1 /*
   2  * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1ALLOCATOR_HPP
  26 #define SHARE_VM_GC_G1_G1ALLOCATOR_HPP
  27 
  28 #include "gc/g1/g1AllocRegion.hpp"
  29 #include "gc/g1/g1InCSetState.hpp"
  30 #include "gc/shared/collectedHeap.hpp"
  31 #include "gc/shared/plab.hpp"
  32 
  33 class EvacuationInfo;
  34 
  35 // Interface to keep track of which regions G1 is currently allocating into. Provides
  36 // some accessors (e.g. allocating into them, or getting their occupancy).
  37 // Also keeps track of retained regions across GCs.
  38 class G1Allocator : public CHeapObj<mtGC> {
  39   friend class VMStructs;
  40 protected:
  41   G1CollectedHeap* _g1h;
  42 
  43   virtual MutatorAllocRegion* mutator_alloc_region() = 0;
  44 
  45   virtual bool survivor_is_full() const = 0;
  46   virtual bool old_is_full() const = 0;
  47 
  48   virtual void set_survivor_full() = 0;
  49   virtual void set_old_full() = 0;
  50 
  51   // Accessors to the allocation regions.
  52   virtual SurvivorGCAllocRegion* survivor_gc_alloc_region() = 0;
  53   virtual OldGCAllocRegion* old_gc_alloc_region() = 0;
  54 
  55   // Allocation attempt during GC for a survivor object / PLAB.
  56   inline HeapWord* survivor_attempt_allocation(size_t min_word_size,
  57                                                size_t desired_word_size,
  58                                                size_t* actual_word_size);
  59   // Allocation attempt during GC for an old object / PLAB.
  60   inline HeapWord* old_attempt_allocation(size_t min_word_size,
  61                                           size_t desired_word_size,
  62                                           size_t* actual_word_size);
  63 public:
  64   G1Allocator(G1CollectedHeap* heap) : _g1h(heap) { }
  65   virtual ~G1Allocator() { }
  66 
  67 #ifdef ASSERT
  68   // Do we currently have an active mutator region to allocate into?
  69   bool has_mutator_alloc_region() { return mutator_alloc_region()->get() != NULL; }
  70 #endif
  71   virtual void init_mutator_alloc_region() = 0;
  72   virtual void release_mutator_alloc_region() = 0;
  73 
  74   virtual void init_gc_alloc_regions(EvacuationInfo& evacuation_info) = 0;
  75   virtual void release_gc_alloc_regions(EvacuationInfo& evacuation_info) = 0;
  76   virtual void abandon_gc_alloc_regions() = 0;
  77 
  78   // Management of retained regions.
  79 
  80   virtual bool is_retained_old_region(HeapRegion* hr) = 0;
  81   void reuse_retained_old_region(EvacuationInfo& evacuation_info,
  82                                  OldGCAllocRegion* old,
  83                                  HeapRegion** retained);
  84 
  85   // Allocate blocks of memory during mutator time.
  86 
  87   inline HeapWord* attempt_allocation(size_t word_size);
  88   inline HeapWord* attempt_allocation_locked(size_t word_size);
  89   inline HeapWord* attempt_allocation_force(size_t word_size);
  90 
  91   size_t unsafe_max_tlab_alloc();
  92 
  93   // Allocate blocks of memory during garbage collection. Will ensure an
  94   // allocation region, either by picking one or expanding the
  95   // heap, and then allocate a block of the given size. The block
  96   // may not be a humongous - it must fit into a single heap region.
  97   HeapWord* par_allocate_during_gc(InCSetState dest,
  98                                    size_t word_size);
  99 
 100   HeapWord* par_allocate_during_gc(InCSetState dest,
 101                                    size_t min_word_size,
 102                                    size_t desired_word_size,
 103                                    size_t* actual_word_size);
 104 
 105   virtual size_t used_in_alloc_regions() = 0;
 106 };
 107 
 108 // The default allocation region manager for G1. Provides a single mutator, survivor
 109 // and old generation allocation region.
