1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # define __STDC_FORMAT_MACROS
  26 
  27 // no precompiled headers
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "jvm_linux.h"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_linux.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/timer.hpp"
  59 #include "services/attachListener.hpp"
  60 #include "services/runtimeService.hpp"
  61 #include "thread_linux.inline.hpp"
  62 #include "utilities/decoder.hpp"
  63 #include "utilities/defaultStream.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/growableArray.hpp"
  66 #include "utilities/vmError.hpp"
  67 #ifdef TARGET_ARCH_x86
  68 # include "assembler_x86.inline.hpp"
  69 # include "nativeInst_x86.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_sparc
  72 # include "assembler_sparc.inline.hpp"
  73 # include "nativeInst_sparc.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_zero
  76 # include "assembler_zero.inline.hpp"
  77 # include "nativeInst_zero.hpp"
  78 #endif
  79 #ifdef TARGET_ARCH_arm
  80 # include "assembler_arm.inline.hpp"
  81 # include "nativeInst_arm.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_ppc
  84 # include "assembler_ppc.inline.hpp"
  85 # include "nativeInst_ppc.hpp"
  86 #endif
  87 #ifdef COMPILER1
  88 #include "c1/c1_Runtime1.hpp"
  89 #endif
  90 #ifdef COMPILER2
  91 #include "opto/runtime.hpp"
  92 #endif
  93 
  94 // put OS-includes here
  95 # include <sys/types.h>
  96 # include <sys/mman.h>
  97 # include <sys/stat.h>
  98 # include <sys/select.h>
  99 # include <pthread.h>
 100 # include <signal.h>
 101 # include <errno.h>
 102 # include <dlfcn.h>
 103 # include <stdio.h>
 104 # include <unistd.h>
 105 # include <sys/resource.h>
 106 # include <pthread.h>
 107 # include <sys/stat.h>
 108 # include <sys/time.h>
 109 # include <sys/times.h>
 110 # include <sys/utsname.h>
 111 # include <sys/socket.h>
 112 # include <sys/wait.h>
 113 # include <pwd.h>
 114 # include <poll.h>
 115 # include <semaphore.h>
 116 # include <fcntl.h>
 117 # include <string.h>
 118 # include <syscall.h>
 119 # include <sys/sysinfo.h>
 120 # include <gnu/libc-version.h>
 121 # include <sys/ipc.h>
 122 # include <sys/shm.h>
 123 # include <link.h>
 124 # include <stdint.h>
 125 # include <inttypes.h>
 126 # include <sys/ioctl.h>
 127 
 128 #define MAX_PATH    (2 * K)
 129 
 130 // for timer info max values which include all bits
 131 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 132 #define SEC_IN_NANOSECS  1000000000LL
 133 
 134 #define LARGEPAGES_BIT (1 << 6)
 135 ////////////////////////////////////////////////////////////////////////////////
 136 // global variables
 137 julong os::Linux::_physical_memory = 0;
 138 
 139 address   os::Linux::_initial_thread_stack_bottom = NULL;
 140 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 141 
 142 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 143 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 144 Mutex* os::Linux::_createThread_lock = NULL;
 145 pthread_t os::Linux::_main_thread;
 146 int os::Linux::_page_size = -1;
 147 bool os::Linux::_is_floating_stack = false;
 148 bool os::Linux::_is_NPTL = false;
 149 bool os::Linux::_supports_fast_thread_cpu_time = false;
 150 const char * os::Linux::_glibc_version = NULL;
 151 const char * os::Linux::_libpthread_version = NULL;
 152 
 153 static jlong initial_time_count=0;
 154 
 155 static int clock_tics_per_sec = 100;
 156 
 157 // For diagnostics to print a message once. see run_periodic_checks
 158 static sigset_t check_signal_done;
 159 static bool check_signals = true;;
 160 
 161 static pid_t _initial_pid = 0;
 162 
 163 /* Signal number used to suspend/resume a thread */
 164 
 165 /* do not use any signal number less than SIGSEGV, see 4355769 */
 166 static int SR_signum = SIGUSR2;
 167 sigset_t SR_sigset;
 168 
 169 /* Used to protect dlsym() calls */
 170 static pthread_mutex_t dl_mutex;
 171 
 172 ////////////////////////////////////////////////////////////////////////////////
 173 // utility functions
 174 
 175 static int SR_initialize();
 176 static int SR_finalize();
 177 
 178 julong os::available_memory() {
 179   return Linux::available_memory();
 180 }
 181 
 182 julong os::Linux::available_memory() {
 183   // values in struct sysinfo are "unsigned long"
 184   struct sysinfo si;
 185   sysinfo(&si);
 186 
 187   return (julong)si.freeram * si.mem_unit;
 188 }
 189 
 190 julong os::physical_memory() {
 191   return Linux::physical_memory();
 192 }
 193 
 194 julong os::allocatable_physical_memory(julong size) {
 195 #ifdef _LP64
 196   return size;
 197 #else
 198   julong result = MIN2(size, (julong)3800*M);
 199    if (!is_allocatable(result)) {
 200      // See comments under solaris for alignment considerations
 201      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 202      result =  MIN2(size, reasonable_size);
 203    }
 204    return result;
 205 #endif // _LP64
 206 }
 207 
 208 ////////////////////////////////////////////////////////////////////////////////
 209 // environment support
 210 
 211 bool os::getenv(const char* name, char* buf, int len) {
 212   const char* val = ::getenv(name);
 213   if (val != NULL && strlen(val) < (size_t)len) {
 214     strcpy(buf, val);
 215     return true;
 216   }
 217   if (len > 0) buf[0] = 0;  // return a null string
 218   return false;
 219 }
 220 
 221 
 222 // Return true if user is running as root.
 223 
 224 bool os::have_special_privileges() {
 225   static bool init = false;
 226   static bool privileges = false;
 227   if (!init) {
 228     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 229     init = true;
 230   }
 231   return privileges;
 232 }
 233 
 234 
 235 #ifndef SYS_gettid
 236 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 237 #ifdef __ia64__
 238 #define SYS_gettid 1105
 239 #elif __i386__
 240 #define SYS_gettid 224
 241 #elif __amd64__
 242 #define SYS_gettid 186
 243 #elif __sparc__
 244 #define SYS_gettid 143
 245 #else
 246 #error define gettid for the arch
 247 #endif
 248 #endif
 249 
 250 // Cpu architecture string
 251 #if   defined(ZERO)
 252 static char cpu_arch[] = ZERO_LIBARCH;
 253 #elif defined(IA64)
 254 static char cpu_arch[] = "ia64";
 255 #elif defined(IA32)
 256 static char cpu_arch[] = "i386";
 257 #elif defined(AMD64)
 258 static char cpu_arch[] = "amd64";
 259 #elif defined(ARM)
 260 static char cpu_arch[] = "arm";
 261 #elif defined(PPC)
 262 static char cpu_arch[] = "ppc";
 263 #elif defined(SPARC)
 264 #  ifdef _LP64
 265 static char cpu_arch[] = "sparcv9";
 266 #  else
 267 static char cpu_arch[] = "sparc";
 268 #  endif
 269 #else
 270 #error Add appropriate cpu_arch setting
 271 #endif
 272 
 273 
 274 // pid_t gettid()
 275 //
 276 // Returns the kernel thread id of the currently running thread. Kernel
 277 // thread id is used to access /proc.
 278 //
 279 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 280 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 281 //
 282 pid_t os::Linux::gettid() {
 283   int rslt = syscall(SYS_gettid);
 284   if (rslt == -1) {
 285      // old kernel, no NPTL support
 286      return getpid();
 287   } else {
 288      return (pid_t)rslt;
 289   }
 290 }
 291 
 292 // Most versions of linux have a bug where the number of processors are
 293 // determined by looking at the /proc file system.  In a chroot environment,
 294 // the system call returns 1.  This causes the VM to act as if it is
 295 // a single processor and elide locking (see is_MP() call).
 296 static bool unsafe_chroot_detected = false;
 297 static const char *unstable_chroot_error = "/proc file system not found.\n"
 298                      "Java may be unstable running multithreaded in a chroot "
 299                      "environment on Linux when /proc filesystem is not mounted.";
 300 
 301 void os::Linux::initialize_system_info() {
 302   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 303   if (processor_count() == 1) {
 304     pid_t pid = os::Linux::gettid();
 305     char fname[32];
 306     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 307     FILE *fp = fopen(fname, "r");
 308     if (fp == NULL) {
 309       unsafe_chroot_detected = true;
 310     } else {
 311       fclose(fp);
 312     }
 313   }
 314   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 315   assert(processor_count() > 0, "linux error");
 316 }
 317 
 318 void os::init_system_properties_values() {
 319 //  char arch[12];
 320 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 321 
 322   // The next steps are taken in the product version:
 323   //
 324   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 325   // This library should be located at:
 326   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 327   //
 328   // If "/jre/lib/" appears at the right place in the path, then we
 329   // assume libjvm[_g].so is installed in a JDK and we use this path.
 330   //
 331   // Otherwise exit with message: "Could not create the Java virtual machine."
 332   //
 333   // The following extra steps are taken in the debugging version:
 334   //
 335   // If "/jre/lib/" does NOT appear at the right place in the path
 336   // instead of exit check for $JAVA_HOME environment variable.
 337   //
 338   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 339   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 340   // it looks like libjvm[_g].so is installed there
 341   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 342   //
 343   // Otherwise exit.
 344   //
 345   // Important note: if the location of libjvm.so changes this
 346   // code needs to be changed accordingly.
 347 
 348   // The next few definitions allow the code to be verbatim:
 349 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
 350 #define getenv(n) ::getenv(n)
 351 
 352 /*
 353  * See ld(1):
 354  *      The linker uses the following search paths to locate required
 355  *      shared libraries:
 356  *        1: ...
 357  *        ...
 358  *        7: The default directories, normally /lib and /usr/lib.
 359  */
 360 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 361 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 362 #else
 363 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 364 #endif
 365 
 366 #define EXTENSIONS_DIR  "/lib/ext"
 367 #define ENDORSED_DIR    "/lib/endorsed"
 368 #define REG_DIR         "/usr/java/packages"
 369 
 370   {
 371     /* sysclasspath, java_home, dll_dir */
 372     {
 373         char *home_path;
 374         char *dll_path;
 375         char *pslash;
 376         char buf[MAXPATHLEN];
 377         os::jvm_path(buf, sizeof(buf));
 378 
 379         // Found the full path to libjvm.so.
 380         // Now cut the path to <java_home>/jre if we can.
 381         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 382         pslash = strrchr(buf, '/');
 383         if (pslash != NULL)
 384             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 385         dll_path = malloc(strlen(buf) + 1);
 386         if (dll_path == NULL)
 387             return;
 388         strcpy(dll_path, buf);
 389         Arguments::set_dll_dir(dll_path);
 390 
 391         if (pslash != NULL) {
 392             pslash = strrchr(buf, '/');
 393             if (pslash != NULL) {
 394                 *pslash = '\0';       /* get rid of /<arch> */
 395                 pslash = strrchr(buf, '/');
 396                 if (pslash != NULL)
 397                     *pslash = '\0';   /* get rid of /lib */
 398             }
 399         }
 400 
 401         home_path = malloc(strlen(buf) + 1);
 402         if (home_path == NULL)
 403             return;
 404         strcpy(home_path, buf);
 405         Arguments::set_java_home(home_path);
 406 
 407         if (!set_boot_path('/', ':'))
 408             return;
 409     }
 410 
 411     /*
 412      * Where to look for native libraries
 413      *
 414      * Note: Due to a legacy implementation, most of the library path
 415      * is set in the launcher.  This was to accomodate linking restrictions
 416      * on legacy Linux implementations (which are no longer supported).
 417      * Eventually, all the library path setting will be done here.
 418      *
 419      * However, to prevent the proliferation of improperly built native
 420      * libraries, the new path component /usr/java/packages is added here.
 421      * Eventually, all the library path setting will be done here.
 422      */
 423     {
 424         char *ld_library_path;
 425 
 426         /*
 427          * Construct the invariant part of ld_library_path. Note that the
 428          * space for the colon and the trailing null are provided by the
 429          * nulls included by the sizeof operator (so actually we allocate
 430          * a byte more than necessary).
 431          */
 432         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 433             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 434         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 435 
 436         /*
 437          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 438          * should always exist (until the legacy problem cited above is
 439          * addressed).
 440          */
 441         char *v = getenv("LD_LIBRARY_PATH");
 442         if (v != NULL) {
 443             char *t = ld_library_path;
 444             /* That's +1 for the colon and +1 for the trailing '\0' */
 445             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 446             sprintf(ld_library_path, "%s:%s", v, t);
 447         }
 448         Arguments::set_library_path(ld_library_path);
 449     }
 450 
 451     /*
 452      * Extensions directories.
 453      *
 454      * Note that the space for the colon and the trailing null are provided
 455      * by the nulls included by the sizeof operator (so actually one byte more
 456      * than necessary is allocated).
 457      */
 458     {
 459         char *buf = malloc(strlen(Arguments::get_java_home()) +
 460             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 461         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 462             Arguments::get_java_home());
 463         Arguments::set_ext_dirs(buf);
 464     }
 465 
 466     /* Endorsed standards default directory. */
 467     {
 468         char * buf;
 469         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 470         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 471         Arguments::set_endorsed_dirs(buf);
 472     }
 473   }
 474 
 475 #undef malloc
 476 #undef getenv
 477 #undef EXTENSIONS_DIR
 478 #undef ENDORSED_DIR
 479 
 480   // Done
 481   return;
 482 }
 483 
 484 ////////////////////////////////////////////////////////////////////////////////
 485 // breakpoint support
 486 
 487 void os::breakpoint() {
 488   BREAKPOINT;
 489 }
 490 
 491 extern "C" void breakpoint() {
 492   // use debugger to set breakpoint here
 493 }
 494 
 495 ////////////////////////////////////////////////////////////////////////////////
 496 // signal support
 497 
 498 debug_only(static bool signal_sets_initialized = false);
 499 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 500 
 501 bool os::Linux::is_sig_ignored(int sig) {
 502       struct sigaction oact;
 503       sigaction(sig, (struct sigaction*)NULL, &oact);
 504       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 505                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 506       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 507            return true;
 508       else
 509            return false;
 510 }
 511 
 512 void os::Linux::signal_sets_init() {
 513   // Should also have an assertion stating we are still single-threaded.
 514   assert(!signal_sets_initialized, "Already initialized");
 515   // Fill in signals that are necessarily unblocked for all threads in
 516   // the VM. Currently, we unblock the following signals:
 517   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 518   //                         by -Xrs (=ReduceSignalUsage));
 519   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 520   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 521   // the dispositions or masks wrt these signals.
 522   // Programs embedding the VM that want to use the above signals for their
 523   // own purposes must, at this time, use the "-Xrs" option to prevent
 524   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 525   // (See bug 4345157, and other related bugs).
 526   // In reality, though, unblocking these signals is really a nop, since
 527   // these signals are not blocked by default.
 528   sigemptyset(&unblocked_sigs);
 529   sigemptyset(&allowdebug_blocked_sigs);
 530   sigaddset(&unblocked_sigs, SIGILL);
 531   sigaddset(&unblocked_sigs, SIGSEGV);
 532   sigaddset(&unblocked_sigs, SIGBUS);
 533   sigaddset(&unblocked_sigs, SIGFPE);
 534   sigaddset(&unblocked_sigs, SR_signum);
 535 
 536   if (!ReduceSignalUsage) {
 537    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 538       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 539       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 540    }
 541    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 542       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 543       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 544    }
 545    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 547       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 548    }
 549   }
 550   // Fill in signals that are blocked by all but the VM thread.
 551   sigemptyset(&vm_sigs);
 552   if (!ReduceSignalUsage)
 553     sigaddset(&vm_sigs, BREAK_SIGNAL);
 554   debug_only(signal_sets_initialized = true);
 555 
 556 }
 557 
 558 // These are signals that are unblocked while a thread is running Java.
 559 // (For some reason, they get blocked by default.)
 560 sigset_t* os::Linux::unblocked_signals() {
 561   assert(signal_sets_initialized, "Not initialized");
 562   return &unblocked_sigs;
 563 }
 564 
 565 // These are the signals that are blocked while a (non-VM) thread is
 566 // running Java. Only the VM thread handles these signals.
 567 sigset_t* os::Linux::vm_signals() {
 568   assert(signal_sets_initialized, "Not initialized");
 569   return &vm_sigs;
 570 }
 571 
 572 // These are signals that are blocked during cond_wait to allow debugger in
 573 sigset_t* os::Linux::allowdebug_blocked_signals() {
 574   assert(signal_sets_initialized, "Not initialized");
 575   return &allowdebug_blocked_sigs;
 576 }
 577 
 578 void os::Linux::hotspot_sigmask(Thread* thread) {
 579 
 580   //Save caller's signal mask before setting VM signal mask
 581   sigset_t caller_sigmask;
 582   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 583 
 584   OSThread* osthread = thread->osthread();
 585   osthread->set_caller_sigmask(caller_sigmask);
 586 
 587   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 588 
 589   if (!ReduceSignalUsage) {
 590     if (thread->is_VM_thread()) {
 591       // Only the VM thread handles BREAK_SIGNAL ...
 592       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 593     } else {
 594       // ... all other threads block BREAK_SIGNAL
 595       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 596     }
 597   }
 598 }
 599 
 600 //////////////////////////////////////////////////////////////////////////////
 601 // detecting pthread library
 602 
 603 void os::Linux::libpthread_init() {
 604   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 605   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 606   // generic name for earlier versions.
 607   // Define macros here so we can build HotSpot on old systems.
 608 # ifndef _CS_GNU_LIBC_VERSION
 609 # define _CS_GNU_LIBC_VERSION 2
 610 # endif
 611 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 612 # define _CS_GNU_LIBPTHREAD_VERSION 3
 613 # endif
 614 
 615   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 616   if (n > 0) {
 617      char *str = (char *)malloc(n);
 618      confstr(_CS_GNU_LIBC_VERSION, str, n);
 619      os::Linux::set_glibc_version(str);
 620   } else {
 621      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 622      static char _gnu_libc_version[32];
 623      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 624               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 625      os::Linux::set_glibc_version(_gnu_libc_version);
 626   }
 627 
 628   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 629   if (n > 0) {
 630      char *str = (char *)malloc(n);
 631      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 632      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 633      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 634      // is the case. LinuxThreads has a hard limit on max number of threads.
 635      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 636      // On the other hand, NPTL does not have such a limit, sysconf()
 637      // will return -1 and errno is not changed. Check if it is really NPTL.
 638      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 639          strstr(str, "NPTL") &&
 640          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 641        free(str);
 642        os::Linux::set_libpthread_version("linuxthreads");
 643      } else {
 644        os::Linux::set_libpthread_version(str);
 645      }
 646   } else {
 647     // glibc before 2.3.2 only has LinuxThreads.
