1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  57 #include "gc/g1/heapRegion.inline.hpp"
  58 #include "gc/g1/heapRegionRemSet.hpp"
  59 #include "gc/g1/heapRegionSet.inline.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/suspendibleThreadSet.hpp"
  71 #include "gc/shared/referenceProcessor.inline.hpp"
  72 #include "gc/shared/taskqueue.inline.hpp"
  73 #include "gc/shared/weakProcessor.hpp"
  74 #include "logging/log.hpp"
  75 #include "memory/allocation.hpp"
  76 #include "memory/iterator.hpp"
  77 #include "memory/resourceArea.hpp"
  78 #include "oops/oop.inline.hpp"
  79 #include "prims/resolvedMethodTable.hpp"
  80 #include "runtime/atomic.hpp"
  81 #include "runtime/init.hpp"
  82 #include "runtime/orderAccess.inline.hpp"
  83 #include "runtime/threadSMR.hpp"
  84 #include "runtime/vmThread.hpp"
  85 #include "utilities/align.hpp"
  86 #include "utilities/globalDefinitions.hpp"
  87 #include "utilities/stack.inline.hpp"
  88 
  89 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  90 
  91 // INVARIANTS/NOTES
  92 //
  93 // All allocation activity covered by the G1CollectedHeap interface is
  94 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  95 // and allocate_new_tlab, which are the "entry" points to the
  96 // allocation code from the rest of the JVM.  (Note that this does not
  97 // apply to TLAB allocation, which is not part of this interface: it
  98 // is done by clients of this interface.)
  99 
 100 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 101  private:
 102   size_t _num_dirtied;
 103   G1CollectedHeap* _g1h;
 104   G1SATBCardTableLoggingModRefBS* _g1_bs;
 105 
 106   HeapRegion* region_for_card(jbyte* card_ptr) const {
 107     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 108   }
 109 
 110   bool will_become_free(HeapRegion* hr) const {
 111     // A region will be freed by free_collection_set if the region is in the
 112     // collection set and has not had an evacuation failure.
 113     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 114   }
 115 
 116  public:
 117   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 118     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     HeapRegion* hr = region_for_card(card_ptr);
 122 
 123     // Should only dirty cards in regions that won't be freed.
 124     if (!will_become_free(hr)) {
 125       *card_ptr = CardTableModRefBS::dirty_card_val();
 126       _num_dirtied++;
 127     }
 128 
 129     return true;
 130   }
 131 
 132   size_t num_dirtied()   const { return _num_dirtied; }
 133 };
 134 
 135 
 136 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 137   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 141   // The from card cache is not the memory that is actually committed. So we cannot
 142   // take advantage of the zero_filled parameter.
 143   reset_from_card_cache(start_idx, num_regions);
 144 }
 145 
 146 
 147 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 148                                              MemRegion mr) {
 149   return new HeapRegion(hrs_index, bot(), mr);
 150 }
 151 
 152 // Private methods.
 153 
 154 HeapRegion*
 155 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 156   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 157   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 158     if (!_secondary_free_list.is_empty()) {
 159       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 160                                       "secondary_free_list has %u entries",
 161                                       _secondary_free_list.length());
 162       // It looks as if there are free regions available on the
 163       // secondary_free_list. Let's move them to the free_list and try
 164       // again to allocate from it.
 165       append_secondary_free_list();
 166 
 167       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 168              "empty we should have moved at least one entry to the free_list");
 169       HeapRegion* res = _hrm.allocate_free_region(is_old);
 170       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 171                                       "allocated " HR_FORMAT " from secondary_free_list",
 172                                       HR_FORMAT_PARAMS(res));
 173       return res;
 174     }
 175 
 176     // Wait here until we get notified either when (a) there are no
 177     // more free regions coming or (b) some regions have been moved on
 178     // the secondary_free_list.
 179     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 180   }
 181 
 182   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 183                                   "could not allocate from secondary_free_list");
 184   return NULL;
 185 }
 186 
 187 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 188   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 189          "the only time we use this to allocate a humongous region is "
 190          "when we are allocating a single humongous region");
 191 
 192   HeapRegion* res;
 193   if (G1StressConcRegionFreeing) {
 194     if (!_secondary_free_list.is_empty()) {
 195       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 196                                       "forced to look at the secondary_free_list");
 197       res = new_region_try_secondary_free_list(is_old);
 198       if (res != NULL) {
 199         return res;
 200       }
 201     }
 202   }
 203 
 204   res = _hrm.allocate_free_region(is_old);
 205 
 206   if (res == NULL) {
 207     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 208                                     "res == NULL, trying the secondary_free_list");
 209     res = new_region_try_secondary_free_list(is_old);
 210   }
 211   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 212     // Currently, only attempts to allocate GC alloc regions set
 213     // do_expand to true. So, we should only reach here during a
 214     // safepoint. If this assumption changes we might have to
 215     // reconsider the use of _expand_heap_after_alloc_failure.
 216     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 217 
 218     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 219                               word_size * HeapWordSize);
 220 
 221     if (expand(word_size * HeapWordSize)) {
 222       // Given that expand() succeeded in expanding the heap, and we
 223       // always expand the heap by an amount aligned to the heap
 224       // region size, the free list should in theory not be empty.
 225       // In either case allocate_free_region() will check for NULL.
 226       res = _hrm.allocate_free_region(is_old);
 227     } else {
 228       _expand_heap_after_alloc_failure = false;
 229     }
 230   }
 231   return res;
 232 }
 233 
 234 HeapWord*
 235 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 236                                                            uint num_regions,
 237                                                            size_t word_size,
 238                                                            AllocationContext_t context) {
 239   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 240   assert(is_humongous(word_size), "word_size should be humongous");
 241   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 242 
 243   // Index of last region in the series.
 244   uint last = first + num_regions - 1;
 245 
 246   // We need to initialize the region(s) we just discovered. This is
 247   // a bit tricky given that it can happen concurrently with
 248   // refinement threads refining cards on these regions and
 249   // potentially wanting to refine the BOT as they are scanning
 250   // those cards (this can happen shortly after a cleanup; see CR
 251   // 6991377). So we have to set up the region(s) carefully and in
 252   // a specific order.
 253 
 254   // The word size sum of all the regions we will allocate.
 255   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 256   assert(word_size <= word_size_sum, "sanity");
 257 
 258   // This will be the "starts humongous" region.
 259   HeapRegion* first_hr = region_at(first);
 260   // The header of the new object will be placed at the bottom of
 261   // the first region.
 262   HeapWord* new_obj = first_hr->bottom();
 263   // This will be the new top of the new object.
 264   HeapWord* obj_top = new_obj + word_size;
 265 
 266   // First, we need to zero the header of the space that we will be
 267   // allocating. When we update top further down, some refinement
 268   // threads might try to scan the region. By zeroing the header we
 269   // ensure that any thread that will try to scan the region will
 270   // come across the zero klass word and bail out.
 271   //
 272   // NOTE: It would not have been correct to have used
 273   // CollectedHeap::fill_with_object() and make the space look like
 274   // an int array. The thread that is doing the allocation will
 275   // later update the object header to a potentially different array
 276   // type and, for a very short period of time, the klass and length
 277   // fields will be inconsistent. This could cause a refinement
 278   // thread to calculate the object size incorrectly.
 279   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 280 
 281   // Next, pad out the unused tail of the last region with filler
 282   // objects, for improved usage accounting.
 283   // How many words we use for filler objects.
 284   size_t word_fill_size = word_size_sum - word_size;
 285 
 286   // How many words memory we "waste" which cannot hold a filler object.
 287   size_t words_not_fillable = 0;
 288 
 289   if (word_fill_size >= min_fill_size()) {
 290     fill_with_objects(obj_top, word_fill_size);
 291   } else if (word_fill_size > 0) {
 292     // We have space to fill, but we cannot fit an object there.
 293     words_not_fillable = word_fill_size;
 294     word_fill_size = 0;
 295   }
 296 
 297   // We will set up the first region as "starts humongous". This
 298   // will also update the BOT covering all the regions to reflect
 299   // that there is a single object that starts at the bottom of the
 300   // first region.
 301   first_hr->set_starts_humongous(obj_top, word_fill_size);
 302   first_hr->set_allocation_context(context);
 303   // Then, if there are any, we will set up the "continues
 304   // humongous" regions.
 305   HeapRegion* hr = NULL;
 306   for (uint i = first + 1; i <= last; ++i) {
 307     hr = region_at(i);
 308     hr->set_continues_humongous(first_hr);
 309     hr->set_allocation_context(context);
 310   }
 311 
 312   // Up to this point no concurrent thread would have been able to
 313   // do any scanning on any region in this series. All the top
 314   // fields still point to bottom, so the intersection between
 315   // [bottom,top] and [card_start,card_end] will be empty. Before we
 316   // update the top fields, we'll do a storestore to make sure that
 317   // no thread sees the update to top before the zeroing of the
 318   // object header and the BOT initialization.
 319   OrderAccess::storestore();
 320 
 321   // Now, we will update the top fields of the "continues humongous"
 322   // regions except the last one.
 323   for (uint i = first; i < last; ++i) {
 324     hr = region_at(i);
 325     hr->set_top(hr->end());
 326   }
 327 
 328   hr = region_at(last);
 329   // If we cannot fit a filler object, we must set top to the end
 330   // of the humongous object, otherwise we cannot iterate the heap
 331   // and the BOT will not be complete.
 332   hr->set_top(hr->end() - words_not_fillable);
 333 
 334   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 335          "obj_top should be in last region");
 336 
 337   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 338 
 339   assert(words_not_fillable == 0 ||
 340          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 341          "Miscalculation in humongous allocation");
 342 
 343   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 344 
 345   for (uint i = first; i <= last; ++i) {
 346     hr = region_at(i);
 347     _humongous_set.add(hr);
 348     _hr_printer.alloc(hr);
 349   }
 350 
 351   return new_obj;
 352 }
 353 
 354 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 355   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 356   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 357 }
 358 
 359 // If could fit into free regions w/o expansion, try.
 360 // Otherwise, if can expand, do so.
 361 // Otherwise, if using ex regions might help, try with ex given back.
 362 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 363   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 364 
 365   _verifier->verify_region_sets_optional();
 366 
 367   uint first = G1_NO_HRM_INDEX;
 368   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 369 
 370   if (obj_regions == 1) {
 371     // Only one region to allocate, try to use a fast path by directly allocating
 372     // from the free lists. Do not try to expand here, we will potentially do that
 373     // later.
 374     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 375     if (hr != NULL) {
 376       first = hr->hrm_index();
 377     }
 378   } else {
 379     // We can't allocate humongous regions spanning more than one region while
 380     // cleanupComplete() is running, since some of the regions we find to be
 381     // empty might not yet be added to the free list. It is not straightforward
 382     // to know in which list they are on so that we can remove them. We only
 383     // need to do this if we need to allocate more than one region to satisfy the
 384     // current humongous allocation request. If we are only allocating one region
 385     // we use the one-region region allocation code (see above), that already
 386     // potentially waits for regions from the secondary free list.
 387     wait_while_free_regions_coming();
 388     append_secondary_free_list_if_not_empty_with_lock();
 389 
 390     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 391     // are lucky enough to find some.
 392     first = _hrm.find_contiguous_only_empty(obj_regions);
 393     if (first != G1_NO_HRM_INDEX) {
 394       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 395     }
 396   }
 397 
 398   if (first == G1_NO_HRM_INDEX) {
 399     // Policy: We could not find enough regions for the humongous object in the
 400     // free list. Look through the heap to find a mix of free and uncommitted regions.
 401     // If so, try expansion.
 402     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 403     if (first != G1_NO_HRM_INDEX) {
 404       // We found something. Make sure these regions are committed, i.e. expand
 405       // the heap. Alternatively we could do a defragmentation GC.
 406       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 407                                     word_size * HeapWordSize);
 408 
 409       _hrm.expand_at(first, obj_regions, workers());
 410       g1_policy()->record_new_heap_size(num_regions());
 411 
 412 #ifdef ASSERT
 413       for (uint i = first; i < first + obj_regions; ++i) {
 414         HeapRegion* hr = region_at(i);
 415         assert(hr->is_free(), "sanity");
 416         assert(hr->is_empty(), "sanity");
 417         assert(is_on_master_free_list(hr), "sanity");
 418       }
 419 #endif
 420       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 421     } else {
 422       // Policy: Potentially trigger a defragmentation GC.
 423     }
 424   }
 425 
 426   HeapWord* result = NULL;
 427   if (first != G1_NO_HRM_INDEX) {
 428     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 429                                                        word_size, context);
 430     assert(result != NULL, "it should always return a valid result");
 431 
 432     // A successful humongous object allocation changes the used space
 433     // information of the old generation so we need to recalculate the
 434     // sizes and update the jstat counters here.
 435     g1mm()->update_sizes();
 436   }
 437 
 438   _verifier->verify_region_sets_optional();
 439 
 440   return result;
 441 }
 442 
 443 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 444   assert_heap_not_locked_and_not_at_safepoint();
 445   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 446 
 447   uint dummy_gc_count_before;
 448   uint dummy_gclocker_retry_count = 0;
 449   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 450 }
 451 
 452 HeapWord*
 453 G1CollectedHeap::mem_allocate(size_t word_size,
 454                               bool*  gc_overhead_limit_was_exceeded) {
 455   assert_heap_not_locked_and_not_at_safepoint();
 456 
 457   // Loop until the allocation is satisfied, or unsatisfied after GC.
 458   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 459     uint gc_count_before;
 460 
 461     HeapWord* result = NULL;
 462     if (!is_humongous(word_size)) {
 463       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 464     } else {
 465       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 466     }
 467     if (result != NULL) {
 468       return result;
 469     }
 470 
 471     // Create the garbage collection operation...
 472     VM_G1CollectForAllocation op(gc_count_before, word_size);
 473     op.set_allocation_context(AllocationContext::current());
 474 
 475     // ...and get the VM thread to execute it.
 476     VMThread::execute(&op);
 477 
 478     if (op.prologue_succeeded() && op.pause_succeeded()) {
 479       // If the operation was successful we'll return the result even
 480       // if it is NULL. If the allocation attempt failed immediately
 481       // after a Full GC, it's unlikely we'll be able to allocate now.
 482       HeapWord* result = op.result();
 483       if (result != NULL && !is_humongous(word_size)) {
 484         // Allocations that take place on VM operations do not do any
 485         // card dirtying and we have to do it here. We only have to do
 486         // this for non-humongous allocations, though.
 487         dirty_young_block(result, word_size);
 488       }
 489       return result;
 490     } else {
 491       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 492         return NULL;
 493       }
 494       assert(op.result() == NULL,
 495              "the result should be NULL if the VM op did not succeed");
 496     }
 497 
 498     // Give a warning if we seem to be looping forever.
 499     if ((QueuedAllocationWarningCount > 0) &&
 500         (try_count % QueuedAllocationWarningCount == 0)) {
 501       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 502     }
 503   }
 504 
 505   ShouldNotReachHere();
 506   return NULL;
 507 }
 508 
 509 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 510                                                    AllocationContext_t context,
 511                                                    uint* gc_count_before_ret,
 512                                                    uint* gclocker_retry_count_ret) {
 513   // Make sure you read the note in attempt_allocation_humongous().
 514 
 515   assert_heap_not_locked_and_not_at_safepoint();
 516   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 517          "be called for humongous allocation requests");
 518 
 519   // We should only get here after the first-level allocation attempt
 520   // (attempt_allocation()) failed to allocate.
 521 
 522   // We will loop until a) we manage to successfully perform the
 523   // allocation or b) we successfully schedule a collection which
 524   // fails to perform the allocation. b) is the only case when we'll
 525   // return NULL.
 526   HeapWord* result = NULL;
 527   for (int try_count = 1; /* we'll return */; try_count += 1) {
 528     bool should_try_gc;
 529     uint gc_count_before;
 530 
 531     {
 532       MutexLockerEx x(Heap_lock);
 533       result = _allocator->attempt_allocation_locked(word_size, context);
 534       if (result != NULL) {
 535         return result;
 536       }
 537 
 538       if (GCLocker::is_active_and_needs_gc()) {
 539         if (g1_policy()->can_expand_young_list()) {
 540           // No need for an ergo verbose message here,
 541           // can_expand_young_list() does this when it returns true.
 542           result = _allocator->attempt_allocation_force(word_size, context);
 543           if (result != NULL) {
 544             return result;
 545           }
 546         }
 547         should_try_gc = false;
 548       } else {
 549         // The GCLocker may not be active but the GCLocker initiated
 550         // GC may not yet have been performed (GCLocker::needs_gc()
 551         // returns true). In this case we do not try this GC and
 552         // wait until the GCLocker initiated GC is performed, and
 553         // then retry the allocation.
 554         if (GCLocker::needs_gc()) {
 555           should_try_gc = false;
 556         } else {
 557           // Read the GC count while still holding the Heap_lock.
 558           gc_count_before = total_collections();
 559           should_try_gc = true;
 560         }
 561       }
 562     }
 563 
 564     if (should_try_gc) {
 565       bool succeeded;
 566       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 567                                    GCCause::_g1_inc_collection_pause);
 568       if (result != NULL) {
 569         assert(succeeded, "only way to get back a non-NULL result");
 570         return result;
 571       }
 572 
 573       if (succeeded) {
 574         // If we get here we successfully scheduled a collection which
 575         // failed to allocate. No point in trying to allocate
 576         // further. We'll just return NULL.
 577         MutexLockerEx x(Heap_lock);
 578         *gc_count_before_ret = total_collections();
 579         return NULL;
 580       }
 581     } else {
 582       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 583         MutexLockerEx x(Heap_lock);
 584         *gc_count_before_ret = total_collections();
 585         return NULL;
 586       }
 587       // The GCLocker is either active or the GCLocker initiated
 588       // GC has not yet been performed. Stall until it is and
 589       // then retry the allocation.
 590       GCLocker::stall_until_clear();
 591       (*gclocker_retry_count_ret) += 1;
 592     }
 593 
 594     // We can reach here if we were unsuccessful in scheduling a
 595     // collection (because another thread beat us to it) or if we were
 596     // stalled due to the GC locker. In either can we should retry the
 597     // allocation attempt in case another thread successfully
 598     // performed a collection and reclaimed enough space. We do the
 599     // first attempt (without holding the Heap_lock) here and the
 600     // follow-on attempt will be at the start of the next loop
 601     // iteration (after taking the Heap_lock).
 602     result = _allocator->attempt_allocation(word_size, context);
 603     if (result != NULL) {
 604       return result;
 605     }
 606 
 607     // Give a warning if we seem to be looping forever.
 608     if ((QueuedAllocationWarningCount > 0) &&
 609         (try_count % QueuedAllocationWarningCount == 0)) {
 610       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 611                       "retries %d times", try_count);
 612     }
 613   }
 614 
 615   ShouldNotReachHere();
 616   return NULL;
 617 }
 618 
 619 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 620   assert_at_safepoint(true /* should_be_vm_thread */);
 621   if (_archive_allocator == NULL) {
 622     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 623   }
 624 }
 625 
 626 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 627   // Allocations in archive regions cannot be of a size that would be considered
 628   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 629   // may be different at archive-restore time.
 630   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 631 }
 632 
 633 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 634   assert_at_safepoint(true /* should_be_vm_thread */);
 635   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 636   if (is_archive_alloc_too_large(word_size)) {
 637     return NULL;
 638   }
 639   return _archive_allocator->archive_mem_allocate(word_size);
 640 }
 641 
 642 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 643                                               size_t end_alignment_in_bytes) {
 644   assert_at_safepoint(true /* should_be_vm_thread */);
 645   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 646 
 647   // Call complete_archive to do the real work, filling in the MemRegion
 648   // array with the archive regions.
 649   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 650   delete _archive_allocator;
 651   _archive_allocator = NULL;
 652 }
 653 
 654 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 655   assert(ranges != NULL, "MemRegion array NULL");
 656   assert(count != 0, "No MemRegions provided");
 657   MemRegion reserved = _hrm.reserved();
 658   for (size_t i = 0; i < count; i++) {
 659     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 660       return false;
 661     }
 662   }
 663   return true;
 664 }
 665 
 666 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 667                                             size_t count,
 668                                             bool open) {
 669   assert(!is_init_completed(), "Expect to be called at JVM init time");
 670   assert(ranges != NULL, "MemRegion array NULL");
 671   assert(count != 0, "No MemRegions provided");
 672   MutexLockerEx x(Heap_lock);
 673 
 674   MemRegion reserved = _hrm.reserved();
 675   HeapWord* prev_last_addr = NULL;
 676   HeapRegion* prev_last_region = NULL;
 677 
 678   // Temporarily disable pretouching of heap pages. This interface is used
 679   // when mmap'ing archived heap data in, so pre-touching is wasted.
 680   FlagSetting fs(AlwaysPreTouch, false);
 681 
 682   // Enable archive object checking used by G1MarkSweep. We have to let it know
 683   // about each archive range, so that objects in those ranges aren't marked.
