1 /*
   2  * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectionSet.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  31 #include "gc/g1/g1RootClosures.hpp"
  32 #include "gc/g1/g1StringDedup.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/taskqueue.inline.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/prefetch.inline.hpp"
  38 
  39 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length)
  40   : _g1h(g1h),
  41     _refs(g1h->task_queue(worker_id)),
  42     _dcq(&g1h->dirty_card_queue_set()),
  43     _ct_bs(g1h->g1_barrier_set()),
  44     _closures(NULL),
  45     _hash_seed(17),
  46     _worker_id(worker_id),
  47     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  48     _age_table(false),
  49     _scanner(g1h, this),
  50     _old_gen_is_full(false)
  51 {
  52   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  53   // we "sacrifice" entry 0 to keep track of surviving bytes for
  54   // non-young regions (where the age is -1)
  55   // We also add a few elements at the beginning and at the end in
  56   // an attempt to eliminate cache contention
  57   size_t real_length = 1 + young_cset_length;
  58   size_t array_length = PADDING_ELEM_NUM +
  59                       real_length +
  60                       PADDING_ELEM_NUM;
  61   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  62   if (_surviving_young_words_base == NULL)
  63     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  64                           "Not enough space for young surv histo.");
  65   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  66   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  67 
  68   _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator());
  69 
  70   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  71   // The dest for Young is used when the objects are aged enough to
  72   // need to be moved to the next space.
  73   _dest[InCSetState::Young]        = InCSetState::Old;
  74   _dest[InCSetState::Old]          = InCSetState::Old;
  75 
  76   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
  77 }
  78 
  79 // Pass locally gathered statistics to global state.
  80 void G1ParScanThreadState::flush(size_t* surviving_young_words) {
  81   _dcq.flush();
  82   // Update allocation statistics.
  83   _plab_allocator->flush_and_retire_stats();
  84   _g1h->g1_policy()->record_age_table(&_age_table);
  85 
  86   uint length = _g1h->collection_set()->young_region_length();
  87   for (uint region_index = 0; region_index < length; region_index++) {
  88     surviving_young_words[region_index] += _surviving_young_words[region_index];
  89   }
  90 }
  91 
  92 G1ParScanThreadState::~G1ParScanThreadState() {
  93   delete _plab_allocator;
  94   delete _closures;
  95   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  96 }
  97 
  98 void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
  99   _plab_allocator->waste(wasted, undo_wasted);
 100 }
 101 
 102 #ifdef ASSERT
 103 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 104   assert(ref != NULL, "invariant");
 105   assert(UseCompressedOops, "sanity");
 106   assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
 107   oop p = oopDesc::load_decode_heap_oop(ref);
 108   assert(_g1h->is_in_g1_reserved(p),
 109          "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 110   return true;
 111 }
 112 
 113 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 114   assert(ref != NULL, "invariant");
 115   if (has_partial_array_mask(ref)) {
 116     // Must be in the collection set--it's already been copied.
 117     oop p = clear_partial_array_mask(ref);
 118     assert(_g1h->is_in_cset(p),
 119            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 120   } else {
 121     oop p = oopDesc::load_decode_heap_oop(ref);
 122     assert(_g1h->is_in_g1_reserved(p),
 123            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 124   }
 125   return true;
 126 }
 127 
 128 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 129   if (ref.is_narrow()) {
 130     return verify_ref((narrowOop*) ref);
 131   } else {
 132     return verify_ref((oop*) ref);
 133   }
 134 }
 135 #endif // ASSERT
 136 
 137 void G1ParScanThreadState::trim_queue() {
 138   StarTask ref;
 139   do {
 140     // Drain the overflow stack first, so other threads can steal.
 141     while (_refs->pop_overflow(ref)) {
 142       if (!_refs->try_push_to_taskqueue(ref)) {
 143         dispatch_reference(ref);
 144       }
 145     }
 146 
 147     while (_refs->pop_local(ref)) {
 148       dispatch_reference(ref);
 149     }
 150   } while (!_refs->is_empty());
 151 }
 152 
 153 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 154                                                       InCSetState* dest,
 155                                                       size_t word_sz,
 156                                                       AllocationContext_t const context,
 157                                                       bool previous_plab_refill_failed) {
 158   assert(state.is_in_cset_or_humongous(), "Unexpected state: " CSETSTATE_FORMAT, state.value());
 159   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 160 
 161   // Right now we only have two types of regions (young / old) so
 162   // let's keep the logic here simple. We can generalize it when necessary.
 163   if (dest->is_young()) {
 164     bool plab_refill_in_old_failed = false;
 165     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 166                                                         word_sz,
 167                                                         context,
 168                                                         &plab_refill_in_old_failed);
 169     // Make sure that we won't attempt to copy any other objects out
 170     // of a survivor region (given that apparently we cannot allocate
 171     // any new ones) to avoid coming into this slow path again and again.
 172     // Only consider failed PLAB refill here: failed inline allocations are
 173     // typically large, so not indicative of remaining space.
 174     if (previous_plab_refill_failed) {
 175       _tenuring_threshold = 0;
 176     }
 177 
 178     if (obj_ptr != NULL) {
 179       dest->set_old();
 180     } else {
 181       // We just failed to allocate in old gen. The same idea as explained above
 182       // for making survivor gen unavailable for allocation applies for old gen.
 183       _old_gen_is_full = plab_refill_in_old_failed;
 184     }
 185     return obj_ptr;
 186   } else {
 187     _old_gen_is_full = previous_plab_refill_failed;
 188     assert(dest->is_old(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 189     // no other space to try.
 190     return NULL;
 191   }
 192 }
 193 
 194 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 195   if (state.is_young()) {
 196     age = !m->has_displaced_mark_helper() ? m->age()
 197                                           : m->displaced_mark_helper()->age();
 198     if (age < _tenuring_threshold) {
 199       return state;
 200     }
 201   }
 202   return dest(state);
 203 }
 204 
 205 void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
 206                                                   oop const old, size_t word_sz, uint age,
 207                                                   HeapWord * const obj_ptr,
 208                                                   const AllocationContext_t context) const {
 209   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_state, context);
 210   if (alloc_buf->contains(obj_ptr)) {
 211     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz, age,
 212                                                              dest_state.value() == InCSetState::Old,
 213                                                              alloc_buf->word_sz());
 214   } else {
 215     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz, age,
 216                                                               dest_state.value() == InCSetState::Old);
 217   }
 218 }
 219 
 220 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 221                                                  oop const old,
 222                                                  markOop const old_mark) {
 223   const size_t word_sz = old->size();
 224   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 225   // +1 to make the -1 indexes valid...
 226   const int young_index = from_region->young_index_in_cset()+1;
 227   assert( (from_region->is_young() && young_index >  0) ||
 228          (!from_region->is_young() && young_index == 0), "invariant" );
 229   const AllocationContext_t context = from_region->allocation_context();
 230 
 231   uint age = 0;
 232   InCSetState dest_state = next_state(state, old_mark, age);
 233   // The second clause is to prevent premature evacuation failure in case there
 234   // is still space in survivor, but old gen is full.
 235   if (_old_gen_is_full && dest_state.is_old()) {
 236     return handle_evacuation_failure_par(old, old_mark);
 237   }
 238   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context);
 239 
 240   // PLAB allocations should succeed most of the time, so we'll
 241   // normally check against NULL once and that's it.
 242   if (obj_ptr == NULL) {
 243     bool plab_refill_failed = false;
 244     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context, &plab_refill_failed);
 245     if (obj_ptr == NULL) {
 246       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context, plab_refill_failed);
 247       if (obj_ptr == NULL) {
 248         // This will either forward-to-self, or detect that someone else has
 249         // installed a forwarding pointer.
 250         return handle_evacuation_failure_par(old, old_mark);
 251       }
 252     }
 253     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 254       // The events are checked individually as part of the actual commit
 255       report_promotion_event(dest_state, old, word_sz, age, obj_ptr, context);
 256     }
 257   }
 258 
 259   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 260   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 261 
 262 #ifndef PRODUCT
 263   // Should this evacuation fail?
 264   if (_g1h->evacuation_should_fail()) {
 265     // Doing this after all the allocation attempts also tests the
 266     // undo_allocation() method too.
 267     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 268     return handle_evacuation_failure_par(old, old_mark);
 269   }
 270 #endif // !PRODUCT
 271 
 272   // We're going to allocate linearly, so might as well prefetch ahead.
 273   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 274 
 275   const oop obj = oop(obj_ptr);
 276   const oop forward_ptr = old->forward_to_atomic(obj);
 277   if (forward_ptr == NULL) {
 278     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 279 
 280     if (dest_state.is_young()) {
 281       if (age < markOopDesc::max_age) {
 282         age++;
 283       }
 284       if (old_mark->has_displaced_mark_helper()) {
 285         // In this case, we have to install the mark word first,
 286         // otherwise obj looks to be forwarded (the old mark word,
 287         // which contains the forward pointer, was copied)
 288         obj->set_mark(old_mark);
 289         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 290         old_mark->set_displaced_mark_helper(new_mark);
 291       } else {
 292         obj->set_mark(old_mark->set_age(age));
 293       }
 294       _age_table.add(age, word_sz);
 295     } else {
 296       obj->set_mark(old_mark);
 297     }
 298 
 299     if (G1StringDedup::is_enabled()) {
 300       const bool is_from_young = state.is_young();
 301       const bool is_to_young = dest_state.is_young();
 302       assert(is_from_young == _g1h->heap_region_containing(old)->is_young(),
 303              "sanity");
 304       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 305              "sanity");
 306       G1StringDedup::enqueue_from_evacuation(is_from_young,
 307                                              is_to_young,
 308                                              _worker_id,
 309                                              obj);
 310     }
 311 
 312     _surviving_young_words[young_index] += word_sz;
 313 
 314     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 315       // We keep track of the next start index in the length field of
 316       // the to-space object. The actual length can be found in the
 317       // length field of the from-space object.
 318       arrayOop(obj)->set_length(0);
 319       oop* old_p = set_partial_array_mask(old);
 320       push_on_queue(old_p);
 321     } else {
 322       HeapRegion* const to_region = _g1h->heap_region_containing(obj_ptr);
 323       _scanner.set_region(to_region);
 324       obj->oop_iterate_backwards(&_scanner);
 325     }
 326     return obj;
 327   } else {
 328     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 329     return forward_ptr;
 330   }
 331 }
 332 
 333 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 334   assert(worker_id < _n_workers, "out of bounds access");
 335   if (_states[worker_id] == NULL) {
 336     _states[worker_id] = new_par_scan_state(worker_id, _young_cset_length);
 337   }
 338   return _states[worker_id];
 339 }
 340 
 341 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 342   assert(_flushed, "thread local state from the per thread states should have been flushed");
 343   return _surviving_young_words_total;
 344 }
 345 
 346 void G1ParScanThreadStateSet::flush() {
 347   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 348 
 349   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 350     G1ParScanThreadState* pss = _states[worker_index];
 351 
 352     if (pss == NULL) {
 353       continue;
 354     }
 355 
 356     pss->flush(_surviving_young_words_total);
 357     delete pss;
 358     _states[worker_index] = NULL;
 359   }
 360   _flushed = true;
 361 }
 362 
 363 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 364   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 365 
 366   oop forward_ptr = old->forward_to_atomic(old);
 367   if (forward_ptr == NULL) {
 368     // Forward-to-self succeeded. We are the "owner" of the object.
 369     HeapRegion* r = _g1h->heap_region_containing(old);
 370 
 371     if (!r->evacuation_failed()) {
 372       r->set_evacuation_failed(true);
 373      _g1h->hr_printer()->evac_failure(r);
 374     }
 375 
 376     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 377 
 378     _scanner.set_region(r);
 379     old->oop_iterate_backwards(&_scanner);
 380 
 381     return old;
 382   } else {
 383     // Forward-to-self failed. Either someone else managed to allocate
 384     // space for this object (old != forward_ptr) or they beat us in
 385     // self-forwarding it (old == forward_ptr).
 386     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
 387            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 388            "should not be in the CSet",
 389            p2i(old), p2i(forward_ptr));
 390     return forward_ptr;
 391   }
 392 }
 393 
 394 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, uint n_workers, size_t young_cset_length) :
 395     _g1h(g1h),
 396     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
 397     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length, mtGC)),
 398     _young_cset_length(young_cset_length),
 399     _n_workers(n_workers),
 400     _flushed(false) {
 401   for (uint i = 0; i < n_workers; ++i) {
 402     _states[i] = NULL;
 403   }
 404   memset(_surviving_young_words_total, 0, young_cset_length * sizeof(size_t));
 405 }
 406 
 407 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
 408   assert(_flushed, "thread local state from the per thread states should have been flushed");
 409   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
 410   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
 411 }