 110 // Can retain the (single) old generation allocation region across GCs.
 111 class G1DefaultAllocator : public G1Allocator {
 112 private:
 113   bool _survivor_is_full;
 114   bool _old_is_full;
 115 protected:
 116   // Alloc region used to satisfy mutator allocation requests.
 117   MutatorAllocRegion _mutator_alloc_region;
 118 
 119   // Alloc region used to satisfy allocation requests by the GC for
 120   // survivor objects.
 121   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 122 
 123   // Alloc region used to satisfy allocation requests by the GC for
 124   // old objects.
 125   OldGCAllocRegion _old_gc_alloc_region;
 126 
 127   HeapRegion* _retained_old_gc_alloc_region;
 128 public:
 129   G1DefaultAllocator(G1CollectedHeap* heap);
 130 
 131   virtual bool survivor_is_full() const;
 132   virtual bool old_is_full() const ;
 133 
 134   virtual void set_survivor_full();
 135   virtual void set_old_full();
 136 
 137   virtual void init_mutator_alloc_region();
 138   virtual void release_mutator_alloc_region();
 139 
 140   virtual void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
 141   virtual void release_gc_alloc_regions(EvacuationInfo& evacuation_info);
 142   virtual void abandon_gc_alloc_regions();
 143 
 144   virtual bool is_retained_old_region(HeapRegion* hr) {
 145     return _retained_old_gc_alloc_region == hr;
 146   }
 147 
 148   virtual MutatorAllocRegion* mutator_alloc_region() {
 149     return &_mutator_alloc_region;
 150   }
 151 
 152   virtual SurvivorGCAllocRegion* survivor_gc_alloc_region() {
 153     return &_survivor_gc_alloc_region;
 154   }
 155 
 156   virtual OldGCAllocRegion* old_gc_alloc_region() {
 157     return &_old_gc_alloc_region;
 158   }
 159 
 160   virtual size_t used_in_alloc_regions() {
 161     assert(Heap_lock->owner() != NULL,
 162            "Should be owned on this thread's behalf.");
 163     size_t result = 0;
 164 
 165     // Read only once in case it is set to NULL concurrently
 166     HeapRegion* hr = mutator_alloc_region()->get();
 167     if (hr != NULL) {
 168       result += hr->used();
 169     }
 170     return result;
 171   }
 172 };
 173 
 174 // Manages the PLABs used during garbage collection. Interface for allocation from PLABs.
 175 // Needs to handle multiple contexts, extra alignment in any "survivor" area and some
 176 // statistics.
 177 class G1PLABAllocator : public CHeapObj<mtGC> {
 178   friend class G1ParScanThreadState;
 179 protected:
 180   G1CollectedHeap* _g1h;
 181   G1Allocator* _allocator;
 182 
 183   // The survivor alignment in effect in bytes.
 184   // == 0 : don't align survivors
 185   // != 0 : align survivors to that alignment
 186   // These values were chosen to favor the non-alignment case since some
 187   // architectures have a special compare against zero instructions.
 188   const uint _survivor_alignment_bytes;
 189 
 190   // Number of words allocated directly (not counting PLAB allocation).
 191   size_t _direct_allocated[InCSetState::Num];
 192 
 193   virtual void flush_and_retire_stats() = 0;
 194   virtual PLAB* alloc_buffer(InCSetState dest) = 0;
 195 
 196   // Calculate the survivor space object alignment in bytes. Returns that or 0 if
 197   // there are no restrictions on survivor alignment.
 198   static uint calc_survivor_alignment_bytes() {
 199     assert(SurvivorAlignmentInBytes >= ObjectAlignmentInBytes, "sanity");
 200     if (SurvivorAlignmentInBytes == ObjectAlignmentInBytes) {
 201       // No need to align objects in the survivors differently, return 0
 202       // which means "survivor alignment is not used".