 684   G1ArchiveAllocator::enable_archive_object_check();
 685 
 686   // For each specified MemRegion range, allocate the corresponding G1
 687   // regions and mark them as archive regions. We expect the ranges
 688   // in ascending starting address order, without overlap.
 689   for (size_t i = 0; i < count; i++) {
 690     MemRegion curr_range = ranges[i];
 691     HeapWord* start_address = curr_range.start();
 692     size_t word_size = curr_range.word_size();
 693     HeapWord* last_address = curr_range.last();
 694     size_t commits = 0;
 695 
 696     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 697               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 698               p2i(start_address), p2i(last_address));
 699     guarantee(start_address > prev_last_addr,
 700               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 701               p2i(start_address), p2i(prev_last_addr));
 702     prev_last_addr = last_address;
 703 
 704     // Check for ranges that start in the same G1 region in which the previous
 705     // range ended, and adjust the start address so we don't try to allocate
 706     // the same region again. If the current range is entirely within that
 707     // region, skip it, just adjusting the recorded top.
 708     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 709     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 710       start_address = start_region->end();
 711       if (start_address > last_address) {
 712         increase_used(word_size * HeapWordSize);
 713         start_region->set_top(last_address + 1);
 714         continue;
 715       }
 716       start_region->set_top(start_address);
 717       curr_range = MemRegion(start_address, last_address + 1);
 718       start_region = _hrm.addr_to_region(start_address);
 719     }
 720 
 721     // Perform the actual region allocation, exiting if it fails.
 722     // Then note how much new space we have allocated.
 723     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 724       return false;
 725     }
 726     increase_used(word_size * HeapWordSize);
 727     if (commits != 0) {
 728       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 729                                 HeapRegion::GrainWords * HeapWordSize * commits);
 730 
 731     }
 732 
 733     // Mark each G1 region touched by the range as archive, add it to
 734     // the old set, and set the allocation context and top.
 735     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 736     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 737     prev_last_region = last_region;
 738 
 739     while (curr_region != NULL) {
 740       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 741              "Region already in use (index %u)", curr_region->hrm_index());
 742       curr_region->set_allocation_context(AllocationContext::system());
 743       if (open) {
 744         curr_region->set_open_archive();
 745       } else {
 746         curr_region->set_closed_archive();
 747       }
 748       _hr_printer.alloc(curr_region);
 749       _old_set.add(curr_region);
 750       HeapWord* top;
 751       HeapRegion* next_region;
 752       if (curr_region != last_region) {
 753         top = curr_region->end();
 754         next_region = _hrm.next_region_in_heap(curr_region);
 755       } else {
 756         top = last_address + 1;
 757         next_region = NULL;
 758       }
 759       curr_region->set_top(top);
 760       curr_region->set_first_dead(top);
 761       curr_region->set_end_of_live(top);
 762       curr_region = next_region;
 763     }
 764 
 765     // Notify mark-sweep of the archive
 766     G1ArchiveAllocator::set_range_archive(curr_range, open);
 767   }
 768   return true;
 769 }
 770 
 771 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 772   assert(!is_init_completed(), "Expect to be called at JVM init time");
 773   assert(ranges != NULL, "MemRegion array NULL");
 774   assert(count != 0, "No MemRegions provided");
 775   MemRegion reserved = _hrm.reserved();
 776   HeapWord *prev_last_addr = NULL;
 777   HeapRegion* prev_last_region = NULL;
 778 
 779   // For each MemRegion, create filler objects, if needed, in the G1 regions
 780   // that contain the address range. The address range actually within the
 781   // MemRegion will not be modified. That is assumed to have been initialized
 782   // elsewhere, probably via an mmap of archived heap data.
 783   MutexLockerEx x(Heap_lock);
 784   for (size_t i = 0; i < count; i++) {
 785     HeapWord* start_address = ranges[i].start();
 786     HeapWord* last_address = ranges[i].last();
 787 
 788     assert(reserved.contains(start_address) && reserved.contains(last_address),
 789            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 790            p2i(start_address), p2i(last_address));
 791     assert(start_address > prev_last_addr,
 792            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 793            p2i(start_address), p2i(prev_last_addr));
 794 
 795     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 796     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 797     HeapWord* bottom_address = start_region->bottom();
 798 
 799     // Check for a range beginning in the same region in which the
 800     // previous one ended.
 801     if (start_region == prev_last_region) {
 802       bottom_address = prev_last_addr + 1;
 803     }
 804 
 805     // Verify that the regions were all marked as archive regions by
 806     // alloc_archive_regions.
 807     HeapRegion* curr_region = start_region;
 808     while (curr_region != NULL) {
 809       guarantee(curr_region->is_archive(),
 810                 "Expected archive region at index %u", curr_region->hrm_index());
 811       if (curr_region != last_region) {
 812         curr_region = _hrm.next_region_in_heap(curr_region);
 813       } else {
 814         curr_region = NULL;
 815       }
 816     }
 817 
 818     prev_last_addr = last_address;
 819     prev_last_region = last_region;
 820 
 821     // Fill the memory below the allocated range with dummy object(s),
 822     // if the region bottom does not match the range start, or if the previous
 823     // range ended within the same G1 region, and there is a gap.
 824     if (start_address != bottom_address) {
 825       size_t fill_size = pointer_delta(start_address, bottom_address);
 826       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 827       increase_used(fill_size * HeapWordSize);
 828     }
 829   }
 830 }
 831 
 832 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 833                                                      uint* gc_count_before_ret,
 834                                                      uint* gclocker_retry_count_ret) {
 835   assert_heap_not_locked_and_not_at_safepoint();
 836   assert(!is_humongous(word_size), "attempt_allocation() should not "
 837          "be called for humongous allocation requests");
 838 
 839   AllocationContext_t context = AllocationContext::current();
 840   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 841 
 842   if (result == NULL) {
 843     result = attempt_allocation_slow(word_size,
 844                                      context,
 845                                      gc_count_before_ret,
 846                                      gclocker_retry_count_ret);
 847   }
 848   assert_heap_not_locked();
 849   if (result != NULL) {
 850     dirty_young_block(result, word_size);
 851   }
 852   return result;
 853 }
 854 
 855 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 856   assert(!is_init_completed(), "Expect to be called at JVM init time");
 857   assert(ranges != NULL, "MemRegion array NULL");
 858   assert(count != 0, "No MemRegions provided");
 859   MemRegion reserved = _hrm.reserved();
 860   HeapWord* prev_last_addr = NULL;
 861   HeapRegion* prev_last_region = NULL;
 862   size_t size_used = 0;
 863   size_t uncommitted_regions = 0;
 864 
 865   // For each Memregion, free the G1 regions that constitute it, and
 866   // notify mark-sweep that the range is no longer to be considered 'archive.'
 867   MutexLockerEx x(Heap_lock);
 868   for (size_t i = 0; i < count; i++) {
 869     HeapWord* start_address = ranges[i].start();
 870     HeapWord* last_address = ranges[i].last();
 871 
 872     assert(reserved.contains(start_address) && reserved.contains(last_address),
 873            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 874            p2i(start_address), p2i(last_address));
 875     assert(start_address > prev_last_addr,
 876            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 877            p2i(start_address), p2i(prev_last_addr));
 878     size_used += ranges[i].byte_size();
 879     prev_last_addr = last_address;
 880 
 881     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 882     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 883 
 884     // Check for ranges that start in the same G1 region in which the previous
 885     // range ended, and adjust the start address so we don't try to free
 886     // the same region again. If the current range is entirely within that
 887     // region, skip it.
 888     if (start_region == prev_last_region) {
 889       start_address = start_region->end();
 890       if (start_address > last_address) {
 891         continue;
 892       }
 893       start_region = _hrm.addr_to_region(start_address);
 894     }
 895     prev_last_region = last_region;
 896 
 897     // After verifying that each region was marked as an archive region by
 898     // alloc_archive_regions, set it free and empty and uncommit it.
 899     HeapRegion* curr_region = start_region;
 900     while (curr_region != NULL) {
 901       guarantee(curr_region->is_archive(),
 902                 "Expected archive region at index %u", curr_region->hrm_index());
 903       uint curr_index = curr_region->hrm_index();
 904       _old_set.remove(curr_region);
 905       curr_region->set_free();
 906       curr_region->set_top(curr_region->bottom());
 907       if (curr_region != last_region) {
 908         curr_region = _hrm.next_region_in_heap(curr_region);
 909       } else {
 910         curr_region = NULL;
 911       }
 912       _hrm.shrink_at(curr_index, 1);
 913       uncommitted_regions++;
 914     }
 915 
 916     // Notify mark-sweep that this is no longer an archive range.
 917     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 918   }
 919 
 920   if (uncommitted_regions != 0) {
 921     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 922                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 923   }
 924   decrease_used(size_used);
 925 }
 926 
 927 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 928                                                         uint* gc_count_before_ret,
 929                                                         uint* gclocker_retry_count_ret) {
 930   // The structure of this method has a lot of similarities to
 931   // attempt_allocation_slow(). The reason these two were not merged
 932   // into a single one is that such a method would require several "if
 933   // allocation is not humongous do this, otherwise do that"
 934   // conditional paths which would obscure its flow. In fact, an early
 935   // version of this code did use a unified method which was harder to
 936   // follow and, as a result, it had subtle bugs that were hard to
 937   // track down. So keeping these two methods separate allows each to
 938   // be more readable. It will be good to keep these two in sync as
 939   // much as possible.
 940 
 941   assert_heap_not_locked_and_not_at_safepoint();
 942   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 943          "should only be called for humongous allocations");
 944 
 945   // Humongous objects can exhaust the heap quickly, so we should check if we
 946   // need to start a marking cycle at each humongous object allocation. We do
 947   // the check before we do the actual allocation. The reason for doing it
 948   // before the allocation is that we avoid having to keep track of the newly
 949   // allocated memory while we do a GC.
 950   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 951                                            word_size)) {
 952     collect(GCCause::_g1_humongous_allocation);
 953   }
 954 
 955   // We will loop until a) we manage to successfully perform the
 956   // allocation or b) we successfully schedule a collection which
 957   // fails to perform the allocation. b) is the only case when we'll
 958   // return NULL.
 959   HeapWord* result = NULL;
 960   for (int try_count = 1; /* we'll return */; try_count += 1) {
 961     bool should_try_gc;
 962     uint gc_count_before;
 963 
 964     {
 965       MutexLockerEx x(Heap_lock);
 966 
 967       // Given that humongous objects are not allocated in young
 968       // regions, we'll first try to do the allocation without doing a
 969       // collection hoping that there's enough space in the heap.
 970       result = humongous_obj_allocate(word_size, AllocationContext::current());
 971       if (result != NULL) {
 972         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 973         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 974         return result;
 975       }
 976 
 977       if (GCLocker::is_active_and_needs_gc()) {
 978         should_try_gc = false;
 979       } else {
 980          // The GCLocker may not be active but the GCLocker initiated
 981         // GC may not yet have been performed (GCLocker::needs_gc()
 982         // returns true). In this case we do not try this GC and
 983         // wait until the GCLocker initiated GC is performed, and
 984         // then retry the allocation.
 985         if (GCLocker::needs_gc()) {
 986           should_try_gc = false;
 987         } else {
 988           // Read the GC count while still holding the Heap_lock.
 989           gc_count_before = total_collections();
 990           should_try_gc = true;
 991         }
 992       }
 993     }
 994 
 995     if (should_try_gc) {
 996       // If we failed to allocate the humongous object, we should try to
 997       // do a collection pause (if we're allowed) in case it reclaims
 998       // enough space for the allocation to succeed after the pause.
 999 
1000       bool succeeded;
1001       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1002                                    GCCause::_g1_humongous_allocation);
1003       if (result != NULL) {
1004         assert(succeeded, "only way to get back a non-NULL result");
1005         return result;
1006       }
1007 
1008       if (succeeded) {
1009         // If we get here we successfully scheduled a collection which
1010         // failed to allocate. No point in trying to allocate
1011         // further. We'll just return NULL.
1012         MutexLockerEx x(Heap_lock);
1013         *gc_count_before_ret = total_collections();
1014         return NULL;
1015       }
1016     } else {
1017       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1018         MutexLockerEx x(Heap_lock);
1019         *gc_count_before_ret = total_collections();
1020         return NULL;
1021       }
1022       // The GCLocker is either active or the GCLocker initiated
1023       // GC has not yet been performed. Stall until it is and
1024       // then retry the allocation.
1025       GCLocker::stall_until_clear();
1026       (*gclocker_retry_count_ret) += 1;
1027     }
1028 
1029     // We can reach here if we were unsuccessful in scheduling a
1030     // collection (because another thread beat us to it) or if we were
1031     // stalled due to the GC locker. In either can we should retry the
1032     // allocation attempt in case another thread successfully
1033     // performed a collection and reclaimed enough space.  Give a
1034     // warning if we seem to be looping forever.
1035 
1036     if ((QueuedAllocationWarningCount > 0) &&
1037         (try_count % QueuedAllocationWarningCount == 0)) {
1038       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1039                       "retries %d times", try_count);
1040     }
1041   }
1042 
1043   ShouldNotReachHere();
1044   return NULL;
1045 }
1046 
1047 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1048                                                            AllocationContext_t context,
1049                                                            bool expect_null_mutator_alloc_region) {
1050   assert_at_safepoint(true /* should_be_vm_thread */);
1051   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1052          "the current alloc region was unexpectedly found to be non-NULL");
1053 
1054   if (!is_humongous(word_size)) {
1055     return _allocator->attempt_allocation_locked(word_size, context);
1056   } else {
1057     HeapWord* result = humongous_obj_allocate(word_size, context);
1058     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1059       collector_state()->set_initiate_conc_mark_if_possible(true);
1060     }
1061     return result;
1062   }
1063 
1064   ShouldNotReachHere();
1065 }
1066 
1067 class PostCompactionPrinterClosure: public HeapRegionClosure {
1068 private:
1069   G1HRPrinter* _hr_printer;
1070 public:
1071   bool doHeapRegion(HeapRegion* hr) {
1072     assert(!hr->is_young(), "not expecting to find young regions");
1073     _hr_printer->post_compaction(hr);
1074     return false;
1075   }
1076 
1077   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1078     : _hr_printer(hr_printer) { }
1079 };
1080 
1081 void G1CollectedHeap::print_hrm_post_compaction() {
1082   if (_hr_printer.is_active()) {
1083     PostCompactionPrinterClosure cl(hr_printer());
1084     heap_region_iterate(&cl);
1085   }
1086 }
1087 
1088 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_verification_type() {
1089   if (collector_state()->yc_type() == Mixed) {
1090     return G1HeapVerifier::G1VerifyMixed;
1091   } else {
1092     return G1HeapVerifier::G1VerifyYoung;
1093   }
1094 }
1095 
1096 void G1CollectedHeap::abort_concurrent_cycle() {
1097   // Note: When we have a more flexible GC logging framework that
1098   // allows us to add optional attributes to a GC log record we
1099   // could consider timing and reporting how long we wait in the
1100   // following two methods.
1101   wait_while_free_regions_coming();
1102   // If we start the compaction before the CM threads finish
1103   // scanning the root regions we might trip them over as we'll
1104   // be moving objects / updating references. So let's wait until
1105   // they are done. By telling them to abort, they should complete
1106   // early.
1107   _cm->root_regions()->abort();
1108   _cm->root_regions()->wait_until_scan_finished();
1109   append_secondary_free_list_if_not_empty_with_lock();
1110 
1111   // Disable discovery and empty the discovered lists
1112   // for the CM ref processor.
1113   ref_processor_cm()->disable_discovery();
1114   ref_processor_cm()->abandon_partial_discovery();
1115   ref_processor_cm()->verify_no_references_recorded();
1116 
1117   // Abandon current iterations of concurrent marking and concurrent
1118   // refinement, if any are in progress.
1119   concurrent_mark()->abort();
1120 }
1121 
1122 void G1CollectedHeap::prepare_heap_for_full_collection() {
1123   // Make sure we'll choose a new allocation region afterwards.
1124   _allocator->release_mutator_alloc_region();
1125   _allocator->abandon_gc_alloc_regions();
1126   g1_rem_set()->cleanupHRRS();
1127 
1128   // We may have added regions to the current incremental collection
1129   // set between the last GC or pause and now. We need to clear the
1130   // incremental collection set and then start rebuilding it afresh
1131   // after this full GC.
1132   abandon_collection_set(collection_set());
1133 
1134   tear_down_region_sets(false /* free_list_only */);
1135   collector_state()->set_gcs_are_young(true);
1136 }
1137 
1138 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1139   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1140   assert(used() == recalculate_used(), "Should be equal");
1141   _verifier->verify_region_sets_optional();
1142   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1143   _verifier->check_bitmaps("Full GC Start");
1144 }
1145 
1146 void G1CollectedHeap::prepare_heap_for_mutators() {
1147   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1148   ClassLoaderDataGraph::purge();
1149   MetaspaceAux::verify_metrics();
1150 
1151   // Prepare heap for normal collections.
1152   assert(num_free_regions() == 0, "we should not have added any free regions");
1153   rebuild_region_sets(false /* free_list_only */);
1154   abort_refinement();
1155   resize_if_necessary_after_full_collection();
1156 
1157   // Rebuild the strong code root lists for each region
1158   rebuild_strong_code_roots();
1159 
1160   // Start a new incremental collection set for the next pause
1161   start_new_collection_set();
1162 
1163   _allocator->init_mutator_alloc_region();
1164 
1165   // Post collection state updates.
1166   MetaspaceGC::compute_new_size();
1167 }
1168 
1169 void G1CollectedHeap::abort_refinement() {
1170   if (_hot_card_cache->use_cache()) {
1171     _hot_card_cache->reset_hot_cache();
1172   }
1173 
1174   // Discard all remembered set updates.
1175   JavaThread::dirty_card_queue_set().abandon_logs();
1176   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1177 }
1178 
1179 void G1CollectedHeap::verify_after_full_collection() {
1180   check_gc_time_stamps();
1181   _hrm.verify_optional();
1182   _verifier->verify_region_sets_optional();
1183   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1184   // Clear the previous marking bitmap, if needed for bitmap verification.
1185   // Note we cannot do this when we clear the next marking bitmap in
1186   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1187   // objects marked during a full GC against the previous bitmap.
1188   // But we need to clear it before calling check_bitmaps below since
1189   // the full GC has compacted objects and updated TAMS but not updated
1190   // the prev bitmap.
1191   if (G1VerifyBitmaps) {
1192     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1193     _cm->clear_prev_bitmap(workers());
1194   }
1195   _verifier->check_bitmaps("Full GC End");
1196 
1197   // At this point there should be no regions in the
1198   // entire heap tagged as young.
1199   assert(check_young_list_empty(), "young list should be empty at this point");
1200 
1201   // Note: since we've just done a full GC, concurrent
1202   // marking is no longer active. Therefore we need not
1203   // re-enable reference discovery for the CM ref processor.
1204   // That will be done at the start of the next marking cycle.
1205   // We also know that the STW processor should no longer
1206   // discover any new references.
1207   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1208   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1209   ref_processor_stw()->verify_no_references_recorded();
1210   ref_processor_cm()->verify_no_references_recorded();
1211 }
1212 
1213 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1214   // Post collection logging.
1215   // We should do this after we potentially resize the heap so
1216   // that all the COMMIT / UNCOMMIT events are generated before
1217   // the compaction events.
1218   print_hrm_post_compaction();
1219   heap_transition->print();
1220   print_heap_after_gc();
1221   print_heap_regions();
1222 #ifdef TRACESPINNING
1223   ParallelTaskTerminator::print_termination_counts();
1224 #endif
1225 }
1226 
1227 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1228                                          bool clear_all_soft_refs) {
1229   assert_at_safepoint(true /* should_be_vm_thread */);
1230 
1231   if (GCLocker::check_active_before_gc()) {
1232     // Full GC was not completed.
1233     return false;
1234   }
1235 
1236   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1237       collector_policy()->should_clear_all_soft_refs();
1238 
1239   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1240   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1241 
1242   collector.prepare_collection();
1243   collector.collect();
1244   collector.complete_collection();
1245 
1246   // Full collection was successfully completed.
1247   return true;
1248 }
1249 
1250 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1251   // Currently, there is no facility in the do_full_collection(bool) API to notify
1252   // the caller that the collection did not succeed (e.g., because it was locked
1253   // out by the GC locker). So, right now, we'll ignore the return value.
1254   bool dummy = do_full_collection(true,                /* explicit_gc */
1255                                   clear_all_soft_refs);
1256 }
1257 
1258 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1259   // Capacity, free and used after the GC counted as full regions to
1260   // include the waste in the following calculations.
1261   const size_t capacity_after_gc = capacity();
1262   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1263 
1264   // This is enforced in arguments.cpp.
1265   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1266          "otherwise the code below doesn't make sense");
1267 
1268   // We don't have floating point command-line arguments
1269   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1270   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1271   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1272   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1273 
1274   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1275   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1276 
1277   // We have to be careful here as these two calculations can overflow
1278   // 32-bit size_t's.
