1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifdef _WIN64
  26 // Must be at least Windows 2000 or XP to use VectoredExceptions
  27 #define _WIN32_WINNT 0x500
  28 #endif
  29 
  30 // do not include precompiled header file
  31 # include "incls/_os_windows.cpp.incl"
  32 
  33 #ifdef _DEBUG
  34 #include <crtdbg.h>
  35 #endif
  36 
  37 
  38 #include <windows.h>
  39 #include <sys/types.h>
  40 #include <sys/stat.h>
  41 #include <sys/timeb.h>
  42 #include <objidl.h>
  43 #include <shlobj.h>
  44 
  45 #include <malloc.h>
  46 #include <signal.h>
  47 #include <direct.h>
  48 #include <errno.h>
  49 #include <fcntl.h>
  50 #include <io.h>
  51 #include <process.h>              // For _beginthreadex(), _endthreadex()
  52 #include <imagehlp.h>             // For os::dll_address_to_function_name
  53 
  54 /* for enumerating dll libraries */
  55 #include <tlhelp32.h>
  56 #include <vdmdbg.h>
  57 
  58 // for timer info max values which include all bits
  59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  60 
  61 // For DLL loading/load error detection
  62 // Values of PE COFF
  63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
  64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
  65 
  66 static HANDLE main_process;
  67 static HANDLE main_thread;
  68 static int    main_thread_id;
  69 
  70 static FILETIME process_creation_time;
  71 static FILETIME process_exit_time;
  72 static FILETIME process_user_time;
  73 static FILETIME process_kernel_time;
  74 
  75 #ifdef _WIN64
  76 PVOID  topLevelVectoredExceptionHandler = NULL;
  77 #endif
  78 
  79 #ifdef _M_IA64
  80 #define __CPU__ ia64
  81 #elif _M_AMD64
  82 #define __CPU__ amd64
  83 #else
  84 #define __CPU__ i486
  85 #endif
  86 
  87 // save DLL module handle, used by GetModuleFileName
  88 
  89 HINSTANCE vm_lib_handle;
  90 static int getLastErrorString(char *buf, size_t len);
  91 
  92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
  93   switch (reason) {
  94     case DLL_PROCESS_ATTACH:
  95       vm_lib_handle = hinst;
  96       if(ForceTimeHighResolution)
  97         timeBeginPeriod(1L);
  98       break;
  99     case DLL_PROCESS_DETACH:
 100       if(ForceTimeHighResolution)
 101         timeEndPeriod(1L);
 102 #ifdef _WIN64
 103       if (topLevelVectoredExceptionHandler != NULL) {
 104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 105         topLevelVectoredExceptionHandler = NULL;
 106       }
 107 #endif
 108       break;
 109     default:
 110       break;
 111   }
 112   return true;
 113 }
 114 
 115 static inline double fileTimeAsDouble(FILETIME* time) {
 116   const double high  = (double) ((unsigned int) ~0);
 117   const double split = 10000000.0;
 118   double result = (time->dwLowDateTime / split) +
 119                    time->dwHighDateTime * (high/split);
 120   return result;
 121 }
 122 
 123 // Implementation of os
 124 
 125 bool os::getenv(const char* name, char* buffer, int len) {
 126  int result = GetEnvironmentVariable(name, buffer, len);
 127  return result > 0 && result < len;
 128 }
 129 
 130 
 131 // No setuid programs under Windows.
 132 bool os::have_special_privileges() {
 133   return false;
 134 }
 135 
 136 
 137 // This method is  a periodic task to check for misbehaving JNI applications
 138 // under CheckJNI, we can add any periodic checks here.
 139 // For Windows at the moment does nothing
 140 void os::run_periodic_checks() {
 141   return;
 142 }
 143 
 144 #ifndef _WIN64
 145 // previous UnhandledExceptionFilter, if there is one
 146 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 147 
 148 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 149 #endif
 150 void os::init_system_properties_values() {
 151   /* sysclasspath, java_home, dll_dir */
 152   {
 153       char *home_path;
 154       char *dll_path;
 155       char *pslash;
 156       char *bin = "\\bin";
 157       char home_dir[MAX_PATH];
 158 
 159       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 160           os::jvm_path(home_dir, sizeof(home_dir));
 161           // Found the full path to jvm[_g].dll.
 162           // Now cut the path to <java_home>/jre if we can.
 163           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 164           pslash = strrchr(home_dir, '\\');
 165           if (pslash != NULL) {
 166               *pslash = '\0';                 /* get rid of \{client|server} */
 167               pslash = strrchr(home_dir, '\\');
 168               if (pslash != NULL)
 169                   *pslash = '\0';             /* get rid of \bin */
 170           }
 171       }
 172 
 173       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
 174       if (home_path == NULL)
 175           return;
 176       strcpy(home_path, home_dir);
 177       Arguments::set_java_home(home_path);
 178 
 179       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
 180       if (dll_path == NULL)
 181           return;
 182       strcpy(dll_path, home_dir);
 183       strcat(dll_path, bin);
 184       Arguments::set_dll_dir(dll_path);
 185 
 186       if (!set_boot_path('\\', ';'))
 187           return;
 188   }
 189 
 190   /* library_path */
 191   #define EXT_DIR "\\lib\\ext"
 192   #define BIN_DIR "\\bin"
 193   #define PACKAGE_DIR "\\Sun\\Java"
 194   {
 195     /* Win32 library search order (See the documentation for LoadLibrary):
 196      *
 197      * 1. The directory from which application is loaded.
 198      * 2. The current directory
 199      * 3. The system wide Java Extensions directory (Java only)
 200      * 4. System directory (GetSystemDirectory)
 201      * 5. Windows directory (GetWindowsDirectory)
 202      * 6. The PATH environment variable
 203      */
 204 
 205     char *library_path;
 206     char tmp[MAX_PATH];
 207     char *path_str = ::getenv("PATH");
 208 
 209     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 210         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
 211 
 212     library_path[0] = '\0';
 213 
 214     GetModuleFileName(NULL, tmp, sizeof(tmp));
 215     *(strrchr(tmp, '\\')) = '\0';
 216     strcat(library_path, tmp);
 217 
 218     strcat(library_path, ";.");
 219 
 220     GetWindowsDirectory(tmp, sizeof(tmp));
 221     strcat(library_path, ";");
 222     strcat(library_path, tmp);
 223     strcat(library_path, PACKAGE_DIR BIN_DIR);
 224 
 225     GetSystemDirectory(tmp, sizeof(tmp));
 226     strcat(library_path, ";");
 227     strcat(library_path, tmp);
 228 
 229     GetWindowsDirectory(tmp, sizeof(tmp));
 230     strcat(library_path, ";");
 231     strcat(library_path, tmp);
 232 
 233     if (path_str) {
 234         strcat(library_path, ";");
 235         strcat(library_path, path_str);
 236     }
 237 
 238     Arguments::set_library_path(library_path);
 239     FREE_C_HEAP_ARRAY(char, library_path);
 240   }
 241 
 242   /* Default extensions directory */
 243   {
 244     char path[MAX_PATH];
 245     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 246     GetWindowsDirectory(path, MAX_PATH);
 247     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 248         path, PACKAGE_DIR, EXT_DIR);
 249     Arguments::set_ext_dirs(buf);
 250   }
 251   #undef EXT_DIR
 252   #undef BIN_DIR
 253   #undef PACKAGE_DIR
 254 
 255   /* Default endorsed standards directory. */
 256   {
 257     #define ENDORSED_DIR "\\lib\\endorsed"
 258     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 259     char * buf = NEW_C_HEAP_ARRAY(char, len);
 260     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 261     Arguments::set_endorsed_dirs(buf);
 262     #undef ENDORSED_DIR
 263   }
 264 
 265 #ifndef _WIN64
 266   // set our UnhandledExceptionFilter and save any previous one
 267   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 268 #endif
 269 
 270   // Done
 271   return;
 272 }
 273 
 274 void os::breakpoint() {
 275   DebugBreak();
 276 }
 277 
 278 // Invoked from the BREAKPOINT Macro
 279 extern "C" void breakpoint() {
 280   os::breakpoint();
 281 }
 282 
 283 // Returns an estimate of the current stack pointer. Result must be guaranteed
 284 // to point into the calling threads stack, and be no lower than the current
 285 // stack pointer.
 286 
 287 address os::current_stack_pointer() {
 288   int dummy;
 289   address sp = (address)&dummy;
 290   return sp;
 291 }
 292 
 293 // os::current_stack_base()
 294 //
 295 //   Returns the base of the stack, which is the stack's
 296 //   starting address.  This function must be called
 297 //   while running on the stack of the thread being queried.
 298 
 299 address os::current_stack_base() {
 300   MEMORY_BASIC_INFORMATION minfo;
 301   address stack_bottom;
 302   size_t stack_size;
 303 
 304   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 305   stack_bottom =  (address)minfo.AllocationBase;
 306   stack_size = minfo.RegionSize;
 307 
 308   // Add up the sizes of all the regions with the same
 309   // AllocationBase.
 310   while( 1 )
 311   {
 312     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 313     if ( stack_bottom == (address)minfo.AllocationBase )
 314       stack_size += minfo.RegionSize;
 315     else
 316       break;
 317   }
 318 
 319 #ifdef _M_IA64
 320   // IA64 has memory and register stacks
 321   stack_size = stack_size / 2;
 322 #endif
 323   return stack_bottom + stack_size;
 324 }
 325 
 326 size_t os::current_stack_size() {
 327   size_t sz;
 328   MEMORY_BASIC_INFORMATION minfo;
 329   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 330   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 331   return sz;
 332 }
 333 
 334 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 335   const struct tm* time_struct_ptr = localtime(clock);
 336   if (time_struct_ptr != NULL) {
 337     *res = *time_struct_ptr;
 338     return res;
 339   }
 340   return NULL;
 341 }
 342 
 343 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 344 
 345 // Thread start routine for all new Java threads
 346 static unsigned __stdcall java_start(Thread* thread) {
 347   // Try to randomize the cache line index of hot stack frames.
 348   // This helps when threads of the same stack traces evict each other's
 349   // cache lines. The threads can be either from the same JVM instance, or
 350   // from different JVM instances. The benefit is especially true for
 351   // processors with hyperthreading technology.
 352   static int counter = 0;
 353   int pid = os::current_process_id();
 354   _alloca(((pid ^ counter++) & 7) * 128);
 355 
 356   OSThread* osthr = thread->osthread();
 357   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 358 
 359   if (UseNUMA) {
 360     int lgrp_id = os::numa_get_group_id();
 361     if (lgrp_id != -1) {
 362       thread->set_lgrp_id(lgrp_id);
 363     }
 364   }
 365 
 366 
 367   if (UseVectoredExceptions) {
 368     // If we are using vectored exception we don't need to set a SEH
 369     thread->run();
 370   }
 371   else {
 372     // Install a win32 structured exception handler around every thread created
 373     // by VM, so VM can genrate error dump when an exception occurred in non-
 374     // Java thread (e.g. VM thread).
 375     __try {
 376        thread->run();
 377     } __except(topLevelExceptionFilter(
 378                (_EXCEPTION_POINTERS*)_exception_info())) {
 379         // Nothing to do.
 380     }
 381   }
 382 
 383   // One less thread is executing
 384   // When the VMThread gets here, the main thread may have already exited
 385   // which frees the CodeHeap containing the Atomic::add code
 386   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 387     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 388   }
 389 
 390   return 0;
 391 }
 392 
 393 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 394   // Allocate the OSThread object
 395   OSThread* osthread = new OSThread(NULL, NULL);
 396   if (osthread == NULL) return NULL;
 397 
 398   // Initialize support for Java interrupts
 399   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 400   if (interrupt_event == NULL) {
 401     delete osthread;
 402     return NULL;
 403   }
 404   osthread->set_interrupt_event(interrupt_event);
 405 
 406   // Store info on the Win32 thread into the OSThread
 407   osthread->set_thread_handle(thread_handle);
 408   osthread->set_thread_id(thread_id);
 409 
 410   if (UseNUMA) {
 411     int lgrp_id = os::numa_get_group_id();
 412     if (lgrp_id != -1) {
 413       thread->set_lgrp_id(lgrp_id);
 414     }
 415   }
 416 
 417   // Initial thread state is INITIALIZED, not SUSPENDED
 418   osthread->set_state(INITIALIZED);
 419 
 420   return osthread;
 421 }
 422 
 423 
 424 bool os::create_attached_thread(JavaThread* thread) {
 425 #ifdef ASSERT
 426   thread->verify_not_published();
 427 #endif
 428   HANDLE thread_h;
 429   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 430                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 431     fatal("DuplicateHandle failed\n");
 432   }
 433   OSThread* osthread = create_os_thread(thread, thread_h,
 434                                         (int)current_thread_id());
 435   if (osthread == NULL) {
 436      return false;
 437   }
 438 
 439   // Initial thread state is RUNNABLE
 440   osthread->set_state(RUNNABLE);
 441 
 442   thread->set_osthread(osthread);
 443   return true;
 444 }
 445 
 446 bool os::create_main_thread(JavaThread* thread) {
 447 #ifdef ASSERT
 448   thread->verify_not_published();
 449 #endif
 450   if (_starting_thread == NULL) {
 451     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 452      if (_starting_thread == NULL) {
 453         return false;
 454      }
 455   }
 456 
 457   // The primordial thread is runnable from the start)
 458   _starting_thread->set_state(RUNNABLE);
 459 
 460   thread->set_osthread(_starting_thread);
 461   return true;
 462 }
 463 
 464 // Allocate and initialize a new OSThread
 465 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 466   unsigned thread_id;
 467 
 468   // Allocate the OSThread object
 469   OSThread* osthread = new OSThread(NULL, NULL);
 470   if (osthread == NULL) {
 471     return false;
 472   }
 473 
 474   // Initialize support for Java interrupts
 475   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 476   if (interrupt_event == NULL) {
 477     delete osthread;
 478     return NULL;
 479   }
 480   osthread->set_interrupt_event(interrupt_event);
 481   osthread->set_interrupted(false);
 482 
 483   thread->set_osthread(osthread);
 484 
 485   if (stack_size == 0) {
 486     switch (thr_type) {
 487     case os::java_thread:
 488       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 489       if (JavaThread::stack_size_at_create() > 0)
 490         stack_size = JavaThread::stack_size_at_create();
 491       break;
 492     case os::compiler_thread:
 493       if (CompilerThreadStackSize > 0) {
 494         stack_size = (size_t)(CompilerThreadStackSize * K);
 495         break;
 496       } // else fall through:
 497         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 498     case os::vm_thread:
 499     case os::pgc_thread:
 500     case os::cgc_thread:
 501     case os::watcher_thread:
 502       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 503       break;
 504     }
 505   }
 506 
 507   // Create the Win32 thread
 508   //
 509   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 510   // does not specify stack size. Instead, it specifies the size of
 511   // initially committed space. The stack size is determined by
 512   // PE header in the executable. If the committed "stack_size" is larger
 513   // than default value in the PE header, the stack is rounded up to the
 514   // nearest multiple of 1MB. For example if the launcher has default
 515   // stack size of 320k, specifying any size less than 320k does not
 516   // affect the actual stack size at all, it only affects the initial
 517   // commitment. On the other hand, specifying 'stack_size' larger than
 518   // default value may cause significant increase in memory usage, because
 519   // not only the stack space will be rounded up to MB, but also the
 520   // entire space is committed upfront.
 521   //
 522   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 523   // for CreateThread() that can treat 'stack_size' as stack size. However we
 524   // are not supposed to call CreateThread() directly according to MSDN
 525   // document because JVM uses C runtime library. The good news is that the
 526   // flag appears to work with _beginthredex() as well.
 527 
 528 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 529 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 530 #endif
 531 
 532   HANDLE thread_handle =
 533     (HANDLE)_beginthreadex(NULL,
 534                            (unsigned)stack_size,
 535                            (unsigned (__stdcall *)(void*)) java_start,
 536                            thread,
 537                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 538                            &thread_id);
 539   if (thread_handle == NULL) {
 540     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 541     // without the flag.
