1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  58 #include "gc/g1/heapRegion.inline.hpp"
  59 #include "gc/g1/heapRegionRemSet.hpp"
  60 #include "gc/g1/heapRegionSet.inline.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/adaptiveSizePolicy.hpp"
  63 #include "gc/shared/gcHeapSummary.hpp"
  64 #include "gc/shared/gcId.hpp"
  65 #include "gc/shared/gcLocker.inline.hpp"
  66 #include "gc/shared/gcTimer.hpp"
  67 #include "gc/shared/gcTrace.hpp"
  68 #include "gc/shared/gcTraceTime.inline.hpp"
  69 #include "gc/shared/generationSpec.hpp"
  70 #include "gc/shared/isGCActiveMark.hpp"
  71 #include "gc/shared/preservedMarks.inline.hpp"
  72 #include "gc/shared/suspendibleThreadSet.hpp"
  73 #include "gc/shared/referenceProcessor.inline.hpp"
  74 #include "gc/shared/taskqueue.inline.hpp"
  75 #include "gc/shared/weakProcessor.hpp"
  76 #include "logging/log.hpp"
  77 #include "memory/allocation.hpp"
  78 #include "memory/iterator.hpp"
  79 #include "memory/resourceArea.hpp"
  80 #include "oops/oop.inline.hpp"
  81 #include "prims/resolvedMethodTable.hpp"
  82 #include "runtime/atomic.hpp"
  83 #include "runtime/init.hpp"
  84 #include "runtime/orderAccess.inline.hpp"
  85 #include "runtime/threadSMR.hpp"
  86 #include "runtime/vmThread.hpp"
  87 #include "utilities/align.hpp"
  88 #include "utilities/globalDefinitions.hpp"
  89 #include "utilities/stack.inline.hpp"
  90 
  91 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  92 
  93 // INVARIANTS/NOTES
  94 //
  95 // All allocation activity covered by the G1CollectedHeap interface is
  96 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  97 // and allocate_new_tlab, which are the "entry" points to the
  98 // allocation code from the rest of the JVM.  (Note that this does not
  99 // apply to TLAB allocation, which is not part of this interface: it
 100 // is done by clients of this interface.)
 101 
 102 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 103  private:
 104   size_t _num_dirtied;
 105   G1CollectedHeap* _g1h;
 106   G1SATBCardTableLoggingModRefBS* _g1_bs;
 107 
 108   HeapRegion* region_for_card(jbyte* card_ptr) const {
 109     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 110   }
 111 
 112   bool will_become_free(HeapRegion* hr) const {
 113     // A region will be freed by free_collection_set if the region is in the
 114     // collection set and has not had an evacuation failure.
 115     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 116   }
 117 
 118  public:
 119   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 120     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 121 
 122   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 123     HeapRegion* hr = region_for_card(card_ptr);
 124 
 125     // Should only dirty cards in regions that won't be freed.
 126     if (!will_become_free(hr)) {
 127       *card_ptr = CardTableModRefBS::dirty_card_val();
 128       _num_dirtied++;
 129     }
 130 
 131     return true;
 132   }
 133 
 134   size_t num_dirtied()   const { return _num_dirtied; }
 135 };
 136 
 137 
 138 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 139   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 140 }
 141 
 142 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 143   // The from card cache is not the memory that is actually committed. So we cannot
 144   // take advantage of the zero_filled parameter.
 145   reset_from_card_cache(start_idx, num_regions);
 146 }
 147 
 148 
 149 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 150                                              MemRegion mr) {
 151   return new HeapRegion(hrs_index, bot(), mr);
 152 }
 153 
 154 // Private methods.
 155 
 156 HeapRegion*
 157 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 158   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 159   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 160     if (!_secondary_free_list.is_empty()) {
 161       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 162                                       "secondary_free_list has %u entries",
 163                                       _secondary_free_list.length());
 164       // It looks as if there are free regions available on the
 165       // secondary_free_list. Let's move them to the free_list and try
 166       // again to allocate from it.
 167       append_secondary_free_list();
 168 
 169       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 170              "empty we should have moved at least one entry to the free_list");
 171       HeapRegion* res = _hrm.allocate_free_region(is_old);
 172       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 173                                       "allocated " HR_FORMAT " from secondary_free_list",
 174                                       HR_FORMAT_PARAMS(res));
 175       return res;
 176     }
 177 
 178     // Wait here until we get notified either when (a) there are no
 179     // more free regions coming or (b) some regions have been moved on
 180     // the secondary_free_list.
 181     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 182   }
 183 
 184   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 185                                   "could not allocate from secondary_free_list");
 186   return NULL;
 187 }
 188 
 189 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 190   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 191          "the only time we use this to allocate a humongous region is "
 192          "when we are allocating a single humongous region");
 193 
 194   HeapRegion* res;
 195   if (G1StressConcRegionFreeing) {
 196     if (!_secondary_free_list.is_empty()) {
 197       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 198                                       "forced to look at the secondary_free_list");
 199       res = new_region_try_secondary_free_list(is_old);
 200       if (res != NULL) {
 201         return res;
 202       }
 203     }
 204   }
 205 
 206   res = _hrm.allocate_free_region(is_old);
 207 
 208   if (res == NULL) {
 209     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 210                                     "res == NULL, trying the secondary_free_list");
 211     res = new_region_try_secondary_free_list(is_old);
 212   }
 213   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 214     // Currently, only attempts to allocate GC alloc regions set
 215     // do_expand to true. So, we should only reach here during a
 216     // safepoint. If this assumption changes we might have to
 217     // reconsider the use of _expand_heap_after_alloc_failure.
 218     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 219 
 220     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 221                               word_size * HeapWordSize);
 222 
 223     if (expand(word_size * HeapWordSize)) {
 224       // Given that expand() succeeded in expanding the heap, and we
 225       // always expand the heap by an amount aligned to the heap
 226       // region size, the free list should in theory not be empty.
 227       // In either case allocate_free_region() will check for NULL.
 228       res = _hrm.allocate_free_region(is_old);
 229     } else {
 230       _expand_heap_after_alloc_failure = false;
 231     }
 232   }
 233   return res;
 234 }
 235 
 236 HeapWord*
 237 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 238                                                            uint num_regions,
 239                                                            size_t word_size,
 240                                                            AllocationContext_t context) {
 241   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 242   assert(is_humongous(word_size), "word_size should be humongous");
 243   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 244 
 245   // Index of last region in the series.
 246   uint last = first + num_regions - 1;
 247 
 248   // We need to initialize the region(s) we just discovered. This is
 249   // a bit tricky given that it can happen concurrently with
 250   // refinement threads refining cards on these regions and
 251   // potentially wanting to refine the BOT as they are scanning
 252   // those cards (this can happen shortly after a cleanup; see CR
 253   // 6991377). So we have to set up the region(s) carefully and in
 254   // a specific order.
 255 
 256   // The word size sum of all the regions we will allocate.
 257   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 258   assert(word_size <= word_size_sum, "sanity");
 259 
 260   // This will be the "starts humongous" region.
 261   HeapRegion* first_hr = region_at(first);
 262   // The header of the new object will be placed at the bottom of
 263   // the first region.
 264   HeapWord* new_obj = first_hr->bottom();
 265   // This will be the new top of the new object.
 266   HeapWord* obj_top = new_obj + word_size;
 267 
 268   // First, we need to zero the header of the space that we will be
 269   // allocating. When we update top further down, some refinement
 270   // threads might try to scan the region. By zeroing the header we
 271   // ensure that any thread that will try to scan the region will
 272   // come across the zero klass word and bail out.
 273   //
 274   // NOTE: It would not have been correct to have used
 275   // CollectedHeap::fill_with_object() and make the space look like
 276   // an int array. The thread that is doing the allocation will
 277   // later update the object header to a potentially different array
 278   // type and, for a very short period of time, the klass and length
 279   // fields will be inconsistent. This could cause a refinement
 280   // thread to calculate the object size incorrectly.
 281   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 282 
 283   // Next, pad out the unused tail of the last region with filler
 284   // objects, for improved usage accounting.
 285   // How many words we use for filler objects.
 286   size_t word_fill_size = word_size_sum - word_size;
 287 
 288   // How many words memory we "waste" which cannot hold a filler object.
 289   size_t words_not_fillable = 0;
 290 
 291   if (word_fill_size >= min_fill_size()) {
 292     fill_with_objects(obj_top, word_fill_size);
 293   } else if (word_fill_size > 0) {
 294     // We have space to fill, but we cannot fit an object there.
 295     words_not_fillable = word_fill_size;
 296     word_fill_size = 0;
 297   }
 298 
 299   // We will set up the first region as "starts humongous". This
 300   // will also update the BOT covering all the regions to reflect
 301   // that there is a single object that starts at the bottom of the
 302   // first region.
 303   first_hr->set_starts_humongous(obj_top, word_fill_size);
 304   first_hr->set_allocation_context(context);
 305   // Then, if there are any, we will set up the "continues
 306   // humongous" regions.
 307   HeapRegion* hr = NULL;
 308   for (uint i = first + 1; i <= last; ++i) {
 309     hr = region_at(i);
 310     hr->set_continues_humongous(first_hr);
 311     hr->set_allocation_context(context);
 312   }
 313 
 314   // Up to this point no concurrent thread would have been able to
 315   // do any scanning on any region in this series. All the top
 316   // fields still point to bottom, so the intersection between
 317   // [bottom,top] and [card_start,card_end] will be empty. Before we
 318   // update the top fields, we'll do a storestore to make sure that
 319   // no thread sees the update to top before the zeroing of the
 320   // object header and the BOT initialization.
 321   OrderAccess::storestore();
 322 
 323   // Now, we will update the top fields of the "continues humongous"
 324   // regions except the last one.
 325   for (uint i = first; i < last; ++i) {
 326     hr = region_at(i);
 327     hr->set_top(hr->end());
 328   }
 329 
 330   hr = region_at(last);
 331   // If we cannot fit a filler object, we must set top to the end
 332   // of the humongous object, otherwise we cannot iterate the heap
 333   // and the BOT will not be complete.
 334   hr->set_top(hr->end() - words_not_fillable);
 335 
 336   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 337          "obj_top should be in last region");
 338 
 339   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 340 
 341   assert(words_not_fillable == 0 ||
 342          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 343          "Miscalculation in humongous allocation");
 344 
 345   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 346 
 347   for (uint i = first; i <= last; ++i) {
 348     hr = region_at(i);
 349     _humongous_set.add(hr);
 350     _hr_printer.alloc(hr);
 351   }
 352 
 353   return new_obj;
 354 }
 355 
 356 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 357   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 358   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 359 }
 360 
 361 // If could fit into free regions w/o expansion, try.
 362 // Otherwise, if can expand, do so.
 363 // Otherwise, if using ex regions might help, try with ex given back.
 364 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 365   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 366 
 367   _verifier->verify_region_sets_optional();
 368 
 369   uint first = G1_NO_HRM_INDEX;
 370   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 371 
 372   if (obj_regions == 1) {
 373     // Only one region to allocate, try to use a fast path by directly allocating
 374     // from the free lists. Do not try to expand here, we will potentially do that
 375     // later.
 376     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 377     if (hr != NULL) {
 378       first = hr->hrm_index();
 379     }
 380   } else {
 381     // We can't allocate humongous regions spanning more than one region while
 382     // cleanupComplete() is running, since some of the regions we find to be
 383     // empty might not yet be added to the free list. It is not straightforward
 384     // to know in which list they are on so that we can remove them. We only
 385     // need to do this if we need to allocate more than one region to satisfy the
 386     // current humongous allocation request. If we are only allocating one region
 387     // we use the one-region region allocation code (see above), that already
 388     // potentially waits for regions from the secondary free list.
 389     wait_while_free_regions_coming();
 390     append_secondary_free_list_if_not_empty_with_lock();
 391 
 392     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 393     // are lucky enough to find some.
 394     first = _hrm.find_contiguous_only_empty(obj_regions);
 395     if (first != G1_NO_HRM_INDEX) {
 396       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 397     }
 398   }
 399 
 400   if (first == G1_NO_HRM_INDEX) {
 401     // Policy: We could not find enough regions for the humongous object in the
 402     // free list. Look through the heap to find a mix of free and uncommitted regions.
 403     // If so, try expansion.
 404     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 405     if (first != G1_NO_HRM_INDEX) {
 406       // We found something. Make sure these regions are committed, i.e. expand
 407       // the heap. Alternatively we could do a defragmentation GC.
 408       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 409                                     word_size * HeapWordSize);
 410 
 411       _hrm.expand_at(first, obj_regions, workers());
 412       g1_policy()->record_new_heap_size(num_regions());
 413 
 414 #ifdef ASSERT
 415       for (uint i = first; i < first + obj_regions; ++i) {
 416         HeapRegion* hr = region_at(i);
 417         assert(hr->is_free(), "sanity");
 418         assert(hr->is_empty(), "sanity");
 419         assert(is_on_master_free_list(hr), "sanity");
 420       }
 421 #endif
 422       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 423     } else {
 424       // Policy: Potentially trigger a defragmentation GC.
 425     }
 426   }
 427 
 428   HeapWord* result = NULL;
 429   if (first != G1_NO_HRM_INDEX) {
 430     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 431                                                        word_size, context);
 432     assert(result != NULL, "it should always return a valid result");
 433 
 434     // A successful humongous object allocation changes the used space
 435     // information of the old generation so we need to recalculate the
 436     // sizes and update the jstat counters here.
 437     g1mm()->update_sizes();
 438   }
 439 
 440   _verifier->verify_region_sets_optional();
 441 
 442   return result;
 443 }
 444 
 445 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 446   assert_heap_not_locked_and_not_at_safepoint();
 447   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 448 
 449   return attempt_allocation(word_size);
 450 }
 451 
 452 HeapWord*
 453 G1CollectedHeap::mem_allocate(size_t word_size,
 454                               bool*  gc_overhead_limit_was_exceeded) {
 455   assert_heap_not_locked_and_not_at_safepoint();
 456 
 457   if (is_humongous(word_size)) {
 458     return attempt_allocation_humongous(word_size);
 459   }
 460   return attempt_allocation(word_size);
 461 }
 462 
 463 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 464                                                    AllocationContext_t context) {
 465   ResourceMark rm; // For retrieving the thread names in log messages.
 466 
 467   // Make sure you read the note in attempt_allocation_humongous().
 468 
 469   assert_heap_not_locked_and_not_at_safepoint();
 470   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 471          "be called for humongous allocation requests");
 472 
 473   // We should only get here after the first-level allocation attempt
 474   // (attempt_allocation()) failed to allocate.
 475 
 476   // We will loop until a) we manage to successfully perform the
 477   // allocation or b) we successfully schedule a collection which
 478   // fails to perform the allocation. b) is the only case when we'll
 479   // return NULL.
 480   HeapWord* result = NULL;
 481   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 482     bool should_try_gc;
 483     uint gc_count_before;
 484 
 485     {
 486       MutexLockerEx x(Heap_lock);
 487       result = _allocator->attempt_allocation_locked(word_size, context);
 488       if (result != NULL) {
 489         return result;
 490       }
 491 
 492       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 493       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 494       // waiting because the GCLocker is active to not wait too long.
 495       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 496         // No need for an ergo message here, can_expand_young_list() does this when
 497         // it returns true.
 498         result = _allocator->attempt_allocation_force(word_size, context);
 499         if (result != NULL) {
 500           return result;
 501         }
 502       }
 503       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 504       // the GCLocker initiated GC has been performed and then retry. This includes
 505       // the case when the GC Locker is not active but has not been performed.
 506       should_try_gc = !GCLocker::needs_gc();
 507       // Read the GC count while still holding the Heap_lock.
 508       gc_count_before = total_collections();
 509     }
 510 
 511     if (should_try_gc) {
 512       bool succeeded;
 513       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 514                                    GCCause::_g1_inc_collection_pause);
 515       if (result != NULL) {
 516         assert(succeeded, "only way to get back a non-NULL result");
 517         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 518                              Thread::current()->name(), p2i(result));
 519         return result;
 520       }
 521 
 522       if (succeeded) {
 523         // We successfully scheduled a collection which failed to allocate. No
 524         // point in trying to allocate further. We'll just return NULL.
 525         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 526                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 527         return NULL;
 528       }
 529       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 530                            Thread::current()->name(), word_size);
 531     } else {
 532       // Failed to schedule a collection.
 533       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 534         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 535                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 536         return NULL;
 537       }
 538       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 539       // The GCLocker is either active or the GCLocker initiated
 540       // GC has not yet been performed. Stall until it is and
 541       // then retry the allocation.
 542       GCLocker::stall_until_clear();
 543       gclocker_retry_count += 1;
 544     }
 545 
 546     // We can reach here if we were unsuccessful in scheduling a
 547     // collection (because another thread beat us to it) or if we were
 548     // stalled due to the GC locker. In either can we should retry the
 549     // allocation attempt in case another thread successfully
 550     // performed a collection and reclaimed enough space. We do the
 551     // first attempt (without holding the Heap_lock) here and the
 552     // follow-on attempt will be at the start of the next loop
 553     // iteration (after taking the Heap_lock).
 554 
 555     result = _allocator->attempt_allocation(word_size, context);
 556     if (result != NULL) {
 557       return result;
 558     }
 559 
 560     // Give a warning if we seem to be looping forever.
 561     if ((QueuedAllocationWarningCount > 0) &&
 562         (try_count % QueuedAllocationWarningCount == 0)) {
 563       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 564                              Thread::current()->name(), try_count, word_size);
 565     }
 566   }
 567 
 568   ShouldNotReachHere();
 569   return NULL;
 570 }
 571 
 572 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 573   assert_at_safepoint(true /* should_be_vm_thread */);
 574   if (_archive_allocator == NULL) {
 575     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 576   }
 577 }
 578 
 579 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 580   // Allocations in archive regions cannot be of a size that would be considered
 581   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 582   // may be different at archive-restore time.
 583   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 584 }
 585 
 586 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 587   assert_at_safepoint(true /* should_be_vm_thread */);
 588   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 589   if (is_archive_alloc_too_large(word_size)) {
 590     return NULL;
 591   }
 592   return _archive_allocator->archive_mem_allocate(word_size);
 593 }
 594 
 595 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 596                                               size_t end_alignment_in_bytes) {
 597   assert_at_safepoint(true /* should_be_vm_thread */);
 598   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 599 
 600   // Call complete_archive to do the real work, filling in the MemRegion
 601   // array with the archive regions.
 602   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 603   delete _archive_allocator;
 604   _archive_allocator = NULL;
 605 }
 606 
 607 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 608   assert(ranges != NULL, "MemRegion array NULL");
 609   assert(count != 0, "No MemRegions provided");
 610   MemRegion reserved = _hrm.reserved();
 611   for (size_t i = 0; i < count; i++) {
 612     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 613       return false;
 614     }
 615   }
 616   return true;
 617 }
 618 
 619 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 620                                             size_t count,
 621                                             bool open) {
 622   assert(!is_init_completed(), "Expect to be called at JVM init time");
 623   assert(ranges != NULL, "MemRegion array NULL");
 624   assert(count != 0, "No MemRegions provided");
 625   MutexLockerEx x(Heap_lock);
 626 
 627   MemRegion reserved = _hrm.reserved();
 628   HeapWord* prev_last_addr = NULL;
 629   HeapRegion* prev_last_region = NULL;
 630 
 631   // Temporarily disable pretouching of heap pages. This interface is used
 632   // when mmap'ing archived heap data in, so pre-touching is wasted.
 633   FlagSetting fs(AlwaysPreTouch, false);
 634 
 635   // Enable archive object checking used by G1MarkSweep. We have to let it know
 636   // about each archive range, so that objects in those ranges aren't marked.
 637   G1ArchiveAllocator::enable_archive_object_check();
 638 
 639   // For each specified MemRegion range, allocate the corresponding G1
 640   // regions and mark them as archive regions. We expect the ranges
 641   // in ascending starting address order, without overlap.
 642   for (size_t i = 0; i < count; i++) {
 643     MemRegion curr_range = ranges[i];
 644     HeapWord* start_address = curr_range.start();
 645     size_t word_size = curr_range.word_size();
 646     HeapWord* last_address = curr_range.last();
 647     size_t commits = 0;
 648 
 649     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 650               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 651               p2i(start_address), p2i(last_address));
 652     guarantee(start_address > prev_last_addr,
 653               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 654               p2i(start_address), p2i(prev_last_addr));
 655     prev_last_addr = last_address;
 656 
 657     // Check for ranges that start in the same G1 region in which the previous
 658     // range ended, and adjust the start address so we don't try to allocate
 659     // the same region again. If the current range is entirely within that
 660     // region, skip it, just adjusting the recorded top.
 661     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 662     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 663       start_address = start_region->end();
 664       if (start_address > last_address) {
 665         increase_used(word_size * HeapWordSize);
 666         start_region->set_top(last_address + 1);
 667         continue;
 668       }
 669       start_region->set_top(start_address);
 670       curr_range = MemRegion(start_address, last_address + 1);
 671       start_region = _hrm.addr_to_region(start_address);
 672     }
 673 
 674     // Perform the actual region allocation, exiting if it fails.
 675     // Then note how much new space we have allocated.
 676     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 677       return false;
 678     }
 679     increase_used(word_size * HeapWordSize);
 680     if (commits != 0) {
 681       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 682                                 HeapRegion::GrainWords * HeapWordSize * commits);
 683 
 684     }
 685 
 686     // Mark each G1 region touched by the range as archive, add it to
 687     // the old set, and set the allocation context and top.
 688     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 689     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 690     prev_last_region = last_region;
 691 
 692     while (curr_region != NULL) {
 693       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 694              "Region already in use (index %u)", curr_region->hrm_index());
 695       curr_region->set_allocation_context(AllocationContext::system());
 696       if (open) {
 697         curr_region->set_open_archive();
 698       } else {
 699         curr_region->set_closed_archive();
 700       }
 701       _hr_printer.alloc(curr_region);
 702       _old_set.add(curr_region);
 703       HeapWord* top;
 704       HeapRegion* next_region;
 705       if (curr_region != last_region) {
 706         top = curr_region->end();
 707         next_region = _hrm.next_region_in_heap(curr_region);
 708       } else {
 709         top = last_address + 1;
 710         next_region = NULL;
 711       }
 712       curr_region->set_top(top);
 713       curr_region->set_first_dead(top);
 714       curr_region->set_end_of_live(top);
 715       curr_region = next_region;
 716     }
 717 
 718     // Notify mark-sweep of the archive
 719     G1ArchiveAllocator::set_range_archive(curr_range, open);
 720   }
 721   return true;
 722 }
 723 
 724 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 725   assert(!is_init_completed(), "Expect to be called at JVM init time");
 726   assert(ranges != NULL, "MemRegion array NULL");
 727   assert(count != 0, "No MemRegions provided");
 728   MemRegion reserved = _hrm.reserved();
 729   HeapWord *prev_last_addr = NULL;
 730   HeapRegion* prev_last_region = NULL;
 731 
 732   // For each MemRegion, create filler objects, if needed, in the G1 regions
 733   // that contain the address range. The address range actually within the
 734   // MemRegion will not be modified. That is assumed to have been initialized
 735   // elsewhere, probably via an mmap of archived heap data.
 736   MutexLockerEx x(Heap_lock);
 737   for (size_t i = 0; i < count; i++) {
 738     HeapWord* start_address = ranges[i].start();
 739     HeapWord* last_address = ranges[i].last();
 740 
 741     assert(reserved.contains(start_address) && reserved.contains(last_address),
 742            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 743            p2i(start_address), p2i(last_address));
 744     assert(start_address > prev_last_addr,
 745            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 746            p2i(start_address), p2i(prev_last_addr));
 747 
 748     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 749     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 750     HeapWord* bottom_address = start_region->bottom();
 751 
 752     // Check for a range beginning in the same region in which the
 753     // previous one ended.
 754     if (start_region == prev_last_region) {
 755       bottom_address = prev_last_addr + 1;
 756     }
 757 
 758     // Verify that the regions were all marked as archive regions by
 759     // alloc_archive_regions.
 760     HeapRegion* curr_region = start_region;
 761     while (curr_region != NULL) {
 762       guarantee(curr_region->is_archive(),
 763                 "Expected archive region at index %u", curr_region->hrm_index());
 764       if (curr_region != last_region) {
 765         curr_region = _hrm.next_region_in_heap(curr_region);
 766       } else {
 767         curr_region = NULL;
 768       }
 769     }
 770 
 771     prev_last_addr = last_address;
 772     prev_last_region = last_region;
 773 
 774     // Fill the memory below the allocated range with dummy object(s),
 775     // if the region bottom does not match the range start, or if the previous
 776     // range ended within the same G1 region, and there is a gap.
 777     if (start_address != bottom_address) {
 778       size_t fill_size = pointer_delta(start_address, bottom_address);
 779       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 780       increase_used(fill_size * HeapWordSize);
 781     }
 782   }
 783 }
 784 
 785 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size) {
 786   assert_heap_not_locked_and_not_at_safepoint();
 787   assert(!is_humongous(word_size), "attempt_allocation() should not "
 788          "be called for humongous allocation requests");
 789 
 790   AllocationContext_t context = AllocationContext::current();
 791   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 792 
 793   if (result == NULL) {
 794     result = attempt_allocation_slow(word_size, context);
 795   }
 796   assert_heap_not_locked();
 797   if (result != NULL) {
 798     dirty_young_block(result, word_size);
 799   }
 800   return result;
 801 }
 802 
 803 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 804   assert(!is_init_completed(), "Expect to be called at JVM init time");
 805   assert(ranges != NULL, "MemRegion array NULL");
 806   assert(count != 0, "No MemRegions provided");
 807   MemRegion reserved = _hrm.reserved();
 808   HeapWord* prev_last_addr = NULL;
 809   HeapRegion* prev_last_region = NULL;
 810   size_t size_used = 0;
 811   size_t uncommitted_regions = 0;
 812 
 813   // For each Memregion, free the G1 regions that constitute it, and
 814   // notify mark-sweep that the range is no longer to be considered 'archive.'
 815   MutexLockerEx x(Heap_lock);
 816   for (size_t i = 0; i < count; i++) {
 817     HeapWord* start_address = ranges[i].start();
 818     HeapWord* last_address = ranges[i].last();
 819 
 820     assert(reserved.contains(start_address) && reserved.contains(last_address),
 821            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 822            p2i(start_address), p2i(last_address));
 823     assert(start_address > prev_last_addr,
 824            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 825            p2i(start_address), p2i(prev_last_addr));
 826     size_used += ranges[i].byte_size();
 827     prev_last_addr = last_address;
 828 
 829     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 830     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 831 
 832     // Check for ranges that start in the same G1 region in which the previous
 833     // range ended, and adjust the start address so we don't try to free
 834     // the same region again. If the current range is entirely within that
 835     // region, skip it.
 836     if (start_region == prev_last_region) {
 837       start_address = start_region->end();
 838       if (start_address > last_address) {
 839         continue;
 840       }
 841       start_region = _hrm.addr_to_region(start_address);
 842     }
 843     prev_last_region = last_region;
 844 
 845     // After verifying that each region was marked as an archive region by
 846     // alloc_archive_regions, set it free and empty and uncommit it.
 847     HeapRegion* curr_region = start_region;
 848     while (curr_region != NULL) {
 849       guarantee(curr_region->is_archive(),
 850                 "Expected archive region at index %u", curr_region->hrm_index());
 851       uint curr_index = curr_region->hrm_index();
 852       _old_set.remove(curr_region);
 853       curr_region->set_free();
 854       curr_region->set_top(curr_region->bottom());
 855       if (curr_region != last_region) {
 856         curr_region = _hrm.next_region_in_heap(curr_region);
 857       } else {
 858         curr_region = NULL;
 859       }
 860       _hrm.shrink_at(curr_index, 1);
 861       uncommitted_regions++;
 862     }
 863 
 864     // Notify mark-sweep that this is no longer an archive range.
 865     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 866   }
 867 
 868   if (uncommitted_regions != 0) {
 869     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 870                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 871   }
 872   decrease_used(size_used);
 873 }
 874 
 875 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 876   ResourceMark rm; // For retrieving the thread names in log messages.
 877 
 878   // The structure of this method has a lot of similarities to
 879   // attempt_allocation_slow(). The reason these two were not merged
 880   // into a single one is that such a method would require several "if
 881   // allocation is not humongous do this, otherwise do that"
 882   // conditional paths which would obscure its flow. In fact, an early
 883   // version of this code did use a unified method which was harder to
 884   // follow and, as a result, it had subtle bugs that were hard to
 885   // track down. So keeping these two methods separate allows each to
 886   // be more readable. It will be good to keep these two in sync as
 887   // much as possible.
 888 
 889   assert_heap_not_locked_and_not_at_safepoint();
 890   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 891          "should only be called for humongous allocations");
 892 
 893   // Humongous objects can exhaust the heap quickly, so we should check if we
 894   // need to start a marking cycle at each humongous object allocation. We do
 895   // the check before we do the actual allocation. The reason for doing it
 896   // before the allocation is that we avoid having to keep track of the newly
 897   // allocated memory while we do a GC.
 898   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 899                                            word_size)) {
 900     collect(GCCause::_g1_humongous_allocation);
 901   }
 902 
 903   // We will loop until a) we manage to successfully perform the
 904   // allocation or b) we successfully schedule a collection which
 905   // fails to perform the allocation. b) is the only case when we'll
 906   // return NULL.
 907   HeapWord* result = NULL;
 908   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 909     bool should_try_gc;
 910     uint gc_count_before;
 911 
 912 
 913     {
 914       MutexLockerEx x(Heap_lock);
 915 
 916       // Given that humongous objects are not allocated in young
 917       // regions, we'll first try to do the allocation without doing a
 918       // collection hoping that there's enough space in the heap.
 919       result = humongous_obj_allocate(word_size, AllocationContext::current());
 920       if (result != NULL) {
 921         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 922         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 923         return result;
 924       }
 925 
 926       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 927       // the GCLocker initiated GC has been performed and then retry. This includes
 928       // the case when the GC Locker is not active but has not been performed.
 929       should_try_gc = !GCLocker::needs_gc();
 930       // Read the GC count while still holding the Heap_lock.
 931       gc_count_before = total_collections();
 932     }
 933 
 934     if (should_try_gc) {
 935       bool succeeded;
 936       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 937                                    GCCause::_g1_humongous_allocation);
 938       if (result != NULL) {
 939         assert(succeeded, "only way to get back a non-NULL result");
 940         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 941                              Thread::current()->name(), p2i(result));
 942         return result;
 943       }
 944 
 945       if (succeeded) {
 946         // We successfully scheduled a collection which failed to allocate. No
 947         // point in trying to allocate further. We'll just return NULL.
 948         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 949                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 950         return NULL;
 951       }
 952       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 953                            Thread::current()->name(), word_size);
 954     } else {
 955       // Failed to schedule a collection.
 956       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 957         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 958                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 959         return NULL;
 960       }
 961       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 962       // The GCLocker is either active or the GCLocker initiated
 963       // GC has not yet been performed. Stall until it is and
 964       // then retry the allocation.
 965       GCLocker::stall_until_clear();
 966       gclocker_retry_count += 1;
 967     }
 968 
 969 
 970     // We can reach here if we were unsuccessful in scheduling a
 971     // collection (because another thread beat us to it) or if we were
 972     // stalled due to the GC locker. In either can we should retry the
 973     // allocation attempt in case another thread successfully
 974     // performed a collection and reclaimed enough space.
 975     // Humongous object allocation always needs a lock, so we wait for the retry
 976     // in the next iteration of the loop, unlike for the regular iteration case.
 977     // Give a warning if we seem to be looping forever.
 978 
 979     if ((QueuedAllocationWarningCount > 0) &&
 980         (try_count % QueuedAllocationWarningCount == 0)) {
 981       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 982                              Thread::current()->name(), try_count, word_size);
 983     }
 984   }
 985 
 986   ShouldNotReachHere();
 987   return NULL;
 988 }
 989 
 990 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 991                                                            AllocationContext_t context,
 992                                                            bool expect_null_mutator_alloc_region) {
 993   assert_at_safepoint(true /* should_be_vm_thread */);
 994   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
 995          "the current alloc region was unexpectedly found to be non-NULL");
 996 
 997   if (!is_humongous(word_size)) {
 998     return _allocator->attempt_allocation_locked(word_size, context);
 999   } else {
1000     HeapWord* result = humongous_obj_allocate(word_size, context);
1001     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1002       collector_state()->set_initiate_conc_mark_if_possible(true);
1003     }
1004     return result;
1005   }
1006 
1007   ShouldNotReachHere();
1008 }
1009 
1010 class PostCompactionPrinterClosure: public HeapRegionClosure {
1011 private:
1012   G1HRPrinter* _hr_printer;
1013 public:
1014   bool do_heap_region(HeapRegion* hr) {
1015     assert(!hr->is_young(), "not expecting to find young regions");
1016     _hr_printer->post_compaction(hr);
1017     return false;
1018   }
1019 
1020   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1021     : _hr_printer(hr_printer) { }
1022 };
1023 
1024 void G1CollectedHeap::print_hrm_post_compaction() {
1025   if (_hr_printer.is_active()) {
1026     PostCompactionPrinterClosure cl(hr_printer());
1027     heap_region_iterate(&cl);
1028   }
1029 }
1030 
1031 void G1CollectedHeap::abort_concurrent_cycle() {
1032   // Note: When we have a more flexible GC logging framework that
1033   // allows us to add optional attributes to a GC log record we
1034   // could consider timing and reporting how long we wait in the
1035   // following two methods.
1036   wait_while_free_regions_coming();
1037   // If we start the compaction before the CM threads finish
1038   // scanning the root regions we might trip them over as we'll
1039   // be moving objects / updating references. So let's wait until
1040   // they are done. By telling them to abort, they should complete
1041   // early.
1042   _cm->root_regions()->abort();
1043   _cm->root_regions()->wait_until_scan_finished();
1044   append_secondary_free_list_if_not_empty_with_lock();
1045 
1046   // Disable discovery and empty the discovered lists
1047   // for the CM ref processor.
1048   ref_processor_cm()->disable_discovery();
1049   ref_processor_cm()->abandon_partial_discovery();
1050   ref_processor_cm()->verify_no_references_recorded();
1051 
1052   // Abandon current iterations of concurrent marking and concurrent
1053   // refinement, if any are in progress.
1054   concurrent_mark()->abort();
1055 }
1056 
1057 void G1CollectedHeap::prepare_heap_for_full_collection() {
1058   // Make sure we'll choose a new allocation region afterwards.
1059   _allocator->release_mutator_alloc_region();
1060   _allocator->abandon_gc_alloc_regions();
1061   g1_rem_set()->cleanupHRRS();
1062 
1063   // We may have added regions to the current incremental collection
1064   // set between the last GC or pause and now. We need to clear the
1065   // incremental collection set and then start rebuilding it afresh
1066   // after this full GC.
1067   abandon_collection_set(collection_set());
1068 
1069   tear_down_region_sets(false /* free_list_only */);
1070   collector_state()->set_gcs_are_young(true);
1071 }
1072 
1073 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1074   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1075   assert(used() == recalculate_used(), "Should be equal");
1076   _verifier->verify_region_sets_optional();
1077   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1078   _verifier->check_bitmaps("Full GC Start");
1079 }
1080 
1081 void G1CollectedHeap::prepare_heap_for_mutators() {
1082   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1083   ClassLoaderDataGraph::purge();
1084   MetaspaceAux::verify_metrics();
1085 
1086   // Prepare heap for normal collections.
1087   assert(num_free_regions() == 0, "we should not have added any free regions");
1088   rebuild_region_sets(false /* free_list_only */);
1089   abort_refinement();
1090   resize_if_necessary_after_full_collection();
1091 
1092   // Rebuild the strong code root lists for each region
1093   rebuild_strong_code_roots();
1094 
1095   // Start a new incremental collection set for the next pause
1096   start_new_collection_set();
1097 
1098   _allocator->init_mutator_alloc_region();
1099 
1100   // Post collection state updates.
1101   MetaspaceGC::compute_new_size();
1102 }
1103 
1104 void G1CollectedHeap::abort_refinement() {
1105   if (_hot_card_cache->use_cache()) {
1106     _hot_card_cache->reset_hot_cache();
1107   }
1108 
1109   // Discard all remembered set updates.
1110   JavaThread::dirty_card_queue_set().abandon_logs();
1111   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1112 }
1113 
1114 void G1CollectedHeap::verify_after_full_collection() {
1115   check_gc_time_stamps();
1116   _hrm.verify_optional();
1117   _verifier->verify_region_sets_optional();
1118   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1119   // Clear the previous marking bitmap, if needed for bitmap verification.
1120   // Note we cannot do this when we clear the next marking bitmap in
1121   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1122   // objects marked during a full GC against the previous bitmap.
1123   // But we need to clear it before calling check_bitmaps below since
1124   // the full GC has compacted objects and updated TAMS but not updated
1125   // the prev bitmap.
1126   if (G1VerifyBitmaps) {
1127     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1128     _cm->clear_prev_bitmap(workers());
1129   }
1130   _verifier->check_bitmaps("Full GC End");
1131 
1132   // At this point there should be no regions in the
1133   // entire heap tagged as young.
1134   assert(check_young_list_empty(), "young list should be empty at this point");
1135 
1136   // Note: since we've just done a full GC, concurrent
1137   // marking is no longer active. Therefore we need not
1138   // re-enable reference discovery for the CM ref processor.
1139   // That will be done at the start of the next marking cycle.
1140   // We also know that the STW processor should no longer
1141   // discover any new references.
1142   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1143   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1144   ref_processor_stw()->verify_no_references_recorded();
1145   ref_processor_cm()->verify_no_references_recorded();
1146 }
1147 
1148 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1149   // Post collection logging.
1150   // We should do this after we potentially resize the heap so
1151   // that all the COMMIT / UNCOMMIT events are generated before
1152   // the compaction events.
1153   print_hrm_post_compaction();
1154   heap_transition->print();
1155   print_heap_after_gc();
1156   print_heap_regions();
1157 #ifdef TRACESPINNING
1158   ParallelTaskTerminator::print_termination_counts();
1159 #endif
1160 }
1161 
1162 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1163                                          bool clear_all_soft_refs) {
1164   assert_at_safepoint(true /* should_be_vm_thread */);
1165 
1166   if (GCLocker::check_active_before_gc()) {
1167     // Full GC was not completed.
1168     return false;
1169   }
1170 
1171   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1172       soft_ref_policy()->should_clear_all_soft_refs();
1173 
1174   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1175   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1176 
1177   collector.prepare_collection();
1178   collector.collect();
1179   collector.complete_collection();
1180 
1181   // Full collection was successfully completed.
1182   return true;
1183 }
1184 
1185 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1186   // Currently, there is no facility in the do_full_collection(bool) API to notify
1187   // the caller that the collection did not succeed (e.g., because it was locked
1188   // out by the GC locker). So, right now, we'll ignore the return value.
1189   bool dummy = do_full_collection(true,                /* explicit_gc */
1190                                   clear_all_soft_refs);
1191 }
1192 
1193 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1194   // Capacity, free and used after the GC counted as full regions to
1195   // include the waste in the following calculations.
1196   const size_t capacity_after_gc = capacity();
1197   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1198 
1199   // This is enforced in arguments.cpp.
1200   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1201          "otherwise the code below doesn't make sense");
1202 
1203   // We don't have floating point command-line arguments
1204   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1205   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1206   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1207   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1208 
1209   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1210   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1211 
1212   // We have to be careful here as these two calculations can overflow
1213   // 32-bit size_t's.
1214   double used_after_gc_d = (double) used_after_gc;
1215   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1216   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1217 
1218   // Let's make sure that they are both under the max heap size, which
1219   // by default will make them fit into a size_t.
1220   double desired_capacity_upper_bound = (double) max_heap_size;
1221   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1222                                     desired_capacity_upper_bound);
1223   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1224                                     desired_capacity_upper_bound);
1225 
1226   // We can now safely turn them into size_t's.
1227   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1228   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1229 
1230   // This assert only makes sense here, before we adjust them
1231   // with respect to the min and max heap size.
1232   assert(minimum_desired_capacity <= maximum_desired_capacity,
1233          "minimum_desired_capacity = " SIZE_FORMAT ", "
1234          "maximum_desired_capacity = " SIZE_FORMAT,
1235          minimum_desired_capacity, maximum_desired_capacity);
1236 
1237   // Should not be greater than the heap max size. No need to adjust
1238   // it with respect to the heap min size as it's a lower bound (i.e.,
1239   // we'll try to make the capacity larger than it, not smaller).
1240   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1241   // Should not be less than the heap min size. No need to adjust it
1242   // with respect to the heap max size as it's an upper bound (i.e.,
1243   // we'll try to make the capacity smaller than it, not greater).
1244   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1245 
1246   if (capacity_after_gc < minimum_desired_capacity) {
1247     // Don't expand unless it's significant
1248     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1249 
1250     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1251                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1252                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1253                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1254 
1255     expand(expand_bytes, _workers);
1256 
1257     // No expansion, now see if we want to shrink
1258   } else if (capacity_after_gc > maximum_desired_capacity) {
1259     // Capacity too large, compute shrinking size
1260     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1261 
1262     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1263                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1264                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1265                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1266 
1267     shrink(shrink_bytes);
1268   }
1269 }
1270 
1271 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1272                                                             AllocationContext_t context,
1273                                                             bool do_gc,
1274                                                             bool clear_all_soft_refs,
1275                                                             bool expect_null_mutator_alloc_region,
1276                                                             bool* gc_succeeded) {
1277   *gc_succeeded = true;
1278   // Let's attempt the allocation first.
