* r) {
4488       _work_items[_cur_idx++] = WorkItem(r);
4489       return false;
4490     }
4491   };
4492 
4493   void prepare_work() {
4494     G1PrepareFreeCollectionSetClosure cl(_work_items);
4495     _collection_set->iterate(&cl);
4496   }
4497 
4498   void complete_work() {
4499     _cl.complete_work();
4500 
4501     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4502     policy->record_max_rs_lengths(_rs_lengths);
4503     policy->cset_regions_freed();
4504   }
4505 public:
4506   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4507     AbstractGangTask("G1 Free Collection Set"),
4508     _cl(evacuation_info, surviving_young_words),
4509     _collection_set(collection_set),
4510     _surviving_young_words(surviving_young_words),
4511     _serial_work_claim(0),
4512     _rs_lengths(0),
4513     _parallel_work_claim(0),
4514     _num_work_items(collection_set->region_length()),
4515     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4516     prepare_work();
4517   }
4518 
4519   ~G1FreeCollectionSetTask() {
4520     complete_work();
4521     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4522   }
4523 
4524   // Chunk size for work distribution. The chosen value has been determined experimentally
4525   // to be a good tradeoff between overhead and achievable parallelism.
4526   static uint chunk_size() { return 32; }
4527 
4528   virtual void work(uint worker_id) {
4529     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4530 
4531     // Claim serial work.
4532     if (_serial_work_claim == 0) {
4533       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4534       if (value == 0) {
4535         double serial_time = os::elapsedTime();
4536         do_serial_work();
4537         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4538       }
4539     }
4540 
4541     // Start parallel work.
4542     double young_time = 0.0;
4543     bool has_young_time = false;
4544     double non_young_time = 0.0;
4545     bool has_non_young_time = false;
4546 
4547     while (true) {
4548       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4549       size_t cur = end - chunk_size();
4550 
4551       if (cur >= _num_work_items) {
4552         break;
4553       }
4554 
4555       double start_time = os::elapsedTime();
4556 
4557       end = MIN2(end, _num_work_items);
4558 
4559       for (; cur < end; cur++) {
4560         bool is_young = _work_items[cur].is_young;
4561 
4562         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4563 
4564         double end_time = os::elapsedTime();
4565         double time_taken = end_time - start_time;
4566         if (is_young) {
4567           young_time += time_taken;
4568           has_young_time = true;
4569         } else {
4570           non_young_time += time_taken;
4571           has_non_young_time = true;
4572         }
4573         start_time = end_time;
4574       }
4575     }
4576 
4577     if (has_young_time) {
4578       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4579     }
4580     if (has_non_young_time) {
4581       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4582     }
4583   }
4584 };
4585 
4586 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4587   _eden.clear();
4588 
4589   double free_cset_start_time = os::elapsedTime();
4590 
4591   {
4592     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4593     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4594 
4595     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4596 
4597     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4598                         cl.name(),
4599                         num_workers,
4600                         _collection_set.region_length());
4601     workers()->run_task(&cl, num_workers);
4602   }
4603   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4604 
4605   collection_set->clear();
4606 }
4607 
4608 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4609  private:
4610   FreeRegionList* _free_region_list;
4611   HeapRegionSet* _proxy_set;
4612   uint _humongous_objects_reclaimed;
4613   uint _humongous_regions_reclaimed;
4614   size_t _freed_bytes;
4615  public:
4616 
4617   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4618     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4619   }
4620 
4621   virtual bool do_heap_region(HeapRegion* r) {
4622     if (!r->is_starts_humongous()) {
4623       return false;
4624     }
4625 
4626     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4627 
4628     oop obj = (oop)r->bottom();
4629     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4630 
4631     // The following checks whether the humongous object is live are sufficient.
4632     // The main additional check (in addition to having a reference from the roots
4633     // or the young gen) is whether the humongous object has a remembered set entry.
4634     //
4635     // A humongous object cannot be live if there is no remembered set for it
4636     // because:
4637     // - there can be no references from within humongous starts regions referencing
4638     // the object because we never allocate other objects into them.
4639     // (I.e. there are no intra-region references that may be missed by the
4640     // remembered set)
4641     // - as soon there is a remembered set entry to the humongous starts region
4642     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4643     // until the end of a concurrent mark.
4644     //
4645     // It is not required to check whether the object has been found dead by marking
4646     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4647     // all objects allocated during that time are considered live.
4648     // SATB marking is even more conservative than the remembered set.
4649     // So if at this point in the collection there is no remembered set entry,
4650     // nobody has a reference to it.
4651     // At the start of collection we flush all refinement logs, and remembered sets
4652     // are completely up-to-date wrt to references to the humongous object.
4653     //
4654     // Other implementation considerations:
4655     // - never consider object arrays at this time because they would pose
4656     // considerable effort for cleaning up the the remembered sets. This is
4657     // required because stale remembered sets might reference locations that
4658     // are currently allocated into.
4659     uint region_idx = r->hrm_index();
4660     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4661         !r->rem_set()->is_empty()) {
4662       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4663                                region_idx,
4664                                (size_t)obj->size() * HeapWordSize,
4665                                p2i(r->bottom()),
4666                                r->rem_set()->occupied(),
4667                                r->rem_set()->strong_code_roots_list_length(),
4668                                next_bitmap->is_marked(r->bottom()),
4669                                g1h->is_humongous_reclaim_candidate(region_idx),
4670                                obj->is_typeArray()
4671                               );
4672       return false;
4673     }
4674 
4675     guarantee(obj->is_typeArray(),
4676               "Only eagerly reclaiming type arrays is supported, but the object "
4677               PTR_FORMAT " is not.", p2i(r->bottom()));
4678 
4679     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4680                              region_idx,
4681                              (size_t)obj->size() * HeapWordSize,
4682                              p2i(r->bottom()),
4683                              r->rem_set()->occupied(),
4684                              r->rem_set()->strong_code_roots_list_length(),
4685                              next_bitmap->is_marked(r->bottom()),
4686                              g1h->is_humongous_reclaim_candidate(region_idx),
4687                              obj->is_typeArray()
4688                             );
4689 
4690     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4691     cm->humongous_object_eagerly_reclaimed(r);
4692     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4693            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4694            region_idx,
4695            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4696            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4697     _humongous_objects_reclaimed++;
4698     do {
4699       HeapRegion* next = g1h->next_region_in_humongous(r);
4700       _freed_bytes += r->used();
4701       r->set_containing_set(NULL);
4702       _humongous_regions_reclaimed++;
4703       g1h->free_humongous_region(r, _free_region_list);
4704       r = next;
4705     } while (r != NULL);
4706 
4707     return false;
4708   }
4709 
4710   uint humongous_objects_reclaimed() {
4711     return _humongous_objects_reclaimed;
4712   }
4713 
4714   uint humongous_regions_reclaimed() {
4715     return _humongous_regions_reclaimed;
4716   }
4717 
4718   size_t bytes_freed() const {
4719     return _freed_bytes;
4720   }
4721 };
4722 
4723 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4724   assert_at_safepoint_on_vm_thread();
4725 
4726   if (!G1EagerReclaimHumongousObjects ||
4727       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4728     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4729     return;
4730   }
4731 
4732   double start_time = os::elapsedTime();
4733 
4734   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4735 
4736   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4737   heap_region_iterate(&cl);
4738 
4739   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4740 
4741   G1HRPrinter* hrp = hr_printer();
4742   if (hrp->is_active()) {
4743     FreeRegionListIterator iter(&local_cleanup_list);
4744     while (iter.more_available()) {
4745       HeapRegion* hr = iter.get_next();
4746       hrp->cleanup(hr);
4747     }
4748   }
4749 
4750   prepend_to_freelist(&local_cleanup_list);
4751   decrement_summary_bytes(cl.bytes_freed());
4752 
4753   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4754                                                                     cl.humongous_objects_reclaimed());
4755 }
4756 
4757 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4758 public:
4759   virtual bool do_heap_region(HeapRegion* r) {
4760     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4761     G1CollectedHeap::heap()->clear_in_cset(r);
4762     r->set_young_index_in_cset(-1);
4763     return false;
4764   }
4765 };
4766 
4767 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4768   G1AbandonCollectionSetClosure cl;
4769   collection_set->iterate(&cl);
4770 
4771   collection_set->clear();
4772   collection_set->stop_incremental_building();
4773 }
4774 
4775 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4776   return _allocator->is_retained_old_region(hr);
4777 }
4778 
4779 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4780   _eden.add(hr);
4781   _g1_policy->set_region_eden(hr);
4782 }
4783 
4784 #ifdef ASSERT
4785 
4786 class NoYoungRegionsClosure: public HeapRegionClosure {
4787 private:
4788   bool _success;
4789 public:
4790   NoYoungRegionsClosure() : _success(true) { }
4791   bool do_heap_region(HeapRegion* r) {
4792     if (r->is_young()) {
4793       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4794                             p2i(r->bottom()), p2i(r->end()));
4795       _success = false;
4796     }
4797     return false;
4798   }
4799   bool success() { return _success; }
4800 };
4801 
4802 bool G1CollectedHeap::check_young_list_empty() {
4803   bool ret = (young_regions_count() == 0);
4804 
4805   NoYoungRegionsClosure closure;
4806   heap_region_iterate(&closure);
4807   ret = ret && closure.success();
4808 
4809   return ret;
4810 }
4811 
4812 #endif // ASSERT
4813 
4814 class TearDownRegionSetsClosure : public HeapRegionClosure {
4815 private:
4816   HeapRegionSet *_old_set;
4817 
4818 public:
4819   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4820 
4821   bool do_heap_region(HeapRegion* r) {
4822     if (r->is_old()) {
4823       _old_set->remove(r);
4824     } else if(r->is_young()) {
4825       r->uninstall_surv_rate_group();
4826     } else {
4827       // We ignore free regions, we'll empty the free list afterwards.
4828       // We ignore humongous regions, we're not tearing down the
4829       // humongous regions set.
4830       assert(r->is_free() || r->is_humongous(),
4831              "it cannot be another type");
4832     }
4833     return false;
4834   }
4835 
4836   ~TearDownRegionSetsClosure() {
4837     assert(_old_set->is_empty(), "post-condition");
4838   }
4839 };
4840 
4841 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4842   assert_at_safepoint_on_vm_thread();
4843 
4844   if (!free_list_only) {
4845     TearDownRegionSetsClosure cl(&_old_set);
4846     heap_region_iterate(&cl);
4847 
4848     // Note that emptying the _young_list is postponed and instead done as
4849     // the first step when rebuilding the regions sets again. The reason for
4850     // this is that during a full GC string deduplication needs to know if
4851     // a collected region was young or old when the full GC was initiated.
4852   }
4853   _hrm.remove_all_free_regions();
4854 }
4855 
4856 void G1CollectedHeap::increase_used(size_t bytes) {
4857   _summary_bytes_used += bytes;
4858 }
4859 
4860 void G1CollectedHeap::decrease_used(size_t bytes) {
4861   assert(_summary_bytes_used >= bytes,
4862          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4863          _summary_bytes_used, bytes);
4864   _summary_bytes_used -= bytes;
4865 }
4866 
4867 void G1CollectedHeap::set_used(size_t bytes) {
4868   _summary_bytes_used = bytes;
4869 }
4870 
4871 class RebuildRegionSetsClosure : public HeapRegionClosure {
4872 private:
4873   bool            _free_list_only;
4874   HeapRegionSet*   _old_set;
4875   HeapRegionManager*   _hrm;
4876   size_t          _total_used;
4877 
4878 public:
4879   RebuildRegionSetsClosure(bool free_list_only,
4880                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4881     _free_list_only(free_list_only),
4882     _old_set(old_set), _hrm(hrm), _total_used(0) {
4883     assert(_hrm->num_free_regions() == 0, "pre-condition");
4884     if (!free_list_only) {
4885       assert(_old_set->is_empty(), "pre-condition");
4886     }
4887   }
4888 
4889   bool do_heap_region(HeapRegion* r) {
4890     // After full GC, no region should have a remembered set.
4891     r->rem_set()->clear(true);
4892     if (r->is_empty()) {
4893       // Add free regions to the free list
4894       r->set_free();
4895       _hrm->insert_into_free_list(r);
4896     } else if (!_free_list_only) {
4897 
4898       if (r->is_humongous()) {
4899         // We ignore humongous regions. We left the humongous set unchanged.
4900       } else {
4901         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4902         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4903         r->move_to_old();
4904         _old_set->add(r);
4905       }
4906       _total_used += r->used();
4907     }
4908 
4909     return false;
4910   }
4911 
4912   size_t total_used() {
4913     return _total_used;
4914   }
4915 };
4916 
4917 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4918   assert_at_safepoint_on_vm_thread();
4919 
4920   if (!free_list_only) {
4921     _eden.clear();
4922     _survivor.clear();
4923   }
4924 
4925   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4926   heap_region_iterate(&cl);
4927 
4928   if (!free_list_only) {
4929     set_used(cl.total_used());
4930     if (_archive_allocator != NULL) {
4931       _archive_allocator->clear_used();
4932     }
4933   }
4934   assert(used_unlocked() == recalculate_used(),
4935          "inconsistent used_unlocked(), "
4936          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4937          used_unlocked(), recalculate_used());
4938 }
4939 
4940 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4941   HeapRegion* hr = heap_region_containing(p);
4942   return hr->is_in(p);
4943 }
4944 
4945 // Methods for the mutator alloc region
4946 
4947 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4948                                                       bool force) {
4949   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4950   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4951   if (force || should_allocate) {
4952     HeapRegion* new_alloc_region = new_region(word_size,
4953                                               false /* is_old */,
4954                                               false /* do_expand */);
4955     if (new_alloc_region != NULL) {
4956       set_region_short_lived_locked(new_alloc_region);
4957       _hr_printer.alloc(new_alloc_region, !should_allocate);
4958       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4959       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4960       return new_alloc_region;
4961     }
4962   }
4963   return NULL;
4964 }
4965 
4966 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4967                                                   size_t allocated_bytes) {
4968   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4969   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4970 
4971   collection_set()->add_eden_region(alloc_region);
4972   increase_used(allocated_bytes);
4973   _hr_printer.retire(alloc_region);
4974   // We update the eden sizes here, when the region is retired,
4975   // instead of when it's allocated, since this is the point that its
4976   // used space has been recored in _summary_bytes_used.
4977   g1mm()->update_eden_size();
4978 }
4979 
4980 // Methods for the GC alloc regions
4981 
4982 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4983   if (dest.is_old()) {
4984     return true;
4985   } else {
4986     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4987   }
4988 }
4989 
4990 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4991   assert(FreeList_lock->owned_by_self(), "pre-condition");
4992 
4993   if (!has_more_regions(dest)) {
4994     return NULL;
4995   }
4996 
4997   const bool is_survivor = dest.is_young();
4998 
4999   HeapRegion* new_alloc_region = new_region(word_size,
5000                                             !is_survivor,
5001                                             true /* do_expand */);
5002   if (new_alloc_region != NULL) {
5003     if (is_survivor) {
5004       new_alloc_region->set_survivor();
5005       _survivor.add(new_alloc_region);
5006       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5007     } else {
5008       new_alloc_region->set_old();
5009       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5010     }
5011     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
5012     _hr_printer.alloc(new_alloc_region);
5013     bool during_im = collector_state()->in_initial_mark_gc();
5014     new_alloc_region->note_start_of_copying(during_im);
5015     return new_alloc_region;
5016   }
5017   return NULL;
5018 }
5019 
5020 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5021                                              size_t allocated_bytes,
5022                                              InCSetState dest) {
5023   bool during_im = collector_state()->in_initial_mark_gc();
5024   alloc_region->note_end_of_copying(during_im);
5025   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5026   if (dest.is_old()) {
5027     _old_set.add(alloc_region);
5028   }
5029   _hr_printer.retire(alloc_region);
5030 }
5031 
5032 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5033   bool expanded = false;
5034   uint index = _hrm.find_highest_free(&expanded);
5035 
5036   if (index != G1_NO_HRM_INDEX) {
5037     if (expanded) {
5038       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5039                                 HeapRegion::GrainWords * HeapWordSize);
5040     }
5041     _hrm.allocate_free_regions_starting_at(index, 1);
5042     return region_at(index);
5043   }
5044   return NULL;
5045 }
5046 
5047 // Optimized nmethod scanning
5048 
5049 class RegisterNMethodOopClosure: public OopClosure {
5050   G1CollectedHeap* _g1h;
5051   nmethod* _nm;
5052 
5053   template <class T> void do_oop_work(T* p) {
5054     T heap_oop = RawAccess<>::oop_load(p);
5055     if (!CompressedOops::is_null(heap_oop)) {
5056       oop obj = CompressedOops::decode_not_null(heap_oop);
5057       HeapRegion* hr = _g1h->heap_region_containing(obj);
5058       assert(!hr->is_continues_humongous(),
5059              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5060              " starting at " HR_FORMAT,
5061              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5062 
5063       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5064       hr->add_strong_code_root_locked(_nm);
5065     }
5066   }
5067 
5068 public:
5069   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5070     _g1h(g1h), _nm(nm) {}
5071 
5072   void do_oop(oop* p)       { do_oop_work(p); }
5073   void do_oop(narrowOop* p) { do_oop_work(p); }
5074 };
5075 
5076 class UnregisterNMethodOopClosure: public OopClosure {
5077   G1CollectedHeap* _g1h;
5078   nmethod* _nm;
5079 
5080   template <class T> void do_oop_work(T* p) {
5081     T heap_oop = RawAccess<>::oop_load(p);
5082     if (!CompressedOops::is_null(heap_oop)) {
5083       oop obj = CompressedOops::decode_not_null(heap_oop);
5084       HeapRegion* hr = _g1h->heap_region_containing(obj);
5085       assert(!hr->is_continues_humongous(),
5086              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5087              " starting at " HR_FORMAT,
5088              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5089 
5090       hr->remove_strong_code_root(_nm);
5091     }
5092   }
5093 
5094 public:
5095   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5096     _g1h(g1h), _nm(nm) {}
5097 
5098   void do_oop(oop* p)       { do_oop_work(p); }
5099   void do_oop(narrowOop* p) { do_oop_work(p); }
5100 };
5101 
5102 // Returns true if the reference points to an object that
5103 // can move in an incremental collection.
5104 bool G1CollectedHeap::is_scavengable(oop obj) {
5105   HeapRegion* hr = heap_region_containing(obj);
5106   return !hr->is_pinned();
5107 }
5108 
5109 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5110   guarantee(nm != NULL, "sanity");
5111   RegisterNMethodOopClosure reg_cl(this, nm);
5112   nm->oops_do(&reg_cl);
5113 }
5114 
5115 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5116   guarantee(nm != NULL, "sanity");
5117   UnregisterNMethodOopClosure reg_cl(this, nm);
5118   nm->oops_do(&reg_cl, true);
5119 }
5120 
5121 void G1CollectedHeap::purge_code_root_memory() {
5122   double purge_start = os::elapsedTime();
5123   G1CodeRootSet::purge();
5124   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5125   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5126 }
5127 
5128 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5129   G1CollectedHeap* _g1h;
5130 
5131 public:
5132   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5133     _g1h(g1h) {}
5134 
5135   void do_code_blob(CodeBlob* cb) {
5136     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5137     if (nm == NULL) {
5138       return;
5139     }
5140 
5141     if (ScavengeRootsInCode) {
5142       _g1h->register_nmethod(nm);
5143     }
5144   }
5145 };
5146 
5147 void G1CollectedHeap::rebuild_strong_code_roots() {
5148   RebuildStrongCodeRootClosure blob_cl(this);
5149   CodeCache::blobs_do(&blob_cl);
5150 }
5151 
5152 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5153   GrowableArray<GCMemoryManager*> memory_managers(2);
5154   memory_managers.append(&_memory_manager);
5155   memory_managers.append(&_full_gc_memory_manager);
5156   return memory_managers;
5157 }
5158 
5159 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5160   GrowableArray<MemoryPool*> memory_pools(3);
5161   memory_pools.append(_eden_pool);
5162   memory_pools.append(_survivor_pool);
5163   memory_pools.append(_old_pool);
5164   return memory_pools;
5165 }