 542     thread_handle =
 543     (HANDLE)_beginthreadex(NULL,
 544                            (unsigned)stack_size,
 545                            (unsigned (__stdcall *)(void*)) java_start,
 546                            thread,
 547                            CREATE_SUSPENDED,
 548                            &thread_id);
 549   }
 550   if (thread_handle == NULL) {
 551     // Need to clean up stuff we've allocated so far
 552     CloseHandle(osthread->interrupt_event());
 553     thread->set_osthread(NULL);
 554     delete osthread;
 555     return NULL;
 556   }
 557 
 558   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 559 
 560   // Store info on the Win32 thread into the OSThread
 561   osthread->set_thread_handle(thread_handle);
 562   osthread->set_thread_id(thread_id);
 563 
 564   // Initial thread state is INITIALIZED, not SUSPENDED
 565   osthread->set_state(INITIALIZED);
 566 
 567   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 568   return true;
 569 }
 570 
 571 
 572 // Free Win32 resources related to the OSThread
 573 void os::free_thread(OSThread* osthread) {
 574   assert(osthread != NULL, "osthread not set");
 575   CloseHandle(osthread->thread_handle());
 576   CloseHandle(osthread->interrupt_event());
 577   delete osthread;
 578 }
 579 
 580 
 581 static int    has_performance_count = 0;
 582 static jlong first_filetime;
 583 static jlong initial_performance_count;
 584 static jlong performance_frequency;
 585 
 586 
 587 jlong as_long(LARGE_INTEGER x) {
 588   jlong result = 0; // initialization to avoid warning
 589   set_high(&result, x.HighPart);
 590   set_low(&result,  x.LowPart);
 591   return result;
 592 }
 593 
 594 
 595 jlong os::elapsed_counter() {
 596   LARGE_INTEGER count;
 597   if (has_performance_count) {
 598     QueryPerformanceCounter(&count);
 599     return as_long(count) - initial_performance_count;
 600   } else {
 601     FILETIME wt;
 602     GetSystemTimeAsFileTime(&wt);
 603     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 604   }
 605 }
 606 
 607 
 608 jlong os::elapsed_frequency() {
 609   if (has_performance_count) {
 610     return performance_frequency;
 611   } else {
 612    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 613    return 10000000;
 614   }
 615 }
 616 
 617 
 618 julong os::available_memory() {
 619   return win32::available_memory();
 620 }
 621 
 622 julong os::win32::available_memory() {
 623   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 624   // value if total memory is larger than 4GB
 625   MEMORYSTATUSEX ms;
 626   ms.dwLength = sizeof(ms);
 627   GlobalMemoryStatusEx(&ms);
 628 
 629   return (julong)ms.ullAvailPhys;
 630 }
 631 
 632 julong os::physical_memory() {
 633   return win32::physical_memory();
 634 }
 635 
 636 julong os::allocatable_physical_memory(julong size) {
 637 #ifdef _LP64
 638   return size;
 639 #else
 640   // Limit to 1400m because of the 2gb address space wall
 641   return MIN2(size, (julong)1400*M);
 642 #endif
 643 }
 644 
 645 // VC6 lacks DWORD_PTR
 646 #if _MSC_VER < 1300
 647 typedef UINT_PTR DWORD_PTR;
 648 #endif
 649 
 650 int os::active_processor_count() {
 651   DWORD_PTR lpProcessAffinityMask = 0;
 652   DWORD_PTR lpSystemAffinityMask = 0;
 653   int proc_count = processor_count();
 654   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 655       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 656     // Nof active processors is number of bits in process affinity mask
 657     int bitcount = 0;
 658     while (lpProcessAffinityMask != 0) {
 659       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 660       bitcount++;
 661     }
 662     return bitcount;
 663   } else {
 664     return proc_count;
 665   }
 666 }
 667 
 668 bool os::distribute_processes(uint length, uint* distribution) {
 669   // Not yet implemented.
 670   return false;
 671 }
 672 
 673 bool os::bind_to_processor(uint processor_id) {
 674   // Not yet implemented.
 675   return false;
 676 }
 677 
 678 static void initialize_performance_counter() {
 679   LARGE_INTEGER count;
 680   if (QueryPerformanceFrequency(&count)) {
 681     has_performance_count = 1;
 682     performance_frequency = as_long(count);
 683     QueryPerformanceCounter(&count);
 684     initial_performance_count = as_long(count);
 685   } else {
 686     has_performance_count = 0;
 687     FILETIME wt;
 688     GetSystemTimeAsFileTime(&wt);
 689     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 690   }
 691 }
 692 
 693 
 694 double os::elapsedTime() {
 695   return (double) elapsed_counter() / (double) elapsed_frequency();
 696 }
 697 
 698 
 699 // Windows format:
 700 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 701 // Java format:
 702 //   Java standards require the number of milliseconds since 1/1/1970
 703 
 704 // Constant offset - calculated using offset()
 705 static jlong  _offset   = 116444736000000000;
 706 // Fake time counter for reproducible results when debugging
 707 static jlong  fake_time = 0;
 708 
 709 #ifdef ASSERT
 710 // Just to be safe, recalculate the offset in debug mode
 711 static jlong _calculated_offset = 0;
 712 static int   _has_calculated_offset = 0;
 713 
 714 jlong offset() {
 715   if (_has_calculated_offset) return _calculated_offset;
 716   SYSTEMTIME java_origin;
 717   java_origin.wYear          = 1970;
 718   java_origin.wMonth         = 1;
 719   java_origin.wDayOfWeek     = 0; // ignored
 720   java_origin.wDay           = 1;
 721   java_origin.wHour          = 0;
 722   java_origin.wMinute        = 0;
 723   java_origin.wSecond        = 0;
 724   java_origin.wMilliseconds  = 0;
 725   FILETIME jot;
 726   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 727     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 728   }
 729   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 730   _has_calculated_offset = 1;
 731   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 732   return _calculated_offset;
 733 }
 734 #else
 735 jlong offset() {
 736   return _offset;
 737 }
 738 #endif
 739 
 740 jlong windows_to_java_time(FILETIME wt) {
 741   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 742   return (a - offset()) / 10000;
 743 }
 744 
 745 FILETIME java_to_windows_time(jlong l) {
 746   jlong a = (l * 10000) + offset();
 747   FILETIME result;
 748   result.dwHighDateTime = high(a);
 749   result.dwLowDateTime  = low(a);
 750   return result;
 751 }
 752 
 753 // For now, we say that Windows does not support vtime.  I have no idea
 754 // whether it can actually be made to (DLD, 9/13/05).
 755 
 756 bool os::supports_vtime() { return false; }
 757 bool os::enable_vtime() { return false; }
 758 bool os::vtime_enabled() { return false; }
 759 double os::elapsedVTime() {
 760   // better than nothing, but not much
 761   return elapsedTime();
 762 }
 763 
 764 jlong os::javaTimeMillis() {
 765   if (UseFakeTimers) {
 766     return fake_time++;
 767   } else {
 768     FILETIME wt;
 769     GetSystemTimeAsFileTime(&wt);
 770     return windows_to_java_time(wt);
 771   }
 772 }
 773 
 774 #define NANOS_PER_SEC         CONST64(1000000000)
 775 #define NANOS_PER_MILLISEC    1000000
 776 jlong os::javaTimeNanos() {
 777   if (!has_performance_count) {
 778     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
 779   } else {
 780     LARGE_INTEGER current_count;
 781     QueryPerformanceCounter(&current_count);
 782     double current = as_long(current_count);
 783     double freq = performance_frequency;
 784     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
 785     return time;
 786   }
 787 }
 788 
 789 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 790   if (!has_performance_count) {
 791     // javaTimeMillis() doesn't have much percision,
 792     // but it is not going to wrap -- so all 64 bits
 793     info_ptr->max_value = ALL_64_BITS;
 794 
 795     // this is a wall clock timer, so may skip
 796     info_ptr->may_skip_backward = true;
 797     info_ptr->may_skip_forward = true;
 798   } else {
 799     jlong freq = performance_frequency;
 800     if (freq < NANOS_PER_SEC) {
 801       // the performance counter is 64 bits and we will
 802       // be multiplying it -- so no wrap in 64 bits
 803       info_ptr->max_value = ALL_64_BITS;
 804     } else if (freq > NANOS_PER_SEC) {
 805       // use the max value the counter can reach to
 806       // determine the max value which could be returned
 807       julong max_counter = (julong)ALL_64_BITS;
 808       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
 809     } else {
 810       // the performance counter is 64 bits and we will
 811       // be using it directly -- so no wrap in 64 bits
 812       info_ptr->max_value = ALL_64_BITS;
 813     }
 814 
 815     // using a counter, so no skipping
 816     info_ptr->may_skip_backward = false;
 817     info_ptr->may_skip_forward = false;
 818   }
 819   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 820 }
 821 
 822 char* os::local_time_string(char *buf, size_t buflen) {
 823   SYSTEMTIME st;
 824   GetLocalTime(&st);
 825   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 826                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 827   return buf;
 828 }
 829 
 830 bool os::getTimesSecs(double* process_real_time,
 831                      double* process_user_time,
 832                      double* process_system_time) {
 833   HANDLE h_process = GetCurrentProcess();
 834   FILETIME create_time, exit_time, kernel_time, user_time;
 835   BOOL result = GetProcessTimes(h_process,
 836                                &create_time,
 837                                &exit_time,
 838                                &kernel_time,
 839                                &user_time);
 840   if (result != 0) {
 841     FILETIME wt;
 842     GetSystemTimeAsFileTime(&wt);
 843     jlong rtc_millis = windows_to_java_time(wt);
 844     jlong user_millis = windows_to_java_time(user_time);
 845     jlong system_millis = windows_to_java_time(kernel_time);
 846     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 847     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 848     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 849     return true;
 850   } else {
 851     return false;
 852   }
 853 }
 854 
 855 void os::shutdown() {
 856 
 857   // allow PerfMemory to attempt cleanup of any persistent resources
 858   perfMemory_exit();
 859 
 860   // flush buffered output, finish log files
 861   ostream_abort();
 862 
 863   // Check for abort hook
 864   abort_hook_t abort_hook = Arguments::abort_hook();
 865   if (abort_hook != NULL) {
 866     abort_hook();
 867   }
 868 }
 869 
 870 void os::abort(bool dump_core)
 871 {
 872   os::shutdown();
 873   // no core dump on Windows
 874   ::exit(1);
 875 }
 876 
 877 // Die immediately, no exit hook, no abort hook, no cleanup.
 878 void os::die() {
 879   _exit(-1);
 880 }
 881 
 882 // Directory routines copied from src/win32/native/java/io/dirent_md.c
 883 //  * dirent_md.c       1.15 00/02/02
 884 //
 885 // The declarations for DIR and struct dirent are in jvm_win32.h.
 886 
 887 /* Caller must have already run dirname through JVM_NativePath, which removes
 888    duplicate slashes and converts all instances of '/' into '\\'. */
 889 
 890 DIR *
 891 os::opendir(const char *dirname)
 892 {
 893     assert(dirname != NULL, "just checking");   // hotspot change
 894     DIR *dirp = (DIR *)malloc(sizeof(DIR));
 895     DWORD fattr;                                // hotspot change
 896     char alt_dirname[4] = { 0, 0, 0, 0 };
 897 
 898     if (dirp == 0) {
 899         errno = ENOMEM;
 900         return 0;
 901     }
 902 
 903     /*
 904      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
 905      * as a directory in FindFirstFile().  We detect this case here and
 906      * prepend the current drive name.
 907      */
 908     if (dirname[1] == '\0' && dirname[0] == '\\') {
 909         alt_dirname[0] = _getdrive() + 'A' - 1;
 910         alt_dirname[1] = ':';
 911         alt_dirname[2] = '\\';
 912         alt_dirname[3] = '\0';
 913         dirname = alt_dirname;
 914     }
 915 
 916     dirp->path = (char *)malloc(strlen(dirname) + 5);
 917     if (dirp->path == 0) {
 918         free(dirp);
 919         errno = ENOMEM;
 920         return 0;
 921     }
 922     strcpy(dirp->path, dirname);
 923 
 924     fattr = GetFileAttributes(dirp->path);
 925     if (fattr == 0xffffffff) {
 926         free(dirp->path);
 927         free(dirp);
 928         errno = ENOENT;
 929         return 0;
 930     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
 931         free(dirp->path);
 932         free(dirp);
 933         errno = ENOTDIR;
 934         return 0;
 935     }
 936 
 937     /* Append "*.*", or possibly "\\*.*", to path */
 938     if (dirp->path[1] == ':'
 939         && (dirp->path[2] == '\0'
 940             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
 941         /* No '\\' needed for cases like "Z:" or "Z:\" */
 942         strcat(dirp->path, "*.*");
 943     } else {
 944         strcat(dirp->path, "\\*.*");
 945     }
 946 
 947     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
 948     if (dirp->handle == INVALID_HANDLE_VALUE) {
 949         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
 950             free(dirp->path);
 951             free(dirp);
 952             errno = EACCES;
 953             return 0;
 954         }
 955     }
 956     return dirp;
 957 }
 958 
 959 /* parameter dbuf unused on Windows */
 960 
 961 struct dirent *
 962 os::readdir(DIR *dirp, dirent *dbuf)
 963 {
 964     assert(dirp != NULL, "just checking");      // hotspot change
 965     if (dirp->handle == INVALID_HANDLE_VALUE) {
 966         return 0;
 967     }
 968 
 969     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
 970 
 971     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
 972         if (GetLastError() == ERROR_INVALID_HANDLE) {
 973             errno = EBADF;
 974             return 0;
 975         }
 976         FindClose(dirp->handle);
 977         dirp->handle = INVALID_HANDLE_VALUE;
 978     }
 979 
 980     return &dirp->dirent;
 981 }
 982 
 983 int
 984 os::closedir(DIR *dirp)
 985 {
 986     assert(dirp != NULL, "just checking");      // hotspot change
 987     if (dirp->handle != INVALID_HANDLE_VALUE) {
 988         if (!FindClose(dirp->handle)) {
 989             errno = EBADF;
 990             return -1;
 991         }
 992         dirp->handle = INVALID_HANDLE_VALUE;
 993     }
 994     free(dirp->path);
 995     free(dirp);
 996     return 0;
 997 }
 998 
 999 const char* os::dll_file_extension() { return ".dll"; }
1000 
1001 const char* os::get_temp_directory() {
1002   const char *prop = Arguments::get_property("java.io.tmpdir");
1003   if (prop != 0) return prop;
1004   static char path_buf[MAX_PATH];
1005   if (GetTempPath(MAX_PATH, path_buf)>0)
1006     return path_buf;
1007   else{
1008     path_buf[0]='\0';
1009     return path_buf;
1010   }
1011 }
1012 
1013 static bool file_exists(const char* filename) {
1014   if (filename == NULL || strlen(filename) == 0) {
1015     return false;
1016   }
1017   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1018 }
1019 
1020 void os::dll_build_name(char *buffer, size_t buflen,
1021                         const char* pname, const char* fname) {
1022   // Copied from libhpi
1023   const size_t pnamelen = pname ? strlen(pname) : 0;
1024   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1025 
1026   // Quietly truncates on buffer overflow. Should be an error.
1027   if (pnamelen + strlen(fname) + 10 > buflen) {
1028     *buffer = '\0';
1029     return;
1030   }
1031 
1032   if (pnamelen == 0) {
1033     jio_snprintf(buffer, buflen, "%s.dll", fname);
1034   } else if (c == ':' || c == '\\') {
1035     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1036   } else if (strchr(pname, *os::path_separator()) != NULL) {
1037     int n;
1038     char** pelements = split_path(pname, &n);
1039     for (int i = 0 ; i < n ; i++) {
1040       char* path = pelements[i];
1041       // Really shouldn't be NULL, but check can't hurt
1042       size_t plen = (path == NULL) ? 0 : strlen(path);
1043       if (plen == 0) {
1044         continue; // skip the empty path values
1045       }
1046       const char lastchar = path[plen - 1];
1047       if (lastchar == ':' || lastchar == '\\') {
1048         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1049       } else {
1050         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1051       }
1052       if (file_exists(buffer)) {
1053         break;
1054       }
1055     }
1056     // release the storage
1057     for (int i = 0 ; i < n ; i++) {
1058       if (pelements[i] != NULL) {
1059         FREE_C_HEAP_ARRAY(char, pelements[i]);
1060       }
1061     }
1062     if (pelements != NULL) {
1063       FREE_C_HEAP_ARRAY(char*, pelements);
1064     }
1065   } else {
1066     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1067   }
1068 }
1069 
1070 // Needs to be in os specific directory because windows requires another
1071 // header file <direct.h>
1072 const char* os::get_current_directory(char *buf, int buflen) {
1073   return _getcwd(buf, buflen);
1074 }
1075 
1076 //-----------------------------------------------------------
1077 // Helper functions for fatal error handler
1078 
1079 // The following library functions are resolved dynamically at runtime:
1080 
1081 // PSAPI functions, for Windows NT, 2000, XP
1082 
1083 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1084 // SDK from Microsoft.  Here are the definitions copied from psapi.h
1085 typedef struct _MODULEINFO {
1086     LPVOID lpBaseOfDll;
1087     DWORD SizeOfImage;
1088     LPVOID EntryPoint;
1089 } MODULEINFO, *LPMODULEINFO;
1090 
1091 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1092 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1093 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1094 
1095 // ToolHelp Functions, for Windows 95, 98 and ME
1096 
1097 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1098 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1099 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1100 
1101 bool _has_psapi;
1102 bool _psapi_init = false;
1103 bool _has_toolhelp;
1104 
1105 static bool _init_psapi() {
1106   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1107   if( psapi == NULL ) return false ;
1108 
1109   _EnumProcessModules = CAST_TO_FN_PTR(
1110       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1111       GetProcAddress(psapi, "EnumProcessModules")) ;
1112   _GetModuleFileNameEx = CAST_TO_FN_PTR(
1113       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1114       GetProcAddress(psapi, "GetModuleFileNameExA"));
1115   _GetModuleInformation = CAST_TO_FN_PTR(
1116       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1117       GetProcAddress(psapi, "GetModuleInformation"));
1118 
1119   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1120   _psapi_init = true;
1121   return _has_psapi;
1122 }
1123 
1124 static bool _init_toolhelp() {
1125   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1126   if (kernel32 == NULL) return false ;
1127 
1128   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1129       HANDLE(WINAPI *)(DWORD,DWORD),
1130       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1131   _Module32First = CAST_TO_FN_PTR(
1132       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1133       GetProcAddress(kernel32, "Module32First" ));
1134   _Module32Next = CAST_TO_FN_PTR(
1135       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1136       GetProcAddress(kernel32, "Module32Next" ));
1137 
1138   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1139   return _has_toolhelp;
1140 }
1141 
1142 #ifdef _WIN64
1143 // Helper routine which returns true if address in
1144 // within the NTDLL address space.
1145 //
1146 static bool _addr_in_ntdll( address addr )
1147 {
1148   HMODULE hmod;
1149   MODULEINFO minfo;
1150 
1151   hmod = GetModuleHandle("NTDLL.DLL");
1152   if ( hmod == NULL ) return false;
1153   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1154                                &minfo, sizeof(MODULEINFO)) )
1155     return false;
1156 
1157   if ( (addr >= minfo.lpBaseOfDll) &&
1158        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1159     return true;
1160   else
1161     return false;
1162 }
1163 #endif
1164 
1165 
1166 // Enumerate all modules for a given process ID
1167 //
1168 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1169 // different API for doing this. We use PSAPI.DLL on NT based
1170 // Windows and ToolHelp on 95/98/Me.
1171 
1172 // Callback function that is called by enumerate_modules() on
1173 // every DLL module.
1174 // Input parameters:
1175 //    int       pid,
1176 //    char*     module_file_name,
1177 //    address   module_base_addr,
1178 //    unsigned  module_size,
1179 //    void*     param
1180 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1181 
1182 // enumerate_modules for Windows NT, using PSAPI
1183 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1184 {
1185   HANDLE   hProcess ;
1186 
1187 # define MAX_NUM_MODULES 128
1188   HMODULE     modules[MAX_NUM_MODULES];
1189   static char filename[ MAX_PATH ];
1190   int         result = 0;
1191 
1192   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1193 
1194   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1195                          FALSE, pid ) ;
1196   if (hProcess == NULL) return 0;
1197 
1198   DWORD size_needed;
1199   if (!_EnumProcessModules(hProcess, modules,
1200                            sizeof(modules), &size_needed)) {
1201       CloseHandle( hProcess );
1202       return 0;
1203   }
1204 
1205   // number of modules that are currently loaded
1206   int num_modules = size_needed / sizeof(HMODULE);
1207 
1208   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1209     // Get Full pathname:
1210     if(!_GetModuleFileNameEx(hProcess, modules[i],
1211                              filename, sizeof(filename))) {
1212         filename[0] = '\0';
1213     }
1214 
1215     MODULEINFO modinfo;
1216     if (!_GetModuleInformation(hProcess, modules[i],
1217                                &modinfo, sizeof(modinfo))) {
1218         modinfo.lpBaseOfDll = NULL;
1219         modinfo.SizeOfImage = 0;
1220     }
1221 
1222     // Invoke callback function
1223     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1224                   modinfo.SizeOfImage, param);
1225     if (result) break;
1226   }
1227 
1228   CloseHandle( hProcess ) ;
1229   return result;
1230 }
1231 
1232 
1233 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1234 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1235 {
1236   HANDLE                hSnapShot ;
1237   static MODULEENTRY32  modentry ;
1238   int                   result = 0;
1239 
1240   if (!_has_toolhelp) return 0;
1241 
1242   // Get a handle to a Toolhelp snapshot of the system
1243   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1244   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1245       return FALSE ;
1246   }
1247 
1248   // iterate through all modules
1249   modentry.dwSize = sizeof(MODULEENTRY32) ;
1250   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1251 
1252   while( not_done ) {
1253     // invoke the callback
1254     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1255                 modentry.modBaseSize, param);
1256     if (result) break;
1257 
1258     modentry.dwSize = sizeof(MODULEENTRY32) ;
1259     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1260   }
1261 
1262   CloseHandle(hSnapShot);
1263   return result;
1264 }
1265 
1266 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1267 {
1268   // Get current process ID if caller doesn't provide it.
1269   if (!pid) pid = os::current_process_id();
1270 
1271   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1272   else                    return _enumerate_modules_windows(pid, func, param);
1273 }
1274 
1275 struct _modinfo {
1276    address addr;
1277    char*   full_path;   // point to a char buffer
1278    int     buflen;      // size of the buffer
1279    address base_addr;
1280 };
1281 
1282 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1283                                   unsigned size, void * param) {
1284    struct _modinfo *pmod = (struct _modinfo *)param;
1285    if (!pmod) return -1;
1286 
1287    if (base_addr     <= pmod->addr &&
1288        base_addr+size > pmod->addr) {
1289      // if a buffer is provided, copy path name to the buffer
1290      if (pmod->full_path) {
1291        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1292      }
1293      pmod->base_addr = base_addr;
1294      return 1;
1295    }
1296    return 0;
1297 }
1298 
1299 bool os::dll_address_to_library_name(address addr, char* buf,
1300                                      int buflen, int* offset) {
1301 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1302 //       return the full path to the DLL file, sometimes it returns path
1303 //       to the corresponding PDB file (debug info); sometimes it only
1304 //       returns partial path, which makes life painful.
1305 
1306    struct _modinfo mi;
1307    mi.addr      = addr;
1308    mi.full_path = buf;
1309    mi.buflen    = buflen;
1310    int pid = os::current_process_id();
1311    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1312       // buf already contains path name
1313       if (offset) *offset = addr - mi.base_addr;
1314       return true;
1315    } else {
1316       if (buf) buf[0] = '\0';
1317       if (offset) *offset = -1;
1318       return false;
1319    }
1320 }
1321 
1322 bool os::dll_address_to_function_name(address addr, char *buf,
1323                                       int buflen, int *offset) {
1324   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
1325   // we need to initialize imagehlp/dbghelp, then load symbol table
1326   // for every module. That's too much work to do after a fatal error.
1327   // For an example on how to implement this function, see 1.4.2.
1328   if (offset)  *offset  = -1;
1329   if (buf) buf[0] = '\0';
1330   return false;
1331 }
1332 
1333 void* os::dll_lookup(void* handle, const char* name) {
1334   return GetProcAddress((HMODULE)handle, name);
1335 }
1336 
1337 // save the start and end address of jvm.dll into param[0] and param[1]
1338 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1339                     unsigned size, void * param) {
1340    if (!param) return -1;
1341 
1342    if (base_addr     <= (address)_locate_jvm_dll &&
1343        base_addr+size > (address)_locate_jvm_dll) {
1344          ((address*)param)[0] = base_addr;
1345          ((address*)param)[1] = base_addr + size;
1346          return 1;
1347    }
1348    return 0;
1349 }
1350 
1351 address vm_lib_location[2];    // start and end address of jvm.dll
1352 
1353 // check if addr is inside jvm.dll
1354 bool os::address_is_in_vm(address addr) {
1355   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1356     int pid = os::current_process_id();
1357     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1358       assert(false, "Can't find jvm module.");
1359       return false;
1360     }
1361   }
1362 
1363   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1364 }
1365 
1366 // print module info; param is outputStream*
1367 static int _print_module(int pid, char* fname, address base,
1368                          unsigned size, void* param) {
1369    if (!param) return -1;
1370 
1371    outputStream* st = (outputStream*)param;
1372 
1373    address end_addr = base + size;
1374    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1375    return 0;
1376 }
1377 
1378 // Loads .dll/.so and
1379 // in case of error it checks if .dll/.so was built for the
1380 // same architecture as Hotspot is running on
1381 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1382 {
1383   void * result = LoadLibrary(name);
1384   if (result != NULL)
1385   {
1386     return result;
1387   }
1388 
1389   long errcode = GetLastError();
1390   if (errcode == ERROR_MOD_NOT_FOUND) {
1391     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1392     ebuf[ebuflen-1]='\0';
1393     return NULL;
1394   }
1395 
1396   // Parsing dll below
1397   // If we can read dll-info and find that dll was built
1398   // for an architecture other than Hotspot is running in
1399   // - then print to buffer "DLL was built for a different architecture"
1400   // else call getLastErrorString to obtain system error message
1401 
1402   // Read system error message into ebuf
1403   // It may or may not be overwritten below (in the for loop and just above)
1404   getLastErrorString(ebuf, (size_t) ebuflen);
1405   ebuf[ebuflen-1]='\0';
1406   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1407   if (file_descriptor<0)
1408   {
1409     return NULL;
1410   }
1411 
1412   uint32_t signature_offset;
1413   uint16_t lib_arch=0;
1414   bool failed_to_get_lib_arch=
1415   (
1416     //Go to position 3c in the dll
1417     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1418     ||
1419     // Read loacation of signature
1420     (sizeof(signature_offset)!=
1421       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1422     ||
1423     //Go to COFF File Header in dll
1424     //that is located after"signature" (4 bytes long)
1425     (os::seek_to_file_offset(file_descriptor,
1426       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1427     ||
1428     //Read field that contains code of architecture
1429     // that dll was build for
1430     (sizeof(lib_arch)!=
1431       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1432   );
1433 
1434   ::close(file_descriptor);
1435   if (failed_to_get_lib_arch)
1436   {
1437     // file i/o error - report getLastErrorString(...) msg
1438     return NULL;
1439   }
1440 
1441   typedef struct
1442   {
1443     uint16_t arch_code;
1444     char* arch_name;
1445   } arch_t;
1446 
1447   static const arch_t arch_array[]={
1448     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1449     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1450     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1451   };
1452   #if   (defined _M_IA64)
1453     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1454   #elif (defined _M_AMD64)
1455     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1456   #elif (defined _M_IX86)
1457     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1458   #else
1459     #error Method os::dll_load requires that one of following \
1460            is defined :_M_IA64,_M_AMD64 or _M_IX86
1461   #endif
1462 
1463 
1464   // Obtain a string for printf operation
1465   // lib_arch_str shall contain string what platform this .dll was built for
1466   // running_arch_str shall string contain what platform Hotspot was built for
1467   char *running_arch_str=NULL,*lib_arch_str=NULL;
1468   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1469   {
1470     if (lib_arch==arch_array[i].arch_code)
1471       lib_arch_str=arch_array[i].arch_name;
1472     if (running_arch==arch_array[i].arch_code)
1473       running_arch_str=arch_array[i].arch_name;
1474   }
1475 
1476   assert(running_arch_str,
1477     "Didn't find runing architecture code in arch_array");
1478 
1479   // If the architure is right
1480   // but some other error took place - report getLastErrorString(...) msg
1481   if (lib_arch == running_arch)
1482   {
1483     return NULL;
1484   }
1485 
1486   if (lib_arch_str!=NULL)
1487   {
1488     ::_snprintf(ebuf, ebuflen-1,
1489       "Can't load %s-bit .dll on a %s-bit platform",
1490       lib_arch_str,running_arch_str);
1491   }
1492   else
1493   {
1494     // don't know what architecture this dll was build for
1495     ::_snprintf(ebuf, ebuflen-1,
1496       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1497       lib_arch,running_arch_str);
1498   }
1499 
1500   return NULL;
1501 }
1502 
1503 
1504 void os::print_dll_info(outputStream *st) {
1505    int pid = os::current_process_id();
1506    st->print_cr("Dynamic libraries:");
1507    enumerate_modules(pid, _print_module, (void *)st);
1508 }
1509 
1510 // function pointer to Windows API "GetNativeSystemInfo".
1511 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1512 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1513 
1514 void os::print_os_info(outputStream* st) {
1515   st->print("OS:");
1516 
1517   OSVERSIONINFOEX osvi;
1518   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1519   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1520 
1521   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1522     st->print_cr("N/A");
1523     return;
1524   }
1525 
1526   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1527   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1528     switch (os_vers) {
1529     case 3051: st->print(" Windows NT 3.51"); break;
1530     case 4000: st->print(" Windows NT 4.0"); break;
1531     case 5000: st->print(" Windows 2000"); break;
1532     case 5001: st->print(" Windows XP"); break;
1533     case 5002:
1534     case 6000:
1535     case 6001: {
1536       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1537       // find out whether we are running on 64 bit processor or not.
1538       SYSTEM_INFO si;
1539       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1540       // Check to see if _GetNativeSystemInfo has been initialized.
1541       if (_GetNativeSystemInfo == NULL) {
1542         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1543         _GetNativeSystemInfo =
1544             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1545                            GetProcAddress(hKernel32,
1546                                           "GetNativeSystemInfo"));
1547         if (_GetNativeSystemInfo == NULL)
1548           GetSystemInfo(&si);
1549       } else {
1550         _GetNativeSystemInfo(&si);
1551       }
1552       if (os_vers == 5002) {
1553         if (osvi.wProductType == VER_NT_WORKSTATION &&
1554             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1555           st->print(" Windows XP x64 Edition");
1556         else
1557             st->print(" Windows Server 2003 family");
1558       } else if (os_vers == 6000) {
1559         if (osvi.wProductType == VER_NT_WORKSTATION)
1560             st->print(" Windows Vista");
1561         else
1562             st->print(" Windows Server 2008");
1563         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1564             st->print(" , 64 bit");
1565       } else if (os_vers == 6001) {
1566         if (osvi.wProductType == VER_NT_WORKSTATION) {
1567             st->print(" Windows 7");
1568         } else {
1569             // Unrecognized windows, print out its major and minor versions
1570             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1571         }
1572         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1573             st->print(" , 64 bit");
1574       } else { // future os
1575         // Unrecognized windows, print out its major and minor versions
1576         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1577         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1578             st->print(" , 64 bit");
1579       }
1580       break;
1581     }
1582     default: // future windows, print out its major and minor versions
1583       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1584     }
1585   } else {
1586     switch (os_vers) {
1587     case 4000: st->print(" Windows 95"); break;
1588     case 4010: st->print(" Windows 98"); break;
1589     case 4090: st->print(" Windows Me"); break;
1590     default: // future windows, print out its major and minor versions
1591       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1592     }
1593   }
1594   st->print(" Build %d", osvi.dwBuildNumber);
1595   st->print(" %s", osvi.szCSDVersion);           // service pack
1596   st->cr();
1597 }
1598 
1599 void os::print_memory_info(outputStream* st) {
1600   st->print("Memory:");
1601   st->print(" %dk page", os::vm_page_size()>>10);
1602 
1603   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1604   // value if total memory is larger than 4GB
1605   MEMORYSTATUSEX ms;
1606   ms.dwLength = sizeof(ms);
1607   GlobalMemoryStatusEx(&ms);
1608 
1609   st->print(", physical %uk", os::physical_memory() >> 10);
1610   st->print("(%uk free)", os::available_memory() >> 10);
1611 
1612   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1613   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1614   st->cr();
1615 }
1616 
1617 void os::print_siginfo(outputStream *st, void *siginfo) {
1618   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1619   st->print("siginfo:");
1620   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1621 
1622   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1623       er->NumberParameters >= 2) {
1624       switch (er->ExceptionInformation[0]) {
1625       case 0: st->print(", reading address"); break;
1626       case 1: st->print(", writing address"); break;
1627       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1628                             er->ExceptionInformation[0]);
1629       }
1630       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1631   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1632              er->NumberParameters >= 2 && UseSharedSpaces) {
1633     FileMapInfo* mapinfo = FileMapInfo::current_info();
1634     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1635       st->print("\n\nError accessing class data sharing archive."       \
1636                 " Mapped file inaccessible during execution, "          \
1637                 " possible disk/network problem.");
1638     }
1639   } else {
1640     int num = er->NumberParameters;
1641     if (num > 0) {
1642       st->print(", ExceptionInformation=");
1643       for (int i = 0; i < num; i++) {
1644         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1645       }
1646     }
1647   }
1648   st->cr();
1649 }
1650 
1651 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1652   // do nothing
1653 }
1654 
1655 static char saved_jvm_path[MAX_PATH] = {0};
1656 
1657 // Find the full path to the current module, jvm.dll or jvm_g.dll
1658 void os::jvm_path(char *buf, jint buflen) {
1659   // Error checking.
1660   if (buflen < MAX_PATH) {
1661     assert(false, "must use a large-enough buffer");
1662     buf[0] = '\0';
1663     return;
1664   }
1665   // Lazy resolve the path to current module.
1666   if (saved_jvm_path[0] != 0) {
1667     strcpy(buf, saved_jvm_path);
1668     return;
1669   }
1670 
1671   buf[0] = '\0';
1672   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
1673      // Support for the gamma launcher. Check for a JAVA_HOME
1674      // environment variable and fix up the path so it looks like
1675      // libjvm.so is installed there (append a fake suffix
1676      // hotspot/libjvm.so).
1677      char* java_home_var = ::getenv("JAVA_HOME");
1678      if (java_home_var != NULL && java_home_var[0] != 0) {
1679 
1680         strncpy(buf, java_home_var, buflen);
1681 
1682         // determine if this is a legacy image or modules image
1683         // modules image doesn't have "jre" subdirectory
1684         size_t len = strlen(buf);
1685         char* jrebin_p = buf + len;
1686         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1687         if (0 != _access(buf, 0)) {
1688           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1689         }
1690         len = strlen(buf);
1691         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1692      }
1693   }
1694 
1695   if(buf[0] == '\0') {
1696      GetModuleFileName(vm_lib_handle, buf, buflen);
1697   }
1698   strcpy(saved_jvm_path, buf);
1699 }
1700 
1701 
1702 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1703 #ifndef _WIN64
1704   st->print("_");
1705 #endif
1706 }
1707 
1708 
1709 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1710 #ifndef _WIN64
1711   st->print("@%d", args_size  * sizeof(int));
1712 #endif
1713 }
1714 
1715 // sun.misc.Signal
1716 // NOTE that this is a workaround for an apparent kernel bug where if
1717 // a signal handler for SIGBREAK is installed then that signal handler
1718 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1719 // See bug 4416763.
1720 static void (*sigbreakHandler)(int) = NULL;
1721 
1722 static void UserHandler(int sig, void *siginfo, void *context) {
1723   os::signal_notify(sig);
1724   // We need to reinstate the signal handler each time...
1725   os::signal(sig, (void*)UserHandler);
1726 }
1727 
1728 void* os::user_handler() {
1729   return (void*) UserHandler;
1730 }
1731 
1732 void* os::signal(int signal_number, void* handler) {
1733   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1734     void (*oldHandler)(int) = sigbreakHandler;
1735     sigbreakHandler = (void (*)(int)) handler;
1736     return (void*) oldHandler;
1737   } else {
1738     return (void*)::signal(signal_number, (void (*)(int))handler);
1739   }
1740 }
1741 
1742 void os::signal_raise(int signal_number) {
1743   raise(signal_number);
1744 }
1745 
1746 // The Win32 C runtime library maps all console control events other than ^C
1747 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1748 // logoff, and shutdown events.  We therefore install our own console handler
1749 // that raises SIGTERM for the latter cases.
1750 //
1751 static BOOL WINAPI consoleHandler(DWORD event) {
1752   switch(event) {
1753     case CTRL_C_EVENT:
1754       if (is_error_reported()) {
1755         // Ctrl-C is pressed during error reporting, likely because the error
1756         // handler fails to abort. Let VM die immediately.
1757         os::die();
1758       }
1759 
1760       os::signal_raise(SIGINT);
1761       return TRUE;
1762       break;
1763     case CTRL_BREAK_EVENT:
1764       if (sigbreakHandler != NULL) {
1765         (*sigbreakHandler)(SIGBREAK);
1766       }
1767       return TRUE;
1768       break;
1769     case CTRL_CLOSE_EVENT:
1770     case CTRL_LOGOFF_EVENT:
1771     case CTRL_SHUTDOWN_EVENT:
1772       os::signal_raise(SIGTERM);
1773       return TRUE;
1774       break;
1775     default:
1776       break;
1777   }
1778   return FALSE;
1779 }
1780 
1781 /*
1782  * The following code is moved from os.cpp for making this
1783  * code platform specific, which it is by its very nature.
1784  */
1785 
1786 // Return maximum OS signal used + 1 for internal use only
1787 // Used as exit signal for signal_thread
1788 int os::sigexitnum_pd(){
1789   return NSIG;
1790 }
1791 
1792 // a counter for each possible signal value, including signal_thread exit signal
1793 static volatile jint pending_signals[NSIG+1] = { 0 };
1794 static HANDLE sig_sem;
1795 
1796 void os::signal_init_pd() {
1797   // Initialize signal structures
1798   memset((void*)pending_signals, 0, sizeof(pending_signals));
1799 
1800   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1801 
1802   // Programs embedding the VM do not want it to attempt to receive
1803   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1804   // shutdown hooks mechanism introduced in 1.3.  For example, when
1805   // the VM is run as part of a Windows NT service (i.e., a servlet
1806   // engine in a web server), the correct behavior is for any console
1807   // control handler to return FALSE, not TRUE, because the OS's
1808   // "final" handler for such events allows the process to continue if
1809   // it is a service (while terminating it if it is not a service).
1810   // To make this behavior uniform and the mechanism simpler, we
1811   // completely disable the VM's usage of these console events if -Xrs
1812   // (=ReduceSignalUsage) is specified.  This means, for example, that
1813   // the CTRL-BREAK thread dump mechanism is also disabled in this
1814   // case.  See bugs 4323062, 4345157, and related bugs.
1815 
1816   if (!ReduceSignalUsage) {
1817     // Add a CTRL-C handler
1818     SetConsoleCtrlHandler(consoleHandler, TRUE);
1819   }
1820 }
1821 
1822 void os::signal_notify(int signal_number) {
1823   BOOL ret;
1824 
1825   Atomic::inc(&pending_signals[signal_number]);
1826   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1827   assert(ret != 0, "ReleaseSemaphore() failed");
1828 }
1829 
1830 static int check_pending_signals(bool wait_for_signal) {
1831   DWORD ret;
1832   while (true) {
1833     for (int i = 0; i < NSIG + 1; i++) {
1834       jint n = pending_signals[i];
1835       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1836         return i;
1837       }
1838     }
1839     if (!wait_for_signal) {
1840       return -1;
1841     }
1842 
1843     JavaThread *thread = JavaThread::current();
1844 
1845     ThreadBlockInVM tbivm(thread);
1846 
1847     bool threadIsSuspended;
1848     do {
1849       thread->set_suspend_equivalent();
1850       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1851       ret = ::WaitForSingleObject(sig_sem, INFINITE);
1852       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1853 
1854       // were we externally suspended while we were waiting?
1855       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1856       if (threadIsSuspended) {
1857         //
1858         // The semaphore has been incremented, but while we were waiting
1859         // another thread suspended us. We don't want to continue running
1860         // while suspended because that would surprise the thread that
1861         // suspended us.
1862         //
1863         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1864         assert(ret != 0, "ReleaseSemaphore() failed");
1865 
1866         thread->java_suspend_self();
1867       }
1868     } while (threadIsSuspended);
1869   }
1870 }
1871 
1872 int os::signal_lookup() {
1873   return check_pending_signals(false);
1874 }
1875 
1876 int os::signal_wait() {
1877   return check_pending_signals(true);
1878 }
1879 
1880 // Implicit OS exception handling
1881 
1882 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1883   JavaThread* thread = JavaThread::current();
1884   // Save pc in thread
1885 #ifdef _M_IA64
1886   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1887   // Set pc to handler
1888   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1889 #elif _M_AMD64
1890   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1891   // Set pc to handler
1892   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1893 #else
1894   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1895   // Set pc to handler
1896   exceptionInfo->ContextRecord->Eip = (LONG)handler;
1897 #endif
1898 
1899   // Continue the execution
1900   return EXCEPTION_CONTINUE_EXECUTION;
1901 }
1902 
1903 
1904 // Used for PostMortemDump
1905 extern "C" void safepoints();
1906 extern "C" void find(int x);
1907 extern "C" void events();
1908 
1909 // According to Windows API documentation, an illegal instruction sequence should generate
1910 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
1911 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
1912 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1913 
1914 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1915 
1916 // From "Execution Protection in the Windows Operating System" draft 0.35
1917 // Once a system header becomes available, the "real" define should be
1918 // included or copied here.
1919 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1920 
1921 #define def_excpt(val) #val, val
1922 
1923 struct siglabel {
1924   char *name;
1925   int   number;
1926 };
1927 
1928 struct siglabel exceptlabels[] = {
1929     def_excpt(EXCEPTION_ACCESS_VIOLATION),
1930     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1931     def_excpt(EXCEPTION_BREAKPOINT),
1932     def_excpt(EXCEPTION_SINGLE_STEP),
1933     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1934     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1935     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1936     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1937     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1938     def_excpt(EXCEPTION_FLT_OVERFLOW),
1939     def_excpt(EXCEPTION_FLT_STACK_CHECK),
1940     def_excpt(EXCEPTION_FLT_UNDERFLOW),
1941     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1942     def_excpt(EXCEPTION_INT_OVERFLOW),
1943     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1944     def_excpt(EXCEPTION_IN_PAGE_ERROR),
1945     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1946     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1947     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1948     def_excpt(EXCEPTION_STACK_OVERFLOW),
1949     def_excpt(EXCEPTION_INVALID_DISPOSITION),
1950     def_excpt(EXCEPTION_GUARD_PAGE),
1951     def_excpt(EXCEPTION_INVALID_HANDLE),
1952     NULL, 0
1953 };
1954 
1955 const char* os::exception_name(int exception_code, char *buf, size_t size) {
1956   for (int i = 0; exceptlabels[i].name != NULL; i++) {
1957     if (exceptlabels[i].number == exception_code) {
1958        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1959        return buf;
1960     }
1961   }
1962 
1963   return NULL;
1964 }
1965 
1966 //-----------------------------------------------------------------------------
1967 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1968   // handle exception caused by idiv; should only happen for -MinInt/-1
1969   // (division by zero is handled explicitly)
1970 #ifdef _M_IA64
1971   assert(0, "Fix Handle_IDiv_Exception");
1972 #elif _M_AMD64
1973   PCONTEXT ctx = exceptionInfo->ContextRecord;
1974   address pc = (address)ctx->Rip;
1975   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1976   assert(pc[0] == 0xF7, "not an idiv opcode");
1977   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1978   assert(ctx->Rax == min_jint, "unexpected idiv exception");
1979   // set correct result values and continue after idiv instruction
1980   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1981   ctx->Rax = (DWORD)min_jint;      // result
1982   ctx->Rdx = (DWORD)0;             // remainder
1983   // Continue the execution
1984 #else
1985   PCONTEXT ctx = exceptionInfo->ContextRecord;
1986   address pc = (address)ctx->Eip;
1987   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1988   assert(pc[0] == 0xF7, "not an idiv opcode");
1989   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1990   assert(ctx->Eax == min_jint, "unexpected idiv exception");
1991   // set correct result values and continue after idiv instruction
1992   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1993   ctx->Eax = (DWORD)min_jint;      // result
1994   ctx->Edx = (DWORD)0;             // remainder
1995   // Continue the execution
1996 #endif
1997   return EXCEPTION_CONTINUE_EXECUTION;
1998 }
1999 
2000 #ifndef  _WIN64
2001 //-----------------------------------------------------------------------------
2002 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2003   // handle exception caused by native method modifying control word
2004   PCONTEXT ctx = exceptionInfo->ContextRecord;
2005   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2006 
2007   switch (exception_code) {
2008     case EXCEPTION_FLT_DENORMAL_OPERAND:
2009     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2010     case EXCEPTION_FLT_INEXACT_RESULT:
2011     case EXCEPTION_FLT_INVALID_OPERATION:
2012     case EXCEPTION_FLT_OVERFLOW:
2013     case EXCEPTION_FLT_STACK_CHECK:
2014     case EXCEPTION_FLT_UNDERFLOW:
2015       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2016       if (fp_control_word != ctx->FloatSave.ControlWord) {
2017         // Restore FPCW and mask out FLT exceptions
2018         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2019         // Mask out pending FLT exceptions
2020         ctx->FloatSave.StatusWord &=  0xffffff00;
2021         return EXCEPTION_CONTINUE_EXECUTION;
2022       }
2023   }
2024 
2025   if (prev_uef_handler != NULL) {
2026     // We didn't handle this exception so pass it to the previous
2027     // UnhandledExceptionFilter.
2028     return (prev_uef_handler)(exceptionInfo);
2029   }
2030 
2031   return EXCEPTION_CONTINUE_SEARCH;
2032 }
2033 #else //_WIN64
2034 /*
2035   On Windows, the mxcsr control bits are non-volatile across calls
2036   See also CR 6192333
2037   If EXCEPTION_FLT_* happened after some native method modified
2038   mxcsr - it is not a jvm fault.
2039   However should we decide to restore of mxcsr after a faulty
2040   native method we can uncomment following code
2041       jint MxCsr = INITIAL_MXCSR;
2042         // we can't use StubRoutines::addr_mxcsr_std()
2043         // because in Win64 mxcsr is not saved there
2044       if (MxCsr != ctx->MxCsr) {
2045         ctx->MxCsr = MxCsr;
2046         return EXCEPTION_CONTINUE_EXECUTION;
2047       }
2048 
2049 */
2050 #endif //_WIN64
2051 
2052 
2053 // Fatal error reporting is single threaded so we can make this a
2054 // static and preallocated.  If it's more than MAX_PATH silently ignore
2055 // it.
2056 static char saved_error_file[MAX_PATH] = {0};
2057 
2058 void os::set_error_file(const char *logfile) {
2059   if (strlen(logfile) <= MAX_PATH) {
2060     strncpy(saved_error_file, logfile, MAX_PATH);
2061   }
2062 }
2063 
2064 static inline void report_error(Thread* t, DWORD exception_code,
2065                                 address addr, void* siginfo, void* context) {
2066   VMError err(t, exception_code, addr, siginfo, context);
2067   err.report_and_die();
2068 
2069   // If UseOsErrorReporting, this will return here and save the error file
2070   // somewhere where we can find it in the minidump.
2071 }
2072 
2073 //-----------------------------------------------------------------------------
2074 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2075   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2076   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2077 #ifdef _M_IA64
2078   address pc = (address) exceptionInfo->ContextRecord->StIIP;
2079 #elif _M_AMD64
2080   address pc = (address) exceptionInfo->ContextRecord->Rip;
2081 #else
2082   address pc = (address) exceptionInfo->ContextRecord->Eip;
2083 #endif
2084   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2085 
2086 #ifndef _WIN64
2087   // Execution protection violation - win32 running on AMD64 only
2088   // Handled first to avoid misdiagnosis as a "normal" access violation;
2089   // This is safe to do because we have a new/unique ExceptionInformation
2090   // code for this condition.
2091   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2092     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2093     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2094     address addr = (address) exceptionRecord->ExceptionInformation[1];
2095 
2096     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2097       int page_size = os::vm_page_size();
2098 
2099       // Make sure the pc and the faulting address are sane.
2100       //
2101       // If an instruction spans a page boundary, and the page containing
2102       // the beginning of the instruction is executable but the following
2103       // page is not, the pc and the faulting address might be slightly
2104       // different - we still want to unguard the 2nd page in this case.
2105       //
2106       // 15 bytes seems to be a (very) safe value for max instruction size.
2107       bool pc_is_near_addr =
2108         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2109       bool instr_spans_page_boundary =
2110         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2111                          (intptr_t) page_size) > 0);
2112 
2113       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2114         static volatile address last_addr =
2115           (address) os::non_memory_address_word();
2116 
2117         // In conservative mode, don't unguard unless the address is in the VM
2118         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2119             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2120 
2121           // Set memory to RWX and retry
2122           address page_start =
2123             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2124           bool res = os::protect_memory((char*) page_start, page_size,
2125                                         os::MEM_PROT_RWX);
2126 
2127           if (PrintMiscellaneous && Verbose) {
2128             char buf[256];
2129             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2130                          "at " INTPTR_FORMAT
2131                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2132                          page_start, (res ? "success" : strerror(errno)));
2133             tty->print_raw_cr(buf);
2134           }
2135 
2136           // Set last_addr so if we fault again at the same address, we don't
2137           // end up in an endless loop.
2138           //
2139           // There are two potential complications here.  Two threads trapping
2140           // at the same address at the same time could cause one of the
2141           // threads to think it already unguarded, and abort the VM.  Likely
2142           // very rare.
2143           //
2144           // The other race involves two threads alternately trapping at
2145           // different addresses and failing to unguard the page, resulting in
2146           // an endless loop.  This condition is probably even more unlikely
2147           // than the first.
2148           //
2149           // Although both cases could be avoided by using locks or thread
2150           // local last_addr, these solutions are unnecessary complication:
2151           // this handler is a best-effort safety net, not a complete solution.
2152           // It is disabled by default and should only be used as a workaround
2153           // in case we missed any no-execute-unsafe VM code.
2154 
2155           last_addr = addr;
2156 
2157           return EXCEPTION_CONTINUE_EXECUTION;
2158         }
2159       }
2160 
2161       // Last unguard failed or not unguarding
2162       tty->print_raw_cr("Execution protection violation");
2163       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2164                    exceptionInfo->ContextRecord);
2165       return EXCEPTION_CONTINUE_SEARCH;
2166     }
2167   }
2168 #endif // _WIN64
2169 
2170   // Check to see if we caught the safepoint code in the
2171   // process of write protecting the memory serialization page.
2172   // It write enables the page immediately after protecting it
2173   // so just return.
2174   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2175     JavaThread* thread = (JavaThread*) t;
2176     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2177     address addr = (address) exceptionRecord->ExceptionInformation[1];
2178     if ( os::is_memory_serialize_page(thread, addr) ) {
2179       // Block current thread until the memory serialize page permission restored.
2180       os::block_on_serialize_page_trap();
2181       return EXCEPTION_CONTINUE_EXECUTION;
2182     }
2183   }
2184 
2185 
2186   if (t != NULL && t->is_Java_thread()) {
2187     JavaThread* thread = (JavaThread*) t;
2188     bool in_java = thread->thread_state() == _thread_in_Java;
2189 
2190     // Handle potential stack overflows up front.
2191     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2192       if (os::uses_stack_guard_pages()) {
2193 #ifdef _M_IA64
2194         //
2195         // If it's a legal stack address continue, Windows will map it in.
2196         //
2197         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2198         address addr = (address) exceptionRecord->ExceptionInformation[1];
2199         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2200           return EXCEPTION_CONTINUE_EXECUTION;
2201 
2202         // The register save area is the same size as the memory stack
2203         // and starts at the page just above the start of the memory stack.
2204         // If we get a fault in this area, we've run out of register
2205         // stack.  If we are in java, try throwing a stack overflow exception.
2206         if (addr > thread->stack_base() &&
2207                       addr <= (thread->stack_base()+thread->stack_size()) ) {
2208           char buf[256];
2209           jio_snprintf(buf, sizeof(buf),
2210                        "Register stack overflow, addr:%p, stack_base:%p\n",
2211                        addr, thread->stack_base() );
2212           tty->print_raw_cr(buf);
2213           // If not in java code, return and hope for the best.
2214           return in_java ? Handle_Exception(exceptionInfo,
2215             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2216             :  EXCEPTION_CONTINUE_EXECUTION;
2217         }
2218 #endif
2219         if (thread->stack_yellow_zone_enabled()) {
2220           // Yellow zone violation.  The o/s has unprotected the first yellow
2221           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2222           // update the enabled status, even if the zone contains only one page.
2223           thread->disable_stack_yellow_zone();
2224           // If not in java code, return and hope for the best.
2225           return in_java ? Handle_Exception(exceptionInfo,
2226             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2227             :  EXCEPTION_CONTINUE_EXECUTION;
2228         } else {
2229           // Fatal red zone violation.
2230           thread->disable_stack_red_zone();
2231           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2232           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2233                        exceptionInfo->ContextRecord);
2234           return EXCEPTION_CONTINUE_SEARCH;
2235         }
2236       } else if (in_java) {
2237         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2238         // a one-time-only guard page, which it has released to us.  The next
2239         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2240         return Handle_Exception(exceptionInfo,
2241           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2242       } else {
2243         // Can only return and hope for the best.  Further stack growth will
2244         // result in an ACCESS_VIOLATION.
2245         return EXCEPTION_CONTINUE_EXECUTION;
2246       }
2247     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2248       // Either stack overflow or null pointer exception.
2249       if (in_java) {
2250         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2251         address addr = (address) exceptionRecord->ExceptionInformation[1];
2252         address stack_end = thread->stack_base() - thread->stack_size();
2253         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2254           // Stack overflow.
2255           assert(!os::uses_stack_guard_pages(),
2256             "should be caught by red zone code above.");
2257           return Handle_Exception(exceptionInfo,
2258             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2259         }
2260         //
2261         // Check for safepoint polling and implicit null
2262         // We only expect null pointers in the stubs (vtable)
2263         // the rest are checked explicitly now.
2264         //
2265         CodeBlob* cb = CodeCache::find_blob(pc);
2266         if (cb != NULL) {
2267           if (os::is_poll_address(addr)) {
2268             address stub = SharedRuntime::get_poll_stub(pc);
2269             return Handle_Exception(exceptionInfo, stub);
2270           }
2271         }
2272         {
2273 #ifdef _WIN64
2274           //
2275           // If it's a legal stack address map the entire region in
2276           //
2277           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2278           address addr = (address) exceptionRecord->ExceptionInformation[1];
2279           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2280                   addr = (address)((uintptr_t)addr &
2281                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2282                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2283                                     false );
2284                   return EXCEPTION_CONTINUE_EXECUTION;
2285           }
2286           else
2287 #endif
2288           {
2289             // Null pointer exception.
2290 #ifdef _M_IA64
2291             // We catch register stack overflows in compiled code by doing
2292             // an explicit compare and executing a st8(G0, G0) if the
2293             // BSP enters into our guard area.  We test for the overflow
2294             // condition and fall into the normal null pointer exception
2295             // code if BSP hasn't overflowed.
2296             if ( in_java ) {
2297               if(thread->register_stack_overflow()) {
2298                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2299                                 thread->register_stack_limit(),
2300                                "GR7 doesn't contain register_stack_limit");
2301                 // Disable the yellow zone which sets the state that
2302                 // we've got a stack overflow problem.
2303                 if (thread->stack_yellow_zone_enabled()) {
2304                   thread->disable_stack_yellow_zone();
2305                 }
2306                 // Give us some room to process the exception
2307                 thread->disable_register_stack_guard();
2308                 // Update GR7 with the new limit so we can continue running
2309                 // compiled code.
2310                 exceptionInfo->ContextRecord->IntS3 =
2311                                (ULONGLONG)thread->register_stack_limit();
2312                 return Handle_Exception(exceptionInfo,
2313                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2314               } else {
2315                 //
2316                 // Check for implicit null
2317                 // We only expect null pointers in the stubs (vtable)
2318                 // the rest are checked explicitly now.
2319                 //
2320                 if (((uintptr_t)addr) < os::vm_page_size() ) {
2321                   // an access to the first page of VM--assume it is a null pointer
2322                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2323                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2324                 }
2325               }
2326             } // in_java
2327 
2328             // IA64 doesn't use implicit null checking yet. So we shouldn't
2329             // get here.
2330             tty->print_raw_cr("Access violation, possible null pointer exception");
2331             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2332                          exceptionInfo->ContextRecord);
2333             return EXCEPTION_CONTINUE_SEARCH;
2334 #else /* !IA64 */
2335 
2336             // Windows 98 reports faulting addresses incorrectly
2337             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2338                 !os::win32::is_nt()) {
2339               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2340               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2341             }
2342             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2343                          exceptionInfo->ContextRecord);
2344             return EXCEPTION_CONTINUE_SEARCH;
2345 #endif
2346           }
2347         }
2348       }
2349 
2350 #ifdef _WIN64
2351       // Special care for fast JNI field accessors.
2352       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2353       // in and the heap gets shrunk before the field access.
2354       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2355         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2356         if (addr != (address)-1) {
2357           return Handle_Exception(exceptionInfo, addr);
2358         }
2359       }
2360 #endif
2361 
2362 #ifdef _WIN64
2363       // Windows will sometimes generate an access violation
2364       // when we call malloc.  Since we use VectoredExceptions
2365       // on 64 bit platforms, we see this exception.  We must
2366       // pass this exception on so Windows can recover.
2367       // We check to see if the pc of the fault is in NTDLL.DLL
2368       // if so, we pass control on to Windows for handling.
2369       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2370 #endif
2371 
2372       // Stack overflow or null pointer exception in native code.
2373       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2374                    exceptionInfo->ContextRecord);
2375       return EXCEPTION_CONTINUE_SEARCH;
2376     }
2377 
2378     if (in_java) {
2379       switch (exception_code) {
2380       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2381         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2382 
2383       case EXCEPTION_INT_OVERFLOW:
2384         return Handle_IDiv_Exception(exceptionInfo);
2385 
2386       } // switch
2387     }
2388 #ifndef _WIN64
2389     if ((thread->thread_state() == _thread_in_Java) ||
2390         (thread->thread_state() == _thread_in_native) )
2391     {
2392       LONG result=Handle_FLT_Exception(exceptionInfo);
2393       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2394     }
2395 #endif //_WIN64
2396   }
2397 
2398   if (exception_code != EXCEPTION_BREAKPOINT) {
2399 #ifndef _WIN64
2400     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2401                  exceptionInfo->ContextRecord);
2402 #else
2403     // Itanium Windows uses a VectoredExceptionHandler
2404     // Which means that C++ programatic exception handlers (try/except)
2405     // will get here.  Continue the search for the right except block if
2406     // the exception code is not a fatal code.
2407     switch ( exception_code ) {
2408       case EXCEPTION_ACCESS_VIOLATION:
2409       case EXCEPTION_STACK_OVERFLOW:
2410       case EXCEPTION_ILLEGAL_INSTRUCTION:
2411       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2412       case EXCEPTION_INT_OVERFLOW:
2413       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2414       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2415                        exceptionInfo->ContextRecord);
2416       }
2417         break;
2418       default:
2419         break;
2420     }
2421 #endif
2422   }
2423   return EXCEPTION_CONTINUE_SEARCH;
2424 }
2425 
2426 #ifndef _WIN64
2427 // Special care for fast JNI accessors.
2428 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2429 // the heap gets shrunk before the field access.
2430 // Need to install our own structured exception handler since native code may
2431 // install its own.
2432 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2433   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2434   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2435     address pc = (address) exceptionInfo->ContextRecord->Eip;
2436     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2437     if (addr != (address)-1) {
2438       return Handle_Exception(exceptionInfo, addr);
2439     }
2440   }
2441   return EXCEPTION_CONTINUE_SEARCH;
2442 }
2443 
2444 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2445 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2446   __try { \
2447     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2448   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2449   } \
2450   return 0; \
2451 }
2452 
2453 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2454 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2455 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2456 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2457 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2458 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2459 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2460 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2461 
2462 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2463   switch (type) {
2464     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2465     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2466     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2467     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2468     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2469     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2470     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2471     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2472     default:        ShouldNotReachHere();
2473   }
2474   return (address)-1;
2475 }
2476 #endif
2477 
2478 // Virtual Memory
2479 
2480 int os::vm_page_size() { return os::win32::vm_page_size(); }
2481 int os::vm_allocation_granularity() {
2482   return os::win32::vm_allocation_granularity();
2483 }
2484 
2485 // Windows large page support is available on Windows 2003. In order to use
2486 // large page memory, the administrator must first assign additional privilege
2487 // to the user:
2488 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2489 //   + select Local Policies -> User Rights Assignment
2490 //   + double click "Lock pages in memory", add users and/or groups
2491 //   + reboot
2492 // Note the above steps are needed for administrator as well, as administrators
2493 // by default do not have the privilege to lock pages in memory.
2494 //
2495 // Note about Windows 2003: although the API supports committing large page
2496 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2497 // scenario, I found through experiment it only uses large page if the entire
2498 // memory region is reserved and committed in a single VirtualAlloc() call.
2499 // This makes Windows large page support more or less like Solaris ISM, in
2500 // that the entire heap must be committed upfront. This probably will change
2501 // in the future, if so the code below needs to be revisited.
2502 
2503 #ifndef MEM_LARGE_PAGES
2504 #define MEM_LARGE_PAGES 0x20000000
2505 #endif
2506 
2507 // GetLargePageMinimum is only available on Windows 2003. The other functions
2508 // are available on NT but not on Windows 98/Me. We have to resolve them at
2509 // runtime.
2510 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2511 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2512              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2513 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2514 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2515 
2516 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2517 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2518 static OpenProcessToken_func_type      _OpenProcessToken;
2519 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2520 
2521 static HINSTANCE _kernel32;
2522 static HINSTANCE _advapi32;
2523 static HANDLE    _hProcess;
2524 static HANDLE    _hToken;
2525 
2526 static size_t _large_page_size = 0;
2527 
2528 static bool resolve_functions_for_large_page_init() {
2529   _kernel32 = LoadLibrary("kernel32.dll");
2530   if (_kernel32 == NULL) return false;
2531 
2532   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2533                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
2534   if (_GetLargePageMinimum == NULL) return false;
2535 
2536   _advapi32 = LoadLibrary("advapi32.dll");
2537   if (_advapi32 == NULL) return false;
2538 
2539   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2540                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2541   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2542                             GetProcAddress(_advapi32, "OpenProcessToken"));
2543   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2544                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2545   return _AdjustTokenPrivileges != NULL &&
2546          _OpenProcessToken      != NULL &&
2547          _LookupPrivilegeValue  != NULL;
2548 }
2549 
2550 static bool request_lock_memory_privilege() {
2551   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2552                                 os::current_process_id());
2553 
2554   LUID luid;
2555   if (_hProcess != NULL &&
2556       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2557       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2558 
2559     TOKEN_PRIVILEGES tp;
2560     tp.PrivilegeCount = 1;
2561     tp.Privileges[0].Luid = luid;
2562     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2563 
2564     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2565     // privilege. Check GetLastError() too. See MSDN document.
2566     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2567         (GetLastError() == ERROR_SUCCESS)) {
2568       return true;
2569     }
2570   }
2571 
2572   return false;
2573 }
2574 
2575 static void cleanup_after_large_page_init() {
2576   _GetLargePageMinimum = NULL;
2577   _AdjustTokenPrivileges = NULL;
2578   _OpenProcessToken = NULL;
2579   _LookupPrivilegeValue = NULL;
2580   if (_kernel32) FreeLibrary(_kernel32);
2581   _kernel32 = NULL;
2582   if (_advapi32) FreeLibrary(_advapi32);
2583   _advapi32 = NULL;
2584   if (_hProcess) CloseHandle(_hProcess);
2585   _hProcess = NULL;
2586   if (_hToken) CloseHandle(_hToken);
2587   _hToken = NULL;
2588 }
2589 
2590 bool os::large_page_init() {
2591   if (!UseLargePages) return false;
2592 
2593   // print a warning if any large page related flag is specified on command line
2594   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2595                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2596   bool success = false;
2597 
2598 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2599   if (resolve_functions_for_large_page_init()) {
2600     if (request_lock_memory_privilege()) {
2601       size_t s = _GetLargePageMinimum();
2602       if (s) {
2603 #if defined(IA32) || defined(AMD64)
2604         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2605           WARN("JVM cannot use large pages bigger than 4mb.");
2606         } else {
2607 #endif
2608           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2609             _large_page_size = LargePageSizeInBytes;
2610           } else {
2611             _large_page_size = s;
2612           }
2613           success = true;
2614 #if defined(IA32) || defined(AMD64)
2615         }
2616 #endif
2617       } else {
2618         WARN("Large page is not supported by the processor.");
2619       }
2620     } else {
2621       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2622     }
2623   } else {
2624     WARN("Large page is not supported by the operating system.");
2625   }
2626 #undef WARN
2627 
2628   const size_t default_page_size = (size_t) vm_page_size();
2629   if (success && _large_page_size > default_page_size) {
2630     _page_sizes[0] = _large_page_size;
2631     _page_sizes[1] = default_page_size;
2632     _page_sizes[2] = 0;
2633   }
2634 
2635   cleanup_after_large_page_init();
2636   return success;
2637 }
2638 
2639 // On win32, one cannot release just a part of reserved memory, it's an
2640 // all or nothing deal.  When we split a reservation, we must break the
2641 // reservation into two reservations.
2642 void os::split_reserved_memory(char *base, size_t size, size_t split,
2643                               bool realloc) {
2644   if (size > 0) {
2645     release_memory(base, size);
2646     if (realloc) {
2647       reserve_memory(split, base);
2648     }
2649     if (size != split) {
2650       reserve_memory(size - split, base + split);
2651     }
2652   }
2653 }
2654 
2655 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2656   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2657          "reserve alignment");
2658   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2659   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2660   assert(res == NULL || addr == NULL || addr == res,
2661          "Unexpected address from reserve.");
2662   return res;
2663 }
2664 
2665 // Reserve memory at an arbitrary address, only if that area is
2666 // available (and not reserved for something else).
2667 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2668   // Windows os::reserve_memory() fails of the requested address range is
2669   // not avilable.
2670   return reserve_memory(bytes, requested_addr);
2671 }
2672 
2673 size_t os::large_page_size() {
2674   return _large_page_size;
2675 }
2676 
2677 bool os::can_commit_large_page_memory() {
2678   // Windows only uses large page memory when the entire region is reserved
2679   // and committed in a single VirtualAlloc() call. This may change in the
2680   // future, but with Windows 2003 it's not possible to commit on demand.
2681   return false;
2682 }
2683 
2684 bool os::can_execute_large_page_memory() {
2685   return true;
2686 }
2687 
2688 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2689 
2690   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2691 
2692   if (UseLargePagesIndividualAllocation) {
2693     if (TracePageSizes && Verbose) {
2694        tty->print_cr("Reserving large pages individually.");
2695     }
2696     char * p_buf;
2697     // first reserve enough address space in advance since we want to be
2698     // able to break a single contiguous virtual address range into multiple
2699     // large page commits but WS2003 does not allow reserving large page space
2700     // so we just use 4K pages for reserve, this gives us a legal contiguous
2701     // address space. then we will deallocate that reservation, and re alloc
2702     // using large pages
2703     const size_t size_of_reserve = bytes + _large_page_size;
2704     if (bytes > size_of_reserve) {
2705       // Overflowed.
2706       warning("Individually allocated large pages failed, "
2707         "use -XX:-UseLargePagesIndividualAllocation to turn off");
2708       return NULL;
2709     }
2710     p_buf = (char *) VirtualAlloc(addr,
2711                                  size_of_reserve,  // size of Reserve
2712                                  MEM_RESERVE,
2713                                  PAGE_READWRITE);
2714     // If reservation failed, return NULL
2715     if (p_buf == NULL) return NULL;
2716 
2717     release_memory(p_buf, bytes + _large_page_size);
2718     // round up to page boundary.  If the size_of_reserve did not
2719     // overflow and the reservation did not fail, this align up
2720     // should not overflow.
2721     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2722 
2723     // now go through and allocate one page at a time until all bytes are
2724     // allocated
2725     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2726     // An overflow of align_size_up() would have been caught above
2727     // in the calculation of size_of_reserve.
2728     char * next_alloc_addr = p_buf;
2729 
2730 #ifdef ASSERT
2731     // Variable for the failure injection
2732     long ran_num = os::random();
2733     size_t fail_after = ran_num % bytes;
2734 #endif
2735 
2736     while (bytes_remaining) {
2737       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2738       // Note allocate and commit
2739       char * p_new;
2740 
2741 #ifdef ASSERT
2742       bool inject_error = LargePagesIndividualAllocationInjectError &&
2743           (bytes_remaining <= fail_after);
2744 #else
2745       const bool inject_error = false;
2746 #endif
2747 
2748       if (inject_error) {
2749         p_new = NULL;
2750       } else {
2751         p_new = (char *) VirtualAlloc(next_alloc_addr,
2752                                     bytes_to_rq,
2753                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2754                                     prot);
2755       }
2756 
2757       if (p_new == NULL) {
2758         // Free any allocated pages
2759         if (next_alloc_addr > p_buf) {
2760           // Some memory was committed so release it.
2761           size_t bytes_to_release = bytes - bytes_remaining;
2762           release_memory(p_buf, bytes_to_release);
2763         }
2764 #ifdef ASSERT
2765         if (UseLargePagesIndividualAllocation &&
2766             LargePagesIndividualAllocationInjectError) {
2767           if (TracePageSizes && Verbose) {
2768              tty->print_cr("Reserving large pages individually failed.");
2769           }
2770         }
2771 #endif
2772         return NULL;
2773       }
2774       bytes_remaining -= bytes_to_rq;
2775       next_alloc_addr += bytes_to_rq;
2776     }
2777 
2778     return p_buf;
2779 
2780   } else {
2781     // normal policy just allocate it all at once
2782     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2783     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2784     return res;
2785   }
2786 }
2787 
2788 bool os::release_memory_special(char* base, size_t bytes) {
2789   return release_memory(base, bytes);
2790 }
2791 
2792 void os::print_statistics() {
2793 }
2794 
2795 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
2796   if (bytes == 0) {
2797     // Don't bother the OS with noops.
2798     return true;
2799   }
2800   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2801   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2802   // Don't attempt to print anything if the OS call fails. We're
2803   // probably low on resources, so the print itself may cause crashes.
2804   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
2805   if (result != NULL && exec) {
2806     DWORD oldprot;
2807     // Windows doc says to use VirtualProtect to get execute permissions
2808     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
2809   } else {
2810     return result;
2811   }
2812 }
2813 
2814 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2815                        bool exec) {
2816   return commit_memory(addr, size, exec);
2817 }
2818 
2819 bool os::uncommit_memory(char* addr, size_t bytes) {
2820   if (bytes == 0) {
2821     // Don't bother the OS with noops.
2822     return true;
2823   }
2824   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2825   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2826   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2827 }
2828 
2829 bool os::release_memory(char* addr, size_t bytes) {
2830   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2831 }
2832 
2833 bool os::create_stack_guard_pages(char* addr, size_t size) {
2834   return os::commit_memory(addr, size);
2835 }
2836 
2837 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2838   return os::uncommit_memory(addr, size);
2839 }
2840 
2841 // Set protections specified
2842 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2843                         bool is_committed) {
2844   unsigned int p = 0;
2845   switch (prot) {
2846   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
2847   case MEM_PROT_READ: p = PAGE_READONLY; break;
2848   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
2849   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
2850   default:
2851     ShouldNotReachHere();
2852   }
2853 
2854   DWORD old_status;
2855 
2856   // Strange enough, but on Win32 one can change protection only for committed
2857   // memory, not a big deal anyway, as bytes less or equal than 64K
2858   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
2859     fatal("cannot commit protection page");
2860   }
2861   // One cannot use os::guard_memory() here, as on Win32 guard page
2862   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
2863   //
2864   // Pages in the region become guard pages. Any attempt to access a guard page
2865   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
2866   // the guard page status. Guard pages thus act as a one-time access alarm.
2867   return VirtualProtect(addr, bytes, p, &old_status) != 0;
2868 }
2869 
2870 bool os::guard_memory(char* addr, size_t bytes) {
2871   DWORD old_status;
2872   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
2873 }
2874 
2875 bool os::unguard_memory(char* addr, size_t bytes) {
2876   DWORD old_status;
2877   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
2878 }
2879 
2880 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2881 void os::free_memory(char *addr, size_t bytes)         { }
2882 void os::numa_make_global(char *addr, size_t bytes)    { }
2883 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
2884 bool os::numa_topology_changed()                       { return false; }
2885 size_t os::numa_get_groups_num()                       { return 1; }
2886 int os::numa_get_group_id()                            { return 0; }
2887 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2888   if (size > 0) {
2889     ids[0] = 0;
2890     return 1;
2891   }
2892   return 0;
2893 }
2894 
2895 bool os::get_page_info(char *start, page_info* info) {
2896   return false;
2897 }
2898 
2899 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2900   return end;
2901 }
2902 
2903 char* os::non_memory_address_word() {
2904   // Must never look like an address returned by reserve_memory,
2905   // even in its subfields (as defined by the CPU immediate fields,
2906   // if the CPU splits constants across multiple instructions).
2907   return (char*)-1;
2908 }
2909 
2910 #define MAX_ERROR_COUNT 100
2911 #define SYS_THREAD_ERROR 0xffffffffUL
2912 
2913 void os::pd_start_thread(Thread* thread) {
2914   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2915   // Returns previous suspend state:
2916   // 0:  Thread was not suspended
2917   // 1:  Thread is running now
2918   // >1: Thread is still suspended.
2919   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2920 }
2921 
2922 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2923   return ::read(fd, buf, nBytes);
2924 }
2925 
2926 class HighResolutionInterval {
2927   // The default timer resolution seems to be 10 milliseconds.
2928   // (Where is this written down?)
2929   // If someone wants to sleep for only a fraction of the default,
2930   // then we set the timer resolution down to 1 millisecond for
2931   // the duration of their interval.
2932   // We carefully set the resolution back, since otherwise we
2933   // seem to incur an overhead (3%?) that we don't need.
2934   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2935   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2936   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2937   // timeBeginPeriod() if the relative error exceeded some threshold.
2938   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2939   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
2940   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2941   // resolution timers running.
2942 private:
2943     jlong resolution;
2944 public:
2945   HighResolutionInterval(jlong ms) {
2946     resolution = ms % 10L;
2947     if (resolution != 0) {
2948       MMRESULT result = timeBeginPeriod(1L);
2949     }
2950   }
2951   ~HighResolutionInterval() {
2952     if (resolution != 0) {
2953       MMRESULT result = timeEndPeriod(1L);
2954     }
2955     resolution = 0L;
2956   }
2957 };
2958 
2959 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2960   jlong limit = (jlong) MAXDWORD;
2961 
2962   while(ms > limit) {
2963     int res;
2964     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2965       return res;
2966     ms -= limit;
2967   }
2968 
2969   assert(thread == Thread::current(),  "thread consistency check");
2970   OSThread* osthread = thread->osthread();
2971   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2972   int result;
2973   if (interruptable) {
2974     assert(thread->is_Java_thread(), "must be java thread");
2975     JavaThread *jt = (JavaThread *) thread;
2976     ThreadBlockInVM tbivm(jt);
2977 
2978     jt->set_suspend_equivalent();
2979     // cleared by handle_special_suspend_equivalent_condition() or
2980     // java_suspend_self() via check_and_wait_while_suspended()
2981 
2982     HANDLE events[1];
2983     events[0] = osthread->interrupt_event();
2984     HighResolutionInterval *phri=NULL;
2985     if(!ForceTimeHighResolution)
2986       phri = new HighResolutionInterval( ms );
2987     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
2988       result = OS_TIMEOUT;
2989     } else {
2990       ResetEvent(osthread->interrupt_event());
2991       osthread->set_interrupted(false);
2992       result = OS_INTRPT;
2993     }
2994     delete phri; //if it is NULL, harmless
2995 
2996     // were we externally suspended while we were waiting?
2997     jt->check_and_wait_while_suspended();
2998   } else {
2999     assert(!thread->is_Java_thread(), "must not be java thread");
3000     Sleep((long) ms);
3001     result = OS_TIMEOUT;
3002   }
3003   return result;
3004 }
3005 
3006 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3007 void os::infinite_sleep() {
3008   while (true) {    // sleep forever ...
3009     Sleep(100000);  // ... 100 seconds at a time
3010   }
3011 }
3012 
3013 typedef BOOL (WINAPI * STTSignature)(void) ;
3014 
3015 os::YieldResult os::NakedYield() {
3016   // Use either SwitchToThread() or Sleep(0)
3017   // Consider passing back the return value from SwitchToThread().
3018   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
3019   // In that case we revert to Sleep(0).
3020   static volatile STTSignature stt = (STTSignature) 1 ;
3021 
3022   if (stt == ((STTSignature) 1)) {
3023     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
3024     // It's OK if threads race during initialization as the operation above is idempotent.
3025   }
3026   if (stt != NULL) {
3027     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3028   } else {
3029     Sleep (0) ;
3030   }
3031   return os::YIELD_UNKNOWN ;
3032 }
3033 
3034 void os::yield() {  os::NakedYield(); }
3035 
3036 void os::yield_all(int attempts) {
3037   // Yields to all threads, including threads with lower priorities
3038   Sleep(1);
3039 }
3040 
3041 // Win32 only gives you access to seven real priorities at a time,
3042 // so we compress Java's ten down to seven.  It would be better
3043 // if we dynamically adjusted relative priorities.
3044 
3045 int os::java_to_os_priority[MaxPriority + 1] = {
3046   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3047   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3048   THREAD_PRIORITY_LOWEST,                       // 2
3049   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3050   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3051   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3052   THREAD_PRIORITY_NORMAL,                       // 6
3053   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3054   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3055   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3056   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3057 };
3058 
3059 int prio_policy1[MaxPriority + 1] = {
3060   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3061   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3062   THREAD_PRIORITY_LOWEST,                       // 2
3063   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3064   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3065   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3066   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3067   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3068   THREAD_PRIORITY_HIGHEST,                      // 8
3069   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3070   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3071 };
3072 
3073 static int prio_init() {
3074   // If ThreadPriorityPolicy is 1, switch tables
3075   if (ThreadPriorityPolicy == 1) {
3076     int i;
3077     for (i = 0; i < MaxPriority + 1; i++) {
3078       os::java_to_os_priority[i] = prio_policy1[i];
3079     }
3080   }
3081   return 0;
3082 }
3083 
3084 OSReturn os::set_native_priority(Thread* thread, int priority) {
3085   if (!UseThreadPriorities) return OS_OK;
3086   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3087   return ret ? OS_OK : OS_ERR;
3088 }
3089 
3090 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3091   if ( !UseThreadPriorities ) {
3092     *priority_ptr = java_to_os_priority[NormPriority];
3093     return OS_OK;
3094   }
3095   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3096   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3097     assert(false, "GetThreadPriority failed");
3098     return OS_ERR;
3099   }
3100   *priority_ptr = os_prio;
3101   return OS_OK;
3102 }
3103 
3104 
3105 // Hint to the underlying OS that a task switch would not be good.
3106 // Void return because it's a hint and can fail.
3107 void os::hint_no_preempt() {}
3108 
3109 void os::interrupt(Thread* thread) {
3110   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3111          "possibility of dangling Thread pointer");
3112 
3113   OSThread* osthread = thread->osthread();
3114   osthread->set_interrupted(true);
3115   // More than one thread can get here with the same value of osthread,
3116   // resulting in multiple notifications.  We do, however, want the store
3117   // to interrupted() to be visible to other threads before we post
3118   // the interrupt event.
3119   OrderAccess::release();
3120   SetEvent(osthread->interrupt_event());
3121   // For JSR166:  unpark after setting status
3122   if (thread->is_Java_thread())
3123     ((JavaThread*)thread)->parker()->unpark();
3124 
3125   ParkEvent * ev = thread->_ParkEvent ;
3126   if (ev != NULL) ev->unpark() ;
3127 
3128 }
3129 
3130 
3131 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3132   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3133          "possibility of dangling Thread pointer");
3134 
3135   OSThread* osthread = thread->osthread();
3136   bool interrupted;
3137   interrupted = osthread->interrupted();
3138   if (clear_interrupted == true) {
3139     osthread->set_interrupted(false);
3140     ResetEvent(osthread->interrupt_event());
3141   } // Otherwise leave the interrupted state alone
3142 
3143   return interrupted;
3144 }
3145 
3146 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3147 ExtendedPC os::get_thread_pc(Thread* thread) {
3148   CONTEXT context;
3149   context.ContextFlags = CONTEXT_CONTROL;
3150   HANDLE handle = thread->osthread()->thread_handle();
3151 #ifdef _M_IA64
3152   assert(0, "Fix get_thread_pc");
3153   return ExtendedPC(NULL);
3154 #else
3155   if (GetThreadContext(handle, &context)) {
3156 #ifdef _M_AMD64
3157     return ExtendedPC((address) context.Rip);
3158 #else
3159     return ExtendedPC((address) context.Eip);
3160 #endif
3161   } else {
3162     return ExtendedPC(NULL);
3163   }
3164 #endif
3165 }
3166 
3167 // GetCurrentThreadId() returns DWORD
3168 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3169 
3170 static int _initial_pid = 0;
3171 
3172 int os::current_process_id()
3173 {
3174   return (_initial_pid ? _initial_pid : _getpid());
3175 }
3176 
3177 int    os::win32::_vm_page_size       = 0;
3178 int    os::win32::_vm_allocation_granularity = 0;
3179 int    os::win32::_processor_type     = 0;
3180 // Processor level is not available on non-NT systems, use vm_version instead
3181 int    os::win32::_processor_level    = 0;
3182 julong os::win32::_physical_memory    = 0;
3183 size_t os::win32::_default_stack_size = 0;
3184 
3185          intx os::win32::_os_thread_limit    = 0;
3186 volatile intx os::win32::_os_thread_count    = 0;
3187 
3188 bool   os::win32::_is_nt              = false;
3189 bool   os::win32::_is_windows_2003    = false;
3190 
3191 
3192 void os::win32::initialize_system_info() {
3193   SYSTEM_INFO si;
3194   GetSystemInfo(&si);
3195   _vm_page_size    = si.dwPageSize;
3196   _vm_allocation_granularity = si.dwAllocationGranularity;
3197   _processor_type  = si.dwProcessorType;
3198   _processor_level = si.wProcessorLevel;
3199   set_processor_count(si.dwNumberOfProcessors);
3200 
3201   MEMORYSTATUSEX ms;
3202   ms.dwLength = sizeof(ms);
3203 
3204   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3205   // dwMemoryLoad (% of memory in use)
3206   GlobalMemoryStatusEx(&ms);
3207   _physical_memory = ms.ullTotalPhys;
3208 
3209   OSVERSIONINFO oi;
3210   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3211   GetVersionEx(&oi);
3212   switch(oi.dwPlatformId) {
3213     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3214     case VER_PLATFORM_WIN32_NT:
3215       _is_nt = true;
3216       {
3217         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3218         if (os_vers == 5002) {
3219           _is_windows_2003 = true;
3220         }
3221       }
3222       break;
3223     default: fatal("Unknown platform");
3224   }
3225 
3226   _default_stack_size = os::current_stack_size();
3227   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3228   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3229     "stack size not a multiple of page size");
3230 
3231   initialize_performance_counter();
3232 
3233   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3234   // known to deadlock the system, if the VM issues to thread operations with
3235   // a too high frequency, e.g., such as changing the priorities.
3236   // The 6000 seems to work well - no deadlocks has been notices on the test
3237   // programs that we have seen experience this problem.
3238   if (!os::win32::is_nt()) {
3239     StarvationMonitorInterval = 6000;
3240   }
3241 }
3242 
3243 
3244 void os::win32::setmode_streams() {
3245   _setmode(_fileno(stdin), _O_BINARY);
3246   _setmode(_fileno(stdout), _O_BINARY);
3247   _setmode(_fileno(stderr), _O_BINARY);
3248 }
3249 
3250 
3251 int os::message_box(const char* title, const char* message) {
3252   int result = MessageBox(NULL, message, title,
3253                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3254   return result == IDYES;
3255 }
3256 
3257 int os::allocate_thread_local_storage() {
3258   return TlsAlloc();
3259 }
3260 
3261 
3262 void os::free_thread_local_storage(int index) {
3263   TlsFree(index);
3264 }
3265 
3266 
3267 void os::thread_local_storage_at_put(int index, void* value) {
3268   TlsSetValue(index, value);
3269   assert(thread_local_storage_at(index) == value, "Just checking");
3270 }
3271 
3272 
3273 void* os::thread_local_storage_at(int index) {
3274   return TlsGetValue(index);
3275 }
3276 
3277 
3278 #ifndef PRODUCT
3279 #ifndef _WIN64
3280 // Helpers to check whether NX protection is enabled
3281 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3282   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3283       pex->ExceptionRecord->NumberParameters > 0 &&
3284       pex->ExceptionRecord->ExceptionInformation[0] ==
3285       EXCEPTION_INFO_EXEC_VIOLATION) {
3286     return EXCEPTION_EXECUTE_HANDLER;
3287   }
3288   return EXCEPTION_CONTINUE_SEARCH;
3289 }
3290 
3291 void nx_check_protection() {
3292   // If NX is enabled we'll get an exception calling into code on the stack
3293   char code[] = { (char)0xC3 }; // ret
3294   void *code_ptr = (void *)code;
3295   __try {
3296     __asm call code_ptr
3297   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3298     tty->print_raw_cr("NX protection detected.");
3299   }
3300 }
3301 #endif // _WIN64
3302 #endif // PRODUCT
3303 
3304 // this is called _before_ the global arguments have been parsed
3305 void os::init(void) {
3306   _initial_pid = _getpid();
3307 
3308   init_random(1234567);
3309 
3310   win32::initialize_system_info();
3311   win32::setmode_streams();
3312   init_page_sizes((size_t) win32::vm_page_size());
3313 
3314   // For better scalability on MP systems (must be called after initialize_system_info)
3315 #ifndef PRODUCT
3316   if (is_MP()) {
3317     NoYieldsInMicrolock = true;
3318   }
3319 #endif
3320   // This may be overridden later when argument processing is done.
3321   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3322     os::win32::is_windows_2003());
3323 
3324   // Initialize main_process and main_thread
3325   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3326  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3327                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3328     fatal("DuplicateHandle failed\n");
3329   }
3330   main_thread_id = (int) GetCurrentThreadId();
3331 }
3332 
3333 // To install functions for atexit processing
3334 extern "C" {
3335   static void perfMemory_exit_helper() {
3336     perfMemory_exit();
3337   }
3338 }
3339 
3340 
3341 // this is called _after_ the global arguments have been parsed
3342 jint os::init_2(void) {
3343   // Allocate a single page and mark it as readable for safepoint polling
3344   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3345   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3346 
3347   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3348   guarantee( return_page != NULL, "Commit Failed for polling page");
3349 
3350   os::set_polling_page( polling_page );
3351 
3352 #ifndef PRODUCT
3353   if( Verbose && PrintMiscellaneous )
3354     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3355 #endif
3356 
3357   if (!UseMembar) {
3358     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3359     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3360 
3361     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3362     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3363 
3364     os::set_memory_serialize_page( mem_serialize_page );
3365 
3366 #ifndef PRODUCT
3367     if(Verbose && PrintMiscellaneous)
3368       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3369 #endif
3370 }
3371 
3372   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3373 
3374   // Setup Windows Exceptions
3375 
3376   // On Itanium systems, Structured Exception Handling does not
3377   // work since stack frames must be walkable by the OS.  Since
3378   // much of our code is dynamically generated, and we do not have
3379   // proper unwind .xdata sections, the system simply exits
3380   // rather than delivering the exception.  To work around
3381   // this we use VectorExceptions instead.
3382 #ifdef _WIN64
3383   if (UseVectoredExceptions) {
3384     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3385   }
3386 #endif
3387 
3388   // for debugging float code generation bugs
3389   if (ForceFloatExceptions) {
3390 #ifndef  _WIN64
3391     static long fp_control_word = 0;
3392     __asm { fstcw fp_control_word }
3393     // see Intel PPro Manual, Vol. 2, p 7-16
3394     const long precision = 0x20;
3395     const long underflow = 0x10;
3396     const long overflow  = 0x08;
3397     const long zero_div  = 0x04;
3398     const long denorm    = 0x02;
3399     const long invalid   = 0x01;
3400     fp_control_word |= invalid;
3401     __asm { fldcw fp_control_word }
3402 #endif
3403   }
3404 
3405   // Initialize HPI.
3406   jint hpi_result = hpi::initialize();
3407   if (hpi_result != JNI_OK) { return hpi_result; }
3408 
3409   // If stack_commit_size is 0, windows will reserve the default size,
3410   // but only commit a small portion of it.
3411   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3412   size_t default_reserve_size = os::win32::default_stack_size();
3413   size_t actual_reserve_size = stack_commit_size;
3414   if (stack_commit_size < default_reserve_size) {
3415     // If stack_commit_size == 0, we want this too
3416     actual_reserve_size = default_reserve_size;
3417   }
3418 
3419   JavaThread::set_stack_size_at_create(stack_commit_size);
3420 
3421   // Calculate theoretical max. size of Threads to guard gainst artifical
3422   // out-of-memory situations, where all available address-space has been
3423   // reserved by thread stacks.
3424   assert(actual_reserve_size != 0, "Must have a stack");
3425 
3426   // Calculate the thread limit when we should start doing Virtual Memory
3427   // banging. Currently when the threads will have used all but 200Mb of space.
3428   //
3429   // TODO: consider performing a similar calculation for commit size instead
3430   // as reserve size, since on a 64-bit platform we'll run into that more
3431   // often than running out of virtual memory space.  We can use the
3432   // lower value of the two calculations as the os_thread_limit.
3433   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3434   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3435 
3436   // at exit methods are called in the reverse order of their registration.
3437   // there is no limit to the number of functions registered. atexit does
3438   // not set errno.
3439 
3440   if (PerfAllowAtExitRegistration) {
3441     // only register atexit functions if PerfAllowAtExitRegistration is set.
3442     // atexit functions can be delayed until process exit time, which
3443     // can be problematic for embedded VM situations. Embedded VMs should
3444     // call DestroyJavaVM() to assure that VM resources are released.
3445 
3446     // note: perfMemory_exit_helper atexit function may be removed in
3447     // the future if the appropriate cleanup code can be added to the
3448     // VM_Exit VMOperation's doit method.
3449     if (atexit(perfMemory_exit_helper) != 0) {
3450       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3451     }
3452   }
3453 
3454   // initialize PSAPI or ToolHelp for fatal error handler
3455   if (win32::is_nt()) _init_psapi();
3456   else _init_toolhelp();
3457 
3458 #ifndef _WIN64
3459   // Print something if NX is enabled (win32 on AMD64)
3460   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3461 #endif
3462 
3463   // initialize thread priority policy
3464   prio_init();
3465 
3466   if (UseNUMA && !ForceNUMA) {
3467     UseNUMA = false; // Currently unsupported.
3468   }
3469 
3470   return JNI_OK;
3471 }
3472 
3473 void os::init_3(void) {
3474   return;
3475 }
3476 
3477 // Mark the polling page as unreadable
3478 void os::make_polling_page_unreadable(void) {
3479   DWORD old_status;
3480   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3481     fatal("Could not disable polling page");
3482 };
3483 
3484 // Mark the polling page as readable
3485 void os::make_polling_page_readable(void) {
3486   DWORD old_status;
3487   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3488     fatal("Could not enable polling page");
3489 };
3490 
3491 
3492 int os::stat(const char *path, struct stat *sbuf) {
3493   char pathbuf[MAX_PATH];
3494   if (strlen(path) > MAX_PATH - 1) {
3495     errno = ENAMETOOLONG;
3496     return -1;
3497   }
3498   hpi::native_path(strcpy(pathbuf, path));
3499   int ret = ::stat(pathbuf, sbuf);
3500   if (sbuf != NULL && UseUTCFileTimestamp) {
3501     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3502     // the system timezone and so can return different values for the
3503     // same file if/when daylight savings time changes.  This adjustment
3504     // makes sure the same timestamp is returned regardless of the TZ.
3505     //
3506     // See:
3507     // http://msdn.microsoft.com/library/
3508     //   default.asp?url=/library/en-us/sysinfo/base/
3509     //   time_zone_information_str.asp
3510     // and
3511     // http://msdn.microsoft.com/library/default.asp?url=
3512     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3513     //
3514     // NOTE: there is a insidious bug here:  If the timezone is changed
3515     // after the call to stat() but before 'GetTimeZoneInformation()', then
3516     // the adjustment we do here will be wrong and we'll return the wrong
3517     // value (which will likely end up creating an invalid class data
3518     // archive).  Absent a better API for this, or some time zone locking
3519     // mechanism, we'll have to live with this risk.
3520     TIME_ZONE_INFORMATION tz;
3521     DWORD tzid = GetTimeZoneInformation(&tz);
3522     int daylightBias =
3523       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3524     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3525   }
3526   return ret;
3527 }
3528 
3529 
3530 #define FT2INT64(ft) \
3531   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3532 
3533 
3534 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3535 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3536 // of a thread.
3537 //
3538 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3539 // the fast estimate available on the platform.
3540 
3541 // current_thread_cpu_time() is not optimized for Windows yet
3542 jlong os::current_thread_cpu_time() {
3543   // return user + sys since the cost is the same
3544   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3545 }
3546 
3547 jlong os::thread_cpu_time(Thread* thread) {
3548   // consistent with what current_thread_cpu_time() returns.
3549   return os::thread_cpu_time(thread, true /* user+sys */);
3550 }
3551 
3552 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3553   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3554 }
3555 
3556 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3557   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3558   // If this function changes, os::is_thread_cpu_time_supported() should too
3559   if (os::win32::is_nt()) {
3560     FILETIME CreationTime;
3561     FILETIME ExitTime;
3562     FILETIME KernelTime;
3563     FILETIME UserTime;
3564 
3565     if ( GetThreadTimes(thread->osthread()->thread_handle(),
3566                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3567       return -1;
3568     else
3569       if (user_sys_cpu_time) {
3570         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3571       } else {
3572         return FT2INT64(UserTime) * 100;
3573       }
3574   } else {
3575     return (jlong) timeGetTime() * 1000000;
3576   }
3577 }
3578 
3579 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3580   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3581   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3582   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3583   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3584 }
3585 
3586 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3587   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3588   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3589   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3590   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3591 }
3592 
3593 bool os::is_thread_cpu_time_supported() {
3594   // see os::thread_cpu_time
3595   if (os::win32::is_nt()) {
3596     FILETIME CreationTime;
3597     FILETIME ExitTime;
3598     FILETIME KernelTime;
3599     FILETIME UserTime;
3600 
3601     if ( GetThreadTimes(GetCurrentThread(),
3602                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3603       return false;
3604     else
3605       return true;
3606   } else {
3607     return false;
3608   }
3609 }
3610 
3611 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3612 // It does have primitives (PDH API) to get CPU usage and run queue length.
3613 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3614 // If we wanted to implement loadavg on Windows, we have a few options:
3615 //
3616 // a) Query CPU usage and run queue length and "fake" an answer by
3617 //    returning the CPU usage if it's under 100%, and the run queue
3618 //    length otherwise.  It turns out that querying is pretty slow
3619 //    on Windows, on the order of 200 microseconds on a fast machine.
3620 //    Note that on the Windows the CPU usage value is the % usage
3621 //    since the last time the API was called (and the first call
3622 //    returns 100%), so we'd have to deal with that as well.
3623 //
3624 // b) Sample the "fake" answer using a sampling thread and store
3625 //    the answer in a global variable.  The call to loadavg would
3626 //    just return the value of the global, avoiding the slow query.
3627 //
3628 // c) Sample a better answer using exponential decay to smooth the
3629 //    value.  This is basically the algorithm used by UNIX kernels.
3630 //
3631 // Note that sampling thread starvation could affect both (b) and (c).
3632 int os::loadavg(double loadavg[], int nelem) {
3633   return -1;
3634 }
3635 
3636 
3637 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3638 bool os::dont_yield() {
3639   return DontYieldALot;
3640 }
3641 
3642 // Is a (classpath) directory empty?
3643 bool os::dir_is_empty(const char* path) {
3644   WIN32_FIND_DATA fd;
3645   HANDLE f = FindFirstFile(path, &fd);
3646   if (f == INVALID_HANDLE_VALUE) {
3647     return true;
3648   }
3649   FindClose(f);
3650   return false;
3651 }
3652 
3653 // create binary file, rewriting existing file if required
3654 int os::create_binary_file(const char* path, bool rewrite_existing) {
3655   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3656   if (!rewrite_existing) {
3657     oflags |= _O_EXCL;
3658   }
3659   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3660 }
3661 
3662 // return current position of file pointer
3663 jlong os::current_file_offset(int fd) {
3664   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3665 }
3666 
3667 // move file pointer to the specified offset
3668 jlong os::seek_to_file_offset(int fd, jlong offset) {
3669   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3670 }
3671 
3672 
3673 // Map a block of memory.
3674 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3675                      char *addr, size_t bytes, bool read_only,
3676                      bool allow_exec) {
3677   HANDLE hFile;
3678   char* base;
3679 
3680   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3681                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3682   if (hFile == NULL) {
3683     if (PrintMiscellaneous && Verbose) {
3684       DWORD err = GetLastError();
3685       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3686     }
3687     return NULL;
3688   }
3689 
3690   if (allow_exec) {
3691     // CreateFileMapping/MapViewOfFileEx can't map executable memory
3692     // unless it comes from a PE image (which the shared archive is not.)
3693     // Even VirtualProtect refuses to give execute access to mapped memory
3694     // that was not previously executable.
3695     //
3696     // Instead, stick the executable region in anonymous memory.  Yuck.
3697     // Penalty is that ~4 pages will not be shareable - in the future
3698     // we might consider DLLizing the shared archive with a proper PE
3699     // header so that mapping executable + sharing is possible.
3700 
3701     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3702                                 PAGE_READWRITE);
3703     if (base == NULL) {
3704       if (PrintMiscellaneous && Verbose) {
3705         DWORD err = GetLastError();
3706         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3707       }
3708       CloseHandle(hFile);
3709       return NULL;
3710     }
3711 
3712     DWORD bytes_read;
3713     OVERLAPPED overlapped;
3714     overlapped.Offset = (DWORD)file_offset;
3715     overlapped.OffsetHigh = 0;
3716     overlapped.hEvent = NULL;
3717     // ReadFile guarantees that if the return value is true, the requested
3718     // number of bytes were read before returning.
3719     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3720     if (!res) {
3721       if (PrintMiscellaneous && Verbose) {
3722         DWORD err = GetLastError();
3723         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3724       }
3725       release_memory(base, bytes);
3726       CloseHandle(hFile);
3727       return NULL;
3728     }
3729   } else {
3730     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3731                                     NULL /*file_name*/);
3732     if (hMap == NULL) {
3733       if (PrintMiscellaneous && Verbose) {
3734         DWORD err = GetLastError();
3735         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3736       }
3737       CloseHandle(hFile);
3738       return NULL;
3739     }
3740 
3741     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3742     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3743                                   (DWORD)bytes, addr);
3744     if (base == NULL) {
3745       if (PrintMiscellaneous && Verbose) {
3746         DWORD err = GetLastError();
3747         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3748       }
3749       CloseHandle(hMap);
3750       CloseHandle(hFile);
3751       return NULL;
3752     }
3753 
3754     if (CloseHandle(hMap) == 0) {
3755       if (PrintMiscellaneous && Verbose) {
3756         DWORD err = GetLastError();
3757         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3758       }
3759       CloseHandle(hFile);
3760       return base;
3761     }
3762   }
3763 
3764   if (allow_exec) {
3765     DWORD old_protect;
3766     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3767     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3768 
3769     if (!res) {
3770       if (PrintMiscellaneous && Verbose) {
3771         DWORD err = GetLastError();
3772         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3773       }
3774       // Don't consider this a hard error, on IA32 even if the
3775       // VirtualProtect fails, we should still be able to execute
3776       CloseHandle(hFile);
3777       return base;
3778     }
3779   }
3780 
3781   if (CloseHandle(hFile) == 0) {
3782     if (PrintMiscellaneous && Verbose) {
3783       DWORD err = GetLastError();
3784       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3785     }
3786     return base;
3787   }
3788 
3789   return base;
3790 }
3791 
3792 
3793 // Remap a block of memory.
3794 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3795                        char *addr, size_t bytes, bool read_only,
3796                        bool allow_exec) {
3797   // This OS does not allow existing memory maps to be remapped so we
3798   // have to unmap the memory before we remap it.
3799   if (!os::unmap_memory(addr, bytes)) {
3800     return NULL;
3801   }
3802 
3803   // There is a very small theoretical window between the unmap_memory()
3804   // call above and the map_memory() call below where a thread in native
3805   // code may be able to access an address that is no longer mapped.
3806 
3807   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3808                         allow_exec);
3809 }
3810 
3811 
3812 // Unmap a block of memory.
3813 // Returns true=success, otherwise false.
3814 
3815 bool os::unmap_memory(char* addr, size_t bytes) {
3816   BOOL result = UnmapViewOfFile(addr);
3817   if (result == 0) {
3818     if (PrintMiscellaneous && Verbose) {
3819       DWORD err = GetLastError();
3820       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3821     }
3822     return false;
3823   }
3824   return true;
3825 }
3826 
3827 void os::pause() {
3828   char filename[MAX_PATH];
3829   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3830     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3831   } else {
3832     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3833   }
3834 
3835   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3836   if (fd != -1) {
3837     struct stat buf;
3838     close(fd);
3839     while (::stat(filename, &buf) == 0) {
3840       Sleep(100);
3841     }
3842   } else {
3843     jio_fprintf(stderr,
3844       "Could not open pause file '%s', continuing immediately.\n", filename);
3845   }
3846 }
3847 
3848 // An Event wraps a win32 "CreateEvent" kernel handle.
3849 //
3850 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
3851 //
3852 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3853 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
3854 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3855 //     In addition, an unpark() operation might fetch the handle field, but the
3856 //     event could recycle between the fetch and the SetEvent() operation.
3857 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
3858 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
3859 //     on an stale but recycled handle would be harmless, but in practice this might
3860 //     confuse other non-Sun code, so it's not a viable approach.
3861 //
3862 // 2:  Once a win32 event handle is associated with an Event, it remains associated
3863 //     with the Event.  The event handle is never closed.  This could be construed
3864 //     as handle leakage, but only up to the maximum # of threads that have been extant
3865 //     at any one time.  This shouldn't be an issue, as windows platforms typically
3866 //     permit a process to have hundreds of thousands of open handles.
3867 //
3868 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3869 //     and release unused handles.
3870 //
3871 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3872 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
3873 //
3874 // 5.  Use an RCU-like mechanism (Read-Copy Update).
3875 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
3876 //
3877 // We use (2).
3878 //
3879 // TODO-FIXME:
3880 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3881 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3882 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
3883 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3884 //     into a single win32 CreateEvent() handle.
3885 //
3886 // _Event transitions in park()
3887 //   -1 => -1 : illegal
3888 //    1 =>  0 : pass - return immediately
3889 //    0 => -1 : block
3890 //
3891 // _Event serves as a restricted-range semaphore :
3892 //    -1 : thread is blocked
3893 //     0 : neutral  - thread is running or ready
3894 //     1 : signaled - thread is running or ready
3895 //
3896 // Another possible encoding of _Event would be
3897 // with explicit "PARKED" and "SIGNALED" bits.
3898 
3899 int os::PlatformEvent::park (jlong Millis) {
3900     guarantee (_ParkHandle != NULL , "Invariant") ;
3901     guarantee (Millis > 0          , "Invariant") ;
3902     int v ;
3903 
3904     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3905     // the initial park() operation.
3906 
3907     for (;;) {
3908         v = _Event ;
3909         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3910     }
3911     guarantee ((v == 0) || (v == 1), "invariant") ;
3912     if (v != 0) return OS_OK ;
3913 
3914     // Do this the hard way by blocking ...
3915     // TODO: consider a brief spin here, gated on the success of recent
3916     // spin attempts by this thread.
3917     //
3918     // We decompose long timeouts into series of shorter timed waits.
3919     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3920     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
3921     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3922     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
3923     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3924     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
3925     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3926     // for the already waited time.  This policy does not admit any new outcomes.
3927     // In the future, however, we might want to track the accumulated wait time and
3928     // adjust Millis accordingly if we encounter a spurious wakeup.
3929 
3930     const int MAXTIMEOUT = 0x10000000 ;
3931     DWORD rv = WAIT_TIMEOUT ;
3932     while (_Event < 0 && Millis > 0) {
3933        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
3934        if (Millis > MAXTIMEOUT) {
3935           prd = MAXTIMEOUT ;
3936        }
3937        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3938        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3939        if (rv == WAIT_TIMEOUT) {
3940            Millis -= prd ;
3941        }
3942     }
3943     v = _Event ;
3944     _Event = 0 ;
3945     OrderAccess::fence() ;
3946     // If we encounter a nearly simultanous timeout expiry and unpark()
3947     // we return OS_OK indicating we awoke via unpark().
3948     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3949     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3950 }
3951 
3952 void os::PlatformEvent::park () {
3953     guarantee (_ParkHandle != NULL, "Invariant") ;
3954     // Invariant: Only the thread associated with the Event/PlatformEvent
3955     // may call park().
3956     int v ;
3957     for (;;) {
3958         v = _Event ;
3959         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3960     }
3961     guarantee ((v == 0) || (v == 1), "invariant") ;
3962     if (v != 0) return ;
3963 
3964     // Do this the hard way by blocking ...
3965     // TODO: consider a brief spin here, gated on the success of recent
3966     // spin attempts by this thread.
3967     while (_Event < 0) {
3968        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
3969        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
3970     }
3971 
3972     // Usually we'll find _Event == 0 at this point, but as
3973     // an optional optimization we clear it, just in case can
3974     // multiple unpark() operations drove _Event up to 1.
3975     _Event = 0 ;
3976     OrderAccess::fence() ;
3977     guarantee (_Event >= 0, "invariant") ;
3978 }
3979 
3980 void os::PlatformEvent::unpark() {
3981   guarantee (_ParkHandle != NULL, "Invariant") ;
3982   int v ;
3983   for (;;) {
3984       v = _Event ;      // Increment _Event if it's < 1.
3985       if (v > 0) {
3986          // If it's already signaled just return.
3987          // The LD of _Event could have reordered or be satisfied
3988          // by a read-aside from this processor's write buffer.
3989          // To avoid problems execute a barrier and then
3990          // ratify the value.  A degenerate CAS() would also work.
3991          // Viz., CAS (v+0, &_Event, v) == v).
3992          OrderAccess::fence() ;
3993          if (_Event == v) return ;
3994          continue ;
3995       }
3996       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
3997   }
3998   if (v < 0) {
3999      ::SetEvent (_ParkHandle) ;
4000   }
4001 }
4002 
4003 
4004 // JSR166
4005 // -------------------------------------------------------
4006 
4007 /*
4008  * The Windows implementation of Park is very straightforward: Basic
4009  * operations on Win32 Events turn out to have the right semantics to
4010  * use them directly. We opportunistically resuse the event inherited
4011  * from Monitor.
4012  */
4013 
4014 
4015 void Parker::park(bool isAbsolute, jlong time) {
4016   guarantee (_ParkEvent != NULL, "invariant") ;
4017   // First, demultiplex/decode time arguments
4018   if (time < 0) { // don't wait
4019     return;
4020   }
4021   else if (time == 0) {
4022     time = INFINITE;
4023   }
4024   else if  (isAbsolute) {
4025     time -= os::javaTimeMillis(); // convert to relative time
4026     if (time <= 0) // already elapsed
4027       return;
4028   }
4029   else { // relative
4030     time /= 1000000; // Must coarsen from nanos to millis
4031     if (time == 0)   // Wait for the minimal time unit if zero
4032       time = 1;
4033   }
4034 
4035   JavaThread* thread = (JavaThread*)(Thread::current());
4036   assert(thread->is_Java_thread(), "Must be JavaThread");
4037   JavaThread *jt = (JavaThread *)thread;
4038 
4039   // Don't wait if interrupted or already triggered
4040   if (Thread::is_interrupted(thread, false) ||
4041     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4042     ResetEvent(_ParkEvent);
4043     return;
4044   }
4045   else {
4046     ThreadBlockInVM tbivm(jt);
4047     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4048     jt->set_suspend_equivalent();
4049 
4050     WaitForSingleObject(_ParkEvent,  time);
4051     ResetEvent(_ParkEvent);
4052 
4053     // If externally suspended while waiting, re-suspend
4054     if (jt->handle_special_suspend_equivalent_condition()) {
4055       jt->java_suspend_self();
4056     }
4057   }
4058 }
4059 
4060 void Parker::unpark() {
4061   guarantee (_ParkEvent != NULL, "invariant") ;
4062   SetEvent(_ParkEvent);
4063 }
4064 
4065 // Run the specified command in a separate process. Return its exit value,
4066 // or -1 on failure (e.g. can't create a new process).
4067 int os::fork_and_exec(char* cmd) {
4068   STARTUPINFO si;
4069   PROCESS_INFORMATION pi;
4070 
4071   memset(&si, 0, sizeof(si));
4072   si.cb = sizeof(si);
4073   memset(&pi, 0, sizeof(pi));
4074   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4075                             cmd,    // command line
4076                             NULL,   // process security attribute
4077                             NULL,   // thread security attribute
4078                             TRUE,   // inherits system handles
4079                             0,      // no creation flags
4080                             NULL,   // use parent's environment block
4081                             NULL,   // use parent's starting directory
4082                             &si,    // (in) startup information
4083                             &pi);   // (out) process information
4084 
4085   if (rslt) {
4086     // Wait until child process exits.
4087     WaitForSingleObject(pi.hProcess, INFINITE);
4088 
4089     DWORD exit_code;
4090     GetExitCodeProcess(pi.hProcess, &exit_code);
4091 
4092     // Close process and thread handles.
4093     CloseHandle(pi.hProcess);
4094     CloseHandle(pi.hThread);
4095 
4096     return (int)exit_code;
4097   } else {
4098     return -1;
4099   }
4100 }
4101 
4102 //--------------------------------------------------------------------------------------------------
4103 // Non-product code
4104 
4105 static int mallocDebugIntervalCounter = 0;
4106 static int mallocDebugCounter = 0;
4107 bool os::check_heap(bool force) {
4108   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4109   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4110     // Note: HeapValidate executes two hardware breakpoints when it finds something
4111     // wrong; at these points, eax contains the address of the offending block (I think).
4112     // To get to the exlicit error message(s) below, just continue twice.
4113     HANDLE heap = GetProcessHeap();
4114     { HeapLock(heap);
4115       PROCESS_HEAP_ENTRY phe;
4116       phe.lpData = NULL;
4117       while (HeapWalk(heap, &phe) != 0) {
4118         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4119             !HeapValidate(heap, 0, phe.lpData)) {
4120           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4121           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4122           fatal("corrupted C heap");
4123         }
4124       }
4125       int err = GetLastError();
4126       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4127         fatal(err_msg("heap walk aborted with error %d", err));
4128       }
4129       HeapUnlock(heap);
4130     }
4131     mallocDebugIntervalCounter = 0;
4132   }
4133   return true;
4134 }
4135 
4136 
4137 bool os::find(address addr, outputStream* st) {
4138   // Nothing yet
4139   return false;
4140 }
4141 
4142 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4143   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4144 
4145   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4146     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4147     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4148     address addr = (address) exceptionRecord->ExceptionInformation[1];
4149 
4150     if (os::is_memory_serialize_page(thread, addr))
4151       return EXCEPTION_CONTINUE_EXECUTION;
4152   }
4153 
4154   return EXCEPTION_CONTINUE_SEARCH;
4155 }
4156 
4157 static int getLastErrorString(char *buf, size_t len)
4158 {
4159     long errval;
4160 
4161     if ((errval = GetLastError()) != 0)
4162     {
4163       /* DOS error */
4164       size_t n = (size_t)FormatMessage(
4165             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4166             NULL,
4167             errval,
4168             0,
4169             buf,
4170             (DWORD)len,
4171             NULL);
4172       if (n > 3) {
4173         /* Drop final '.', CR, LF */
4174         if (buf[n - 1] == '\n') n--;
4175         if (buf[n - 1] == '\r') n--;
4176         if (buf[n - 1] == '.') n--;
4177         buf[n] = '\0';
4178       }
4179       return (int)n;
4180     }
4181 
4182     if (errno != 0)
4183     {
4184       /* C runtime error that has no corresponding DOS error code */
4185       const char *s = strerror(errno);
4186       size_t n = strlen(s);
4187       if (n >= len) n = len - 1;
4188       strncpy(buf, s, n);
4189       buf[n] = '\0';
4190       return (int)n;
4191     }
4192     return 0;
4193 }
4194 
4195 
4196 // We don't build a headless jre for Windows
4197 bool os::is_headless_jre() { return false; }
4198