 203       return 0;
 204     } else {
 205       assert(SurvivorAlignmentInBytes > 0, "sanity");
 206       return SurvivorAlignmentInBytes;
 207     }
 208   }
 209 
 210   HeapWord* allocate_new_plab(InCSetState dest,
 211                               size_t word_sz);
 212 
 213   bool may_throw_away_buffer(size_t const allocation_word_sz, size_t const buffer_size) const;
 214 public:
 215   G1PLABAllocator(G1Allocator* allocator);
 216   virtual ~G1PLABAllocator() { }
 217 
 218   virtual void waste(size_t& wasted, size_t& undo_wasted) = 0;
 219 
 220   // Allocate word_sz words in dest, either directly into the regions or by
 221   // allocating a new PLAB. Returns the address of the allocated memory, NULL if
 222   // not successful. Plab_refill_failed indicates whether an attempt to refill the
 223   // PLAB failed or not.
 224   HeapWord* allocate_direct_or_new_plab(InCSetState dest,
 225                                         size_t word_sz,
 226                                         bool* plab_refill_failed);
 227 
 228   // Allocate word_sz words in the PLAB of dest.  Returns the address of the
 229   // allocated memory, NULL if not successful.
 230   inline HeapWord* plab_allocate(InCSetState dest,
 231                                  size_t word_sz);
 232 
 233   HeapWord* allocate(InCSetState dest,
 234                      size_t word_sz,
 235                      bool* refill_failed) {
 236     HeapWord* const obj = plab_allocate(dest, word_sz);
 237     if (obj != NULL) {
 238       return obj;
 239     }
 240     return allocate_direct_or_new_plab(dest, word_sz, refill_failed);
 241   }
 242 
 243   void undo_allocation(InCSetState dest, HeapWord* obj, size_t word_sz);
 244 };
 245 
 246 // The default PLAB allocator for G1. Keeps the current (single) PLAB for survivor
 247 // and old generation allocation.
 248 class G1DefaultPLABAllocator : public G1PLABAllocator {
 249   PLAB  _surviving_alloc_buffer;
 250   PLAB  _tenured_alloc_buffer;
 251   PLAB* _alloc_buffers[InCSetState::Num];
 252 
 253 public:
 254   G1DefaultPLABAllocator(G1Allocator* _allocator);
 255 
 256   virtual PLAB* alloc_buffer(InCSetState dest) {
 257     assert(dest.is_valid(),
 258            "Allocation buffer index out-of-bounds: " CSETSTATE_FORMAT, dest.value());
 259     assert(_alloc_buffers[dest.value()] != NULL,
 260            "Allocation buffer is NULL: " CSETSTATE_FORMAT, dest.value());
 261     return _alloc_buffers[dest.value()];
 262   }
 263 
 264   virtual void flush_and_retire_stats();
 265 
 266   virtual void waste(size_t& wasted, size_t& undo_wasted);
 267 };
 268 
 269 // G1ArchiveRegionMap is a boolean array used to mark G1 regions as
 270 // archive regions.  This allows a quick check for whether an object
 271 // should not be marked because it is in an archive region.
 272 class G1ArchiveRegionMap : public G1BiasedMappedArray<bool> {
 273 protected:
 274   bool default_value() const { return false; }
 275 };
 276 
 277 // G1ArchiveAllocator is used to allocate memory in archive
 278 // regions. Such regions are not scavenged nor compacted by GC.
 279 // There are two types of archive regions, which are
 280 // differ in the kind of references allowed for the contained objects:
 281 //
 282 // - 'Closed' archive region contain no references outside of other
 283 //   closed archive regions. The region is immutable by GC. GC does
 284 //   not mark object header in 'closed' archive region.
 285 // - An 'open' archive region allow references to any other regions,
 286 //   including closed archive, open archive and other java heap regions.
 287 //   GC can adjust pointers and mark object header in 'open' archive region.
 288 class G1ArchiveAllocator : public CHeapObj<mtGC> {
 289 protected:
 290   bool _open; // Indicate if the region is 'open' archive.
 291   G1CollectedHeap* _g1h;
 292 
 293   // The current allocation region
 294   HeapRegion* _allocation_region;
 295 
 296   // Regions allocated for the current archive range.
 297   GrowableArray<HeapRegion*> _allocated_regions;
 298 
 299   // The number of bytes used in the current range.
 300   size_t _summary_bytes_used;
 301 
 302   // Current allocation window within the current region.
 303   HeapWord* _bottom;
 304   HeapWord* _top;
 305   HeapWord* _max;
 306 
 307   // Allocate a new region for this archive allocator.
 308   // Allocation is from the top of the reserved heap downward.
 309   bool alloc_new_region();
 310 
 311 public:
 312   G1ArchiveAllocator(G1CollectedHeap* g1h, bool open) :
 313     _g1h(g1h),
 314     _allocation_region(NULL),
 315     _allocated_regions((ResourceObj::set_allocation_type((address) &_allocated_regions,
 316                                                          ResourceObj::C_HEAP),
 317                         2), true /* C_Heap */),
 318     _summary_bytes_used(0),
 319     _bottom(NULL),
 320     _top(NULL),
 321     _max(NULL),
 322     _open(open) { }
 323 
 324   virtual ~G1ArchiveAllocator() {
 325     assert(_allocation_region == NULL, "_allocation_region not NULL");
 326   }
 327 
 328   static G1ArchiveAllocator* create_allocator(G1CollectedHeap* g1h, bool open);
 329 
 330   // Allocate memory for an individual object.
 331   HeapWord* archive_mem_allocate(size_t word_size);
 332 
 333   // Return the memory ranges used in the current archive, after
 334   // aligning to the requested alignment.
 335   void complete_archive(GrowableArray<MemRegion>* ranges,
 336                         size_t end_alignment_in_bytes);
 337 
 338   // The number of bytes allocated by this allocator.
 339   size_t used() {
 340     return _summary_bytes_used;
 341   }
 342 
 343   // Clear the count of bytes allocated in prior G1 regions. This
 344   // must be done when recalculate_use is used to reset the counter
 345   // for the generic allocator, since it counts bytes in all G1
 346   // regions, including those still associated with this allocator.
 347   void clear_used() {
 348     _summary_bytes_used = 0;
 349   }
 350 
 351   // Create the _archive_region_map which is used to identify archive objects.
 352   static inline void enable_archive_object_check();
 353 
 354   // Set the regions containing the specified address range as archive/non-archive.
 355   static inline void set_range_archive(MemRegion range, bool open);
 356 
 357   // Check if the object is in closed archive
 358   static inline bool is_closed_archive_object(oop object);
 359   // Check if the object is in open archive
 360   static inline bool is_open_archive_object(oop object);
 361   // Check if the object is either in closed archive or open archive
 362   static inline bool is_archive_object(oop object);
 363 
 364 private:
 365   static bool _archive_check_enabled;
 366   static G1ArchiveRegionMap  _closed_archive_region_map;
 367   static G1ArchiveRegionMap  _open_archive_region_map;
 368 
 369   // Check if an object is in a closed archive region using the _closed_archive_region_map.
 370   static inline bool in_closed_archive_range(oop object);
 371   // Check if an object is in open archive region using the _open_archive_region_map.
 372   static inline bool in_open_archive_range(oop object);
 373 
 374   // Check if archive object checking is enabled, to avoid calling in_open/closed_archive_range
 375   // unnecessarily.
 376   static inline bool archive_check_enabled();
 377 };
 378 
 379 #endif // SHARE_VM_GC_G1_G1ALLOCATOR_HPP