1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  58 #include "gc/g1/heapRegion.inline.hpp"
  59 #include "gc/g1/heapRegionRemSet.hpp"
  60 #include "gc/g1/heapRegionSet.inline.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/adaptiveSizePolicy.hpp"
  63 #include "gc/shared/gcHeapSummary.hpp"
  64 #include "gc/shared/gcId.hpp"
  65 #include "gc/shared/gcLocker.inline.hpp"
  66 #include "gc/shared/gcTimer.hpp"
  67 #include "gc/shared/gcTrace.hpp"
  68 #include "gc/shared/gcTraceTime.inline.hpp"
  69 #include "gc/shared/generationSpec.hpp"
  70 #include "gc/shared/isGCActiveMark.hpp"
  71 #include "gc/shared/preservedMarks.inline.hpp"
  72 #include "gc/shared/suspendibleThreadSet.hpp"
  73 #include "gc/shared/referenceProcessor.inline.hpp"
  74 #include "gc/shared/taskqueue.inline.hpp"
  75 #include "gc/shared/weakProcessor.hpp"
  76 #include "logging/log.hpp"
  77 #include "memory/allocation.hpp"
  78 #include "memory/iterator.hpp"
  79 #include "memory/resourceArea.hpp"
  80 #include "oops/oop.inline.hpp"
  81 #include "prims/resolvedMethodTable.hpp"
  82 #include "runtime/atomic.hpp"
  83 #include "runtime/init.hpp"
  84 #include "runtime/orderAccess.inline.hpp"
  85 #include "runtime/threadSMR.hpp"
  86 #include "runtime/vmThread.hpp"
  87 #include "utilities/align.hpp"
  88 #include "utilities/globalDefinitions.hpp"
  89 #include "utilities/stack.inline.hpp"
  90 
  91 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  92 
  93 // INVARIANTS/NOTES
  94 //
  95 // All allocation activity covered by the G1CollectedHeap interface is
  96 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  97 // and allocate_new_tlab, which are the "entry" points to the
  98 // allocation code from the rest of the JVM.  (Note that this does not
  99 // apply to TLAB allocation, which is not part of this interface: it
 100 // is done by clients of this interface.)
 101 
 102 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 103  private:
 104   size_t _num_dirtied;
 105   G1CollectedHeap* _g1h;
 106   G1SATBCardTableLoggingModRefBS* _g1_bs;
 107 
 108   HeapRegion* region_for_card(jbyte* card_ptr) const {
 109     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 110   }
 111 
 112   bool will_become_free(HeapRegion* hr) const {
 113     // A region will be freed by free_collection_set if the region is in the
 114     // collection set and has not had an evacuation failure.
 115     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 116   }
 117 
 118  public:
 119   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 120     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 121 
 122   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 123     HeapRegion* hr = region_for_card(card_ptr);
 124 
 125     // Should only dirty cards in regions that won't be freed.
 126     if (!will_become_free(hr)) {
 127       *card_ptr = CardTableModRefBS::dirty_card_val();
 128       _num_dirtied++;
 129     }
 130 
 131     return true;
 132   }
 133 
 134   size_t num_dirtied()   const { return _num_dirtied; }
 135 };
 136 
 137 
 138 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 139   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 140 }
 141 
 142 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 143   // The from card cache is not the memory that is actually committed. So we cannot
 144   // take advantage of the zero_filled parameter.
 145   reset_from_card_cache(start_idx, num_regions);
 146 }
 147 
 148 
 149 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 150                                              MemRegion mr) {
 151   return new HeapRegion(hrs_index, bot(), mr);
 152 }
 153 
 154 // Private methods.
 155 
 156 HeapRegion*
 157 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 158   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 159   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 160     if (!_secondary_free_list.is_empty()) {
 161       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 162                                       "secondary_free_list has %u entries",
 163                                       _secondary_free_list.length());
 164       // It looks as if there are free regions available on the
 165       // secondary_free_list. Let's move them to the free_list and try
 166       // again to allocate from it.
 167       append_secondary_free_list();
 168 
 169       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 170              "empty we should have moved at least one entry to the free_list");
 171       HeapRegion* res = _hrm.allocate_free_region(is_old);
 172       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 173                                       "allocated " HR_FORMAT " from secondary_free_list",
 174                                       HR_FORMAT_PARAMS(res));
 175       return res;
 176     }
 177 
 178     // Wait here until we get notified either when (a) there are no
 179     // more free regions coming or (b) some regions have been moved on
 180     // the secondary_free_list.
 181     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 182   }
 183 
 184   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 185                                   "could not allocate from secondary_free_list");
 186   return NULL;
 187 }
 188 
 189 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 190   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 191          "the only time we use this to allocate a humongous region is "
 192          "when we are allocating a single humongous region");
 193 
 194   HeapRegion* res;
 195   if (G1StressConcRegionFreeing) {
 196     if (!_secondary_free_list.is_empty()) {
 197       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 198                                       "forced to look at the secondary_free_list");
 199       res = new_region_try_secondary_free_list(is_old);
 200       if (res != NULL) {
 201         return res;
 202       }
 203     }
 204   }
 205 
 206   res = _hrm.allocate_free_region(is_old);
 207 
 208   if (res == NULL) {
 209     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 210                                     "res == NULL, trying the secondary_free_list");
 211     res = new_region_try_secondary_free_list(is_old);
 212   }
 213   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 214     // Currently, only attempts to allocate GC alloc regions set
 215     // do_expand to true. So, we should only reach here during a
 216     // safepoint. If this assumption changes we might have to
 217     // reconsider the use of _expand_heap_after_alloc_failure.
 218     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 219 
 220     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 221                               word_size * HeapWordSize);
 222 
 223     if (expand(word_size * HeapWordSize)) {
 224       // Given that expand() succeeded in expanding the heap, and we
 225       // always expand the heap by an amount aligned to the heap
 226       // region size, the free list should in theory not be empty.
 227       // In either case allocate_free_region() will check for NULL.
 228       res = _hrm.allocate_free_region(is_old);
 229     } else {
 230       _expand_heap_after_alloc_failure = false;
 231     }
 232   }
 233   return res;
 234 }
 235 
 236 HeapWord*
 237 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 238                                                            uint num_regions,
 239                                                            size_t word_size) {
 240   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 241   assert(is_humongous(word_size), "word_size should be humongous");
 242   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 243 
 244   // Index of last region in the series.
 245   uint last = first + num_regions - 1;
 246 
 247   // We need to initialize the region(s) we just discovered. This is
 248   // a bit tricky given that it can happen concurrently with
 249   // refinement threads refining cards on these regions and
 250   // potentially wanting to refine the BOT as they are scanning
 251   // those cards (this can happen shortly after a cleanup; see CR
 252   // 6991377). So we have to set up the region(s) carefully and in
 253   // a specific order.
 254 
 255   // The word size sum of all the regions we will allocate.
 256   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 257   assert(word_size <= word_size_sum, "sanity");
 258 
 259   // This will be the "starts humongous" region.
 260   HeapRegion* first_hr = region_at(first);
 261   // The header of the new object will be placed at the bottom of
 262   // the first region.
 263   HeapWord* new_obj = first_hr->bottom();
 264   // This will be the new top of the new object.
 265   HeapWord* obj_top = new_obj + word_size;
 266 
 267   // First, we need to zero the header of the space that we will be
 268   // allocating. When we update top further down, some refinement
 269   // threads might try to scan the region. By zeroing the header we
 270   // ensure that any thread that will try to scan the region will
 271   // come across the zero klass word and bail out.
 272   //
 273   // NOTE: It would not have been correct to have used
 274   // CollectedHeap::fill_with_object() and make the space look like
 275   // an int array. The thread that is doing the allocation will
 276   // later update the object header to a potentially different array
 277   // type and, for a very short period of time, the klass and length
 278   // fields will be inconsistent. This could cause a refinement
 279   // thread to calculate the object size incorrectly.
 280   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 281 
 282   // Next, pad out the unused tail of the last region with filler
 283   // objects, for improved usage accounting.
 284   // How many words we use for filler objects.
 285   size_t word_fill_size = word_size_sum - word_size;
 286 
 287   // How many words memory we "waste" which cannot hold a filler object.
 288   size_t words_not_fillable = 0;
 289 
 290   if (word_fill_size >= min_fill_size()) {
 291     fill_with_objects(obj_top, word_fill_size);
 292   } else if (word_fill_size > 0) {
 293     // We have space to fill, but we cannot fit an object there.
 294     words_not_fillable = word_fill_size;
 295     word_fill_size = 0;
 296   }
 297 
 298   // We will set up the first region as "starts humongous". This
 299   // will also update the BOT covering all the regions to reflect
 300   // that there is a single object that starts at the bottom of the
 301   // first region.
 302   first_hr->set_starts_humongous(obj_top, word_fill_size);
 303   // Then, if there are any, we will set up the "continues
 304   // humongous" regions.
 305   HeapRegion* hr = NULL;
 306   for (uint i = first + 1; i <= last; ++i) {
 307     hr = region_at(i);
 308     hr->set_continues_humongous(first_hr);
 309   }
 310 
 311   // Up to this point no concurrent thread would have been able to
 312   // do any scanning on any region in this series. All the top
 313   // fields still point to bottom, so the intersection between
 314   // [bottom,top] and [card_start,card_end] will be empty. Before we
 315   // update the top fields, we'll do a storestore to make sure that
 316   // no thread sees the update to top before the zeroing of the
 317   // object header and the BOT initialization.
 318   OrderAccess::storestore();
 319 
 320   // Now, we will update the top fields of the "continues humongous"
 321   // regions except the last one.
 322   for (uint i = first; i < last; ++i) {
 323     hr = region_at(i);
 324     hr->set_top(hr->end());
 325   }
 326 
 327   hr = region_at(last);
 328   // If we cannot fit a filler object, we must set top to the end
 329   // of the humongous object, otherwise we cannot iterate the heap
 330   // and the BOT will not be complete.
 331   hr->set_top(hr->end() - words_not_fillable);
 332 
 333   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 334          "obj_top should be in last region");
 335 
 336   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 337 
 338   assert(words_not_fillable == 0 ||
 339          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 340          "Miscalculation in humongous allocation");
 341 
 342   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 343 
 344   for (uint i = first; i <= last; ++i) {
 345     hr = region_at(i);
 346     _humongous_set.add(hr);
 347     _hr_printer.alloc(hr);
 348   }
 349 
 350   return new_obj;
 351 }
 352 
 353 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 354   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 355   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 356 }
 357 
 358 // If could fit into free regions w/o expansion, try.
 359 // Otherwise, if can expand, do so.
 360 // Otherwise, if using ex regions might help, try with ex given back.
 361 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 362   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 363 
 364   _verifier->verify_region_sets_optional();
 365 
 366   uint first = G1_NO_HRM_INDEX;
 367   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 368 
 369   if (obj_regions == 1) {
 370     // Only one region to allocate, try to use a fast path by directly allocating
 371     // from the free lists. Do not try to expand here, we will potentially do that
 372     // later.
 373     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 374     if (hr != NULL) {
 375       first = hr->hrm_index();
 376     }
 377   } else {
 378     // We can't allocate humongous regions spanning more than one region while
 379     // cleanupComplete() is running, since some of the regions we find to be
 380     // empty might not yet be added to the free list. It is not straightforward
 381     // to know in which list they are on so that we can remove them. We only
 382     // need to do this if we need to allocate more than one region to satisfy the
 383     // current humongous allocation request. If we are only allocating one region
 384     // we use the one-region region allocation code (see above), that already
 385     // potentially waits for regions from the secondary free list.
 386     wait_while_free_regions_coming();
 387     append_secondary_free_list_if_not_empty_with_lock();
 388 
 389     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 390     // are lucky enough to find some.
 391     first = _hrm.find_contiguous_only_empty(obj_regions);
 392     if (first != G1_NO_HRM_INDEX) {
 393       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 394     }
 395   }
 396 
 397   if (first == G1_NO_HRM_INDEX) {
 398     // Policy: We could not find enough regions for the humongous object in the
 399     // free list. Look through the heap to find a mix of free and uncommitted regions.
 400     // If so, try expansion.
 401     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 402     if (first != G1_NO_HRM_INDEX) {
 403       // We found something. Make sure these regions are committed, i.e. expand
 404       // the heap. Alternatively we could do a defragmentation GC.
 405       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 406                                     word_size * HeapWordSize);
 407 
 408       _hrm.expand_at(first, obj_regions, workers());
 409       g1_policy()->record_new_heap_size(num_regions());
 410 
 411 #ifdef ASSERT
 412       for (uint i = first; i < first + obj_regions; ++i) {
 413         HeapRegion* hr = region_at(i);
 414         assert(hr->is_free(), "sanity");
 415         assert(hr->is_empty(), "sanity");
 416         assert(is_on_master_free_list(hr), "sanity");
 417       }
 418 #endif
 419       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 420     } else {
 421       // Policy: Potentially trigger a defragmentation GC.
 422     }
 423   }
 424 
 425   HeapWord* result = NULL;
 426   if (first != G1_NO_HRM_INDEX) {
 427     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 428     assert(result != NULL, "it should always return a valid result");
 429 
 430     // A successful humongous object allocation changes the used space
 431     // information of the old generation so we need to recalculate the
 432     // sizes and update the jstat counters here.
 433     g1mm()->update_sizes();
 434   }
 435 
 436   _verifier->verify_region_sets_optional();
 437 
 438   return result;
 439 }
 440 
 441 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 442   assert_heap_not_locked_and_not_at_safepoint();
 443   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 444 
 445   return attempt_allocation(word_size);
 446 }
 447 
 448 HeapWord*
 449 G1CollectedHeap::mem_allocate(size_t word_size,
 450                               bool*  gc_overhead_limit_was_exceeded) {
 451   assert_heap_not_locked_and_not_at_safepoint();
 452 
 453   if (is_humongous(word_size)) {
 454     return attempt_allocation_humongous(word_size);
 455   }
 456   return attempt_allocation(word_size);
 457 }
 458 
 459 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 460   ResourceMark rm; // For retrieving the thread names in log messages.
 461 
 462   // Make sure you read the note in attempt_allocation_humongous().
 463 
 464   assert_heap_not_locked_and_not_at_safepoint();
 465   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 466          "be called for humongous allocation requests");
 467 
 468   // We should only get here after the first-level allocation attempt
 469   // (attempt_allocation()) failed to allocate.
 470 
 471   // We will loop until a) we manage to successfully perform the
 472   // allocation or b) we successfully schedule a collection which
 473   // fails to perform the allocation. b) is the only case when we'll
 474   // return NULL.
 475   HeapWord* result = NULL;
 476   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 477     bool should_try_gc;
 478     uint gc_count_before;
 479 
 480     {
 481       MutexLockerEx x(Heap_lock);
 482       result = _allocator->attempt_allocation_locked(word_size);
 483       if (result != NULL) {
 484         return result;
 485       }
 486 
 487       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 488       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 489       // waiting because the GCLocker is active to not wait too long.
 490       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 491         // No need for an ergo message here, can_expand_young_list() does this when
 492         // it returns true.
 493         result = _allocator->attempt_allocation_force(word_size);
 494         if (result != NULL) {
 495           return result;
 496         }
 497       }
 498       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 499       // the GCLocker initiated GC has been performed and then retry. This includes
 500       // the case when the GC Locker is not active but has not been performed.
 501       should_try_gc = !GCLocker::needs_gc();
 502       // Read the GC count while still holding the Heap_lock.
 503       gc_count_before = total_collections();
 504     }
 505 
 506     if (should_try_gc) {
 507       bool succeeded;
 508       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 509                                    GCCause::_g1_inc_collection_pause);
 510       if (result != NULL) {
 511         assert(succeeded, "only way to get back a non-NULL result");
 512         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 513                              Thread::current()->name(), p2i(result));
 514         return result;
 515       }
 516 
 517       if (succeeded) {
 518         // We successfully scheduled a collection which failed to allocate. No
 519         // point in trying to allocate further. We'll just return NULL.
 520         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 521                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 522         return NULL;
 523       }
 524       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 525                            Thread::current()->name(), word_size);
 526     } else {
 527       // Failed to schedule a collection.
 528       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 529         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 530                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 531         return NULL;
 532       }
 533       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 534       // The GCLocker is either active or the GCLocker initiated
 535       // GC has not yet been performed. Stall until it is and
 536       // then retry the allocation.
 537       GCLocker::stall_until_clear();
 538       gclocker_retry_count += 1;
 539     }
 540 
 541     // We can reach here if we were unsuccessful in scheduling a
 542     // collection (because another thread beat us to it) or if we were
 543     // stalled due to the GC locker. In either can we should retry the
 544     // allocation attempt in case another thread successfully
 545     // performed a collection and reclaimed enough space. We do the
 546     // first attempt (without holding the Heap_lock) here and the
 547     // follow-on attempt will be at the start of the next loop
 548     // iteration (after taking the Heap_lock).
 549 
 550     result = _allocator->attempt_allocation(word_size);
 551     if (result != NULL) {
 552       return result;
 553     }
 554 
 555     // Give a warning if we seem to be looping forever.
 556     if ((QueuedAllocationWarningCount > 0) &&
 557         (try_count % QueuedAllocationWarningCount == 0)) {
 558       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 559                              Thread::current()->name(), try_count, word_size);
 560     }
 561   }
 562 
 563   ShouldNotReachHere();
 564   return NULL;
 565 }
 566 
 567 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 568   assert_at_safepoint(true /* should_be_vm_thread */);
 569   if (_archive_allocator == NULL) {
 570     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 571   }
 572 }
 573 
 574 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 575   // Allocations in archive regions cannot be of a size that would be considered
 576   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 577   // may be different at archive-restore time.
 578   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 579 }
 580 
 581 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 582   assert_at_safepoint(true /* should_be_vm_thread */);
 583   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 584   if (is_archive_alloc_too_large(word_size)) {
 585     return NULL;
 586   }
 587   return _archive_allocator->archive_mem_allocate(word_size);
 588 }
 589 
 590 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 591                                               size_t end_alignment_in_bytes) {
 592   assert_at_safepoint(true /* should_be_vm_thread */);
 593   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 594 
 595   // Call complete_archive to do the real work, filling in the MemRegion
 596   // array with the archive regions.
 597   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 598   delete _archive_allocator;
 599   _archive_allocator = NULL;
 600 }
 601 
 602 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 603   assert(ranges != NULL, "MemRegion array NULL");
 604   assert(count != 0, "No MemRegions provided");
 605   MemRegion reserved = _hrm.reserved();
 606   for (size_t i = 0; i < count; i++) {
 607     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 608       return false;
 609     }
 610   }
 611   return true;
 612 }
 613 
 614 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 615                                             size_t count,
 616                                             bool open) {
 617   assert(!is_init_completed(), "Expect to be called at JVM init time");
 618   assert(ranges != NULL, "MemRegion array NULL");
 619   assert(count != 0, "No MemRegions provided");
 620   MutexLockerEx x(Heap_lock);
 621 
 622   MemRegion reserved = _hrm.reserved();
 623   HeapWord* prev_last_addr = NULL;
 624   HeapRegion* prev_last_region = NULL;
 625 
 626   // Temporarily disable pretouching of heap pages. This interface is used
 627   // when mmap'ing archived heap data in, so pre-touching is wasted.
 628   FlagSetting fs(AlwaysPreTouch, false);
 629 
 630   // Enable archive object checking used by G1MarkSweep. We have to let it know
 631   // about each archive range, so that objects in those ranges aren't marked.
 632   G1ArchiveAllocator::enable_archive_object_check();
 633 
 634   // For each specified MemRegion range, allocate the corresponding G1
 635   // regions and mark them as archive regions. We expect the ranges
 636   // in ascending starting address order, without overlap.
 637   for (size_t i = 0; i < count; i++) {
 638     MemRegion curr_range = ranges[i];
 639     HeapWord* start_address = curr_range.start();
 640     size_t word_size = curr_range.word_size();
 641     HeapWord* last_address = curr_range.last();
 642     size_t commits = 0;
 643 
 644     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 645               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 646               p2i(start_address), p2i(last_address));
 647     guarantee(start_address > prev_last_addr,
 648               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 649               p2i(start_address), p2i(prev_last_addr));
 650     prev_last_addr = last_address;
 651 
 652     // Check for ranges that start in the same G1 region in which the previous
 653     // range ended, and adjust the start address so we don't try to allocate
 654     // the same region again. If the current range is entirely within that
 655     // region, skip it, just adjusting the recorded top.
 656     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 657     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 658       start_address = start_region->end();
 659       if (start_address > last_address) {
 660         increase_used(word_size * HeapWordSize);
 661         start_region->set_top(last_address + 1);
 662         continue;
 663       }
 664       start_region->set_top(start_address);
 665       curr_range = MemRegion(start_address, last_address + 1);
 666       start_region = _hrm.addr_to_region(start_address);
 667     }
 668 
 669     // Perform the actual region allocation, exiting if it fails.
 670     // Then note how much new space we have allocated.
 671     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 672       return false;
 673     }
 674     increase_used(word_size * HeapWordSize);
 675     if (commits != 0) {
 676       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 677                                 HeapRegion::GrainWords * HeapWordSize * commits);
 678 
 679     }
 680 
 681     // Mark each G1 region touched by the range as archive, add it to
 682     // the old set, and set top.
 683     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 684     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 685     prev_last_region = last_region;
 686 
 687     while (curr_region != NULL) {
 688       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 689              "Region already in use (index %u)", curr_region->hrm_index());
 690       if (open) {
 691         curr_region->set_open_archive();
 692       } else {
 693         curr_region->set_closed_archive();
 694       }
 695       _hr_printer.alloc(curr_region);
 696       _old_set.add(curr_region);
 697       HeapWord* top;
 698       HeapRegion* next_region;
 699       if (curr_region != last_region) {
 700         top = curr_region->end();
 701         next_region = _hrm.next_region_in_heap(curr_region);
 702       } else {
 703         top = last_address + 1;
 704         next_region = NULL;
 705       }
 706       curr_region->set_top(top);
 707       curr_region->set_first_dead(top);
 708       curr_region->set_end_of_live(top);
 709       curr_region = next_region;
 710     }
 711 
 712     // Notify mark-sweep of the archive
 713     G1ArchiveAllocator::set_range_archive(curr_range, open);
 714   }
 715   return true;
 716 }
 717 
 718 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 719   assert(!is_init_completed(), "Expect to be called at JVM init time");
 720   assert(ranges != NULL, "MemRegion array NULL");
 721   assert(count != 0, "No MemRegions provided");
 722   MemRegion reserved = _hrm.reserved();
 723   HeapWord *prev_last_addr = NULL;
 724   HeapRegion* prev_last_region = NULL;
 725 
 726   // For each MemRegion, create filler objects, if needed, in the G1 regions
 727   // that contain the address range. The address range actually within the
 728   // MemRegion will not be modified. That is assumed to have been initialized
 729   // elsewhere, probably via an mmap of archived heap data.
 730   MutexLockerEx x(Heap_lock);
 731   for (size_t i = 0; i < count; i++) {
 732     HeapWord* start_address = ranges[i].start();
 733     HeapWord* last_address = ranges[i].last();
 734 
 735     assert(reserved.contains(start_address) && reserved.contains(last_address),
 736            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 737            p2i(start_address), p2i(last_address));
 738     assert(start_address > prev_last_addr,
 739            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 740            p2i(start_address), p2i(prev_last_addr));
 741 
 742     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 743     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 744     HeapWord* bottom_address = start_region->bottom();
 745 
 746     // Check for a range beginning in the same region in which the
 747     // previous one ended.
 748     if (start_region == prev_last_region) {
 749       bottom_address = prev_last_addr + 1;
 750     }
 751 
 752     // Verify that the regions were all marked as archive regions by
 753     // alloc_archive_regions.
 754     HeapRegion* curr_region = start_region;
 755     while (curr_region != NULL) {
 756       guarantee(curr_region->is_archive(),
 757                 "Expected archive region at index %u", curr_region->hrm_index());
 758       if (curr_region != last_region) {
 759         curr_region = _hrm.next_region_in_heap(curr_region);
 760       } else {
 761         curr_region = NULL;
 762       }
 763     }
 764 
 765     prev_last_addr = last_address;
 766     prev_last_region = last_region;
 767 
 768     // Fill the memory below the allocated range with dummy object(s),
 769     // if the region bottom does not match the range start, or if the previous
 770     // range ended within the same G1 region, and there is a gap.
 771     if (start_address != bottom_address) {
 772       size_t fill_size = pointer_delta(start_address, bottom_address);
 773       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 774       increase_used(fill_size * HeapWordSize);
 775     }
 776   }
 777 }
 778 
 779 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size) {
 780   assert_heap_not_locked_and_not_at_safepoint();
 781   assert(!is_humongous(word_size), "attempt_allocation() should not "
 782          "be called for humongous allocation requests");
 783 
 784   HeapWord* result = _allocator->attempt_allocation(word_size);
 785 
 786   if (result == NULL) {
 787     result = attempt_allocation_slow(word_size);
 788   }
 789   assert_heap_not_locked();
 790   if (result != NULL) {
 791     dirty_young_block(result, word_size);
 792   }
 793   return result;
 794 }
 795 
 796 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 797   assert(!is_init_completed(), "Expect to be called at JVM init time");
 798   assert(ranges != NULL, "MemRegion array NULL");
 799   assert(count != 0, "No MemRegions provided");
 800   MemRegion reserved = _hrm.reserved();
 801   HeapWord* prev_last_addr = NULL;
 802   HeapRegion* prev_last_region = NULL;
 803   size_t size_used = 0;
 804   size_t uncommitted_regions = 0;
 805 
 806   // For each Memregion, free the G1 regions that constitute it, and
 807   // notify mark-sweep that the range is no longer to be considered 'archive.'
 808   MutexLockerEx x(Heap_lock);
 809   for (size_t i = 0; i < count; i++) {
 810     HeapWord* start_address = ranges[i].start();
 811     HeapWord* last_address = ranges[i].last();
 812 
 813     assert(reserved.contains(start_address) && reserved.contains(last_address),
 814            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 815            p2i(start_address), p2i(last_address));
 816     assert(start_address > prev_last_addr,
 817            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 818            p2i(start_address), p2i(prev_last_addr));
 819     size_used += ranges[i].byte_size();
 820     prev_last_addr = last_address;
 821 
 822     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 823     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 824 
 825     // Check for ranges that start in the same G1 region in which the previous
 826     // range ended, and adjust the start address so we don't try to free
 827     // the same region again. If the current range is entirely within that
 828     // region, skip it.
 829     if (start_region == prev_last_region) {
 830       start_address = start_region->end();
 831       if (start_address > last_address) {
 832         continue;
 833       }
 834       start_region = _hrm.addr_to_region(start_address);
 835     }
 836     prev_last_region = last_region;
 837 
 838     // After verifying that each region was marked as an archive region by
 839     // alloc_archive_regions, set it free and empty and uncommit it.
 840     HeapRegion* curr_region = start_region;
 841     while (curr_region != NULL) {
 842       guarantee(curr_region->is_archive(),
 843                 "Expected archive region at index %u", curr_region->hrm_index());
 844       uint curr_index = curr_region->hrm_index();
 845       _old_set.remove(curr_region);
 846       curr_region->set_free();
 847       curr_region->set_top(curr_region->bottom());
 848       if (curr_region != last_region) {
 849         curr_region = _hrm.next_region_in_heap(curr_region);
 850       } else {
 851         curr_region = NULL;
 852       }
 853       _hrm.shrink_at(curr_index, 1);
 854       uncommitted_regions++;
 855     }
 856 
 857     // Notify mark-sweep that this is no longer an archive range.
 858     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 859   }
 860 
 861   if (uncommitted_regions != 0) {
 862     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 863                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 864   }
 865   decrease_used(size_used);
 866 }
 867 
 868 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 869   ResourceMark rm; // For retrieving the thread names in log messages.
 870 
 871   // The structure of this method has a lot of similarities to
 872   // attempt_allocation_slow(). The reason these two were not merged
 873   // into a single one is that such a method would require several "if
 874   // allocation is not humongous do this, otherwise do that"
 875   // conditional paths which would obscure its flow. In fact, an early
 876   // version of this code did use a unified method which was harder to
 877   // follow and, as a result, it had subtle bugs that were hard to
 878   // track down. So keeping these two methods separate allows each to
 879   // be more readable. It will be good to keep these two in sync as
 880   // much as possible.
 881 
 882   assert_heap_not_locked_and_not_at_safepoint();
 883   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 884          "should only be called for humongous allocations");
 885 
 886   // Humongous objects can exhaust the heap quickly, so we should check if we
 887   // need to start a marking cycle at each humongous object allocation. We do
 888   // the check before we do the actual allocation. The reason for doing it
 889   // before the allocation is that we avoid having to keep track of the newly
 890   // allocated memory while we do a GC.
 891   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 892                                            word_size)) {
 893     collect(GCCause::_g1_humongous_allocation);
 894   }
 895 
 896   // We will loop until a) we manage to successfully perform the
 897   // allocation or b) we successfully schedule a collection which
 898   // fails to perform the allocation. b) is the only case when we'll
 899   // return NULL.
 900   HeapWord* result = NULL;
 901   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 902     bool should_try_gc;
 903     uint gc_count_before;
 904 
 905 
 906     {
 907       MutexLockerEx x(Heap_lock);
 908 
 909       // Given that humongous objects are not allocated in young
 910       // regions, we'll first try to do the allocation without doing a
 911       // collection hoping that there's enough space in the heap.
 912       result = humongous_obj_allocate(word_size);
 913       if (result != NULL) {
 914         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 915         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 916         return result;
 917       }
 918 
 919       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 920       // the GCLocker initiated GC has been performed and then retry. This includes
 921       // the case when the GC Locker is not active but has not been performed.
 922       should_try_gc = !GCLocker::needs_gc();
 923       // Read the GC count while still holding the Heap_lock.
 924       gc_count_before = total_collections();
 925     }
 926 
 927     if (should_try_gc) {
 928       bool succeeded;
 929       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 930                                    GCCause::_g1_humongous_allocation);
 931       if (result != NULL) {
 932         assert(succeeded, "only way to get back a non-NULL result");
 933         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 934                              Thread::current()->name(), p2i(result));
 935         return result;
 936       }
 937 
 938       if (succeeded) {
 939         // We successfully scheduled a collection which failed to allocate. No
 940         // point in trying to allocate further. We'll just return NULL.
 941         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 942                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 943         return NULL;
 944       }
 945       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 946                            Thread::current()->name(), word_size);
 947     } else {
 948       // Failed to schedule a collection.
 949       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 950         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 951                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 952         return NULL;
 953       }
 954       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 955       // The GCLocker is either active or the GCLocker initiated
 956       // GC has not yet been performed. Stall until it is and
 957       // then retry the allocation.
 958       GCLocker::stall_until_clear();
 959       gclocker_retry_count += 1;
 960     }
 961 
 962 
 963     // We can reach here if we were unsuccessful in scheduling a
 964     // collection (because another thread beat us to it) or if we were
 965     // stalled due to the GC locker. In either can we should retry the
 966     // allocation attempt in case another thread successfully
 967     // performed a collection and reclaimed enough space.
 968     // Humongous object allocation always needs a lock, so we wait for the retry
 969     // in the next iteration of the loop, unlike for the regular iteration case.
 970     // Give a warning if we seem to be looping forever.
 971 
 972     if ((QueuedAllocationWarningCount > 0) &&
 973         (try_count % QueuedAllocationWarningCount == 0)) {
 974       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 975                              Thread::current()->name(), try_count, word_size);
 976     }
 977   }
 978 
 979   ShouldNotReachHere();
 980   return NULL;
 981 }
 982 
 983 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 984                                                            bool expect_null_mutator_alloc_region) {
 985   assert_at_safepoint(true /* should_be_vm_thread */);
 986   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 987          "the current alloc region was unexpectedly found to be non-NULL");
 988 
 989   if (!is_humongous(word_size)) {
 990     return _allocator->attempt_allocation_locked(word_size);
 991   } else {
 992     HeapWord* result = humongous_obj_allocate(word_size);
 993     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 994       collector_state()->set_initiate_conc_mark_if_possible(true);
 995     }
 996     return result;
 997   }
 998 
 999   ShouldNotReachHere();
1000 }
1001 
1002 class PostCompactionPrinterClosure: public HeapRegionClosure {
1003 private:
1004   G1HRPrinter* _hr_printer;
1005 public:
1006   bool do_heap_region(HeapRegion* hr) {
1007     assert(!hr->is_young(), "not expecting to find young regions");
1008     _hr_printer->post_compaction(hr);
1009     return false;
1010   }
1011 
1012   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1013     : _hr_printer(hr_printer) { }
1014 };
1015 
1016 void G1CollectedHeap::print_hrm_post_compaction() {
1017   if (_hr_printer.is_active()) {
1018     PostCompactionPrinterClosure cl(hr_printer());
1019     heap_region_iterate(&cl);
1020   }
1021 }
1022 
1023 void G1CollectedHeap::abort_concurrent_cycle() {
1024   // Note: When we have a more flexible GC logging framework that
1025   // allows us to add optional attributes to a GC log record we
1026   // could consider timing and reporting how long we wait in the
1027   // following two methods.
1028   wait_while_free_regions_coming();
1029   // If we start the compaction before the CM threads finish
1030   // scanning the root regions we might trip them over as we'll
1031   // be moving objects / updating references. So let's wait until
1032   // they are done. By telling them to abort, they should complete
1033   // early.
1034   _cm->root_regions()->abort();
1035   _cm->root_regions()->wait_until_scan_finished();
1036   append_secondary_free_list_if_not_empty_with_lock();
1037 
1038   // Disable discovery and empty the discovered lists
1039   // for the CM ref processor.
1040   ref_processor_cm()->disable_discovery();
1041   ref_processor_cm()->abandon_partial_discovery();
1042   ref_processor_cm()->verify_no_references_recorded();
1043 
1044   // Abandon current iterations of concurrent marking and concurrent
1045   // refinement, if any are in progress.
1046   concurrent_mark()->abort();
1047 }
1048 
1049 void G1CollectedHeap::prepare_heap_for_full_collection() {
1050   // Make sure we'll choose a new allocation region afterwards.
1051   _allocator->release_mutator_alloc_region();
1052   _allocator->abandon_gc_alloc_regions();
1053   g1_rem_set()->cleanupHRRS();
1054 
1055   // We may have added regions to the current incremental collection
1056   // set between the last GC or pause and now. We need to clear the
1057   // incremental collection set and then start rebuilding it afresh
1058   // after this full GC.
1059   abandon_collection_set(collection_set());
1060 
1061   tear_down_region_sets(false /* free_list_only */);
1062   collector_state()->set_gcs_are_young(true);
1063 }
1064 
1065 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1066   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1067   assert(used() == recalculate_used(), "Should be equal");
1068   _verifier->verify_region_sets_optional();
1069   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1070   _verifier->check_bitmaps("Full GC Start");
1071 }
1072 
1073 void G1CollectedHeap::prepare_heap_for_mutators() {
1074   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1075   ClassLoaderDataGraph::purge();
1076   MetaspaceAux::verify_metrics();
1077 
1078   // Prepare heap for normal collections.
1079   assert(num_free_regions() == 0, "we should not have added any free regions");
1080   rebuild_region_sets(false /* free_list_only */);
1081   abort_refinement();
1082   resize_if_necessary_after_full_collection();
1083 
1084   // Rebuild the strong code root lists for each region
1085   rebuild_strong_code_roots();
1086 
1087   // Start a new incremental collection set for the next pause
1088   start_new_collection_set();
1089 
1090   _allocator->init_mutator_alloc_region();
1091 
1092   // Post collection state updates.
1093   MetaspaceGC::compute_new_size();
1094 }
1095 
1096 void G1CollectedHeap::abort_refinement() {
1097   if (_hot_card_cache->use_cache()) {
1098     _hot_card_cache->reset_hot_cache();
1099   }
1100 
1101   // Discard all remembered set updates.
1102   JavaThread::dirty_card_queue_set().abandon_logs();
1103   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1104 }
1105 
1106 void G1CollectedHeap::verify_after_full_collection() {
1107   check_gc_time_stamps();
1108   _hrm.verify_optional();
1109   _verifier->verify_region_sets_optional();
1110   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1111   // Clear the previous marking bitmap, if needed for bitmap verification.
1112   // Note we cannot do this when we clear the next marking bitmap in
1113   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1114   // objects marked during a full GC against the previous bitmap.
1115   // But we need to clear it before calling check_bitmaps below since
1116   // the full GC has compacted objects and updated TAMS but not updated
1117   // the prev bitmap.
1118   if (G1VerifyBitmaps) {
1119     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1120     _cm->clear_prev_bitmap(workers());
1121   }
1122   _verifier->check_bitmaps("Full GC End");
1123 
1124   // At this point there should be no regions in the
1125   // entire heap tagged as young.
1126   assert(check_young_list_empty(), "young list should be empty at this point");
1127 
1128   // Note: since we've just done a full GC, concurrent
1129   // marking is no longer active. Therefore we need not
1130   // re-enable reference discovery for the CM ref processor.
1131   // That will be done at the start of the next marking cycle.
1132   // We also know that the STW processor should no longer
1133   // discover any new references.
1134   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1135   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1136   ref_processor_stw()->verify_no_references_recorded();
1137   ref_processor_cm()->verify_no_references_recorded();
1138 }
1139 
1140 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1141   // Post collection logging.
1142   // We should do this after we potentially resize the heap so
1143   // that all the COMMIT / UNCOMMIT events are generated before
1144   // the compaction events.
1145   print_hrm_post_compaction();
1146   heap_transition->print();
1147   print_heap_after_gc();
1148   print_heap_regions();
1149 #ifdef TRACESPINNING
1150   ParallelTaskTerminator::print_termination_counts();
1151 #endif
1152 }
1153 
1154 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1155                                          bool clear_all_soft_refs) {
1156   assert_at_safepoint(true /* should_be_vm_thread */);
1157 
1158   if (GCLocker::check_active_before_gc()) {
1159     // Full GC was not completed.
1160     return false;
1161   }
1162 
1163   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1164       soft_ref_policy()->should_clear_all_soft_refs();
1165 
1166   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1167   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1168 
1169   collector.prepare_collection();
1170   collector.collect();
1171   collector.complete_collection();
1172 
1173   // Full collection was successfully completed.
1174   return true;
1175 }
1176 
1177 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1178   // Currently, there is no facility in the do_full_collection(bool) API to notify
1179   // the caller that the collection did not succeed (e.g., because it was locked
1180   // out by the GC locker). So, right now, we'll ignore the return value.
1181   bool dummy = do_full_collection(true,                /* explicit_gc */
1182                                   clear_all_soft_refs);
1183 }
1184 
1185 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1186   // Capacity, free and used after the GC counted as full regions to
1187   // include the waste in the following calculations.
1188   const size_t capacity_after_gc = capacity();
1189   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1190 
1191   // This is enforced in arguments.cpp.
1192   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1193          "otherwise the code below doesn't make sense");
1194 
1195   // We don't have floating point command-line arguments
1196   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1197   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1198   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1199   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1200 
1201   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1202   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1203 
1204   // We have to be careful here as these two calculations can overflow
1205   // 32-bit size_t's.
1206   double used_after_gc_d = (double) used_after_gc;
1207   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1208   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1209 
1210   // Let's make sure that they are both under the max heap size, which
1211   // by default will make them fit into a size_t.
1212   double desired_capacity_upper_bound = (double) max_heap_size;
1213   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1214                                     desired_capacity_upper_bound);
1215   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1216                                     desired_capacity_upper_bound);
1217 
1218   // We can now safely turn them into size_t's.
1219   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1220   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1221 
1222   // This assert only makes sense here, before we adjust them
1223   // with respect to the min and max heap size.
1224   assert(minimum_desired_capacity <= maximum_desired_capacity,
1225          "minimum_desired_capacity = " SIZE_FORMAT ", "
1226          "maximum_desired_capacity = " SIZE_FORMAT,
1227          minimum_desired_capacity, maximum_desired_capacity);
1228 
1229   // Should not be greater than the heap max size. No need to adjust
1230   // it with respect to the heap min size as it's a lower bound (i.e.,
1231   // we'll try to make the capacity larger than it, not smaller).
1232   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1233   // Should not be less than the heap min size. No need to adjust it
1234   // with respect to the heap max size as it's an upper bound (i.e.,
1235   // we'll try to make the capacity smaller than it, not greater).
1236   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1237 
1238   if (capacity_after_gc < minimum_desired_capacity) {
1239     // Don't expand unless it's significant
1240     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1241 
1242     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1243                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1244                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1245                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1246 
1247     expand(expand_bytes, _workers);
1248 
1249     // No expansion, now see if we want to shrink
1250   } else if (capacity_after_gc > maximum_desired_capacity) {
1251     // Capacity too large, compute shrinking size
1252     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1253 
1254     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1255                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1256                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1257                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1258 
1259     shrink(shrink_bytes);
1260   }
1261 }
1262 
1263 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1264                                                             bool do_gc,
1265                                                             bool clear_all_soft_refs,
1266                                                             bool expect_null_mutator_alloc_region,
1267                                                             bool* gc_succeeded) {
1268   *gc_succeeded = true;
1269   // Let's attempt the allocation first.
1270   HeapWord* result =
1271     attempt_allocation_at_safepoint(word_size,
1272                                     expect_null_mutator_alloc_region);
1273   if (result != NULL) {
1274     return result;
1275   }
1276 
1277   // In a G1 heap, we're supposed to keep allocation from failing by
1278   // incremental pauses.  Therefore, at least for now, we'll favor
1279   // expansion over collection.  (This might change in the future if we can
1280   // do something smarter than full collection to satisfy a failed alloc.)
1281   result = expand_and_allocate(word_size);
1282   if (result != NULL) {
1283     return result;
1284   }
1285 
1286   if (do_gc) {
1287     // Expansion didn't work, we'll try to do a Full GC.
1288     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1289                                        clear_all_soft_refs);
1290   }
1291 
1292   return NULL;
1293 }
1294 
1295 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1296                                                      bool* succeeded) {
1297   assert_at_safepoint(true /* should_be_vm_thread */);
1298 
1299   // Attempts to allocate followed by Full GC.
1300   HeapWord* result =
1301     satisfy_failed_allocation_helper(word_size,
1302                                      true,  /* do_gc */
1303                                      false, /* clear_all_soft_refs */
1304                                      false, /* expect_null_mutator_alloc_region */
1305                                      succeeded);
1306 
1307   if (result != NULL || !*succeeded) {
1308     return result;
1309   }
1310 
1311   // Attempts to allocate followed by Full GC that will collect all soft references.
1312   result = satisfy_failed_allocation_helper(word_size,
1313                                             true, /* do_gc */
1314                                             true, /* clear_all_soft_refs */
1315                                             true, /* expect_null_mutator_alloc_region */
1316                                             succeeded);
1317 
1318   if (result != NULL || !*succeeded) {
1319     return result;
1320   }
1321 
1322   // Attempts to allocate, no GC
1323   result = satisfy_failed_allocation_helper(word_size,
1324                                             false, /* do_gc */
1325                                             false, /* clear_all_soft_refs */
1326                                             true,  /* expect_null_mutator_alloc_region */
1327                                             succeeded);
1328 
1329   if (result != NULL) {
1330     return result;
1331   }
1332 
1333   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1334          "Flag should have been handled and cleared prior to this point");
1335 
1336   // What else?  We might try synchronous finalization later.  If the total
1337   // space available is large enough for the allocation, then a more
1338   // complete compaction phase than we've tried so far might be
1339   // appropriate.
1340   return NULL;
1341 }
1342 
1343 // Attempting to expand the heap sufficiently
1344 // to support an allocation of the given "word_size".  If
1345 // successful, perform the allocation and return the address of the
1346 // allocated block, or else "NULL".
1347 
1348 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1349   assert_at_safepoint(true /* should_be_vm_thread */);
1350 
1351   _verifier->verify_region_sets_optional();
1352 
1353   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1354   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1355                             word_size * HeapWordSize);
1356 
1357 
1358   if (expand(expand_bytes, _workers)) {
1359     _hrm.verify_optional();
1360     _verifier->verify_region_sets_optional();
1361     return attempt_allocation_at_safepoint(word_size,
1362                                                false /* expect_null_mutator_alloc_region */);
1363   }
1364   return NULL;
1365 }
1366 
1367 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1368   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1369   aligned_expand_bytes = align_up(aligned_expand_bytes,
1370                                        HeapRegion::GrainBytes);
1371 
1372   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1373                             expand_bytes, aligned_expand_bytes);
1374 
1375   if (is_maximal_no_gc()) {
1376     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1377     return false;
1378   }
1379 
1380   double expand_heap_start_time_sec = os::elapsedTime();
1381   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1382   assert(regions_to_expand > 0, "Must expand by at least one region");
1383 
1384   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1385   if (expand_time_ms != NULL) {
1386     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1387   }
1388 
1389   if (expanded_by > 0) {
1390     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1391     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1392     g1_policy()->record_new_heap_size(num_regions());
1393   } else {
1394     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1395 
1396     // The expansion of the virtual storage space was unsuccessful.
1397     // Let's see if it was because we ran out of swap.
1398     if (G1ExitOnExpansionFailure &&
1399         _hrm.available() >= regions_to_expand) {
1400       // We had head room...
1401       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1402     }
1403   }
1404   return regions_to_expand > 0;
1405 }
1406 
1407 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1408   size_t aligned_shrink_bytes =
1409     ReservedSpace::page_align_size_down(shrink_bytes);
1410   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1411                                          HeapRegion::GrainBytes);
1412   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1413 
1414   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1415   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1416 
1417 
1418   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1419                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1420   if (num_regions_removed > 0) {
1421     g1_policy()->record_new_heap_size(num_regions());
1422   } else {
1423     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1424   }
1425 }
1426 
1427 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1428   _verifier->verify_region_sets_optional();
1429 
1430   // We should only reach here at the end of a Full GC which means we
1431   // should not not be holding to any GC alloc regions. The method
1432   // below will make sure of that and do any remaining clean up.
1433   _allocator->abandon_gc_alloc_regions();
1434 
1435   // Instead of tearing down / rebuilding the free lists here, we
1436   // could instead use the remove_all_pending() method on free_list to
1437   // remove only the ones that we need to remove.
1438   tear_down_region_sets(true /* free_list_only */);
1439   shrink_helper(shrink_bytes);
1440   rebuild_region_sets(true /* free_list_only */);
1441 
1442   _hrm.verify_optional();
1443   _verifier->verify_region_sets_optional();
1444 }
1445 
1446 // Public methods.
1447 
1448 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1449   CollectedHeap(),
1450   _young_gen_sampling_thread(NULL),
1451   _collector_policy(collector_policy),
1452   _soft_ref_policy(),
1453   _memory_manager("G1 Young Generation", "end of minor GC"),
1454   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1455   _eden_pool(NULL),
1456   _survivor_pool(NULL),
1457   _old_pool(NULL),
1458   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1459   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1460   _g1_policy(create_g1_policy(_gc_timer_stw)),
1461   _collection_set(this, _g1_policy),
1462   _dirty_card_queue_set(false),
1463   _is_alive_closure_cm(this),
1464   _is_alive_closure_stw(this),
1465   _ref_processor_cm(NULL),
1466   _ref_processor_stw(NULL),
1467   _bot(NULL),
1468   _hot_card_cache(NULL),
1469   _g1_rem_set(NULL),
1470   _cr(NULL),
1471   _g1mm(NULL),
1472   _preserved_marks_set(true /* in_c_heap */),
1473   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1474   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1475   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1476   _humongous_reclaim_candidates(),
1477   _has_humongous_reclaim_candidates(false),
1478   _archive_allocator(NULL),
1479   _free_regions_coming(false),
1480   _gc_time_stamp(0),
1481   _summary_bytes_used(0),
1482   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1483   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1484   _expand_heap_after_alloc_failure(true),
1485   _old_marking_cycles_started(0),
1486   _old_marking_cycles_completed(0),
1487   _in_cset_fast_test() {
1488 
1489   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1490                           /* are_GC_task_threads */true,
1491                           /* are_ConcurrentGC_threads */false);
1492   _workers->initialize_workers();
1493   _verifier = new G1HeapVerifier(this);
1494 
1495   _allocator = new G1DefaultAllocator(this);
1496 
1497   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1498 
1499   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1500 
1501   // Override the default _filler_array_max_size so that no humongous filler
1502   // objects are created.
1503   _filler_array_max_size = _humongous_object_threshold_in_words;
1504 
1505   uint n_queues = ParallelGCThreads;
1506   _task_queues = new RefToScanQueueSet(n_queues);
1507 
1508   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1509 
1510   for (uint i = 0; i < n_queues; i++) {
1511     RefToScanQueue* q = new RefToScanQueue();
1512     q->initialize();
1513     _task_queues->register_queue(i, q);
1514     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1515   }
1516 
1517   // Initialize the G1EvacuationFailureALot counters and flags.
1518   NOT_PRODUCT(reset_evacuation_should_fail();)
1519 
1520   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1521 }
1522 
1523 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1524                                                                  size_t size,
1525                                                                  size_t translation_factor) {
1526   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1527   // Allocate a new reserved space, preferring to use large pages.
1528   ReservedSpace rs(size, preferred_page_size);
1529   G1RegionToSpaceMapper* result  =
1530     G1RegionToSpaceMapper::create_mapper(rs,
1531                                          size,
1532                                          rs.alignment(),
1533                                          HeapRegion::GrainBytes,
1534                                          translation_factor,
1535                                          mtGC);
1536 
1537   os::trace_page_sizes_for_requested_size(description,
1538                                           size,
1539                                           preferred_page_size,
1540                                           rs.alignment(),
1541                                           rs.base(),
1542                                           rs.size());
1543 
1544   return result;
1545 }
1546 
1547 jint G1CollectedHeap::initialize_concurrent_refinement() {
1548   jint ecode = JNI_OK;
1549   _cr = G1ConcurrentRefine::create(&ecode);
1550   return ecode;
1551 }
1552 
1553 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1554   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1555   if (_young_gen_sampling_thread->osthread() == NULL) {
1556     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1557     return JNI_ENOMEM;
1558   }
1559   return JNI_OK;
1560 }
1561 
1562 jint G1CollectedHeap::initialize() {
1563   os::enable_vtime();
1564 
1565   // Necessary to satisfy locking discipline assertions.
1566 
1567   MutexLocker x(Heap_lock);
1568 
1569   // While there are no constraints in the GC code that HeapWordSize
1570   // be any particular value, there are multiple other areas in the
1571   // system which believe this to be true (e.g. oop->object_size in some
1572   // cases incorrectly returns the size in wordSize units rather than
1573   // HeapWordSize).
1574   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1575 
1576   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1577   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1578   size_t heap_alignment = collector_policy()->heap_alignment();
1579 
1580   // Ensure that the sizes are properly aligned.
1581   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1582   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1583   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1584 
1585   // Reserve the maximum.
1586 
1587   // When compressed oops are enabled, the preferred heap base
1588   // is calculated by subtracting the requested size from the
1589   // 32Gb boundary and using the result as the base address for
1590   // heap reservation. If the requested size is not aligned to
1591   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1592   // into the ReservedHeapSpace constructor) then the actual
1593   // base of the reserved heap may end up differing from the
1594   // address that was requested (i.e. the preferred heap base).
1595   // If this happens then we could end up using a non-optimal
1596   // compressed oops mode.
1597 
1598   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1599                                                  heap_alignment);
1600 
1601   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1602 
1603   // Create the barrier set for the entire reserved region.
1604   G1SATBCardTableLoggingModRefBS* bs
1605     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1606   bs->initialize();
1607   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1608   set_barrier_set(bs);
1609 
1610   // Create the hot card cache.
1611   _hot_card_cache = new G1HotCardCache(this);
1612 
1613   // Carve out the G1 part of the heap.
1614   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1615   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1616   G1RegionToSpaceMapper* heap_storage =
1617     G1RegionToSpaceMapper::create_mapper(g1_rs,
1618                                          g1_rs.size(),
1619                                          page_size,
1620                                          HeapRegion::GrainBytes,
1621                                          1,
1622                                          mtJavaHeap);
1623   os::trace_page_sizes("Heap",
1624                        collector_policy()->min_heap_byte_size(),
1625                        max_byte_size,
1626                        page_size,
1627                        heap_rs.base(),
1628                        heap_rs.size());
1629   heap_storage->set_mapping_changed_listener(&_listener);
1630 
1631   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1632   G1RegionToSpaceMapper* bot_storage =
1633     create_aux_memory_mapper("Block Offset Table",
1634                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1635                              G1BlockOffsetTable::heap_map_factor());
1636 
1637   G1RegionToSpaceMapper* cardtable_storage =
1638     create_aux_memory_mapper("Card Table",
1639                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1640                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1641 
1642   G1RegionToSpaceMapper* card_counts_storage =
1643     create_aux_memory_mapper("Card Counts Table",
1644                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1645                              G1CardCounts::heap_map_factor());
1646 
1647   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1648   G1RegionToSpaceMapper* prev_bitmap_storage =
1649     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1650   G1RegionToSpaceMapper* next_bitmap_storage =
1651     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1652 
1653   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1654   g1_barrier_set()->initialize(cardtable_storage);
1655   // Do later initialization work for concurrent refinement.
1656   _hot_card_cache->initialize(card_counts_storage);
1657 
1658   // 6843694 - ensure that the maximum region index can fit
1659   // in the remembered set structures.
1660   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1661   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1662 
1663   // Also create a G1 rem set.
1664   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1665   _g1_rem_set->initialize(max_capacity(), max_regions());
1666 
1667   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1668   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1669   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1670             "too many cards per region");
1671 
1672   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1673 
1674   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1675 
1676   {
1677     HeapWord* start = _hrm.reserved().start();
1678     HeapWord* end = _hrm.reserved().end();
1679     size_t granularity = HeapRegion::GrainBytes;
1680 
1681     _in_cset_fast_test.initialize(start, end, granularity);
1682     _humongous_reclaim_candidates.initialize(start, end, granularity);
1683   }
1684 
1685   // Create the G1ConcurrentMark data structure and thread.
1686   // (Must do this late, so that "max_regions" is defined.)
1687   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1688   if (_cm == NULL || !_cm->completed_initialization()) {
1689     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1690     return JNI_ENOMEM;
1691   }
1692   _cmThread = _cm->cm_thread();
1693 
1694   // Now expand into the initial heap size.
1695   if (!expand(init_byte_size, _workers)) {
1696     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1697     return JNI_ENOMEM;
1698   }
1699 
1700   // Perform any initialization actions delegated to the policy.
1701   g1_policy()->init(this, &_collection_set);
1702 
1703   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1704                                                SATB_Q_FL_lock,
1705                                                G1SATBProcessCompletedThreshold,
1706                                                Shared_SATB_Q_lock);
1707 
1708   jint ecode = initialize_concurrent_refinement();
1709   if (ecode != JNI_OK) {
1710     return ecode;
1711   }
1712 
1713   ecode = initialize_young_gen_sampling_thread();
1714   if (ecode != JNI_OK) {
1715     return ecode;
1716   }
1717 
1718   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1719                                                 DirtyCardQ_FL_lock,
1720                                                 (int)concurrent_refine()->yellow_zone(),
1721                                                 (int)concurrent_refine()->red_zone(),
1722                                                 Shared_DirtyCardQ_lock,
1723                                                 NULL,  // fl_owner
1724                                                 true); // init_free_ids
1725 
1726   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1727                                     DirtyCardQ_FL_lock,
1728                                     -1, // never trigger processing
1729                                     -1, // no limit on length
1730                                     Shared_DirtyCardQ_lock,
1731                                     &JavaThread::dirty_card_queue_set());
1732 
1733   // Here we allocate the dummy HeapRegion that is required by the
1734   // G1AllocRegion class.
1735   HeapRegion* dummy_region = _hrm.get_dummy_region();
1736 
1737   // We'll re-use the same region whether the alloc region will
1738   // require BOT updates or not and, if it doesn't, then a non-young
1739   // region will complain that it cannot support allocations without
1740   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1741   dummy_region->set_eden();
1742   // Make sure it's full.
1743   dummy_region->set_top(dummy_region->end());
1744   G1AllocRegion::setup(this, dummy_region);
1745 
1746   _allocator->init_mutator_alloc_region();
1747 
1748   // Do create of the monitoring and management support so that
1749   // values in the heap have been properly initialized.
1750   _g1mm = new G1MonitoringSupport(this);
1751 
1752   G1StringDedup::initialize();
1753 
1754   _preserved_marks_set.init(ParallelGCThreads);
1755 
1756   _collection_set.initialize(max_regions());
1757 
1758   return JNI_OK;
1759 }
1760 
1761 void G1CollectedHeap::initialize_serviceability() {
1762   _eden_pool = new G1EdenPool(this);
1763   _survivor_pool = new G1SurvivorPool(this);
1764   _old_pool = new G1OldGenPool(this);
1765 
1766   _full_gc_memory_manager.add_pool(_eden_pool);
1767   _full_gc_memory_manager.add_pool(_survivor_pool);
1768   _full_gc_memory_manager.add_pool(_old_pool);
1769 
1770   _memory_manager.add_pool(_eden_pool);
1771   _memory_manager.add_pool(_survivor_pool);
1772 
1773 }
1774 
1775 void G1CollectedHeap::stop() {
1776   // Stop all concurrent threads. We do this to make sure these threads
1777   // do not continue to execute and access resources (e.g. logging)
1778   // that are destroyed during shutdown.
1779   _cr->stop();
1780   _young_gen_sampling_thread->stop();
1781   _cmThread->stop();
1782   if (G1StringDedup::is_enabled()) {
1783     G1StringDedup::stop();
1784   }
1785 }
1786 
1787 void G1CollectedHeap::safepoint_synchronize_begin() {
1788   SuspendibleThreadSet::synchronize();
1789 }
1790 
1791 void G1CollectedHeap::safepoint_synchronize_end() {
1792   SuspendibleThreadSet::desynchronize();
1793 }
1794 
1795 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1796   return HeapRegion::max_region_size();
1797 }
1798 
1799 void G1CollectedHeap::post_initialize() {
1800   CollectedHeap::post_initialize();
1801   ref_processing_init();
1802 }
1803 
1804 void G1CollectedHeap::ref_processing_init() {
1805   // Reference processing in G1 currently works as follows:
1806   //
1807   // * There are two reference processor instances. One is
1808   //   used to record and process discovered references
1809   //   during concurrent marking; the other is used to
1810   //   record and process references during STW pauses
1811   //   (both full and incremental).
1812   // * Both ref processors need to 'span' the entire heap as
1813   //   the regions in the collection set may be dotted around.
1814   //
1815   // * For the concurrent marking ref processor:
1816   //   * Reference discovery is enabled at initial marking.
1817   //   * Reference discovery is disabled and the discovered
1818   //     references processed etc during remarking.
1819   //   * Reference discovery is MT (see below).
1820   //   * Reference discovery requires a barrier (see below).
1821   //   * Reference processing may or may not be MT
1822   //     (depending on the value of ParallelRefProcEnabled
1823   //     and ParallelGCThreads).
1824   //   * A full GC disables reference discovery by the CM
1825   //     ref processor and abandons any entries on it's
1826   //     discovered lists.
1827   //
1828   // * For the STW processor:
1829   //   * Non MT discovery is enabled at the start of a full GC.
1830   //   * Processing and enqueueing during a full GC is non-MT.
1831   //   * During a full GC, references are processed after marking.
1832   //
1833   //   * Discovery (may or may not be MT) is enabled at the start
1834   //     of an incremental evacuation pause.
1835   //   * References are processed near the end of a STW evacuation pause.
1836   //   * For both types of GC:
1837   //     * Discovery is atomic - i.e. not concurrent.
1838   //     * Reference discovery will not need a barrier.
1839 
1840   MemRegion mr = reserved_region();
1841 
1842   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1843 
1844   // Concurrent Mark ref processor
1845   _ref_processor_cm =
1846     new ReferenceProcessor(mr,    // span
1847                            mt_processing,
1848                                 // mt processing
1849                            ParallelGCThreads,
1850                                 // degree of mt processing
1851                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1852                                 // mt discovery
1853                            MAX2(ParallelGCThreads, ConcGCThreads),
1854                                 // degree of mt discovery
1855                            false,
1856                                 // Reference discovery is not atomic
1857                            &_is_alive_closure_cm);
1858                                 // is alive closure
1859                                 // (for efficiency/performance)
1860 
1861   // STW ref processor
1862   _ref_processor_stw =
1863     new ReferenceProcessor(mr,    // span
1864                            mt_processing,
1865                                 // mt processing
1866                            ParallelGCThreads,
1867                                 // degree of mt processing
1868                            (ParallelGCThreads > 1),
1869                                 // mt discovery
1870                            ParallelGCThreads,
1871                                 // degree of mt discovery
1872                            true,
1873                                 // Reference discovery is atomic
1874                            &_is_alive_closure_stw);
1875                                 // is alive closure
1876                                 // (for efficiency/performance)
1877 }
1878 
1879 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1880   return _collector_policy;
1881 }
1882 
1883 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1884   return &_soft_ref_policy;
1885 }
1886 
1887 size_t G1CollectedHeap::capacity() const {
1888   return _hrm.length() * HeapRegion::GrainBytes;
1889 }
1890 
1891 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1892   return _hrm.total_free_bytes();
1893 }
1894 
1895 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1896   hr->reset_gc_time_stamp();
1897 }
1898 
1899 #ifndef PRODUCT
1900 
1901 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1902 private:
1903   unsigned _gc_time_stamp;
1904   bool _failures;
1905 
1906 public:
1907   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1908     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1909 
1910   virtual bool do_heap_region(HeapRegion* hr) {
1911     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1912     if (_gc_time_stamp != region_gc_time_stamp) {
1913       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1914                             region_gc_time_stamp, _gc_time_stamp);
1915       _failures = true;
1916     }
1917     return false;
1918   }
1919 
1920   bool failures() { return _failures; }
1921 };
1922 
1923 void G1CollectedHeap::check_gc_time_stamps() {
1924   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1925   heap_region_iterate(&cl);
1926   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1927 }
1928 #endif // PRODUCT
1929 
1930 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1931   _hot_card_cache->drain(cl, worker_i);
1932 }
1933 
1934 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1935   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1936   size_t n_completed_buffers = 0;
1937   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1938     n_completed_buffers++;
1939   }
1940   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1941   dcqs.clear_n_completed_buffers();
1942   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1943 }
1944 
1945 // Computes the sum of the storage used by the various regions.
1946 size_t G1CollectedHeap::used() const {
1947   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1948   if (_archive_allocator != NULL) {
1949     result += _archive_allocator->used();
1950   }
1951   return result;
1952 }
1953 
1954 size_t G1CollectedHeap::used_unlocked() const {
1955   return _summary_bytes_used;
1956 }
1957 
1958 class SumUsedClosure: public HeapRegionClosure {
1959   size_t _used;
1960 public:
1961   SumUsedClosure() : _used(0) {}
1962   bool do_heap_region(HeapRegion* r) {
1963     _used += r->used();
1964     return false;
1965   }
1966   size_t result() { return _used; }
1967 };
1968 
1969 size_t G1CollectedHeap::recalculate_used() const {
1970   double recalculate_used_start = os::elapsedTime();
1971 
1972   SumUsedClosure blk;
1973   heap_region_iterate(&blk);
1974 
1975   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1976   return blk.result();
1977 }
1978 
1979 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1980   switch (cause) {
1981     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1982     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1983     case GCCause::_wb_conc_mark:                        return true;
1984     default :                                           return false;
1985   }
1986 }
1987 
1988 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1989   switch (cause) {
1990     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1991     case GCCause::_g1_humongous_allocation: return true;
1992     default:                                return is_user_requested_concurrent_full_gc(cause);
1993   }
1994 }
1995 
1996 #ifndef PRODUCT
1997 void G1CollectedHeap::allocate_dummy_regions() {
1998   // Let's fill up most of the region
1999   size_t word_size = HeapRegion::GrainWords - 1024;
2000   // And as a result the region we'll allocate will be humongous.
2001   guarantee(is_humongous(word_size), "sanity");
2002 
2003   // _filler_array_max_size is set to humongous object threshold
2004   // but temporarily change it to use CollectedHeap::fill_with_object().
2005   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2006 
2007   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2008     // Let's use the existing mechanism for the allocation
2009     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2010     if (dummy_obj != NULL) {
2011       MemRegion mr(dummy_obj, word_size);
2012       CollectedHeap::fill_with_object(mr);
2013     } else {
2014       // If we can't allocate once, we probably cannot allocate
2015       // again. Let's get out of the loop.
2016       break;
2017     }
2018   }
2019 }
2020 #endif // !PRODUCT
2021 
2022 void G1CollectedHeap::increment_old_marking_cycles_started() {
2023   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2024          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2025          "Wrong marking cycle count (started: %d, completed: %d)",
2026          _old_marking_cycles_started, _old_marking_cycles_completed);
2027 
2028   _old_marking_cycles_started++;
2029 }
2030 
2031 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2032   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2033 
2034   // We assume that if concurrent == true, then the caller is a
2035   // concurrent thread that was joined the Suspendible Thread
2036   // Set. If there's ever a cheap way to check this, we should add an
2037   // assert here.
2038 
2039   // Given that this method is called at the end of a Full GC or of a
2040   // concurrent cycle, and those can be nested (i.e., a Full GC can
2041   // interrupt a concurrent cycle), the number of full collections
2042   // completed should be either one (in the case where there was no
2043   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2044   // behind the number of full collections started.
2045 
2046   // This is the case for the inner caller, i.e. a Full GC.
2047   assert(concurrent ||
2048          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2049          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2050          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2051          "is inconsistent with _old_marking_cycles_completed = %u",
2052          _old_marking_cycles_started, _old_marking_cycles_completed);
2053 
2054   // This is the case for the outer caller, i.e. the concurrent cycle.
2055   assert(!concurrent ||
2056          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2057          "for outer caller (concurrent cycle): "
2058          "_old_marking_cycles_started = %u "
2059          "is inconsistent with _old_marking_cycles_completed = %u",
2060          _old_marking_cycles_started, _old_marking_cycles_completed);
2061 
2062   _old_marking_cycles_completed += 1;
2063 
2064   // We need to clear the "in_progress" flag in the CM thread before
2065   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2066   // is set) so that if a waiter requests another System.gc() it doesn't
2067   // incorrectly see that a marking cycle is still in progress.
2068   if (concurrent) {
2069     _cmThread->set_idle();
2070   }
2071 
2072   // This notify_all() will ensure that a thread that called
2073   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2074   // and it's waiting for a full GC to finish will be woken up. It is
2075   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2076   FullGCCount_lock->notify_all();
2077 }
2078 
2079 void G1CollectedHeap::collect(GCCause::Cause cause) {
2080   assert_heap_not_locked();
2081 
2082   uint gc_count_before;
2083   uint old_marking_count_before;
2084   uint full_gc_count_before;
2085   bool retry_gc;
2086 
2087   do {
2088     retry_gc = false;
2089 
2090     {
2091       MutexLocker ml(Heap_lock);
2092 
2093       // Read the GC count while holding the Heap_lock
2094       gc_count_before = total_collections();
2095       full_gc_count_before = total_full_collections();
2096       old_marking_count_before = _old_marking_cycles_started;
2097     }
2098 
2099     if (should_do_concurrent_full_gc(cause)) {
2100       // Schedule an initial-mark evacuation pause that will start a
2101       // concurrent cycle. We're setting word_size to 0 which means that
2102       // we are not requesting a post-GC allocation.
2103       VM_G1CollectForAllocation op(0,     /* word_size */
2104                                    gc_count_before,
2105                                    cause,
2106                                    true,  /* should_initiate_conc_mark */
2107                                    g1_policy()->max_pause_time_ms());
2108       VMThread::execute(&op);
2109       if (!op.pause_succeeded()) {
2110         if (old_marking_count_before == _old_marking_cycles_started) {
2111           retry_gc = op.should_retry_gc();
2112         } else {
2113           // A Full GC happened while we were trying to schedule the
2114           // initial-mark GC. No point in starting a new cycle given
2115           // that the whole heap was collected anyway.
2116         }
2117 
2118         if (retry_gc) {
2119           if (GCLocker::is_active_and_needs_gc()) {
2120             GCLocker::stall_until_clear();
2121           }
2122         }
2123       }
2124     } else {
2125       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2126           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2127 
2128         // Schedule a standard evacuation pause. We're setting word_size
2129         // to 0 which means that we are not requesting a post-GC allocation.
2130         VM_G1CollectForAllocation op(0,     /* word_size */
2131                                      gc_count_before,
2132                                      cause,
2133                                      false, /* should_initiate_conc_mark */
2134                                      g1_policy()->max_pause_time_ms());
2135         VMThread::execute(&op);
2136       } else {
2137         // Schedule a Full GC.
2138         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2139         VMThread::execute(&op);
2140       }
2141     }
2142   } while (retry_gc);
2143 }
2144 
2145 bool G1CollectedHeap::is_in(const void* p) const {
2146   if (_hrm.reserved().contains(p)) {
2147     // Given that we know that p is in the reserved space,
2148     // heap_region_containing() should successfully
2149     // return the containing region.
2150     HeapRegion* hr = heap_region_containing(p);
2151     return hr->is_in(p);
2152   } else {
2153     return false;
2154   }
2155 }
2156 
2157 #ifdef ASSERT
2158 bool G1CollectedHeap::is_in_exact(const void* p) const {
2159   bool contains = reserved_region().contains(p);
2160   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2161   if (contains && available) {
2162     return true;
2163   } else {
2164     return false;
2165   }
2166 }
2167 #endif
2168 
2169 // Iteration functions.
2170 
2171 // Iterates an ObjectClosure over all objects within a HeapRegion.
2172 
2173 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2174   ObjectClosure* _cl;
2175 public:
2176   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2177   bool do_heap_region(HeapRegion* r) {
2178     if (!r->is_continues_humongous()) {
2179       r->object_iterate(_cl);
2180     }
2181     return false;
2182   }
2183 };
2184 
2185 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2186   IterateObjectClosureRegionClosure blk(cl);
2187   heap_region_iterate(&blk);
2188 }
2189 
2190 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2191   _hrm.iterate(cl);
2192 }
2193 
2194 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2195                                                                  HeapRegionClaimer *hrclaimer,
2196                                                                  uint worker_id) const {
2197   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2198 }
2199 
2200 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2201                                                          HeapRegionClaimer *hrclaimer) const {
2202   _hrm.par_iterate(cl, hrclaimer, 0);
2203 }
2204 
2205 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2206   _collection_set.iterate(cl);
2207 }
2208 
2209 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2210   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2211 }
2212 
2213 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2214   HeapRegion* hr = heap_region_containing(addr);
2215   return hr->block_start(addr);
2216 }
2217 
2218 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2219   HeapRegion* hr = heap_region_containing(addr);
2220   return hr->block_size(addr);
2221 }
2222 
2223 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2224   HeapRegion* hr = heap_region_containing(addr);
2225   return hr->block_is_obj(addr);
2226 }
2227 
2228 bool G1CollectedHeap::supports_tlab_allocation() const {
2229   return true;
2230 }
2231 
2232 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2233   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2234 }
2235 
2236 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2237   return _eden.length() * HeapRegion::GrainBytes;
2238 }
2239 
2240 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2241 // must be equal to the humongous object limit.
2242 size_t G1CollectedHeap::max_tlab_size() const {
2243   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2244 }
2245 
2246 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2247   return _allocator->unsafe_max_tlab_alloc();
2248 }
2249 
2250 size_t G1CollectedHeap::max_capacity() const {
2251   return _hrm.reserved().byte_size();
2252 }
2253 
2254 jlong G1CollectedHeap::millis_since_last_gc() {
2255   // See the notes in GenCollectedHeap::millis_since_last_gc()
2256   // for more information about the implementation.
2257   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2258     _g1_policy->collection_pause_end_millis();
2259   if (ret_val < 0) {
2260     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2261       ". returning zero instead.", ret_val);
2262     return 0;
2263   }
2264   return ret_val;
2265 }
2266 
2267 void G1CollectedHeap::prepare_for_verify() {
2268   _verifier->prepare_for_verify();
2269 }
2270 
2271 void G1CollectedHeap::verify(VerifyOption vo) {
2272   _verifier->verify(vo);
2273 }
2274 
2275 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2276   return true;
2277 }
2278 
2279 const char* const* G1CollectedHeap::concurrent_phases() const {
2280   return _cmThread->concurrent_phases();
2281 }
2282 
2283 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2284   return _cmThread->request_concurrent_phase(phase);
2285 }
2286 
2287 class PrintRegionClosure: public HeapRegionClosure {
2288   outputStream* _st;
2289 public:
2290   PrintRegionClosure(outputStream* st) : _st(st) {}
2291   bool do_heap_region(HeapRegion* r) {
2292     r->print_on(_st);
2293     return false;
2294   }
2295 };
2296 
2297 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2298                                        const HeapRegion* hr,
2299                                        const VerifyOption vo) const {
2300   switch (vo) {
2301   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2302   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2303   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2304   default:                            ShouldNotReachHere();
2305   }
2306   return false; // keep some compilers happy
2307 }
2308 
2309 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2310                                        const VerifyOption vo) const {
2311   switch (vo) {
2312   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2313   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2314   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2315   default:                            ShouldNotReachHere();
2316   }
2317   return false; // keep some compilers happy
2318 }
2319 
2320 void G1CollectedHeap::print_heap_regions() const {
2321   LogTarget(Trace, gc, heap, region) lt;
2322   if (lt.is_enabled()) {
2323     LogStream ls(lt);
2324     print_regions_on(&ls);
2325   }
2326 }
2327 
2328 void G1CollectedHeap::print_on(outputStream* st) const {
2329   st->print(" %-20s", "garbage-first heap");
2330   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2331             capacity()/K, used_unlocked()/K);
2332   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2333             p2i(_hrm.reserved().start()),
2334             p2i(_hrm.reserved().end()));
2335   st->cr();
2336   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2337   uint young_regions = young_regions_count();
2338   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2339             (size_t) young_regions * HeapRegion::GrainBytes / K);
2340   uint survivor_regions = survivor_regions_count();
2341   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2342             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2343   st->cr();
2344   MetaspaceAux::print_on(st);
2345 }
2346 
2347 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2348   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2349                "HS=humongous(starts), HC=humongous(continues), "
2350                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2351                "TAMS=top-at-mark-start (previous, next)");
2352   PrintRegionClosure blk(st);
2353   heap_region_iterate(&blk);
2354 }
2355 
2356 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2357   print_on(st);
2358 
2359   // Print the per-region information.
2360   print_regions_on(st);
2361 }
2362 
2363 void G1CollectedHeap::print_on_error(outputStream* st) const {
2364   this->CollectedHeap::print_on_error(st);
2365 
2366   if (_cm != NULL) {
2367     st->cr();
2368     _cm->print_on_error(st);
2369   }
2370 }
2371 
2372 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2373   workers()->print_worker_threads_on(st);
2374   _cmThread->print_on(st);
2375   st->cr();
2376   _cm->print_worker_threads_on(st);
2377   _cr->print_threads_on(st);
2378   _young_gen_sampling_thread->print_on(st);
2379   if (G1StringDedup::is_enabled()) {
2380     G1StringDedup::print_worker_threads_on(st);
2381   }
2382 }
2383 
2384 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2385   workers()->threads_do(tc);
2386   tc->do_thread(_cmThread);
2387   _cm->threads_do(tc);
2388   _cr->threads_do(tc);
2389   tc->do_thread(_young_gen_sampling_thread);
2390   if (G1StringDedup::is_enabled()) {
2391     G1StringDedup::threads_do(tc);
2392   }
2393 }
2394 
2395 void G1CollectedHeap::print_tracing_info() const {
2396   g1_rem_set()->print_summary_info();
2397   concurrent_mark()->print_summary_info();
2398 }
2399 
2400 #ifndef PRODUCT
2401 // Helpful for debugging RSet issues.
2402 
2403 class PrintRSetsClosure : public HeapRegionClosure {
2404 private:
2405   const char* _msg;
2406   size_t _occupied_sum;
2407 
2408 public:
2409   bool do_heap_region(HeapRegion* r) {
2410     HeapRegionRemSet* hrrs = r->rem_set();
2411     size_t occupied = hrrs->occupied();
2412     _occupied_sum += occupied;
2413 
2414     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2415     if (occupied == 0) {
2416       tty->print_cr("  RSet is empty");
2417     } else {
2418       hrrs->print();
2419     }
2420     tty->print_cr("----------");
2421     return false;
2422   }
2423 
2424   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2425     tty->cr();
2426     tty->print_cr("========================================");
2427     tty->print_cr("%s", msg);
2428     tty->cr();
2429   }
2430 
2431   ~PrintRSetsClosure() {
2432     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2433     tty->print_cr("========================================");
2434     tty->cr();
2435   }
2436 };
2437 
2438 void G1CollectedHeap::print_cset_rsets() {
2439   PrintRSetsClosure cl("Printing CSet RSets");
2440   collection_set_iterate(&cl);
2441 }
2442 
2443 void G1CollectedHeap::print_all_rsets() {
2444   PrintRSetsClosure cl("Printing All RSets");;
2445   heap_region_iterate(&cl);
2446 }
2447 #endif // PRODUCT
2448 
2449 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2450 
2451   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2452   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2453   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2454 
2455   size_t eden_capacity_bytes =
2456     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2457 
2458   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2459   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2460                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2461 }
2462 
2463 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2464   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2465                        stats->unused(), stats->used(), stats->region_end_waste(),
2466                        stats->regions_filled(), stats->direct_allocated(),
2467                        stats->failure_used(), stats->failure_waste());
2468 }
2469 
2470 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2471   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2472   gc_tracer->report_gc_heap_summary(when, heap_summary);
2473 
2474   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2475   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2476 }
2477 
2478 G1CollectedHeap* G1CollectedHeap::heap() {
2479   CollectedHeap* heap = Universe::heap();
2480   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2481   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2482   return (G1CollectedHeap*)heap;
2483 }
2484 
2485 void G1CollectedHeap::gc_prologue(bool full) {
2486   // always_do_update_barrier = false;
2487   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2488 
2489   // This summary needs to be printed before incrementing total collections.
2490   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2491 
2492   // Update common counters.
2493   increment_total_collections(full /* full gc */);
2494   if (full) {
2495     increment_old_marking_cycles_started();
2496     reset_gc_time_stamp();
2497   } else {
2498     increment_gc_time_stamp();
2499   }
2500 
2501   // Fill TLAB's and such
2502   double start = os::elapsedTime();
2503   accumulate_statistics_all_tlabs();
2504   ensure_parsability(true);
2505   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2506 }
2507 
2508 void G1CollectedHeap::gc_epilogue(bool full) {
2509   // Update common counters.
2510   if (full) {
2511     // Update the number of full collections that have been completed.
2512     increment_old_marking_cycles_completed(false /* concurrent */);
2513   }
2514 
2515   // We are at the end of the GC. Total collections has already been increased.
2516   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2517 
2518   // FIXME: what is this about?
2519   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2520   // is set.
2521 #if COMPILER2_OR_JVMCI
2522   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2523 #endif
2524   // always_do_update_barrier = true;
2525 
2526   double start = os::elapsedTime();
2527   resize_all_tlabs();
2528   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2529 
2530   MemoryService::track_memory_usage();
2531   // We have just completed a GC. Update the soft reference
2532   // policy with the new heap occupancy
2533   Universe::update_heap_info_at_gc();
2534 }
2535 
2536 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2537                                                uint gc_count_before,
2538                                                bool* succeeded,
2539                                                GCCause::Cause gc_cause) {
2540   assert_heap_not_locked_and_not_at_safepoint();
2541   VM_G1CollectForAllocation op(word_size,
2542                                gc_count_before,
2543                                gc_cause,
2544                                false, /* should_initiate_conc_mark */
2545                                g1_policy()->max_pause_time_ms());
2546   VMThread::execute(&op);
2547 
2548   HeapWord* result = op.result();
2549   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2550   assert(result == NULL || ret_succeeded,
2551          "the result should be NULL if the VM did not succeed");
2552   *succeeded = ret_succeeded;
2553 
2554   assert_heap_not_locked();
2555   return result;
2556 }
2557 
2558 void
2559 G1CollectedHeap::doConcurrentMark() {
2560   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2561   if (!_cmThread->in_progress()) {
2562     _cmThread->set_started();
2563     CGC_lock->notify();
2564   }
2565 }
2566 
2567 size_t G1CollectedHeap::pending_card_num() {
2568   size_t extra_cards = 0;
2569   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2570     DirtyCardQueue& dcq = curr->dirty_card_queue();
2571     extra_cards += dcq.size();
2572   }
2573   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2574   size_t buffer_size = dcqs.buffer_size();
2575   size_t buffer_num = dcqs.completed_buffers_num();
2576 
2577   return buffer_size * buffer_num + extra_cards;
2578 }
2579 
2580 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2581  private:
2582   size_t _total_humongous;
2583   size_t _candidate_humongous;
2584 
2585   DirtyCardQueue _dcq;
2586 
2587   // We don't nominate objects with many remembered set entries, on
2588   // the assumption that such objects are likely still live.
2589   bool is_remset_small(HeapRegion* region) const {
2590     HeapRegionRemSet* const rset = region->rem_set();
2591     return G1EagerReclaimHumongousObjectsWithStaleRefs
2592       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2593       : rset->is_empty();
2594   }
2595 
2596   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2597     assert(region->is_starts_humongous(), "Must start a humongous object");
2598 
2599     oop obj = oop(region->bottom());
2600 
2601     // Dead objects cannot be eager reclaim candidates. Due to class
2602     // unloading it is unsafe to query their classes so we return early.
2603     if (heap->is_obj_dead(obj, region)) {
2604       return false;
2605     }
2606 
2607     // Candidate selection must satisfy the following constraints
2608     // while concurrent marking is in progress:
2609     //
2610     // * In order to maintain SATB invariants, an object must not be
2611     // reclaimed if it was allocated before the start of marking and
2612     // has not had its references scanned.  Such an object must have
2613     // its references (including type metadata) scanned to ensure no
2614     // live objects are missed by the marking process.  Objects
2615     // allocated after the start of concurrent marking don't need to
2616     // be scanned.
2617     //
2618     // * An object must not be reclaimed if it is on the concurrent
2619     // mark stack.  Objects allocated after the start of concurrent
2620     // marking are never pushed on the mark stack.
2621     //
2622     // Nominating only objects allocated after the start of concurrent
2623     // marking is sufficient to meet both constraints.  This may miss
2624     // some objects that satisfy the constraints, but the marking data
2625     // structures don't support efficiently performing the needed
2626     // additional tests or scrubbing of the mark stack.
2627     //
2628     // However, we presently only nominate is_typeArray() objects.
2629     // A humongous object containing references induces remembered
2630     // set entries on other regions.  In order to reclaim such an
2631     // object, those remembered sets would need to be cleaned up.
2632     //
2633     // We also treat is_typeArray() objects specially, allowing them
2634     // to be reclaimed even if allocated before the start of
2635     // concurrent mark.  For this we rely on mark stack insertion to
2636     // exclude is_typeArray() objects, preventing reclaiming an object
2637     // that is in the mark stack.  We also rely on the metadata for
2638     // such objects to be built-in and so ensured to be kept live.
2639     // Frequent allocation and drop of large binary blobs is an
2640     // important use case for eager reclaim, and this special handling
2641     // may reduce needed headroom.
2642 
2643     return obj->is_typeArray() && is_remset_small(region);
2644   }
2645 
2646  public:
2647   RegisterHumongousWithInCSetFastTestClosure()
2648   : _total_humongous(0),
2649     _candidate_humongous(0),
2650     _dcq(&JavaThread::dirty_card_queue_set()) {
2651   }
2652 
2653   virtual bool do_heap_region(HeapRegion* r) {
2654     if (!r->is_starts_humongous()) {
2655       return false;
2656     }
2657     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2658 
2659     bool is_candidate = humongous_region_is_candidate(g1h, r);
2660     uint rindex = r->hrm_index();
2661     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2662     if (is_candidate) {
2663       _candidate_humongous++;
2664       g1h->register_humongous_region_with_cset(rindex);
2665       // Is_candidate already filters out humongous object with large remembered sets.
2666       // If we have a humongous object with a few remembered sets, we simply flush these
2667       // remembered set entries into the DCQS. That will result in automatic
2668       // re-evaluation of their remembered set entries during the following evacuation
2669       // phase.
2670       if (!r->rem_set()->is_empty()) {
2671         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2672                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2673         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2674         HeapRegionRemSetIterator hrrs(r->rem_set());
2675         size_t card_index;
2676         while (hrrs.has_next(card_index)) {
2677           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2678           // The remembered set might contain references to already freed
2679           // regions. Filter out such entries to avoid failing card table
2680           // verification.
2681           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2682             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2683               *card_ptr = CardTableModRefBS::dirty_card_val();
2684               _dcq.enqueue(card_ptr);
2685             }
2686           }
2687         }
2688         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2689                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2690                hrrs.n_yielded(), r->rem_set()->occupied());
2691         r->rem_set()->clear_locked();
2692       }
2693       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2694     }
2695     _total_humongous++;
2696 
2697     return false;
2698   }
2699 
2700   size_t total_humongous() const { return _total_humongous; }
2701   size_t candidate_humongous() const { return _candidate_humongous; }
2702 
2703   void flush_rem_set_entries() { _dcq.flush(); }
2704 };
2705 
2706 void G1CollectedHeap::register_humongous_regions_with_cset() {
2707   if (!G1EagerReclaimHumongousObjects) {
2708     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2709     return;
2710   }
2711   double time = os::elapsed_counter();
2712 
2713   // Collect reclaim candidate information and register candidates with cset.
2714   RegisterHumongousWithInCSetFastTestClosure cl;
2715   heap_region_iterate(&cl);
2716 
2717   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2718   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2719                                                                   cl.total_humongous(),
2720                                                                   cl.candidate_humongous());
2721   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2722 
2723   // Finally flush all remembered set entries to re-check into the global DCQS.
2724   cl.flush_rem_set_entries();
2725 }
2726 
2727 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2728   public:
2729     bool do_heap_region(HeapRegion* hr) {
2730       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2731         hr->verify_rem_set();
2732       }
2733       return false;
2734     }
2735 };
2736 
2737 uint G1CollectedHeap::num_task_queues() const {
2738   return _task_queues->size();
2739 }
2740 
2741 #if TASKQUEUE_STATS
2742 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2743   st->print_raw_cr("GC Task Stats");
2744   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2745   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2746 }
2747 
2748 void G1CollectedHeap::print_taskqueue_stats() const {
2749   if (!log_is_enabled(Trace, gc, task, stats)) {
2750     return;
2751   }
2752   Log(gc, task, stats) log;
2753   ResourceMark rm;
2754   LogStream ls(log.trace());
2755   outputStream* st = &ls;
2756 
2757   print_taskqueue_stats_hdr(st);
2758 
2759   TaskQueueStats totals;
2760   const uint n = num_task_queues();
2761   for (uint i = 0; i < n; ++i) {
2762     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2763     totals += task_queue(i)->stats;
2764   }
2765   st->print_raw("tot "); totals.print(st); st->cr();
2766 
2767   DEBUG_ONLY(totals.verify());
2768 }
2769 
2770 void G1CollectedHeap::reset_taskqueue_stats() {
2771   const uint n = num_task_queues();
2772   for (uint i = 0; i < n; ++i) {
2773     task_queue(i)->stats.reset();
2774   }
2775 }
2776 #endif // TASKQUEUE_STATS
2777 
2778 void G1CollectedHeap::wait_for_root_region_scanning() {
2779   double scan_wait_start = os::elapsedTime();
2780   // We have to wait until the CM threads finish scanning the
2781   // root regions as it's the only way to ensure that all the
2782   // objects on them have been correctly scanned before we start
2783   // moving them during the GC.
2784   bool waited = _cm->root_regions()->wait_until_scan_finished();
2785   double wait_time_ms = 0.0;
2786   if (waited) {
2787     double scan_wait_end = os::elapsedTime();
2788     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2789   }
2790   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2791 }
2792 
2793 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2794 private:
2795   G1HRPrinter* _hr_printer;
2796 public:
2797   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2798 
2799   virtual bool do_heap_region(HeapRegion* r) {
2800     _hr_printer->cset(r);
2801     return false;
2802   }
2803 };
2804 
2805 void G1CollectedHeap::start_new_collection_set() {
2806   collection_set()->start_incremental_building();
2807 
2808   clear_cset_fast_test();
2809 
2810   guarantee(_eden.length() == 0, "eden should have been cleared");
2811   g1_policy()->transfer_survivors_to_cset(survivor());
2812 }
2813 
2814 bool
2815 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2816   assert_at_safepoint(true /* should_be_vm_thread */);
2817   guarantee(!is_gc_active(), "collection is not reentrant");
2818 
2819   if (GCLocker::check_active_before_gc()) {
2820     return false;
2821   }
2822 
2823   _gc_timer_stw->register_gc_start();
2824 
2825   GCIdMark gc_id_mark;
2826   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2827 
2828   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2829   ResourceMark rm;
2830 
2831   g1_policy()->note_gc_start();
2832 
2833   wait_for_root_region_scanning();
2834 
2835   print_heap_before_gc();
2836   print_heap_regions();
2837   trace_heap_before_gc(_gc_tracer_stw);
2838 
2839   _verifier->verify_region_sets_optional();
2840   _verifier->verify_dirty_young_regions();
2841 
2842   // We should not be doing initial mark unless the conc mark thread is running
2843   if (!_cmThread->should_terminate()) {
2844     // This call will decide whether this pause is an initial-mark
2845     // pause. If it is, during_initial_mark_pause() will return true
2846     // for the duration of this pause.
2847     g1_policy()->decide_on_conc_mark_initiation();
2848   }
2849 
2850   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2851   assert(!collector_state()->during_initial_mark_pause() ||
2852           collector_state()->gcs_are_young(), "sanity");
2853 
2854   // We also do not allow mixed GCs during marking.
2855   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2856 
2857   // Record whether this pause is an initial mark. When the current
2858   // thread has completed its logging output and it's safe to signal
2859   // the CM thread, the flag's value in the policy has been reset.
2860   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2861 
2862   // Inner scope for scope based logging, timers, and stats collection
2863   {
2864     EvacuationInfo evacuation_info;
2865 
2866     if (collector_state()->during_initial_mark_pause()) {
2867       // We are about to start a marking cycle, so we increment the
2868       // full collection counter.
2869       increment_old_marking_cycles_started();
2870       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2871     }
2872 
2873     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2874 
2875     GCTraceCPUTime tcpu;
2876 
2877     G1HeapVerifier::G1VerifyType verify_type;
2878     FormatBuffer<> gc_string("Pause ");
2879     if (collector_state()->during_initial_mark_pause()) {
2880       gc_string.append("Initial Mark");
2881       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2882     } else if (collector_state()->gcs_are_young()) {
2883       gc_string.append("Young");
2884       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2885     } else {
2886       gc_string.append("Mixed");
2887       verify_type = G1HeapVerifier::G1VerifyMixed;
2888     }
2889     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2890 
2891     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2892                                                                   workers()->active_workers(),
2893                                                                   Threads::number_of_non_daemon_threads());
2894     workers()->update_active_workers(active_workers);
2895     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2896 
2897     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2898     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2899 
2900     // If the secondary_free_list is not empty, append it to the
2901     // free_list. No need to wait for the cleanup operation to finish;
2902     // the region allocation code will check the secondary_free_list
2903     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2904     // set, skip this step so that the region allocation code has to
2905     // get entries from the secondary_free_list.
2906     if (!G1StressConcRegionFreeing) {
2907       append_secondary_free_list_if_not_empty_with_lock();
2908     }
2909 
2910     G1HeapTransition heap_transition(this);
2911     size_t heap_used_bytes_before_gc = used();
2912 
2913     // Don't dynamically change the number of GC threads this early.  A value of
2914     // 0 is used to indicate serial work.  When parallel work is done,
2915     // it will be set.
2916 
2917     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2918       IsGCActiveMark x;
2919 
2920       gc_prologue(false);
2921 
2922       if (VerifyRememberedSets) {
2923         log_info(gc, verify)("[Verifying RemSets before GC]");
2924         VerifyRegionRemSetClosure v_cl;
2925         heap_region_iterate(&v_cl);
2926       }
2927 
2928       _verifier->verify_before_gc(verify_type);
2929 
2930       _verifier->check_bitmaps("GC Start");
2931 
2932 #if COMPILER2_OR_JVMCI
2933       DerivedPointerTable::clear();
2934 #endif
2935 
2936       // Please see comment in g1CollectedHeap.hpp and
2937       // G1CollectedHeap::ref_processing_init() to see how
2938       // reference processing currently works in G1.
2939 
2940       // Enable discovery in the STW reference processor
2941       if (g1_policy()->should_process_references()) {
2942         ref_processor_stw()->enable_discovery();
2943       } else {
2944         ref_processor_stw()->disable_discovery();
2945       }
2946 
2947       {
2948         // We want to temporarily turn off discovery by the
2949         // CM ref processor, if necessary, and turn it back on
2950         // on again later if we do. Using a scoped
2951         // NoRefDiscovery object will do this.
2952         NoRefDiscovery no_cm_discovery(ref_processor_cm());
2953 
2954         // Forget the current alloc region (we might even choose it to be part
2955         // of the collection set!).
2956         _allocator->release_mutator_alloc_region();
2957 
2958         // This timing is only used by the ergonomics to handle our pause target.
2959         // It is unclear why this should not include the full pause. We will
2960         // investigate this in CR 7178365.
2961         //
2962         // Preserving the old comment here if that helps the investigation:
2963         //
2964         // The elapsed time induced by the start time below deliberately elides
2965         // the possible verification above.
2966         double sample_start_time_sec = os::elapsedTime();
2967 
2968         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2969 
2970         if (collector_state()->during_initial_mark_pause()) {
2971           concurrent_mark()->checkpoint_roots_initial_pre();
2972         }
2973 
2974         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2975 
2976         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2977 
2978         // Make sure the remembered sets are up to date. This needs to be
2979         // done before register_humongous_regions_with_cset(), because the
2980         // remembered sets are used there to choose eager reclaim candidates.
2981         // If the remembered sets are not up to date we might miss some
2982         // entries that need to be handled.
2983         g1_rem_set()->cleanupHRRS();
2984 
2985         register_humongous_regions_with_cset();
2986 
2987         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2988 
2989         // We call this after finalize_cset() to
2990         // ensure that the CSet has been finalized.
2991         _cm->verify_no_cset_oops();
2992 
2993         if (_hr_printer.is_active()) {
2994           G1PrintCollectionSetClosure cl(&_hr_printer);
2995           _collection_set.iterate(&cl);
2996         }
2997 
2998         // Initialize the GC alloc regions.
2999         _allocator->init_gc_alloc_regions(evacuation_info);
3000 
3001         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3002         pre_evacuate_collection_set();
3003 
3004         // Actually do the work...
3005         evacuate_collection_set(evacuation_info, &per_thread_states);
3006 
3007         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3008 
3009         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3010         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3011 
3012         eagerly_reclaim_humongous_regions();
3013 
3014         record_obj_copy_mem_stats();
3015         _survivor_evac_stats.adjust_desired_plab_sz();
3016         _old_evac_stats.adjust_desired_plab_sz();
3017 
3018         double start = os::elapsedTime();
3019         start_new_collection_set();
3020         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3021 
3022         if (evacuation_failed()) {
3023           set_used(recalculate_used());
3024           if (_archive_allocator != NULL) {
3025             _archive_allocator->clear_used();
3026           }
3027           for (uint i = 0; i < ParallelGCThreads; i++) {
3028             if (_evacuation_failed_info_array[i].has_failed()) {
3029               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3030             }
3031           }
3032         } else {
3033           // The "used" of the the collection set have already been subtracted
3034           // when they were freed.  Add in the bytes evacuated.
3035           increase_used(g1_policy()->bytes_copied_during_gc());
3036         }
3037 
3038         if (collector_state()->during_initial_mark_pause()) {
3039           // We have to do this before we notify the CM threads that
3040           // they can start working to make sure that all the
3041           // appropriate initialization is done on the CM object.
3042           concurrent_mark()->checkpoint_roots_initial_post();
3043           collector_state()->set_mark_in_progress(true);
3044           // Note that we don't actually trigger the CM thread at
3045           // this point. We do that later when we're sure that
3046           // the current thread has completed its logging output.
3047         }
3048 
3049         allocate_dummy_regions();
3050 
3051         _allocator->init_mutator_alloc_region();
3052 
3053         {
3054           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3055           if (expand_bytes > 0) {
3056             size_t bytes_before = capacity();
3057             // No need for an ergo logging here,
3058             // expansion_amount() does this when it returns a value > 0.
3059             double expand_ms;
3060             if (!expand(expand_bytes, _workers, &expand_ms)) {
3061               // We failed to expand the heap. Cannot do anything about it.
3062             }
3063             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3064           }
3065         }
3066 
3067         // We redo the verification but now wrt to the new CSet which
3068         // has just got initialized after the previous CSet was freed.
3069         _cm->verify_no_cset_oops();
3070 
3071         // This timing is only used by the ergonomics to handle our pause target.
3072         // It is unclear why this should not include the full pause. We will
3073         // investigate this in CR 7178365.
3074         double sample_end_time_sec = os::elapsedTime();
3075         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3076         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3077         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3078 
3079         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3080         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3081 
3082         if (VerifyRememberedSets) {
3083           log_info(gc, verify)("[Verifying RemSets after GC]");
3084           VerifyRegionRemSetClosure v_cl;
3085           heap_region_iterate(&v_cl);
3086         }
3087 
3088         _verifier->verify_after_gc(verify_type);
3089         _verifier->check_bitmaps("GC End");
3090 
3091         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3092         ref_processor_stw()->verify_no_references_recorded();
3093 
3094         // CM reference discovery will be re-enabled if necessary.
3095       }
3096 
3097 #ifdef TRACESPINNING
3098       ParallelTaskTerminator::print_termination_counts();
3099 #endif
3100 
3101       gc_epilogue(false);
3102     }
3103 
3104     // Print the remainder of the GC log output.
3105     if (evacuation_failed()) {
3106       log_info(gc)("To-space exhausted");
3107     }
3108 
3109     g1_policy()->print_phases();
3110     heap_transition.print();
3111 
3112     // It is not yet to safe to tell the concurrent mark to
3113     // start as we have some optional output below. We don't want the
3114     // output from the concurrent mark thread interfering with this
3115     // logging output either.
3116 
3117     _hrm.verify_optional();
3118     _verifier->verify_region_sets_optional();
3119 
3120     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3121     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3122 
3123     print_heap_after_gc();
3124     print_heap_regions();
3125     trace_heap_after_gc(_gc_tracer_stw);
3126 
3127     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3128     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3129     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3130     // before any GC notifications are raised.
3131     g1mm()->update_sizes();
3132 
3133     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3134     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3135     _gc_timer_stw->register_gc_end();
3136     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3137   }
3138   // It should now be safe to tell the concurrent mark thread to start
3139   // without its logging output interfering with the logging output
3140   // that came from the pause.
3141 
3142   if (should_start_conc_mark) {
3143     // CAUTION: after the doConcurrentMark() call below,
3144     // the concurrent marking thread(s) could be running
3145     // concurrently with us. Make sure that anything after
3146     // this point does not assume that we are the only GC thread
3147     // running. Note: of course, the actual marking work will
3148     // not start until the safepoint itself is released in
3149     // SuspendibleThreadSet::desynchronize().
3150     doConcurrentMark();
3151   }
3152 
3153   return true;
3154 }
3155 
3156 void G1CollectedHeap::remove_self_forwarding_pointers() {
3157   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3158   workers()->run_task(&rsfp_task);
3159 }
3160 
3161 void G1CollectedHeap::restore_after_evac_failure() {
3162   double remove_self_forwards_start = os::elapsedTime();
3163 
3164   remove_self_forwarding_pointers();
3165   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3166   _preserved_marks_set.restore(&task_executor);
3167 
3168   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3169 }
3170 
3171 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3172   if (!_evacuation_failed) {
3173     _evacuation_failed = true;
3174   }
3175 
3176   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3177   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3178 }
3179 
3180 bool G1ParEvacuateFollowersClosure::offer_termination() {
3181   G1ParScanThreadState* const pss = par_scan_state();
3182   start_term_time();
3183   const bool res = terminator()->offer_termination();
3184   end_term_time();
3185   return res;
3186 }
3187 
3188 void G1ParEvacuateFollowersClosure::do_void() {
3189   G1ParScanThreadState* const pss = par_scan_state();
3190   pss->trim_queue();
3191   do {
3192     pss->steal_and_trim_queue(queues());
3193   } while (!offer_termination());
3194 }
3195 
3196 class G1ParTask : public AbstractGangTask {
3197 protected:
3198   G1CollectedHeap*         _g1h;
3199   G1ParScanThreadStateSet* _pss;
3200   RefToScanQueueSet*       _queues;
3201   G1RootProcessor*         _root_processor;
3202   ParallelTaskTerminator   _terminator;
3203   uint                     _n_workers;
3204 
3205 public:
3206   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3207     : AbstractGangTask("G1 collection"),
3208       _g1h(g1h),
3209       _pss(per_thread_states),
3210       _queues(task_queues),
3211       _root_processor(root_processor),
3212       _terminator(n_workers, _queues),
3213       _n_workers(n_workers)
3214   {}
3215 
3216   void work(uint worker_id) {
3217     if (worker_id >= _n_workers) return;  // no work needed this round
3218 
3219     double start_sec = os::elapsedTime();
3220     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3221 
3222     {
3223       ResourceMark rm;
3224       HandleMark   hm;
3225 
3226       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3227 
3228       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3229       pss->set_ref_processor(rp);
3230 
3231       double start_strong_roots_sec = os::elapsedTime();
3232 
3233       _root_processor->evacuate_roots(pss->closures(), worker_id);
3234 
3235       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3236       // treating the nmethods visited to act as roots for concurrent marking.
3237       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3238       // objects copied by the current evacuation.
3239       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3240                                                       pss->closures()->weak_codeblobs(),
3241                                                       worker_id);
3242 
3243       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3244 
3245       double term_sec = 0.0;
3246       size_t evac_term_attempts = 0;
3247       {
3248         double start = os::elapsedTime();
3249         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3250         evac.do_void();
3251 
3252         evac_term_attempts = evac.term_attempts();
3253         term_sec = evac.term_time();
3254         double elapsed_sec = os::elapsedTime() - start;
3255         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3256         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3257         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3258       }
3259 
3260       assert(pss->queue_is_empty(), "should be empty");
3261 
3262       if (log_is_enabled(Debug, gc, task, stats)) {
3263         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3264         size_t lab_waste;
3265         size_t lab_undo_waste;
3266         pss->waste(lab_waste, lab_undo_waste);
3267         _g1h->print_termination_stats(worker_id,
3268                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3269                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3270                                       term_sec * 1000.0,                          /* evac term time */
3271                                       evac_term_attempts,                         /* evac term attempts */
3272                                       lab_waste,                                  /* alloc buffer waste */
3273                                       lab_undo_waste                              /* undo waste */
3274                                       );
3275       }
3276 
3277       // Close the inner scope so that the ResourceMark and HandleMark
3278       // destructors are executed here and are included as part of the
3279       // "GC Worker Time".
3280     }
3281     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3282   }
3283 };
3284 
3285 void G1CollectedHeap::print_termination_stats_hdr() {
3286   log_debug(gc, task, stats)("GC Termination Stats");
3287   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3288   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3289   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3290 }
3291 
3292 void G1CollectedHeap::print_termination_stats(uint worker_id,
3293                                               double elapsed_ms,
3294                                               double strong_roots_ms,
3295                                               double term_ms,
3296                                               size_t term_attempts,
3297                                               size_t alloc_buffer_waste,
3298                                               size_t undo_waste) const {
3299   log_debug(gc, task, stats)
3300               ("%3d %9.2f %9.2f %6.2f "
3301                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3302                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3303                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3304                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3305                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3306                alloc_buffer_waste * HeapWordSize / K,
3307                undo_waste * HeapWordSize / K);
3308 }
3309 
3310 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3311 private:
3312   BoolObjectClosure* _is_alive;
3313   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3314 
3315   int _initial_string_table_size;
3316   int _initial_symbol_table_size;
3317 
3318   bool  _process_strings;
3319   int _strings_processed;
3320   int _strings_removed;
3321 
3322   bool  _process_symbols;
3323   int _symbols_processed;
3324   int _symbols_removed;
3325 
3326   bool _process_string_dedup;
3327 
3328 public:
3329   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3330     AbstractGangTask("String/Symbol Unlinking"),
3331     _is_alive(is_alive),
3332     _dedup_closure(is_alive, NULL, false),
3333     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3334     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3335     _process_string_dedup(process_string_dedup) {
3336 
3337     _initial_string_table_size = StringTable::the_table()->table_size();
3338     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3339     if (process_strings) {
3340       StringTable::clear_parallel_claimed_index();
3341     }
3342     if (process_symbols) {
3343       SymbolTable::clear_parallel_claimed_index();
3344     }
3345   }
3346 
3347   ~G1StringAndSymbolCleaningTask() {
3348     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3349               "claim value %d after unlink less than initial string table size %d",
3350               StringTable::parallel_claimed_index(), _initial_string_table_size);
3351     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3352               "claim value %d after unlink less than initial symbol table size %d",
3353               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3354 
3355     log_info(gc, stringtable)(
3356         "Cleaned string and symbol table, "
3357         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3358         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3359         strings_processed(), strings_removed(),
3360         symbols_processed(), symbols_removed());
3361   }
3362 
3363   void work(uint worker_id) {
3364     int strings_processed = 0;
3365     int strings_removed = 0;
3366     int symbols_processed = 0;
3367     int symbols_removed = 0;
3368     if (_process_strings) {
3369       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3370       Atomic::add(strings_processed, &_strings_processed);
3371       Atomic::add(strings_removed, &_strings_removed);
3372     }
3373     if (_process_symbols) {
3374       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3375       Atomic::add(symbols_processed, &_symbols_processed);
3376       Atomic::add(symbols_removed, &_symbols_removed);
3377     }
3378     if (_process_string_dedup) {
3379       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3380     }
3381   }
3382 
3383   size_t strings_processed() const { return (size_t)_strings_processed; }
3384   size_t strings_removed()   const { return (size_t)_strings_removed; }
3385 
3386   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3387   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3388 };
3389 
3390 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3391 private:
3392   static Monitor* _lock;
3393 
3394   BoolObjectClosure* const _is_alive;
3395   const bool               _unloading_occurred;
3396   const uint               _num_workers;
3397 
3398   // Variables used to claim nmethods.
3399   CompiledMethod* _first_nmethod;
3400   CompiledMethod* volatile _claimed_nmethod;
3401 
3402   // The list of nmethods that need to be processed by the second pass.
3403   CompiledMethod* volatile _postponed_list;
3404   volatile uint            _num_entered_barrier;
3405 
3406  public:
3407   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3408       _is_alive(is_alive),
3409       _unloading_occurred(unloading_occurred),
3410       _num_workers(num_workers),
3411       _first_nmethod(NULL),
3412       _claimed_nmethod(NULL),
3413       _postponed_list(NULL),
3414       _num_entered_barrier(0)
3415   {
3416     CompiledMethod::increase_unloading_clock();
3417     // Get first alive nmethod
3418     CompiledMethodIterator iter = CompiledMethodIterator();
3419     if(iter.next_alive()) {
3420       _first_nmethod = iter.method();
3421     }
3422     _claimed_nmethod = _first_nmethod;
3423   }
3424 
3425   ~G1CodeCacheUnloadingTask() {
3426     CodeCache::verify_clean_inline_caches();
3427 
3428     CodeCache::set_needs_cache_clean(false);
3429     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3430 
3431     CodeCache::verify_icholder_relocations();
3432   }
3433 
3434  private:
3435   void add_to_postponed_list(CompiledMethod* nm) {
3436       CompiledMethod* old;
3437       do {
3438         old = _postponed_list;
3439         nm->set_unloading_next(old);
3440       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3441   }
3442 
3443   void clean_nmethod(CompiledMethod* nm) {
3444     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3445 
3446     if (postponed) {
3447       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3448       add_to_postponed_list(nm);
3449     }
3450 
3451     // Mark that this thread has been cleaned/unloaded.
3452     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3453     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3454   }
3455 
3456   void clean_nmethod_postponed(CompiledMethod* nm) {
3457     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3458   }
3459 
3460   static const int MaxClaimNmethods = 16;
3461 
3462   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3463     CompiledMethod* first;
3464     CompiledMethodIterator last;
3465 
3466     do {
3467       *num_claimed_nmethods = 0;
3468 
3469       first = _claimed_nmethod;
3470       last = CompiledMethodIterator(first);
3471 
3472       if (first != NULL) {
3473 
3474         for (int i = 0; i < MaxClaimNmethods; i++) {
3475           if (!last.next_alive()) {
3476             break;
3477           }
3478           claimed_nmethods[i] = last.method();
3479           (*num_claimed_nmethods)++;
3480         }
3481       }
3482 
3483     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3484   }
3485 
3486   CompiledMethod* claim_postponed_nmethod() {
3487     CompiledMethod* claim;
3488     CompiledMethod* next;
3489 
3490     do {
3491       claim = _postponed_list;
3492       if (claim == NULL) {
3493         return NULL;
3494       }
3495 
3496       next = claim->unloading_next();
3497 
3498     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3499 
3500     return claim;
3501   }
3502 
3503  public:
3504   // Mark that we're done with the first pass of nmethod cleaning.
3505   void barrier_mark(uint worker_id) {
3506     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3507     _num_entered_barrier++;
3508     if (_num_entered_barrier == _num_workers) {
3509       ml.notify_all();
3510     }
3511   }
3512 
3513   // See if we have to wait for the other workers to
3514   // finish their first-pass nmethod cleaning work.
3515   void barrier_wait(uint worker_id) {
3516     if (_num_entered_barrier < _num_workers) {
3517       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3518       while (_num_entered_barrier < _num_workers) {
3519           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3520       }
3521     }
3522   }
3523 
3524   // Cleaning and unloading of nmethods. Some work has to be postponed
3525   // to the second pass, when we know which nmethods survive.
3526   void work_first_pass(uint worker_id) {
3527     // The first nmethods is claimed by the first worker.
3528     if (worker_id == 0 && _first_nmethod != NULL) {
3529       clean_nmethod(_first_nmethod);
3530       _first_nmethod = NULL;
3531     }
3532 
3533     int num_claimed_nmethods;
3534     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3535 
3536     while (true) {
3537       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3538 
3539       if (num_claimed_nmethods == 0) {
3540         break;
3541       }
3542 
3543       for (int i = 0; i < num_claimed_nmethods; i++) {
3544         clean_nmethod(claimed_nmethods[i]);
3545       }
3546     }
3547   }
3548 
3549   void work_second_pass(uint worker_id) {
3550     CompiledMethod* nm;
3551     // Take care of postponed nmethods.
3552     while ((nm = claim_postponed_nmethod()) != NULL) {
3553       clean_nmethod_postponed(nm);
3554     }
3555   }
3556 };
3557 
3558 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3559 
3560 class G1KlassCleaningTask : public StackObj {
3561   BoolObjectClosure*                      _is_alive;
3562   volatile int                            _clean_klass_tree_claimed;
3563   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3564 
3565  public:
3566   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3567       _is_alive(is_alive),
3568       _clean_klass_tree_claimed(0),
3569       _klass_iterator() {
3570   }
3571 
3572  private:
3573   bool claim_clean_klass_tree_task() {
3574     if (_clean_klass_tree_claimed) {
3575       return false;
3576     }
3577 
3578     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3579   }
3580 
3581   InstanceKlass* claim_next_klass() {
3582     Klass* klass;
3583     do {
3584       klass =_klass_iterator.next_klass();
3585     } while (klass != NULL && !klass->is_instance_klass());
3586 
3587     // this can be null so don't call InstanceKlass::cast
3588     return static_cast<InstanceKlass*>(klass);
3589   }
3590 
3591 public:
3592 
3593   void clean_klass(InstanceKlass* ik) {
3594     ik->clean_weak_instanceklass_links(_is_alive);
3595   }
3596 
3597   void work() {
3598     ResourceMark rm;
3599 
3600     // One worker will clean the subklass/sibling klass tree.
3601     if (claim_clean_klass_tree_task()) {
3602       Klass::clean_subklass_tree(_is_alive);
3603     }
3604 
3605     // All workers will help cleaning the classes,
3606     InstanceKlass* klass;
3607     while ((klass = claim_next_klass()) != NULL) {
3608       clean_klass(klass);
3609     }
3610   }
3611 };
3612 
3613 class G1ResolvedMethodCleaningTask : public StackObj {
3614   BoolObjectClosure* _is_alive;
3615   volatile int       _resolved_method_task_claimed;
3616 public:
3617   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3618       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3619 
3620   bool claim_resolved_method_task() {
3621     if (_resolved_method_task_claimed) {
3622       return false;
3623     }
3624     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3625   }
3626 
3627   // These aren't big, one thread can do it all.
3628   void work() {
3629     if (claim_resolved_method_task()) {
3630       ResolvedMethodTable::unlink(_is_alive);
3631     }
3632   }
3633 };
3634 
3635 
3636 // To minimize the remark pause times, the tasks below are done in parallel.
3637 class G1ParallelCleaningTask : public AbstractGangTask {
3638 private:
3639   G1StringAndSymbolCleaningTask _string_symbol_task;
3640   G1CodeCacheUnloadingTask      _code_cache_task;
3641   G1KlassCleaningTask           _klass_cleaning_task;
3642   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3643 
3644 public:
3645   // The constructor is run in the VMThread.
3646   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3647       AbstractGangTask("Parallel Cleaning"),
3648       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3649       _code_cache_task(num_workers, is_alive, unloading_occurred),
3650       _klass_cleaning_task(is_alive),
3651       _resolved_method_cleaning_task(is_alive) {
3652   }
3653 
3654   // The parallel work done by all worker threads.
3655   void work(uint worker_id) {
3656     // Do first pass of code cache cleaning.
3657     _code_cache_task.work_first_pass(worker_id);
3658 
3659     // Let the threads mark that the first pass is done.
3660     _code_cache_task.barrier_mark(worker_id);
3661 
3662     // Clean the Strings and Symbols.
3663     _string_symbol_task.work(worker_id);
3664 
3665     // Clean unreferenced things in the ResolvedMethodTable
3666     _resolved_method_cleaning_task.work();
3667 
3668     // Wait for all workers to finish the first code cache cleaning pass.
3669     _code_cache_task.barrier_wait(worker_id);
3670 
3671     // Do the second code cache cleaning work, which realize on
3672     // the liveness information gathered during the first pass.
3673     _code_cache_task.work_second_pass(worker_id);
3674 
3675     // Clean all klasses that were not unloaded.
3676     _klass_cleaning_task.work();
3677   }
3678 };
3679 
3680 
3681 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3682                                         bool class_unloading_occurred) {
3683   uint n_workers = workers()->active_workers();
3684 
3685   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3686   workers()->run_task(&g1_unlink_task);
3687 }
3688 
3689 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3690                                        bool process_strings,
3691                                        bool process_symbols,
3692                                        bool process_string_dedup) {
3693   if (!process_strings && !process_symbols && !process_string_dedup) {
3694     // Nothing to clean.
3695     return;
3696   }
3697 
3698   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3699   workers()->run_task(&g1_unlink_task);
3700 
3701 }
3702 
3703 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3704  private:
3705   DirtyCardQueueSet* _queue;
3706   G1CollectedHeap* _g1h;
3707  public:
3708   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3709     _queue(queue), _g1h(g1h) { }
3710 
3711   virtual void work(uint worker_id) {
3712     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3713     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3714 
3715     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3716     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3717 
3718     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3719   }
3720 };
3721 
3722 void G1CollectedHeap::redirty_logged_cards() {
3723   double redirty_logged_cards_start = os::elapsedTime();
3724 
3725   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3726   dirty_card_queue_set().reset_for_par_iteration();
3727   workers()->run_task(&redirty_task);
3728 
3729   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3730   dcq.merge_bufferlists(&dirty_card_queue_set());
3731   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3732 
3733   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3734 }
3735 
3736 // Weak Reference Processing support
3737 
3738 // An always "is_alive" closure that is used to preserve referents.
3739 // If the object is non-null then it's alive.  Used in the preservation
3740 // of referent objects that are pointed to by reference objects
3741 // discovered by the CM ref processor.
3742 class G1AlwaysAliveClosure: public BoolObjectClosure {
3743   G1CollectedHeap* _g1;
3744 public:
3745   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3746   bool do_object_b(oop p) {
3747     if (p != NULL) {
3748       return true;
3749     }
3750     return false;
3751   }
3752 };
3753 
3754 bool G1STWIsAliveClosure::do_object_b(oop p) {
3755   // An object is reachable if it is outside the collection set,
3756   // or is inside and copied.
3757   return !_g1->is_in_cset(p) || p->is_forwarded();
3758 }
3759 
3760 // Non Copying Keep Alive closure
3761 class G1KeepAliveClosure: public OopClosure {
3762   G1CollectedHeap* _g1;
3763 public:
3764   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3765   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3766   void do_oop(oop* p) {
3767     oop obj = *p;
3768     assert(obj != NULL, "the caller should have filtered out NULL values");
3769 
3770     const InCSetState cset_state = _g1->in_cset_state(obj);
3771     if (!cset_state.is_in_cset_or_humongous()) {
3772       return;
3773     }
3774     if (cset_state.is_in_cset()) {
3775       assert( obj->is_forwarded(), "invariant" );
3776       *p = obj->forwardee();
3777     } else {
3778       assert(!obj->is_forwarded(), "invariant" );
3779       assert(cset_state.is_humongous(),
3780              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3781       _g1->set_humongous_is_live(obj);
3782     }
3783   }
3784 };
3785 
3786 // Copying Keep Alive closure - can be called from both
3787 // serial and parallel code as long as different worker
3788 // threads utilize different G1ParScanThreadState instances
3789 // and different queues.
3790 
3791 class G1CopyingKeepAliveClosure: public OopClosure {
3792   G1CollectedHeap*         _g1h;
3793   OopClosure*              _copy_non_heap_obj_cl;
3794   G1ParScanThreadState*    _par_scan_state;
3795 
3796 public:
3797   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3798                             OopClosure* non_heap_obj_cl,
3799                             G1ParScanThreadState* pss):
3800     _g1h(g1h),
3801     _copy_non_heap_obj_cl(non_heap_obj_cl),
3802     _par_scan_state(pss)
3803   {}
3804 
3805   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3806   virtual void do_oop(      oop* p) { do_oop_work(p); }
3807 
3808   template <class T> void do_oop_work(T* p) {
3809     oop obj = oopDesc::load_decode_heap_oop(p);
3810 
3811     if (_g1h->is_in_cset_or_humongous(obj)) {
3812       // If the referent object has been forwarded (either copied
3813       // to a new location or to itself in the event of an
3814       // evacuation failure) then we need to update the reference
3815       // field and, if both reference and referent are in the G1
3816       // heap, update the RSet for the referent.
3817       //
3818       // If the referent has not been forwarded then we have to keep
3819       // it alive by policy. Therefore we have copy the referent.
3820       //
3821       // If the reference field is in the G1 heap then we can push
3822       // on the PSS queue. When the queue is drained (after each
3823       // phase of reference processing) the object and it's followers
3824       // will be copied, the reference field set to point to the
3825       // new location, and the RSet updated. Otherwise we need to
3826       // use the the non-heap or metadata closures directly to copy
3827       // the referent object and update the pointer, while avoiding
3828       // updating the RSet.
3829 
3830       if (_g1h->is_in_g1_reserved(p)) {
3831         _par_scan_state->push_on_queue(p);
3832       } else {
3833         assert(!Metaspace::contains((const void*)p),
3834                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3835         _copy_non_heap_obj_cl->do_oop(p);
3836       }
3837     }
3838   }
3839 };
3840 
3841 // Serial drain queue closure. Called as the 'complete_gc'
3842 // closure for each discovered list in some of the
3843 // reference processing phases.
3844 
3845 class G1STWDrainQueueClosure: public VoidClosure {
3846 protected:
3847   G1CollectedHeap* _g1h;
3848   G1ParScanThreadState* _par_scan_state;
3849 
3850   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3851 
3852 public:
3853   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3854     _g1h(g1h),
3855     _par_scan_state(pss)
3856   { }
3857 
3858   void do_void() {
3859     G1ParScanThreadState* const pss = par_scan_state();
3860     pss->trim_queue();
3861   }
3862 };
3863 
3864 // Parallel Reference Processing closures
3865 
3866 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3867 // processing during G1 evacuation pauses.
3868 
3869 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3870 private:
3871   G1CollectedHeap*          _g1h;
3872   G1ParScanThreadStateSet*  _pss;
3873   RefToScanQueueSet*        _queues;
3874   WorkGang*                 _workers;
3875   uint                      _active_workers;
3876 
3877 public:
3878   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3879                            G1ParScanThreadStateSet* per_thread_states,
3880                            WorkGang* workers,
3881                            RefToScanQueueSet *task_queues,
3882                            uint n_workers) :
3883     _g1h(g1h),
3884     _pss(per_thread_states),
3885     _queues(task_queues),
3886     _workers(workers),
3887     _active_workers(n_workers)
3888   {
3889     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3890   }
3891 
3892   // Executes the given task using concurrent marking worker threads.
3893   virtual void execute(ProcessTask& task);
3894   virtual void execute(EnqueueTask& task);
3895 };
3896 
3897 // Gang task for possibly parallel reference processing
3898 
3899 class G1STWRefProcTaskProxy: public AbstractGangTask {
3900   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3901   ProcessTask&     _proc_task;
3902   G1CollectedHeap* _g1h;
3903   G1ParScanThreadStateSet* _pss;
3904   RefToScanQueueSet* _task_queues;
3905   ParallelTaskTerminator* _terminator;
3906 
3907 public:
3908   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3909                         G1CollectedHeap* g1h,
3910                         G1ParScanThreadStateSet* per_thread_states,
3911                         RefToScanQueueSet *task_queues,
3912                         ParallelTaskTerminator* terminator) :
3913     AbstractGangTask("Process reference objects in parallel"),
3914     _proc_task(proc_task),
3915     _g1h(g1h),
3916     _pss(per_thread_states),
3917     _task_queues(task_queues),
3918     _terminator(terminator)
3919   {}
3920 
3921   virtual void work(uint worker_id) {
3922     // The reference processing task executed by a single worker.
3923     ResourceMark rm;
3924     HandleMark   hm;
3925 
3926     G1STWIsAliveClosure is_alive(_g1h);
3927 
3928     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3929     pss->set_ref_processor(NULL);
3930 
3931     // Keep alive closure.
3932     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3933 
3934     // Complete GC closure
3935     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3936 
3937     // Call the reference processing task's work routine.
3938     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3939 
3940     // Note we cannot assert that the refs array is empty here as not all
3941     // of the processing tasks (specifically phase2 - pp2_work) execute
3942     // the complete_gc closure (which ordinarily would drain the queue) so
3943     // the queue may not be empty.
3944   }
3945 };
3946 
3947 // Driver routine for parallel reference processing.
3948 // Creates an instance of the ref processing gang
3949 // task and has the worker threads execute it.
3950 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3951   assert(_workers != NULL, "Need parallel worker threads.");
3952 
3953   ParallelTaskTerminator terminator(_active_workers, _queues);
3954   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3955 
3956   _workers->run_task(&proc_task_proxy);
3957 }
3958 
3959 // Gang task for parallel reference enqueueing.
3960 
3961 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
3962   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
3963   EnqueueTask& _enq_task;
3964 
3965 public:
3966   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
3967     AbstractGangTask("Enqueue reference objects in parallel"),
3968     _enq_task(enq_task)
3969   { }
3970 
3971   virtual void work(uint worker_id) {
3972     _enq_task.work(worker_id);
3973   }
3974 };
3975 
3976 // Driver routine for parallel reference enqueueing.
3977 // Creates an instance of the ref enqueueing gang
3978 // task and has the worker threads execute it.
3979 
3980 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
3981   assert(_workers != NULL, "Need parallel worker threads.");
3982 
3983   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
3984 
3985   _workers->run_task(&enq_task_proxy);
3986 }
3987 
3988 // End of weak reference support closures
3989 
3990 // Abstract task used to preserve (i.e. copy) any referent objects
3991 // that are in the collection set and are pointed to by reference
3992 // objects discovered by the CM ref processor.
3993 
3994 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
3995 protected:
3996   G1CollectedHeap*         _g1h;
3997   G1ParScanThreadStateSet* _pss;
3998   RefToScanQueueSet*       _queues;
3999   ParallelTaskTerminator   _terminator;
4000   uint                     _n_workers;
4001 
4002 public:
4003   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4004     AbstractGangTask("ParPreserveCMReferents"),
4005     _g1h(g1h),
4006     _pss(per_thread_states),
4007     _queues(task_queues),
4008     _terminator(workers, _queues),
4009     _n_workers(workers)
4010   {
4011     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4012   }
4013 
4014   void work(uint worker_id) {
4015     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4016 
4017     ResourceMark rm;
4018     HandleMark   hm;
4019 
4020     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4021     pss->set_ref_processor(NULL);
4022     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4023 
4024     // Is alive closure
4025     G1AlwaysAliveClosure always_alive(_g1h);
4026 
4027     // Copying keep alive closure. Applied to referent objects that need
4028     // to be copied.
4029     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4030 
4031     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4032 
4033     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4034     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4035 
4036     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4037     // So this must be true - but assert just in case someone decides to
4038     // change the worker ids.
4039     assert(worker_id < limit, "sanity");
4040     assert(!rp->discovery_is_atomic(), "check this code");
4041 
4042     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4043     for (uint idx = worker_id; idx < limit; idx += stride) {
4044       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4045 
4046       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4047       while (iter.has_next()) {
4048         // Since discovery is not atomic for the CM ref processor, we
4049         // can see some null referent objects.
4050         iter.load_ptrs(DEBUG_ONLY(true));
4051         oop ref = iter.obj();
4052 
4053         // This will filter nulls.
4054         if (iter.is_referent_alive()) {
4055           iter.make_referent_alive();
4056         }
4057         iter.move_to_next();
4058       }
4059     }
4060 
4061     // Drain the queue - which may cause stealing
4062     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4063     drain_queue.do_void();
4064     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4065     assert(pss->queue_is_empty(), "should be");
4066   }
4067 };
4068 
4069 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4070   // Any reference objects, in the collection set, that were 'discovered'
4071   // by the CM ref processor should have already been copied (either by
4072   // applying the external root copy closure to the discovered lists, or
4073   // by following an RSet entry).
4074   //
4075   // But some of the referents, that are in the collection set, that these
4076   // reference objects point to may not have been copied: the STW ref
4077   // processor would have seen that the reference object had already
4078   // been 'discovered' and would have skipped discovering the reference,
4079   // but would not have treated the reference object as a regular oop.
4080   // As a result the copy closure would not have been applied to the
4081   // referent object.
4082   //
4083   // We need to explicitly copy these referent objects - the references
4084   // will be processed at the end of remarking.
4085   //
4086   // We also need to do this copying before we process the reference
4087   // objects discovered by the STW ref processor in case one of these
4088   // referents points to another object which is also referenced by an
4089   // object discovered by the STW ref processor.
4090   double preserve_cm_referents_time = 0.0;
4091 
4092   // To avoid spawning task when there is no work to do, check that
4093   // a concurrent cycle is active and that some references have been
4094   // discovered.
4095   if (concurrent_mark()->cm_thread()->during_cycle() &&
4096       ref_processor_cm()->has_discovered_references()) {
4097     double preserve_cm_referents_start = os::elapsedTime();
4098     uint no_of_gc_workers = workers()->active_workers();
4099     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4100                                                    per_thread_states,
4101                                                    no_of_gc_workers,
4102                                                    _task_queues);
4103     workers()->run_task(&keep_cm_referents);
4104     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4105   }
4106 
4107   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4108 }
4109 
4110 // Weak Reference processing during an evacuation pause (part 1).
4111 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4112   double ref_proc_start = os::elapsedTime();
4113 
4114   ReferenceProcessor* rp = _ref_processor_stw;
4115   assert(rp->discovery_enabled(), "should have been enabled");
4116 
4117   // Closure to test whether a referent is alive.
4118   G1STWIsAliveClosure is_alive(this);
4119 
4120   // Even when parallel reference processing is enabled, the processing
4121   // of JNI refs is serial and performed serially by the current thread
4122   // rather than by a worker. The following PSS will be used for processing
4123   // JNI refs.
4124 
4125   // Use only a single queue for this PSS.
4126   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4127   pss->set_ref_processor(NULL);
4128   assert(pss->queue_is_empty(), "pre-condition");
4129 
4130   // Keep alive closure.
4131   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4132 
4133   // Serial Complete GC closure
4134   G1STWDrainQueueClosure drain_queue(this, pss);
4135 
4136   // Setup the soft refs policy...
4137   rp->setup_policy(false);
4138 
4139   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4140 
4141   ReferenceProcessorStats stats;
4142   if (!rp->processing_is_mt()) {
4143     // Serial reference processing...
4144     stats = rp->process_discovered_references(&is_alive,
4145                                               &keep_alive,
4146                                               &drain_queue,
4147                                               NULL,
4148                                               pt);
4149   } else {
4150     uint no_of_gc_workers = workers()->active_workers();
4151 
4152     // Parallel reference processing
4153     assert(no_of_gc_workers <= rp->max_num_q(),
4154            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4155            no_of_gc_workers,  rp->max_num_q());
4156 
4157     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4158     stats = rp->process_discovered_references(&is_alive,
4159                                               &keep_alive,
4160                                               &drain_queue,
4161                                               &par_task_executor,
4162                                               pt);
4163   }
4164 
4165   _gc_tracer_stw->report_gc_reference_stats(stats);
4166 
4167   // We have completed copying any necessary live referent objects.
4168   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4169 
4170   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4171   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4172 }
4173 
4174 // Weak Reference processing during an evacuation pause (part 2).
4175 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4176   double ref_enq_start = os::elapsedTime();
4177 
4178   ReferenceProcessor* rp = _ref_processor_stw;
4179   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4180 
4181   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4182 
4183   // Now enqueue any remaining on the discovered lists on to
4184   // the pending list.
4185   if (!rp->processing_is_mt()) {
4186     // Serial reference processing...
4187     rp->enqueue_discovered_references(NULL, pt);
4188   } else {
4189     // Parallel reference enqueueing
4190 
4191     uint n_workers = workers()->active_workers();
4192 
4193     assert(n_workers <= rp->max_num_q(),
4194            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4195            n_workers,  rp->max_num_q());
4196 
4197     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4198     rp->enqueue_discovered_references(&par_task_executor, pt);
4199   }
4200 
4201   rp->verify_no_references_recorded();
4202   assert(!rp->discovery_enabled(), "should have been disabled");
4203 
4204   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4205   // ensure that it is marked in the bitmap for concurrent marking to discover.
4206   if (collector_state()->during_initial_mark_pause()) {
4207     oop pll_head = Universe::reference_pending_list();
4208     if (pll_head != NULL) {
4209       _cm->mark_in_next_bitmap(pll_head);
4210     }
4211   }
4212 
4213   // FIXME
4214   // CM's reference processing also cleans up the string and symbol tables.
4215   // Should we do that here also? We could, but it is a serial operation
4216   // and could significantly increase the pause time.
4217 
4218   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4219   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4220 }
4221 
4222 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4223   double merge_pss_time_start = os::elapsedTime();
4224   per_thread_states->flush();
4225   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4226 }
4227 
4228 void G1CollectedHeap::pre_evacuate_collection_set() {
4229   _expand_heap_after_alloc_failure = true;
4230   _evacuation_failed = false;
4231 
4232   // Disable the hot card cache.
4233   _hot_card_cache->reset_hot_cache_claimed_index();
4234   _hot_card_cache->set_use_cache(false);
4235 
4236   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4237   _preserved_marks_set.assert_empty();
4238 
4239   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4240 
4241   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4242   if (collector_state()->during_initial_mark_pause()) {
4243     double start_clear_claimed_marks = os::elapsedTime();
4244 
4245     ClassLoaderDataGraph::clear_claimed_marks();
4246 
4247     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4248     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4249   }
4250 }
4251 
4252 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4253   // Should G1EvacuationFailureALot be in effect for this GC?
4254   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4255 
4256   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4257 
4258   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4259 
4260   double start_par_time_sec = os::elapsedTime();
4261   double end_par_time_sec;
4262 
4263   {
4264     const uint n_workers = workers()->active_workers();
4265     G1RootProcessor root_processor(this, n_workers);
4266     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4267 
4268     print_termination_stats_hdr();
4269 
4270     workers()->run_task(&g1_par_task);
4271     end_par_time_sec = os::elapsedTime();
4272 
4273     // Closing the inner scope will execute the destructor
4274     // for the G1RootProcessor object. We record the current
4275     // elapsed time before closing the scope so that time
4276     // taken for the destructor is NOT included in the
4277     // reported parallel time.
4278   }
4279 
4280   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4281   phase_times->record_par_time(par_time_ms);
4282 
4283   double code_root_fixup_time_ms =
4284         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4285   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4286 }
4287 
4288 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4289   // Process any discovered reference objects - we have
4290   // to do this _before_ we retire the GC alloc regions
4291   // as we may have to copy some 'reachable' referent
4292   // objects (and their reachable sub-graphs) that were
4293   // not copied during the pause.
4294   if (g1_policy()->should_process_references()) {
4295     preserve_cm_referents(per_thread_states);
4296     process_discovered_references(per_thread_states);
4297   } else {
4298     ref_processor_stw()->verify_no_references_recorded();
4299   }
4300 
4301   G1STWIsAliveClosure is_alive(this);
4302   G1KeepAliveClosure keep_alive(this);
4303 
4304   {
4305     double start = os::elapsedTime();
4306 
4307     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4308 
4309     double time_ms = (os::elapsedTime() - start) * 1000.0;
4310     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4311   }
4312 
4313   if (G1StringDedup::is_enabled()) {
4314     double fixup_start = os::elapsedTime();
4315 
4316     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4317 
4318     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4319     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4320   }
4321 
4322   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4323 
4324   if (evacuation_failed()) {
4325     restore_after_evac_failure();
4326 
4327     // Reset the G1EvacuationFailureALot counters and flags
4328     // Note: the values are reset only when an actual
4329     // evacuation failure occurs.
4330     NOT_PRODUCT(reset_evacuation_should_fail();)
4331   }
4332 
4333   _preserved_marks_set.assert_empty();
4334 
4335   // Enqueue any remaining references remaining on the STW
4336   // reference processor's discovered lists. We need to do
4337   // this after the card table is cleaned (and verified) as
4338   // the act of enqueueing entries on to the pending list
4339   // will log these updates (and dirty their associated
4340   // cards). We need these updates logged to update any
4341   // RSets.
4342   if (g1_policy()->should_process_references()) {
4343     enqueue_discovered_references(per_thread_states);
4344   } else {
4345     g1_policy()->phase_times()->record_ref_enq_time(0);
4346   }
4347 
4348   _allocator->release_gc_alloc_regions(evacuation_info);
4349 
4350   merge_per_thread_state_info(per_thread_states);
4351 
4352   // Reset and re-enable the hot card cache.
4353   // Note the counts for the cards in the regions in the
4354   // collection set are reset when the collection set is freed.
4355   _hot_card_cache->reset_hot_cache();
4356   _hot_card_cache->set_use_cache(true);
4357 
4358   purge_code_root_memory();
4359 
4360   redirty_logged_cards();
4361 #if COMPILER2_OR_JVMCI
4362   double start = os::elapsedTime();
4363   DerivedPointerTable::update_pointers();
4364   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4365 #endif
4366   g1_policy()->print_age_table();
4367 }
4368 
4369 void G1CollectedHeap::record_obj_copy_mem_stats() {
4370   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4371 
4372   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4373                                                create_g1_evac_summary(&_old_evac_stats));
4374 }
4375 
4376 void G1CollectedHeap::free_region(HeapRegion* hr,
4377                                   FreeRegionList* free_list,
4378                                   bool skip_remset,
4379                                   bool skip_hot_card_cache,
4380                                   bool locked) {
4381   assert(!hr->is_free(), "the region should not be free");
4382   assert(!hr->is_empty(), "the region should not be empty");
4383   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4384   assert(free_list != NULL, "pre-condition");
4385 
4386   if (G1VerifyBitmaps) {
4387     MemRegion mr(hr->bottom(), hr->end());
4388     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4389   }
4390 
4391   // Clear the card counts for this region.
4392   // Note: we only need to do this if the region is not young
4393   // (since we don't refine cards in young regions).
4394   if (!skip_hot_card_cache && !hr->is_young()) {
4395     _hot_card_cache->reset_card_counts(hr);
4396   }
4397   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4398   free_list->add_ordered(hr);
4399 }
4400 
4401 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4402                                             FreeRegionList* free_list,
4403                                             bool skip_remset) {
4404   assert(hr->is_humongous(), "this is only for humongous regions");
4405   assert(free_list != NULL, "pre-condition");
4406   hr->clear_humongous();
4407   free_region(hr, free_list, skip_remset);
4408 }
4409 
4410 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4411                                            const uint humongous_regions_removed) {
4412   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4413     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4414     _old_set.bulk_remove(old_regions_removed);
4415     _humongous_set.bulk_remove(humongous_regions_removed);
4416   }
4417 
4418 }
4419 
4420 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4421   assert(list != NULL, "list can't be null");
4422   if (!list->is_empty()) {
4423     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4424     _hrm.insert_list_into_free_list(list);
4425   }
4426 }
4427 
4428 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4429   decrease_used(bytes);
4430 }
4431 
4432 class G1ParScrubRemSetTask: public AbstractGangTask {
4433 protected:
4434   G1RemSet* _g1rs;
4435   HeapRegionClaimer _hrclaimer;
4436 
4437 public:
4438   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4439     AbstractGangTask("G1 ScrubRS"),
4440     _g1rs(g1_rs),
4441     _hrclaimer(num_workers) {
4442   }
4443 
4444   void work(uint worker_id) {
4445     _g1rs->scrub(worker_id, &_hrclaimer);
4446   }
4447 };
4448 
4449 void G1CollectedHeap::scrub_rem_set() {
4450   uint num_workers = workers()->active_workers();
4451   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4452   workers()->run_task(&g1_par_scrub_rs_task);
4453 }
4454 
4455 class G1FreeCollectionSetTask : public AbstractGangTask {
4456 private:
4457 
4458   // Closure applied to all regions in the collection set to do work that needs to
4459   // be done serially in a single thread.
4460   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4461   private:
4462     EvacuationInfo* _evacuation_info;
4463     const size_t* _surviving_young_words;
4464 
4465     // Bytes used in successfully evacuated regions before the evacuation.
4466     size_t _before_used_bytes;
4467     // Bytes used in unsucessfully evacuated regions before the evacuation
4468     size_t _after_used_bytes;
4469 
4470     size_t _bytes_allocated_in_old_since_last_gc;
4471 
4472     size_t _failure_used_words;
4473     size_t _failure_waste_words;
4474 
4475     FreeRegionList _local_free_list;
4476   public:
4477     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4478       HeapRegionClosure(),
4479       _evacuation_info(evacuation_info),
4480       _surviving_young_words(surviving_young_words),
4481       _before_used_bytes(0),
4482       _after_used_bytes(0),
4483       _bytes_allocated_in_old_since_last_gc(0),
4484       _failure_used_words(0),
4485       _failure_waste_words(0),
4486       _local_free_list("Local Region List for CSet Freeing") {
4487     }
4488 
4489     virtual bool do_heap_region(HeapRegion* r) {
4490       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4491 
4492       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4493       g1h->clear_in_cset(r);
4494 
4495       if (r->is_young()) {
4496         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4497                "Young index %d is wrong for region %u of type %s with %u young regions",
4498                r->young_index_in_cset(),
4499                r->hrm_index(),
4500                r->get_type_str(),
4501                g1h->collection_set()->young_region_length());
4502         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4503         r->record_surv_words_in_group(words_survived);
4504       }
4505 
4506       if (!r->evacuation_failed()) {
4507         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4508         _before_used_bytes += r->used();
4509         g1h->free_region(r,
4510                          &_local_free_list,
4511                          true, /* skip_remset */
4512                          true, /* skip_hot_card_cache */
4513                          true  /* locked */);
4514       } else {
4515         r->uninstall_surv_rate_group();
4516         r->set_young_index_in_cset(-1);
4517         r->set_evacuation_failed(false);
4518         // When moving a young gen region to old gen, we "allocate" that whole region
4519         // there. This is in addition to any already evacuated objects. Notify the
4520         // policy about that.
4521         // Old gen regions do not cause an additional allocation: both the objects
4522         // still in the region and the ones already moved are accounted for elsewhere.
4523         if (r->is_young()) {
4524           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4525         }
4526         // The region is now considered to be old.
4527         r->set_old();
4528         // Do some allocation statistics accounting. Regions that failed evacuation
4529         // are always made old, so there is no need to update anything in the young
4530         // gen statistics, but we need to update old gen statistics.
4531         size_t used_words = r->marked_bytes() / HeapWordSize;
4532 
4533         _failure_used_words += used_words;
4534         _failure_waste_words += HeapRegion::GrainWords - used_words;
4535 
4536         g1h->old_set_add(r);
4537         _after_used_bytes += r->used();
4538       }
4539       return false;
4540     }
4541 
4542     void complete_work() {
4543       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4544 
4545       _evacuation_info->set_regions_freed(_local_free_list.length());
4546       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4547 
4548       g1h->prepend_to_freelist(&_local_free_list);
4549       g1h->decrement_summary_bytes(_before_used_bytes);
4550 
4551       G1Policy* policy = g1h->g1_policy();
4552       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4553 
4554       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4555     }
4556   };
4557 
4558   G1CollectionSet* _collection_set;
4559   G1SerialFreeCollectionSetClosure _cl;
4560   const size_t* _surviving_young_words;
4561 
4562   size_t _rs_lengths;
4563 
4564   volatile jint _serial_work_claim;
4565 
4566   struct WorkItem {
4567     uint region_idx;
4568     bool is_young;
4569     bool evacuation_failed;
4570 
4571     WorkItem(HeapRegion* r) {
4572       region_idx = r->hrm_index();
4573       is_young = r->is_young();
4574       evacuation_failed = r->evacuation_failed();
4575     }
4576   };
4577 
4578   volatile size_t _parallel_work_claim;
4579   size_t _num_work_items;
4580   WorkItem* _work_items;
4581 
4582   void do_serial_work() {
4583     // Need to grab the lock to be allowed to modify the old region list.
4584     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4585     _collection_set->iterate(&_cl);
4586   }
4587 
4588   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4589     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4590 
4591     HeapRegion* r = g1h->region_at(region_idx);
4592     assert(!g1h->is_on_master_free_list(r), "sanity");
4593 
4594     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4595 
4596     if (!is_young) {
4597       g1h->_hot_card_cache->reset_card_counts(r);
4598     }
4599 
4600     if (!evacuation_failed) {
4601       r->rem_set()->clear_locked();
4602     }
4603   }
4604 
4605   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4606   private:
4607     size_t _cur_idx;
4608     WorkItem* _work_items;
4609   public:
4610     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4611 
4612     virtual bool do_heap_region(HeapRegion* r) {
4613       _work_items[_cur_idx++] = WorkItem(r);
4614       return false;
4615     }
4616   };
4617 
4618   void prepare_work() {
4619     G1PrepareFreeCollectionSetClosure cl(_work_items);
4620     _collection_set->iterate(&cl);
4621   }
4622 
4623   void complete_work() {
4624     _cl.complete_work();
4625 
4626     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4627     policy->record_max_rs_lengths(_rs_lengths);
4628     policy->cset_regions_freed();
4629   }
4630 public:
4631   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4632     AbstractGangTask("G1 Free Collection Set"),
4633     _cl(evacuation_info, surviving_young_words),
4634     _collection_set(collection_set),
4635     _surviving_young_words(surviving_young_words),
4636     _serial_work_claim(0),
4637     _rs_lengths(0),
4638     _parallel_work_claim(0),
4639     _num_work_items(collection_set->region_length()),
4640     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4641     prepare_work();
4642   }
4643 
4644   ~G1FreeCollectionSetTask() {
4645     complete_work();
4646     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4647   }
4648 
4649   // Chunk size for work distribution. The chosen value has been determined experimentally
4650   // to be a good tradeoff between overhead and achievable parallelism.
4651   static uint chunk_size() { return 32; }
4652 
4653   virtual void work(uint worker_id) {
4654     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4655 
4656     // Claim serial work.
4657     if (_serial_work_claim == 0) {
4658       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4659       if (value == 0) {
4660         double serial_time = os::elapsedTime();
4661         do_serial_work();
4662         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4663       }
4664     }
4665 
4666     // Start parallel work.
4667     double young_time = 0.0;
4668     bool has_young_time = false;
4669     double non_young_time = 0.0;
4670     bool has_non_young_time = false;
4671 
4672     while (true) {
4673       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4674       size_t cur = end - chunk_size();
4675 
4676       if (cur >= _num_work_items) {
4677         break;
4678       }
4679 
4680       double start_time = os::elapsedTime();
4681 
4682       end = MIN2(end, _num_work_items);
4683 
4684       for (; cur < end; cur++) {
4685         bool is_young = _work_items[cur].is_young;
4686 
4687         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4688 
4689         double end_time = os::elapsedTime();
4690         double time_taken = end_time - start_time;
4691         if (is_young) {
4692           young_time += time_taken;
4693           has_young_time = true;
4694         } else {
4695           non_young_time += time_taken;
4696           has_non_young_time = true;
4697         }
4698         start_time = end_time;
4699       }
4700     }
4701 
4702     if (has_young_time) {
4703       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4704     }
4705     if (has_non_young_time) {
4706       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4707     }
4708   }
4709 };
4710 
4711 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4712   _eden.clear();
4713 
4714   double free_cset_start_time = os::elapsedTime();
4715 
4716   {
4717     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4718     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4719 
4720     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4721 
4722     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4723                         cl.name(),
4724                         num_workers,
4725                         _collection_set.region_length());
4726     workers()->run_task(&cl, num_workers);
4727   }
4728   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4729 
4730   collection_set->clear();
4731 }
4732 
4733 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4734  private:
4735   FreeRegionList* _free_region_list;
4736   HeapRegionSet* _proxy_set;
4737   uint _humongous_objects_reclaimed;
4738   uint _humongous_regions_reclaimed;
4739   size_t _freed_bytes;
4740  public:
4741 
4742   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4743     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4744   }
4745 
4746   virtual bool do_heap_region(HeapRegion* r) {
4747     if (!r->is_starts_humongous()) {
4748       return false;
4749     }
4750 
4751     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4752 
4753     oop obj = (oop)r->bottom();
4754     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4755 
4756     // The following checks whether the humongous object is live are sufficient.
4757     // The main additional check (in addition to having a reference from the roots
4758     // or the young gen) is whether the humongous object has a remembered set entry.
4759     //
4760     // A humongous object cannot be live if there is no remembered set for it
4761     // because:
4762     // - there can be no references from within humongous starts regions referencing
4763     // the object because we never allocate other objects into them.
4764     // (I.e. there are no intra-region references that may be missed by the
4765     // remembered set)
4766     // - as soon there is a remembered set entry to the humongous starts region
4767     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4768     // until the end of a concurrent mark.
4769     //
4770     // It is not required to check whether the object has been found dead by marking
4771     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4772     // all objects allocated during that time are considered live.
4773     // SATB marking is even more conservative than the remembered set.
4774     // So if at this point in the collection there is no remembered set entry,
4775     // nobody has a reference to it.
4776     // At the start of collection we flush all refinement logs, and remembered sets
4777     // are completely up-to-date wrt to references to the humongous object.
4778     //
4779     // Other implementation considerations:
4780     // - never consider object arrays at this time because they would pose
4781     // considerable effort for cleaning up the the remembered sets. This is
4782     // required because stale remembered sets might reference locations that
4783     // are currently allocated into.
4784     uint region_idx = r->hrm_index();
4785     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4786         !r->rem_set()->is_empty()) {
4787       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4788                                region_idx,
4789                                (size_t)obj->size() * HeapWordSize,
4790                                p2i(r->bottom()),
4791                                r->rem_set()->occupied(),
4792                                r->rem_set()->strong_code_roots_list_length(),
4793                                next_bitmap->is_marked(r->bottom()),
4794                                g1h->is_humongous_reclaim_candidate(region_idx),
4795                                obj->is_typeArray()
4796                               );
4797       return false;
4798     }
4799 
4800     guarantee(obj->is_typeArray(),
4801               "Only eagerly reclaiming type arrays is supported, but the object "
4802               PTR_FORMAT " is not.", p2i(r->bottom()));
4803 
4804     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4805                              region_idx,
4806                              (size_t)obj->size() * HeapWordSize,
4807                              p2i(r->bottom()),
4808                              r->rem_set()->occupied(),
4809                              r->rem_set()->strong_code_roots_list_length(),
4810                              next_bitmap->is_marked(r->bottom()),
4811                              g1h->is_humongous_reclaim_candidate(region_idx),
4812                              obj->is_typeArray()
4813                             );
4814 
4815     // Need to clear mark bit of the humongous object if already set.
4816     if (next_bitmap->is_marked(r->bottom())) {
4817       next_bitmap->clear(r->bottom());
4818     }
4819     _humongous_objects_reclaimed++;
4820     do {
4821       HeapRegion* next = g1h->next_region_in_humongous(r);
4822       _freed_bytes += r->used();
4823       r->set_containing_set(NULL);
4824       _humongous_regions_reclaimed++;
4825       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4826       r = next;
4827     } while (r != NULL);
4828 
4829     return false;
4830   }
4831 
4832   uint humongous_objects_reclaimed() {
4833     return _humongous_objects_reclaimed;
4834   }
4835 
4836   uint humongous_regions_reclaimed() {
4837     return _humongous_regions_reclaimed;
4838   }
4839 
4840   size_t bytes_freed() const {
4841     return _freed_bytes;
4842   }
4843 };
4844 
4845 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4846   assert_at_safepoint(true);
4847 
4848   if (!G1EagerReclaimHumongousObjects ||
4849       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4850     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4851     return;
4852   }
4853 
4854   double start_time = os::elapsedTime();
4855 
4856   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4857 
4858   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4859   heap_region_iterate(&cl);
4860 
4861   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4862 
4863   G1HRPrinter* hrp = hr_printer();
4864   if (hrp->is_active()) {
4865     FreeRegionListIterator iter(&local_cleanup_list);
4866     while (iter.more_available()) {
4867       HeapRegion* hr = iter.get_next();
4868       hrp->cleanup(hr);
4869     }
4870   }
4871 
4872   prepend_to_freelist(&local_cleanup_list);
4873   decrement_summary_bytes(cl.bytes_freed());
4874 
4875   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4876                                                                     cl.humongous_objects_reclaimed());
4877 }
4878 
4879 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4880 public:
4881   virtual bool do_heap_region(HeapRegion* r) {
4882     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4883     G1CollectedHeap::heap()->clear_in_cset(r);
4884     r->set_young_index_in_cset(-1);
4885     return false;
4886   }
4887 };
4888 
4889 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4890   G1AbandonCollectionSetClosure cl;
4891   collection_set->iterate(&cl);
4892 
4893   collection_set->clear();
4894   collection_set->stop_incremental_building();
4895 }
4896 
4897 void G1CollectedHeap::set_free_regions_coming() {
4898   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4899 
4900   assert(!free_regions_coming(), "pre-condition");
4901   _free_regions_coming = true;
4902 }
4903 
4904 void G1CollectedHeap::reset_free_regions_coming() {
4905   assert(free_regions_coming(), "pre-condition");
4906 
4907   {
4908     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4909     _free_regions_coming = false;
4910     SecondaryFreeList_lock->notify_all();
4911   }
4912 
4913   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4914 }
4915 
4916 void G1CollectedHeap::wait_while_free_regions_coming() {
4917   // Most of the time we won't have to wait, so let's do a quick test
4918   // first before we take the lock.
4919   if (!free_regions_coming()) {
4920     return;
4921   }
4922 
4923   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4924 
4925   {
4926     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4927     while (free_regions_coming()) {
4928       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4929     }
4930   }
4931 
4932   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4933 }
4934 
4935 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4936   return _allocator->is_retained_old_region(hr);
4937 }
4938 
4939 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4940   _eden.add(hr);
4941   _g1_policy->set_region_eden(hr);
4942 }
4943 
4944 #ifdef ASSERT
4945 
4946 class NoYoungRegionsClosure: public HeapRegionClosure {
4947 private:
4948   bool _success;
4949 public:
4950   NoYoungRegionsClosure() : _success(true) { }
4951   bool do_heap_region(HeapRegion* r) {
4952     if (r->is_young()) {
4953       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4954                             p2i(r->bottom()), p2i(r->end()));
4955       _success = false;
4956     }
4957     return false;
4958   }
4959   bool success() { return _success; }
4960 };
4961 
4962 bool G1CollectedHeap::check_young_list_empty() {
4963   bool ret = (young_regions_count() == 0);
4964 
4965   NoYoungRegionsClosure closure;
4966   heap_region_iterate(&closure);
4967   ret = ret && closure.success();
4968 
4969   return ret;
4970 }
4971 
4972 #endif // ASSERT
4973 
4974 class TearDownRegionSetsClosure : public HeapRegionClosure {
4975 private:
4976   HeapRegionSet *_old_set;
4977 
4978 public:
4979   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4980 
4981   bool do_heap_region(HeapRegion* r) {
4982     if (r->is_old()) {
4983       _old_set->remove(r);
4984     } else if(r->is_young()) {
4985       r->uninstall_surv_rate_group();
4986     } else {
4987       // We ignore free regions, we'll empty the free list afterwards.
4988       // We ignore humongous regions, we're not tearing down the
4989       // humongous regions set.
4990       assert(r->is_free() || r->is_humongous(),
4991              "it cannot be another type");
4992     }
4993     return false;
4994   }
4995 
4996   ~TearDownRegionSetsClosure() {
4997     assert(_old_set->is_empty(), "post-condition");
4998   }
4999 };
5000 
5001 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5002   assert_at_safepoint(true /* should_be_vm_thread */);
5003 
5004   if (!free_list_only) {
5005     TearDownRegionSetsClosure cl(&_old_set);
5006     heap_region_iterate(&cl);
5007 
5008     // Note that emptying the _young_list is postponed and instead done as
5009     // the first step when rebuilding the regions sets again. The reason for
5010     // this is that during a full GC string deduplication needs to know if
5011     // a collected region was young or old when the full GC was initiated.
5012   }
5013   _hrm.remove_all_free_regions();
5014 }
5015 
5016 void G1CollectedHeap::increase_used(size_t bytes) {
5017   _summary_bytes_used += bytes;
5018 }
5019 
5020 void G1CollectedHeap::decrease_used(size_t bytes) {
5021   assert(_summary_bytes_used >= bytes,
5022          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5023          _summary_bytes_used, bytes);
5024   _summary_bytes_used -= bytes;
5025 }
5026 
5027 void G1CollectedHeap::set_used(size_t bytes) {
5028   _summary_bytes_used = bytes;
5029 }
5030 
5031 class RebuildRegionSetsClosure : public HeapRegionClosure {
5032 private:
5033   bool            _free_list_only;
5034   HeapRegionSet*   _old_set;
5035   HeapRegionManager*   _hrm;
5036   size_t          _total_used;
5037 
5038 public:
5039   RebuildRegionSetsClosure(bool free_list_only,
5040                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5041     _free_list_only(free_list_only),
5042     _old_set(old_set), _hrm(hrm), _total_used(0) {
5043     assert(_hrm->num_free_regions() == 0, "pre-condition");
5044     if (!free_list_only) {
5045       assert(_old_set->is_empty(), "pre-condition");
5046     }
5047   }
5048 
5049   bool do_heap_region(HeapRegion* r) {
5050     if (r->is_empty()) {
5051       // Add free regions to the free list
5052       r->set_free();
5053       _hrm->insert_into_free_list(r);
5054     } else if (!_free_list_only) {
5055 
5056       if (r->is_humongous()) {
5057         // We ignore humongous regions. We left the humongous set unchanged.
5058       } else {
5059         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5060         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5061         r->move_to_old();
5062         _old_set->add(r);
5063       }
5064       _total_used += r->used();
5065     }
5066 
5067     return false;
5068   }
5069 
5070   size_t total_used() {
5071     return _total_used;
5072   }
5073 };
5074 
5075 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5076   assert_at_safepoint(true /* should_be_vm_thread */);
5077 
5078   if (!free_list_only) {
5079     _eden.clear();
5080     _survivor.clear();
5081   }
5082 
5083   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5084   heap_region_iterate(&cl);
5085 
5086   if (!free_list_only) {
5087     set_used(cl.total_used());
5088     if (_archive_allocator != NULL) {
5089       _archive_allocator->clear_used();
5090     }
5091   }
5092   assert(used_unlocked() == recalculate_used(),
5093          "inconsistent used_unlocked(), "
5094          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5095          used_unlocked(), recalculate_used());
5096 }
5097 
5098 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5099   HeapRegion* hr = heap_region_containing(p);
5100   return hr->is_in(p);
5101 }
5102 
5103 // Methods for the mutator alloc region
5104 
5105 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5106                                                       bool force) {
5107   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5108   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5109   if (force || should_allocate) {
5110     HeapRegion* new_alloc_region = new_region(word_size,
5111                                               false /* is_old */,
5112                                               false /* do_expand */);
5113     if (new_alloc_region != NULL) {
5114       set_region_short_lived_locked(new_alloc_region);
5115       _hr_printer.alloc(new_alloc_region, !should_allocate);
5116       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5117       return new_alloc_region;
5118     }
5119   }
5120   return NULL;
5121 }
5122 
5123 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5124                                                   size_t allocated_bytes) {
5125   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5126   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5127 
5128   collection_set()->add_eden_region(alloc_region);
5129   increase_used(allocated_bytes);
5130   _hr_printer.retire(alloc_region);
5131   // We update the eden sizes here, when the region is retired,
5132   // instead of when it's allocated, since this is the point that its
5133   // used space has been recored in _summary_bytes_used.
5134   g1mm()->update_eden_size();
5135 }
5136 
5137 // Methods for the GC alloc regions
5138 
5139 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5140   if (dest.is_old()) {
5141     return true;
5142   } else {
5143     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5144   }
5145 }
5146 
5147 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5148   assert(FreeList_lock->owned_by_self(), "pre-condition");
5149 
5150   if (!has_more_regions(dest)) {
5151     return NULL;
5152   }
5153 
5154   const bool is_survivor = dest.is_young();
5155 
5156   HeapRegion* new_alloc_region = new_region(word_size,
5157                                             !is_survivor,
5158                                             true /* do_expand */);
5159   if (new_alloc_region != NULL) {
5160     // We really only need to do this for old regions given that we
5161     // should never scan survivors. But it doesn't hurt to do it
5162     // for survivors too.
5163     new_alloc_region->record_timestamp();
5164     if (is_survivor) {
5165       new_alloc_region->set_survivor();
5166       _survivor.add(new_alloc_region);
5167       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5168     } else {
5169       new_alloc_region->set_old();
5170       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5171     }
5172     _hr_printer.alloc(new_alloc_region);
5173     bool during_im = collector_state()->during_initial_mark_pause();
5174     new_alloc_region->note_start_of_copying(during_im);
5175     return new_alloc_region;
5176   }
5177   return NULL;
5178 }
5179 
5180 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5181                                              size_t allocated_bytes,
5182                                              InCSetState dest) {
5183   bool during_im = collector_state()->during_initial_mark_pause();
5184   alloc_region->note_end_of_copying(during_im);
5185   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5186   if (dest.is_old()) {
5187     _old_set.add(alloc_region);
5188   }
5189   _hr_printer.retire(alloc_region);
5190 }
5191 
5192 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5193   bool expanded = false;
5194   uint index = _hrm.find_highest_free(&expanded);
5195 
5196   if (index != G1_NO_HRM_INDEX) {
5197     if (expanded) {
5198       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5199                                 HeapRegion::GrainWords * HeapWordSize);
5200     }
5201     _hrm.allocate_free_regions_starting_at(index, 1);
5202     return region_at(index);
5203   }
5204   return NULL;
5205 }
5206 
5207 // Optimized nmethod scanning
5208 
5209 class RegisterNMethodOopClosure: public OopClosure {
5210   G1CollectedHeap* _g1h;
5211   nmethod* _nm;
5212 
5213   template <class T> void do_oop_work(T* p) {
5214     T heap_oop = oopDesc::load_heap_oop(p);
5215     if (!oopDesc::is_null(heap_oop)) {
5216       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5217       HeapRegion* hr = _g1h->heap_region_containing(obj);
5218       assert(!hr->is_continues_humongous(),
5219              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5220              " starting at " HR_FORMAT,
5221              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5222 
5223       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5224       hr->add_strong_code_root_locked(_nm);
5225     }
5226   }
5227 
5228 public:
5229   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5230     _g1h(g1h), _nm(nm) {}
5231 
5232   void do_oop(oop* p)       { do_oop_work(p); }
5233   void do_oop(narrowOop* p) { do_oop_work(p); }
5234 };
5235 
5236 class UnregisterNMethodOopClosure: public OopClosure {
5237   G1CollectedHeap* _g1h;
5238   nmethod* _nm;
5239 
5240   template <class T> void do_oop_work(T* p) {
5241     T heap_oop = oopDesc::load_heap_oop(p);
5242     if (!oopDesc::is_null(heap_oop)) {
5243       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5244       HeapRegion* hr = _g1h->heap_region_containing(obj);
5245       assert(!hr->is_continues_humongous(),
5246              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5247              " starting at " HR_FORMAT,
5248              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5249 
5250       hr->remove_strong_code_root(_nm);
5251     }
5252   }
5253 
5254 public:
5255   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5256     _g1h(g1h), _nm(nm) {}
5257 
5258   void do_oop(oop* p)       { do_oop_work(p); }
5259   void do_oop(narrowOop* p) { do_oop_work(p); }
5260 };
5261 
5262 // Returns true if the reference points to an object that
5263 // can move in an incremental collection.
5264 bool G1CollectedHeap::is_scavengable(oop obj) {
5265   HeapRegion* hr = heap_region_containing(obj);
5266   return !hr->is_pinned();
5267 }
5268 
5269 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5270   guarantee(nm != NULL, "sanity");
5271   RegisterNMethodOopClosure reg_cl(this, nm);
5272   nm->oops_do(&reg_cl);
5273 }
5274 
5275 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5276   guarantee(nm != NULL, "sanity");
5277   UnregisterNMethodOopClosure reg_cl(this, nm);
5278   nm->oops_do(&reg_cl, true);
5279 }
5280 
5281 void G1CollectedHeap::purge_code_root_memory() {
5282   double purge_start = os::elapsedTime();
5283   G1CodeRootSet::purge();
5284   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5285   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5286 }
5287 
5288 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5289   G1CollectedHeap* _g1h;
5290 
5291 public:
5292   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5293     _g1h(g1h) {}
5294 
5295   void do_code_blob(CodeBlob* cb) {
5296     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5297     if (nm == NULL) {
5298       return;
5299     }
5300 
5301     if (ScavengeRootsInCode) {
5302       _g1h->register_nmethod(nm);
5303     }
5304   }
5305 };
5306 
5307 void G1CollectedHeap::rebuild_strong_code_roots() {
5308   RebuildStrongCodeRootClosure blob_cl(this);
5309   CodeCache::blobs_do(&blob_cl);
5310 }
5311 
5312 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5313   GrowableArray<GCMemoryManager*> memory_managers(2);
5314   memory_managers.append(&_memory_manager);
5315   memory_managers.append(&_full_gc_memory_manager);
5316   return memory_managers;
5317 }
5318 
5319 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5320   GrowableArray<MemoryPool*> memory_pools(3);
5321   memory_pools.append(_eden_pool);
5322   memory_pools.append(_survivor_pool);
5323   memory_pools.append(_old_pool);
5324   return memory_pools;
5325 }