1279   HeapWord* result =
1280     attempt_allocation_at_safepoint(word_size,
1281                                     context,
1282                                     expect_null_mutator_alloc_region);
1283   if (result != NULL) {
1284     return result;
1285   }
1286 
1287   // In a G1 heap, we're supposed to keep allocation from failing by
1288   // incremental pauses.  Therefore, at least for now, we'll favor
1289   // expansion over collection.  (This might change in the future if we can
1290   // do something smarter than full collection to satisfy a failed alloc.)
1291   result = expand_and_allocate(word_size, context);
1292   if (result != NULL) {
1293     return result;
1294   }
1295 
1296   if (do_gc) {
1297     // Expansion didn't work, we'll try to do a Full GC.
1298     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1299                                        clear_all_soft_refs);
1300   }
1301 
1302   return NULL;
1303 }
1304 
1305 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1306                                                      AllocationContext_t context,
1307                                                      bool* succeeded) {
1308   assert_at_safepoint(true /* should_be_vm_thread */);
1309 
1310   // Attempts to allocate followed by Full GC.
1311   HeapWord* result =
1312     satisfy_failed_allocation_helper(word_size,
1313                                      context,
1314                                      true,  /* do_gc */
1315                                      false, /* clear_all_soft_refs */
1316                                      false, /* expect_null_mutator_alloc_region */
1317                                      succeeded);
1318 
1319   if (result != NULL || !*succeeded) {
1320     return result;
1321   }
1322 
1323   // Attempts to allocate followed by Full GC that will collect all soft references.
1324   result = satisfy_failed_allocation_helper(word_size,
1325                                             context,
1326                                             true, /* do_gc */
1327                                             true, /* clear_all_soft_refs */
1328                                             true, /* expect_null_mutator_alloc_region */
1329                                             succeeded);
1330 
1331   if (result != NULL || !*succeeded) {
1332     return result;
1333   }
1334 
1335   // Attempts to allocate, no GC
1336   result = satisfy_failed_allocation_helper(word_size,
1337                                             context,
1338                                             false, /* do_gc */
1339                                             false, /* clear_all_soft_refs */
1340                                             true,  /* expect_null_mutator_alloc_region */
1341                                             succeeded);
1342 
1343   if (result != NULL) {
1344     return result;
1345   }
1346 
1347   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1348          "Flag should have been handled and cleared prior to this point");
1349 
1350   // What else?  We might try synchronous finalization later.  If the total
1351   // space available is large enough for the allocation, then a more
1352   // complete compaction phase than we've tried so far might be
1353   // appropriate.
1354   return NULL;
1355 }
1356 
1357 // Attempting to expand the heap sufficiently
1358 // to support an allocation of the given "word_size".  If
1359 // successful, perform the allocation and return the address of the
1360 // allocated block, or else "NULL".
1361 
1362 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1363   assert_at_safepoint(true /* should_be_vm_thread */);
1364 
1365   _verifier->verify_region_sets_optional();
1366 
1367   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1368   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1369                             word_size * HeapWordSize);
1370 
1371 
1372   if (expand(expand_bytes, _workers)) {
1373     _hrm.verify_optional();
1374     _verifier->verify_region_sets_optional();
1375     return attempt_allocation_at_safepoint(word_size,
1376                                            context,
1377                                            false /* expect_null_mutator_alloc_region */);
1378   }
1379   return NULL;
1380 }
1381 
1382 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1383   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1384   aligned_expand_bytes = align_up(aligned_expand_bytes,
1385                                        HeapRegion::GrainBytes);
1386 
1387   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1388                             expand_bytes, aligned_expand_bytes);
1389 
1390   if (is_maximal_no_gc()) {
1391     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1392     return false;
1393   }
1394 
1395   double expand_heap_start_time_sec = os::elapsedTime();
1396   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1397   assert(regions_to_expand > 0, "Must expand by at least one region");
1398 
1399   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1400   if (expand_time_ms != NULL) {
1401     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1402   }
1403 
1404   if (expanded_by > 0) {
1405     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1406     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1407     g1_policy()->record_new_heap_size(num_regions());
1408   } else {
1409     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1410 
1411     // The expansion of the virtual storage space was unsuccessful.
1412     // Let's see if it was because we ran out of swap.
1413     if (G1ExitOnExpansionFailure &&
1414         _hrm.available() >= regions_to_expand) {
1415       // We had head room...
1416       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1417     }
1418   }
1419   return regions_to_expand > 0;
1420 }
1421 
1422 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1423   size_t aligned_shrink_bytes =
1424     ReservedSpace::page_align_size_down(shrink_bytes);
1425   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1426                                          HeapRegion::GrainBytes);
1427   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1428 
1429   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1430   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1431 
1432 
1433   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1434                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1435   if (num_regions_removed > 0) {
1436     g1_policy()->record_new_heap_size(num_regions());
1437   } else {
1438     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1439   }
1440 }
1441 
1442 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1443   _verifier->verify_region_sets_optional();
1444 
1445   // We should only reach here at the end of a Full GC which means we
1446   // should not not be holding to any GC alloc regions. The method
1447   // below will make sure of that and do any remaining clean up.
1448   _allocator->abandon_gc_alloc_regions();
1449 
1450   // Instead of tearing down / rebuilding the free lists here, we
1451   // could instead use the remove_all_pending() method on free_list to
1452   // remove only the ones that we need to remove.
1453   tear_down_region_sets(true /* free_list_only */);
1454   shrink_helper(shrink_bytes);
1455   rebuild_region_sets(true /* free_list_only */);
1456 
1457   _hrm.verify_optional();
1458   _verifier->verify_region_sets_optional();
1459 }
1460 
1461 // Public methods.
1462 
1463 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1464   CollectedHeap(),
1465   _young_gen_sampling_thread(NULL),
1466   _collector_policy(collector_policy),
1467   _soft_ref_policy(),
1468   _memory_manager("G1 Young Generation", "end of minor GC"),
1469   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1470   _eden_pool(NULL),
1471   _survivor_pool(NULL),
1472   _old_pool(NULL),
1473   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1474   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1475   _g1_policy(create_g1_policy(_gc_timer_stw)),
1476   _collection_set(this, _g1_policy),
1477   _dirty_card_queue_set(false),
1478   _is_alive_closure_cm(this),
1479   _is_alive_closure_stw(this),
1480   _ref_processor_cm(NULL),
1481   _ref_processor_stw(NULL),
1482   _bot(NULL),
1483   _hot_card_cache(NULL),
1484   _g1_rem_set(NULL),
1485   _cr(NULL),
1486   _g1mm(NULL),
1487   _preserved_marks_set(true /* in_c_heap */),
1488   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1489   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1490   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1491   _humongous_reclaim_candidates(),
1492   _has_humongous_reclaim_candidates(false),
1493   _archive_allocator(NULL),
1494   _free_regions_coming(false),
1495   _gc_time_stamp(0),
1496   _summary_bytes_used(0),
1497   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1498   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1499   _expand_heap_after_alloc_failure(true),
1500   _old_marking_cycles_started(0),
1501   _old_marking_cycles_completed(0),
1502   _in_cset_fast_test() {
1503 
1504   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1505                           /* are_GC_task_threads */true,
1506                           /* are_ConcurrentGC_threads */false);
1507   _workers->initialize_workers();
1508   _verifier = new G1HeapVerifier(this);
1509 
1510   _allocator = new G1DefaultAllocator(this);
1511 
1512   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1513 
1514   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1515 
1516   // Override the default _filler_array_max_size so that no humongous filler
1517   // objects are created.
1518   _filler_array_max_size = _humongous_object_threshold_in_words;
1519 
1520   uint n_queues = ParallelGCThreads;
1521   _task_queues = new RefToScanQueueSet(n_queues);
1522 
1523   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1524 
1525   for (uint i = 0; i < n_queues; i++) {
1526     RefToScanQueue* q = new RefToScanQueue();
1527     q->initialize();
1528     _task_queues->register_queue(i, q);
1529     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1530   }
1531 
1532   // Initialize the G1EvacuationFailureALot counters and flags.
1533   NOT_PRODUCT(reset_evacuation_should_fail();)
1534 
1535   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1536 }
1537 
1538 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1539                                                                  size_t size,
1540                                                                  size_t translation_factor) {
1541   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1542   // Allocate a new reserved space, preferring to use large pages.
1543   ReservedSpace rs(size, preferred_page_size);
1544   G1RegionToSpaceMapper* result  =
1545     G1RegionToSpaceMapper::create_mapper(rs,
1546                                          size,
1547                                          rs.alignment(),
1548                                          HeapRegion::GrainBytes,
1549                                          translation_factor,
1550                                          mtGC);
1551 
1552   os::trace_page_sizes_for_requested_size(description,
1553                                           size,
1554                                           preferred_page_size,
1555                                           rs.alignment(),
1556                                           rs.base(),
1557                                           rs.size());
1558 
1559   return result;
1560 }
1561 
1562 jint G1CollectedHeap::initialize_concurrent_refinement() {
1563   jint ecode = JNI_OK;
1564   _cr = G1ConcurrentRefine::create(&ecode);
1565   return ecode;
1566 }
1567 
1568 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1569   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1570   if (_young_gen_sampling_thread->osthread() == NULL) {
1571     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1572     return JNI_ENOMEM;
1573   }
1574   return JNI_OK;
1575 }
1576 
1577 jint G1CollectedHeap::initialize() {
1578   os::enable_vtime();
1579 
1580   // Necessary to satisfy locking discipline assertions.
1581 
1582   MutexLocker x(Heap_lock);
1583 
1584   // While there are no constraints in the GC code that HeapWordSize
1585   // be any particular value, there are multiple other areas in the
1586   // system which believe this to be true (e.g. oop->object_size in some
1587   // cases incorrectly returns the size in wordSize units rather than
1588   // HeapWordSize).
1589   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1590 
1591   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1592   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1593   size_t heap_alignment = collector_policy()->heap_alignment();
1594 
1595   // Ensure that the sizes are properly aligned.
1596   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1597   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1598   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1599 
1600   // Reserve the maximum.
1601 
1602   // When compressed oops are enabled, the preferred heap base
1603   // is calculated by subtracting the requested size from the
1604   // 32Gb boundary and using the result as the base address for
1605   // heap reservation. If the requested size is not aligned to
1606   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1607   // into the ReservedHeapSpace constructor) then the actual
1608   // base of the reserved heap may end up differing from the
1609   // address that was requested (i.e. the preferred heap base).
1610   // If this happens then we could end up using a non-optimal
1611   // compressed oops mode.
1612 
1613   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1614                                                  heap_alignment);
1615 
1616   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1617 
1618   // Create the barrier set for the entire reserved region.
1619   G1SATBCardTableLoggingModRefBS* bs
1620     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1621   bs->initialize();
1622   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1623   set_barrier_set(bs);
1624 
1625   // Create the hot card cache.
1626   _hot_card_cache = new G1HotCardCache(this);
1627 
1628   // Carve out the G1 part of the heap.
1629   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1630   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1631   G1RegionToSpaceMapper* heap_storage =
1632     G1RegionToSpaceMapper::create_mapper(g1_rs,
1633                                          g1_rs.size(),
1634                                          page_size,
1635                                          HeapRegion::GrainBytes,
1636                                          1,
1637                                          mtJavaHeap);
1638   os::trace_page_sizes("Heap",
1639                        collector_policy()->min_heap_byte_size(),
1640                        max_byte_size,
1641                        page_size,
1642                        heap_rs.base(),
1643                        heap_rs.size());
1644   heap_storage->set_mapping_changed_listener(&_listener);
1645 
1646   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1647   G1RegionToSpaceMapper* bot_storage =
1648     create_aux_memory_mapper("Block Offset Table",
1649                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1650                              G1BlockOffsetTable::heap_map_factor());
1651 
1652   G1RegionToSpaceMapper* cardtable_storage =
1653     create_aux_memory_mapper("Card Table",
1654                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1655                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1656 
1657   G1RegionToSpaceMapper* card_counts_storage =
1658     create_aux_memory_mapper("Card Counts Table",
1659                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1660                              G1CardCounts::heap_map_factor());
1661 
1662   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1663   G1RegionToSpaceMapper* prev_bitmap_storage =
1664     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1665   G1RegionToSpaceMapper* next_bitmap_storage =
1666     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1667 
1668   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1669   g1_barrier_set()->initialize(cardtable_storage);
1670   // Do later initialization work for concurrent refinement.
1671   _hot_card_cache->initialize(card_counts_storage);
1672 
1673   // 6843694 - ensure that the maximum region index can fit
1674   // in the remembered set structures.
1675   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1676   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1677 
1678   // Also create a G1 rem set.
1679   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1680   _g1_rem_set->initialize(max_capacity(), max_regions());
1681 
1682   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1683   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1684   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1685             "too many cards per region");
1686 
1687   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1688 
1689   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1690 
1691   {
1692     HeapWord* start = _hrm.reserved().start();
1693     HeapWord* end = _hrm.reserved().end();
1694     size_t granularity = HeapRegion::GrainBytes;
1695 
1696     _in_cset_fast_test.initialize(start, end, granularity);
1697     _humongous_reclaim_candidates.initialize(start, end, granularity);
1698   }
1699 
1700   // Create the G1ConcurrentMark data structure and thread.
1701   // (Must do this late, so that "max_regions" is defined.)
1702   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1703   if (_cm == NULL || !_cm->completed_initialization()) {
1704     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1705     return JNI_ENOMEM;
1706   }
1707   _cmThread = _cm->cm_thread();
1708 
1709   // Now expand into the initial heap size.
1710   if (!expand(init_byte_size, _workers)) {
1711     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1712     return JNI_ENOMEM;
1713   }
1714 
1715   // Perform any initialization actions delegated to the policy.
1716   g1_policy()->init(this, &_collection_set);
1717 
1718   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1719                                                SATB_Q_FL_lock,
1720                                                G1SATBProcessCompletedThreshold,
1721                                                Shared_SATB_Q_lock);
1722 
1723   jint ecode = initialize_concurrent_refinement();
1724   if (ecode != JNI_OK) {
1725     return ecode;
1726   }
1727 
1728   ecode = initialize_young_gen_sampling_thread();
1729   if (ecode != JNI_OK) {
1730     return ecode;
1731   }
1732 
1733   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1734                                                 DirtyCardQ_FL_lock,
1735                                                 (int)concurrent_refine()->yellow_zone(),
1736                                                 (int)concurrent_refine()->red_zone(),
1737                                                 Shared_DirtyCardQ_lock,
1738                                                 NULL,  // fl_owner
1739                                                 true); // init_free_ids
1740 
1741   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1742                                     DirtyCardQ_FL_lock,
1743                                     -1, // never trigger processing
1744                                     -1, // no limit on length
1745                                     Shared_DirtyCardQ_lock,
1746                                     &JavaThread::dirty_card_queue_set());
1747 
1748   // Here we allocate the dummy HeapRegion that is required by the
1749   // G1AllocRegion class.
1750   HeapRegion* dummy_region = _hrm.get_dummy_region();
1751 
1752   // We'll re-use the same region whether the alloc region will
1753   // require BOT updates or not and, if it doesn't, then a non-young
1754   // region will complain that it cannot support allocations without
1755   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1756   dummy_region->set_eden();
1757   // Make sure it's full.
1758   dummy_region->set_top(dummy_region->end());
1759   G1AllocRegion::setup(this, dummy_region);
1760 
1761   _allocator->init_mutator_alloc_region();
1762 
1763   // Do create of the monitoring and management support so that
1764   // values in the heap have been properly initialized.
1765   _g1mm = new G1MonitoringSupport(this);
1766 
1767   G1StringDedup::initialize();
1768 
1769   _preserved_marks_set.init(ParallelGCThreads);
1770 
1771   _collection_set.initialize(max_regions());
1772 
1773   return JNI_OK;
1774 }
1775 
1776 void G1CollectedHeap::initialize_serviceability() {
1777   _eden_pool = new G1EdenPool(this);
1778   _survivor_pool = new G1SurvivorPool(this);
1779   _old_pool = new G1OldGenPool(this);
1780 
1781   _full_gc_memory_manager.add_pool(_eden_pool);
1782   _full_gc_memory_manager.add_pool(_survivor_pool);
1783   _full_gc_memory_manager.add_pool(_old_pool);
1784 
1785   _memory_manager.add_pool(_eden_pool);
1786   _memory_manager.add_pool(_survivor_pool);
1787 
1788 }
1789 
1790 void G1CollectedHeap::stop() {
1791   // Stop all concurrent threads. We do this to make sure these threads
1792   // do not continue to execute and access resources (e.g. logging)
1793   // that are destroyed during shutdown.
1794   _cr->stop();
1795   _young_gen_sampling_thread->stop();
1796   _cmThread->stop();
1797   if (G1StringDedup::is_enabled()) {
1798     G1StringDedup::stop();
1799   }
1800 }
1801 
1802 void G1CollectedHeap::safepoint_synchronize_begin() {
1803   SuspendibleThreadSet::synchronize();
1804 }
1805 
1806 void G1CollectedHeap::safepoint_synchronize_end() {
1807   SuspendibleThreadSet::desynchronize();
1808 }
1809 
1810 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1811   return HeapRegion::max_region_size();
1812 }
1813 
1814 void G1CollectedHeap::post_initialize() {
1815   CollectedHeap::post_initialize();
1816   ref_processing_init();
1817 }
1818 
1819 void G1CollectedHeap::ref_processing_init() {
1820   // Reference processing in G1 currently works as follows:
1821   //
1822   // * There are two reference processor instances. One is
1823   //   used to record and process discovered references
1824   //   during concurrent marking; the other is used to
1825   //   record and process references during STW pauses
1826   //   (both full and incremental).
1827   // * Both ref processors need to 'span' the entire heap as
1828   //   the regions in the collection set may be dotted around.
1829   //
1830   // * For the concurrent marking ref processor:
1831   //   * Reference discovery is enabled at initial marking.
1832   //   * Reference discovery is disabled and the discovered
1833   //     references processed etc during remarking.
1834   //   * Reference discovery is MT (see below).
1835   //   * Reference discovery requires a barrier (see below).
1836   //   * Reference processing may or may not be MT
1837   //     (depending on the value of ParallelRefProcEnabled
1838   //     and ParallelGCThreads).
1839   //   * A full GC disables reference discovery by the CM
1840   //     ref processor and abandons any entries on it's
1841   //     discovered lists.
1842   //
1843   // * For the STW processor:
1844   //   * Non MT discovery is enabled at the start of a full GC.
1845   //   * Processing and enqueueing during a full GC is non-MT.
1846   //   * During a full GC, references are processed after marking.
1847   //
1848   //   * Discovery (may or may not be MT) is enabled at the start
1849   //     of an incremental evacuation pause.
1850   //   * References are processed near the end of a STW evacuation pause.
1851   //   * For both types of GC:
1852   //     * Discovery is atomic - i.e. not concurrent.
1853   //     * Reference discovery will not need a barrier.
1854 
1855   MemRegion mr = reserved_region();
1856 
1857   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1858 
1859   // Concurrent Mark ref processor
1860   _ref_processor_cm =
1861     new ReferenceProcessor(mr,    // span
1862                            mt_processing,
1863                                 // mt processing
1864                            ParallelGCThreads,
1865                                 // degree of mt processing
1866                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1867                                 // mt discovery
1868                            MAX2(ParallelGCThreads, ConcGCThreads),
1869                                 // degree of mt discovery
1870                            false,
1871                                 // Reference discovery is not atomic
1872                            &_is_alive_closure_cm);
1873                                 // is alive closure
1874                                 // (for efficiency/performance)
1875 
1876   // STW ref processor
1877   _ref_processor_stw =
1878     new ReferenceProcessor(mr,    // span
1879                            mt_processing,
1880                                 // mt processing
1881                            ParallelGCThreads,
1882                                 // degree of mt processing
1883                            (ParallelGCThreads > 1),
1884                                 // mt discovery
1885                            ParallelGCThreads,
1886                                 // degree of mt discovery
1887                            true,
1888                                 // Reference discovery is atomic
1889                            &_is_alive_closure_stw);
1890                                 // is alive closure
1891                                 // (for efficiency/performance)
1892 }
1893 
1894 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1895   return _collector_policy;
1896 }
1897 
1898 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1899   return &_soft_ref_policy;
1900 }
1901 
1902 size_t G1CollectedHeap::capacity() const {
1903   return _hrm.length() * HeapRegion::GrainBytes;
1904 }
1905 
1906 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1907   return _hrm.total_free_bytes();
1908 }
1909 
1910 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1911   hr->reset_gc_time_stamp();
1912 }
1913 
1914 #ifndef PRODUCT
1915 
1916 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1917 private:
1918   unsigned _gc_time_stamp;
1919   bool _failures;
1920 
1921 public:
1922   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1923     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1924 
1925   virtual bool do_heap_region(HeapRegion* hr) {
1926     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1927     if (_gc_time_stamp != region_gc_time_stamp) {
1928       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1929                             region_gc_time_stamp, _gc_time_stamp);
1930       _failures = true;
1931     }
1932     return false;
1933   }
1934 
1935   bool failures() { return _failures; }
1936 };
1937 
1938 void G1CollectedHeap::check_gc_time_stamps() {
1939   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1940   heap_region_iterate(&cl);
1941   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1942 }
1943 #endif // PRODUCT
1944 
1945 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1946   _hot_card_cache->drain(cl, worker_i);
1947 }
1948 
1949 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1950   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1951   size_t n_completed_buffers = 0;
1952   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1953     n_completed_buffers++;
1954   }
1955   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1956   dcqs.clear_n_completed_buffers();
1957   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1958 }
1959 
1960 // Computes the sum of the storage used by the various regions.
1961 size_t G1CollectedHeap::used() const {
1962   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1963   if (_archive_allocator != NULL) {
1964     result += _archive_allocator->used();
1965   }
1966   return result;
1967 }
1968 
1969 size_t G1CollectedHeap::used_unlocked() const {
1970   return _summary_bytes_used;
1971 }
1972 
1973 class SumUsedClosure: public HeapRegionClosure {
1974   size_t _used;
1975 public:
1976   SumUsedClosure() : _used(0) {}
1977   bool do_heap_region(HeapRegion* r) {
1978     _used += r->used();
1979     return false;
1980   }
1981   size_t result() { return _used; }
1982 };
1983 
1984 size_t G1CollectedHeap::recalculate_used() const {
1985   double recalculate_used_start = os::elapsedTime();
1986 
1987   SumUsedClosure blk;
1988   heap_region_iterate(&blk);
1989 
1990   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1991   return blk.result();
1992 }
1993 
1994 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1995   switch (cause) {
1996     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1997     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1998     case GCCause::_wb_conc_mark:                        return true;
1999     default :                                           return false;
2000   }
2001 }
2002 
2003 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2004   switch (cause) {
2005     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2006     case GCCause::_g1_humongous_allocation: return true;
2007     default:                                return is_user_requested_concurrent_full_gc(cause);
2008   }
2009 }
2010 
2011 #ifndef PRODUCT
2012 void G1CollectedHeap::allocate_dummy_regions() {
2013   // Let's fill up most of the region
2014   size_t word_size = HeapRegion::GrainWords - 1024;
2015   // And as a result the region we'll allocate will be humongous.
2016   guarantee(is_humongous(word_size), "sanity");
2017 
2018   // _filler_array_max_size is set to humongous object threshold
2019   // but temporarily change it to use CollectedHeap::fill_with_object().
2020   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2021 
2022   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2023     // Let's use the existing mechanism for the allocation
2024     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2025                                                  AllocationContext::system());
2026     if (dummy_obj != NULL) {
2027       MemRegion mr(dummy_obj, word_size);
2028       CollectedHeap::fill_with_object(mr);
2029     } else {
2030       // If we can't allocate once, we probably cannot allocate
2031       // again. Let's get out of the loop.
2032       break;
2033     }
2034   }
2035 }
2036 #endif // !PRODUCT
2037 
2038 void G1CollectedHeap::increment_old_marking_cycles_started() {
2039   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2040          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2041          "Wrong marking cycle count (started: %d, completed: %d)",
2042          _old_marking_cycles_started, _old_marking_cycles_completed);
2043 
2044   _old_marking_cycles_started++;
2045 }
2046 
2047 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2048   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2049 
2050   // We assume that if concurrent == true, then the caller is a
2051   // concurrent thread that was joined the Suspendible Thread
2052   // Set. If there's ever a cheap way to check this, we should add an
2053   // assert here.
2054 
2055   // Given that this method is called at the end of a Full GC or of a
2056   // concurrent cycle, and those can be nested (i.e., a Full GC can
2057   // interrupt a concurrent cycle), the number of full collections
2058   // completed should be either one (in the case where there was no
2059   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2060   // behind the number of full collections started.
2061 
2062   // This is the case for the inner caller, i.e. a Full GC.
2063   assert(concurrent ||
2064          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2065          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2066          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2067          "is inconsistent with _old_marking_cycles_completed = %u",
2068          _old_marking_cycles_started, _old_marking_cycles_completed);
2069 
2070   // This is the case for the outer caller, i.e. the concurrent cycle.
2071   assert(!concurrent ||
2072          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2073          "for outer caller (concurrent cycle): "
2074          "_old_marking_cycles_started = %u "
2075          "is inconsistent with _old_marking_cycles_completed = %u",
2076          _old_marking_cycles_started, _old_marking_cycles_completed);
2077 
2078   _old_marking_cycles_completed += 1;
2079 
2080   // We need to clear the "in_progress" flag in the CM thread before
2081   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2082   // is set) so that if a waiter requests another System.gc() it doesn't
2083   // incorrectly see that a marking cycle is still in progress.
2084   if (concurrent) {
2085     _cmThread->set_idle();
2086   }
2087 
2088   // This notify_all() will ensure that a thread that called
2089   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2090   // and it's waiting for a full GC to finish will be woken up. It is
2091   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2092   FullGCCount_lock->notify_all();
2093 }
2094 
2095 void G1CollectedHeap::collect(GCCause::Cause cause) {
2096   assert_heap_not_locked();
2097 
2098   uint gc_count_before;
2099   uint old_marking_count_before;
2100   uint full_gc_count_before;
2101   bool retry_gc;
2102 
2103   do {
2104     retry_gc = false;
2105 
2106     {
2107       MutexLocker ml(Heap_lock);
2108 
2109       // Read the GC count while holding the Heap_lock
2110       gc_count_before = total_collections();
2111       full_gc_count_before = total_full_collections();
2112       old_marking_count_before = _old_marking_cycles_started;
2113     }
2114 
2115     if (should_do_concurrent_full_gc(cause)) {
2116       // Schedule an initial-mark evacuation pause that will start a
2117       // concurrent cycle. We're setting word_size to 0 which means that
2118       // we are not requesting a post-GC allocation.
2119       VM_G1CollectForAllocation op(0,     /* word_size */
2120                                    gc_count_before,
2121                                    cause,
2122                                    true,  /* should_initiate_conc_mark */
2123                                    g1_policy()->max_pause_time_ms(),
2124                                    AllocationContext::current());
2125       VMThread::execute(&op);
2126       if (!op.pause_succeeded()) {
2127         if (old_marking_count_before == _old_marking_cycles_started) {
2128           retry_gc = op.should_retry_gc();
2129         } else {
2130           // A Full GC happened while we were trying to schedule the
2131           // initial-mark GC. No point in starting a new cycle given
2132           // that the whole heap was collected anyway.
2133         }
2134 
2135         if (retry_gc) {
2136           if (GCLocker::is_active_and_needs_gc()) {
2137             GCLocker::stall_until_clear();
2138           }
2139         }
2140       }
2141     } else {
2142       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2143           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2144 
2145         // Schedule a standard evacuation pause. We're setting word_size
2146         // to 0 which means that we are not requesting a post-GC allocation.
2147         VM_G1CollectForAllocation op(0,     /* word_size */
2148                                      gc_count_before,
2149                                      cause,
2150                                      false, /* should_initiate_conc_mark */
2151                                      g1_policy()->max_pause_time_ms(),
2152                                      AllocationContext::current());
2153         VMThread::execute(&op);
2154       } else {
2155         // Schedule a Full GC.
2156         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2157         VMThread::execute(&op);
2158       }
2159     }
2160   } while (retry_gc);
2161 }
2162 
2163 bool G1CollectedHeap::is_in(const void* p) const {
2164   if (_hrm.reserved().contains(p)) {
2165     // Given that we know that p is in the reserved space,
2166     // heap_region_containing() should successfully
2167     // return the containing region.
2168     HeapRegion* hr = heap_region_containing(p);
2169     return hr->is_in(p);
2170   } else {
2171     return false;
2172   }
2173 }
2174 
2175 #ifdef ASSERT
2176 bool G1CollectedHeap::is_in_exact(const void* p) const {
2177   bool contains = reserved_region().contains(p);
2178   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2179   if (contains && available) {
2180     return true;
2181   } else {
2182     return false;
2183   }
2184 }
2185 #endif
2186 
2187 // Iteration functions.
2188 
2189 // Iterates an ObjectClosure over all objects within a HeapRegion.
2190 
2191 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2192   ObjectClosure* _cl;
2193 public:
2194   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2195   bool do_heap_region(HeapRegion* r) {
2196     if (!r->is_continues_humongous()) {
2197       r->object_iterate(_cl);
2198     }
2199     return false;
2200   }
2201 };
2202 
2203 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2204   IterateObjectClosureRegionClosure blk(cl);
2205   heap_region_iterate(&blk);
2206 }
2207 
2208 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2209   _hrm.iterate(cl);
2210 }
2211 
2212 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2213                                                                  HeapRegionClaimer *hrclaimer,
2214                                                                  uint worker_id) const {
2215   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2216 }
2217 
2218 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2219                                                          HeapRegionClaimer *hrclaimer) const {
2220   _hrm.par_iterate(cl, hrclaimer, 0);
2221 }
2222 
2223 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2224   _collection_set.iterate(cl);
2225 }
2226 
2227 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2228   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2229 }
2230 
2231 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2232   HeapRegion* hr = heap_region_containing(addr);
2233   return hr->block_start(addr);
2234 }
2235 
2236 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2237   HeapRegion* hr = heap_region_containing(addr);
2238   return hr->block_size(addr);
2239 }
2240 
2241 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2242   HeapRegion* hr = heap_region_containing(addr);
2243   return hr->block_is_obj(addr);
2244 }
2245 
2246 bool G1CollectedHeap::supports_tlab_allocation() const {
2247   return true;
2248 }
2249 
2250 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2251   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2252 }
2253 
2254 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2255   return _eden.length() * HeapRegion::GrainBytes;
2256 }
2257 
2258 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2259 // must be equal to the humongous object limit.
2260 size_t G1CollectedHeap::max_tlab_size() const {
2261   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2262 }
2263 
2264 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2265   AllocationContext_t context = AllocationContext::current();
2266   return _allocator->unsafe_max_tlab_alloc(context);
2267 }
2268 
2269 size_t G1CollectedHeap::max_capacity() const {
2270   return _hrm.reserved().byte_size();
2271 }
2272 
2273 jlong G1CollectedHeap::millis_since_last_gc() {
2274   // See the notes in GenCollectedHeap::millis_since_last_gc()
2275   // for more information about the implementation.
2276   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2277     _g1_policy->collection_pause_end_millis();
2278   if (ret_val < 0) {
2279     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2280       ". returning zero instead.", ret_val);
2281     return 0;
2282   }
2283   return ret_val;
2284 }
2285 
2286 void G1CollectedHeap::prepare_for_verify() {
2287   _verifier->prepare_for_verify();
2288 }
2289 
2290 void G1CollectedHeap::verify(VerifyOption vo) {
2291   _verifier->verify(vo);
2292 }
2293 
2294 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2295   return true;
2296 }
2297 
2298 const char* const* G1CollectedHeap::concurrent_phases() const {
2299   return _cmThread->concurrent_phases();
2300 }
2301 
2302 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2303   return _cmThread->request_concurrent_phase(phase);
2304 }
2305 
2306 class PrintRegionClosure: public HeapRegionClosure {
2307   outputStream* _st;
2308 public:
2309   PrintRegionClosure(outputStream* st) : _st(st) {}
2310   bool do_heap_region(HeapRegion* r) {
2311     r->print_on(_st);
2312     return false;
2313   }
2314 };
2315 
2316 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2317                                        const HeapRegion* hr,
2318                                        const VerifyOption vo) const {
2319   switch (vo) {
2320   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2321   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2322   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2323   default:                            ShouldNotReachHere();
2324   }
2325   return false; // keep some compilers happy
2326 }
2327 
2328 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2329                                        const VerifyOption vo) const {
2330   switch (vo) {
2331   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2332   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2333   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2334   default:                            ShouldNotReachHere();
2335   }
2336   return false; // keep some compilers happy
2337 }
2338 
2339 void G1CollectedHeap::print_heap_regions() const {
2340   LogTarget(Trace, gc, heap, region) lt;
2341   if (lt.is_enabled()) {
2342     LogStream ls(lt);
2343     print_regions_on(&ls);
2344   }
2345 }
2346 
2347 void G1CollectedHeap::print_on(outputStream* st) const {
2348   st->print(" %-20s", "garbage-first heap");
2349   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2350             capacity()/K, used_unlocked()/K);
2351   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2352             p2i(_hrm.reserved().start()),
2353             p2i(_hrm.reserved().end()));
2354   st->cr();
2355   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2356   uint young_regions = young_regions_count();
2357   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2358             (size_t) young_regions * HeapRegion::GrainBytes / K);
2359   uint survivor_regions = survivor_regions_count();
2360   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2361             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2362   st->cr();
2363   MetaspaceAux::print_on(st);
2364 }
2365 
2366 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2367   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2368                "HS=humongous(starts), HC=humongous(continues), "
2369                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2370                "AC=allocation context, "
2371                "TAMS=top-at-mark-start (previous, next)");
2372   PrintRegionClosure blk(st);
2373   heap_region_iterate(&blk);
2374 }
2375 
2376 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2377   print_on(st);
2378 
2379   // Print the per-region information.
2380   print_regions_on(st);
2381 }
2382 
2383 void G1CollectedHeap::print_on_error(outputStream* st) const {
2384   this->CollectedHeap::print_on_error(st);
2385 
2386   if (_cm != NULL) {
2387     st->cr();
2388     _cm->print_on_error(st);
2389   }
2390 }
2391 
2392 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2393   workers()->print_worker_threads_on(st);
2394   _cmThread->print_on(st);
2395   st->cr();
2396   _cm->print_worker_threads_on(st);
2397   _cr->print_threads_on(st);
2398   _young_gen_sampling_thread->print_on(st);
2399   if (G1StringDedup::is_enabled()) {
2400     G1StringDedup::print_worker_threads_on(st);
2401   }
2402 }
2403 
2404 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2405   workers()->threads_do(tc);
2406   tc->do_thread(_cmThread);
2407   _cm->threads_do(tc);
2408   _cr->threads_do(tc);
2409   tc->do_thread(_young_gen_sampling_thread);
2410   if (G1StringDedup::is_enabled()) {
2411     G1StringDedup::threads_do(tc);
2412   }
2413 }
2414 
2415 void G1CollectedHeap::print_tracing_info() const {
2416   g1_rem_set()->print_summary_info();
2417   concurrent_mark()->print_summary_info();
2418 }
2419 
2420 #ifndef PRODUCT
2421 // Helpful for debugging RSet issues.
2422 
2423 class PrintRSetsClosure : public HeapRegionClosure {
2424 private:
2425   const char* _msg;
2426   size_t _occupied_sum;
2427 
2428 public:
2429   bool do_heap_region(HeapRegion* r) {
2430     HeapRegionRemSet* hrrs = r->rem_set();
2431     size_t occupied = hrrs->occupied();
2432     _occupied_sum += occupied;
2433 
2434     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2435     if (occupied == 0) {
2436       tty->print_cr("  RSet is empty");
2437     } else {
2438       hrrs->print();
2439     }
2440     tty->print_cr("----------");
2441     return false;
2442   }
2443 
2444   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2445     tty->cr();
2446     tty->print_cr("========================================");
2447     tty->print_cr("%s", msg);
2448     tty->cr();
2449   }
2450 
2451   ~PrintRSetsClosure() {
2452     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2453     tty->print_cr("========================================");
2454     tty->cr();
2455   }
2456 };
2457 
2458 void G1CollectedHeap::print_cset_rsets() {
2459   PrintRSetsClosure cl("Printing CSet RSets");
2460   collection_set_iterate(&cl);
2461 }
2462 
2463 void G1CollectedHeap::print_all_rsets() {
2464   PrintRSetsClosure cl("Printing All RSets");;
2465   heap_region_iterate(&cl);
2466 }
2467 #endif // PRODUCT
2468 
2469 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2470 
2471   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2472   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2473   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2474 
2475   size_t eden_capacity_bytes =
2476     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2477 
2478   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2479   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2480                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2481 }
2482 
2483 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2484   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2485                        stats->unused(), stats->used(), stats->region_end_waste(),
2486                        stats->regions_filled(), stats->direct_allocated(),
2487                        stats->failure_used(), stats->failure_waste());
2488 }
2489 
2490 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2491   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2492   gc_tracer->report_gc_heap_summary(when, heap_summary);
2493 
2494   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2495   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2496 }
2497 
2498 G1CollectedHeap* G1CollectedHeap::heap() {
2499   CollectedHeap* heap = Universe::heap();
2500   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2501   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2502   return (G1CollectedHeap*)heap;
2503 }
2504 
2505 void G1CollectedHeap::gc_prologue(bool full) {
2506   // always_do_update_barrier = false;
2507   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2508 
2509   // This summary needs to be printed before incrementing total collections.
2510   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2511 
2512   // Update common counters.
2513   increment_total_collections(full /* full gc */);
2514   if (full) {
2515     increment_old_marking_cycles_started();
2516     reset_gc_time_stamp();
2517   } else {
2518     increment_gc_time_stamp();
2519   }
2520 
2521   // Fill TLAB's and such
2522   double start = os::elapsedTime();
2523   accumulate_statistics_all_tlabs();
2524   ensure_parsability(true);
2525   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2526 }
2527 
2528 void G1CollectedHeap::gc_epilogue(bool full) {
2529   // Update common counters.
2530   if (full) {
2531     // Update the number of full collections that have been completed.
2532     increment_old_marking_cycles_completed(false /* concurrent */);
2533   }
2534 
2535   // We are at the end of the GC. Total collections has already been increased.
2536   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2537 
2538   // FIXME: what is this about?
2539   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2540   // is set.
2541 #if COMPILER2_OR_JVMCI
2542   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2543 #endif
2544   // always_do_update_barrier = true;
2545 
2546   double start = os::elapsedTime();
2547   resize_all_tlabs();
2548   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2549 
2550   MemoryService::track_memory_usage();
2551   // We have just completed a GC. Update the soft reference
2552   // policy with the new heap occupancy
2553   Universe::update_heap_info_at_gc();
2554 }
2555 
2556 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2557                                                uint gc_count_before,
2558                                                bool* succeeded,
2559                                                GCCause::Cause gc_cause) {
2560   assert_heap_not_locked_and_not_at_safepoint();
2561   VM_G1CollectForAllocation op(word_size,
2562                                gc_count_before,
2563                                gc_cause,
2564                                false, /* should_initiate_conc_mark */
2565                                g1_policy()->max_pause_time_ms(),
2566                                AllocationContext::current());
2567   VMThread::execute(&op);
2568 
2569   HeapWord* result = op.result();
2570   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2571   assert(result == NULL || ret_succeeded,
2572          "the result should be NULL if the VM did not succeed");
2573   *succeeded = ret_succeeded;
2574 
2575   assert_heap_not_locked();
2576   return result;
2577 }
2578 
2579 void
2580 G1CollectedHeap::doConcurrentMark() {
2581   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2582   if (!_cmThread->in_progress()) {
2583     _cmThread->set_started();
2584     CGC_lock->notify();
2585   }
2586 }
2587 
2588 size_t G1CollectedHeap::pending_card_num() {
2589   size_t extra_cards = 0;
2590   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2591     DirtyCardQueue& dcq = curr->dirty_card_queue();
2592     extra_cards += dcq.size();
2593   }
2594   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2595   size_t buffer_size = dcqs.buffer_size();
2596   size_t buffer_num = dcqs.completed_buffers_num();
2597 
2598   return buffer_size * buffer_num + extra_cards;
2599 }
2600 
2601 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2602  private:
2603   size_t _total_humongous;
2604   size_t _candidate_humongous;
2605 
2606   DirtyCardQueue _dcq;
2607 
2608   // We don't nominate objects with many remembered set entries, on
2609   // the assumption that such objects are likely still live.
2610   bool is_remset_small(HeapRegion* region) const {
2611     HeapRegionRemSet* const rset = region->rem_set();
2612     return G1EagerReclaimHumongousObjectsWithStaleRefs
2613       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2614       : rset->is_empty();
2615   }
2616 
2617   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2618     assert(region->is_starts_humongous(), "Must start a humongous object");
2619 
2620     oop obj = oop(region->bottom());
2621 
2622     // Dead objects cannot be eager reclaim candidates. Due to class
2623     // unloading it is unsafe to query their classes so we return early.
2624     if (heap->is_obj_dead(obj, region)) {
2625       return false;
2626     }
2627 
2628     // Candidate selection must satisfy the following constraints
2629     // while concurrent marking is in progress:
2630     //
2631     // * In order to maintain SATB invariants, an object must not be
2632     // reclaimed if it was allocated before the start of marking and
2633     // has not had its references scanned.  Such an object must have
2634     // its references (including type metadata) scanned to ensure no
2635     // live objects are missed by the marking process.  Objects
2636     // allocated after the start of concurrent marking don't need to
2637     // be scanned.
2638     //
2639     // * An object must not be reclaimed if it is on the concurrent
2640     // mark stack.  Objects allocated after the start of concurrent
2641     // marking are never pushed on the mark stack.
2642     //
2643     // Nominating only objects allocated after the start of concurrent
2644     // marking is sufficient to meet both constraints.  This may miss
2645     // some objects that satisfy the constraints, but the marking data
2646     // structures don't support efficiently performing the needed
2647     // additional tests or scrubbing of the mark stack.
2648     //
2649     // However, we presently only nominate is_typeArray() objects.
2650     // A humongous object containing references induces remembered
2651     // set entries on other regions.  In order to reclaim such an
2652     // object, those remembered sets would need to be cleaned up.
2653     //
2654     // We also treat is_typeArray() objects specially, allowing them
2655     // to be reclaimed even if allocated before the start of
2656     // concurrent mark.  For this we rely on mark stack insertion to
2657     // exclude is_typeArray() objects, preventing reclaiming an object
2658     // that is in the mark stack.  We also rely on the metadata for
2659     // such objects to be built-in and so ensured to be kept live.
2660     // Frequent allocation and drop of large binary blobs is an
2661     // important use case for eager reclaim, and this special handling
2662     // may reduce needed headroom.
2663 
2664     return obj->is_typeArray() && is_remset_small(region);
2665   }
2666 
2667  public:
2668   RegisterHumongousWithInCSetFastTestClosure()
2669   : _total_humongous(0),
2670     _candidate_humongous(0),
2671     _dcq(&JavaThread::dirty_card_queue_set()) {
2672   }
2673 
2674   virtual bool do_heap_region(HeapRegion* r) {
2675     if (!r->is_starts_humongous()) {
2676       return false;
2677     }
2678     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2679 
2680     bool is_candidate = humongous_region_is_candidate(g1h, r);
2681     uint rindex = r->hrm_index();
2682     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2683     if (is_candidate) {
2684       _candidate_humongous++;
2685       g1h->register_humongous_region_with_cset(rindex);
2686       // Is_candidate already filters out humongous object with large remembered sets.
2687       // If we have a humongous object with a few remembered sets, we simply flush these
2688       // remembered set entries into the DCQS. That will result in automatic
2689       // re-evaluation of their remembered set entries during the following evacuation
2690       // phase.
2691       if (!r->rem_set()->is_empty()) {
2692         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2693                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2694         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2695         HeapRegionRemSetIterator hrrs(r->rem_set());
2696         size_t card_index;
2697         while (hrrs.has_next(card_index)) {
2698           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2699           // The remembered set might contain references to already freed
2700           // regions. Filter out such entries to avoid failing card table
2701           // verification.
2702           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2703             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2704               *card_ptr = CardTableModRefBS::dirty_card_val();
2705               _dcq.enqueue(card_ptr);
2706             }
2707           }
2708         }
2709         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2710                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2711                hrrs.n_yielded(), r->rem_set()->occupied());
2712         r->rem_set()->clear_locked();
2713       }
2714       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2715     }
2716     _total_humongous++;
2717 
2718     return false;
2719   }
2720 
2721   size_t total_humongous() const { return _total_humongous; }
2722   size_t candidate_humongous() const { return _candidate_humongous; }
2723 
2724   void flush_rem_set_entries() { _dcq.flush(); }
2725 };
2726 
2727 void G1CollectedHeap::register_humongous_regions_with_cset() {
2728   if (!G1EagerReclaimHumongousObjects) {
2729     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2730     return;
2731   }
2732   double time = os::elapsed_counter();
2733 
2734   // Collect reclaim candidate information and register candidates with cset.
2735   RegisterHumongousWithInCSetFastTestClosure cl;
2736   heap_region_iterate(&cl);
2737 
2738   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2739   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2740                                                                   cl.total_humongous(),
2741                                                                   cl.candidate_humongous());
2742   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2743 
2744   // Finally flush all remembered set entries to re-check into the global DCQS.
2745   cl.flush_rem_set_entries();
2746 }
2747 
2748 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2749   public:
2750     bool do_heap_region(HeapRegion* hr) {
2751       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2752         hr->verify_rem_set();
2753       }
2754       return false;
2755     }
2756 };
2757 
2758 uint G1CollectedHeap::num_task_queues() const {
2759   return _task_queues->size();
2760 }
2761 
2762 #if TASKQUEUE_STATS
2763 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2764   st->print_raw_cr("GC Task Stats");
2765   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2766   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2767 }
2768 
2769 void G1CollectedHeap::print_taskqueue_stats() const {
2770   if (!log_is_enabled(Trace, gc, task, stats)) {
2771     return;
2772   }
2773   Log(gc, task, stats) log;
2774   ResourceMark rm;
2775   LogStream ls(log.trace());
2776   outputStream* st = &ls;
2777 
2778   print_taskqueue_stats_hdr(st);
2779 
2780   TaskQueueStats totals;
2781   const uint n = num_task_queues();
2782   for (uint i = 0; i < n; ++i) {
2783     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2784     totals += task_queue(i)->stats;
2785   }
2786   st->print_raw("tot "); totals.print(st); st->cr();
2787 
2788   DEBUG_ONLY(totals.verify());
2789 }
2790 
2791 void G1CollectedHeap::reset_taskqueue_stats() {
2792   const uint n = num_task_queues();
2793   for (uint i = 0; i < n; ++i) {
2794     task_queue(i)->stats.reset();
2795   }
2796 }
2797 #endif // TASKQUEUE_STATS
2798 
2799 void G1CollectedHeap::wait_for_root_region_scanning() {
2800   double scan_wait_start = os::elapsedTime();
2801   // We have to wait until the CM threads finish scanning the
2802   // root regions as it's the only way to ensure that all the
2803   // objects on them have been correctly scanned before we start
2804   // moving them during the GC.
2805   bool waited = _cm->root_regions()->wait_until_scan_finished();
2806   double wait_time_ms = 0.0;
2807   if (waited) {
2808     double scan_wait_end = os::elapsedTime();
2809     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2810   }
2811   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2812 }
2813 
2814 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2815 private:
2816   G1HRPrinter* _hr_printer;
2817 public:
2818   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2819 
2820   virtual bool do_heap_region(HeapRegion* r) {
2821     _hr_printer->cset(r);
2822     return false;
2823   }
2824 };
2825 
2826 void G1CollectedHeap::start_new_collection_set() {
2827   collection_set()->start_incremental_building();
2828 
2829   clear_cset_fast_test();
2830 
2831   guarantee(_eden.length() == 0, "eden should have been cleared");
2832   g1_policy()->transfer_survivors_to_cset(survivor());
2833 }
2834 
2835 bool
2836 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2837   assert_at_safepoint(true /* should_be_vm_thread */);
2838   guarantee(!is_gc_active(), "collection is not reentrant");
2839 
2840   if (GCLocker::check_active_before_gc()) {
2841     return false;
2842   }
2843 
2844   _gc_timer_stw->register_gc_start();
2845 
2846   GCIdMark gc_id_mark;
2847   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2848 
2849   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2850   ResourceMark rm;
2851 
2852   g1_policy()->note_gc_start();
2853 
2854   wait_for_root_region_scanning();
2855 
2856   print_heap_before_gc();
2857   print_heap_regions();
2858   trace_heap_before_gc(_gc_tracer_stw);
2859 
2860   _verifier->verify_region_sets_optional();
2861   _verifier->verify_dirty_young_regions();
2862 
2863   // We should not be doing initial mark unless the conc mark thread is running
2864   if (!_cmThread->should_terminate()) {
2865     // This call will decide whether this pause is an initial-mark
2866     // pause. If it is, during_initial_mark_pause() will return true
2867     // for the duration of this pause.
2868     g1_policy()->decide_on_conc_mark_initiation();
2869   }
2870 
2871   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2872   assert(!collector_state()->during_initial_mark_pause() ||
2873           collector_state()->gcs_are_young(), "sanity");
2874 
2875   // We also do not allow mixed GCs during marking.
2876   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2877 
2878   // Record whether this pause is an initial mark. When the current
2879   // thread has completed its logging output and it's safe to signal
2880   // the CM thread, the flag's value in the policy has been reset.
2881   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2882 
2883   // Inner scope for scope based logging, timers, and stats collection
2884   {
2885     EvacuationInfo evacuation_info;
2886 
2887     if (collector_state()->during_initial_mark_pause()) {
2888       // We are about to start a marking cycle, so we increment the
2889       // full collection counter.
2890       increment_old_marking_cycles_started();
2891       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2892     }
2893 
2894     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2895 
2896     GCTraceCPUTime tcpu;
2897 
2898     G1HeapVerifier::G1VerifyType verify_type;
2899     FormatBuffer<> gc_string("Pause ");
2900     if (collector_state()->during_initial_mark_pause()) {
2901       gc_string.append("Initial Mark");
2902       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2903     } else if (collector_state()->gcs_are_young()) {
2904       gc_string.append("Young");
2905       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2906     } else {
2907       gc_string.append("Mixed");
2908       verify_type = G1HeapVerifier::G1VerifyMixed;
2909     }
2910     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2911 
2912     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2913                                                                   workers()->active_workers(),
2914                                                                   Threads::number_of_non_daemon_threads());
2915     workers()->update_active_workers(active_workers);
2916     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2917 
2918     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2919     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2920 
2921     // If the secondary_free_list is not empty, append it to the
2922     // free_list. No need to wait for the cleanup operation to finish;
2923     // the region allocation code will check the secondary_free_list
2924     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2925     // set, skip this step so that the region allocation code has to
2926     // get entries from the secondary_free_list.
2927     if (!G1StressConcRegionFreeing) {
2928       append_secondary_free_list_if_not_empty_with_lock();
2929     }
2930 
2931     G1HeapTransition heap_transition(this);
2932     size_t heap_used_bytes_before_gc = used();
2933 
2934     // Don't dynamically change the number of GC threads this early.  A value of
2935     // 0 is used to indicate serial work.  When parallel work is done,
2936     // it will be set.
2937 
2938     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2939       IsGCActiveMark x;
2940 
2941       gc_prologue(false);
2942 
2943       if (VerifyRememberedSets) {
2944         log_info(gc, verify)("[Verifying RemSets before GC]");
2945         VerifyRegionRemSetClosure v_cl;
2946         heap_region_iterate(&v_cl);
2947       }
2948 
2949       _verifier->verify_before_gc(verify_type);
2950 
2951       _verifier->check_bitmaps("GC Start");
2952 
2953 #if COMPILER2_OR_JVMCI
2954       DerivedPointerTable::clear();
2955 #endif
2956 
2957       // Please see comment in g1CollectedHeap.hpp and
2958       // G1CollectedHeap::ref_processing_init() to see how
2959       // reference processing currently works in G1.
2960 
2961       // Enable discovery in the STW reference processor
2962       if (g1_policy()->should_process_references()) {
2963         ref_processor_stw()->enable_discovery();
2964       } else {
2965         ref_processor_stw()->disable_discovery();
2966       }
2967 
2968       {
2969         // We want to temporarily turn off discovery by the
2970         // CM ref processor, if necessary, and turn it back on
2971         // on again later if we do. Using a scoped
2972         // NoRefDiscovery object will do this.
2973         NoRefDiscovery no_cm_discovery(ref_processor_cm());
2974 
2975         // Forget the current alloc region (we might even choose it to be part
2976         // of the collection set!).
2977         _allocator->release_mutator_alloc_region();
2978 
2979         // This timing is only used by the ergonomics to handle our pause target.
2980         // It is unclear why this should not include the full pause. We will
2981         // investigate this in CR 7178365.
2982         //
2983         // Preserving the old comment here if that helps the investigation:
2984         //
2985         // The elapsed time induced by the start time below deliberately elides
2986         // the possible verification above.
2987         double sample_start_time_sec = os::elapsedTime();
2988 
2989         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2990 
2991         if (collector_state()->during_initial_mark_pause()) {
2992           concurrent_mark()->checkpoint_roots_initial_pre();
2993         }
2994 
2995         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2996 
2997         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2998 
2999         // Make sure the remembered sets are up to date. This needs to be
3000         // done before register_humongous_regions_with_cset(), because the
3001         // remembered sets are used there to choose eager reclaim candidates.
3002         // If the remembered sets are not up to date we might miss some
3003         // entries that need to be handled.
3004         g1_rem_set()->cleanupHRRS();
3005 
3006         register_humongous_regions_with_cset();
3007 
3008         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3009 
3010         // We call this after finalize_cset() to
3011         // ensure that the CSet has been finalized.
3012         _cm->verify_no_cset_oops();
3013 
3014         if (_hr_printer.is_active()) {
3015           G1PrintCollectionSetClosure cl(&_hr_printer);
3016           _collection_set.iterate(&cl);
3017         }
3018 
3019         // Initialize the GC alloc regions.
3020         _allocator->init_gc_alloc_regions(evacuation_info);
3021 
3022         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3023         pre_evacuate_collection_set();
3024 
3025         // Actually do the work...
3026         evacuate_collection_set(evacuation_info, &per_thread_states);
3027 
3028         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3029 
3030         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3031         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3032 
3033         eagerly_reclaim_humongous_regions();
3034 
3035         record_obj_copy_mem_stats();
3036         _survivor_evac_stats.adjust_desired_plab_sz();
3037         _old_evac_stats.adjust_desired_plab_sz();
3038 
3039         double start = os::elapsedTime();
3040         start_new_collection_set();
3041         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3042 
3043         if (evacuation_failed()) {
3044           set_used(recalculate_used());
3045           if (_archive_allocator != NULL) {
3046             _archive_allocator->clear_used();
3047           }
3048           for (uint i = 0; i < ParallelGCThreads; i++) {
3049             if (_evacuation_failed_info_array[i].has_failed()) {
3050               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3051             }
3052           }
3053         } else {
3054           // The "used" of the the collection set have already been subtracted
3055           // when they were freed.  Add in the bytes evacuated.
3056           increase_used(g1_policy()->bytes_copied_during_gc());
3057         }
3058 
3059         if (collector_state()->during_initial_mark_pause()) {
3060           // We have to do this before we notify the CM threads that
3061           // they can start working to make sure that all the
3062           // appropriate initialization is done on the CM object.
3063           concurrent_mark()->checkpoint_roots_initial_post();
3064           collector_state()->set_mark_in_progress(true);
3065           // Note that we don't actually trigger the CM thread at
3066           // this point. We do that later when we're sure that
3067           // the current thread has completed its logging output.
3068         }
3069 
3070         allocate_dummy_regions();
3071 
3072         _allocator->init_mutator_alloc_region();
3073 
3074         {
3075           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3076           if (expand_bytes > 0) {
3077             size_t bytes_before = capacity();
3078             // No need for an ergo logging here,
3079             // expansion_amount() does this when it returns a value > 0.
3080             double expand_ms;
3081             if (!expand(expand_bytes, _workers, &expand_ms)) {
3082               // We failed to expand the heap. Cannot do anything about it.
3083             }
3084             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3085           }
3086         }
3087 
3088         // We redo the verification but now wrt to the new CSet which
3089         // has just got initialized after the previous CSet was freed.
3090         _cm->verify_no_cset_oops();
3091 
3092         // This timing is only used by the ergonomics to handle our pause target.
3093         // It is unclear why this should not include the full pause. We will
3094         // investigate this in CR 7178365.
3095         double sample_end_time_sec = os::elapsedTime();
3096         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3097         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3098         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3099 
3100         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3101         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3102 
3103         if (VerifyRememberedSets) {
3104           log_info(gc, verify)("[Verifying RemSets after GC]");
3105           VerifyRegionRemSetClosure v_cl;
3106           heap_region_iterate(&v_cl);
3107         }
3108 
3109         _verifier->verify_after_gc(verify_type);
3110         _verifier->check_bitmaps("GC End");
3111 
3112         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3113         ref_processor_stw()->verify_no_references_recorded();
3114 
3115         // CM reference discovery will be re-enabled if necessary.
3116       }
3117 
3118 #ifdef TRACESPINNING
3119       ParallelTaskTerminator::print_termination_counts();
3120 #endif
3121 
3122       gc_epilogue(false);
3123     }
3124 
3125     // Print the remainder of the GC log output.
3126     if (evacuation_failed()) {
3127       log_info(gc)("To-space exhausted");
3128     }
3129 
3130     g1_policy()->print_phases();
3131     heap_transition.print();
3132 
3133     // It is not yet to safe to tell the concurrent mark to
3134     // start as we have some optional output below. We don't want the
3135     // output from the concurrent mark thread interfering with this
3136     // logging output either.
3137 
3138     _hrm.verify_optional();
3139     _verifier->verify_region_sets_optional();
3140 
3141     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3142     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3143 
3144     print_heap_after_gc();
3145     print_heap_regions();
3146     trace_heap_after_gc(_gc_tracer_stw);
3147 
3148     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3149     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3150     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3151     // before any GC notifications are raised.
3152     g1mm()->update_sizes();
3153 
3154     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3155     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3156     _gc_timer_stw->register_gc_end();
3157     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3158   }
3159   // It should now be safe to tell the concurrent mark thread to start
3160   // without its logging output interfering with the logging output
3161   // that came from the pause.
3162 
3163   if (should_start_conc_mark) {
3164     // CAUTION: after the doConcurrentMark() call below,
3165     // the concurrent marking thread(s) could be running
3166     // concurrently with us. Make sure that anything after
3167     // this point does not assume that we are the only GC thread
3168     // running. Note: of course, the actual marking work will
3169     // not start until the safepoint itself is released in
3170     // SuspendibleThreadSet::desynchronize().
3171     doConcurrentMark();
3172   }
3173 
3174   return true;
3175 }
3176 
3177 void G1CollectedHeap::remove_self_forwarding_pointers() {
3178   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3179   workers()->run_task(&rsfp_task);
3180 }
3181 
3182 void G1CollectedHeap::restore_after_evac_failure() {
3183   double remove_self_forwards_start = os::elapsedTime();
3184 
3185   remove_self_forwarding_pointers();
3186   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3187   _preserved_marks_set.restore(&task_executor);
3188 
3189   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3190 }
3191 
3192 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3193   if (!_evacuation_failed) {
3194     _evacuation_failed = true;
3195   }
3196 
3197   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3198   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3199 }
3200 
3201 bool G1ParEvacuateFollowersClosure::offer_termination() {
3202   G1ParScanThreadState* const pss = par_scan_state();
3203   start_term_time();
3204   const bool res = terminator()->offer_termination();
3205   end_term_time();
3206   return res;
3207 }
3208 
3209 void G1ParEvacuateFollowersClosure::do_void() {
3210   G1ParScanThreadState* const pss = par_scan_state();
3211   pss->trim_queue();
3212   do {
3213     pss->steal_and_trim_queue(queues());
3214   } while (!offer_termination());
3215 }
3216 
3217 class G1ParTask : public AbstractGangTask {
3218 protected:
3219   G1CollectedHeap*         _g1h;
3220   G1ParScanThreadStateSet* _pss;
3221   RefToScanQueueSet*       _queues;
3222   G1RootProcessor*         _root_processor;
3223   ParallelTaskTerminator   _terminator;
3224   uint                     _n_workers;
3225 
3226 public:
3227   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3228     : AbstractGangTask("G1 collection"),
3229       _g1h(g1h),
3230       _pss(per_thread_states),
3231       _queues(task_queues),
3232       _root_processor(root_processor),
3233       _terminator(n_workers, _queues),
3234       _n_workers(n_workers)
3235   {}
3236 
3237   void work(uint worker_id) {
3238     if (worker_id >= _n_workers) return;  // no work needed this round
3239 
3240     double start_sec = os::elapsedTime();
3241     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3242 
3243     {
3244       ResourceMark rm;
3245       HandleMark   hm;
3246 
3247       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3248 
3249       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3250       pss->set_ref_processor(rp);
3251 
3252       double start_strong_roots_sec = os::elapsedTime();
3253 
3254       _root_processor->evacuate_roots(pss->closures(), worker_id);
3255 
3256       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3257       // treating the nmethods visited to act as roots for concurrent marking.
3258       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3259       // objects copied by the current evacuation.
3260       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3261                                                       pss->closures()->weak_codeblobs(),
3262                                                       worker_id);
3263 
3264       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3265 
3266       double term_sec = 0.0;
3267       size_t evac_term_attempts = 0;
3268       {
3269         double start = os::elapsedTime();
3270         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3271         evac.do_void();
3272 
3273         evac_term_attempts = evac.term_attempts();
3274         term_sec = evac.term_time();
3275         double elapsed_sec = os::elapsedTime() - start;
3276         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3277         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3278         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3279       }
3280 
3281       assert(pss->queue_is_empty(), "should be empty");
3282 
3283       if (log_is_enabled(Debug, gc, task, stats)) {
3284         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3285         size_t lab_waste;
3286         size_t lab_undo_waste;
3287         pss->waste(lab_waste, lab_undo_waste);
3288         _g1h->print_termination_stats(worker_id,
3289                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3290                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3291                                       term_sec * 1000.0,                          /* evac term time */
3292                                       evac_term_attempts,                         /* evac term attempts */
3293                                       lab_waste,                                  /* alloc buffer waste */
3294                                       lab_undo_waste                              /* undo waste */
3295                                       );
3296       }
3297 
3298       // Close the inner scope so that the ResourceMark and HandleMark
3299       // destructors are executed here and are included as part of the
3300       // "GC Worker Time".
3301     }
3302     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3303   }
3304 };
3305 
3306 void G1CollectedHeap::print_termination_stats_hdr() {
3307   log_debug(gc, task, stats)("GC Termination Stats");
3308   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3309   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3310   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3311 }
3312 
3313 void G1CollectedHeap::print_termination_stats(uint worker_id,
3314                                               double elapsed_ms,
3315                                               double strong_roots_ms,
3316                                               double term_ms,
3317                                               size_t term_attempts,
3318                                               size_t alloc_buffer_waste,
3319                                               size_t undo_waste) const {
3320   log_debug(gc, task, stats)
3321               ("%3d %9.2f %9.2f %6.2f "
3322                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3323                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3324                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3325                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3326                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3327                alloc_buffer_waste * HeapWordSize / K,
3328                undo_waste * HeapWordSize / K);
3329 }
3330 
3331 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3332 private:
3333   BoolObjectClosure* _is_alive;
3334   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3335 
3336   int _initial_string_table_size;
3337   int _initial_symbol_table_size;
3338 
3339   bool  _process_strings;
3340   int _strings_processed;
3341   int _strings_removed;
3342 
3343   bool  _process_symbols;
3344   int _symbols_processed;
3345   int _symbols_removed;
3346 
3347   bool _process_string_dedup;
3348 
3349 public:
3350   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3351     AbstractGangTask("String/Symbol Unlinking"),
3352     _is_alive(is_alive),
3353     _dedup_closure(is_alive, NULL, false),
3354     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3355     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3356     _process_string_dedup(process_string_dedup) {
3357 
3358     _initial_string_table_size = StringTable::the_table()->table_size();
3359     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3360     if (process_strings) {
3361       StringTable::clear_parallel_claimed_index();
3362     }
3363     if (process_symbols) {
3364       SymbolTable::clear_parallel_claimed_index();
3365     }
3366   }
3367 
3368   ~G1StringAndSymbolCleaningTask() {
3369     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3370               "claim value %d after unlink less than initial string table size %d",
3371               StringTable::parallel_claimed_index(), _initial_string_table_size);
3372     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3373               "claim value %d after unlink less than initial symbol table size %d",
3374               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3375 
3376     log_info(gc, stringtable)(
3377         "Cleaned string and symbol table, "
3378         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3379         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3380         strings_processed(), strings_removed(),
3381         symbols_processed(), symbols_removed());
3382   }
3383 
3384   void work(uint worker_id) {
3385     int strings_processed = 0;
3386     int strings_removed = 0;
3387     int symbols_processed = 0;
3388     int symbols_removed = 0;
3389     if (_process_strings) {
3390       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3391       Atomic::add(strings_processed, &_strings_processed);
3392       Atomic::add(strings_removed, &_strings_removed);
3393     }
3394     if (_process_symbols) {
3395       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3396       Atomic::add(symbols_processed, &_symbols_processed);
3397       Atomic::add(symbols_removed, &_symbols_removed);
3398     }
3399     if (_process_string_dedup) {
3400       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3401     }
3402   }
3403 
3404   size_t strings_processed() const { return (size_t)_strings_processed; }
3405   size_t strings_removed()   const { return (size_t)_strings_removed; }
3406 
3407   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3408   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3409 };
3410 
3411 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3412 private:
3413   static Monitor* _lock;
3414 
3415   BoolObjectClosure* const _is_alive;
3416   const bool               _unloading_occurred;
3417   const uint               _num_workers;
3418 
3419   // Variables used to claim nmethods.
3420   CompiledMethod* _first_nmethod;
3421   CompiledMethod* volatile _claimed_nmethod;
3422 
3423   // The list of nmethods that need to be processed by the second pass.
3424   CompiledMethod* volatile _postponed_list;
3425   volatile uint            _num_entered_barrier;
3426 
3427  public:
3428   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3429       _is_alive(is_alive),
3430       _unloading_occurred(unloading_occurred),
3431       _num_workers(num_workers),
3432       _first_nmethod(NULL),
3433       _claimed_nmethod(NULL),
3434       _postponed_list(NULL),
3435       _num_entered_barrier(0)
3436   {
3437     CompiledMethod::increase_unloading_clock();
3438     // Get first alive nmethod
3439     CompiledMethodIterator iter = CompiledMethodIterator();
3440     if(iter.next_alive()) {
3441       _first_nmethod = iter.method();
3442     }
3443     _claimed_nmethod = _first_nmethod;
3444   }
3445 
3446   ~G1CodeCacheUnloadingTask() {
3447     CodeCache::verify_clean_inline_caches();
3448 
3449     CodeCache::set_needs_cache_clean(false);
3450     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3451 
3452     CodeCache::verify_icholder_relocations();
3453   }
3454 
3455  private:
3456   void add_to_postponed_list(CompiledMethod* nm) {
3457       CompiledMethod* old;
3458       do {
3459         old = _postponed_list;
3460         nm->set_unloading_next(old);
3461       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3462   }
3463 
3464   void clean_nmethod(CompiledMethod* nm) {
3465     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3466 
3467     if (postponed) {
3468       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3469       add_to_postponed_list(nm);
3470     }
3471 
3472     // Mark that this thread has been cleaned/unloaded.
3473     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3474     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3475   }
3476 
3477   void clean_nmethod_postponed(CompiledMethod* nm) {
3478     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3479   }
3480 
3481   static const int MaxClaimNmethods = 16;
3482 
3483   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3484     CompiledMethod* first;
3485     CompiledMethodIterator last;
3486 
3487     do {
3488       *num_claimed_nmethods = 0;
3489 
3490       first = _claimed_nmethod;
3491       last = CompiledMethodIterator(first);
3492 
3493       if (first != NULL) {
3494 
3495         for (int i = 0; i < MaxClaimNmethods; i++) {
3496           if (!last.next_alive()) {
3497             break;
3498           }
3499           claimed_nmethods[i] = last.method();
3500           (*num_claimed_nmethods)++;
3501         }
3502       }
3503 
3504     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3505   }
3506 
3507   CompiledMethod* claim_postponed_nmethod() {
3508     CompiledMethod* claim;
3509     CompiledMethod* next;
3510 
3511     do {
3512       claim = _postponed_list;
3513       if (claim == NULL) {
3514         return NULL;
3515       }
3516 
3517       next = claim->unloading_next();
3518 
3519     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3520 
3521     return claim;
3522   }
3523 
3524  public:
3525   // Mark that we're done with the first pass of nmethod cleaning.
3526   void barrier_mark(uint worker_id) {
3527     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3528     _num_entered_barrier++;
3529     if (_num_entered_barrier == _num_workers) {
3530       ml.notify_all();
3531     }
3532   }
3533 
3534   // See if we have to wait for the other workers to
3535   // finish their first-pass nmethod cleaning work.
3536   void barrier_wait(uint worker_id) {
3537     if (_num_entered_barrier < _num_workers) {
3538       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3539       while (_num_entered_barrier < _num_workers) {
3540           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3541       }
3542     }
3543   }
3544 
3545   // Cleaning and unloading of nmethods. Some work has to be postponed
3546   // to the second pass, when we know which nmethods survive.
3547   void work_first_pass(uint worker_id) {
3548     // The first nmethods is claimed by the first worker.
3549     if (worker_id == 0 && _first_nmethod != NULL) {
3550       clean_nmethod(_first_nmethod);
3551       _first_nmethod = NULL;
3552     }
3553 
3554     int num_claimed_nmethods;
3555     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3556 
3557     while (true) {
3558       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3559 
3560       if (num_claimed_nmethods == 0) {
3561         break;
3562       }
3563 
3564       for (int i = 0; i < num_claimed_nmethods; i++) {
3565         clean_nmethod(claimed_nmethods[i]);
3566       }
3567     }
3568   }
3569 
3570   void work_second_pass(uint worker_id) {
3571     CompiledMethod* nm;
3572     // Take care of postponed nmethods.
3573     while ((nm = claim_postponed_nmethod()) != NULL) {
3574       clean_nmethod_postponed(nm);
3575     }
3576   }
3577 };
3578 
3579 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3580 
3581 class G1KlassCleaningTask : public StackObj {
3582   BoolObjectClosure*                      _is_alive;
3583   volatile int                            _clean_klass_tree_claimed;
3584   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3585 
3586  public:
3587   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3588       _is_alive(is_alive),
3589       _clean_klass_tree_claimed(0),
3590       _klass_iterator() {
3591   }
3592 
3593  private:
3594   bool claim_clean_klass_tree_task() {
3595     if (_clean_klass_tree_claimed) {
3596       return false;
3597     }
3598 
3599     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3600   }
3601 
3602   InstanceKlass* claim_next_klass() {
3603     Klass* klass;
3604     do {
3605       klass =_klass_iterator.next_klass();
3606     } while (klass != NULL && !klass->is_instance_klass());
3607 
3608     // this can be null so don't call InstanceKlass::cast
3609     return static_cast<InstanceKlass*>(klass);
3610   }
3611 
3612 public:
3613 
3614   void clean_klass(InstanceKlass* ik) {
3615     ik->clean_weak_instanceklass_links(_is_alive);
3616   }
3617 
3618   void work() {
3619     ResourceMark rm;
3620 
3621     // One worker will clean the subklass/sibling klass tree.
3622     if (claim_clean_klass_tree_task()) {
3623       Klass::clean_subklass_tree(_is_alive);
3624     }
3625 
3626     // All workers will help cleaning the classes,
3627     InstanceKlass* klass;
3628     while ((klass = claim_next_klass()) != NULL) {
3629       clean_klass(klass);
3630     }
3631   }
3632 };
3633 
3634 class G1ResolvedMethodCleaningTask : public StackObj {
3635   BoolObjectClosure* _is_alive;
3636   volatile int       _resolved_method_task_claimed;
3637 public:
3638   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3639       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3640 
3641   bool claim_resolved_method_task() {
3642     if (_resolved_method_task_claimed) {
3643       return false;
3644     }
3645     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3646   }
3647 
3648   // These aren't big, one thread can do it all.
3649   void work() {
3650     if (claim_resolved_method_task()) {
3651       ResolvedMethodTable::unlink(_is_alive);
3652     }
3653   }
3654 };
3655 
3656 
3657 // To minimize the remark pause times, the tasks below are done in parallel.
3658 class G1ParallelCleaningTask : public AbstractGangTask {
3659 private:
3660   G1StringAndSymbolCleaningTask _string_symbol_task;
3661   G1CodeCacheUnloadingTask      _code_cache_task;
3662   G1KlassCleaningTask           _klass_cleaning_task;
3663   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3664 
3665 public:
3666   // The constructor is run in the VMThread.
3667   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3668       AbstractGangTask("Parallel Cleaning"),
3669       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3670       _code_cache_task(num_workers, is_alive, unloading_occurred),
3671       _klass_cleaning_task(is_alive),
3672       _resolved_method_cleaning_task(is_alive) {
3673   }
3674 
3675   // The parallel work done by all worker threads.
3676   void work(uint worker_id) {
3677     // Do first pass of code cache cleaning.
3678     _code_cache_task.work_first_pass(worker_id);
3679 
3680     // Let the threads mark that the first pass is done.
3681     _code_cache_task.barrier_mark(worker_id);
3682 
3683     // Clean the Strings and Symbols.
3684     _string_symbol_task.work(worker_id);
3685 
3686     // Clean unreferenced things in the ResolvedMethodTable
3687     _resolved_method_cleaning_task.work();
3688 
3689     // Wait for all workers to finish the first code cache cleaning pass.
3690     _code_cache_task.barrier_wait(worker_id);
3691 
3692     // Do the second code cache cleaning work, which realize on
3693     // the liveness information gathered during the first pass.
3694     _code_cache_task.work_second_pass(worker_id);
3695 
3696     // Clean all klasses that were not unloaded.
3697     _klass_cleaning_task.work();
3698   }
3699 };
3700 
3701 
3702 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3703                                         bool class_unloading_occurred) {
3704   uint n_workers = workers()->active_workers();
3705 
3706   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3707   workers()->run_task(&g1_unlink_task);
3708 }
3709 
3710 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3711                                        bool process_strings,
3712                                        bool process_symbols,
3713                                        bool process_string_dedup) {
3714   if (!process_strings && !process_symbols && !process_string_dedup) {
3715     // Nothing to clean.
3716     return;
3717   }
3718 
3719   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3720   workers()->run_task(&g1_unlink_task);
3721 
3722 }
3723 
3724 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3725  private:
3726   DirtyCardQueueSet* _queue;
3727   G1CollectedHeap* _g1h;
3728  public:
3729   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3730     _queue(queue), _g1h(g1h) { }
3731 
3732   virtual void work(uint worker_id) {
3733     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3734     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3735 
3736     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3737     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3738 
3739     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3740   }
3741 };
3742 
3743 void G1CollectedHeap::redirty_logged_cards() {
3744   double redirty_logged_cards_start = os::elapsedTime();
3745 
3746   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3747   dirty_card_queue_set().reset_for_par_iteration();
3748   workers()->run_task(&redirty_task);
3749 
3750   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3751   dcq.merge_bufferlists(&dirty_card_queue_set());
3752   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3753 
3754   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3755 }
3756 
3757 // Weak Reference Processing support
3758 
3759 // An always "is_alive" closure that is used to preserve referents.
3760 // If the object is non-null then it's alive.  Used in the preservation
3761 // of referent objects that are pointed to by reference objects
3762 // discovered by the CM ref processor.
3763 class G1AlwaysAliveClosure: public BoolObjectClosure {
3764   G1CollectedHeap* _g1;
3765 public:
3766   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3767   bool do_object_b(oop p) {
3768     if (p != NULL) {
3769       return true;
3770     }
3771     return false;
3772   }
3773 };
3774 
3775 bool G1STWIsAliveClosure::do_object_b(oop p) {
3776   // An object is reachable if it is outside the collection set,
3777   // or is inside and copied.
3778   return !_g1->is_in_cset(p) || p->is_forwarded();
3779 }
3780 
3781 // Non Copying Keep Alive closure
3782 class G1KeepAliveClosure: public OopClosure {
3783   G1CollectedHeap* _g1;
3784 public:
3785   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3786   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3787   void do_oop(oop* p) {
3788     oop obj = *p;
3789     assert(obj != NULL, "the caller should have filtered out NULL values");
3790 
3791     const InCSetState cset_state = _g1->in_cset_state(obj);
3792     if (!cset_state.is_in_cset_or_humongous()) {
3793       return;
3794     }
3795     if (cset_state.is_in_cset()) {
3796       assert( obj->is_forwarded(), "invariant" );
3797       *p = obj->forwardee();
3798     } else {
3799       assert(!obj->is_forwarded(), "invariant" );
3800       assert(cset_state.is_humongous(),
3801              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3802       _g1->set_humongous_is_live(obj);
3803     }
3804   }
3805 };
3806 
3807 // Copying Keep Alive closure - can be called from both
3808 // serial and parallel code as long as different worker
3809 // threads utilize different G1ParScanThreadState instances
3810 // and different queues.
3811 
3812 class G1CopyingKeepAliveClosure: public OopClosure {
3813   G1CollectedHeap*         _g1h;
3814   OopClosure*              _copy_non_heap_obj_cl;
3815   G1ParScanThreadState*    _par_scan_state;
3816 
3817 public:
3818   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3819                             OopClosure* non_heap_obj_cl,
3820                             G1ParScanThreadState* pss):
3821     _g1h(g1h),
3822     _copy_non_heap_obj_cl(non_heap_obj_cl),
3823     _par_scan_state(pss)
3824   {}
3825 
3826   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3827   virtual void do_oop(      oop* p) { do_oop_work(p); }
3828 
3829   template <class T> void do_oop_work(T* p) {
3830     oop obj = oopDesc::load_decode_heap_oop(p);
3831 
3832     if (_g1h->is_in_cset_or_humongous(obj)) {
3833       // If the referent object has been forwarded (either copied
3834       // to a new location or to itself in the event of an
3835       // evacuation failure) then we need to update the reference
3836       // field and, if both reference and referent are in the G1
3837       // heap, update the RSet for the referent.
3838       //
3839       // If the referent has not been forwarded then we have to keep
3840       // it alive by policy. Therefore we have copy the referent.
3841       //
3842       // If the reference field is in the G1 heap then we can push
3843       // on the PSS queue. When the queue is drained (after each
3844       // phase of reference processing) the object and it's followers
3845       // will be copied, the reference field set to point to the
3846       // new location, and the RSet updated. Otherwise we need to
3847       // use the the non-heap or metadata closures directly to copy
3848       // the referent object and update the pointer, while avoiding
3849       // updating the RSet.
3850 
3851       if (_g1h->is_in_g1_reserved(p)) {
3852         _par_scan_state->push_on_queue(p);
3853       } else {
3854         assert(!Metaspace::contains((const void*)p),
3855                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3856         _copy_non_heap_obj_cl->do_oop(p);
3857       }
3858     }
3859   }
3860 };
3861 
3862 // Serial drain queue closure. Called as the 'complete_gc'
3863 // closure for each discovered list in some of the
3864 // reference processing phases.
3865 
3866 class G1STWDrainQueueClosure: public VoidClosure {
3867 protected:
3868   G1CollectedHeap* _g1h;
3869   G1ParScanThreadState* _par_scan_state;
3870 
3871   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3872 
3873 public:
3874   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3875     _g1h(g1h),
3876     _par_scan_state(pss)
3877   { }
3878 
3879   void do_void() {
3880     G1ParScanThreadState* const pss = par_scan_state();
3881     pss->trim_queue();
3882   }
3883 };
3884 
3885 // Parallel Reference Processing closures
3886 
3887 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3888 // processing during G1 evacuation pauses.
3889 
3890 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3891 private:
3892   G1CollectedHeap*          _g1h;
3893   G1ParScanThreadStateSet*  _pss;
3894   RefToScanQueueSet*        _queues;
3895   WorkGang*                 _workers;
3896   uint                      _active_workers;
3897 
3898 public:
3899   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3900                            G1ParScanThreadStateSet* per_thread_states,
3901                            WorkGang* workers,
3902                            RefToScanQueueSet *task_queues,
3903                            uint n_workers) :
3904     _g1h(g1h),
3905     _pss(per_thread_states),
3906     _queues(task_queues),
3907     _workers(workers),
3908     _active_workers(n_workers)
3909   {
3910     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3911   }
3912 
3913   // Executes the given task using concurrent marking worker threads.
3914   virtual void execute(ProcessTask& task);
3915   virtual void execute(EnqueueTask& task);
3916 };
3917 
3918 // Gang task for possibly parallel reference processing
3919 
3920 class G1STWRefProcTaskProxy: public AbstractGangTask {
3921   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3922   ProcessTask&     _proc_task;
3923   G1CollectedHeap* _g1h;
3924   G1ParScanThreadStateSet* _pss;
3925   RefToScanQueueSet* _task_queues;
3926   ParallelTaskTerminator* _terminator;
3927 
3928 public:
3929   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3930                         G1CollectedHeap* g1h,
3931                         G1ParScanThreadStateSet* per_thread_states,
3932                         RefToScanQueueSet *task_queues,
3933                         ParallelTaskTerminator* terminator) :
3934     AbstractGangTask("Process reference objects in parallel"),
3935     _proc_task(proc_task),
3936     _g1h(g1h),
3937     _pss(per_thread_states),
3938     _task_queues(task_queues),
3939     _terminator(terminator)
3940   {}
3941 
3942   virtual void work(uint worker_id) {
3943     // The reference processing task executed by a single worker.
3944     ResourceMark rm;
3945     HandleMark   hm;
3946 
3947     G1STWIsAliveClosure is_alive(_g1h);
3948 
3949     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3950     pss->set_ref_processor(NULL);
3951 
3952     // Keep alive closure.
3953     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3954 
3955     // Complete GC closure
3956     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3957 
3958     // Call the reference processing task's work routine.
3959     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3960 
3961     // Note we cannot assert that the refs array is empty here as not all
3962     // of the processing tasks (specifically phase2 - pp2_work) execute
3963     // the complete_gc closure (which ordinarily would drain the queue) so
3964     // the queue may not be empty.
3965   }
3966 };
3967 
3968 // Driver routine for parallel reference processing.
3969 // Creates an instance of the ref processing gang
3970 // task and has the worker threads execute it.
3971 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3972   assert(_workers != NULL, "Need parallel worker threads.");
3973 
3974   ParallelTaskTerminator terminator(_active_workers, _queues);
3975   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3976 
3977   _workers->run_task(&proc_task_proxy);
3978 }
3979 
3980 // Gang task for parallel reference enqueueing.
3981 
3982 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
3983   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
3984   EnqueueTask& _enq_task;
3985 
3986 public:
3987   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
3988     AbstractGangTask("Enqueue reference objects in parallel"),
3989     _enq_task(enq_task)
3990   { }
3991 
3992   virtual void work(uint worker_id) {
3993     _enq_task.work(worker_id);
3994   }
3995 };
3996 
3997 // Driver routine for parallel reference enqueueing.
3998 // Creates an instance of the ref enqueueing gang
3999 // task and has the worker threads execute it.
4000 
4001 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4002   assert(_workers != NULL, "Need parallel worker threads.");
4003 
4004   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4005 
4006   _workers->run_task(&enq_task_proxy);
4007 }
4008 
4009 // End of weak reference support closures
4010 
4011 // Abstract task used to preserve (i.e. copy) any referent objects
4012 // that are in the collection set and are pointed to by reference
4013 // objects discovered by the CM ref processor.
4014 
4015 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4016 protected:
4017   G1CollectedHeap*         _g1h;
4018   G1ParScanThreadStateSet* _pss;
4019   RefToScanQueueSet*       _queues;
4020   ParallelTaskTerminator   _terminator;
4021   uint                     _n_workers;
4022 
4023 public:
4024   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4025     AbstractGangTask("ParPreserveCMReferents"),
4026     _g1h(g1h),
4027     _pss(per_thread_states),
4028     _queues(task_queues),
4029     _terminator(workers, _queues),
4030     _n_workers(workers)
4031   {
4032     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4033   }
4034 
4035   void work(uint worker_id) {
4036     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4037 
4038     ResourceMark rm;
4039     HandleMark   hm;
4040 
4041     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4042     pss->set_ref_processor(NULL);
4043     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4044 
4045     // Is alive closure
4046     G1AlwaysAliveClosure always_alive(_g1h);
4047 
4048     // Copying keep alive closure. Applied to referent objects that need
4049     // to be copied.
4050     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4051 
4052     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4053 
4054     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4055     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4056 
4057     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4058     // So this must be true - but assert just in case someone decides to
4059     // change the worker ids.
4060     assert(worker_id < limit, "sanity");
4061     assert(!rp->discovery_is_atomic(), "check this code");
4062 
4063     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4064     for (uint idx = worker_id; idx < limit; idx += stride) {
4065       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4066 
4067       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4068       while (iter.has_next()) {
4069         // Since discovery is not atomic for the CM ref processor, we
4070         // can see some null referent objects.
4071         iter.load_ptrs(DEBUG_ONLY(true));
4072         oop ref = iter.obj();
4073 
4074         // This will filter nulls.
4075         if (iter.is_referent_alive()) {
4076           iter.make_referent_alive();
4077         }
4078         iter.move_to_next();
4079       }
4080     }
4081 
4082     // Drain the queue - which may cause stealing
4083     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4084     drain_queue.do_void();
4085     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4086     assert(pss->queue_is_empty(), "should be");
4087   }
4088 };
4089 
4090 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4091   // Any reference objects, in the collection set, that were 'discovered'
4092   // by the CM ref processor should have already been copied (either by
4093   // applying the external root copy closure to the discovered lists, or
4094   // by following an RSet entry).
4095   //
4096   // But some of the referents, that are in the collection set, that these
4097   // reference objects point to may not have been copied: the STW ref
4098   // processor would have seen that the reference object had already
4099   // been 'discovered' and would have skipped discovering the reference,
4100   // but would not have treated the reference object as a regular oop.
4101   // As a result the copy closure would not have been applied to the
4102   // referent object.
4103   //
4104   // We need to explicitly copy these referent objects - the references
4105   // will be processed at the end of remarking.
4106   //
4107   // We also need to do this copying before we process the reference
4108   // objects discovered by the STW ref processor in case one of these
4109   // referents points to another object which is also referenced by an
4110   // object discovered by the STW ref processor.
4111   double preserve_cm_referents_time = 0.0;
4112 
4113   // To avoid spawning task when there is no work to do, check that
4114   // a concurrent cycle is active and that some references have been
4115   // discovered.
4116   if (concurrent_mark()->cm_thread()->during_cycle() &&
4117       ref_processor_cm()->has_discovered_references()) {
4118     double preserve_cm_referents_start = os::elapsedTime();
4119     uint no_of_gc_workers = workers()->active_workers();
4120     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4121                                                    per_thread_states,
4122                                                    no_of_gc_workers,
4123                                                    _task_queues);
4124     workers()->run_task(&keep_cm_referents);
4125     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4126   }
4127 
4128   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4129 }
4130 
4131 // Weak Reference processing during an evacuation pause (part 1).
4132 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4133   double ref_proc_start = os::elapsedTime();
4134 
4135   ReferenceProcessor* rp = _ref_processor_stw;
4136   assert(rp->discovery_enabled(), "should have been enabled");
4137 
4138   // Closure to test whether a referent is alive.
4139   G1STWIsAliveClosure is_alive(this);
4140 
4141   // Even when parallel reference processing is enabled, the processing
4142   // of JNI refs is serial and performed serially by the current thread
4143   // rather than by a worker. The following PSS will be used for processing
4144   // JNI refs.
4145 
4146   // Use only a single queue for this PSS.
4147   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4148   pss->set_ref_processor(NULL);
4149   assert(pss->queue_is_empty(), "pre-condition");
4150 
4151   // Keep alive closure.
4152   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4153 
4154   // Serial Complete GC closure
4155   G1STWDrainQueueClosure drain_queue(this, pss);
4156 
4157   // Setup the soft refs policy...
4158   rp->setup_policy(false);
4159 
4160   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4161 
4162   ReferenceProcessorStats stats;
4163   if (!rp->processing_is_mt()) {
4164     // Serial reference processing...
4165     stats = rp->process_discovered_references(&is_alive,
4166                                               &keep_alive,
4167                                               &drain_queue,
4168                                               NULL,
4169                                               pt);
4170   } else {
4171     uint no_of_gc_workers = workers()->active_workers();
4172 
4173     // Parallel reference processing
4174     assert(no_of_gc_workers <= rp->max_num_q(),
4175            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4176            no_of_gc_workers,  rp->max_num_q());
4177 
4178     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4179     stats = rp->process_discovered_references(&is_alive,
4180                                               &keep_alive,
4181                                               &drain_queue,
4182                                               &par_task_executor,
4183                                               pt);
4184   }
4185 
4186   _gc_tracer_stw->report_gc_reference_stats(stats);
4187 
4188   // We have completed copying any necessary live referent objects.
4189   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4190 
4191   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4192   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4193 }
4194 
4195 // Weak Reference processing during an evacuation pause (part 2).
4196 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4197   double ref_enq_start = os::elapsedTime();
4198 
4199   ReferenceProcessor* rp = _ref_processor_stw;
4200   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4201 
4202   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4203 
4204   // Now enqueue any remaining on the discovered lists on to
4205   // the pending list.
4206   if (!rp->processing_is_mt()) {
4207     // Serial reference processing...
4208     rp->enqueue_discovered_references(NULL, pt);
4209   } else {
4210     // Parallel reference enqueueing
4211 
4212     uint n_workers = workers()->active_workers();
4213 
4214     assert(n_workers <= rp->max_num_q(),
4215            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4216            n_workers,  rp->max_num_q());
4217 
4218     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4219     rp->enqueue_discovered_references(&par_task_executor, pt);
4220   }
4221 
4222   rp->verify_no_references_recorded();
4223   assert(!rp->discovery_enabled(), "should have been disabled");
4224 
4225   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4226   // ensure that it is marked in the bitmap for concurrent marking to discover.
4227   if (collector_state()->during_initial_mark_pause()) {
4228     oop pll_head = Universe::reference_pending_list();
4229     if (pll_head != NULL) {
4230       _cm->mark_in_next_bitmap(pll_head);
4231     }
4232   }
4233 
4234   // FIXME
4235   // CM's reference processing also cleans up the string and symbol tables.
4236   // Should we do that here also? We could, but it is a serial operation
4237   // and could significantly increase the pause time.
4238 
4239   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4240   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4241 }
4242 
4243 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4244   double merge_pss_time_start = os::elapsedTime();
4245   per_thread_states->flush();
4246   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4247 }
4248 
4249 void G1CollectedHeap::pre_evacuate_collection_set() {
4250   _expand_heap_after_alloc_failure = true;
4251   _evacuation_failed = false;
4252 
4253   // Disable the hot card cache.
4254   _hot_card_cache->reset_hot_cache_claimed_index();
4255   _hot_card_cache->set_use_cache(false);
4256 
4257   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4258   _preserved_marks_set.assert_empty();
4259 
4260   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4261 
4262   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4263   if (collector_state()->during_initial_mark_pause()) {
4264     double start_clear_claimed_marks = os::elapsedTime();
4265 
4266     ClassLoaderDataGraph::clear_claimed_marks();
4267 
4268     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4269     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4270   }
4271 }
4272 
4273 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4274   // Should G1EvacuationFailureALot be in effect for this GC?
4275   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4276 
4277   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4278 
4279   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4280 
4281   double start_par_time_sec = os::elapsedTime();
4282   double end_par_time_sec;
4283 
4284   {
4285     const uint n_workers = workers()->active_workers();
4286     G1RootProcessor root_processor(this, n_workers);
4287     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4288 
4289     print_termination_stats_hdr();
4290 
4291     workers()->run_task(&g1_par_task);
4292     end_par_time_sec = os::elapsedTime();
4293 
4294     // Closing the inner scope will execute the destructor
4295     // for the G1RootProcessor object. We record the current
4296     // elapsed time before closing the scope so that time
4297     // taken for the destructor is NOT included in the
4298     // reported parallel time.
4299   }
4300 
4301   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4302   phase_times->record_par_time(par_time_ms);
4303 
4304   double code_root_fixup_time_ms =
4305         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4306   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4307 }
4308 
4309 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4310   // Process any discovered reference objects - we have
4311   // to do this _before_ we retire the GC alloc regions
4312   // as we may have to copy some 'reachable' referent
4313   // objects (and their reachable sub-graphs) that were
4314   // not copied during the pause.
4315   if (g1_policy()->should_process_references()) {
4316     preserve_cm_referents(per_thread_states);
4317     process_discovered_references(per_thread_states);
4318   } else {
4319     ref_processor_stw()->verify_no_references_recorded();
4320   }
4321 
4322   G1STWIsAliveClosure is_alive(this);
4323   G1KeepAliveClosure keep_alive(this);
4324 
4325   {
4326     double start = os::elapsedTime();
4327 
4328     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4329 
4330     double time_ms = (os::elapsedTime() - start) * 1000.0;
4331     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4332   }
4333 
4334   if (G1StringDedup::is_enabled()) {
4335     double fixup_start = os::elapsedTime();
4336 
4337     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4338 
4339     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4340     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4341   }
4342 
4343   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4344 
4345   if (evacuation_failed()) {
4346     restore_after_evac_failure();
4347 
4348     // Reset the G1EvacuationFailureALot counters and flags
4349     // Note: the values are reset only when an actual
4350     // evacuation failure occurs.
4351     NOT_PRODUCT(reset_evacuation_should_fail();)
4352   }
4353 
4354   _preserved_marks_set.assert_empty();
4355 
4356   // Enqueue any remaining references remaining on the STW
4357   // reference processor's discovered lists. We need to do
4358   // this after the card table is cleaned (and verified) as
4359   // the act of enqueueing entries on to the pending list
4360   // will log these updates (and dirty their associated
4361   // cards). We need these updates logged to update any
4362   // RSets.
4363   if (g1_policy()->should_process_references()) {
4364     enqueue_discovered_references(per_thread_states);
4365   } else {
4366     g1_policy()->phase_times()->record_ref_enq_time(0);
4367   }
4368 
4369   _allocator->release_gc_alloc_regions(evacuation_info);
4370 
4371   merge_per_thread_state_info(per_thread_states);
4372 
4373   // Reset and re-enable the hot card cache.
4374   // Note the counts for the cards in the regions in the
4375   // collection set are reset when the collection set is freed.
4376   _hot_card_cache->reset_hot_cache();
4377   _hot_card_cache->set_use_cache(true);
4378 
4379   purge_code_root_memory();
4380 
4381   redirty_logged_cards();
4382 #if COMPILER2_OR_JVMCI
4383   double start = os::elapsedTime();
4384   DerivedPointerTable::update_pointers();
4385   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4386 #endif
4387   g1_policy()->print_age_table();
4388 }
4389 
4390 void G1CollectedHeap::record_obj_copy_mem_stats() {
4391   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4392 
4393   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4394                                                create_g1_evac_summary(&_old_evac_stats));
4395 }
4396 
4397 void G1CollectedHeap::free_region(HeapRegion* hr,
4398                                   FreeRegionList* free_list,
4399                                   bool skip_remset,
4400                                   bool skip_hot_card_cache,
4401                                   bool locked) {
4402   assert(!hr->is_free(), "the region should not be free");
4403   assert(!hr->is_empty(), "the region should not be empty");
4404   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4405   assert(free_list != NULL, "pre-condition");
4406 
4407   if (G1VerifyBitmaps) {
4408     MemRegion mr(hr->bottom(), hr->end());
4409     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4410   }
4411 
4412   // Clear the card counts for this region.
4413   // Note: we only need to do this if the region is not young
4414   // (since we don't refine cards in young regions).
4415   if (!skip_hot_card_cache && !hr->is_young()) {
4416     _hot_card_cache->reset_card_counts(hr);
4417   }
4418   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4419   free_list->add_ordered(hr);
4420 }
4421 
4422 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4423                                             FreeRegionList* free_list,
4424                                             bool skip_remset) {
4425   assert(hr->is_humongous(), "this is only for humongous regions");
4426   assert(free_list != NULL, "pre-condition");
4427   hr->clear_humongous();
4428   free_region(hr, free_list, skip_remset);
4429 }
4430 
4431 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4432                                            const uint humongous_regions_removed) {
4433   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4434     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4435     _old_set.bulk_remove(old_regions_removed);
4436     _humongous_set.bulk_remove(humongous_regions_removed);
4437   }
4438 
4439 }
4440 
4441 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4442   assert(list != NULL, "list can't be null");
4443   if (!list->is_empty()) {
4444     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4445     _hrm.insert_list_into_free_list(list);
4446   }
4447 }
4448 
4449 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4450   decrease_used(bytes);
4451 }
4452 
4453 class G1ParScrubRemSetTask: public AbstractGangTask {
4454 protected:
4455   G1RemSet* _g1rs;
4456   HeapRegionClaimer _hrclaimer;
4457 
4458 public:
4459   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4460     AbstractGangTask("G1 ScrubRS"),
4461     _g1rs(g1_rs),
4462     _hrclaimer(num_workers) {
4463   }
4464 
4465   void work(uint worker_id) {
4466     _g1rs->scrub(worker_id, &_hrclaimer);
4467   }
4468 };
4469 
4470 void G1CollectedHeap::scrub_rem_set() {
4471   uint num_workers = workers()->active_workers();
4472   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4473   workers()->run_task(&g1_par_scrub_rs_task);
4474 }
4475 
4476 class G1FreeCollectionSetTask : public AbstractGangTask {
4477 private:
4478 
4479   // Closure applied to all regions in the collection set to do work that needs to
4480   // be done serially in a single thread.
4481   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4482   private:
4483     EvacuationInfo* _evacuation_info;
4484     const size_t* _surviving_young_words;
4485 
4486     // Bytes used in successfully evacuated regions before the evacuation.
4487     size_t _before_used_bytes;
4488     // Bytes used in unsucessfully evacuated regions before the evacuation
4489     size_t _after_used_bytes;
4490 
4491     size_t _bytes_allocated_in_old_since_last_gc;
4492 
4493     size_t _failure_used_words;
4494     size_t _failure_waste_words;
4495 
4496     FreeRegionList _local_free_list;
4497   public:
4498     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4499       HeapRegionClosure(),
4500       _evacuation_info(evacuation_info),
4501       _surviving_young_words(surviving_young_words),
4502       _before_used_bytes(0),
4503       _after_used_bytes(0),
4504       _bytes_allocated_in_old_since_last_gc(0),
4505       _failure_used_words(0),
4506       _failure_waste_words(0),
4507       _local_free_list("Local Region List for CSet Freeing") {
4508     }
4509 
4510     virtual bool do_heap_region(HeapRegion* r) {
4511       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4512 
4513       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4514       g1h->clear_in_cset(r);
4515 
4516       if (r->is_young()) {
4517         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4518                "Young index %d is wrong for region %u of type %s with %u young regions",
4519                r->young_index_in_cset(),
4520                r->hrm_index(),
4521                r->get_type_str(),
4522                g1h->collection_set()->young_region_length());
4523         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4524         r->record_surv_words_in_group(words_survived);
4525       }
4526 
4527       if (!r->evacuation_failed()) {
4528         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4529         _before_used_bytes += r->used();
4530         g1h->free_region(r,
4531                          &_local_free_list,
4532                          true, /* skip_remset */
4533                          true, /* skip_hot_card_cache */
4534                          true  /* locked */);
4535       } else {
4536         r->uninstall_surv_rate_group();
4537         r->set_young_index_in_cset(-1);
4538         r->set_evacuation_failed(false);
4539         // When moving a young gen region to old gen, we "allocate" that whole region
4540         // there. This is in addition to any already evacuated objects. Notify the
4541         // policy about that.
4542         // Old gen regions do not cause an additional allocation: both the objects
4543         // still in the region and the ones already moved are accounted for elsewhere.
4544         if (r->is_young()) {
4545           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4546         }
4547         // The region is now considered to be old.
4548         r->set_old();
4549         // Do some allocation statistics accounting. Regions that failed evacuation
4550         // are always made old, so there is no need to update anything in the young
4551         // gen statistics, but we need to update old gen statistics.
4552         size_t used_words = r->marked_bytes() / HeapWordSize;
4553 
4554         _failure_used_words += used_words;
4555         _failure_waste_words += HeapRegion::GrainWords - used_words;
4556 
4557         g1h->old_set_add(r);
4558         _after_used_bytes += r->used();
4559       }
4560       return false;
4561     }
4562 
4563     void complete_work() {
4564       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4565 
4566       _evacuation_info->set_regions_freed(_local_free_list.length());
4567       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4568 
4569       g1h->prepend_to_freelist(&_local_free_list);
4570       g1h->decrement_summary_bytes(_before_used_bytes);
4571 
4572       G1Policy* policy = g1h->g1_policy();
4573       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4574 
4575       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4576     }
4577   };
4578 
4579   G1CollectionSet* _collection_set;
4580   G1SerialFreeCollectionSetClosure _cl;
4581   const size_t* _surviving_young_words;
4582 
4583   size_t _rs_lengths;
4584 
4585   volatile jint _serial_work_claim;
4586 
4587   struct WorkItem {
4588     uint region_idx;
4589     bool is_young;
4590     bool evacuation_failed;
4591 
4592     WorkItem(HeapRegion* r) {
4593       region_idx = r->hrm_index();
4594       is_young = r->is_young();
4595       evacuation_failed = r->evacuation_failed();
4596     }
4597   };
4598 
4599   volatile size_t _parallel_work_claim;
4600   size_t _num_work_items;
4601   WorkItem* _work_items;
4602 
4603   void do_serial_work() {
4604     // Need to grab the lock to be allowed to modify the old region list.
4605     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4606     _collection_set->iterate(&_cl);
4607   }
4608 
4609   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4610     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4611 
4612     HeapRegion* r = g1h->region_at(region_idx);
4613     assert(!g1h->is_on_master_free_list(r), "sanity");
4614 
4615     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4616 
4617     if (!is_young) {
4618       g1h->_hot_card_cache->reset_card_counts(r);
4619     }
4620 
4621     if (!evacuation_failed) {
4622       r->rem_set()->clear_locked();
4623     }
4624   }
4625 
4626   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4627   private:
4628     size_t _cur_idx;
4629     WorkItem* _work_items;
4630   public:
4631     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4632 
4633     virtual bool do_heap_region(HeapRegion* r) {
4634       _work_items[_cur_idx++] = WorkItem(r);
4635       return false;
4636     }
4637   };
4638 
4639   void prepare_work() {
4640     G1PrepareFreeCollectionSetClosure cl(_work_items);
4641     _collection_set->iterate(&cl);
4642   }
4643 
4644   void complete_work() {
4645     _cl.complete_work();
4646 
4647     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4648     policy->record_max_rs_lengths(_rs_lengths);
4649     policy->cset_regions_freed();
4650   }
4651 public:
4652   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4653     AbstractGangTask("G1 Free Collection Set"),
4654     _cl(evacuation_info, surviving_young_words),
4655     _collection_set(collection_set),
4656     _surviving_young_words(surviving_young_words),
4657     _serial_work_claim(0),
4658     _rs_lengths(0),
4659     _parallel_work_claim(0),
4660     _num_work_items(collection_set->region_length()),
4661     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4662     prepare_work();
4663   }
4664 
4665   ~G1FreeCollectionSetTask() {
4666     complete_work();
4667     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4668   }
4669 
4670   // Chunk size for work distribution. The chosen value has been determined experimentally
4671   // to be a good tradeoff between overhead and achievable parallelism.
4672   static uint chunk_size() { return 32; }
4673 
4674   virtual void work(uint worker_id) {
4675     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4676 
4677     // Claim serial work.
4678     if (_serial_work_claim == 0) {
4679       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4680       if (value == 0) {
4681         double serial_time = os::elapsedTime();
4682         do_serial_work();
4683         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4684       }
4685     }
4686 
4687     // Start parallel work.
4688     double young_time = 0.0;
4689     bool has_young_time = false;
4690     double non_young_time = 0.0;
4691     bool has_non_young_time = false;
4692 
4693     while (true) {
4694       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4695       size_t cur = end - chunk_size();
4696 
4697       if (cur >= _num_work_items) {
4698         break;
4699       }
4700 
4701       double start_time = os::elapsedTime();
4702 
4703       end = MIN2(end, _num_work_items);
4704 
4705       for (; cur < end; cur++) {
4706         bool is_young = _work_items[cur].is_young;
4707 
4708         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4709 
4710         double end_time = os::elapsedTime();
4711         double time_taken = end_time - start_time;
4712         if (is_young) {
4713           young_time += time_taken;
4714           has_young_time = true;
4715         } else {
4716           non_young_time += time_taken;
4717           has_non_young_time = true;
4718         }
4719         start_time = end_time;
4720       }
4721     }
4722 
4723     if (has_young_time) {
4724       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4725     }
4726     if (has_non_young_time) {
4727       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4728     }
4729   }
4730 };
4731 
4732 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4733   _eden.clear();
4734 
4735   double free_cset_start_time = os::elapsedTime();
4736 
4737   {
4738     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4739     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4740 
4741     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4742 
4743     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4744                         cl.name(),
4745                         num_workers,
4746                         _collection_set.region_length());
4747     workers()->run_task(&cl, num_workers);
4748   }
4749   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4750 
4751   collection_set->clear();
4752 }
4753 
4754 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4755  private:
4756   FreeRegionList* _free_region_list;
4757   HeapRegionSet* _proxy_set;
4758   uint _humongous_objects_reclaimed;
4759   uint _humongous_regions_reclaimed;
4760   size_t _freed_bytes;
4761  public:
4762 
4763   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4764     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4765   }
4766 
4767   virtual bool do_heap_region(HeapRegion* r) {
4768     if (!r->is_starts_humongous()) {
4769       return false;
4770     }
4771 
4772     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4773 
4774     oop obj = (oop)r->bottom();
4775     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4776 
4777     // The following checks whether the humongous object is live are sufficient.
4778     // The main additional check (in addition to having a reference from the roots
4779     // or the young gen) is whether the humongous object has a remembered set entry.
4780     //
4781     // A humongous object cannot be live if there is no remembered set for it
4782     // because:
4783     // - there can be no references from within humongous starts regions referencing
4784     // the object because we never allocate other objects into them.
4785     // (I.e. there are no intra-region references that may be missed by the
4786     // remembered set)
4787     // - as soon there is a remembered set entry to the humongous starts region
4788     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4789     // until the end of a concurrent mark.
4790     //
4791     // It is not required to check whether the object has been found dead by marking
4792     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4793     // all objects allocated during that time are considered live.
4794     // SATB marking is even more conservative than the remembered set.
4795     // So if at this point in the collection there is no remembered set entry,
4796     // nobody has a reference to it.
4797     // At the start of collection we flush all refinement logs, and remembered sets
4798     // are completely up-to-date wrt to references to the humongous object.
4799     //
4800     // Other implementation considerations:
4801     // - never consider object arrays at this time because they would pose
4802     // considerable effort for cleaning up the the remembered sets. This is
4803     // required because stale remembered sets might reference locations that
4804     // are currently allocated into.
4805     uint region_idx = r->hrm_index();
4806     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4807         !r->rem_set()->is_empty()) {
4808       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4809                                region_idx,
4810                                (size_t)obj->size() * HeapWordSize,
4811                                p2i(r->bottom()),
4812                                r->rem_set()->occupied(),
4813                                r->rem_set()->strong_code_roots_list_length(),
4814                                next_bitmap->is_marked(r->bottom()),
4815                                g1h->is_humongous_reclaim_candidate(region_idx),
4816                                obj->is_typeArray()
4817                               );
4818       return false;
4819     }
4820 
4821     guarantee(obj->is_typeArray(),
4822               "Only eagerly reclaiming type arrays is supported, but the object "
4823               PTR_FORMAT " is not.", p2i(r->bottom()));
4824 
4825     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4826                              region_idx,
4827                              (size_t)obj->size() * HeapWordSize,
4828                              p2i(r->bottom()),
4829                              r->rem_set()->occupied(),
4830                              r->rem_set()->strong_code_roots_list_length(),
4831                              next_bitmap->is_marked(r->bottom()),
4832                              g1h->is_humongous_reclaim_candidate(region_idx),
4833                              obj->is_typeArray()
4834                             );
4835 
4836     // Need to clear mark bit of the humongous object if already set.
4837     if (next_bitmap->is_marked(r->bottom())) {
4838       next_bitmap->clear(r->bottom());
4839     }
4840     _humongous_objects_reclaimed++;
4841     do {
4842       HeapRegion* next = g1h->next_region_in_humongous(r);
4843       _freed_bytes += r->used();
4844       r->set_containing_set(NULL);
4845       _humongous_regions_reclaimed++;
4846       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4847       r = next;
4848     } while (r != NULL);
4849 
4850     return false;
4851   }
4852 
4853   uint humongous_objects_reclaimed() {
4854     return _humongous_objects_reclaimed;
4855   }
4856 
4857   uint humongous_regions_reclaimed() {
4858     return _humongous_regions_reclaimed;
4859   }
4860 
4861   size_t bytes_freed() const {
4862     return _freed_bytes;
4863   }
4864 };
4865 
4866 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4867   assert_at_safepoint(true);
4868 
4869   if (!G1EagerReclaimHumongousObjects ||
4870       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4871     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4872     return;
4873   }
4874 
4875   double start_time = os::elapsedTime();
4876 
4877   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4878 
4879   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4880   heap_region_iterate(&cl);
4881 
4882   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4883 
4884   G1HRPrinter* hrp = hr_printer();
4885   if (hrp->is_active()) {
4886     FreeRegionListIterator iter(&local_cleanup_list);
4887     while (iter.more_available()) {
4888       HeapRegion* hr = iter.get_next();
4889       hrp->cleanup(hr);
4890     }
4891   }
4892 
4893   prepend_to_freelist(&local_cleanup_list);
4894   decrement_summary_bytes(cl.bytes_freed());
4895 
4896   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4897                                                                     cl.humongous_objects_reclaimed());
4898 }
4899 
4900 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4901 public:
4902   virtual bool do_heap_region(HeapRegion* r) {
4903     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4904     G1CollectedHeap::heap()->clear_in_cset(r);
4905     r->set_young_index_in_cset(-1);
4906     return false;
4907   }
4908 };
4909 
4910 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4911   G1AbandonCollectionSetClosure cl;
4912   collection_set->iterate(&cl);
4913 
4914   collection_set->clear();
4915   collection_set->stop_incremental_building();
4916 }
4917 
4918 void G1CollectedHeap::set_free_regions_coming() {
4919   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4920 
4921   assert(!free_regions_coming(), "pre-condition");
4922   _free_regions_coming = true;
4923 }
4924 
4925 void G1CollectedHeap::reset_free_regions_coming() {
4926   assert(free_regions_coming(), "pre-condition");
4927 
4928   {
4929     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4930     _free_regions_coming = false;
4931     SecondaryFreeList_lock->notify_all();
4932   }
4933 
4934   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4935 }
4936 
4937 void G1CollectedHeap::wait_while_free_regions_coming() {
4938   // Most of the time we won't have to wait, so let's do a quick test
4939   // first before we take the lock.
4940   if (!free_regions_coming()) {
4941     return;
4942   }
4943 
4944   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4945 
4946   {
4947     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4948     while (free_regions_coming()) {
4949       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4950     }
4951   }
4952 
4953   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4954 }
4955 
4956 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4957   return _allocator->is_retained_old_region(hr);
4958 }
4959 
4960 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4961   _eden.add(hr);
4962   _g1_policy->set_region_eden(hr);
4963 }
4964 
4965 #ifdef ASSERT
4966 
4967 class NoYoungRegionsClosure: public HeapRegionClosure {
4968 private:
4969   bool _success;
4970 public:
4971   NoYoungRegionsClosure() : _success(true) { }
4972   bool do_heap_region(HeapRegion* r) {
4973     if (r->is_young()) {
4974       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4975                             p2i(r->bottom()), p2i(r->end()));
4976       _success = false;
4977     }
4978     return false;
4979   }
4980   bool success() { return _success; }
4981 };
4982 
4983 bool G1CollectedHeap::check_young_list_empty() {
4984   bool ret = (young_regions_count() == 0);
4985 
4986   NoYoungRegionsClosure closure;
4987   heap_region_iterate(&closure);
4988   ret = ret && closure.success();
4989 
4990   return ret;
4991 }
4992 
4993 #endif // ASSERT
4994 
4995 class TearDownRegionSetsClosure : public HeapRegionClosure {
4996 private:
4997   HeapRegionSet *_old_set;
4998 
4999 public:
5000   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5001 
5002   bool do_heap_region(HeapRegion* r) {
5003     if (r->is_old()) {
5004       _old_set->remove(r);
5005     } else if(r->is_young()) {
5006       r->uninstall_surv_rate_group();
5007     } else {
5008       // We ignore free regions, we'll empty the free list afterwards.
5009       // We ignore humongous regions, we're not tearing down the
5010       // humongous regions set.
5011       assert(r->is_free() || r->is_humongous(),
5012              "it cannot be another type");
5013     }
5014     return false;
5015   }
5016 
5017   ~TearDownRegionSetsClosure() {
5018     assert(_old_set->is_empty(), "post-condition");
5019   }
5020 };
5021 
5022 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5023   assert_at_safepoint(true /* should_be_vm_thread */);
5024 
5025   if (!free_list_only) {
5026     TearDownRegionSetsClosure cl(&_old_set);
5027     heap_region_iterate(&cl);
5028 
5029     // Note that emptying the _young_list is postponed and instead done as
5030     // the first step when rebuilding the regions sets again. The reason for
5031     // this is that during a full GC string deduplication needs to know if
5032     // a collected region was young or old when the full GC was initiated.
5033   }
5034   _hrm.remove_all_free_regions();
5035 }
5036 
5037 void G1CollectedHeap::increase_used(size_t bytes) {
5038   _summary_bytes_used += bytes;
5039 }
5040 
5041 void G1CollectedHeap::decrease_used(size_t bytes) {
5042   assert(_summary_bytes_used >= bytes,
5043          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5044          _summary_bytes_used, bytes);
5045   _summary_bytes_used -= bytes;
5046 }
5047 
5048 void G1CollectedHeap::set_used(size_t bytes) {
5049   _summary_bytes_used = bytes;
5050 }
5051 
5052 class RebuildRegionSetsClosure : public HeapRegionClosure {
5053 private:
5054   bool            _free_list_only;
5055   HeapRegionSet*   _old_set;
5056   HeapRegionManager*   _hrm;
5057   size_t          _total_used;
5058 
5059 public:
5060   RebuildRegionSetsClosure(bool free_list_only,
5061                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5062     _free_list_only(free_list_only),
5063     _old_set(old_set), _hrm(hrm), _total_used(0) {
5064     assert(_hrm->num_free_regions() == 0, "pre-condition");
5065     if (!free_list_only) {
5066       assert(_old_set->is_empty(), "pre-condition");
5067     }
5068   }
5069 
5070   bool do_heap_region(HeapRegion* r) {
5071     if (r->is_empty()) {
5072       // Add free regions to the free list
5073       r->set_free();
5074       r->set_allocation_context(AllocationContext::system());
5075       _hrm->insert_into_free_list(r);
5076     } else if (!_free_list_only) {
5077 
5078       if (r->is_humongous()) {
5079         // We ignore humongous regions. We left the humongous set unchanged.
5080       } else {
5081         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5082         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5083         r->move_to_old();
5084         _old_set->add(r);
5085       }
5086       _total_used += r->used();
5087     }
5088 
5089     return false;
5090   }
5091 
5092   size_t total_used() {
5093     return _total_used;
5094   }
5095 };
5096 
5097 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5098   assert_at_safepoint(true /* should_be_vm_thread */);
5099 
5100   if (!free_list_only) {
5101     _eden.clear();
5102     _survivor.clear();
5103   }
5104 
5105   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5106   heap_region_iterate(&cl);
5107 
5108   if (!free_list_only) {
5109     set_used(cl.total_used());
5110     if (_archive_allocator != NULL) {
5111       _archive_allocator->clear_used();
5112     }
5113   }
5114   assert(used_unlocked() == recalculate_used(),
5115          "inconsistent used_unlocked(), "
5116          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5117          used_unlocked(), recalculate_used());
5118 }
5119 
5120 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5121   HeapRegion* hr = heap_region_containing(p);
5122   return hr->is_in(p);
5123 }
5124 
5125 // Methods for the mutator alloc region
5126 
5127 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5128                                                       bool force) {
5129   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5130   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5131   if (force || should_allocate) {
5132     HeapRegion* new_alloc_region = new_region(word_size,
5133                                               false /* is_old */,
5134                                               false /* do_expand */);
5135     if (new_alloc_region != NULL) {
5136       set_region_short_lived_locked(new_alloc_region);
5137       _hr_printer.alloc(new_alloc_region, !should_allocate);
5138       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5139       return new_alloc_region;
5140     }
5141   }
5142   return NULL;
5143 }
5144 
5145 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5146                                                   size_t allocated_bytes) {
5147   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5148   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5149 
5150   collection_set()->add_eden_region(alloc_region);
5151   increase_used(allocated_bytes);
5152   _hr_printer.retire(alloc_region);
5153   // We update the eden sizes here, when the region is retired,
5154   // instead of when it's allocated, since this is the point that its
5155   // used space has been recored in _summary_bytes_used.
5156   g1mm()->update_eden_size();
5157 }
5158 
5159 // Methods for the GC alloc regions
5160 
5161 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5162   if (dest.is_old()) {
5163     return true;
5164   } else {
5165     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5166   }
5167 }
5168 
5169 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5170   assert(FreeList_lock->owned_by_self(), "pre-condition");
5171 
5172   if (!has_more_regions(dest)) {
5173     return NULL;
5174   }
5175 
5176   const bool is_survivor = dest.is_young();
5177 
5178   HeapRegion* new_alloc_region = new_region(word_size,
5179                                             !is_survivor,
5180                                             true /* do_expand */);
5181   if (new_alloc_region != NULL) {
5182     // We really only need to do this for old regions given that we
5183     // should never scan survivors. But it doesn't hurt to do it
5184     // for survivors too.
5185     new_alloc_region->record_timestamp();
5186     if (is_survivor) {
5187       new_alloc_region->set_survivor();
5188       _survivor.add(new_alloc_region);
5189       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5190     } else {
5191       new_alloc_region->set_old();
5192       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5193     }
5194     _hr_printer.alloc(new_alloc_region);
5195     bool during_im = collector_state()->during_initial_mark_pause();
5196     new_alloc_region->note_start_of_copying(during_im);
5197     return new_alloc_region;
5198   }
5199   return NULL;
5200 }
5201 
5202 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5203                                              size_t allocated_bytes,
5204                                              InCSetState dest) {
5205   bool during_im = collector_state()->during_initial_mark_pause();
5206   alloc_region->note_end_of_copying(during_im);
5207   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5208   if (dest.is_old()) {
5209     _old_set.add(alloc_region);
5210   }
5211   _hr_printer.retire(alloc_region);
5212 }
5213 
5214 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5215   bool expanded = false;
5216   uint index = _hrm.find_highest_free(&expanded);
5217 
5218   if (index != G1_NO_HRM_INDEX) {
5219     if (expanded) {
5220       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5221                                 HeapRegion::GrainWords * HeapWordSize);
5222     }
5223     _hrm.allocate_free_regions_starting_at(index, 1);
5224     return region_at(index);
5225   }
5226   return NULL;
5227 }
5228 
5229 // Optimized nmethod scanning
5230 
5231 class RegisterNMethodOopClosure: public OopClosure {
5232   G1CollectedHeap* _g1h;
5233   nmethod* _nm;
5234 
5235   template <class T> void do_oop_work(T* p) {
5236     T heap_oop = oopDesc::load_heap_oop(p);
5237     if (!oopDesc::is_null(heap_oop)) {
5238       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5239       HeapRegion* hr = _g1h->heap_region_containing(obj);
5240       assert(!hr->is_continues_humongous(),
5241              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5242              " starting at " HR_FORMAT,
5243              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5244 
5245       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5246       hr->add_strong_code_root_locked(_nm);
5247     }
5248   }
5249 
5250 public:
5251   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5252     _g1h(g1h), _nm(nm) {}
5253 
5254   void do_oop(oop* p)       { do_oop_work(p); }
5255   void do_oop(narrowOop* p) { do_oop_work(p); }
5256 };
5257 
5258 class UnregisterNMethodOopClosure: public OopClosure {
5259   G1CollectedHeap* _g1h;
5260   nmethod* _nm;
5261 
5262   template <class T> void do_oop_work(T* p) {
5263     T heap_oop = oopDesc::load_heap_oop(p);
5264     if (!oopDesc::is_null(heap_oop)) {
5265       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5266       HeapRegion* hr = _g1h->heap_region_containing(obj);
5267       assert(!hr->is_continues_humongous(),
5268              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5269              " starting at " HR_FORMAT,
5270              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5271 
5272       hr->remove_strong_code_root(_nm);
5273     }
5274   }
5275 
5276 public:
5277   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5278     _g1h(g1h), _nm(nm) {}
5279 
5280   void do_oop(oop* p)       { do_oop_work(p); }
5281   void do_oop(narrowOop* p) { do_oop_work(p); }
5282 };
5283 
5284 // Returns true if the reference points to an object that
5285 // can move in an incremental collection.
5286 bool G1CollectedHeap::is_scavengable(oop obj) {
5287   HeapRegion* hr = heap_region_containing(obj);
5288   return !hr->is_pinned();
5289 }
5290 
5291 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5292   guarantee(nm != NULL, "sanity");
5293   RegisterNMethodOopClosure reg_cl(this, nm);
5294   nm->oops_do(&reg_cl);
5295 }
5296 
5297 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5298   guarantee(nm != NULL, "sanity");
5299   UnregisterNMethodOopClosure reg_cl(this, nm);
5300   nm->oops_do(&reg_cl, true);
5301 }
5302 
5303 void G1CollectedHeap::purge_code_root_memory() {
5304   double purge_start = os::elapsedTime();
5305   G1CodeRootSet::purge();
5306   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5307   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5308 }
5309 
5310 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5311   G1CollectedHeap* _g1h;
5312 
5313 public:
5314   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5315     _g1h(g1h) {}
5316 
5317   void do_code_blob(CodeBlob* cb) {
5318     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5319     if (nm == NULL) {
5320       return;
5321     }
5322 
5323     if (ScavengeRootsInCode) {
5324       _g1h->register_nmethod(nm);
5325     }
5326   }
5327 };
5328 
5329 void G1CollectedHeap::rebuild_strong_code_roots() {
5330   RebuildStrongCodeRootClosure blob_cl(this);
5331   CodeCache::blobs_do(&blob_cl);
5332 }
5333 
5334 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5335   GrowableArray<GCMemoryManager*> memory_managers(2);
5336   memory_managers.append(&_memory_manager);
5337   memory_managers.append(&_full_gc_memory_manager);
5338   return memory_managers;
5339 }
5340 
5341 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5342   GrowableArray<MemoryPool*> memory_pools(3);
5343   memory_pools.append(_eden_pool);
5344   memory_pools.append(_survivor_pool);
5345   memory_pools.append(_old_pool);
5346   return memory_pools;
5347 }