1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1BarrierSet.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CardTable.hpp"
  32 #include "gc/g1/g1CollectionSet.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1ConcurrentMark.hpp"
  35 #include "gc/g1/g1EdenRegions.hpp"
  36 #include "gc/g1/g1EvacFailure.hpp"
  37 #include "gc/g1/g1EvacStats.hpp"
  38 #include "gc/g1/g1GCPhaseTimes.hpp"
  39 #include "gc/g1/g1HeapTransition.hpp"
  40 #include "gc/g1/g1HeapVerifier.hpp"
  41 #include "gc/g1/g1HRPrinter.hpp"
  42 #include "gc/g1/g1InCSetState.hpp"
  43 #include "gc/g1/g1MonitoringSupport.hpp"
  44 #include "gc/g1/g1SurvivorRegions.hpp"
  45 #include "gc/g1/g1YCTypes.hpp"
  46 #include "gc/g1/heapRegionManager.hpp"
  47 #include "gc/g1/heapRegionSet.hpp"
  48 #include "gc/shared/barrierSet.hpp"
  49 #include "gc/shared/collectedHeap.hpp"
  50 #include "gc/shared/gcHeapSummary.hpp"
  51 #include "gc/shared/plab.hpp"
  52 #include "gc/shared/preservedMarks.hpp"
  53 #include "gc/shared/softRefPolicy.hpp"
  54 #include "memory/memRegion.hpp"
  55 #include "utilities/stack.hpp"
  56 
  57 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  58 // It uses the "Garbage First" heap organization and algorithm, which
  59 // may combine concurrent marking with parallel, incremental compaction of
  60 // heap subsets that will yield large amounts of garbage.
  61 
  62 // Forward declarations
  63 class HeapRegion;
  64 class HRRSCleanupTask;
  65 class GenerationSpec;
  66 class G1ParScanThreadState;
  67 class G1ParScanThreadStateSet;
  68 class G1ParScanThreadState;
  69 class MemoryPool;
  70 class MemoryManager;
  71 class ObjectClosure;
  72 class SpaceClosure;
  73 class CompactibleSpaceClosure;
  74 class Space;
  75 class G1CollectionSet;
  76 class G1CollectorPolicy;
  77 class G1Policy;
  78 class G1HotCardCache;
  79 class G1RemSet;
  80 class G1YoungRemSetSamplingThread;
  81 class HeapRegionRemSetIterator;
  82 class G1ConcurrentMark;
  83 class G1ConcurrentMarkThread;
  84 class G1ConcurrentRefine;
  85 class GenerationCounters;
  86 class STWGCTimer;
  87 class G1NewTracer;
  88 class EvacuationFailedInfo;
  89 class nmethod;
  90 class WorkGang;
  91 class G1Allocator;
  92 class G1ArchiveAllocator;
  93 class G1FullGCScope;
  94 class G1HeapVerifier;
  95 class G1HeapSizingPolicy;
  96 class G1HeapSummary;
  97 class G1EvacSummary;
  98 
  99 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
 100 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 101 
 102 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 103 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 104 
 105 // The G1 STW is alive closure.
 106 // An instance is embedded into the G1CH and used as the
 107 // (optional) _is_alive_non_header closure in the STW
 108 // reference processor. It is also extensively used during
 109 // reference processing during STW evacuation pauses.
 110 class G1STWIsAliveClosure : public BoolObjectClosure {
 111   G1CollectedHeap* _g1h;
 112 public:
 113   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 114   bool do_object_b(oop p);
 115 };
 116 
 117 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
 118   G1CollectedHeap* _g1h;
 119 public:
 120   G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 121   bool do_object_b(oop p);
 122 };
 123 
 124 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 125  private:
 126   void reset_from_card_cache(uint start_idx, size_t num_regions);
 127  public:
 128   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 129 };
 130 
 131 class G1CollectedHeap : public CollectedHeap {
 132   friend class G1FreeCollectionSetTask;
 133   friend class VM_CollectForMetadataAllocation;
 134   friend class VM_G1CollectForAllocation;
 135   friend class VM_G1CollectFull;
 136   friend class VMStructs;
 137   friend class MutatorAllocRegion;
 138   friend class G1FullCollector;
 139   friend class G1GCAllocRegion;
 140   friend class G1HeapVerifier;
 141 
 142   // Closures used in implementation.
 143   friend class G1ParScanThreadState;
 144   friend class G1ParScanThreadStateSet;
 145   friend class G1ParTask;
 146   friend class G1PLABAllocator;
 147   friend class G1PrepareCompactClosure;
 148 
 149   // Other related classes.
 150   friend class HeapRegionClaimer;
 151 
 152   // Testing classes.
 153   friend class G1CheckCSetFastTableClosure;
 154 
 155 private:
 156   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 157 
 158   WorkGang* _workers;
 159   G1CollectorPolicy* _collector_policy;
 160   G1CardTable* _card_table;
 161 
 162   SoftRefPolicy      _soft_ref_policy;
 163 
 164   static size_t _humongous_object_threshold_in_words;
 165 
 166   // These sets keep track of old, archive and humongous regions respectively.
 167   HeapRegionSet _old_set;
 168   HeapRegionSet _archive_set;
 169   HeapRegionSet _humongous_set;
 170 
 171   void eagerly_reclaim_humongous_regions();
 172   // Start a new incremental collection set for the next pause.
 173   void start_new_collection_set();
 174 
 175   // The block offset table for the G1 heap.
 176   G1BlockOffsetTable* _bot;
 177 
 178   // Tears down the region sets / lists so that they are empty and the
 179   // regions on the heap do not belong to a region set / list. The
 180   // only exception is the humongous set which we leave unaltered. If
 181   // free_list_only is true, it will only tear down the master free
 182   // list. It is called before a Full GC (free_list_only == false) or
 183   // before heap shrinking (free_list_only == true).
 184   void tear_down_region_sets(bool free_list_only);
 185 
 186   // Rebuilds the region sets / lists so that they are repopulated to
 187   // reflect the contents of the heap. The only exception is the
 188   // humongous set which was not torn down in the first place. If
 189   // free_list_only is true, it will only rebuild the master free
 190   // list. It is called after a Full GC (free_list_only == false) or
 191   // after heap shrinking (free_list_only == true).
 192   void rebuild_region_sets(bool free_list_only);
 193 
 194   // Callback for region mapping changed events.
 195   G1RegionMappingChangedListener _listener;
 196 
 197   // The sequence of all heap regions in the heap.
 198   HeapRegionManager _hrm;
 199 
 200   // Manages all allocations with regions except humongous object allocations.
 201   G1Allocator* _allocator;
 202 
 203   // Manages all heap verification.
 204   G1HeapVerifier* _verifier;
 205 
 206   // Outside of GC pauses, the number of bytes used in all regions other
 207   // than the current allocation region(s).
 208   size_t _summary_bytes_used;
 209 
 210   void increase_used(size_t bytes);
 211   void decrease_used(size_t bytes);
 212 
 213   void set_used(size_t bytes);
 214 
 215   // Class that handles archive allocation ranges.
 216   G1ArchiveAllocator* _archive_allocator;
 217 
 218   // GC allocation statistics policy for survivors.
 219   G1EvacStats _survivor_evac_stats;
 220 
 221   // GC allocation statistics policy for tenured objects.
 222   G1EvacStats _old_evac_stats;
 223 
 224   // It specifies whether we should attempt to expand the heap after a
 225   // region allocation failure. If heap expansion fails we set this to
 226   // false so that we don't re-attempt the heap expansion (it's likely
 227   // that subsequent expansion attempts will also fail if one fails).
 228   // Currently, it is only consulted during GC and it's reset at the
 229   // start of each GC.
 230   bool _expand_heap_after_alloc_failure;
 231 
 232   // Helper for monitoring and management support.
 233   G1MonitoringSupport* _g1mm;
 234 
 235   // Records whether the region at the given index is (still) a
 236   // candidate for eager reclaim.  Only valid for humongous start
 237   // regions; other regions have unspecified values.  Humongous start
 238   // regions are initialized at start of collection pause, with
 239   // candidates removed from the set as they are found reachable from
 240   // roots or the young generation.
 241   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 242    protected:
 243     bool default_value() const { return false; }
 244    public:
 245     void clear() { G1BiasedMappedArray<bool>::clear(); }
 246     void set_candidate(uint region, bool value) {
 247       set_by_index(region, value);
 248     }
 249     bool is_candidate(uint region) {
 250       return get_by_index(region);
 251     }
 252   };
 253 
 254   HumongousReclaimCandidates _humongous_reclaim_candidates;
 255   // Stores whether during humongous object registration we found candidate regions.
 256   // If not, we can skip a few steps.
 257   bool _has_humongous_reclaim_candidates;
 258 
 259   G1HRPrinter _hr_printer;
 260 
 261   // It decides whether an explicit GC should start a concurrent cycle
 262   // instead of doing a STW GC. Currently, a concurrent cycle is
 263   // explicitly started if:
 264   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 265   // (b) cause == _g1_humongous_allocation
 266   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 267   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 268   // (e) cause == _wb_conc_mark
 269   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 270 
 271   // indicates whether we are in young or mixed GC mode
 272   G1CollectorState _collector_state;
 273 
 274   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 275   // concurrent cycles) we have started.
 276   volatile uint _old_marking_cycles_started;
 277 
 278   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 279   // concurrent cycles) we have completed.
 280   volatile uint _old_marking_cycles_completed;
 281 
 282   // This is a non-product method that is helpful for testing. It is
 283   // called at the end of a GC and artificially expands the heap by
 284   // allocating a number of dead regions. This way we can induce very
 285   // frequent marking cycles and stress the cleanup / concurrent
 286   // cleanup code more (as all the regions that will be allocated by
 287   // this method will be found dead by the marking cycle).
 288   void allocate_dummy_regions() PRODUCT_RETURN;
 289 
 290   // If the HR printer is active, dump the state of the regions in the
 291   // heap after a compaction.
 292   void print_hrm_post_compaction();
 293 
 294   // Create a memory mapper for auxiliary data structures of the given size and
 295   // translation factor.
 296   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 297                                                          size_t size,
 298                                                          size_t translation_factor);
 299 
 300   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 301 
 302   // These are macros so that, if the assert fires, we get the correct
 303   // line number, file, etc.
 304 
 305 #define heap_locking_asserts_params(_extra_message_)                          \
 306   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 307   (_extra_message_),                                                          \
 308   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 309   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 310   BOOL_TO_STR(Thread::current()->is_VM_thread())
 311 
 312 #define assert_heap_locked()                                                  \
 313   do {                                                                        \
 314     assert(Heap_lock->owned_by_self(),                                        \
 315            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 316   } while (0)
 317 
 318 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 319   do {                                                                        \
 320     assert(Heap_lock->owned_by_self() ||                                      \
 321            (SafepointSynchronize::is_at_safepoint() &&                        \
 322              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 323            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 324                                         "should be at a safepoint"));         \
 325   } while (0)
 326 
 327 #define assert_heap_locked_and_not_at_safepoint()                             \
 328   do {                                                                        \
 329     assert(Heap_lock->owned_by_self() &&                                      \
 330                                     !SafepointSynchronize::is_at_safepoint(), \
 331           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 332                                        "should not be at a safepoint"));      \
 333   } while (0)
 334 
 335 #define assert_heap_not_locked()                                              \
 336   do {                                                                        \
 337     assert(!Heap_lock->owned_by_self(),                                       \
 338         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 339   } while (0)
 340 
 341 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 342   do {                                                                        \
 343     assert(!Heap_lock->owned_by_self() &&                                     \
 344                                     !SafepointSynchronize::is_at_safepoint(), \
 345       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 346                                    "should not be at a safepoint"));          \
 347   } while (0)
 348 
 349 #define assert_at_safepoint_on_vm_thread()                                    \
 350   do {                                                                        \
 351     assert_at_safepoint();                                                    \
 352     assert(Thread::current_or_null() != NULL, "no current thread");           \
 353     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 354   } while (0)
 355 
 356   // The young region list.
 357   G1EdenRegions _eden;
 358   G1SurvivorRegions _survivor;
 359 
 360   STWGCTimer* _gc_timer_stw;
 361 
 362   G1NewTracer* _gc_tracer_stw;
 363 
 364   // The current policy object for the collector.
 365   G1Policy* _g1_policy;
 366   G1HeapSizingPolicy* _heap_sizing_policy;
 367 
 368   G1CollectionSet _collection_set;
 369 
 370   // Try to allocate a single non-humongous HeapRegion sufficient for
 371   // an allocation of the given word_size. If do_expand is true,
 372   // attempt to expand the heap if necessary to satisfy the allocation
 373   // request. If the region is to be used as an old region or for a
 374   // humongous object, set is_old to true. If not, to false.
 375   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 376 
 377   // Initialize a contiguous set of free regions of length num_regions
 378   // and starting at index first so that they appear as a single
 379   // humongous region.
 380   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 381                                                       uint num_regions,
 382                                                       size_t word_size);
 383 
 384   // Attempt to allocate a humongous object of the given size. Return
 385   // NULL if unsuccessful.
 386   HeapWord* humongous_obj_allocate(size_t word_size);
 387 
 388   // The following two methods, allocate_new_tlab() and
 389   // mem_allocate(), are the two main entry points from the runtime
 390   // into the G1's allocation routines. They have the following
 391   // assumptions:
 392   //
 393   // * They should both be called outside safepoints.
 394   //
 395   // * They should both be called without holding the Heap_lock.
 396   //
 397   // * All allocation requests for new TLABs should go to
 398   //   allocate_new_tlab().
 399   //
 400   // * All non-TLAB allocation requests should go to mem_allocate().
 401   //
 402   // * If either call cannot satisfy the allocation request using the
 403   //   current allocating region, they will try to get a new one. If
 404   //   this fails, they will attempt to do an evacuation pause and
 405   //   retry the allocation.
 406   //
 407   // * If all allocation attempts fail, even after trying to schedule
 408   //   an evacuation pause, allocate_new_tlab() will return NULL,
 409   //   whereas mem_allocate() will attempt a heap expansion and/or
 410   //   schedule a Full GC.
 411   //
 412   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 413   //   should never be called with word_size being humongous. All
 414   //   humongous allocation requests should go to mem_allocate() which
 415   //   will satisfy them with a special path.
 416 
 417   virtual HeapWord* allocate_new_tlab(size_t min_size,
 418                                       size_t requested_size,
 419                                       size_t* actual_size);
 420 
 421   virtual HeapWord* mem_allocate(size_t word_size,
 422                                  bool*  gc_overhead_limit_was_exceeded);
 423 
 424   // First-level mutator allocation attempt: try to allocate out of
 425   // the mutator alloc region without taking the Heap_lock. This
 426   // should only be used for non-humongous allocations.
 427   inline HeapWord* attempt_allocation(size_t min_word_size,
 428                                       size_t desired_word_size,
 429                                       size_t* actual_word_size);
 430 
 431   // Second-level mutator allocation attempt: take the Heap_lock and
 432   // retry the allocation attempt, potentially scheduling a GC
 433   // pause. This should only be used for non-humongous allocations.
 434   HeapWord* attempt_allocation_slow(size_t word_size);
 435 
 436   // Takes the Heap_lock and attempts a humongous allocation. It can
 437   // potentially schedule a GC pause.
 438   HeapWord* attempt_allocation_humongous(size_t word_size);
 439 
 440   // Allocation attempt that should be called during safepoints (e.g.,
 441   // at the end of a successful GC). expect_null_mutator_alloc_region
 442   // specifies whether the mutator alloc region is expected to be NULL
 443   // or not.
 444   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 445                                             bool expect_null_mutator_alloc_region);
 446 
 447   // These methods are the "callbacks" from the G1AllocRegion class.
 448 
 449   // For mutator alloc regions.
 450   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 451   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 452                                    size_t allocated_bytes);
 453 
 454   // For GC alloc regions.
 455   bool has_more_regions(InCSetState dest);
 456   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 457   void retire_gc_alloc_region(HeapRegion* alloc_region,
 458                               size_t allocated_bytes, InCSetState dest);
 459 
 460   // - if explicit_gc is true, the GC is for a System.gc() etc,
 461   //   otherwise it's for a failed allocation.
 462   // - if clear_all_soft_refs is true, all soft references should be
 463   //   cleared during the GC.
 464   // - it returns false if it is unable to do the collection due to the
 465   //   GC locker being active, true otherwise.
 466   bool do_full_collection(bool explicit_gc,
 467                           bool clear_all_soft_refs);
 468 
 469   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 470   virtual void do_full_collection(bool clear_all_soft_refs);
 471 
 472   // Callback from VM_G1CollectForAllocation operation.
 473   // This function does everything necessary/possible to satisfy a
 474   // failed allocation request (including collection, expansion, etc.)
 475   HeapWord* satisfy_failed_allocation(size_t word_size,
 476                                       bool* succeeded);
 477   // Internal helpers used during full GC to split it up to
 478   // increase readability.
 479   void abort_concurrent_cycle();
 480   void verify_before_full_collection(bool explicit_gc);
 481   void prepare_heap_for_full_collection();
 482   void prepare_heap_for_mutators();
 483   void abort_refinement();
 484   void verify_after_full_collection();
 485   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 486 
 487   // Helper method for satisfy_failed_allocation()
 488   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 489                                              bool do_gc,
 490                                              bool clear_all_soft_refs,
 491                                              bool expect_null_mutator_alloc_region,
 492                                              bool* gc_succeeded);
 493 
 494   // Attempting to expand the heap sufficiently
 495   // to support an allocation of the given "word_size".  If
 496   // successful, perform the allocation and return the address of the
 497   // allocated block, or else "NULL".
 498   HeapWord* expand_and_allocate(size_t word_size);
 499 
 500   // Process any reference objects discovered.
 501   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 502 
 503   // If during an initial mark pause we may install a pending list head which is not
 504   // otherwise reachable ensure that it is marked in the bitmap for concurrent marking
 505   // to discover.
 506   void make_pending_list_reachable();
 507 
 508   // Merges the information gathered on a per-thread basis for all worker threads
 509   // during GC into global variables.
 510   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 511 public:
 512   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 513 
 514   WorkGang* workers() const { return _workers; }
 515 
 516   G1Allocator* allocator() {
 517     return _allocator;
 518   }
 519 
 520   G1HeapVerifier* verifier() {
 521     return _verifier;
 522   }
 523 
 524   G1MonitoringSupport* g1mm() {
 525     assert(_g1mm != NULL, "should have been initialized");
 526     return _g1mm;
 527   }
 528 
 529   void resize_heap_if_necessary();
 530 
 531   // Expand the garbage-first heap by at least the given size (in bytes!).
 532   // Returns true if the heap was expanded by the requested amount;
 533   // false otherwise.
 534   // (Rounds up to a HeapRegion boundary.)
 535   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 536 
 537   // Returns the PLAB statistics for a given destination.
 538   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 539 
 540   // Determines PLAB size for a given destination.
 541   inline size_t desired_plab_sz(InCSetState dest);
 542 
 543   // Do anything common to GC's.
 544   void gc_prologue(bool full);
 545   void gc_epilogue(bool full);
 546 
 547   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 548   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 549 
 550   // Modify the reclaim candidate set and test for presence.
 551   // These are only valid for starts_humongous regions.
 552   inline void set_humongous_reclaim_candidate(uint region, bool value);
 553   inline bool is_humongous_reclaim_candidate(uint region);
 554 
 555   // Remove from the reclaim candidate set.  Also remove from the
 556   // collection set so that later encounters avoid the slow path.
 557   inline void set_humongous_is_live(oop obj);
 558 
 559   // Register the given region to be part of the collection set.
 560   inline void register_humongous_region_with_cset(uint index);
 561   // Register regions with humongous objects (actually on the start region) in
 562   // the in_cset_fast_test table.
 563   void register_humongous_regions_with_cset();
 564   // We register a region with the fast "in collection set" test. We
 565   // simply set to true the array slot corresponding to this region.
 566   void register_young_region_with_cset(HeapRegion* r) {
 567     _in_cset_fast_test.set_in_young(r->hrm_index());
 568   }
 569   void register_old_region_with_cset(HeapRegion* r) {
 570     _in_cset_fast_test.set_in_old(r->hrm_index());
 571   }
 572   void register_optional_region_with_cset(HeapRegion* r) {
 573     _in_cset_fast_test.set_optional(r->hrm_index());
 574   }
 575   void clear_in_cset(const HeapRegion* hr) {
 576     _in_cset_fast_test.clear(hr);
 577   }
 578 
 579   void clear_cset_fast_test() {
 580     _in_cset_fast_test.clear();
 581   }
 582 
 583   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 584 
 585   // This is called at the start of either a concurrent cycle or a Full
 586   // GC to update the number of old marking cycles started.
 587   void increment_old_marking_cycles_started();
 588 
 589   // This is called at the end of either a concurrent cycle or a Full
 590   // GC to update the number of old marking cycles completed. Those two
 591   // can happen in a nested fashion, i.e., we start a concurrent
 592   // cycle, a Full GC happens half-way through it which ends first,
 593   // and then the cycle notices that a Full GC happened and ends
 594   // too. The concurrent parameter is a boolean to help us do a bit
 595   // tighter consistency checking in the method. If concurrent is
 596   // false, the caller is the inner caller in the nesting (i.e., the
 597   // Full GC). If concurrent is true, the caller is the outer caller
 598   // in this nesting (i.e., the concurrent cycle). Further nesting is
 599   // not currently supported. The end of this call also notifies
 600   // the FullGCCount_lock in case a Java thread is waiting for a full
 601   // GC to happen (e.g., it called System.gc() with
 602   // +ExplicitGCInvokesConcurrent).
 603   void increment_old_marking_cycles_completed(bool concurrent);
 604 
 605   uint old_marking_cycles_completed() {
 606     return _old_marking_cycles_completed;
 607   }
 608 
 609   G1HRPrinter* hr_printer() { return &_hr_printer; }
 610 
 611   // Allocates a new heap region instance.
 612   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 613 
 614   // Allocate the highest free region in the reserved heap. This will commit
 615   // regions as necessary.
 616   HeapRegion* alloc_highest_free_region();
 617 
 618   // Frees a non-humongous region by initializing its contents and
 619   // adding it to the free list that's passed as a parameter (this is
 620   // usually a local list which will be appended to the master free
 621   // list later). The used bytes of freed regions are accumulated in
 622   // pre_used. If skip_remset is true, the region's RSet will not be freed
 623   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 624   // be freed up. The assumption is that this will be done later.
 625   // The locked parameter indicates if the caller has already taken
 626   // care of proper synchronization. This may allow some optimizations.
 627   void free_region(HeapRegion* hr,
 628                    FreeRegionList* free_list,
 629                    bool skip_remset,
 630                    bool skip_hot_card_cache = false,
 631                    bool locked = false);
 632 
 633   // It dirties the cards that cover the block so that the post
 634   // write barrier never queues anything when updating objects on this
 635   // block. It is assumed (and in fact we assert) that the block
 636   // belongs to a young region.
 637   inline void dirty_young_block(HeapWord* start, size_t word_size);
 638 
 639   // Frees a humongous region by collapsing it into individual regions
 640   // and calling free_region() for each of them. The freed regions
 641   // will be added to the free list that's passed as a parameter (this
 642   // is usually a local list which will be appended to the master free
 643   // list later).
 644   // The method assumes that only a single thread is ever calling
 645   // this for a particular region at once.
 646   void free_humongous_region(HeapRegion* hr,
 647                              FreeRegionList* free_list);
 648 
 649   // Facility for allocating in 'archive' regions in high heap memory and
 650   // recording the allocated ranges. These should all be called from the
 651   // VM thread at safepoints, without the heap lock held. They can be used
 652   // to create and archive a set of heap regions which can be mapped at the
 653   // same fixed addresses in a subsequent JVM invocation.
 654   void begin_archive_alloc_range(bool open = false);
 655 
 656   // Check if the requested size would be too large for an archive allocation.
 657   bool is_archive_alloc_too_large(size_t word_size);
 658 
 659   // Allocate memory of the requested size from the archive region. This will
 660   // return NULL if the size is too large or if no memory is available. It
 661   // does not trigger a garbage collection.
 662   HeapWord* archive_mem_allocate(size_t word_size);
 663 
 664   // Optionally aligns the end address and returns the allocated ranges in
 665   // an array of MemRegions in order of ascending addresses.
 666   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 667                                size_t end_alignment_in_bytes = 0);
 668 
 669   // Facility for allocating a fixed range within the heap and marking
 670   // the containing regions as 'archive'. For use at JVM init time, when the
 671   // caller may mmap archived heap data at the specified range(s).
 672   // Verify that the MemRegions specified in the argument array are within the
 673   // reserved heap.
 674   bool check_archive_addresses(MemRegion* range, size_t count);
 675 
 676   // Commit the appropriate G1 regions containing the specified MemRegions
 677   // and mark them as 'archive' regions. The regions in the array must be
 678   // non-overlapping and in order of ascending address.
 679   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 680 
 681   // Insert any required filler objects in the G1 regions around the specified
 682   // ranges to make the regions parseable. This must be called after
 683   // alloc_archive_regions, and after class loading has occurred.
 684   void fill_archive_regions(MemRegion* range, size_t count);
 685 
 686   // For each of the specified MemRegions, uncommit the containing G1 regions
 687   // which had been allocated by alloc_archive_regions. This should be called
 688   // rather than fill_archive_regions at JVM init time if the archive file
 689   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 690   void dealloc_archive_regions(MemRegion* range, size_t count, bool is_open);
 691 
 692   oop materialize_archived_object(oop obj);
 693 
 694 private:
 695 
 696   // Shrink the garbage-first heap by at most the given size (in bytes!).
 697   // (Rounds down to a HeapRegion boundary.)
 698   void shrink(size_t expand_bytes);
 699   void shrink_helper(size_t expand_bytes);
 700 
 701   #if TASKQUEUE_STATS
 702   static void print_taskqueue_stats_hdr(outputStream* const st);
 703   void print_taskqueue_stats() const;
 704   void reset_taskqueue_stats();
 705   #endif // TASKQUEUE_STATS
 706 
 707   // Schedule the VM operation that will do an evacuation pause to
 708   // satisfy an allocation request of word_size. *succeeded will
 709   // return whether the VM operation was successful (it did do an
 710   // evacuation pause) or not (another thread beat us to it or the GC
 711   // locker was active). Given that we should not be holding the
 712   // Heap_lock when we enter this method, we will pass the
 713   // gc_count_before (i.e., total_collections()) as a parameter since
 714   // it has to be read while holding the Heap_lock. Currently, both
 715   // methods that call do_collection_pause() release the Heap_lock
 716   // before the call, so it's easy to read gc_count_before just before.
 717   HeapWord* do_collection_pause(size_t         word_size,
 718                                 uint           gc_count_before,
 719                                 bool*          succeeded,
 720                                 GCCause::Cause gc_cause);
 721 
 722   void wait_for_root_region_scanning();
 723 
 724   // The guts of the incremental collection pause, executed by the vm
 725   // thread. It returns false if it is unable to do the collection due
 726   // to the GC locker being active, true otherwise
 727   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 728 
 729   // Actually do the work of evacuating the collection set.
 730   void evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states);
 731   void evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states);
 732   void evacuate_optional_regions(G1ParScanThreadStateSet* per_thread_states, G1OptionalCSet* ocset);
 733 
 734   void pre_evacuate_collection_set();
 735   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 736 
 737   // Print the header for the per-thread termination statistics.
 738   static void print_termination_stats_hdr();
 739   // Print actual per-thread termination statistics.
 740   void print_termination_stats(uint worker_id,
 741                                double elapsed_ms,
 742                                double strong_roots_ms,
 743                                double term_ms,
 744                                size_t term_attempts,
 745                                size_t alloc_buffer_waste,
 746                                size_t undo_waste) const;
 747   // Update object copying statistics.
 748   void record_obj_copy_mem_stats();
 749 
 750   // The hot card cache for remembered set insertion optimization.
 751   G1HotCardCache* _hot_card_cache;
 752 
 753   // The g1 remembered set of the heap.
 754   G1RemSet* _g1_rem_set;
 755 
 756   // A set of cards that cover the objects for which the Rsets should be updated
 757   // concurrently after the collection.
 758   DirtyCardQueueSet _dirty_card_queue_set;
 759 
 760   // After a collection pause, convert the regions in the collection set into free
 761   // regions.
 762   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 763 
 764   // Abandon the current collection set without recording policy
 765   // statistics or updating free lists.
 766   void abandon_collection_set(G1CollectionSet* collection_set);
 767 
 768   // The concurrent marker (and the thread it runs in.)
 769   G1ConcurrentMark* _cm;
 770   G1ConcurrentMarkThread* _cm_thread;
 771 
 772   // The concurrent refiner.
 773   G1ConcurrentRefine* _cr;
 774 
 775   // The parallel task queues
 776   RefToScanQueueSet *_task_queues;
 777 
 778   // True iff a evacuation has failed in the current collection.
 779   bool _evacuation_failed;
 780 
 781   EvacuationFailedInfo* _evacuation_failed_info_array;
 782 
 783   // Failed evacuations cause some logical from-space objects to have
 784   // forwarding pointers to themselves.  Reset them.
 785   void remove_self_forwarding_pointers();
 786 
 787   // Restore the objects in the regions in the collection set after an
 788   // evacuation failure.
 789   void restore_after_evac_failure();
 790 
 791   PreservedMarksSet _preserved_marks_set;
 792 
 793   // Preserve the mark of "obj", if necessary, in preparation for its mark
 794   // word being overwritten with a self-forwarding-pointer.
 795   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 796 
 797 #ifndef PRODUCT
 798   // Support for forcing evacuation failures. Analogous to
 799   // PromotionFailureALot for the other collectors.
 800 
 801   // Records whether G1EvacuationFailureALot should be in effect
 802   // for the current GC
 803   bool _evacuation_failure_alot_for_current_gc;
 804 
 805   // Used to record the GC number for interval checking when
 806   // determining whether G1EvaucationFailureALot is in effect
 807   // for the current GC.
 808   size_t _evacuation_failure_alot_gc_number;
 809 
 810   // Count of the number of evacuations between failures.
 811   volatile size_t _evacuation_failure_alot_count;
 812 
 813   // Set whether G1EvacuationFailureALot should be in effect
 814   // for the current GC (based upon the type of GC and which
 815   // command line flags are set);
 816   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 817                                                   bool during_initial_mark,
 818                                                   bool mark_or_rebuild_in_progress);
 819 
 820   inline void set_evacuation_failure_alot_for_current_gc();
 821 
 822   // Return true if it's time to cause an evacuation failure.
 823   inline bool evacuation_should_fail();
 824 
 825   // Reset the G1EvacuationFailureALot counters.  Should be called at
 826   // the end of an evacuation pause in which an evacuation failure occurred.
 827   inline void reset_evacuation_should_fail();
 828 #endif // !PRODUCT
 829 
 830   // ("Weak") Reference processing support.
 831   //
 832   // G1 has 2 instances of the reference processor class. One
 833   // (_ref_processor_cm) handles reference object discovery
 834   // and subsequent processing during concurrent marking cycles.
 835   //
 836   // The other (_ref_processor_stw) handles reference object
 837   // discovery and processing during full GCs and incremental
 838   // evacuation pauses.
 839   //
 840   // During an incremental pause, reference discovery will be
 841   // temporarily disabled for _ref_processor_cm and will be
 842   // enabled for _ref_processor_stw. At the end of the evacuation
 843   // pause references discovered by _ref_processor_stw will be
 844   // processed and discovery will be disabled. The previous
 845   // setting for reference object discovery for _ref_processor_cm
 846   // will be re-instated.
 847   //
 848   // At the start of marking:
 849   //  * Discovery by the CM ref processor is verified to be inactive
 850   //    and it's discovered lists are empty.
 851   //  * Discovery by the CM ref processor is then enabled.
 852   //
 853   // At the end of marking:
 854   //  * Any references on the CM ref processor's discovered
 855   //    lists are processed (possibly MT).
 856   //
 857   // At the start of full GC we:
 858   //  * Disable discovery by the CM ref processor and
 859   //    empty CM ref processor's discovered lists
 860   //    (without processing any entries).
 861   //  * Verify that the STW ref processor is inactive and it's
 862   //    discovered lists are empty.
 863   //  * Temporarily set STW ref processor discovery as single threaded.
 864   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 865   //    field.
 866   //  * Finally enable discovery by the STW ref processor.
 867   //
 868   // The STW ref processor is used to record any discovered
 869   // references during the full GC.
 870   //
 871   // At the end of a full GC we:
 872   //  * Enqueue any reference objects discovered by the STW ref processor
 873   //    that have non-live referents. This has the side-effect of
 874   //    making the STW ref processor inactive by disabling discovery.
 875   //  * Verify that the CM ref processor is still inactive
 876   //    and no references have been placed on it's discovered
 877   //    lists (also checked as a precondition during initial marking).
 878 
 879   // The (stw) reference processor...
 880   ReferenceProcessor* _ref_processor_stw;
 881 
 882   // During reference object discovery, the _is_alive_non_header
 883   // closure (if non-null) is applied to the referent object to
 884   // determine whether the referent is live. If so then the
 885   // reference object does not need to be 'discovered' and can
 886   // be treated as a regular oop. This has the benefit of reducing
 887   // the number of 'discovered' reference objects that need to
 888   // be processed.
 889   //
 890   // Instance of the is_alive closure for embedding into the
 891   // STW reference processor as the _is_alive_non_header field.
 892   // Supplying a value for the _is_alive_non_header field is
 893   // optional but doing so prevents unnecessary additions to
 894   // the discovered lists during reference discovery.
 895   G1STWIsAliveClosure _is_alive_closure_stw;
 896 
 897   G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
 898 
 899   // The (concurrent marking) reference processor...
 900   ReferenceProcessor* _ref_processor_cm;
 901 
 902   // Instance of the concurrent mark is_alive closure for embedding
 903   // into the Concurrent Marking reference processor as the
 904   // _is_alive_non_header field. Supplying a value for the
 905   // _is_alive_non_header field is optional but doing so prevents
 906   // unnecessary additions to the discovered lists during reference
 907   // discovery.
 908   G1CMIsAliveClosure _is_alive_closure_cm;
 909 
 910   G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
 911 public:
 912 
 913   RefToScanQueue *task_queue(uint i) const;
 914 
 915   uint num_task_queues() const;
 916 
 917   // A set of cards where updates happened during the GC
 918   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 919 
 920   // Create a G1CollectedHeap with the specified policy.
 921   // Must call the initialize method afterwards.
 922   // May not return if something goes wrong.
 923   G1CollectedHeap(G1CollectorPolicy* policy);
 924 
 925 private:
 926   jint initialize_concurrent_refinement();
 927   jint initialize_young_gen_sampling_thread();
 928 public:
 929   // Initialize the G1CollectedHeap to have the initial and
 930   // maximum sizes and remembered and barrier sets
 931   // specified by the policy object.
 932   jint initialize();
 933 
 934   virtual void stop();
 935   virtual void safepoint_synchronize_begin();
 936   virtual void safepoint_synchronize_end();
 937 
 938   // Return the (conservative) maximum heap alignment for any G1 heap
 939   static size_t conservative_max_heap_alignment();
 940 
 941   // Does operations required after initialization has been done.
 942   void post_initialize();
 943 
 944   // Initialize weak reference processing.
 945   void ref_processing_init();
 946 
 947   virtual Name kind() const {
 948     return CollectedHeap::G1;
 949   }
 950 
 951   virtual const char* name() const {
 952     return "G1";
 953   }
 954 
 955   const G1CollectorState* collector_state() const { return &_collector_state; }
 956   G1CollectorState* collector_state() { return &_collector_state; }
 957 
 958   // The current policy object for the collector.
 959   G1Policy* g1_policy() const { return _g1_policy; }
 960 
 961   const G1CollectionSet* collection_set() const { return &_collection_set; }
 962   G1CollectionSet* collection_set() { return &_collection_set; }
 963 
 964   virtual CollectorPolicy* collector_policy() const;
 965 
 966   virtual SoftRefPolicy* soft_ref_policy();
 967 
 968   virtual void initialize_serviceability();
 969   virtual MemoryUsage memory_usage();
 970   virtual GrowableArray<GCMemoryManager*> memory_managers();
 971   virtual GrowableArray<MemoryPool*> memory_pools();
 972 
 973   // The rem set and barrier set.
 974   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 975 
 976   // Try to minimize the remembered set.
 977   void scrub_rem_set();
 978 
 979   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
 980   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
 981 
 982   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
 983   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
 984 
 985   // The shared block offset table array.
 986   G1BlockOffsetTable* bot() const { return _bot; }
 987 
 988   // Reference Processing accessors
 989 
 990   // The STW reference processor....
 991   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
 992 
 993   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
 994 
 995   // The Concurrent Marking reference processor...
 996   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
 997 
 998   size_t unused_committed_regions_in_bytes() const;
 999   virtual size_t capacity() const;
1000   virtual size_t used() const;
1001   // This should be called when we're not holding the heap lock. The
1002   // result might be a bit inaccurate.
1003   size_t used_unlocked() const;
1004   size_t recalculate_used() const;
1005 
1006   // These virtual functions do the actual allocation.
1007   // Some heaps may offer a contiguous region for shared non-blocking
1008   // allocation, via inlined code (by exporting the address of the top and
1009   // end fields defining the extent of the contiguous allocation region.)
1010   // But G1CollectedHeap doesn't yet support this.
1011 
1012   virtual bool is_maximal_no_gc() const {
1013     return _hrm.available() == 0;
1014   }
1015 
1016   // Returns whether there are any regions left in the heap for allocation.
1017   bool has_regions_left_for_allocation() const {
1018     return !is_maximal_no_gc() || num_free_regions() != 0;
1019   }
1020 
1021   // The current number of regions in the heap.
1022   uint num_regions() const { return _hrm.length(); }
1023 
1024   // The max number of regions in the heap.
1025   uint max_regions() const { return _hrm.max_length(); }
1026 
1027   // The number of regions that are completely free.
1028   uint num_free_regions() const { return _hrm.num_free_regions(); }
1029 
1030   MemoryUsage get_auxiliary_data_memory_usage() const {
1031     return _hrm.get_auxiliary_data_memory_usage();
1032   }
1033 
1034   // The number of regions that are not completely free.
1035   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1036 
1037 #ifdef ASSERT
1038   bool is_on_master_free_list(HeapRegion* hr) {
1039     return _hrm.is_free(hr);
1040   }
1041 #endif // ASSERT
1042 
1043   inline void old_set_add(HeapRegion* hr);
1044   inline void old_set_remove(HeapRegion* hr);
1045 
1046   inline void archive_set_add(HeapRegion* hr);
1047 
1048   size_t non_young_capacity_bytes() {
1049     return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes;
1050   }
1051 
1052   // Determine whether the given region is one that we are using as an
1053   // old GC alloc region.
1054   bool is_old_gc_alloc_region(HeapRegion* hr);
1055 
1056   // Perform a collection of the heap; intended for use in implementing
1057   // "System.gc".  This probably implies as full a collection as the
1058   // "CollectedHeap" supports.
1059   virtual void collect(GCCause::Cause cause);
1060 
1061   // True iff an evacuation has failed in the most-recent collection.
1062   bool evacuation_failed() { return _evacuation_failed; }
1063 
1064   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1065   void prepend_to_freelist(FreeRegionList* list);
1066   void decrement_summary_bytes(size_t bytes);
1067 
1068   virtual bool is_in(const void* p) const;
1069 #ifdef ASSERT
1070   // Returns whether p is in one of the available areas of the heap. Slow but
1071   // extensive version.
1072   bool is_in_exact(const void* p) const;
1073 #endif
1074 
1075   // Return "TRUE" iff the given object address is within the collection
1076   // set. Assumes that the reference points into the heap.
1077   inline bool is_in_cset(const HeapRegion *hr);
1078   inline bool is_in_cset(oop obj);
1079   inline bool is_in_cset(HeapWord* addr);
1080 
1081   inline bool is_in_cset_or_humongous(const oop obj);
1082 
1083  private:
1084   // This array is used for a quick test on whether a reference points into
1085   // the collection set or not. Each of the array's elements denotes whether the
1086   // corresponding region is in the collection set or not.
1087   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1088 
1089  public:
1090 
1091   inline InCSetState in_cset_state(const oop obj);
1092 
1093   // Return "TRUE" iff the given object address is in the reserved
1094   // region of g1.
1095   bool is_in_g1_reserved(const void* p) const {
1096     return _hrm.reserved().contains(p);
1097   }
1098 
1099   // Returns a MemRegion that corresponds to the space that has been
1100   // reserved for the heap
1101   MemRegion g1_reserved() const {
1102     return _hrm.reserved();
1103   }
1104 
1105   virtual bool is_in_closed_subset(const void* p) const;
1106 
1107   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1108 
1109   G1CardTable* card_table() const {
1110     return _card_table;
1111   }
1112 
1113   // Iteration functions.
1114 
1115   // Iterate over all objects, calling "cl.do_object" on each.
1116   virtual void object_iterate(ObjectClosure* cl);
1117 
1118   virtual void safe_object_iterate(ObjectClosure* cl) {
1119     object_iterate(cl);
1120   }
1121 
1122   // Iterate over heap regions, in address order, terminating the
1123   // iteration early if the "do_heap_region" method returns "true".
1124   void heap_region_iterate(HeapRegionClosure* blk) const;
1125 
1126   // Return the region with the given index. It assumes the index is valid.
1127   inline HeapRegion* region_at(uint index) const;
1128   inline HeapRegion* region_at_or_null(uint index) const;
1129 
1130   // Return the next region (by index) that is part of the same
1131   // humongous object that hr is part of.
1132   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1133 
1134   // Calculate the region index of the given address. Given address must be
1135   // within the heap.
1136   inline uint addr_to_region(HeapWord* addr) const;
1137 
1138   inline HeapWord* bottom_addr_for_region(uint index) const;
1139 
1140   // Two functions to iterate over the heap regions in parallel. Threads
1141   // compete using the HeapRegionClaimer to claim the regions before
1142   // applying the closure on them.
1143   // The _from_worker_offset version uses the HeapRegionClaimer and
1144   // the worker id to calculate a start offset to prevent all workers to
1145   // start from the point.
1146   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1147                                                   HeapRegionClaimer* hrclaimer,
1148                                                   uint worker_id) const;
1149 
1150   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1151                                           HeapRegionClaimer* hrclaimer) const;
1152 
1153   // Iterate over the regions (if any) in the current collection set.
1154   void collection_set_iterate(HeapRegionClosure* blk);
1155 
1156   // Iterate over the regions (if any) in the current collection set. Starts the
1157   // iteration over the entire collection set so that the start regions of a given
1158   // worker id over the set active_workers are evenly spread across the set of
1159   // collection set regions.
1160   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1161 
1162   // Returns the HeapRegion that contains addr. addr must not be NULL.
1163   template <class T>
1164   inline HeapRegion* heap_region_containing(const T addr) const;
1165 
1166   // Returns the HeapRegion that contains addr, or NULL if that is an uncommitted
1167   // region. addr must not be NULL.
1168   template <class T>
1169   inline HeapRegion* heap_region_containing_or_null(const T addr) const;
1170 
1171   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1172   // each address in the (reserved) heap is a member of exactly
1173   // one block.  The defining characteristic of a block is that it is
1174   // possible to find its size, and thus to progress forward to the next
1175   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1176   // represent Java objects, or they might be free blocks in a
1177   // free-list-based heap (or subheap), as long as the two kinds are
1178   // distinguishable and the size of each is determinable.
1179 
1180   // Returns the address of the start of the "block" that contains the
1181   // address "addr".  We say "blocks" instead of "object" since some heaps
1182   // may not pack objects densely; a chunk may either be an object or a
1183   // non-object.
1184   virtual HeapWord* block_start(const void* addr) const;
1185 
1186   // Requires "addr" to be the start of a chunk, and returns its size.
1187   // "addr + size" is required to be the start of a new chunk, or the end
1188   // of the active area of the heap.
1189   virtual size_t block_size(const HeapWord* addr) const;
1190 
1191   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1192   // the block is an object.
1193   virtual bool block_is_obj(const HeapWord* addr) const;
1194 
1195   // Section on thread-local allocation buffers (TLABs)
1196   // See CollectedHeap for semantics.
1197 
1198   bool supports_tlab_allocation() const;
1199   size_t tlab_capacity(Thread* ignored) const;
1200   size_t tlab_used(Thread* ignored) const;
1201   size_t max_tlab_size() const;
1202   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1203 
1204   inline bool is_in_young(const oop obj);
1205 
1206   // Returns "true" iff the given word_size is "very large".
1207   static bool is_humongous(size_t word_size) {
1208     // Note this has to be strictly greater-than as the TLABs
1209     // are capped at the humongous threshold and we want to
1210     // ensure that we don't try to allocate a TLAB as
1211     // humongous and that we don't allocate a humongous
1212     // object in a TLAB.
1213     return word_size > _humongous_object_threshold_in_words;
1214   }
1215 
1216   // Returns the humongous threshold for a specific region size
1217   static size_t humongous_threshold_for(size_t region_size) {
1218     return (region_size / 2);
1219   }
1220 
1221   // Returns the number of regions the humongous object of the given word size
1222   // requires.
1223   static size_t humongous_obj_size_in_regions(size_t word_size);
1224 
1225   // Print the maximum heap capacity.
1226   virtual size_t max_capacity() const;
1227 
1228   virtual jlong millis_since_last_gc();
1229 
1230 
1231   // Convenience function to be used in situations where the heap type can be
1232   // asserted to be this type.
1233   static G1CollectedHeap* heap();
1234 
1235   void set_region_short_lived_locked(HeapRegion* hr);
1236   // add appropriate methods for any other surv rate groups
1237 
1238   const G1SurvivorRegions* survivor() const { return &_survivor; }
1239 
1240   uint eden_regions_count() const { return _eden.length(); }
1241   uint survivor_regions_count() const { return _survivor.length(); }
1242   uint young_regions_count() const { return _eden.length() + _survivor.length(); }
1243   uint old_regions_count() const { return _old_set.length(); }
1244   uint archive_regions_count() const { return _archive_set.length(); }
1245   uint humongous_regions_count() const { return _humongous_set.length(); }
1246 
1247 #ifdef ASSERT
1248   bool check_young_list_empty();
1249 #endif
1250 
1251   // *** Stuff related to concurrent marking.  It's not clear to me that so
1252   // many of these need to be public.
1253 
1254   // The functions below are helper functions that a subclass of
1255   // "CollectedHeap" can use in the implementation of its virtual
1256   // functions.
1257   // This performs a concurrent marking of the live objects in a
1258   // bitmap off to the side.
1259   void do_concurrent_mark();
1260 
1261   bool is_marked_next(oop obj) const;
1262 
1263   // Determine if an object is dead, given the object and also
1264   // the region to which the object belongs. An object is dead
1265   // iff a) it was not allocated since the last mark, b) it
1266   // is not marked, and c) it is not in an archive region.
1267   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1268     return
1269       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1270       !hr->is_archive();
1271   }
1272 
1273   // This function returns true when an object has been
1274   // around since the previous marking and hasn't yet
1275   // been marked during this marking, and is not in an archive region.
1276   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1277     return
1278       !hr->obj_allocated_since_next_marking(obj) &&
1279       !is_marked_next(obj) &&
1280       !hr->is_archive();
1281   }
1282 
1283   // Determine if an object is dead, given only the object itself.
1284   // This will find the region to which the object belongs and
1285   // then call the region version of the same function.
1286 
1287   // Added if it is NULL it isn't dead.
1288 
1289   inline bool is_obj_dead(const oop obj) const;
1290 
1291   inline bool is_obj_ill(const oop obj) const;
1292 
1293   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1294   inline bool is_obj_dead_full(const oop obj) const;
1295 
1296   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1297 
1298   // Refinement
1299 
1300   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1301 
1302   // Optimized nmethod scanning support routines
1303 
1304   // Is an oop scavengeable
1305   virtual bool is_scavengable(oop obj);
1306 
1307   // Register the given nmethod with the G1 heap.
1308   virtual void register_nmethod(nmethod* nm);
1309 
1310   // Unregister the given nmethod from the G1 heap.
1311   virtual void unregister_nmethod(nmethod* nm);
1312 
1313   // Free up superfluous code root memory.
1314   void purge_code_root_memory();
1315 
1316   // Rebuild the strong code root lists for each region
1317   // after a full GC.
1318   void rebuild_strong_code_roots();
1319 
1320   // Partial cleaning used when class unloading is disabled.
1321   // Let the caller choose what structures to clean out:
1322   // - StringTable
1323   // - StringDeduplication structures
1324   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_string_dedup);
1325 
1326   // Complete cleaning used when class unloading is enabled.
1327   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1328   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1329 
1330   // Redirty logged cards in the refinement queue.
1331   void redirty_logged_cards();
1332   // Verification
1333 
1334   // Deduplicate the string
1335   virtual void deduplicate_string(oop str);
1336 
1337   // Perform any cleanup actions necessary before allowing a verification.
1338   virtual void prepare_for_verify();
1339 
1340   // Perform verification.
1341 
1342   // vo == UsePrevMarking -> use "prev" marking information,
1343   // vo == UseNextMarking -> use "next" marking information
1344   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1345   //
1346   // NOTE: Only the "prev" marking information is guaranteed to be
1347   // consistent most of the time, so most calls to this should use
1348   // vo == UsePrevMarking.
1349   // Currently, there is only one case where this is called with
1350   // vo == UseNextMarking, which is to verify the "next" marking
1351   // information at the end of remark.
1352   // Currently there is only one place where this is called with
1353   // vo == UseFullMarking, which is to verify the marking during a
1354   // full GC.
1355   void verify(VerifyOption vo);
1356 
1357   // WhiteBox testing support.
1358   virtual bool supports_concurrent_phase_control() const;
1359   virtual const char* const* concurrent_phases() const;
1360   virtual bool request_concurrent_phase(const char* phase);
1361 
1362   virtual WorkGang* get_safepoint_workers() { return _workers; }
1363 
1364   // The methods below are here for convenience and dispatch the
1365   // appropriate method depending on value of the given VerifyOption
1366   // parameter. The values for that parameter, and their meanings,
1367   // are the same as those above.
1368 
1369   bool is_obj_dead_cond(const oop obj,
1370                         const HeapRegion* hr,
1371                         const VerifyOption vo) const;
1372 
1373   bool is_obj_dead_cond(const oop obj,
1374                         const VerifyOption vo) const;
1375 
1376   G1HeapSummary create_g1_heap_summary();
1377   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1378 
1379   // Printing
1380 private:
1381   void print_heap_regions() const;
1382   void print_regions_on(outputStream* st) const;
1383 
1384 public:
1385   virtual void print_on(outputStream* st) const;
1386   virtual void print_extended_on(outputStream* st) const;
1387   virtual void print_on_error(outputStream* st) const;
1388 
1389   virtual void print_gc_threads_on(outputStream* st) const;
1390   virtual void gc_threads_do(ThreadClosure* tc) const;
1391 
1392   // Override
1393   void print_tracing_info() const;
1394 
1395   // The following two methods are helpful for debugging RSet issues.
1396   void print_cset_rsets() PRODUCT_RETURN;
1397   void print_all_rsets() PRODUCT_RETURN;
1398 
1399   size_t pending_card_num();
1400 };
1401 
1402 class G1ParEvacuateFollowersClosure : public VoidClosure {
1403 private:
1404   double _start_term;
1405   double _term_time;
1406   size_t _term_attempts;
1407 
1408   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1409   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1410 protected:
1411   G1CollectedHeap*              _g1h;
1412   G1ParScanThreadState*         _par_scan_state;
1413   RefToScanQueueSet*            _queues;
1414   ParallelTaskTerminator*       _terminator;
1415   G1GCPhaseTimes::GCParPhases   _phase;
1416 
1417   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1418   RefToScanQueueSet*      queues()         { return _queues; }
1419   ParallelTaskTerminator* terminator()     { return _terminator; }
1420 
1421 public:
1422   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1423                                 G1ParScanThreadState* par_scan_state,
1424                                 RefToScanQueueSet* queues,
1425                                 ParallelTaskTerminator* terminator,
1426                                 G1GCPhaseTimes::GCParPhases phase)
1427     : _start_term(0.0), _term_time(0.0), _term_attempts(0),
1428       _g1h(g1h), _par_scan_state(par_scan_state),
1429       _queues(queues), _terminator(terminator), _phase(phase) {}
1430 
1431   void do_void();
1432 
1433   double term_time() const { return _term_time; }
1434   size_t term_attempts() const { return _term_attempts; }
1435 
1436 private:
1437   inline bool offer_termination();
1438 };
1439 
1440 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP