1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP
  26 #define SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP
  27 
  28 #include "gc/parallel/mutableSpace.hpp"
  29 #include "gc/parallel/objectStartArray.hpp"
  30 #include "gc/parallel/parMarkBitMap.hpp"
  31 #include "gc/parallel/parallelScavengeHeap.hpp"
  32 #include "gc/shared/collectedHeap.hpp"
  33 #include "gc/shared/collectorCounters.hpp"
  34 #include "oops/oop.hpp"
  35 
  36 class ParallelScavengeHeap;
  37 class PSAdaptiveSizePolicy;
  38 class PSYoungGen;
  39 class PSOldGen;
  40 class ParCompactionManager;
  41 class ParallelTaskTerminator;
  42 class PSParallelCompact;
  43 class PreGCValues;
  44 class MoveAndUpdateClosure;
  45 class RefProcTaskExecutor;
  46 class ParallelOldTracer;
  47 class STWGCTimer;
  48 
  49 // The SplitInfo class holds the information needed to 'split' a source region
  50 // so that the live data can be copied to two destination *spaces*.  Normally,
  51 // all the live data in a region is copied to a single destination space (e.g.,
  52 // everything live in a region in eden is copied entirely into the old gen).
  53 // However, when the heap is nearly full, all the live data in eden may not fit
  54 // into the old gen.  Copying only some of the regions from eden to old gen
  55 // requires finding a region that does not contain a partial object (i.e., no
  56 // live object crosses the region boundary) somewhere near the last object that
  57 // does fit into the old gen.  Since it's not always possible to find such a
  58 // region, splitting is necessary for predictable behavior.
  59 //
  60 // A region is always split at the end of the partial object.  This avoids
  61 // additional tests when calculating the new location of a pointer, which is a
  62 // very hot code path.  The partial object and everything to its left will be
  63 // copied to another space (call it dest_space_1).  The live data to the right
  64 // of the partial object will be copied either within the space itself, or to a
  65 // different destination space (distinct from dest_space_1).
  66 //
  67 // Split points are identified during the summary phase, when region
  68 // destinations are computed:  data about the split, including the
  69 // partial_object_size, is recorded in a SplitInfo record and the
  70 // partial_object_size field in the summary data is set to zero.  The zeroing is
  71 // possible (and necessary) since the partial object will move to a different
  72 // destination space than anything to its right, thus the partial object should
  73 // not affect the locations of any objects to its right.
  74 //
  75 // The recorded data is used during the compaction phase, but only rarely:  when
  76 // the partial object on the split region will be copied across a destination
  77 // region boundary.  This test is made once each time a region is filled, and is
  78 // a simple address comparison, so the overhead is negligible (see
  79 // PSParallelCompact::first_src_addr()).
  80 //
  81 // Notes:
  82 //
  83 // Only regions with partial objects are split; a region without a partial
  84 // object does not need any extra bookkeeping.
  85 //
  86 // At most one region is split per space, so the amount of data required is
  87 // constant.
  88 //
  89 // A region is split only when the destination space would overflow.  Once that
  90 // happens, the destination space is abandoned and no other data (even from
  91 // other source spaces) is targeted to that destination space.  Abandoning the
  92 // destination space may leave a somewhat large unused area at the end, if a
  93 // large object caused the overflow.
  94 //
  95 // Future work:
  96 //
  97 // More bookkeeping would be required to continue to use the destination space.
  98 // The most general solution would allow data from regions in two different
  99 // source spaces to be "joined" in a single destination region.  At the very
 100 // least, additional code would be required in next_src_region() to detect the
 101 // join and skip to an out-of-order source region.  If the join region was also
 102 // the last destination region to which a split region was copied (the most
 103 // likely case), then additional work would be needed to get fill_region() to
 104 // stop iteration and switch to a new source region at the right point.  Basic
 105 // idea would be to use a fake value for the top of the source space.  It is
 106 // doable, if a bit tricky.
 107 //
 108 // A simpler (but less general) solution would fill the remainder of the
 109 // destination region with a dummy object and continue filling the next
 110 // destination region.
 111 
 112 class SplitInfo
 113 {
 114 public:
 115   // Return true if this split info is valid (i.e., if a split has been
 116   // recorded).  The very first region cannot have a partial object and thus is
 117   // never split, so 0 is the 'invalid' value.
 118   bool is_valid() const { return _src_region_idx > 0; }
 119 
 120   // Return true if this split holds data for the specified source region.
 121   inline bool is_split(size_t source_region) const;
 122 
 123   // The index of the split region, the size of the partial object on that
 124   // region and the destination of the partial object.
 125   size_t    src_region_idx() const   { return _src_region_idx; }
 126   size_t    partial_obj_size() const { return _partial_obj_size; }
 127   HeapWord* destination() const      { return _destination; }
 128 
 129   // The destination count of the partial object referenced by this split
 130   // (either 1 or 2).  This must be added to the destination count of the
 131   // remainder of the source region.
 132   unsigned int destination_count() const { return _destination_count; }
 133 
 134   // If a word within the partial object will be written to the first word of a
 135   // destination region, this is the address of the destination region;
 136   // otherwise this is NULL.
 137   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
 138 
 139   // If a word within the partial object will be written to the first word of a
 140   // destination region, this is the address of that word within the partial
 141   // object; otherwise this is NULL.
 142   HeapWord* first_src_addr() const       { return _first_src_addr; }
 143 
 144   // Record the data necessary to split the region src_region_idx.
 145   void record(size_t src_region_idx, size_t partial_obj_size,
 146               HeapWord* destination);
 147 
 148   void clear();
 149 
 150   DEBUG_ONLY(void verify_clear();)
 151 
 152 private:
 153   size_t       _src_region_idx;
 154   size_t       _partial_obj_size;
 155   HeapWord*    _destination;
 156   unsigned int _destination_count;
 157   HeapWord*    _dest_region_addr;
 158   HeapWord*    _first_src_addr;
 159 };
 160 
 161 inline bool SplitInfo::is_split(size_t region_idx) const
 162 {
 163   return _src_region_idx == region_idx && is_valid();
 164 }
 165 
 166 class SpaceInfo
 167 {
 168  public:
 169   MutableSpace* space() const { return _space; }
 170 
 171   // Where the free space will start after the collection.  Valid only after the
 172   // summary phase completes.
 173   HeapWord* new_top() const { return _new_top; }
 174 
 175   // Allows new_top to be set.
 176   HeapWord** new_top_addr() { return &_new_top; }
 177 
 178   // Where the smallest allowable dense prefix ends (used only for perm gen).
 179   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
 180 
 181   // Where the dense prefix ends, or the compacted region begins.
 182   HeapWord* dense_prefix() const { return _dense_prefix; }
 183 
 184   // The start array for the (generation containing the) space, or NULL if there
 185   // is no start array.
 186   ObjectStartArray* start_array() const { return _start_array; }
 187 
 188   SplitInfo& split_info() { return _split_info; }
 189 
 190   void set_space(MutableSpace* s)           { _space = s; }
 191   void set_new_top(HeapWord* addr)          { _new_top = addr; }
 192   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
 193   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
 194   void set_start_array(ObjectStartArray* s) { _start_array = s; }
 195 
 196   void publish_new_top() const              { _space->set_top(_new_top); }
 197 
 198  private:
 199   MutableSpace*     _space;
 200   HeapWord*         _new_top;
 201   HeapWord*         _min_dense_prefix;
 202   HeapWord*         _dense_prefix;
 203   ObjectStartArray* _start_array;
 204   SplitInfo         _split_info;
 205 };
 206 
 207 class ParallelCompactData
 208 {
 209 public:
 210   // Sizes are in HeapWords, unless indicated otherwise.
 211   static const size_t Log2RegionSize;
 212   static const size_t RegionSize;
 213   static const size_t RegionSizeBytes;
 214 
 215   // Mask for the bits in a size_t to get an offset within a region.
 216   static const size_t RegionSizeOffsetMask;
 217   // Mask for the bits in a pointer to get an offset within a region.
 218   static const size_t RegionAddrOffsetMask;
 219   // Mask for the bits in a pointer to get the address of the start of a region.
 220   static const size_t RegionAddrMask;
 221 
 222   static const size_t Log2BlockSize;
 223   static const size_t BlockSize;
 224   static const size_t BlockSizeBytes;
 225 
 226   static const size_t BlockSizeOffsetMask;
 227   static const size_t BlockAddrOffsetMask;
 228   static const size_t BlockAddrMask;
 229 
 230   static const size_t BlocksPerRegion;
 231   static const size_t Log2BlocksPerRegion;
 232 
 233   class RegionData
 234   {
 235   public:
 236     // Destination address of the region.
 237     HeapWord* destination() const { return _destination; }
 238 
 239     // The first region containing data destined for this region.
 240     size_t source_region() const { return _source_region; }
 241 
 242     // Reuse _source_region to store the corresponding shadow region index
 243     size_t shadow_region() const { return _source_region; }
 244 
 245     // The object (if any) starting in this region and ending in a different
 246     // region that could not be updated during the main (parallel) compaction
 247     // phase.  This is different from _partial_obj_addr, which is an object that
 248     // extends onto a source region.  However, the two uses do not overlap in
 249     // time, so the same field is used to save space.
 250     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
 251 
 252     // The starting address of the partial object extending onto the region.
 253     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
 254 
 255     // Size of the partial object extending onto the region (words).
 256     size_t partial_obj_size() const { return _partial_obj_size; }
 257 
 258     // Size of live data that lies within this region due to objects that start
 259     // in this region (words).  This does not include the partial object
 260     // extending onto the region (if any), or the part of an object that extends
 261     // onto the next region (if any).
 262     size_t live_obj_size() const { return _dc_and_los & los_mask; }
 263 
 264     // Total live data that lies within the region (words).
 265     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
 266 
 267     // The destination_count is the number of other regions to which data from
 268     // this region will be copied.  At the end of the summary phase, the valid
 269     // values of destination_count are
 270     //
 271     // 0 - data from the region will be compacted completely into itself, or the
 272     //     region is empty.  The region can be claimed and then filled.
 273     // 1 - data from the region will be compacted into 1 other region; some
 274     //     data from the region may also be compacted into the region itself.
 275     // 2 - data from the region will be copied to 2 other regions.
 276     //
 277     // During compaction as regions are emptied, the destination_count is
 278     // decremented (atomically) and when it reaches 0, it can be claimed and
 279     // then filled.
 280     //
 281     // A region is claimed for processing by atomically changing the
 282     // destination_count to the claimed value (dc_claimed).  After a region has
 283     // been filled, the destination_count should be set to the completed value
 284     // (dc_completed).
 285     inline uint destination_count() const;
 286     inline uint destination_count_raw() const;
 287 
 288     // Whether the block table for this region has been filled.
 289     inline bool blocks_filled() const;
 290 
 291     // Number of times the block table was filled.
 292     DEBUG_ONLY(inline size_t blocks_filled_count() const;)
 293 
 294     // The location of the java heap data that corresponds to this region.
 295     inline HeapWord* data_location() const;
 296 
 297     // The highest address referenced by objects in this region.
 298     inline HeapWord* highest_ref() const;
 299 
 300     // Whether this region is available to be claimed, has been claimed, or has
 301     // been completed.
 302     //
 303     // Minor subtlety:  claimed() returns true if the region is marked
 304     // completed(), which is desirable since a region must be claimed before it
 305     // can be completed.
 306     bool available() const { return _dc_and_los < dc_one; }
 307     bool claimed()   const { return _dc_and_los >= dc_claimed; }
 308     bool completed() const { return _dc_and_los >= dc_completed; }
 309 
 310     // These are not atomic.
 311     void set_destination(HeapWord* addr)       { _destination = addr; }
 312     void set_source_region(size_t region)      { _source_region = region; }
 313     void set_shadow_region(size_t region)      { _source_region = region; }
 314     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
 315     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
 316     void set_partial_obj_size(size_t words)    {
 317       _partial_obj_size = (region_sz_t) words;
 318     }
 319     inline void set_blocks_filled();
 320 
 321     inline void set_destination_count(uint count);
 322     inline void set_live_obj_size(size_t words);
 323     inline void set_data_location(HeapWord* addr);
 324     inline void set_completed();
 325     inline bool claim_unsafe();
 326 
 327     // These are atomic.
 328     inline void add_live_obj(size_t words);
 329     inline void set_highest_ref(HeapWord* addr);
 330     inline void decrement_destination_count();
 331     inline bool claim();
 332 
 333     // Possible values of _shadow_state, and transition is as follows
 334     // Normal Path:
 335     // UNUSED -> try_push() -> FINISHED
 336     // Steal  Path:
 337     // UNUSED -> try_steal() -> SHADOW -> mark_filled() -> FILLED -> try_copy() -> FINISHED
 338     static const int UNUSED;                     // Original state
 339     static const int SHADOW;                     // Stolen by an idle thread, and a shadow region is created for it
 340     static const int FILLED;                     // Its shadow region has been filled and ready to be copied back
 341     static const int FINISH;                     // Work has been done
 342 
 343     // Preempt the region to avoid double processes
 344     inline bool try_push();
 345     inline bool try_steal();
 346     // Mark the region as filled and ready to be copied back
 347     inline void mark_filled();
 348     // Preempt the region to copy the shadow region content back
 349     inline bool try_copy();
 350     // Special case: see the comment in PSParallelCompact::fill_shadow_region.
 351     // Return to the normal path here
 352     inline void mark_normal();
 353 
 354 
 355     int shadow_state() { return _shadow_state; }
 356 
 357   private:
 358     // The type used to represent object sizes within a region.
 359     typedef uint region_sz_t;
 360 
 361     // Constants for manipulating the _dc_and_los field, which holds both the
 362     // destination count and live obj size.  The live obj size lives at the
 363     // least significant end so no masking is necessary when adding.
 364     static const region_sz_t dc_shift;           // Shift amount.
 365     static const region_sz_t dc_mask;            // Mask for destination count.
 366     static const region_sz_t dc_one;             // 1, shifted appropriately.
 367     static const region_sz_t dc_claimed;         // Region has been claimed.
 368     static const region_sz_t dc_completed;       // Region has been completed.
 369     static const region_sz_t los_mask;           // Mask for live obj size.
 370 
 371     HeapWord*            _destination;
 372     size_t               _source_region;
 373     HeapWord*            _partial_obj_addr;
 374     region_sz_t          _partial_obj_size;
 375     region_sz_t volatile _dc_and_los;
 376     bool        volatile _blocks_filled;
 377     int         volatile _shadow_state;
 378 
 379 #ifdef ASSERT
 380     size_t               _blocks_filled_count;   // Number of block table fills.
 381 
 382     // These enable optimizations that are only partially implemented.  Use
 383     // debug builds to prevent the code fragments from breaking.
 384     HeapWord*            _data_location;
 385     HeapWord*            _highest_ref;
 386 #endif  // #ifdef ASSERT
 387 
 388 #ifdef ASSERT
 389    public:
 390     uint                 _pushed;   // 0 until region is pushed onto a stack
 391    private:
 392 #endif
 393   };
 394 
 395   // "Blocks" allow shorter sections of the bitmap to be searched.  Each Block
 396   // holds an offset, which is the amount of live data in the Region to the left
 397   // of the first live object that starts in the Block.
 398   class BlockData
 399   {
 400   public:
 401     typedef unsigned short int blk_ofs_t;
 402 
 403     blk_ofs_t offset() const    { return _offset; }
 404     void set_offset(size_t val) { _offset = (blk_ofs_t)val; }
 405 
 406   private:
 407     blk_ofs_t _offset;
 408   };
 409 
 410 public:
 411   ParallelCompactData();
 412   bool initialize(MemRegion covered_region);
 413 
 414   size_t region_count() const { return _region_count; }
 415   size_t reserved_byte_size() const { return _reserved_byte_size; }
 416 
 417   // Convert region indices to/from RegionData pointers.
 418   inline RegionData* region(size_t region_idx) const;
 419   inline size_t     region(const RegionData* const region_ptr) const;
 420 
 421   size_t block_count() const { return _block_count; }
 422   inline BlockData* block(size_t block_idx) const;
 423   inline size_t     block(const BlockData* block_ptr) const;
 424 
 425   void add_obj(HeapWord* addr, size_t len);
 426   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
 427 
 428   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
 429   // destination of region n is simply the start of region n.  The argument beg
 430   // must be region-aligned; end need not be.
 431   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
 432 
 433   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
 434                                   HeapWord* destination, HeapWord* target_end,
 435                                   HeapWord** target_next);
 436   bool summarize(SplitInfo& split_info,
 437                  HeapWord* source_beg, HeapWord* source_end,
 438                  HeapWord** source_next,
 439                  HeapWord* target_beg, HeapWord* target_end,
 440                  HeapWord** target_next);
 441 
 442   void clear();
 443   void clear_range(size_t beg_region, size_t end_region);
 444   void clear_range(HeapWord* beg, HeapWord* end) {
 445     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
 446   }
 447 
 448   // Return the number of words between addr and the start of the region
 449   // containing addr.
 450   inline size_t     region_offset(const HeapWord* addr) const;
 451 
 452   // Convert addresses to/from a region index or region pointer.
 453   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
 454   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
 455   inline HeapWord*  region_to_addr(size_t region) const;
 456   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
 457   inline HeapWord*  region_to_addr(const RegionData* region) const;
 458 
 459   inline HeapWord*  region_align_down(HeapWord* addr) const;
 460   inline HeapWord*  region_align_up(HeapWord* addr) const;
 461   inline bool       is_region_aligned(HeapWord* addr) const;
 462 
 463   // Analogous to region_offset() for blocks.
 464   size_t     block_offset(const HeapWord* addr) const;
 465   size_t     addr_to_block_idx(const HeapWord* addr) const;
 466   size_t     addr_to_block_idx(const oop obj) const {
 467     return addr_to_block_idx((HeapWord*) obj);
 468   }
 469   inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
 470   inline HeapWord*  block_to_addr(size_t block) const;
 471   inline size_t     region_to_block_idx(size_t region) const;
 472 
 473   inline HeapWord*  block_align_down(HeapWord* addr) const;
 474   inline HeapWord*  block_align_up(HeapWord* addr) const;
 475   inline bool       is_block_aligned(HeapWord* addr) const;
 476 
 477   // Return the address one past the end of the partial object.
 478   HeapWord* partial_obj_end(size_t region_idx) const;
 479 
 480   // Return the location of the object after compaction.
 481   HeapWord* calc_new_pointer(HeapWord* addr, ParCompactionManager* cm);
 482 
 483   HeapWord* calc_new_pointer(oop p, ParCompactionManager* cm) {
 484     return calc_new_pointer((HeapWord*) p, cm);
 485   }
 486 
 487 #ifdef  ASSERT
 488   void verify_clear(const PSVirtualSpace* vspace);
 489   void verify_clear();
 490 #endif  // #ifdef ASSERT
 491 
 492 private:
 493   bool initialize_block_data();
 494   bool initialize_region_data(size_t region_size);
 495   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
 496 
 497 private:
 498   HeapWord*       _region_start;
 499 #ifdef  ASSERT
 500   HeapWord*       _region_end;
 501 #endif  // #ifdef ASSERT
 502 
 503   PSVirtualSpace* _region_vspace;
 504   size_t          _reserved_byte_size;
 505   RegionData*     _region_data;
 506   size_t          _region_count;
 507 
 508   PSVirtualSpace* _block_vspace;
 509   BlockData*      _block_data;
 510   size_t          _block_count;
 511 };
 512 
 513 inline uint
 514 ParallelCompactData::RegionData::destination_count_raw() const
 515 {
 516   return _dc_and_los & dc_mask;
 517 }
 518 
 519 inline uint
 520 ParallelCompactData::RegionData::destination_count() const
 521 {
 522   return destination_count_raw() >> dc_shift;
 523 }
 524 
 525 inline bool
 526 ParallelCompactData::RegionData::blocks_filled() const
 527 {
 528   bool result = _blocks_filled;
 529   OrderAccess::acquire();
 530   return result;
 531 }
 532 
 533 #ifdef ASSERT
 534 inline size_t
 535 ParallelCompactData::RegionData::blocks_filled_count() const
 536 {
 537   return _blocks_filled_count;
 538 }
 539 #endif // #ifdef ASSERT
 540 
 541 inline void
 542 ParallelCompactData::RegionData::set_blocks_filled()
 543 {
 544   OrderAccess::release();
 545   _blocks_filled = true;
 546   // Debug builds count the number of times the table was filled.
 547   DEBUG_ONLY(Atomic::inc(&_blocks_filled_count));
 548 }
 549 
 550 inline void
 551 ParallelCompactData::RegionData::set_destination_count(uint count)
 552 {
 553   assert(count <= (dc_completed >> dc_shift), "count too large");
 554   const region_sz_t live_sz = (region_sz_t) live_obj_size();
 555   _dc_and_los = (count << dc_shift) | live_sz;
 556 }
 557 
 558 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
 559 {
 560   assert(words <= los_mask, "would overflow");
 561   _dc_and_los = destination_count_raw() | (region_sz_t)words;
 562 }
 563 
 564 inline void ParallelCompactData::RegionData::decrement_destination_count()
 565 {
 566   assert(_dc_and_los < dc_claimed, "already claimed");
 567   assert(_dc_and_los >= dc_one, "count would go negative");
 568   Atomic::add(dc_mask, &_dc_and_los);
 569 }
 570 
 571 inline HeapWord* ParallelCompactData::RegionData::data_location() const
 572 {
 573   DEBUG_ONLY(return _data_location;)
 574   NOT_DEBUG(return NULL;)
 575 }
 576 
 577 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
 578 {
 579   DEBUG_ONLY(return _highest_ref;)
 580   NOT_DEBUG(return NULL;)
 581 }
 582 
 583 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
 584 {
 585   DEBUG_ONLY(_data_location = addr;)
 586 }
 587 
 588 inline void ParallelCompactData::RegionData::set_completed()
 589 {
 590   assert(claimed(), "must be claimed first");
 591   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
 592 }
 593 
 594 // MT-unsafe claiming of a region.  Should only be used during single threaded
 595 // execution.
 596 inline bool ParallelCompactData::RegionData::claim_unsafe()
 597 {
 598   if (available()) {
 599     _dc_and_los |= dc_claimed;
 600     return true;
 601   }
 602   return false;
 603 }
 604 
 605 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
 606 {
 607   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
 608   Atomic::add(static_cast<region_sz_t>(words), &_dc_and_los);
 609 }
 610 
 611 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
 612 {
 613 #ifdef ASSERT
 614   HeapWord* tmp = _highest_ref;
 615   while (addr > tmp) {
 616     tmp = Atomic::cmpxchg(addr, &_highest_ref, tmp);
 617   }
 618 #endif  // #ifdef ASSERT
 619 }
 620 
 621 inline bool ParallelCompactData::RegionData::claim()
 622 {
 623   const region_sz_t los = static_cast<region_sz_t>(live_obj_size());
 624   const region_sz_t old = Atomic::cmpxchg(dc_claimed | los, &_dc_and_los, los);
 625   return old == los;
 626 }
 627 
 628 inline bool ParallelCompactData::RegionData::try_push() {
 629   return Atomic::cmpxchg(FINISH, &_shadow_state, UNUSED) == UNUSED;
 630 }
 631 
 632 inline bool ParallelCompactData::RegionData::try_steal() {
 633   return Atomic::cmpxchg(SHADOW, &_shadow_state, UNUSED) == UNUSED;
 634 }
 635 
 636 inline void ParallelCompactData::RegionData::mark_filled() {
 637   int old = Atomic::cmpxchg(FILLED, &_shadow_state, SHADOW);
 638   assert(old == SHADOW, "Fail to mark the region as filled");
 639 }
 640 
 641 inline bool ParallelCompactData::RegionData::try_copy() {
 642   return Atomic::cmpxchg(FINISH, &_shadow_state, FILLED) == FILLED;
 643 }
 644 
 645 void ParallelCompactData::RegionData::mark_normal() {
 646   _shadow_state = FINISH;
 647 }
 648 
 649 inline ParallelCompactData::RegionData*
 650 ParallelCompactData::region(size_t region_idx) const
 651 {
 652   assert(region_idx <= region_count(), "bad arg");
 653   return _region_data + region_idx;
 654 }
 655 
 656 inline size_t
 657 ParallelCompactData::region(const RegionData* const region_ptr) const
 658 {
 659   assert(region_ptr >= _region_data, "bad arg");
 660   assert(region_ptr <= _region_data + region_count(), "bad arg");
 661   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
 662 }
 663 
 664 inline ParallelCompactData::BlockData*
 665 ParallelCompactData::block(size_t n) const {
 666   assert(n < block_count(), "bad arg");
 667   return _block_data + n;
 668 }
 669 
 670 inline size_t
 671 ParallelCompactData::region_offset(const HeapWord* addr) const
 672 {
 673   assert(addr >= _region_start, "bad addr");
 674   assert(addr <= _region_end, "bad addr");
 675   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
 676 }
 677 
 678 inline size_t
 679 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
 680 {
 681   assert(addr >= _region_start, "bad addr " PTR_FORMAT " _region_start " PTR_FORMAT, p2i(addr), p2i(_region_start));
 682   assert(addr <= _region_end, "bad addr " PTR_FORMAT " _region_end " PTR_FORMAT, p2i(addr), p2i(_region_end));
 683   return pointer_delta(addr, _region_start) >> Log2RegionSize;
 684 }
 685 
 686 inline ParallelCompactData::RegionData*
 687 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
 688 {
 689   return region(addr_to_region_idx(addr));
 690 }
 691 
 692 inline HeapWord*
 693 ParallelCompactData::region_to_addr(size_t region) const
 694 {
 695   assert(region <= _region_count, "region out of range");
 696   return _region_start + (region << Log2RegionSize);
 697 }
 698 
 699 inline HeapWord*
 700 ParallelCompactData::region_to_addr(const RegionData* region) const
 701 {
 702   return region_to_addr(pointer_delta(region, _region_data,
 703                                       sizeof(RegionData)));
 704 }
 705 
 706 inline HeapWord*
 707 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
 708 {
 709   assert(region <= _region_count, "region out of range");
 710   assert(offset < RegionSize, "offset too big");  // This may be too strict.
 711   return region_to_addr(region) + offset;
 712 }
 713 
 714 inline HeapWord*
 715 ParallelCompactData::region_align_down(HeapWord* addr) const
 716 {
 717   assert(addr >= _region_start, "bad addr");
 718   assert(addr < _region_end + RegionSize, "bad addr");
 719   return (HeapWord*)(size_t(addr) & RegionAddrMask);
 720 }
 721 
 722 inline HeapWord*
 723 ParallelCompactData::region_align_up(HeapWord* addr) const
 724 {
 725   assert(addr >= _region_start, "bad addr");
 726   assert(addr <= _region_end, "bad addr");
 727   return region_align_down(addr + RegionSizeOffsetMask);
 728 }
 729 
 730 inline bool
 731 ParallelCompactData::is_region_aligned(HeapWord* addr) const
 732 {
 733   return region_offset(addr) == 0;
 734 }
 735 
 736 inline size_t
 737 ParallelCompactData::block_offset(const HeapWord* addr) const
 738 {
 739   assert(addr >= _region_start, "bad addr");
 740   assert(addr <= _region_end, "bad addr");
 741   return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
 742 }
 743 
 744 inline size_t
 745 ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
 746 {
 747   assert(addr >= _region_start, "bad addr");
 748   assert(addr <= _region_end, "bad addr");
 749   return pointer_delta(addr, _region_start) >> Log2BlockSize;
 750 }
 751 
 752 inline ParallelCompactData::BlockData*
 753 ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
 754 {
 755   return block(addr_to_block_idx(addr));
 756 }
 757 
 758 inline HeapWord*
 759 ParallelCompactData::block_to_addr(size_t block) const
 760 {
 761   assert(block < _block_count, "block out of range");
 762   return _region_start + (block << Log2BlockSize);
 763 }
 764 
 765 inline size_t
 766 ParallelCompactData::region_to_block_idx(size_t region) const
 767 {
 768   return region << Log2BlocksPerRegion;
 769 }
 770 
 771 inline HeapWord*
 772 ParallelCompactData::block_align_down(HeapWord* addr) const
 773 {
 774   assert(addr >= _region_start, "bad addr");
 775   assert(addr < _region_end + RegionSize, "bad addr");
 776   return (HeapWord*)(size_t(addr) & BlockAddrMask);
 777 }
 778 
 779 inline HeapWord*
 780 ParallelCompactData::block_align_up(HeapWord* addr) const
 781 {
 782   assert(addr >= _region_start, "bad addr");
 783   assert(addr <= _region_end, "bad addr");
 784   return block_align_down(addr + BlockSizeOffsetMask);
 785 }
 786 
 787 inline bool
 788 ParallelCompactData::is_block_aligned(HeapWord* addr) const
 789 {
 790   return block_offset(addr) == 0;
 791 }
 792 
 793 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
 794 // do_addr() method.
 795 //
 796 // The closure is initialized with the number of heap words to process
 797 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
 798 // methods in subclasses should update the total as words are processed.  Since
 799 // only one subclass actually uses this mechanism to terminate iteration, the
 800 // default initial value is > 0.  The implementation is here and not in the
 801 // single subclass that uses it to avoid making is_full() virtual, and thus
 802 // adding a virtual call per live object.
 803 
 804 class ParMarkBitMapClosure: public StackObj {
 805  public:
 806   typedef ParMarkBitMap::idx_t idx_t;
 807   typedef ParMarkBitMap::IterationStatus IterationStatus;
 808 
 809  public:
 810   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
 811                               size_t words = max_uintx);
 812 
 813   inline ParCompactionManager* compaction_manager() const;
 814   inline ParMarkBitMap*        bitmap() const;
 815   inline size_t                words_remaining() const;
 816   inline bool                  is_full() const;
 817   inline HeapWord*             source() const;
 818 
 819   inline void                  set_source(HeapWord* addr);
 820 
 821   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
 822 
 823  protected:
 824   inline void decrement_words_remaining(size_t words);
 825 
 826  private:
 827   ParMarkBitMap* const        _bitmap;
 828   ParCompactionManager* const _compaction_manager;
 829   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
 830   size_t                      _words_remaining; // Words left to copy.
 831 
 832  protected:
 833   HeapWord*                   _source;          // Next addr that would be read.
 834 };
 835 
 836 inline
 837 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
 838                                            ParCompactionManager* cm,
 839                                            size_t words):
 840   _bitmap(bitmap), _compaction_manager(cm)
 841 #ifdef  ASSERT
 842   , _initial_words_remaining(words)
 843 #endif
 844 {
 845   _words_remaining = words;
 846   _source = NULL;
 847 }
 848 
 849 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
 850   return _compaction_manager;
 851 }
 852 
 853 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
 854   return _bitmap;
 855 }
 856 
 857 inline size_t ParMarkBitMapClosure::words_remaining() const {
 858   return _words_remaining;
 859 }
 860 
 861 inline bool ParMarkBitMapClosure::is_full() const {
 862   return words_remaining() == 0;
 863 }
 864 
 865 inline HeapWord* ParMarkBitMapClosure::source() const {
 866   return _source;
 867 }
 868 
 869 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
 870   _source = addr;
 871 }
 872 
 873 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
 874   assert(_words_remaining >= words, "processed too many words");
 875   _words_remaining -= words;
 876 }
 877 
 878 // The UseParallelOldGC collector is a stop-the-world garbage collector that
 879 // does parts of the collection using parallel threads.  The collection includes
 880 // the tenured generation and the young generation.  The permanent generation is
 881 // collected at the same time as the other two generations but the permanent
 882 // generation is collect by a single GC thread.  The permanent generation is
 883 // collected serially because of the requirement that during the processing of a
 884 // klass AAA, any objects reference by AAA must already have been processed.
 885 // This requirement is enforced by a left (lower address) to right (higher
 886 // address) sliding compaction.
 887 //
 888 // There are four phases of the collection.
 889 //
 890 //      - marking phase
 891 //      - summary phase
 892 //      - compacting phase
 893 //      - clean up phase
 894 //
 895 // Roughly speaking these phases correspond, respectively, to
 896 //      - mark all the live objects
 897 //      - calculate the destination of each object at the end of the collection
 898 //      - move the objects to their destination
 899 //      - update some references and reinitialize some variables
 900 //
 901 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
 902 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
 903 // complete marking of the heap.  The summary phase is implemented in
 904 // PSParallelCompact::summary_phase().  The move and update phase is implemented
 905 // in PSParallelCompact::compact().
 906 //
 907 // A space that is being collected is divided into regions and with each region
 908 // is associated an object of type ParallelCompactData.  Each region is of a
 909 // fixed size and typically will contain more than 1 object and may have parts
 910 // of objects at the front and back of the region.
 911 //
 912 // region            -----+---------------------+----------
 913 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
 914 //
 915 // The marking phase does a complete marking of all live objects in the heap.
 916 // The marking also compiles the size of the data for all live objects covered
 917 // by the region.  This size includes the part of any live object spanning onto
 918 // the region (part of AAA if it is live) from the front, all live objects
 919 // contained in the region (BBB and/or CCC if they are live), and the part of
 920 // any live objects covered by the region that extends off the region (part of
 921 // DDD if it is live).  The marking phase uses multiple GC threads and marking
 922 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
 923 // done atomically as is the accumulation of the size of the live objects
 924 // covered by a region.
 925 //
 926 // The summary phase calculates the total live data to the left of each region
 927 // XXX.  Based on that total and the bottom of the space, it can calculate the
 928 // starting location of the live data in XXX.  The summary phase calculates for
 929 // each region XXX quantities such as
 930 //
 931 //      - the amount of live data at the beginning of a region from an object
 932 //        entering the region.
 933 //      - the location of the first live data on the region
 934 //      - a count of the number of regions receiving live data from XXX.
 935 //
 936 // See ParallelCompactData for precise details.  The summary phase also
 937 // calculates the dense prefix for the compaction.  The dense prefix is a
 938 // portion at the beginning of the space that is not moved.  The objects in the
 939 // dense prefix do need to have their object references updated.  See method
 940 // summarize_dense_prefix().
 941 //
 942 // The summary phase is done using 1 GC thread.
 943 //
 944 // The compaction phase moves objects to their new location and updates all
 945 // references in the object.
 946 //
 947 // A current exception is that objects that cross a region boundary are moved
 948 // but do not have their references updated.  References are not updated because
 949 // it cannot easily be determined if the klass pointer KKK for the object AAA
 950 // has been updated.  KKK likely resides in a region to the left of the region
 951 // containing AAA.  These AAA's have there references updated at the end in a
 952 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
 953 // An alternate strategy is being investigated for this deferral of updating.
 954 //
 955 // Compaction is done on a region basis.  A region that is ready to be filled is
 956 // put on a ready list and GC threads take region off the list and fill them.  A
 957 // region is ready to be filled if it empty of live objects.  Such a region may
 958 // have been initially empty (only contained dead objects) or may have had all
 959 // its live objects copied out already.  A region that compacts into itself is
 960 // also ready for filling.  The ready list is initially filled with empty
 961 // regions and regions compacting into themselves.  There is always at least 1
 962 // region that can be put on the ready list.  The regions are atomically added
 963 // and removed from the ready list.
 964 
 965 class TaskQueue;
 966 
 967 class PSParallelCompact : AllStatic {
 968  public:
 969   // Convenient access to type names.
 970   typedef ParMarkBitMap::idx_t idx_t;
 971   typedef ParallelCompactData::RegionData RegionData;
 972   typedef ParallelCompactData::BlockData BlockData;
 973 
 974   typedef enum {
 975     old_space_id, eden_space_id,
 976     from_space_id, to_space_id, last_space_id
 977   } SpaceId;
 978 
 979   struct UpdateDensePrefixTask : public CHeapObj<mtGC> {
 980     SpaceId _space_id;
 981     size_t _region_index_start;
 982     size_t _region_index_end;
 983 
 984     UpdateDensePrefixTask() :
 985         _space_id(SpaceId(0)),
 986         _region_index_start(0),
 987         _region_index_end(0) {}
 988 
 989     UpdateDensePrefixTask(SpaceId space_id,
 990                           size_t region_index_start,
 991                           size_t region_index_end) :
 992         _space_id(space_id),
 993         _region_index_start(region_index_start),
 994         _region_index_end(region_index_end) {}
 995   };
 996 
 997  public:
 998   // Inline closure decls
 999   //
1000   class IsAliveClosure: public BoolObjectClosure {
1001    public:
1002     virtual bool do_object_b(oop p);
1003   };
1004 
1005   friend class RefProcTaskProxy;
1006   friend class PSParallelCompactTest;
1007 
1008  private:
1009   static STWGCTimer           _gc_timer;
1010   static ParallelOldTracer    _gc_tracer;
1011   static elapsedTimer         _accumulated_time;
1012   static unsigned int         _total_invocations;
1013   static unsigned int         _maximum_compaction_gc_num;
1014   static jlong                _time_of_last_gc;   // ms
1015   static CollectorCounters*   _counters;
1016   static ParMarkBitMap        _mark_bitmap;
1017   static ParallelCompactData  _summary_data;
1018   static IsAliveClosure       _is_alive_closure;
1019   static SpaceInfo            _space_info[last_space_id];
1020 
1021   // Reference processing (used in ...follow_contents)
1022   static SpanSubjectToDiscoveryClosure  _span_based_discoverer;
1023   static ReferenceProcessor*  _ref_processor;
1024 
1025   // Values computed at initialization and used by dead_wood_limiter().
1026   static double _dwl_mean;
1027   static double _dwl_std_dev;
1028   static double _dwl_first_term;
1029   static double _dwl_adjustment;
1030 #ifdef  ASSERT
1031   static bool   _dwl_initialized;
1032 #endif  // #ifdef ASSERT
1033 
1034  public:
1035   static ParallelOldTracer* gc_tracer() { return &_gc_tracer; }
1036 
1037  private:
1038 
1039   static void initialize_space_info();
1040 
1041   // Clear the marking bitmap and summary data that cover the specified space.
1042   static void clear_data_covering_space(SpaceId id);
1043 
1044   static void pre_compact();
1045   static void post_compact();
1046 
1047   // Mark live objects
1048   static void marking_phase(ParCompactionManager* cm,
1049                             bool maximum_heap_compaction,
1050                             ParallelOldTracer *gc_tracer);
1051 
1052   // Compute the dense prefix for the designated space.  This is an experimental
1053   // implementation currently not used in production.
1054   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
1055                                                     bool maximum_compaction);
1056 
1057   // Methods used to compute the dense prefix.
1058 
1059   // Compute the value of the normal distribution at x = density.  The mean and
1060   // standard deviation are values saved by initialize_dead_wood_limiter().
1061   static inline double normal_distribution(double density);
1062 
1063   // Initialize the static vars used by dead_wood_limiter().
1064   static void initialize_dead_wood_limiter();
1065 
1066   // Return the percentage of space that can be treated as "dead wood" (i.e.,
1067   // not reclaimed).
1068   static double dead_wood_limiter(double density, size_t min_percent);
1069 
1070   // Find the first (left-most) region in the range [beg, end) that has at least
1071   // dead_words of dead space to the left.  The argument beg must be the first
1072   // region in the space that is not completely live.
1073   static RegionData* dead_wood_limit_region(const RegionData* beg,
1074                                             const RegionData* end,
1075                                             size_t dead_words);
1076 
1077   // Return a pointer to the first region in the range [beg, end) that is not
1078   // completely full.
1079   static RegionData* first_dead_space_region(const RegionData* beg,
1080                                              const RegionData* end);
1081 
1082   // Return a value indicating the benefit or 'yield' if the compacted region
1083   // were to start (or equivalently if the dense prefix were to end) at the
1084   // candidate region.  Higher values are better.
1085   //
1086   // The value is based on the amount of space reclaimed vs. the costs of (a)
1087   // updating references in the dense prefix plus (b) copying objects and
1088   // updating references in the compacted region.
1089   static inline double reclaimed_ratio(const RegionData* const candidate,
1090                                        HeapWord* const bottom,
1091                                        HeapWord* const top,
1092                                        HeapWord* const new_top);
1093 
1094   // Compute the dense prefix for the designated space.
1095   static HeapWord* compute_dense_prefix(const SpaceId id,
1096                                         bool maximum_compaction);
1097 
1098   // Return true if dead space crosses onto the specified Region; bit must be
1099   // the bit index corresponding to the first word of the Region.
1100   static inline bool dead_space_crosses_boundary(const RegionData* region,
1101                                                  idx_t bit);
1102 
1103   // Summary phase utility routine to fill dead space (if any) at the dense
1104   // prefix boundary.  Should only be called if the the dense prefix is
1105   // non-empty.
1106   static void fill_dense_prefix_end(SpaceId id);
1107 
1108   static void summarize_spaces_quick();
1109   static void summarize_space(SpaceId id, bool maximum_compaction);
1110   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
1111 
1112   // Adjust addresses in roots.  Does not adjust addresses in heap.
1113   static void adjust_roots(ParCompactionManager* cm);
1114 
1115   DEBUG_ONLY(static void write_block_fill_histogram();)
1116 
1117   // Move objects to new locations.
1118   static void compact_perm(ParCompactionManager* cm);
1119   static void compact();
1120 
1121   // Add available regions to the stack and draining tasks to the task queue.
1122   static void prepare_region_draining_tasks(uint parallel_gc_threads);
1123 
1124   // Add dense prefix update tasks to the task queue.
1125   static void enqueue_dense_prefix_tasks(TaskQueue& task_queue,
1126                                          uint parallel_gc_threads);
1127 
1128   // If objects are left in eden after a collection, try to move the boundary
1129   // and absorb them into the old gen.  Returns true if eden was emptied.
1130   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1131                                          PSYoungGen* young_gen,
1132                                          PSOldGen* old_gen);
1133 
1134   // Reset time since last full gc
1135   static void reset_millis_since_last_gc();
1136 
1137 #ifndef PRODUCT
1138   // Print generic summary data
1139   static void print_generic_summary_data(ParallelCompactData& summary_data,
1140                                          HeapWord* const beg_addr,
1141                                          HeapWord* const end_addr);
1142 #endif  // #ifndef PRODUCT
1143 
1144  public:
1145 
1146   PSParallelCompact();
1147 
1148   static void invoke(bool maximum_heap_compaction);
1149   static bool invoke_no_policy(bool maximum_heap_compaction);
1150 
1151   static void post_initialize();
1152   // Perform initialization for PSParallelCompact that requires
1153   // allocations.  This should be called during the VM initialization
1154   // at a pointer where it would be appropriate to return a JNI_ENOMEM
1155   // in the event of a failure.
1156   static bool initialize();
1157 
1158   // Closure accessors
1159   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
1160 
1161   // Public accessors
1162   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
1163   static unsigned int total_invocations() { return _total_invocations; }
1164   static CollectorCounters* counters()    { return _counters; }
1165 
1166   // Marking support
1167   static inline bool mark_obj(oop obj);
1168   static inline bool is_marked(oop obj);
1169 
1170   template <class T> static inline void adjust_pointer(T* p, ParCompactionManager* cm);
1171 
1172   // Compaction support.
1173   // Return true if p is in the range [beg_addr, end_addr).
1174   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
1175   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
1176 
1177   // Convenience wrappers for per-space data kept in _space_info.
1178   static inline MutableSpace*     space(SpaceId space_id);
1179   static inline HeapWord*         new_top(SpaceId space_id);
1180   static inline HeapWord*         dense_prefix(SpaceId space_id);
1181   static inline ObjectStartArray* start_array(SpaceId space_id);
1182 
1183   // Process the end of the given region range in the dense prefix.
1184   // This includes saving any object not updated.
1185   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
1186                                             size_t region_start_index,
1187                                             size_t region_end_index,
1188                                             idx_t exiting_object_offset,
1189                                             idx_t region_offset_start,
1190                                             idx_t region_offset_end);
1191 
1192   // Update a region in the dense prefix.  For each live object
1193   // in the region, update it's interior references.  For each
1194   // dead object, fill it with deadwood. Dead space at the end
1195   // of a region range will be filled to the start of the next
1196   // live object regardless of the region_index_end.  None of the
1197   // objects in the dense prefix move and dead space is dead
1198   // (holds only dead objects that don't need any processing), so
1199   // dead space can be filled in any order.
1200   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
1201                                                   SpaceId space_id,
1202                                                   size_t region_index_start,
1203                                                   size_t region_index_end);
1204 
1205   // Return the address of the count + 1st live word in the range [beg, end).
1206   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
1207 
1208   // Return the address of the word to be copied to dest_addr, which must be
1209   // aligned to a region boundary.
1210   static HeapWord* first_src_addr(HeapWord* const dest_addr,
1211                                   SpaceId src_space_id,
1212                                   size_t src_region_idx);
1213 
1214   // Determine the next source region, set closure.source() to the start of the
1215   // new region return the region index.  Parameter end_addr is the address one
1216   // beyond the end of source range just processed.  If necessary, switch to a
1217   // new source space and set src_space_id (in-out parameter) and src_space_top
1218   // (out parameter) accordingly.
1219   static size_t next_src_region(MoveAndUpdateClosure& closure,
1220                                 SpaceId& src_space_id,
1221                                 HeapWord*& src_space_top,
1222                                 HeapWord* end_addr);
1223 
1224   // Decrement the destination count for each non-empty source region in the
1225   // range [beg_region, region(region_align_up(end_addr))).  If the destination
1226   // count for a region goes to 0 and it needs to be filled, enqueue it.
1227   static void decrement_destination_counts(ParCompactionManager* cm,
1228                                            SpaceId src_space_id,
1229                                            size_t beg_region,
1230                                            HeapWord* end_addr);
1231 
1232   static void fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region);
1233   static void fill_and_update_region(ParCompactionManager* cm, size_t region);
1234 
1235   static bool steal_shadow_region(ParCompactionManager* cm, size_t& region_idx);
1236   static void fill_shadow_region(ParCompactionManager* cm, size_t region_idx);
1237   static void fill_and_update_shadow_region(ParCompactionManager* cm, size_t region) {
1238     fill_shadow_region(cm, region);
1239   }
1240   // Copy the content of a shadow region back to its corresponding heap region
1241   static void copy_back(HeapWord* shadow_addr, HeapWord* region_addr);
1242   // Initialize the steal record of a GC thread
1243   static void initialize_steal_record(uint which);
1244   // Reuse the empty heap regions as shadow regions, like to-space regions
1245   static void enqueue_shadow_region();
1246 
1247   // Fill in the block table for the specified region.
1248   static void fill_blocks(size_t region_idx);
1249 
1250   // Update the deferred objects in the space.
1251   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
1252 
1253   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
1254   static ParallelCompactData& summary_data() { return _summary_data; }
1255 
1256   // Reference Processing
1257   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
1258 
1259   static STWGCTimer* gc_timer() { return &_gc_timer; }
1260 
1261   // Return the SpaceId for the given address.
1262   static SpaceId space_id(HeapWord* addr);
1263 
1264   // Time since last full gc (in milliseconds).
1265   static jlong millis_since_last_gc();
1266 
1267   static void print_on_error(outputStream* st);
1268 
1269 #ifndef PRODUCT
1270   // Debugging support.
1271   static const char* space_names[last_space_id];
1272   static void print_region_ranges();
1273   static void print_dense_prefix_stats(const char* const algorithm,
1274                                        const SpaceId id,
1275                                        const bool maximum_compaction,
1276                                        HeapWord* const addr);
1277   static void summary_phase_msg(SpaceId dst_space_id,
1278                                 HeapWord* dst_beg, HeapWord* dst_end,
1279                                 SpaceId src_space_id,
1280                                 HeapWord* src_beg, HeapWord* src_end);
1281 #endif  // #ifndef PRODUCT
1282 
1283 #ifdef  ASSERT
1284   // Sanity check the new location of a word in the heap.
1285   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
1286   // Verify that all the regions have been emptied.
1287   static void verify_complete(SpaceId space_id);
1288 #endif  // #ifdef ASSERT
1289 };
1290 
1291 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
1292   static inline size_t calculate_words_remaining(size_t region);
1293  public:
1294   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1295                               size_t region);
1296 
1297   // Accessors.
1298   HeapWord* destination() const         { return _destination; }
1299   HeapWord* copy_destination() const    { return _destination + _offset; }
1300 
1301   // If the object will fit (size <= words_remaining()), copy it to the current
1302   // destination, update the interior oops and the start array and return either
1303   // full (if the closure is full) or incomplete.  If the object will not fit,
1304   // return would_overflow.
1305   IterationStatus do_addr(HeapWord* addr, size_t size);
1306 
1307   // Copy enough words to fill this closure, starting at source().  Interior
1308   // oops and the start array are not updated.  Return full.
1309   IterationStatus copy_until_full();
1310 
1311   // Copy enough words to fill this closure or to the end of an object,
1312   // whichever is smaller, starting at source().  Interior oops and the start
1313   // array are not updated.
1314   void copy_partial_obj();
1315 
1316   virtual void complete_region(ParCompactionManager* cm, HeapWord* dest_addr,
1317                                PSParallelCompact::RegionData* region_ptr);
1318 
1319 protected:
1320   // Update variables to indicate that word_count words were processed.
1321   inline void update_state(size_t word_count);
1322 
1323  protected:
1324   HeapWord*               _destination;         // Next addr to be written.
1325   ObjectStartArray* const _start_array;
1326   size_t                  _offset;
1327 };
1328 
1329 inline size_t MoveAndUpdateClosure::calculate_words_remaining(size_t region) {
1330   HeapWord* dest_addr = PSParallelCompact::summary_data().region_to_addr(region);
1331   PSParallelCompact::SpaceId dest_space_id = PSParallelCompact::space_id(dest_addr);
1332   HeapWord* new_top = PSParallelCompact::new_top(dest_space_id);
1333   assert(dest_addr < new_top, "sanity");
1334 
1335   return MIN2(pointer_delta(new_top, dest_addr), ParallelCompactData::RegionSize);
1336 }
1337 
1338 inline
1339 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
1340                                            ParCompactionManager* cm,
1341                                            size_t region_idx) :
1342   ParMarkBitMapClosure(bitmap, cm, calculate_words_remaining(region_idx)),
1343   _destination(PSParallelCompact::summary_data().region_to_addr(region_idx)),
1344   _start_array(PSParallelCompact::start_array(PSParallelCompact::space_id(_destination))),
1345   _offset(0) { }
1346 
1347 
1348 inline void MoveAndUpdateClosure::update_state(size_t words)
1349 {
1350   decrement_words_remaining(words);
1351   _source += words;
1352   _destination += words;
1353 }
1354 
1355 class ShadowClosure: public MoveAndUpdateClosure {
1356   inline size_t calculate_shadow_offset(size_t region_idx, size_t shadow_idx);
1357 public:
1358   inline ShadowClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1359                        size_t region, size_t shadow);
1360 
1361   virtual void complete_region(ParCompactionManager* cm, HeapWord* dest_addr,
1362                                PSParallelCompact::RegionData* region_ptr);
1363 
1364 private:
1365   size_t _shadow;
1366 };
1367 
1368 inline size_t ShadowClosure::calculate_shadow_offset(size_t region_idx, size_t shadow_idx) {
1369   ParallelCompactData& sd = PSParallelCompact::summary_data();
1370   HeapWord* dest_addr = sd.region_to_addr(region_idx);
1371   HeapWord* shadow_addr = sd.region_to_addr(shadow_idx);
1372   return pointer_delta(shadow_addr, dest_addr);
1373 }
1374 
1375 inline
1376 ShadowClosure::ShadowClosure(ParMarkBitMap *bitmap,
1377                              ParCompactionManager *cm,
1378                              size_t region,
1379                              size_t shadow) :
1380   MoveAndUpdateClosure(bitmap, cm, region),
1381   _shadow(shadow) {
1382   _offset = calculate_shadow_offset(region, shadow);
1383 }
1384 
1385 class UpdateOnlyClosure: public ParMarkBitMapClosure {
1386  private:
1387   const PSParallelCompact::SpaceId _space_id;
1388   ObjectStartArray* const          _start_array;
1389 
1390  public:
1391   UpdateOnlyClosure(ParMarkBitMap* mbm,
1392                     ParCompactionManager* cm,
1393                     PSParallelCompact::SpaceId space_id);
1394 
1395   // Update the object.
1396   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
1397 
1398   inline void do_addr(HeapWord* addr);
1399 };
1400 
1401 class FillClosure: public ParMarkBitMapClosure {
1402  public:
1403   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id);
1404 
1405   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1406 
1407  private:
1408   ObjectStartArray* const _start_array;
1409 };
1410 
1411 #endif // SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP