< prev index next >

src/hotspot/share/gc/g1/g1AllocRegion.hpp

Print this page
rev 49944 : imported patch 8191471-region-logging-waste
rev 49946 : imported patch 8191471-g1-retained-mutator-region
rev 49948 : imported patch 8191471-tschatzl-comments-move-wasted


  63   uint _count;
  64 
  65   // When we set up a new active region we save its used bytes in this
  66   // field so that, when we retire it, we can calculate how much space
  67   // we allocated in it.
  68   size_t _used_bytes_before;
  69 
  70   // When true, indicates that allocate calls should do BOT updates.
  71   const bool _bot_updates;
  72 
  73   // Useful for debugging and tracing.
  74   const char* _name;
  75 
  76   // A dummy region (i.e., it's been allocated specially for this
  77   // purpose and it is not part of the heap) that is full (i.e., top()
  78   // == end()). When we don't have a valid active region we make
  79   // _alloc_region point to this. This allows us to skip checking
  80   // whether the _alloc_region is NULL or not.
  81   static HeapRegion* _dummy_region;
  82 














  83   // Perform a non-MT-safe allocation out of the given region.
  84   inline HeapWord* allocate(HeapRegion* alloc_region,
  85                             size_t word_size);
  86 
  87   // Perform a MT-safe allocation out of the given region.
  88   inline HeapWord* par_allocate(HeapRegion* alloc_region,
  89                                 size_t word_size);
  90   // Perform a MT-safe allocation out of the given region, with the given
  91   // minimum and desired size. Returns the actual size allocated (between
  92   // minimum and desired size) in actual_word_size if the allocation has been
  93   // successful.
  94   inline HeapWord* par_allocate(HeapRegion* alloc_region,
  95                                 size_t min_word_size,
  96                                 size_t desired_word_size,
  97                                 size_t* actual_word_size);
  98 
  99   // Ensure that the region passed as a parameter has been filled up
 100   // so that noone else can allocate out of it any more.
 101   // Returns the number of bytes that have been wasted by filled up
 102   // the space.
 103   size_t fill_up_remaining_space(HeapRegion* alloc_region);
 104 
 105   // After a region is allocated by alloc_new_region, this
 106   // method is used to set it as the active alloc_region
 107   void update_alloc_region(HeapRegion* alloc_region);
 108 
 109   // Allocate a new active region and use it to perform a word_size
 110   // allocation. The force parameter will be passed on to
 111   // G1CollectedHeap::allocate_new_alloc_region() and tells it to try
 112   // to allocate a new region even if the max has been reached.
 113   HeapWord* new_alloc_region_and_allocate(size_t word_size, bool force);
 114 
 115 protected:
 116   // Retire the active allocating region. If fill_up is true then make
 117   // sure that the region is full before we retire it so that no one
 118   // else can allocate out of it.
 119   // Returns the number of bytes that have been filled up during retire.
 120   virtual size_t retire(bool fill_up);
 121 


 122   // For convenience as subclasses use it.
 123   static G1CollectedHeap* _g1h;
 124 
 125   virtual HeapRegion* allocate_new_region(size_t word_size, bool force) = 0;
 126   virtual void retire_region(HeapRegion* alloc_region,
 127                              size_t allocated_bytes) = 0;
 128 
 129   G1AllocRegion(const char* name, bool bot_updates);
 130 
 131 public:
 132   static void setup(G1CollectedHeap* g1h, HeapRegion* dummy_region);
 133 
 134   HeapRegion* get() const {
 135     HeapRegion * hr = _alloc_region;
 136     // Make sure that the dummy region does not escape this class.
 137     return (hr == _dummy_region) ? NULL : hr;
 138   }
 139 
 140   uint count() { return _count; }
 141 


 160   // region or, if it's unable to, it will try to replace the active
 161   // alloc region with a new one. We require that the caller takes the
 162   // appropriate lock before calling this so that it is easier to make
 163   // it conform to its locking protocol.
 164   inline HeapWord* attempt_allocation_locked(size_t word_size);
 165   // Same as attempt_allocation_locked(size_t, bool), but allowing specification
 166   // of minimum word size of the block in min_word_size, and the maximum word
 167   // size of the allocation in desired_word_size. The actual size of the block is
 168   // returned in actual_word_size.
 169   inline HeapWord* attempt_allocation_locked(size_t min_word_size,
 170                                              size_t desired_word_size,
 171                                              size_t* actual_word_size);
 172 
 173   // Should be called to allocate a new region even if the max of this
 174   // type of regions has been reached. Should only be called if other
 175   // allocation attempts have failed and we are not holding a valid
 176   // active region.
 177   inline HeapWord* attempt_allocation_force(size_t word_size);
 178 
 179   // Should be called before we start using this object.
 180   void init();
 181 
 182   // This can be used to set the active region to a specific
 183   // region. (Use Example: we try to retain the last old GC alloc
 184   // region that we've used during a GC and we can use set() to
 185   // re-instate it at the beginning of the next GC.)
 186   void set(HeapRegion* alloc_region);
 187 
 188   // Should be called when we want to release the active region which
 189   // is returned after it's been retired.
 190   virtual HeapRegion* release();
 191 
 192   void trace(const char* str,
 193              size_t min_word_size = 0,
 194              size_t desired_word_size = 0,
 195              size_t actual_word_size = 0,
 196              HeapWord* result = NULL) PRODUCT_RETURN;
 197 };
 198 
 199 class MutatorAllocRegion : public G1AllocRegion {













 200 protected:
 201   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 202   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);

 203 public:
 204   MutatorAllocRegion()
 205     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 206 };



















 207 


 208 // Common base class for allocation regions used during GC.
 209 class G1GCAllocRegion : public G1AllocRegion {
 210 protected:
 211   G1EvacStats* _stats;
 212   InCSetState::in_cset_state_t _purpose;
 213 
 214   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 215   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 216 
 217   virtual size_t retire(bool fill_up);
 218 
 219   G1GCAllocRegion(const char* name, bool bot_updates, G1EvacStats* stats, InCSetState::in_cset_state_t purpose)
 220   : G1AllocRegion(name, bot_updates), _stats(stats), _purpose(purpose) {
 221     assert(stats != NULL, "Must pass non-NULL PLAB statistics");
 222   }
 223 };
 224 
 225 class SurvivorGCAllocRegion : public G1GCAllocRegion {
 226 public:
 227   SurvivorGCAllocRegion(G1EvacStats* stats)


  63   uint _count;
  64 
  65   // When we set up a new active region we save its used bytes in this
  66   // field so that, when we retire it, we can calculate how much space
  67   // we allocated in it.
  68   size_t _used_bytes_before;
  69 
  70   // When true, indicates that allocate calls should do BOT updates.
  71   const bool _bot_updates;
  72 
  73   // Useful for debugging and tracing.
  74   const char* _name;
  75 
  76   // A dummy region (i.e., it's been allocated specially for this
  77   // purpose and it is not part of the heap) that is full (i.e., top()
  78   // == end()). When we don't have a valid active region we make
  79   // _alloc_region point to this. This allows us to skip checking
  80   // whether the _alloc_region is NULL or not.
  81   static HeapRegion* _dummy_region;
  82 
  83   // After a region is allocated by alloc_new_region, this
  84   // method is used to set it as the active alloc_region
  85   void update_alloc_region(HeapRegion* alloc_region);
  86 
  87   // Allocate a new active region and use it to perform a word_size
  88   // allocation. The force parameter will be passed on to
  89   // G1CollectedHeap::allocate_new_alloc_region() and tells it to try
  90   // to allocate a new region even if the max has been reached.
  91   HeapWord* new_alloc_region_and_allocate(size_t word_size, bool force);
  92 
  93 protected:
  94   // Reset the alloc region to point a the dummy region.
  95   void reset_alloc_region();
  96 
  97   // Perform a non-MT-safe allocation out of the given region.
  98   inline HeapWord* allocate(HeapRegion* alloc_region,
  99                             size_t word_size);
 100 
 101   // Perform a MT-safe allocation out of the given region.
 102   inline HeapWord* par_allocate(HeapRegion* alloc_region,
 103                                 size_t word_size);
 104   // Perform a MT-safe allocation out of the given region, with the given
 105   // minimum and desired size. Returns the actual size allocated (between
 106   // minimum and desired size) in actual_word_size if the allocation has been
 107   // successful.
 108   inline HeapWord* par_allocate(HeapRegion* alloc_region,
 109                                 size_t min_word_size,
 110                                 size_t desired_word_size,
 111                                 size_t* actual_word_size);
 112 
 113   // Ensure that the region passed as a parameter has been filled up
 114   // so that noone else can allocate out of it any more.
 115   // Returns the number of bytes that have been wasted by filled up
 116   // the space.
 117   size_t fill_up_remaining_space(HeapRegion* alloc_region);
 118 











 119   // Retire the active allocating region. If fill_up is true then make
 120   // sure that the region is full before we retire it so that no one
 121   // else can allocate out of it.
 122   // Returns the number of bytes that have been filled up during retire.
 123   virtual size_t retire(bool fill_up);
 124 
 125   size_t retire_internal(HeapRegion* alloc_region, bool fill_up);
 126 
 127   // For convenience as subclasses use it.
 128   static G1CollectedHeap* _g1h;
 129 
 130   virtual HeapRegion* allocate_new_region(size_t word_size, bool force) = 0;
 131   virtual void retire_region(HeapRegion* alloc_region,
 132                              size_t allocated_bytes) = 0;
 133 
 134   G1AllocRegion(const char* name, bool bot_updates);
 135 
 136 public:
 137   static void setup(G1CollectedHeap* g1h, HeapRegion* dummy_region);
 138 
 139   HeapRegion* get() const {
 140     HeapRegion * hr = _alloc_region;
 141     // Make sure that the dummy region does not escape this class.
 142     return (hr == _dummy_region) ? NULL : hr;
 143   }
 144 
 145   uint count() { return _count; }
 146 