1279   double used_after_gc_d = (double) used_after_gc;
1280   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1281   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1282 
1283   // Let's make sure that they are both under the max heap size, which
1284   // by default will make them fit into a size_t.
1285   double desired_capacity_upper_bound = (double) max_heap_size;
1286   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1287                                     desired_capacity_upper_bound);
1288   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1289                                     desired_capacity_upper_bound);
1290 
1291   // We can now safely turn them into size_t's.
1292   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1293   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1294 
1295   // This assert only makes sense here, before we adjust them
1296   // with respect to the min and max heap size.
1297   assert(minimum_desired_capacity <= maximum_desired_capacity,
1298          "minimum_desired_capacity = " SIZE_FORMAT ", "
1299          "maximum_desired_capacity = " SIZE_FORMAT,
1300          minimum_desired_capacity, maximum_desired_capacity);
1301 
1302   // Should not be greater than the heap max size. No need to adjust
1303   // it with respect to the heap min size as it's a lower bound (i.e.,
1304   // we'll try to make the capacity larger than it, not smaller).
1305   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1306   // Should not be less than the heap min size. No need to adjust it
1307   // with respect to the heap max size as it's an upper bound (i.e.,
1308   // we'll try to make the capacity smaller than it, not greater).
1309   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1310 
1311   if (capacity_after_gc < minimum_desired_capacity) {
1312     // Don't expand unless it's significant
1313     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1314 
1315     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1316                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1317                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1318                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1319 
1320     expand(expand_bytes, _workers);
1321 
1322     // No expansion, now see if we want to shrink
1323   } else if (capacity_after_gc > maximum_desired_capacity) {
1324     // Capacity too large, compute shrinking size
1325     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1326 
1327     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1328                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1329                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1330                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1331 
1332     shrink(shrink_bytes);
1333   }
1334 }
1335 
1336 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1337                                                             AllocationContext_t context,
1338                                                             bool do_gc,
1339                                                             bool clear_all_soft_refs,
1340                                                             bool expect_null_mutator_alloc_region,
1341                                                             bool* gc_succeeded) {
1342   *gc_succeeded = true;
1343   // Let's attempt the allocation first.
1344   HeapWord* result =
1345     attempt_allocation_at_safepoint(word_size,
1346                                     context,
1347                                     expect_null_mutator_alloc_region);
1348   if (result != NULL) {
1349     assert(*gc_succeeded, "sanity");
1350     return result;
1351   }
1352 
1353   // In a G1 heap, we're supposed to keep allocation from failing by
1354   // incremental pauses.  Therefore, at least for now, we'll favor
1355   // expansion over collection.  (This might change in the future if we can
1356   // do something smarter than full collection to satisfy a failed alloc.)
1357   result = expand_and_allocate(word_size, context);
1358   if (result != NULL) {
1359     assert(*gc_succeeded, "sanity");
1360     return result;
1361   }
1362 
1363   if (do_gc) {
1364     // Expansion didn't work, we'll try to do a Full GC.
1365     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1366                                        clear_all_soft_refs);
1367   }
1368 
1369   return NULL;
1370 }
1371 
1372 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1373                                                      AllocationContext_t context,
1374                                                      bool* succeeded) {
1375   assert_at_safepoint(true /* should_be_vm_thread */);
1376 
1377   // Attempts to allocate followed by Full GC.
1378   HeapWord* result =
1379     satisfy_failed_allocation_helper(word_size,
1380                                      context,
1381                                      true,  /* do_gc */
1382                                      false, /* clear_all_soft_refs */
1383                                      false, /* expect_null_mutator_alloc_region */
1384                                      succeeded);
1385 
1386   if (result != NULL || !*succeeded) {
1387     return result;
1388   }
1389 
1390   // Attempts to allocate followed by Full GC that will collect all soft references.
1391   result = satisfy_failed_allocation_helper(word_size,
1392                                             context,
1393                                             true, /* do_gc */
1394                                             true, /* clear_all_soft_refs */
1395                                             true, /* expect_null_mutator_alloc_region */
1396                                             succeeded);
1397 
1398   if (result != NULL || !*succeeded) {
1399     return result;
1400   }
1401 
1402   // Attempts to allocate, no GC
1403   result = satisfy_failed_allocation_helper(word_size,
1404                                             context,
1405                                             false, /* do_gc */
1406                                             false, /* clear_all_soft_refs */
1407                                             true,  /* expect_null_mutator_alloc_region */
1408                                             succeeded);
1409 
1410   if (result != NULL) {
1411     assert(*succeeded, "sanity");
1412     return result;
1413   }
1414 
1415   assert(!collector_policy()->should_clear_all_soft_refs(),
1416          "Flag should have been handled and cleared prior to this point");
1417 
1418   // What else?  We might try synchronous finalization later.  If the total
1419   // space available is large enough for the allocation, then a more
1420   // complete compaction phase than we've tried so far might be
1421   // appropriate.
1422   assert(*succeeded, "sanity");
1423   return NULL;
1424 }
1425 
1426 // Attempting to expand the heap sufficiently
1427 // to support an allocation of the given "word_size".  If
1428 // successful, perform the allocation and return the address of the
1429 // allocated block, or else "NULL".
1430 
1431 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1432   assert_at_safepoint(true /* should_be_vm_thread */);
1433 
1434   _verifier->verify_region_sets_optional();
1435 
1436   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1437   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1438                             word_size * HeapWordSize);
1439 
1440 
1441   if (expand(expand_bytes, _workers)) {
1442     _hrm.verify_optional();
1443     _verifier->verify_region_sets_optional();
1444     return attempt_allocation_at_safepoint(word_size,
1445                                            context,
1446                                            false /* expect_null_mutator_alloc_region */);
1447   }
1448   return NULL;
1449 }
1450 
1451 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1452   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1453   aligned_expand_bytes = align_up(aligned_expand_bytes,
1454                                        HeapRegion::GrainBytes);
1455 
1456   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1457                             expand_bytes, aligned_expand_bytes);
1458 
1459   if (is_maximal_no_gc()) {
1460     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1461     return false;
1462   }
1463 
1464   double expand_heap_start_time_sec = os::elapsedTime();
1465   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1466   assert(regions_to_expand > 0, "Must expand by at least one region");
1467 
1468   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1469   if (expand_time_ms != NULL) {
1470     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1471   }
1472 
1473   if (expanded_by > 0) {
1474     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1475     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1476     g1_policy()->record_new_heap_size(num_regions());
1477   } else {
1478     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1479 
1480     // The expansion of the virtual storage space was unsuccessful.
1481     // Let's see if it was because we ran out of swap.
1482     if (G1ExitOnExpansionFailure &&
1483         _hrm.available() >= regions_to_expand) {
1484       // We had head room...
1485       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1486     }
1487   }
1488   return regions_to_expand > 0;
1489 }
1490 
1491 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1492   size_t aligned_shrink_bytes =
1493     ReservedSpace::page_align_size_down(shrink_bytes);
1494   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1495                                          HeapRegion::GrainBytes);
1496   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1497 
1498   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1499   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1500 
1501 
1502   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1503                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1504   if (num_regions_removed > 0) {
1505     g1_policy()->record_new_heap_size(num_regions());
1506   } else {
1507     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1508   }
1509 }
1510 
1511 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1512   _verifier->verify_region_sets_optional();
1513 
1514   // We should only reach here at the end of a Full GC which means we
1515   // should not not be holding to any GC alloc regions. The method
1516   // below will make sure of that and do any remaining clean up.
1517   _allocator->abandon_gc_alloc_regions();
1518 
1519   // Instead of tearing down / rebuilding the free lists here, we
1520   // could instead use the remove_all_pending() method on free_list to
1521   // remove only the ones that we need to remove.
1522   tear_down_region_sets(true /* free_list_only */);
1523   shrink_helper(shrink_bytes);
1524   rebuild_region_sets(true /* free_list_only */);
1525 
1526   _hrm.verify_optional();
1527   _verifier->verify_region_sets_optional();
1528 }
1529 
1530 // Public methods.
1531 
1532 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1533   CollectedHeap(),
1534   _young_gen_sampling_thread(NULL),
1535   _collector_policy(collector_policy),
1536   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1537   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1538   _g1_policy(create_g1_policy(_gc_timer_stw)),
1539   _collection_set(this, _g1_policy),
1540   _dirty_card_queue_set(false),
1541   _is_alive_closure_cm(this),
1542   _is_alive_closure_stw(this),
1543   _ref_processor_cm(NULL),
1544   _ref_processor_stw(NULL),
1545   _bot(NULL),
1546   _hot_card_cache(NULL),
1547   _g1_rem_set(NULL),
1548   _cr(NULL),
1549   _g1mm(NULL),
1550   _preserved_marks_set(true /* in_c_heap */),
1551   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1552   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1553   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1554   _humongous_reclaim_candidates(),
1555   _has_humongous_reclaim_candidates(false),
1556   _archive_allocator(NULL),
1557   _free_regions_coming(false),
1558   _gc_time_stamp(0),
1559   _summary_bytes_used(0),
1560   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1561   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1562   _expand_heap_after_alloc_failure(true),
1563   _old_marking_cycles_started(0),
1564   _old_marking_cycles_completed(0),
1565   _in_cset_fast_test() {
1566 
1567   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1568                           /* are_GC_task_threads */true,
1569                           /* are_ConcurrentGC_threads */false);
1570   _workers->initialize_workers();
1571   _verifier = new G1HeapVerifier(this);
1572 
1573   _allocator = G1Allocator::create_allocator(this);
1574 
1575   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1576 
1577   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1578 
1579   // Override the default _filler_array_max_size so that no humongous filler
1580   // objects are created.
1581   _filler_array_max_size = _humongous_object_threshold_in_words;
1582 
1583   uint n_queues = ParallelGCThreads;
1584   _task_queues = new RefToScanQueueSet(n_queues);
1585 
1586   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1587 
1588   for (uint i = 0; i < n_queues; i++) {
1589     RefToScanQueue* q = new RefToScanQueue();
1590     q->initialize();
1591     _task_queues->register_queue(i, q);
1592     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1593   }
1594 
1595   // Initialize the G1EvacuationFailureALot counters and flags.
1596   NOT_PRODUCT(reset_evacuation_should_fail();)
1597 
1598   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1599 }
1600 
1601 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1602                                                                  size_t size,
1603                                                                  size_t translation_factor) {
1604   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1605   // Allocate a new reserved space, preferring to use large pages.
1606   ReservedSpace rs(size, preferred_page_size);
1607   G1RegionToSpaceMapper* result  =
1608     G1RegionToSpaceMapper::create_mapper(rs,
1609                                          size,
1610                                          rs.alignment(),
1611                                          HeapRegion::GrainBytes,
1612                                          translation_factor,
1613                                          mtGC);
1614 
1615   os::trace_page_sizes_for_requested_size(description,
1616                                           size,
1617                                           preferred_page_size,
1618                                           rs.alignment(),
1619                                           rs.base(),
1620                                           rs.size());
1621 
1622   return result;
1623 }
1624 
1625 jint G1CollectedHeap::initialize_concurrent_refinement() {
1626   jint ecode = JNI_OK;
1627   _cr = G1ConcurrentRefine::create(&ecode);
1628   return ecode;
1629 }
1630 
1631 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1632   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1633   if (_young_gen_sampling_thread->osthread() == NULL) {
1634     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1635     return JNI_ENOMEM;
1636   }
1637   return JNI_OK;
1638 }
1639 
1640 jint G1CollectedHeap::initialize() {
1641   CollectedHeap::pre_initialize();
1642   os::enable_vtime();
1643 
1644   // Necessary to satisfy locking discipline assertions.
1645 
1646   MutexLocker x(Heap_lock);
1647 
1648   // While there are no constraints in the GC code that HeapWordSize
1649   // be any particular value, there are multiple other areas in the
1650   // system which believe this to be true (e.g. oop->object_size in some
1651   // cases incorrectly returns the size in wordSize units rather than
1652   // HeapWordSize).
1653   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1654 
1655   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1656   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1657   size_t heap_alignment = collector_policy()->heap_alignment();
1658 
1659   // Ensure that the sizes are properly aligned.
1660   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1661   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1662   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1663 
1664   // Reserve the maximum.
1665 
1666   // When compressed oops are enabled, the preferred heap base
1667   // is calculated by subtracting the requested size from the
1668   // 32Gb boundary and using the result as the base address for
1669   // heap reservation. If the requested size is not aligned to
1670   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1671   // into the ReservedHeapSpace constructor) then the actual
1672   // base of the reserved heap may end up differing from the
1673   // address that was requested (i.e. the preferred heap base).
1674   // If this happens then we could end up using a non-optimal
1675   // compressed oops mode.
1676 
1677   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1678                                                  heap_alignment);
1679 
1680   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1681 
1682   // Create the barrier set for the entire reserved region.
1683   G1SATBCardTableLoggingModRefBS* bs
1684     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1685   bs->initialize();
1686   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1687   set_barrier_set(bs);
1688 
1689   // Create the hot card cache.
1690   _hot_card_cache = new G1HotCardCache(this);
1691 
1692   // Carve out the G1 part of the heap.
1693   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1694   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1695   G1RegionToSpaceMapper* heap_storage =
1696     G1RegionToSpaceMapper::create_mapper(g1_rs,
1697                                          g1_rs.size(),
1698                                          page_size,
1699                                          HeapRegion::GrainBytes,
1700                                          1,
1701                                          mtJavaHeap);
1702   os::trace_page_sizes("Heap",
1703                        collector_policy()->min_heap_byte_size(),
1704                        max_byte_size,
1705                        page_size,
1706                        heap_rs.base(),
1707                        heap_rs.size());
1708   heap_storage->set_mapping_changed_listener(&_listener);
1709 
1710   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1711   G1RegionToSpaceMapper* bot_storage =
1712     create_aux_memory_mapper("Block Offset Table",
1713                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1714                              G1BlockOffsetTable::heap_map_factor());
1715 
1716   G1RegionToSpaceMapper* cardtable_storage =
1717     create_aux_memory_mapper("Card Table",
1718                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1719                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1720 
1721   G1RegionToSpaceMapper* card_counts_storage =
1722     create_aux_memory_mapper("Card Counts Table",
1723                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1724                              G1CardCounts::heap_map_factor());
1725 
1726   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1727   G1RegionToSpaceMapper* prev_bitmap_storage =
1728     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1729   G1RegionToSpaceMapper* next_bitmap_storage =
1730     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1731 
1732   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1733   g1_barrier_set()->initialize(cardtable_storage);
1734   // Do later initialization work for concurrent refinement.
1735   _hot_card_cache->initialize(card_counts_storage);
1736 
1737   // 6843694 - ensure that the maximum region index can fit
1738   // in the remembered set structures.
1739   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1740   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1741 
1742   // Also create a G1 rem set.
1743   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1744   _g1_rem_set->initialize(max_capacity(), max_regions());
1745 
1746   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1747   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1748   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1749             "too many cards per region");
1750 
1751   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1752 
1753   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1754 
1755   {
1756     HeapWord* start = _hrm.reserved().start();
1757     HeapWord* end = _hrm.reserved().end();
1758     size_t granularity = HeapRegion::GrainBytes;
1759 
1760     _in_cset_fast_test.initialize(start, end, granularity);
1761     _humongous_reclaim_candidates.initialize(start, end, granularity);
1762   }
1763 
1764   // Create the G1ConcurrentMark data structure and thread.
1765   // (Must do this late, so that "max_regions" is defined.)
1766   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1767   if (_cm == NULL || !_cm->completed_initialization()) {
1768     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1769     return JNI_ENOMEM;
1770   }
1771   _cmThread = _cm->cm_thread();
1772 
1773   // Now expand into the initial heap size.
1774   if (!expand(init_byte_size, _workers)) {
1775     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1776     return JNI_ENOMEM;
1777   }
1778 
1779   // Perform any initialization actions delegated to the policy.
1780   g1_policy()->init(this, &_collection_set);
1781 
1782   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1783                                                SATB_Q_FL_lock,
1784                                                G1SATBProcessCompletedThreshold,
1785                                                Shared_SATB_Q_lock);
1786 
1787   jint ecode = initialize_concurrent_refinement();
1788   if (ecode != JNI_OK) {
1789     return ecode;
1790   }
1791 
1792   ecode = initialize_young_gen_sampling_thread();
1793   if (ecode != JNI_OK) {
1794     return ecode;
1795   }
1796 
1797   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1798                                                 DirtyCardQ_FL_lock,
1799                                                 (int)concurrent_refine()->yellow_zone(),
1800                                                 (int)concurrent_refine()->red_zone(),
1801                                                 Shared_DirtyCardQ_lock,
1802                                                 NULL,  // fl_owner
1803                                                 true); // init_free_ids
1804 
1805   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1806                                     DirtyCardQ_FL_lock,
1807                                     -1, // never trigger processing
1808                                     -1, // no limit on length
1809                                     Shared_DirtyCardQ_lock,
1810                                     &JavaThread::dirty_card_queue_set());
1811 
1812   // Here we allocate the dummy HeapRegion that is required by the
1813   // G1AllocRegion class.
1814   HeapRegion* dummy_region = _hrm.get_dummy_region();
1815 
1816   // We'll re-use the same region whether the alloc region will
1817   // require BOT updates or not and, if it doesn't, then a non-young
1818   // region will complain that it cannot support allocations without
1819   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1820   dummy_region->set_eden();
1821   // Make sure it's full.
1822   dummy_region->set_top(dummy_region->end());
1823   G1AllocRegion::setup(this, dummy_region);
1824 
1825   _allocator->init_mutator_alloc_region();
1826 
1827   // Do create of the monitoring and management support so that
1828   // values in the heap have been properly initialized.
1829   _g1mm = new G1MonitoringSupport(this);
1830 
1831   G1StringDedup::initialize();
1832 
1833   _preserved_marks_set.init(ParallelGCThreads);
1834 
1835   _collection_set.initialize(max_regions());
1836 
1837   return JNI_OK;
1838 }
1839 
1840 void G1CollectedHeap::stop() {
1841   // Stop all concurrent threads. We do this to make sure these threads
1842   // do not continue to execute and access resources (e.g. logging)
1843   // that are destroyed during shutdown.
1844   _cr->stop();
1845   _young_gen_sampling_thread->stop();
1846   _cmThread->stop();
1847   if (G1StringDedup::is_enabled()) {
1848     G1StringDedup::stop();
1849   }
1850 }
1851 
1852 void G1CollectedHeap::safepoint_synchronize_begin() {
1853   SuspendibleThreadSet::synchronize();
1854 }
1855 
1856 void G1CollectedHeap::safepoint_synchronize_end() {
1857   SuspendibleThreadSet::desynchronize();
1858 }
1859 
1860 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1861   return HeapRegion::max_region_size();
1862 }
1863 
1864 void G1CollectedHeap::post_initialize() {
1865   ref_processing_init();
1866 }
1867 
1868 void G1CollectedHeap::ref_processing_init() {
1869   // Reference processing in G1 currently works as follows:
1870   //
1871   // * There are two reference processor instances. One is
1872   //   used to record and process discovered references
1873   //   during concurrent marking; the other is used to
1874   //   record and process references during STW pauses
1875   //   (both full and incremental).
1876   // * Both ref processors need to 'span' the entire heap as
1877   //   the regions in the collection set may be dotted around.
1878   //
1879   // * For the concurrent marking ref processor:
1880   //   * Reference discovery is enabled at initial marking.
1881   //   * Reference discovery is disabled and the discovered
1882   //     references processed etc during remarking.
1883   //   * Reference discovery is MT (see below).
1884   //   * Reference discovery requires a barrier (see below).
1885   //   * Reference processing may or may not be MT
1886   //     (depending on the value of ParallelRefProcEnabled
1887   //     and ParallelGCThreads).
1888   //   * A full GC disables reference discovery by the CM
1889   //     ref processor and abandons any entries on it's
1890   //     discovered lists.
1891   //
1892   // * For the STW processor:
1893   //   * Non MT discovery is enabled at the start of a full GC.
1894   //   * Processing and enqueueing during a full GC is non-MT.
1895   //   * During a full GC, references are processed after marking.
1896   //
1897   //   * Discovery (may or may not be MT) is enabled at the start
1898   //     of an incremental evacuation pause.
1899   //   * References are processed near the end of a STW evacuation pause.
1900   //   * For both types of GC:
1901   //     * Discovery is atomic - i.e. not concurrent.
1902   //     * Reference discovery will not need a barrier.
1903 
1904   MemRegion mr = reserved_region();
1905 
1906   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1907 
1908   // Concurrent Mark ref processor
1909   _ref_processor_cm =
1910     new ReferenceProcessor(mr,    // span
1911                            mt_processing,
1912                                 // mt processing
1913                            ParallelGCThreads,
1914                                 // degree of mt processing
1915                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1916                                 // mt discovery
1917                            MAX2(ParallelGCThreads, ConcGCThreads),
1918                                 // degree of mt discovery
1919                            false,
1920                                 // Reference discovery is not atomic
1921                            &_is_alive_closure_cm);
1922                                 // is alive closure
1923                                 // (for efficiency/performance)
1924 
1925   // STW ref processor
1926   _ref_processor_stw =
1927     new ReferenceProcessor(mr,    // span
1928                            mt_processing,
1929                                 // mt processing
1930                            ParallelGCThreads,
1931                                 // degree of mt processing
1932                            (ParallelGCThreads > 1),
1933                                 // mt discovery
1934                            ParallelGCThreads,
1935                                 // degree of mt discovery
1936                            true,
1937                                 // Reference discovery is atomic
1938                            &_is_alive_closure_stw);
1939                                 // is alive closure
1940                                 // (for efficiency/performance)
1941 }
1942 
1943 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1944   return _collector_policy;
1945 }
1946 
1947 size_t G1CollectedHeap::capacity() const {
1948   return _hrm.length() * HeapRegion::GrainBytes;
1949 }
1950 
1951 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1952   return _hrm.total_free_bytes();
1953 }
1954 
1955 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1956   hr->reset_gc_time_stamp();
1957 }
1958 
1959 #ifndef PRODUCT
1960 
1961 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1962 private:
1963   unsigned _gc_time_stamp;
1964   bool _failures;
1965 
1966 public:
1967   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1968     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1969 
1970   virtual bool doHeapRegion(HeapRegion* hr) {
1971     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1972     if (_gc_time_stamp != region_gc_time_stamp) {
1973       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1974                             region_gc_time_stamp, _gc_time_stamp);
1975       _failures = true;
1976     }
1977     return false;
1978   }
1979 
1980   bool failures() { return _failures; }
1981 };
1982 
1983 void G1CollectedHeap::check_gc_time_stamps() {
1984   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1985   heap_region_iterate(&cl);
1986   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1987 }
1988 #endif // PRODUCT
1989 
1990 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1991   _hot_card_cache->drain(cl, worker_i);
1992 }
1993 
1994 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1995   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1996   size_t n_completed_buffers = 0;
1997   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1998     n_completed_buffers++;
1999   }
2000   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2001   dcqs.clear_n_completed_buffers();
2002   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2003 }
2004 
2005 // Computes the sum of the storage used by the various regions.
2006 size_t G1CollectedHeap::used() const {
2007   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2008   if (_archive_allocator != NULL) {
2009     result += _archive_allocator->used();
2010   }
2011   return result;
2012 }
2013 
2014 size_t G1CollectedHeap::used_unlocked() const {
2015   return _summary_bytes_used;
2016 }
2017 
2018 class SumUsedClosure: public HeapRegionClosure {
2019   size_t _used;
2020 public:
2021   SumUsedClosure() : _used(0) {}
2022   bool doHeapRegion(HeapRegion* r) {
2023     _used += r->used();
2024     return false;
2025   }
2026   size_t result() { return _used; }
2027 };
2028 
2029 size_t G1CollectedHeap::recalculate_used() const {
2030   double recalculate_used_start = os::elapsedTime();
2031 
2032   SumUsedClosure blk;
2033   heap_region_iterate(&blk);
2034 
2035   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2036   return blk.result();
2037 }
2038 
2039 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2040   switch (cause) {
2041     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2042     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2043     case GCCause::_update_allocation_context_stats_inc: return true;
2044     case GCCause::_wb_conc_mark:                        return true;
2045     default :                                           return false;
2046   }
2047 }
2048 
2049 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2050   switch (cause) {
2051     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2052     case GCCause::_g1_humongous_allocation: return true;
2053     default:                                return is_user_requested_concurrent_full_gc(cause);
2054   }
2055 }
2056 
2057 #ifndef PRODUCT
2058 void G1CollectedHeap::allocate_dummy_regions() {
2059   // Let's fill up most of the region
2060   size_t word_size = HeapRegion::GrainWords - 1024;
2061   // And as a result the region we'll allocate will be humongous.
2062   guarantee(is_humongous(word_size), "sanity");
2063 
2064   // _filler_array_max_size is set to humongous object threshold
2065   // but temporarily change it to use CollectedHeap::fill_with_object().
2066   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2067 
2068   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2069     // Let's use the existing mechanism for the allocation
2070     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2071                                                  AllocationContext::system());
2072     if (dummy_obj != NULL) {
2073       MemRegion mr(dummy_obj, word_size);
2074       CollectedHeap::fill_with_object(mr);
2075     } else {
2076       // If we can't allocate once, we probably cannot allocate
2077       // again. Let's get out of the loop.
2078       break;
2079     }
2080   }
2081 }
2082 #endif // !PRODUCT
2083 
2084 void G1CollectedHeap::increment_old_marking_cycles_started() {
2085   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2086          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2087          "Wrong marking cycle count (started: %d, completed: %d)",
2088          _old_marking_cycles_started, _old_marking_cycles_completed);
2089 
2090   _old_marking_cycles_started++;
2091 }
2092 
2093 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2094   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2095 
2096   // We assume that if concurrent == true, then the caller is a
2097   // concurrent thread that was joined the Suspendible Thread
2098   // Set. If there's ever a cheap way to check this, we should add an
2099   // assert here.
2100 
2101   // Given that this method is called at the end of a Full GC or of a
2102   // concurrent cycle, and those can be nested (i.e., a Full GC can
2103   // interrupt a concurrent cycle), the number of full collections
2104   // completed should be either one (in the case where there was no
2105   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2106   // behind the number of full collections started.
2107 
2108   // This is the case for the inner caller, i.e. a Full GC.
2109   assert(concurrent ||
2110          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2111          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2112          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2113          "is inconsistent with _old_marking_cycles_completed = %u",
2114          _old_marking_cycles_started, _old_marking_cycles_completed);
2115 
2116   // This is the case for the outer caller, i.e. the concurrent cycle.
2117   assert(!concurrent ||
2118          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2119          "for outer caller (concurrent cycle): "
2120          "_old_marking_cycles_started = %u "
2121          "is inconsistent with _old_marking_cycles_completed = %u",
2122          _old_marking_cycles_started, _old_marking_cycles_completed);
2123 
2124   _old_marking_cycles_completed += 1;
2125 
2126   // We need to clear the "in_progress" flag in the CM thread before
2127   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2128   // is set) so that if a waiter requests another System.gc() it doesn't
2129   // incorrectly see that a marking cycle is still in progress.
2130   if (concurrent) {
2131     _cmThread->set_idle();
2132   }
2133 
2134   // This notify_all() will ensure that a thread that called
2135   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2136   // and it's waiting for a full GC to finish will be woken up. It is
2137   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2138   FullGCCount_lock->notify_all();
2139 }
2140 
2141 void G1CollectedHeap::collect(GCCause::Cause cause) {
2142   assert_heap_not_locked();
2143 
2144   uint gc_count_before;
2145   uint old_marking_count_before;
2146   uint full_gc_count_before;
2147   bool retry_gc;
2148 
2149   do {
2150     retry_gc = false;
2151 
2152     {
2153       MutexLocker ml(Heap_lock);
2154 
2155       // Read the GC count while holding the Heap_lock
2156       gc_count_before = total_collections();
2157       full_gc_count_before = total_full_collections();
2158       old_marking_count_before = _old_marking_cycles_started;
2159     }
2160 
2161     if (should_do_concurrent_full_gc(cause)) {
2162       // Schedule an initial-mark evacuation pause that will start a
2163       // concurrent cycle. We're setting word_size to 0 which means that
2164       // we are not requesting a post-GC allocation.
2165       VM_G1IncCollectionPause op(gc_count_before,
2166                                  0,     /* word_size */
2167                                  true,  /* should_initiate_conc_mark */
2168                                  g1_policy()->max_pause_time_ms(),
2169                                  cause);
2170       op.set_allocation_context(AllocationContext::current());
2171 
2172       VMThread::execute(&op);
2173       if (!op.pause_succeeded()) {
2174         if (old_marking_count_before == _old_marking_cycles_started) {
2175           retry_gc = op.should_retry_gc();
2176         } else {
2177           // A Full GC happened while we were trying to schedule the
2178           // initial-mark GC. No point in starting a new cycle given
2179           // that the whole heap was collected anyway.
2180         }
2181 
2182         if (retry_gc) {
2183           if (GCLocker::is_active_and_needs_gc()) {
2184             GCLocker::stall_until_clear();
2185           }
2186         }
2187       }
2188     } else {
2189       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2190           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2191 
2192         // Schedule a standard evacuation pause. We're setting word_size
2193         // to 0 which means that we are not requesting a post-GC allocation.
2194         VM_G1IncCollectionPause op(gc_count_before,
2195                                    0,     /* word_size */
2196                                    false, /* should_initiate_conc_mark */
2197                                    g1_policy()->max_pause_time_ms(),
2198                                    cause);
2199         VMThread::execute(&op);
2200       } else {
2201         // Schedule a Full GC.
2202         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2203         VMThread::execute(&op);
2204       }
2205     }
2206   } while (retry_gc);
2207 }
2208 
2209 bool G1CollectedHeap::is_in(const void* p) const {
2210   if (_hrm.reserved().contains(p)) {
2211     // Given that we know that p is in the reserved space,
2212     // heap_region_containing() should successfully
2213     // return the containing region.
2214     HeapRegion* hr = heap_region_containing(p);
2215     return hr->is_in(p);
2216   } else {
2217     return false;
2218   }
2219 }
2220 
2221 #ifdef ASSERT
2222 bool G1CollectedHeap::is_in_exact(const void* p) const {
2223   bool contains = reserved_region().contains(p);
2224   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2225   if (contains && available) {
2226     return true;
2227   } else {
2228     return false;
2229   }
2230 }
2231 #endif
2232 
2233 // Iteration functions.
2234 
2235 // Iterates an ObjectClosure over all objects within a HeapRegion.
2236 
2237 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2238   ObjectClosure* _cl;
2239 public:
2240   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2241   bool doHeapRegion(HeapRegion* r) {
2242     if (!r->is_continues_humongous()) {
2243       r->object_iterate(_cl);
2244     }
2245     return false;
2246   }
2247 };
2248 
2249 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2250   IterateObjectClosureRegionClosure blk(cl);
2251   heap_region_iterate(&blk);
2252 }
2253 
2254 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2255   _hrm.iterate(cl);
2256 }
2257 
2258 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2259                                                                  HeapRegionClaimer *hrclaimer,
2260                                                                  uint worker_id) const {
2261   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2262 }
2263 
2264 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2265                                                          HeapRegionClaimer *hrclaimer) const {
2266   _hrm.par_iterate(cl, hrclaimer, 0);
2267 }
2268 
2269 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2270   _collection_set.iterate(cl);
2271 }
2272 
2273 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2274   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2275 }
2276 
2277 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2278   HeapRegion* hr = heap_region_containing(addr);
2279   return hr->block_start(addr);
2280 }
2281 
2282 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2283   HeapRegion* hr = heap_region_containing(addr);
2284   return hr->block_size(addr);
2285 }
2286 
2287 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2288   HeapRegion* hr = heap_region_containing(addr);
2289   return hr->block_is_obj(addr);
2290 }
2291 
2292 bool G1CollectedHeap::supports_tlab_allocation() const {
2293   return true;
2294 }
2295 
2296 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2297   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2298 }
2299 
2300 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2301   return _eden.length() * HeapRegion::GrainBytes;
2302 }
2303 
2304 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2305 // must be equal to the humongous object limit.
2306 size_t G1CollectedHeap::max_tlab_size() const {
2307   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2308 }
2309 
2310 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2311   AllocationContext_t context = AllocationContext::current();
2312   return _allocator->unsafe_max_tlab_alloc(context);
2313 }
2314 
2315 size_t G1CollectedHeap::max_capacity() const {
2316   return _hrm.reserved().byte_size();
2317 }
2318 
2319 jlong G1CollectedHeap::millis_since_last_gc() {
2320   // See the notes in GenCollectedHeap::millis_since_last_gc()
2321   // for more information about the implementation.
2322   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2323     _g1_policy->collection_pause_end_millis();
2324   if (ret_val < 0) {
2325     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2326       ". returning zero instead.", ret_val);
2327     return 0;
2328   }
2329   return ret_val;
2330 }
2331 
2332 void G1CollectedHeap::prepare_for_verify() {
2333   _verifier->prepare_for_verify();
2334 }
2335 
2336 void G1CollectedHeap::verify(VerifyOption vo) {
2337   _verifier->verify(vo);
2338 }
2339 
2340 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2341   return true;
2342 }
2343 
2344 const char* const* G1CollectedHeap::concurrent_phases() const {
2345   return _cmThread->concurrent_phases();
2346 }
2347 
2348 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2349   return _cmThread->request_concurrent_phase(phase);
2350 }
2351 
2352 class PrintRegionClosure: public HeapRegionClosure {
2353   outputStream* _st;
2354 public:
2355   PrintRegionClosure(outputStream* st) : _st(st) {}
2356   bool doHeapRegion(HeapRegion* r) {
2357     r->print_on(_st);
2358     return false;
2359   }
2360 };
2361 
2362 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2363                                        const HeapRegion* hr,
2364                                        const VerifyOption vo) const {
2365   switch (vo) {
2366   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2367   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2368   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2369   default:                            ShouldNotReachHere();
2370   }
2371   return false; // keep some compilers happy
2372 }
2373 
2374 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2375                                        const VerifyOption vo) const {
2376   switch (vo) {
2377   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2378   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2379   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2380   default:                            ShouldNotReachHere();
2381   }
2382   return false; // keep some compilers happy
2383 }
2384 
2385 void G1CollectedHeap::print_heap_regions() const {
2386   LogTarget(Trace, gc, heap, region) lt;
2387   if (lt.is_enabled()) {
2388     LogStream ls(lt);
2389     print_regions_on(&ls);
2390   }
2391 }
2392 
2393 void G1CollectedHeap::print_on(outputStream* st) const {
2394   st->print(" %-20s", "garbage-first heap");
2395   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2396             capacity()/K, used_unlocked()/K);
2397   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2398             p2i(_hrm.reserved().start()),
2399             p2i(_hrm.reserved().end()));
2400   st->cr();
2401   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2402   uint young_regions = young_regions_count();
2403   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2404             (size_t) young_regions * HeapRegion::GrainBytes / K);
2405   uint survivor_regions = survivor_regions_count();
2406   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2407             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2408   st->cr();
2409   MetaspaceAux::print_on(st);
2410 }
2411 
2412 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2413   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2414                "HS=humongous(starts), HC=humongous(continues), "
2415                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2416                "AC=allocation context, "
2417                "TAMS=top-at-mark-start (previous, next)");
2418   PrintRegionClosure blk(st);
2419   heap_region_iterate(&blk);
2420 }
2421 
2422 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2423   print_on(st);
2424 
2425   // Print the per-region information.
2426   print_regions_on(st);
2427 }
2428 
2429 void G1CollectedHeap::print_on_error(outputStream* st) const {
2430   this->CollectedHeap::print_on_error(st);
2431 
2432   if (_cm != NULL) {
2433     st->cr();
2434     _cm->print_on_error(st);
2435   }
2436 }
2437 
2438 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2439   workers()->print_worker_threads_on(st);
2440   _cmThread->print_on(st);
2441   st->cr();
2442   _cm->print_worker_threads_on(st);
2443   _cr->print_threads_on(st);
2444   _young_gen_sampling_thread->print_on(st);
2445   if (G1StringDedup::is_enabled()) {
2446     G1StringDedup::print_worker_threads_on(st);
2447   }
2448 }
2449 
2450 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2451   workers()->threads_do(tc);
2452   tc->do_thread(_cmThread);
2453   _cm->threads_do(tc);
2454   _cr->threads_do(tc);
2455   tc->do_thread(_young_gen_sampling_thread);
2456   if (G1StringDedup::is_enabled()) {
2457     G1StringDedup::threads_do(tc);
2458   }
2459 }
2460 
2461 void G1CollectedHeap::print_tracing_info() const {
2462   g1_rem_set()->print_summary_info();
2463   concurrent_mark()->print_summary_info();
2464 }
2465 
2466 #ifndef PRODUCT
2467 // Helpful for debugging RSet issues.
2468 
2469 class PrintRSetsClosure : public HeapRegionClosure {
2470 private:
2471   const char* _msg;
2472   size_t _occupied_sum;
2473 
2474 public:
2475   bool doHeapRegion(HeapRegion* r) {
2476     HeapRegionRemSet* hrrs = r->rem_set();
2477     size_t occupied = hrrs->occupied();
2478     _occupied_sum += occupied;
2479 
2480     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2481     if (occupied == 0) {
2482       tty->print_cr("  RSet is empty");
2483     } else {
2484       hrrs->print();
2485     }
2486     tty->print_cr("----------");
2487     return false;
2488   }
2489 
2490   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2491     tty->cr();
2492     tty->print_cr("========================================");
2493     tty->print_cr("%s", msg);
2494     tty->cr();
2495   }
2496 
2497   ~PrintRSetsClosure() {
2498     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2499     tty->print_cr("========================================");
2500     tty->cr();
2501   }
2502 };
2503 
2504 void G1CollectedHeap::print_cset_rsets() {
2505   PrintRSetsClosure cl("Printing CSet RSets");
2506   collection_set_iterate(&cl);
2507 }
2508 
2509 void G1CollectedHeap::print_all_rsets() {
2510   PrintRSetsClosure cl("Printing All RSets");;
2511   heap_region_iterate(&cl);
2512 }
2513 #endif // PRODUCT
2514 
2515 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2516 
2517   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2518   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2519   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2520 
2521   size_t eden_capacity_bytes =
2522     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2523 
2524   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2525   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2526                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2527 }
2528 
2529 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2530   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2531                        stats->unused(), stats->used(), stats->region_end_waste(),
2532                        stats->regions_filled(), stats->direct_allocated(),
2533                        stats->failure_used(), stats->failure_waste());
2534 }
2535 
2536 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2537   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2538   gc_tracer->report_gc_heap_summary(when, heap_summary);
2539 
2540   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2541   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2542 }
2543 
2544 G1CollectedHeap* G1CollectedHeap::heap() {
2545   CollectedHeap* heap = Universe::heap();
2546   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2547   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2548   return (G1CollectedHeap*)heap;
2549 }
2550 
2551 void G1CollectedHeap::gc_prologue(bool full) {
2552   // always_do_update_barrier = false;
2553   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2554 
2555   // This summary needs to be printed before incrementing total collections.
2556   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2557 
2558   // Update common counters.
2559   increment_total_collections(full /* full gc */);
2560   if (full) {
2561     increment_old_marking_cycles_started();
2562     reset_gc_time_stamp();
2563   } else {
2564     increment_gc_time_stamp();
2565   }
2566 
2567   // Fill TLAB's and such
2568   double start = os::elapsedTime();
2569   accumulate_statistics_all_tlabs();
2570   ensure_parsability(true);
2571   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2572 }
2573 
2574 void G1CollectedHeap::gc_epilogue(bool full) {
2575   // Update common counters.
2576   if (full) {
2577     // Update the number of full collections that have been completed.
2578     increment_old_marking_cycles_completed(false /* concurrent */);
2579   }
2580 
2581   // We are at the end of the GC. Total collections has already been increased.
2582   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2583 
2584   // FIXME: what is this about?
2585   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2586   // is set.
2587 #if COMPILER2_OR_JVMCI
2588   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2589 #endif
2590   // always_do_update_barrier = true;
2591 
2592   double start = os::elapsedTime();
2593   resize_all_tlabs();
2594   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2595 
2596   allocation_context_stats().update(full);
2597 
2598   MemoryService::track_memory_usage();
2599   // We have just completed a GC. Update the soft reference
2600   // policy with the new heap occupancy
2601   Universe::update_heap_info_at_gc();
2602 }
2603 
2604 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2605                                                uint gc_count_before,
2606                                                bool* succeeded,
2607                                                GCCause::Cause gc_cause) {
2608   assert_heap_not_locked_and_not_at_safepoint();
2609   VM_G1IncCollectionPause op(gc_count_before,
2610                              word_size,
2611                              false, /* should_initiate_conc_mark */
2612                              g1_policy()->max_pause_time_ms(),
2613                              gc_cause);
2614 
2615   op.set_allocation_context(AllocationContext::current());
2616   VMThread::execute(&op);
2617 
2618   HeapWord* result = op.result();
2619   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2620   assert(result == NULL || ret_succeeded,
2621          "the result should be NULL if the VM did not succeed");
2622   *succeeded = ret_succeeded;
2623 
2624   assert_heap_not_locked();
2625   return result;
2626 }
2627 
2628 void
2629 G1CollectedHeap::doConcurrentMark() {
2630   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2631   if (!_cmThread->in_progress()) {
2632     _cmThread->set_started();
2633     CGC_lock->notify();
2634   }
2635 }
2636 
2637 size_t G1CollectedHeap::pending_card_num() {
2638   size_t extra_cards = 0;
2639   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2640     DirtyCardQueue& dcq = curr->dirty_card_queue();
2641     extra_cards += dcq.size();
2642   }
2643   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2644   size_t buffer_size = dcqs.buffer_size();
2645   size_t buffer_num = dcqs.completed_buffers_num();
2646 
2647   return buffer_size * buffer_num + extra_cards;
2648 }
2649 
2650 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2651  private:
2652   size_t _total_humongous;
2653   size_t _candidate_humongous;
2654 
2655   DirtyCardQueue _dcq;
2656 
2657   // We don't nominate objects with many remembered set entries, on
2658   // the assumption that such objects are likely still live.
2659   bool is_remset_small(HeapRegion* region) const {
2660     HeapRegionRemSet* const rset = region->rem_set();
2661     return G1EagerReclaimHumongousObjectsWithStaleRefs
2662       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2663       : rset->is_empty();
2664   }
2665 
2666   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2667     assert(region->is_starts_humongous(), "Must start a humongous object");
2668 
2669     oop obj = oop(region->bottom());
2670 
2671     // Dead objects cannot be eager reclaim candidates. Due to class
2672     // unloading it is unsafe to query their classes so we return early.
2673     if (heap->is_obj_dead(obj, region)) {
2674       return false;
2675     }
2676 
2677     // Candidate selection must satisfy the following constraints
2678     // while concurrent marking is in progress:
2679     //
2680     // * In order to maintain SATB invariants, an object must not be
2681     // reclaimed if it was allocated before the start of marking and
2682     // has not had its references scanned.  Such an object must have
2683     // its references (including type metadata) scanned to ensure no
2684     // live objects are missed by the marking process.  Objects
2685     // allocated after the start of concurrent marking don't need to
2686     // be scanned.
2687     //
2688     // * An object must not be reclaimed if it is on the concurrent
2689     // mark stack.  Objects allocated after the start of concurrent
2690     // marking are never pushed on the mark stack.
2691     //
2692     // Nominating only objects allocated after the start of concurrent
2693     // marking is sufficient to meet both constraints.  This may miss
2694     // some objects that satisfy the constraints, but the marking data
2695     // structures don't support efficiently performing the needed
2696     // additional tests or scrubbing of the mark stack.
2697     //
2698     // However, we presently only nominate is_typeArray() objects.
2699     // A humongous object containing references induces remembered
2700     // set entries on other regions.  In order to reclaim such an
2701     // object, those remembered sets would need to be cleaned up.
2702     //
2703     // We also treat is_typeArray() objects specially, allowing them
2704     // to be reclaimed even if allocated before the start of
2705     // concurrent mark.  For this we rely on mark stack insertion to
2706     // exclude is_typeArray() objects, preventing reclaiming an object
2707     // that is in the mark stack.  We also rely on the metadata for
2708     // such objects to be built-in and so ensured to be kept live.
2709     // Frequent allocation and drop of large binary blobs is an
2710     // important use case for eager reclaim, and this special handling
2711     // may reduce needed headroom.
2712 
2713     return obj->is_typeArray() && is_remset_small(region);
2714   }
2715 
2716  public:
2717   RegisterHumongousWithInCSetFastTestClosure()
2718   : _total_humongous(0),
2719     _candidate_humongous(0),
2720     _dcq(&JavaThread::dirty_card_queue_set()) {
2721   }
2722 
2723   virtual bool doHeapRegion(HeapRegion* r) {
2724     if (!r->is_starts_humongous()) {
2725       return false;
2726     }
2727     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2728 
2729     bool is_candidate = humongous_region_is_candidate(g1h, r);
2730     uint rindex = r->hrm_index();
2731     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2732     if (is_candidate) {
2733       _candidate_humongous++;
2734       g1h->register_humongous_region_with_cset(rindex);
2735       // Is_candidate already filters out humongous object with large remembered sets.
2736       // If we have a humongous object with a few remembered sets, we simply flush these
2737       // remembered set entries into the DCQS. That will result in automatic
2738       // re-evaluation of their remembered set entries during the following evacuation
2739       // phase.
2740       if (!r->rem_set()->is_empty()) {
2741         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2742                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2743         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2744         HeapRegionRemSetIterator hrrs(r->rem_set());
2745         size_t card_index;
2746         while (hrrs.has_next(card_index)) {
2747           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2748           // The remembered set might contain references to already freed
2749           // regions. Filter out such entries to avoid failing card table
2750           // verification.
2751           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2752             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2753               *card_ptr = CardTableModRefBS::dirty_card_val();
2754               _dcq.enqueue(card_ptr);
2755             }
2756           }
2757         }
2758         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2759                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2760                hrrs.n_yielded(), r->rem_set()->occupied());
2761         r->rem_set()->clear_locked();
2762       }
2763       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2764     }
2765     _total_humongous++;
2766 
2767     return false;
2768   }
2769 
2770   size_t total_humongous() const { return _total_humongous; }
2771   size_t candidate_humongous() const { return _candidate_humongous; }
2772 
2773   void flush_rem_set_entries() { _dcq.flush(); }
2774 };
2775 
2776 void G1CollectedHeap::register_humongous_regions_with_cset() {
2777   if (!G1EagerReclaimHumongousObjects) {
2778     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2779     return;
2780   }
2781   double time = os::elapsed_counter();
2782 
2783   // Collect reclaim candidate information and register candidates with cset.
2784   RegisterHumongousWithInCSetFastTestClosure cl;
2785   heap_region_iterate(&cl);
2786 
2787   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2788   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2789                                                                   cl.total_humongous(),
2790                                                                   cl.candidate_humongous());
2791   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2792 
2793   // Finally flush all remembered set entries to re-check into the global DCQS.
2794   cl.flush_rem_set_entries();
2795 }
2796 
2797 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2798   public:
2799     bool doHeapRegion(HeapRegion* hr) {
2800       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2801         hr->verify_rem_set();
2802       }
2803       return false;
2804     }
2805 };
2806 
2807 uint G1CollectedHeap::num_task_queues() const {
2808   return _task_queues->size();
2809 }
2810 
2811 #if TASKQUEUE_STATS
2812 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2813   st->print_raw_cr("GC Task Stats");
2814   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2815   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2816 }
2817 
2818 void G1CollectedHeap::print_taskqueue_stats() const {
2819   if (!log_is_enabled(Trace, gc, task, stats)) {
2820     return;
2821   }
2822   Log(gc, task, stats) log;
2823   ResourceMark rm;
2824   LogStream ls(log.trace());
2825   outputStream* st = &ls;
2826 
2827   print_taskqueue_stats_hdr(st);
2828 
2829   TaskQueueStats totals;
2830   const uint n = num_task_queues();
2831   for (uint i = 0; i < n; ++i) {
2832     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2833     totals += task_queue(i)->stats;
2834   }
2835   st->print_raw("tot "); totals.print(st); st->cr();
2836 
2837   DEBUG_ONLY(totals.verify());
2838 }
2839 
2840 void G1CollectedHeap::reset_taskqueue_stats() {
2841   const uint n = num_task_queues();
2842   for (uint i = 0; i < n; ++i) {
2843     task_queue(i)->stats.reset();
2844   }
2845 }
2846 #endif // TASKQUEUE_STATS
2847 
2848 void G1CollectedHeap::wait_for_root_region_scanning() {
2849   double scan_wait_start = os::elapsedTime();
2850   // We have to wait until the CM threads finish scanning the
2851   // root regions as it's the only way to ensure that all the
2852   // objects on them have been correctly scanned before we start
2853   // moving them during the GC.
2854   bool waited = _cm->root_regions()->wait_until_scan_finished();
2855   double wait_time_ms = 0.0;
2856   if (waited) {
2857     double scan_wait_end = os::elapsedTime();
2858     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2859   }
2860   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2861 }
2862 
2863 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2864 private:
2865   G1HRPrinter* _hr_printer;
2866 public:
2867   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2868 
2869   virtual bool doHeapRegion(HeapRegion* r) {
2870     _hr_printer->cset(r);
2871     return false;
2872   }
2873 };
2874 
2875 void G1CollectedHeap::start_new_collection_set() {
2876   collection_set()->start_incremental_building();
2877 
2878   clear_cset_fast_test();
2879 
2880   guarantee(_eden.length() == 0, "eden should have been cleared");
2881   g1_policy()->transfer_survivors_to_cset(survivor());
2882 }
2883 
2884 bool
2885 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2886   assert_at_safepoint(true /* should_be_vm_thread */);
2887   guarantee(!is_gc_active(), "collection is not reentrant");
2888 
2889   if (GCLocker::check_active_before_gc()) {
2890     return false;
2891   }
2892 
2893   _gc_timer_stw->register_gc_start();
2894 
2895   GCIdMark gc_id_mark;
2896   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2897 
2898   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2899   ResourceMark rm;
2900 
2901   g1_policy()->note_gc_start();
2902 
2903   wait_for_root_region_scanning();
2904 
2905   print_heap_before_gc();
2906   print_heap_regions();
2907   trace_heap_before_gc(_gc_tracer_stw);
2908 
2909   _verifier->verify_region_sets_optional();
2910   _verifier->verify_dirty_young_regions();
2911 
2912   // We should not be doing initial mark unless the conc mark thread is running
2913   if (!_cmThread->should_terminate()) {
2914     // This call will decide whether this pause is an initial-mark
2915     // pause. If it is, during_initial_mark_pause() will return true
2916     // for the duration of this pause.
2917     g1_policy()->decide_on_conc_mark_initiation();
2918   }
2919 
2920   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2921   assert(!collector_state()->during_initial_mark_pause() ||
2922           collector_state()->gcs_are_young(), "sanity");
2923 
2924   // We also do not allow mixed GCs during marking.
2925   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2926 
2927   // Record whether this pause is an initial mark. When the current
2928   // thread has completed its logging output and it's safe to signal
2929   // the CM thread, the flag's value in the policy has been reset.
2930   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2931 
2932   // Inner scope for scope based logging, timers, and stats collection
2933   {
2934     EvacuationInfo evacuation_info;
2935 
2936     if (collector_state()->during_initial_mark_pause()) {
2937       // We are about to start a marking cycle, so we increment the
2938       // full collection counter.
2939       increment_old_marking_cycles_started();
2940       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2941     }
2942 
2943     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2944 
2945     GCTraceCPUTime tcpu;
2946 
2947     FormatBuffer<> gc_string("Pause ");
2948     if (collector_state()->during_initial_mark_pause()) {
2949       gc_string.append("Initial Mark");
2950     } else if (collector_state()->gcs_are_young()) {
2951       gc_string.append("Young");
2952     } else {
2953       gc_string.append("Mixed");
2954     }
2955     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2956 
2957     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2958                                                                   workers()->active_workers(),
2959                                                                   Threads::number_of_non_daemon_threads());
2960     workers()->update_active_workers(active_workers);
2961     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2962 
2963     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2964     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2965 
2966     // If the secondary_free_list is not empty, append it to the
2967     // free_list. No need to wait for the cleanup operation to finish;
2968     // the region allocation code will check the secondary_free_list
2969     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2970     // set, skip this step so that the region allocation code has to
2971     // get entries from the secondary_free_list.
2972     if (!G1StressConcRegionFreeing) {
2973       append_secondary_free_list_if_not_empty_with_lock();
2974     }
2975 
2976     G1HeapTransition heap_transition(this);
2977     size_t heap_used_bytes_before_gc = used();
2978 
2979     // Don't dynamically change the number of GC threads this early.  A value of
2980     // 0 is used to indicate serial work.  When parallel work is done,
2981     // it will be set.
2982 
2983     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2984       IsGCActiveMark x;
2985 
2986       gc_prologue(false);
2987 
2988       if (VerifyRememberedSets) {
2989         log_info(gc, verify)("[Verifying RemSets before GC]");
2990         VerifyRegionRemSetClosure v_cl;
2991         heap_region_iterate(&v_cl);
2992       }
2993 
2994       _verifier->verify_before_gc(young_verification_type());
2995 
2996       _verifier->check_bitmaps("GC Start");
2997 
2998 #if COMPILER2_OR_JVMCI
2999       DerivedPointerTable::clear();
3000 #endif
3001 
3002       // Please see comment in g1CollectedHeap.hpp and
3003       // G1CollectedHeap::ref_processing_init() to see how
3004       // reference processing currently works in G1.
3005 
3006       // Enable discovery in the STW reference processor
3007       if (g1_policy()->should_process_references()) {
3008         ref_processor_stw()->enable_discovery();
3009       } else {
3010         ref_processor_stw()->disable_discovery();
3011       }
3012 
3013       {
3014         // We want to temporarily turn off discovery by the
3015         // CM ref processor, if necessary, and turn it back on
3016         // on again later if we do. Using a scoped
3017         // NoRefDiscovery object will do this.
3018         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3019 
3020         // Forget the current alloc region (we might even choose it to be part
3021         // of the collection set!).
3022         _allocator->release_mutator_alloc_region();
3023 
3024         // This timing is only used by the ergonomics to handle our pause target.
3025         // It is unclear why this should not include the full pause. We will
3026         // investigate this in CR 7178365.
3027         //
3028         // Preserving the old comment here if that helps the investigation:
3029         //
3030         // The elapsed time induced by the start time below deliberately elides
3031         // the possible verification above.
3032         double sample_start_time_sec = os::elapsedTime();
3033 
3034         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3035 
3036         if (collector_state()->during_initial_mark_pause()) {
3037           concurrent_mark()->checkpoint_roots_initial_pre();
3038         }
3039 
3040         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3041 
3042         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3043 
3044         // Make sure the remembered sets are up to date. This needs to be
3045         // done before register_humongous_regions_with_cset(), because the
3046         // remembered sets are used there to choose eager reclaim candidates.
3047         // If the remembered sets are not up to date we might miss some
3048         // entries that need to be handled.
3049         g1_rem_set()->cleanupHRRS();
3050 
3051         register_humongous_regions_with_cset();
3052 
3053         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3054 
3055         // We call this after finalize_cset() to
3056         // ensure that the CSet has been finalized.
3057         _cm->verify_no_cset_oops();
3058 
3059         if (_hr_printer.is_active()) {
3060           G1PrintCollectionSetClosure cl(&_hr_printer);
3061           _collection_set.iterate(&cl);
3062         }
3063 
3064         // Initialize the GC alloc regions.
3065         _allocator->init_gc_alloc_regions(evacuation_info);
3066 
3067         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3068         pre_evacuate_collection_set();
3069 
3070         // Actually do the work...
3071         evacuate_collection_set(evacuation_info, &per_thread_states);
3072 
3073         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3074 
3075         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3076         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3077 
3078         eagerly_reclaim_humongous_regions();
3079 
3080         record_obj_copy_mem_stats();
3081         _survivor_evac_stats.adjust_desired_plab_sz();
3082         _old_evac_stats.adjust_desired_plab_sz();
3083 
3084         double start = os::elapsedTime();
3085         start_new_collection_set();
3086         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3087 
3088         if (evacuation_failed()) {
3089           set_used(recalculate_used());
3090           if (_archive_allocator != NULL) {
3091             _archive_allocator->clear_used();
3092           }
3093           for (uint i = 0; i < ParallelGCThreads; i++) {
3094             if (_evacuation_failed_info_array[i].has_failed()) {
3095               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3096             }
3097           }
3098         } else {
3099           // The "used" of the the collection set have already been subtracted
3100           // when they were freed.  Add in the bytes evacuated.
3101           increase_used(g1_policy()->bytes_copied_during_gc());
3102         }
3103 
3104         if (collector_state()->during_initial_mark_pause()) {
3105           // We have to do this before we notify the CM threads that
3106           // they can start working to make sure that all the
3107           // appropriate initialization is done on the CM object.
3108           concurrent_mark()->checkpoint_roots_initial_post();
3109           collector_state()->set_mark_in_progress(true);
3110           // Note that we don't actually trigger the CM thread at
3111           // this point. We do that later when we're sure that
3112           // the current thread has completed its logging output.
3113         }
3114 
3115         allocate_dummy_regions();
3116 
3117         _allocator->init_mutator_alloc_region();
3118 
3119         {
3120           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3121           if (expand_bytes > 0) {
3122             size_t bytes_before = capacity();
3123             // No need for an ergo logging here,
3124             // expansion_amount() does this when it returns a value > 0.
3125             double expand_ms;
3126             if (!expand(expand_bytes, _workers, &expand_ms)) {
3127               // We failed to expand the heap. Cannot do anything about it.
3128             }
3129             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3130           }
3131         }
3132 
3133         // We redo the verification but now wrt to the new CSet which
3134         // has just got initialized after the previous CSet was freed.
3135         _cm->verify_no_cset_oops();
3136 
3137         // This timing is only used by the ergonomics to handle our pause target.
3138         // It is unclear why this should not include the full pause. We will
3139         // investigate this in CR 7178365.
3140         double sample_end_time_sec = os::elapsedTime();
3141         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3142         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3143         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3144 
3145         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3146         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3147 
3148         if (VerifyRememberedSets) {
3149           log_info(gc, verify)("[Verifying RemSets after GC]");
3150           VerifyRegionRemSetClosure v_cl;
3151           heap_region_iterate(&v_cl);
3152         }
3153 
3154         _verifier->verify_after_gc(young_verification_type());
3155         _verifier->check_bitmaps("GC End");
3156 
3157         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3158         ref_processor_stw()->verify_no_references_recorded();
3159 
3160         // CM reference discovery will be re-enabled if necessary.
3161       }
3162 
3163 #ifdef TRACESPINNING
3164       ParallelTaskTerminator::print_termination_counts();
3165 #endif
3166 
3167       gc_epilogue(false);
3168     }
3169 
3170     // Print the remainder of the GC log output.
3171     if (evacuation_failed()) {
3172       log_info(gc)("To-space exhausted");
3173     }
3174 
3175     g1_policy()->print_phases();
3176     heap_transition.print();
3177 
3178     // It is not yet to safe to tell the concurrent mark to
3179     // start as we have some optional output below. We don't want the
3180     // output from the concurrent mark thread interfering with this
3181     // logging output either.
3182 
3183     _hrm.verify_optional();
3184     _verifier->verify_region_sets_optional();
3185 
3186     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3187     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3188 
3189     print_heap_after_gc();
3190     print_heap_regions();
3191     trace_heap_after_gc(_gc_tracer_stw);
3192 
3193     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3194     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3195     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3196     // before any GC notifications are raised.
3197     g1mm()->update_sizes();
3198 
3199     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3200     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3201     _gc_timer_stw->register_gc_end();
3202     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3203   }
3204   // It should now be safe to tell the concurrent mark thread to start
3205   // without its logging output interfering with the logging output
3206   // that came from the pause.
3207 
3208   if (should_start_conc_mark) {
3209     // CAUTION: after the doConcurrentMark() call below,
3210     // the concurrent marking thread(s) could be running
3211     // concurrently with us. Make sure that anything after
3212     // this point does not assume that we are the only GC thread
3213     // running. Note: of course, the actual marking work will
3214     // not start until the safepoint itself is released in
3215     // SuspendibleThreadSet::desynchronize().
3216     doConcurrentMark();
3217   }
3218 
3219   return true;
3220 }
3221 
3222 void G1CollectedHeap::remove_self_forwarding_pointers() {
3223   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3224   workers()->run_task(&rsfp_task);
3225 }
3226 
3227 void G1CollectedHeap::restore_after_evac_failure() {
3228   double remove_self_forwards_start = os::elapsedTime();
3229 
3230   remove_self_forwarding_pointers();
3231   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3232   _preserved_marks_set.restore(&task_executor);
3233 
3234   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3235 }
3236 
3237 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3238   if (!_evacuation_failed) {
3239     _evacuation_failed = true;
3240   }
3241 
3242   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3243   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3244 }
3245 
3246 bool G1ParEvacuateFollowersClosure::offer_termination() {
3247   G1ParScanThreadState* const pss = par_scan_state();
3248   start_term_time();
3249   const bool res = terminator()->offer_termination();
3250   end_term_time();
3251   return res;
3252 }
3253 
3254 void G1ParEvacuateFollowersClosure::do_void() {
3255   G1ParScanThreadState* const pss = par_scan_state();
3256   pss->trim_queue();
3257   do {
3258     pss->steal_and_trim_queue(queues());
3259   } while (!offer_termination());
3260 }
3261 
3262 class G1ParTask : public AbstractGangTask {
3263 protected:
3264   G1CollectedHeap*         _g1h;
3265   G1ParScanThreadStateSet* _pss;
3266   RefToScanQueueSet*       _queues;
3267   G1RootProcessor*         _root_processor;
3268   ParallelTaskTerminator   _terminator;
3269   uint                     _n_workers;
3270 
3271 public:
3272   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3273     : AbstractGangTask("G1 collection"),
3274       _g1h(g1h),
3275       _pss(per_thread_states),
3276       _queues(task_queues),
3277       _root_processor(root_processor),
3278       _terminator(n_workers, _queues),
3279       _n_workers(n_workers)
3280   {}
3281 
3282   void work(uint worker_id) {
3283     if (worker_id >= _n_workers) return;  // no work needed this round
3284 
3285     double start_sec = os::elapsedTime();
3286     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3287 
3288     {
3289       ResourceMark rm;
3290       HandleMark   hm;
3291 
3292       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3293 
3294       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3295       pss->set_ref_processor(rp);
3296 
3297       double start_strong_roots_sec = os::elapsedTime();
3298 
3299       _root_processor->evacuate_roots(pss->closures(), worker_id);
3300 
3301       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3302       // treating the nmethods visited to act as roots for concurrent marking.
3303       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3304       // objects copied by the current evacuation.
3305       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3306                                                       pss->closures()->weak_codeblobs(),
3307                                                       worker_id);
3308 
3309       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3310 
3311       double term_sec = 0.0;
3312       size_t evac_term_attempts = 0;
3313       {
3314         double start = os::elapsedTime();
3315         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3316         evac.do_void();
3317 
3318         evac_term_attempts = evac.term_attempts();
3319         term_sec = evac.term_time();
3320         double elapsed_sec = os::elapsedTime() - start;
3321         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3322         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3323         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3324       }
3325 
3326       assert(pss->queue_is_empty(), "should be empty");
3327 
3328       if (log_is_enabled(Debug, gc, task, stats)) {
3329         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3330         size_t lab_waste;
3331         size_t lab_undo_waste;
3332         pss->waste(lab_waste, lab_undo_waste);
3333         _g1h->print_termination_stats(worker_id,
3334                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3335                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3336                                       term_sec * 1000.0,                          /* evac term time */
3337                                       evac_term_attempts,                         /* evac term attempts */
3338                                       lab_waste,                                  /* alloc buffer waste */
3339                                       lab_undo_waste                              /* undo waste */
3340                                       );
3341       }
3342 
3343       // Close the inner scope so that the ResourceMark and HandleMark
3344       // destructors are executed here and are included as part of the
3345       // "GC Worker Time".
3346     }
3347     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3348   }
3349 };
3350 
3351 void G1CollectedHeap::print_termination_stats_hdr() {
3352   log_debug(gc, task, stats)("GC Termination Stats");
3353   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3354   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3355   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3356 }
3357 
3358 void G1CollectedHeap::print_termination_stats(uint worker_id,
3359                                               double elapsed_ms,
3360                                               double strong_roots_ms,
3361                                               double term_ms,
3362                                               size_t term_attempts,
3363                                               size_t alloc_buffer_waste,
3364                                               size_t undo_waste) const {
3365   log_debug(gc, task, stats)
3366               ("%3d %9.2f %9.2f %6.2f "
3367                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3368                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3369                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3370                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3371                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3372                alloc_buffer_waste * HeapWordSize / K,
3373                undo_waste * HeapWordSize / K);
3374 }
3375 
3376 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3377 private:
3378   BoolObjectClosure* _is_alive;
3379   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3380 
3381   int _initial_string_table_size;
3382   int _initial_symbol_table_size;
3383 
3384   bool  _process_strings;
3385   int _strings_processed;
3386   int _strings_removed;
3387 
3388   bool  _process_symbols;
3389   int _symbols_processed;
3390   int _symbols_removed;
3391 
3392   bool _process_string_dedup;
3393 
3394 public:
3395   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3396     AbstractGangTask("String/Symbol Unlinking"),
3397     _is_alive(is_alive),
3398     _dedup_closure(is_alive, NULL, false),
3399     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3400     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3401     _process_string_dedup(process_string_dedup) {
3402 
3403     _initial_string_table_size = StringTable::the_table()->table_size();
3404     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3405     if (process_strings) {
3406       StringTable::clear_parallel_claimed_index();
3407     }
3408     if (process_symbols) {
3409       SymbolTable::clear_parallel_claimed_index();
3410     }
3411   }
3412 
3413   ~G1StringAndSymbolCleaningTask() {
3414     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3415               "claim value %d after unlink less than initial string table size %d",
3416               StringTable::parallel_claimed_index(), _initial_string_table_size);
3417     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3418               "claim value %d after unlink less than initial symbol table size %d",
3419               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3420 
3421     log_info(gc, stringtable)(
3422         "Cleaned string and symbol table, "
3423         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3424         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3425         strings_processed(), strings_removed(),
3426         symbols_processed(), symbols_removed());
3427   }
3428 
3429   void work(uint worker_id) {
3430     int strings_processed = 0;
3431     int strings_removed = 0;
3432     int symbols_processed = 0;
3433     int symbols_removed = 0;
3434     if (_process_strings) {
3435       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3436       Atomic::add(strings_processed, &_strings_processed);
3437       Atomic::add(strings_removed, &_strings_removed);
3438     }
3439     if (_process_symbols) {
3440       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3441       Atomic::add(symbols_processed, &_symbols_processed);
3442       Atomic::add(symbols_removed, &_symbols_removed);
3443     }
3444     if (_process_string_dedup) {
3445       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3446     }
3447   }
3448 
3449   size_t strings_processed() const { return (size_t)_strings_processed; }
3450   size_t strings_removed()   const { return (size_t)_strings_removed; }
3451 
3452   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3453   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3454 };
3455 
3456 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3457 private:
3458   static Monitor* _lock;
3459 
3460   BoolObjectClosure* const _is_alive;
3461   const bool               _unloading_occurred;
3462   const uint               _num_workers;
3463 
3464   // Variables used to claim nmethods.
3465   CompiledMethod* _first_nmethod;
3466   CompiledMethod* volatile _claimed_nmethod;
3467 
3468   // The list of nmethods that need to be processed by the second pass.
3469   CompiledMethod* volatile _postponed_list;
3470   volatile uint            _num_entered_barrier;
3471 
3472  public:
3473   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3474       _is_alive(is_alive),
3475       _unloading_occurred(unloading_occurred),
3476       _num_workers(num_workers),
3477       _first_nmethod(NULL),
3478       _claimed_nmethod(NULL),
3479       _postponed_list(NULL),
3480       _num_entered_barrier(0)
3481   {
3482     CompiledMethod::increase_unloading_clock();
3483     // Get first alive nmethod
3484     CompiledMethodIterator iter = CompiledMethodIterator();
3485     if(iter.next_alive()) {
3486       _first_nmethod = iter.method();
3487     }
3488     _claimed_nmethod = _first_nmethod;
3489   }
3490 
3491   ~G1CodeCacheUnloadingTask() {
3492     CodeCache::verify_clean_inline_caches();
3493 
3494     CodeCache::set_needs_cache_clean(false);
3495     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3496 
3497     CodeCache::verify_icholder_relocations();
3498   }
3499 
3500  private:
3501   void add_to_postponed_list(CompiledMethod* nm) {
3502       CompiledMethod* old;
3503       do {
3504         old = _postponed_list;
3505         nm->set_unloading_next(old);
3506       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3507   }
3508 
3509   void clean_nmethod(CompiledMethod* nm) {
3510     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3511 
3512     if (postponed) {
3513       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3514       add_to_postponed_list(nm);
3515     }
3516 
3517     // Mark that this thread has been cleaned/unloaded.
3518     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3519     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3520   }
3521 
3522   void clean_nmethod_postponed(CompiledMethod* nm) {
3523     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3524   }
3525 
3526   static const int MaxClaimNmethods = 16;
3527 
3528   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3529     CompiledMethod* first;
3530     CompiledMethodIterator last;
3531 
3532     do {
3533       *num_claimed_nmethods = 0;
3534 
3535       first = _claimed_nmethod;
3536       last = CompiledMethodIterator(first);
3537 
3538       if (first != NULL) {
3539 
3540         for (int i = 0; i < MaxClaimNmethods; i++) {
3541           if (!last.next_alive()) {
3542             break;
3543           }
3544           claimed_nmethods[i] = last.method();
3545           (*num_claimed_nmethods)++;
3546         }
3547       }
3548 
3549     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3550   }
3551 
3552   CompiledMethod* claim_postponed_nmethod() {
3553     CompiledMethod* claim;
3554     CompiledMethod* next;
3555 
3556     do {
3557       claim = _postponed_list;
3558       if (claim == NULL) {
3559         return NULL;
3560       }
3561 
3562       next = claim->unloading_next();
3563 
3564     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3565 
3566     return claim;
3567   }
3568 
3569  public:
3570   // Mark that we're done with the first pass of nmethod cleaning.
3571   void barrier_mark(uint worker_id) {
3572     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3573     _num_entered_barrier++;
3574     if (_num_entered_barrier == _num_workers) {
3575       ml.notify_all();
3576     }
3577   }
3578 
3579   // See if we have to wait for the other workers to
3580   // finish their first-pass nmethod cleaning work.
3581   void barrier_wait(uint worker_id) {
3582     if (_num_entered_barrier < _num_workers) {
3583       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3584       while (_num_entered_barrier < _num_workers) {
3585           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3586       }
3587     }
3588   }
3589 
3590   // Cleaning and unloading of nmethods. Some work has to be postponed
3591   // to the second pass, when we know which nmethods survive.
3592   void work_first_pass(uint worker_id) {
3593     // The first nmethods is claimed by the first worker.
3594     if (worker_id == 0 && _first_nmethod != NULL) {
3595       clean_nmethod(_first_nmethod);
3596       _first_nmethod = NULL;
3597     }
3598 
3599     int num_claimed_nmethods;
3600     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3601 
3602     while (true) {
3603       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3604 
3605       if (num_claimed_nmethods == 0) {
3606         break;
3607       }
3608 
3609       for (int i = 0; i < num_claimed_nmethods; i++) {
3610         clean_nmethod(claimed_nmethods[i]);
3611       }
3612     }
3613   }
3614 
3615   void work_second_pass(uint worker_id) {
3616     CompiledMethod* nm;
3617     // Take care of postponed nmethods.
3618     while ((nm = claim_postponed_nmethod()) != NULL) {
3619       clean_nmethod_postponed(nm);
3620     }
3621   }
3622 };
3623 
3624 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3625 
3626 class G1KlassCleaningTask : public StackObj {
3627   BoolObjectClosure*                      _is_alive;
3628   volatile int                            _clean_klass_tree_claimed;
3629   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3630 
3631  public:
3632   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3633       _is_alive(is_alive),
3634       _clean_klass_tree_claimed(0),
3635       _klass_iterator() {
3636   }
3637 
3638  private:
3639   bool claim_clean_klass_tree_task() {
3640     if (_clean_klass_tree_claimed) {
3641       return false;
3642     }
3643 
3644     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3645   }
3646 
3647   InstanceKlass* claim_next_klass() {
3648     Klass* klass;
3649     do {
3650       klass =_klass_iterator.next_klass();
3651     } while (klass != NULL && !klass->is_instance_klass());
3652 
3653     // this can be null so don't call InstanceKlass::cast
3654     return static_cast<InstanceKlass*>(klass);
3655   }
3656 
3657 public:
3658 
3659   void clean_klass(InstanceKlass* ik) {
3660     ik->clean_weak_instanceklass_links(_is_alive);
3661   }
3662 
3663   void work() {
3664     ResourceMark rm;
3665 
3666     // One worker will clean the subklass/sibling klass tree.
3667     if (claim_clean_klass_tree_task()) {
3668       Klass::clean_subklass_tree(_is_alive);
3669     }
3670 
3671     // All workers will help cleaning the classes,
3672     InstanceKlass* klass;
3673     while ((klass = claim_next_klass()) != NULL) {
3674       clean_klass(klass);
3675     }
3676   }
3677 };
3678 
3679 class G1ResolvedMethodCleaningTask : public StackObj {
3680   BoolObjectClosure* _is_alive;
3681   volatile int       _resolved_method_task_claimed;
3682 public:
3683   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3684       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3685 
3686   bool claim_resolved_method_task() {
3687     if (_resolved_method_task_claimed) {
3688       return false;
3689     }
3690     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3691   }
3692 
3693   // These aren't big, one thread can do it all.
3694   void work() {
3695     if (claim_resolved_method_task()) {
3696       ResolvedMethodTable::unlink(_is_alive);
3697     }
3698   }
3699 };
3700 
3701 
3702 // To minimize the remark pause times, the tasks below are done in parallel.
3703 class G1ParallelCleaningTask : public AbstractGangTask {
3704 private:
3705   G1StringAndSymbolCleaningTask _string_symbol_task;
3706   G1CodeCacheUnloadingTask      _code_cache_task;
3707   G1KlassCleaningTask           _klass_cleaning_task;
3708   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3709 
3710 public:
3711   // The constructor is run in the VMThread.
3712   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3713       AbstractGangTask("Parallel Cleaning"),
3714       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3715       _code_cache_task(num_workers, is_alive, unloading_occurred),
3716       _klass_cleaning_task(is_alive),
3717       _resolved_method_cleaning_task(is_alive) {
3718   }
3719 
3720   // The parallel work done by all worker threads.
3721   void work(uint worker_id) {
3722     // Do first pass of code cache cleaning.
3723     _code_cache_task.work_first_pass(worker_id);
3724 
3725     // Let the threads mark that the first pass is done.
3726     _code_cache_task.barrier_mark(worker_id);
3727 
3728     // Clean the Strings and Symbols.
3729     _string_symbol_task.work(worker_id);
3730 
3731     // Clean unreferenced things in the ResolvedMethodTable
3732     _resolved_method_cleaning_task.work();
3733 
3734     // Wait for all workers to finish the first code cache cleaning pass.
3735     _code_cache_task.barrier_wait(worker_id);
3736 
3737     // Do the second code cache cleaning work, which realize on
3738     // the liveness information gathered during the first pass.
3739     _code_cache_task.work_second_pass(worker_id);
3740 
3741     // Clean all klasses that were not unloaded.
3742     _klass_cleaning_task.work();
3743   }
3744 };
3745 
3746 
3747 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3748                                         bool class_unloading_occurred) {
3749   uint n_workers = workers()->active_workers();
3750 
3751   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3752   workers()->run_task(&g1_unlink_task);
3753 }
3754 
3755 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3756                                        bool process_strings,
3757                                        bool process_symbols,
3758                                        bool process_string_dedup) {
3759   if (!process_strings && !process_symbols && !process_string_dedup) {
3760     // Nothing to clean.
3761     return;
3762   }
3763 
3764   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3765   workers()->run_task(&g1_unlink_task);
3766 
3767 }
3768 
3769 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3770  private:
3771   DirtyCardQueueSet* _queue;
3772   G1CollectedHeap* _g1h;
3773  public:
3774   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3775     _queue(queue), _g1h(g1h) { }
3776 
3777   virtual void work(uint worker_id) {
3778     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3779     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3780 
3781     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3782     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3783 
3784     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3785   }
3786 };
3787 
3788 void G1CollectedHeap::redirty_logged_cards() {
3789   double redirty_logged_cards_start = os::elapsedTime();
3790 
3791   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3792   dirty_card_queue_set().reset_for_par_iteration();
3793   workers()->run_task(&redirty_task);
3794 
3795   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3796   dcq.merge_bufferlists(&dirty_card_queue_set());
3797   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3798 
3799   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3800 }
3801 
3802 // Weak Reference Processing support
3803 
3804 // An always "is_alive" closure that is used to preserve referents.
3805 // If the object is non-null then it's alive.  Used in the preservation
3806 // of referent objects that are pointed to by reference objects
3807 // discovered by the CM ref processor.
3808 class G1AlwaysAliveClosure: public BoolObjectClosure {
3809   G1CollectedHeap* _g1;
3810 public:
3811   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3812   bool do_object_b(oop p) {
3813     if (p != NULL) {
3814       return true;
3815     }
3816     return false;
3817   }
3818 };
3819 
3820 bool G1STWIsAliveClosure::do_object_b(oop p) {
3821   // An object is reachable if it is outside the collection set,
3822   // or is inside and copied.
3823   return !_g1->is_in_cset(p) || p->is_forwarded();
3824 }
3825 
3826 // Non Copying Keep Alive closure
3827 class G1KeepAliveClosure: public OopClosure {
3828   G1CollectedHeap* _g1;
3829 public:
3830   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3831   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3832   void do_oop(oop* p) {
3833     oop obj = *p;
3834     assert(obj != NULL, "the caller should have filtered out NULL values");
3835 
3836     const InCSetState cset_state = _g1->in_cset_state(obj);
3837     if (!cset_state.is_in_cset_or_humongous()) {
3838       return;
3839     }
3840     if (cset_state.is_in_cset()) {
3841       assert( obj->is_forwarded(), "invariant" );
3842       *p = obj->forwardee();
3843     } else {
3844       assert(!obj->is_forwarded(), "invariant" );
3845       assert(cset_state.is_humongous(),
3846              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3847       _g1->set_humongous_is_live(obj);
3848     }
3849   }
3850 };
3851 
3852 // Copying Keep Alive closure - can be called from both
3853 // serial and parallel code as long as different worker
3854 // threads utilize different G1ParScanThreadState instances
3855 // and different queues.
3856 
3857 class G1CopyingKeepAliveClosure: public OopClosure {
3858   G1CollectedHeap*         _g1h;
3859   OopClosure*              _copy_non_heap_obj_cl;
3860   G1ParScanThreadState*    _par_scan_state;
3861 
3862 public:
3863   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3864                             OopClosure* non_heap_obj_cl,
3865                             G1ParScanThreadState* pss):
3866     _g1h(g1h),
3867     _copy_non_heap_obj_cl(non_heap_obj_cl),
3868     _par_scan_state(pss)
3869   {}
3870 
3871   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3872   virtual void do_oop(      oop* p) { do_oop_work(p); }
3873 
3874   template <class T> void do_oop_work(T* p) {
3875     oop obj = oopDesc::load_decode_heap_oop(p);
3876 
3877     if (_g1h->is_in_cset_or_humongous(obj)) {
3878       // If the referent object has been forwarded (either copied
3879       // to a new location or to itself in the event of an
3880       // evacuation failure) then we need to update the reference
3881       // field and, if both reference and referent are in the G1
3882       // heap, update the RSet for the referent.
3883       //
3884       // If the referent has not been forwarded then we have to keep
3885       // it alive by policy. Therefore we have copy the referent.
3886       //
3887       // If the reference field is in the G1 heap then we can push
3888       // on the PSS queue. When the queue is drained (after each
3889       // phase of reference processing) the object and it's followers
3890       // will be copied, the reference field set to point to the
3891       // new location, and the RSet updated. Otherwise we need to
3892       // use the the non-heap or metadata closures directly to copy
3893       // the referent object and update the pointer, while avoiding
3894       // updating the RSet.
3895 
3896       if (_g1h->is_in_g1_reserved(p)) {
3897         _par_scan_state->push_on_queue(p);
3898       } else {
3899         assert(!Metaspace::contains((const void*)p),
3900                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3901         _copy_non_heap_obj_cl->do_oop(p);
3902       }
3903     }
3904   }
3905 };
3906 
3907 // Serial drain queue closure. Called as the 'complete_gc'
3908 // closure for each discovered list in some of the
3909 // reference processing phases.
3910 
3911 class G1STWDrainQueueClosure: public VoidClosure {
3912 protected:
3913   G1CollectedHeap* _g1h;
3914   G1ParScanThreadState* _par_scan_state;
3915 
3916   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3917 
3918 public:
3919   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3920     _g1h(g1h),
3921     _par_scan_state(pss)
3922   { }
3923 
3924   void do_void() {
3925     G1ParScanThreadState* const pss = par_scan_state();
3926     pss->trim_queue();
3927   }
3928 };
3929 
3930 // Parallel Reference Processing closures
3931 
3932 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3933 // processing during G1 evacuation pauses.
3934 
3935 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3936 private:
3937   G1CollectedHeap*          _g1h;
3938   G1ParScanThreadStateSet*  _pss;
3939   RefToScanQueueSet*        _queues;
3940   WorkGang*                 _workers;
3941   uint                      _active_workers;
3942 
3943 public:
3944   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3945                            G1ParScanThreadStateSet* per_thread_states,
3946                            WorkGang* workers,
3947                            RefToScanQueueSet *task_queues,
3948                            uint n_workers) :
3949     _g1h(g1h),
3950     _pss(per_thread_states),
3951     _queues(task_queues),
3952     _workers(workers),
3953     _active_workers(n_workers)
3954   {
3955     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3956   }
3957 
3958   // Executes the given task using concurrent marking worker threads.
3959   virtual void execute(ProcessTask& task);
3960   virtual void execute(EnqueueTask& task);
3961 };
3962 
3963 // Gang task for possibly parallel reference processing
3964 
3965 class G1STWRefProcTaskProxy: public AbstractGangTask {
3966   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3967   ProcessTask&     _proc_task;
3968   G1CollectedHeap* _g1h;
3969   G1ParScanThreadStateSet* _pss;
3970   RefToScanQueueSet* _task_queues;
3971   ParallelTaskTerminator* _terminator;
3972 
3973 public:
3974   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3975                         G1CollectedHeap* g1h,
3976                         G1ParScanThreadStateSet* per_thread_states,
3977                         RefToScanQueueSet *task_queues,
3978                         ParallelTaskTerminator* terminator) :
3979     AbstractGangTask("Process reference objects in parallel"),
3980     _proc_task(proc_task),
3981     _g1h(g1h),
3982     _pss(per_thread_states),
3983     _task_queues(task_queues),
3984     _terminator(terminator)
3985   {}
3986 
3987   virtual void work(uint worker_id) {
3988     // The reference processing task executed by a single worker.
3989     ResourceMark rm;
3990     HandleMark   hm;
3991 
3992     G1STWIsAliveClosure is_alive(_g1h);
3993 
3994     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3995     pss->set_ref_processor(NULL);
3996 
3997     // Keep alive closure.
3998     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3999 
4000     // Complete GC closure
4001     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4002 
4003     // Call the reference processing task's work routine.
4004     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4005 
4006     // Note we cannot assert that the refs array is empty here as not all
4007     // of the processing tasks (specifically phase2 - pp2_work) execute
4008     // the complete_gc closure (which ordinarily would drain the queue) so
4009     // the queue may not be empty.
4010   }
4011 };
4012 
4013 // Driver routine for parallel reference processing.
4014 // Creates an instance of the ref processing gang
4015 // task and has the worker threads execute it.
4016 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4017   assert(_workers != NULL, "Need parallel worker threads.");
4018 
4019   ParallelTaskTerminator terminator(_active_workers, _queues);
4020   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4021 
4022   _workers->run_task(&proc_task_proxy);
4023 }
4024 
4025 // Gang task for parallel reference enqueueing.
4026 
4027 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4028   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4029   EnqueueTask& _enq_task;
4030 
4031 public:
4032   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4033     AbstractGangTask("Enqueue reference objects in parallel"),
4034     _enq_task(enq_task)
4035   { }
4036 
4037   virtual void work(uint worker_id) {
4038     _enq_task.work(worker_id);
4039   }
4040 };
4041 
4042 // Driver routine for parallel reference enqueueing.
4043 // Creates an instance of the ref enqueueing gang
4044 // task and has the worker threads execute it.
4045 
4046 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4047   assert(_workers != NULL, "Need parallel worker threads.");
4048 
4049   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4050 
4051   _workers->run_task(&enq_task_proxy);
4052 }
4053 
4054 // End of weak reference support closures
4055 
4056 // Abstract task used to preserve (i.e. copy) any referent objects
4057 // that are in the collection set and are pointed to by reference
4058 // objects discovered by the CM ref processor.
4059 
4060 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4061 protected:
4062   G1CollectedHeap*         _g1h;
4063   G1ParScanThreadStateSet* _pss;
4064   RefToScanQueueSet*       _queues;
4065   ParallelTaskTerminator   _terminator;
4066   uint                     _n_workers;
4067 
4068 public:
4069   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4070     AbstractGangTask("ParPreserveCMReferents"),
4071     _g1h(g1h),
4072     _pss(per_thread_states),
4073     _queues(task_queues),
4074     _terminator(workers, _queues),
4075     _n_workers(workers)
4076   {
4077     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4078   }
4079 
4080   void work(uint worker_id) {
4081     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4082 
4083     ResourceMark rm;
4084     HandleMark   hm;
4085 
4086     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4087     pss->set_ref_processor(NULL);
4088     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4089 
4090     // Is alive closure
4091     G1AlwaysAliveClosure always_alive(_g1h);
4092 
4093     // Copying keep alive closure. Applied to referent objects that need
4094     // to be copied.
4095     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4096 
4097     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4098 
4099     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4100     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4101 
4102     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4103     // So this must be true - but assert just in case someone decides to
4104     // change the worker ids.
4105     assert(worker_id < limit, "sanity");
4106     assert(!rp->discovery_is_atomic(), "check this code");
4107 
4108     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4109     for (uint idx = worker_id; idx < limit; idx += stride) {
4110       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4111 
4112       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4113       while (iter.has_next()) {
4114         // Since discovery is not atomic for the CM ref processor, we
4115         // can see some null referent objects.
4116         iter.load_ptrs(DEBUG_ONLY(true));
4117         oop ref = iter.obj();
4118 
4119         // This will filter nulls.
4120         if (iter.is_referent_alive()) {
4121           iter.make_referent_alive();
4122         }
4123         iter.move_to_next();
4124       }
4125     }
4126 
4127     // Drain the queue - which may cause stealing
4128     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4129     drain_queue.do_void();
4130     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4131     assert(pss->queue_is_empty(), "should be");
4132   }
4133 };
4134 
4135 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4136   // Any reference objects, in the collection set, that were 'discovered'
4137   // by the CM ref processor should have already been copied (either by
4138   // applying the external root copy closure to the discovered lists, or
4139   // by following an RSet entry).
4140   //
4141   // But some of the referents, that are in the collection set, that these
4142   // reference objects point to may not have been copied: the STW ref
4143   // processor would have seen that the reference object had already
4144   // been 'discovered' and would have skipped discovering the reference,
4145   // but would not have treated the reference object as a regular oop.
4146   // As a result the copy closure would not have been applied to the
4147   // referent object.
4148   //
4149   // We need to explicitly copy these referent objects - the references
4150   // will be processed at the end of remarking.
4151   //
4152   // We also need to do this copying before we process the reference
4153   // objects discovered by the STW ref processor in case one of these
4154   // referents points to another object which is also referenced by an
4155   // object discovered by the STW ref processor.
4156   double preserve_cm_referents_time = 0.0;
4157 
4158   // To avoid spawning task when there is no work to do, check that
4159   // a concurrent cycle is active and that some references have been
4160   // discovered.
4161   if (concurrent_mark()->cm_thread()->during_cycle() &&
4162       ref_processor_cm()->has_discovered_references()) {
4163     double preserve_cm_referents_start = os::elapsedTime();
4164     uint no_of_gc_workers = workers()->active_workers();
4165     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4166                                                    per_thread_states,
4167                                                    no_of_gc_workers,
4168                                                    _task_queues);
4169     workers()->run_task(&keep_cm_referents);
4170     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4171   }
4172 
4173   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4174 }
4175 
4176 // Weak Reference processing during an evacuation pause (part 1).
4177 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4178   double ref_proc_start = os::elapsedTime();
4179 
4180   ReferenceProcessor* rp = _ref_processor_stw;
4181   assert(rp->discovery_enabled(), "should have been enabled");
4182 
4183   // Closure to test whether a referent is alive.
4184   G1STWIsAliveClosure is_alive(this);
4185 
4186   // Even when parallel reference processing is enabled, the processing
4187   // of JNI refs is serial and performed serially by the current thread
4188   // rather than by a worker. The following PSS will be used for processing
4189   // JNI refs.
4190 
4191   // Use only a single queue for this PSS.
4192   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4193   pss->set_ref_processor(NULL);
4194   assert(pss->queue_is_empty(), "pre-condition");
4195 
4196   // Keep alive closure.
4197   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4198 
4199   // Serial Complete GC closure
4200   G1STWDrainQueueClosure drain_queue(this, pss);
4201 
4202   // Setup the soft refs policy...
4203   rp->setup_policy(false);
4204 
4205   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4206 
4207   ReferenceProcessorStats stats;
4208   if (!rp->processing_is_mt()) {
4209     // Serial reference processing...
4210     stats = rp->process_discovered_references(&is_alive,
4211                                               &keep_alive,
4212                                               &drain_queue,
4213                                               NULL,
4214                                               pt);
4215   } else {
4216     uint no_of_gc_workers = workers()->active_workers();
4217 
4218     // Parallel reference processing
4219     assert(no_of_gc_workers <= rp->max_num_q(),
4220            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4221            no_of_gc_workers,  rp->max_num_q());
4222 
4223     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4224     stats = rp->process_discovered_references(&is_alive,
4225                                               &keep_alive,
4226                                               &drain_queue,
4227                                               &par_task_executor,
4228                                               pt);
4229   }
4230 
4231   _gc_tracer_stw->report_gc_reference_stats(stats);
4232 
4233   // We have completed copying any necessary live referent objects.
4234   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4235 
4236   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4237   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4238 }
4239 
4240 // Weak Reference processing during an evacuation pause (part 2).
4241 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4242   double ref_enq_start = os::elapsedTime();
4243 
4244   ReferenceProcessor* rp = _ref_processor_stw;
4245   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4246 
4247   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4248 
4249   // Now enqueue any remaining on the discovered lists on to
4250   // the pending list.
4251   if (!rp->processing_is_mt()) {
4252     // Serial reference processing...
4253     rp->enqueue_discovered_references(NULL, pt);
4254   } else {
4255     // Parallel reference enqueueing
4256 
4257     uint n_workers = workers()->active_workers();
4258 
4259     assert(n_workers <= rp->max_num_q(),
4260            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4261            n_workers,  rp->max_num_q());
4262 
4263     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4264     rp->enqueue_discovered_references(&par_task_executor, pt);
4265   }
4266 
4267   rp->verify_no_references_recorded();
4268   assert(!rp->discovery_enabled(), "should have been disabled");
4269 
4270   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4271   // ensure that it is marked in the bitmap for concurrent marking to discover.
4272   if (collector_state()->during_initial_mark_pause()) {
4273     oop pll_head = Universe::reference_pending_list();
4274     if (pll_head != NULL) {
4275       _cm->mark_in_next_bitmap(pll_head);
4276     }
4277   }
4278 
4279   // FIXME
4280   // CM's reference processing also cleans up the string and symbol tables.
4281   // Should we do that here also? We could, but it is a serial operation
4282   // and could significantly increase the pause time.
4283 
4284   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4285   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4286 }
4287 
4288 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4289   double merge_pss_time_start = os::elapsedTime();
4290   per_thread_states->flush();
4291   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4292 }
4293 
4294 void G1CollectedHeap::pre_evacuate_collection_set() {
4295   _expand_heap_after_alloc_failure = true;
4296   _evacuation_failed = false;
4297 
4298   // Disable the hot card cache.
4299   _hot_card_cache->reset_hot_cache_claimed_index();
4300   _hot_card_cache->set_use_cache(false);
4301 
4302   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4303   _preserved_marks_set.assert_empty();
4304 
4305   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4306 
4307   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4308   if (collector_state()->during_initial_mark_pause()) {
4309     double start_clear_claimed_marks = os::elapsedTime();
4310 
4311     ClassLoaderDataGraph::clear_claimed_marks();
4312 
4313     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4314     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4315   }
4316 }
4317 
4318 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4319   // Should G1EvacuationFailureALot be in effect for this GC?
4320   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4321 
4322   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4323 
4324   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4325 
4326   double start_par_time_sec = os::elapsedTime();
4327   double end_par_time_sec;
4328 
4329   {
4330     const uint n_workers = workers()->active_workers();
4331     G1RootProcessor root_processor(this, n_workers);
4332     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4333 
4334     print_termination_stats_hdr();
4335 
4336     workers()->run_task(&g1_par_task);
4337     end_par_time_sec = os::elapsedTime();
4338 
4339     // Closing the inner scope will execute the destructor
4340     // for the G1RootProcessor object. We record the current
4341     // elapsed time before closing the scope so that time
4342     // taken for the destructor is NOT included in the
4343     // reported parallel time.
4344   }
4345 
4346   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4347   phase_times->record_par_time(par_time_ms);
4348 
4349   double code_root_fixup_time_ms =
4350         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4351   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4352 }
4353 
4354 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4355   // Process any discovered reference objects - we have
4356   // to do this _before_ we retire the GC alloc regions
4357   // as we may have to copy some 'reachable' referent
4358   // objects (and their reachable sub-graphs) that were
4359   // not copied during the pause.
4360   if (g1_policy()->should_process_references()) {
4361     preserve_cm_referents(per_thread_states);
4362     process_discovered_references(per_thread_states);
4363   } else {
4364     ref_processor_stw()->verify_no_references_recorded();
4365   }
4366 
4367   G1STWIsAliveClosure is_alive(this);
4368   G1KeepAliveClosure keep_alive(this);
4369 
4370   {
4371     double start = os::elapsedTime();
4372 
4373     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4374 
4375     double time_ms = (os::elapsedTime() - start) * 1000.0;
4376     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4377   }
4378 
4379   if (G1StringDedup::is_enabled()) {
4380     double fixup_start = os::elapsedTime();
4381 
4382     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4383 
4384     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4385     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4386   }
4387 
4388   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4389 
4390   if (evacuation_failed()) {
4391     restore_after_evac_failure();
4392 
4393     // Reset the G1EvacuationFailureALot counters and flags
4394     // Note: the values are reset only when an actual
4395     // evacuation failure occurs.
4396     NOT_PRODUCT(reset_evacuation_should_fail();)
4397   }
4398 
4399   _preserved_marks_set.assert_empty();
4400 
4401   // Enqueue any remaining references remaining on the STW
4402   // reference processor's discovered lists. We need to do
4403   // this after the card table is cleaned (and verified) as
4404   // the act of enqueueing entries on to the pending list
4405   // will log these updates (and dirty their associated
4406   // cards). We need these updates logged to update any
4407   // RSets.
4408   if (g1_policy()->should_process_references()) {
4409     enqueue_discovered_references(per_thread_states);
4410   } else {
4411     g1_policy()->phase_times()->record_ref_enq_time(0);
4412   }
4413 
4414   _allocator->release_gc_alloc_regions(evacuation_info);
4415 
4416   merge_per_thread_state_info(per_thread_states);
4417 
4418   // Reset and re-enable the hot card cache.
4419   // Note the counts for the cards in the regions in the
4420   // collection set are reset when the collection set is freed.
4421   _hot_card_cache->reset_hot_cache();
4422   _hot_card_cache->set_use_cache(true);
4423 
4424   purge_code_root_memory();
4425 
4426   redirty_logged_cards();
4427 #if COMPILER2_OR_JVMCI
4428   double start = os::elapsedTime();
4429   DerivedPointerTable::update_pointers();
4430   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4431 #endif
4432   g1_policy()->print_age_table();
4433 }
4434 
4435 void G1CollectedHeap::record_obj_copy_mem_stats() {
4436   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4437 
4438   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4439                                                create_g1_evac_summary(&_old_evac_stats));
4440 }
4441 
4442 void G1CollectedHeap::free_region(HeapRegion* hr,
4443                                   FreeRegionList* free_list,
4444                                   bool skip_remset,
4445                                   bool skip_hot_card_cache,
4446                                   bool locked) {
4447   assert(!hr->is_free(), "the region should not be free");
4448   assert(!hr->is_empty(), "the region should not be empty");
4449   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4450   assert(free_list != NULL, "pre-condition");
4451 
4452   if (G1VerifyBitmaps) {
4453     MemRegion mr(hr->bottom(), hr->end());
4454     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4455   }
4456 
4457   // Clear the card counts for this region.
4458   // Note: we only need to do this if the region is not young
4459   // (since we don't refine cards in young regions).
4460   if (!skip_hot_card_cache && !hr->is_young()) {
4461     _hot_card_cache->reset_card_counts(hr);
4462   }
4463   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4464   free_list->add_ordered(hr);
4465 }
4466 
4467 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4468                                             FreeRegionList* free_list,
4469                                             bool skip_remset) {
4470   assert(hr->is_humongous(), "this is only for humongous regions");
4471   assert(free_list != NULL, "pre-condition");
4472   hr->clear_humongous();
4473   free_region(hr, free_list, skip_remset);
4474 }
4475 
4476 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4477                                            const uint humongous_regions_removed) {
4478   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4479     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4480     _old_set.bulk_remove(old_regions_removed);
4481     _humongous_set.bulk_remove(humongous_regions_removed);
4482   }
4483 
4484 }
4485 
4486 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4487   assert(list != NULL, "list can't be null");
4488   if (!list->is_empty()) {
4489     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4490     _hrm.insert_list_into_free_list(list);
4491   }
4492 }
4493 
4494 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4495   decrease_used(bytes);
4496 }
4497 
4498 class G1ParScrubRemSetTask: public AbstractGangTask {
4499 protected:
4500   G1RemSet* _g1rs;
4501   HeapRegionClaimer _hrclaimer;
4502 
4503 public:
4504   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4505     AbstractGangTask("G1 ScrubRS"),
4506     _g1rs(g1_rs),
4507     _hrclaimer(num_workers) {
4508   }
4509 
4510   void work(uint worker_id) {
4511     _g1rs->scrub(worker_id, &_hrclaimer);
4512   }
4513 };
4514 
4515 void G1CollectedHeap::scrub_rem_set() {
4516   uint num_workers = workers()->active_workers();
4517   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4518   workers()->run_task(&g1_par_scrub_rs_task);
4519 }
4520 
4521 class G1FreeCollectionSetTask : public AbstractGangTask {
4522 private:
4523 
4524   // Closure applied to all regions in the collection set to do work that needs to
4525   // be done serially in a single thread.
4526   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4527   private:
4528     EvacuationInfo* _evacuation_info;
4529     const size_t* _surviving_young_words;
4530 
4531     // Bytes used in successfully evacuated regions before the evacuation.
4532     size_t _before_used_bytes;
4533     // Bytes used in unsucessfully evacuated regions before the evacuation
4534     size_t _after_used_bytes;
4535 
4536     size_t _bytes_allocated_in_old_since_last_gc;
4537 
4538     size_t _failure_used_words;
4539     size_t _failure_waste_words;
4540 
4541     FreeRegionList _local_free_list;
4542   public:
4543     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4544       HeapRegionClosure(),
4545       _evacuation_info(evacuation_info),
4546       _surviving_young_words(surviving_young_words),
4547       _before_used_bytes(0),
4548       _after_used_bytes(0),
4549       _bytes_allocated_in_old_since_last_gc(0),
4550       _failure_used_words(0),
4551       _failure_waste_words(0),
4552       _local_free_list("Local Region List for CSet Freeing") {
4553     }
4554 
4555     virtual bool doHeapRegion(HeapRegion* r) {
4556       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4557 
4558       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4559       g1h->clear_in_cset(r);
4560 
4561       if (r->is_young()) {
4562         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4563                "Young index %d is wrong for region %u of type %s with %u young regions",
4564                r->young_index_in_cset(),
4565                r->hrm_index(),
4566                r->get_type_str(),
4567                g1h->collection_set()->young_region_length());
4568         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4569         r->record_surv_words_in_group(words_survived);
4570       }
4571 
4572       if (!r->evacuation_failed()) {
4573         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4574         _before_used_bytes += r->used();
4575         g1h->free_region(r,
4576                          &_local_free_list,
4577                          true, /* skip_remset */
4578                          true, /* skip_hot_card_cache */
4579                          true  /* locked */);
4580       } else {
4581         r->uninstall_surv_rate_group();
4582         r->set_young_index_in_cset(-1);
4583         r->set_evacuation_failed(false);
4584         // When moving a young gen region to old gen, we "allocate" that whole region
4585         // there. This is in addition to any already evacuated objects. Notify the
4586         // policy about that.
4587         // Old gen regions do not cause an additional allocation: both the objects
4588         // still in the region and the ones already moved are accounted for elsewhere.
4589         if (r->is_young()) {
4590           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4591         }
4592         // The region is now considered to be old.
4593         r->set_old();
4594         // Do some allocation statistics accounting. Regions that failed evacuation
4595         // are always made old, so there is no need to update anything in the young
4596         // gen statistics, but we need to update old gen statistics.
4597         size_t used_words = r->marked_bytes() / HeapWordSize;
4598 
4599         _failure_used_words += used_words;
4600         _failure_waste_words += HeapRegion::GrainWords - used_words;
4601 
4602         g1h->old_set_add(r);
4603         _after_used_bytes += r->used();
4604       }
4605       return false;
4606     }
4607 
4608     void complete_work() {
4609       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4610 
4611       _evacuation_info->set_regions_freed(_local_free_list.length());
4612       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4613 
4614       g1h->prepend_to_freelist(&_local_free_list);
4615       g1h->decrement_summary_bytes(_before_used_bytes);
4616 
4617       G1Policy* policy = g1h->g1_policy();
4618       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4619 
4620       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4621     }
4622   };
4623 
4624   G1CollectionSet* _collection_set;
4625   G1SerialFreeCollectionSetClosure _cl;
4626   const size_t* _surviving_young_words;
4627 
4628   size_t _rs_lengths;
4629 
4630   volatile jint _serial_work_claim;
4631 
4632   struct WorkItem {
4633     uint region_idx;
4634     bool is_young;
4635     bool evacuation_failed;
4636 
4637     WorkItem(HeapRegion* r) {
4638       region_idx = r->hrm_index();
4639       is_young = r->is_young();
4640       evacuation_failed = r->evacuation_failed();
4641     }
4642   };
4643 
4644   volatile size_t _parallel_work_claim;
4645   size_t _num_work_items;
4646   WorkItem* _work_items;
4647 
4648   void do_serial_work() {
4649     // Need to grab the lock to be allowed to modify the old region list.
4650     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4651     _collection_set->iterate(&_cl);
4652   }
4653 
4654   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4655     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4656 
4657     HeapRegion* r = g1h->region_at(region_idx);
4658     assert(!g1h->is_on_master_free_list(r), "sanity");
4659 
4660     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4661 
4662     if (!is_young) {
4663       g1h->_hot_card_cache->reset_card_counts(r);
4664     }
4665 
4666     if (!evacuation_failed) {
4667       r->rem_set()->clear_locked();
4668     }
4669   }
4670 
4671   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4672   private:
4673     size_t _cur_idx;
4674     WorkItem* _work_items;
4675   public:
4676     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4677 
4678     virtual bool doHeapRegion(HeapRegion* r) {
4679       _work_items[_cur_idx++] = WorkItem(r);
4680       return false;
4681     }
4682   };
4683 
4684   void prepare_work() {
4685     G1PrepareFreeCollectionSetClosure cl(_work_items);
4686     _collection_set->iterate(&cl);
4687   }
4688 
4689   void complete_work() {
4690     _cl.complete_work();
4691 
4692     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4693     policy->record_max_rs_lengths(_rs_lengths);
4694     policy->cset_regions_freed();
4695   }
4696 public:
4697   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4698     AbstractGangTask("G1 Free Collection Set"),
4699     _cl(evacuation_info, surviving_young_words),
4700     _collection_set(collection_set),
4701     _surviving_young_words(surviving_young_words),
4702     _serial_work_claim(0),
4703     _rs_lengths(0),
4704     _parallel_work_claim(0),
4705     _num_work_items(collection_set->region_length()),
4706     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4707     prepare_work();
4708   }
4709 
4710   ~G1FreeCollectionSetTask() {
4711     complete_work();
4712     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4713   }
4714 
4715   // Chunk size for work distribution. The chosen value has been determined experimentally
4716   // to be a good tradeoff between overhead and achievable parallelism.
4717   static uint chunk_size() { return 32; }
4718 
4719   virtual void work(uint worker_id) {
4720     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4721 
4722     // Claim serial work.
4723     if (_serial_work_claim == 0) {
4724       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4725       if (value == 0) {
4726         double serial_time = os::elapsedTime();
4727         do_serial_work();
4728         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4729       }
4730     }
4731 
4732     // Start parallel work.
4733     double young_time = 0.0;
4734     bool has_young_time = false;
4735     double non_young_time = 0.0;
4736     bool has_non_young_time = false;
4737 
4738     while (true) {
4739       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4740       size_t cur = end - chunk_size();
4741 
4742       if (cur >= _num_work_items) {
4743         break;
4744       }
4745 
4746       double start_time = os::elapsedTime();
4747 
4748       end = MIN2(end, _num_work_items);
4749 
4750       for (; cur < end; cur++) {
4751         bool is_young = _work_items[cur].is_young;
4752 
4753         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4754 
4755         double end_time = os::elapsedTime();
4756         double time_taken = end_time - start_time;
4757         if (is_young) {
4758           young_time += time_taken;
4759           has_young_time = true;
4760         } else {
4761           non_young_time += time_taken;
4762           has_non_young_time = true;
4763         }
4764         start_time = end_time;
4765       }
4766     }
4767 
4768     if (has_young_time) {
4769       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4770     }
4771     if (has_non_young_time) {
4772       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4773     }
4774   }
4775 };
4776 
4777 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4778   _eden.clear();
4779 
4780   double free_cset_start_time = os::elapsedTime();
4781 
4782   {
4783     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4784     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4785 
4786     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4787 
4788     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4789                         cl.name(),
4790                         num_workers,
4791                         _collection_set.region_length());
4792     workers()->run_task(&cl, num_workers);
4793   }
4794   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4795 
4796   collection_set->clear();
4797 }
4798 
4799 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4800  private:
4801   FreeRegionList* _free_region_list;
4802   HeapRegionSet* _proxy_set;
4803   uint _humongous_objects_reclaimed;
4804   uint _humongous_regions_reclaimed;
4805   size_t _freed_bytes;
4806  public:
4807 
4808   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4809     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4810   }
4811 
4812   virtual bool doHeapRegion(HeapRegion* r) {
4813     if (!r->is_starts_humongous()) {
4814       return false;
4815     }
4816 
4817     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4818 
4819     oop obj = (oop)r->bottom();
4820     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4821 
4822     // The following checks whether the humongous object is live are sufficient.
4823     // The main additional check (in addition to having a reference from the roots
4824     // or the young gen) is whether the humongous object has a remembered set entry.
4825     //
4826     // A humongous object cannot be live if there is no remembered set for it
4827     // because:
4828     // - there can be no references from within humongous starts regions referencing
4829     // the object because we never allocate other objects into them.
4830     // (I.e. there are no intra-region references that may be missed by the
4831     // remembered set)
4832     // - as soon there is a remembered set entry to the humongous starts region
4833     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4834     // until the end of a concurrent mark.
4835     //
4836     // It is not required to check whether the object has been found dead by marking
4837     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4838     // all objects allocated during that time are considered live.
4839     // SATB marking is even more conservative than the remembered set.
4840     // So if at this point in the collection there is no remembered set entry,
4841     // nobody has a reference to it.
4842     // At the start of collection we flush all refinement logs, and remembered sets
4843     // are completely up-to-date wrt to references to the humongous object.
4844     //
4845     // Other implementation considerations:
4846     // - never consider object arrays at this time because they would pose
4847     // considerable effort for cleaning up the the remembered sets. This is
4848     // required because stale remembered sets might reference locations that
4849     // are currently allocated into.
4850     uint region_idx = r->hrm_index();
4851     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4852         !r->rem_set()->is_empty()) {
4853       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4854                                region_idx,
4855                                (size_t)obj->size() * HeapWordSize,
4856                                p2i(r->bottom()),
4857                                r->rem_set()->occupied(),
4858                                r->rem_set()->strong_code_roots_list_length(),
4859                                next_bitmap->is_marked(r->bottom()),
4860                                g1h->is_humongous_reclaim_candidate(region_idx),
4861                                obj->is_typeArray()
4862                               );
4863       return false;
4864     }
4865 
4866     guarantee(obj->is_typeArray(),
4867               "Only eagerly reclaiming type arrays is supported, but the object "
4868               PTR_FORMAT " is not.", p2i(r->bottom()));
4869 
4870     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4871                              region_idx,
4872                              (size_t)obj->size() * HeapWordSize,
4873                              p2i(r->bottom()),
4874                              r->rem_set()->occupied(),
4875                              r->rem_set()->strong_code_roots_list_length(),
4876                              next_bitmap->is_marked(r->bottom()),
4877                              g1h->is_humongous_reclaim_candidate(region_idx),
4878                              obj->is_typeArray()
4879                             );
4880 
4881     // Need to clear mark bit of the humongous object if already set.
4882     if (next_bitmap->is_marked(r->bottom())) {
4883       next_bitmap->clear(r->bottom());
4884     }
4885     _humongous_objects_reclaimed++;
4886     do {
4887       HeapRegion* next = g1h->next_region_in_humongous(r);
4888       _freed_bytes += r->used();
4889       r->set_containing_set(NULL);
4890       _humongous_regions_reclaimed++;
4891       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4892       r = next;
4893     } while (r != NULL);
4894 
4895     return false;
4896   }
4897 
4898   uint humongous_objects_reclaimed() {
4899     return _humongous_objects_reclaimed;
4900   }
4901 
4902   uint humongous_regions_reclaimed() {
4903     return _humongous_regions_reclaimed;
4904   }
4905 
4906   size_t bytes_freed() const {
4907     return _freed_bytes;
4908   }
4909 };
4910 
4911 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4912   assert_at_safepoint(true);
4913 
4914   if (!G1EagerReclaimHumongousObjects ||
4915       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4916     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4917     return;
4918   }
4919 
4920   double start_time = os::elapsedTime();
4921 
4922   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4923 
4924   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4925   heap_region_iterate(&cl);
4926 
4927   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4928 
4929   G1HRPrinter* hrp = hr_printer();
4930   if (hrp->is_active()) {
4931     FreeRegionListIterator iter(&local_cleanup_list);
4932     while (iter.more_available()) {
4933       HeapRegion* hr = iter.get_next();
4934       hrp->cleanup(hr);
4935     }
4936   }
4937 
4938   prepend_to_freelist(&local_cleanup_list);
4939   decrement_summary_bytes(cl.bytes_freed());
4940 
4941   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4942                                                                     cl.humongous_objects_reclaimed());
4943 }
4944 
4945 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4946 public:
4947   virtual bool doHeapRegion(HeapRegion* r) {
4948     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4949     G1CollectedHeap::heap()->clear_in_cset(r);
4950     r->set_young_index_in_cset(-1);
4951     return false;
4952   }
4953 };
4954 
4955 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4956   G1AbandonCollectionSetClosure cl;
4957   collection_set->iterate(&cl);
4958 
4959   collection_set->clear();
4960   collection_set->stop_incremental_building();
4961 }
4962 
4963 void G1CollectedHeap::set_free_regions_coming() {
4964   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4965 
4966   assert(!free_regions_coming(), "pre-condition");
4967   _free_regions_coming = true;
4968 }
4969 
4970 void G1CollectedHeap::reset_free_regions_coming() {
4971   assert(free_regions_coming(), "pre-condition");
4972 
4973   {
4974     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4975     _free_regions_coming = false;
4976     SecondaryFreeList_lock->notify_all();
4977   }
4978 
4979   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4980 }
4981 
4982 void G1CollectedHeap::wait_while_free_regions_coming() {
4983   // Most of the time we won't have to wait, so let's do a quick test
4984   // first before we take the lock.
4985   if (!free_regions_coming()) {
4986     return;
4987   }
4988 
4989   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4990 
4991   {
4992     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4993     while (free_regions_coming()) {
4994       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4995     }
4996   }
4997 
4998   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4999 }
5000 
5001 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5002   return _allocator->is_retained_old_region(hr);
5003 }
5004 
5005 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5006   _eden.add(hr);
5007   _g1_policy->set_region_eden(hr);
5008 }
5009 
5010 #ifdef ASSERT
5011 
5012 class NoYoungRegionsClosure: public HeapRegionClosure {
5013 private:
5014   bool _success;
5015 public:
5016   NoYoungRegionsClosure() : _success(true) { }
5017   bool doHeapRegion(HeapRegion* r) {
5018     if (r->is_young()) {
5019       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5020                             p2i(r->bottom()), p2i(r->end()));
5021       _success = false;
5022     }
5023     return false;
5024   }
5025   bool success() { return _success; }
5026 };
5027 
5028 bool G1CollectedHeap::check_young_list_empty() {
5029   bool ret = (young_regions_count() == 0);
5030 
5031   NoYoungRegionsClosure closure;
5032   heap_region_iterate(&closure);
5033   ret = ret && closure.success();
5034 
5035   return ret;
5036 }
5037 
5038 #endif // ASSERT
5039 
5040 class TearDownRegionSetsClosure : public HeapRegionClosure {
5041 private:
5042   HeapRegionSet *_old_set;
5043 
5044 public:
5045   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5046 
5047   bool doHeapRegion(HeapRegion* r) {
5048     if (r->is_old()) {
5049       _old_set->remove(r);
5050     } else if(r->is_young()) {
5051       r->uninstall_surv_rate_group();
5052     } else {
5053       // We ignore free regions, we'll empty the free list afterwards.
5054       // We ignore humongous regions, we're not tearing down the
5055       // humongous regions set.
5056       assert(r->is_free() || r->is_humongous(),
5057              "it cannot be another type");
5058     }
5059     return false;
5060   }
5061 
5062   ~TearDownRegionSetsClosure() {
5063     assert(_old_set->is_empty(), "post-condition");
5064   }
5065 };
5066 
5067 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5068   assert_at_safepoint(true /* should_be_vm_thread */);
5069 
5070   if (!free_list_only) {
5071     TearDownRegionSetsClosure cl(&_old_set);
5072     heap_region_iterate(&cl);
5073 
5074     // Note that emptying the _young_list is postponed and instead done as
5075     // the first step when rebuilding the regions sets again. The reason for
5076     // this is that during a full GC string deduplication needs to know if
5077     // a collected region was young or old when the full GC was initiated.
5078   }
5079   _hrm.remove_all_free_regions();
5080 }
5081 
5082 void G1CollectedHeap::increase_used(size_t bytes) {
5083   _summary_bytes_used += bytes;
5084 }
5085 
5086 void G1CollectedHeap::decrease_used(size_t bytes) {
5087   assert(_summary_bytes_used >= bytes,
5088          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5089          _summary_bytes_used, bytes);
5090   _summary_bytes_used -= bytes;
5091 }
5092 
5093 void G1CollectedHeap::set_used(size_t bytes) {
5094   _summary_bytes_used = bytes;
5095 }
5096 
5097 class RebuildRegionSetsClosure : public HeapRegionClosure {
5098 private:
5099   bool            _free_list_only;
5100   HeapRegionSet*   _old_set;
5101   HeapRegionManager*   _hrm;
5102   size_t          _total_used;
5103 
5104 public:
5105   RebuildRegionSetsClosure(bool free_list_only,
5106                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5107     _free_list_only(free_list_only),
5108     _old_set(old_set), _hrm(hrm), _total_used(0) {
5109     assert(_hrm->num_free_regions() == 0, "pre-condition");
5110     if (!free_list_only) {
5111       assert(_old_set->is_empty(), "pre-condition");
5112     }
5113   }
5114 
5115   bool doHeapRegion(HeapRegion* r) {
5116     if (r->is_empty()) {
5117       // Add free regions to the free list
5118       r->set_free();
5119       r->set_allocation_context(AllocationContext::system());
5120       _hrm->insert_into_free_list(r);
5121     } else if (!_free_list_only) {
5122 
5123       if (r->is_humongous()) {
5124         // We ignore humongous regions. We left the humongous set unchanged.
5125       } else {
5126         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5127         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5128         r->move_to_old();
5129         _old_set->add(r);
5130       }
5131       _total_used += r->used();
5132     }
5133 
5134     return false;
5135   }
5136 
5137   size_t total_used() {
5138     return _total_used;
5139   }
5140 };
5141 
5142 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5143   assert_at_safepoint(true /* should_be_vm_thread */);
5144 
5145   if (!free_list_only) {
5146     _eden.clear();
5147     _survivor.clear();
5148   }
5149 
5150   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5151   heap_region_iterate(&cl);
5152 
5153   if (!free_list_only) {
5154     set_used(cl.total_used());
5155     if (_archive_allocator != NULL) {
5156       _archive_allocator->clear_used();
5157     }
5158   }
5159   assert(used_unlocked() == recalculate_used(),
5160          "inconsistent used_unlocked(), "
5161          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5162          used_unlocked(), recalculate_used());
5163 }
5164 
5165 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5166   HeapRegion* hr = heap_region_containing(p);
5167   return hr->is_in(p);
5168 }
5169 
5170 // Methods for the mutator alloc region
5171 
5172 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5173                                                       bool force) {
5174   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5175   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5176   if (force || should_allocate) {
5177     HeapRegion* new_alloc_region = new_region(word_size,
5178                                               false /* is_old */,
5179                                               false /* do_expand */);
5180     if (new_alloc_region != NULL) {
5181       set_region_short_lived_locked(new_alloc_region);
5182       _hr_printer.alloc(new_alloc_region, !should_allocate);
5183       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5184       return new_alloc_region;
5185     }
5186   }
5187   return NULL;
5188 }
5189 
5190 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5191                                                   size_t allocated_bytes) {
5192   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5193   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5194 
5195   collection_set()->add_eden_region(alloc_region);
5196   increase_used(allocated_bytes);
5197   _hr_printer.retire(alloc_region);
5198   // We update the eden sizes here, when the region is retired,
5199   // instead of when it's allocated, since this is the point that its
5200   // used space has been recored in _summary_bytes_used.
5201   g1mm()->update_eden_size();
5202 }
5203 
5204 // Methods for the GC alloc regions
5205 
5206 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5207   if (dest.is_old()) {
5208     return true;
5209   } else {
5210     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5211   }
5212 }
5213 
5214 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5215   assert(FreeList_lock->owned_by_self(), "pre-condition");
5216 
5217   if (!has_more_regions(dest)) {
5218     return NULL;
5219   }
5220 
5221   const bool is_survivor = dest.is_young();
5222 
5223   HeapRegion* new_alloc_region = new_region(word_size,
5224                                             !is_survivor,
5225                                             true /* do_expand */);
5226   if (new_alloc_region != NULL) {
5227     // We really only need to do this for old regions given that we
5228     // should never scan survivors. But it doesn't hurt to do it
5229     // for survivors too.
5230     new_alloc_region->record_timestamp();
5231     if (is_survivor) {
5232       new_alloc_region->set_survivor();
5233       _survivor.add(new_alloc_region);
5234       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5235     } else {
5236       new_alloc_region->set_old();
5237       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5238     }
5239     _hr_printer.alloc(new_alloc_region);
5240     bool during_im = collector_state()->during_initial_mark_pause();
5241     new_alloc_region->note_start_of_copying(during_im);
5242     return new_alloc_region;
5243   }
5244   return NULL;
5245 }
5246 
5247 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5248                                              size_t allocated_bytes,
5249                                              InCSetState dest) {
5250   bool during_im = collector_state()->during_initial_mark_pause();
5251   alloc_region->note_end_of_copying(during_im);
5252   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5253   if (dest.is_old()) {
5254     _old_set.add(alloc_region);
5255   }
5256   _hr_printer.retire(alloc_region);
5257 }
5258 
5259 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5260   bool expanded = false;
5261   uint index = _hrm.find_highest_free(&expanded);
5262 
5263   if (index != G1_NO_HRM_INDEX) {
5264     if (expanded) {
5265       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5266                                 HeapRegion::GrainWords * HeapWordSize);
5267     }
5268     _hrm.allocate_free_regions_starting_at(index, 1);
5269     return region_at(index);
5270   }
5271   return NULL;
5272 }
5273 
5274 // Optimized nmethod scanning
5275 
5276 class RegisterNMethodOopClosure: public OopClosure {
5277   G1CollectedHeap* _g1h;
5278   nmethod* _nm;
5279 
5280   template <class T> void do_oop_work(T* p) {
5281     T heap_oop = oopDesc::load_heap_oop(p);
5282     if (!oopDesc::is_null(heap_oop)) {
5283       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5284       HeapRegion* hr = _g1h->heap_region_containing(obj);
5285       assert(!hr->is_continues_humongous(),
5286              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5287              " starting at " HR_FORMAT,
5288              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5289 
5290       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5291       hr->add_strong_code_root_locked(_nm);
5292     }
5293   }
5294 
5295 public:
5296   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5297     _g1h(g1h), _nm(nm) {}
5298 
5299   void do_oop(oop* p)       { do_oop_work(p); }
5300   void do_oop(narrowOop* p) { do_oop_work(p); }
5301 };
5302 
5303 class UnregisterNMethodOopClosure: public OopClosure {
5304   G1CollectedHeap* _g1h;
5305   nmethod* _nm;
5306 
5307   template <class T> void do_oop_work(T* p) {
5308     T heap_oop = oopDesc::load_heap_oop(p);
5309     if (!oopDesc::is_null(heap_oop)) {
5310       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5311       HeapRegion* hr = _g1h->heap_region_containing(obj);
5312       assert(!hr->is_continues_humongous(),
5313              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5314              " starting at " HR_FORMAT,
5315              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5316 
5317       hr->remove_strong_code_root(_nm);
5318     }
5319   }
5320 
5321 public:
5322   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5323     _g1h(g1h), _nm(nm) {}
5324 
5325   void do_oop(oop* p)       { do_oop_work(p); }
5326   void do_oop(narrowOop* p) { do_oop_work(p); }
5327 };
5328 
5329 // Returns true if the reference points to an object that
5330 // can move in an incremental collection.
5331 bool G1CollectedHeap::is_scavengable(oop obj) {
5332   HeapRegion* hr = heap_region_containing(obj);
5333   return !hr->is_pinned();
5334 }
5335 
5336 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5337   guarantee(nm != NULL, "sanity");
5338   RegisterNMethodOopClosure reg_cl(this, nm);
5339   nm->oops_do(&reg_cl);
5340 }
5341 
5342 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5343   guarantee(nm != NULL, "sanity");
5344   UnregisterNMethodOopClosure reg_cl(this, nm);
5345   nm->oops_do(&reg_cl, true);
5346 }
5347 
5348 void G1CollectedHeap::purge_code_root_memory() {
5349   double purge_start = os::elapsedTime();
5350   G1CodeRootSet::purge();
5351   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5352   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5353 }
5354 
5355 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5356   G1CollectedHeap* _g1h;
5357 
5358 public:
5359   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5360     _g1h(g1h) {}
5361 
5362   void do_code_blob(CodeBlob* cb) {
5363     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5364     if (nm == NULL) {
5365       return;
5366     }
5367 
5368     if (ScavengeRootsInCode) {
5369       _g1h->register_nmethod(nm);
5370     }
5371   }
5372 };
5373 
5374 void G1CollectedHeap::rebuild_strong_code_roots() {
5375   RebuildStrongCodeRootClosure blob_cl(this);
5376   CodeCache::blobs_do(&blob_cl);
5377 }