 165   // region or, if it's unable to, it will try to replace the active
 166   // alloc region with a new one. We require that the caller takes the
 167   // appropriate lock before calling this so that it is easier to make
 168   // it conform to its locking protocol.
 169   inline HeapWord* attempt_allocation_locked(size_t word_size);
 170   // Same as attempt_allocation_locked(size_t, bool), but allowing specification
 171   // of minimum word size of the block in min_word_size, and the maximum word
 172   // size of the allocation in desired_word_size. The actual size of the block is
 173   // returned in actual_word_size.
 174   inline HeapWord* attempt_allocation_locked(size_t min_word_size,
 175                                              size_t desired_word_size,
 176                                              size_t* actual_word_size);
 177 
 178   // Should be called to allocate a new region even if the max of this
 179   // type of regions has been reached. Should only be called if other
 180   // allocation attempts have failed and we are not holding a valid
 181   // active region.
 182   inline HeapWord* attempt_allocation_force(size_t word_size);
 183 
 184   // Should be called before we start using this object.
 185   virtual void init();
 186 
 187   // This can be used to set the active region to a specific
 188   // region. (Use Example: we try to retain the last old GC alloc
 189   // region that we've used during a GC and we can use set() to
 190   // re-instate it at the beginning of the next GC.)
 191   void set(HeapRegion* alloc_region);
 192 
 193   // Should be called when we want to release the active region which
 194   // is returned after it's been retired.
 195   virtual HeapRegion* release();
 196 
 197   void trace(const char* str,
 198              size_t min_word_size = 0,
 199              size_t desired_word_size = 0,
 200              size_t actual_word_size = 0,
 201              HeapWord* result = NULL) PRODUCT_RETURN;
 202 };
 203 
 204 class MutatorAllocRegion : public G1AllocRegion {
 205 private:
 206   // Keeps track of the total waste generated during the current
 207   // mutator phase.
 208   size_t _wasted_bytes;
 209 
 210   // Retained allocation region. Used to lower the waste generated
 211   // during mutation by having two active regions if the free space
 212   // in a region about to be retired still could fit a TLAB.
 213   HeapRegion* volatile _retained_alloc_region;
 214 
 215   // Decide if the region should be retained, based on the free size
 216   // in it and the free size in the currently retained region, if any.
 217   bool should_retain(HeapRegion* region);
 218 protected:
 219   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 220   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 221   virtual size_t retire(bool fill_up);
 222 public:
 223   MutatorAllocRegion()
 224     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */),
 225       _wasted_bytes(0),
 226       _retained_alloc_region(NULL) { }
 227 
 228   // Returns the combined used memory in the current alloc region and
 229   // the retained alloc region.
 230   size_t used_in_alloc_regions();
 231 
 232   // Perform an allocation out of the retained allocation region, with the given
 233   // minimum and desired size. Returns the actual size allocated (between
 234   // minimum and desired size) in actual_word_size if the allocation has been
 235   // successful.
 236   // Should be called without holding a lock. It will try to allocate lock-free
 237   // out of the retained region, or return NULL if it was unable to.
 238   inline HeapWord* attempt_retained_allocation(size_t min_word_size,
 239                                                size_t desired_word_size,
 240                                                size_t* actual_word_size);
 241 
 242   // This specialization of release() makes sure that the retained alloc
 243   // region is retired and set to NULL.
 244   virtual HeapRegion* release();
 245 
 246   virtual void init();
 247 };
 248 // Common base class for allocation regions used during GC.
 249 class G1GCAllocRegion : public G1AllocRegion {
 250 protected:
 251   G1EvacStats* _stats;
 252   InCSetState::in_cset_state_t _purpose;
 253 
 254   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 255   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 256 
 257   virtual size_t retire(bool fill_up);
 258 
 259   G1GCAllocRegion(const char* name, bool bot_updates, G1EvacStats* stats, InCSetState::in_cset_state_t purpose)
 260   : G1AllocRegion(name, bot_updates), _stats(stats), _purpose(purpose) {
 261     assert(stats != NULL, "Must pass non-NULL PLAB statistics");
 262   }
 263 };
 264 
 265 class SurvivorGCAllocRegion : public G1GCAllocRegion {
 266 public:
 267   SurvivorGCAllocRegion(G1EvacStats* stats)
< prev index next >