 648     os::Linux::set_libpthread_version("linuxthreads");
 649   }
 650 
 651   if (strstr(libpthread_version(), "NPTL")) {
 652      os::Linux::set_is_NPTL();
 653   } else {
 654      os::Linux::set_is_LinuxThreads();
 655   }
 656 
 657   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 658   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 659   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 660      os::Linux::set_is_floating_stack();
 661   }
 662 }
 663 
 664 /////////////////////////////////////////////////////////////////////////////
 665 // thread stack
 666 
 667 // Force Linux kernel to expand current thread stack. If "bottom" is close
 668 // to the stack guard, caller should block all signals.
 669 //
 670 // MAP_GROWSDOWN:
 671 //   A special mmap() flag that is used to implement thread stacks. It tells
 672 //   kernel that the memory region should extend downwards when needed. This
 673 //   allows early versions of LinuxThreads to only mmap the first few pages
 674 //   when creating a new thread. Linux kernel will automatically expand thread
 675 //   stack as needed (on page faults).
 676 //
 677 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 678 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 679 //   region, it's hard to tell if the fault is due to a legitimate stack
 680 //   access or because of reading/writing non-exist memory (e.g. buffer
 681 //   overrun). As a rule, if the fault happens below current stack pointer,
 682 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 683 //   application (see Linux kernel fault.c).
 684 //
 685 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 686 //   stack overflow detection.
 687 //
 688 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 689 //   not use this flag. However, the stack of initial thread is not created
 690 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 691 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 692 //   and then attach the thread to JVM.
 693 //
 694 // To get around the problem and allow stack banging on Linux, we need to
 695 // manually expand thread stack after receiving the SIGSEGV.
 696 //
 697 // There are two ways to expand thread stack to address "bottom", we used
 698 // both of them in JVM before 1.5:
 699 //   1. adjust stack pointer first so that it is below "bottom", and then
 700 //      touch "bottom"
 701 //   2. mmap() the page in question
 702 //
 703 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 704 // if current sp is already near the lower end of page 101, and we need to
 705 // call mmap() to map page 100, it is possible that part of the mmap() frame
 706 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 707 // That will destroy the mmap() frame and cause VM to crash.
 708 //
 709 // The following code works by adjusting sp first, then accessing the "bottom"
 710 // page to force a page fault. Linux kernel will then automatically expand the
 711 // stack mapping.
 712 //
 713 // _expand_stack_to() assumes its frame size is less than page size, which
 714 // should always be true if the function is not inlined.
 715 
 716 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 717 #define NOINLINE
 718 #else
 719 #define NOINLINE __attribute__ ((noinline))
 720 #endif
 721 
 722 static void _expand_stack_to(address bottom) NOINLINE;
 723 
 724 static void _expand_stack_to(address bottom) {
 725   address sp;
 726   size_t size;
 727   volatile char *p;
 728 
 729   // Adjust bottom to point to the largest address within the same page, it
 730   // gives us a one-page buffer if alloca() allocates slightly more memory.
 731   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 732   bottom += os::Linux::page_size() - 1;
 733 
 734   // sp might be slightly above current stack pointer; if that's the case, we
 735   // will alloca() a little more space than necessary, which is OK. Don't use
 736   // os::current_stack_pointer(), as its result can be slightly below current
 737   // stack pointer, causing us to not alloca enough to reach "bottom".
 738   sp = (address)&sp;
 739 
 740   if (sp > bottom) {
 741     size = sp - bottom;
 742     p = (volatile char *)alloca(size);
 743     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 744     p[0] = '\0';
 745   }
 746 }
 747 
 748 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 749   assert(t!=NULL, "just checking");
 750   assert(t->osthread()->expanding_stack(), "expand should be set");
 751   assert(t->stack_base() != NULL, "stack_base was not initialized");
 752 
 753   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 754     sigset_t mask_all, old_sigset;
 755     sigfillset(&mask_all);
 756     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 757     _expand_stack_to(addr);
 758     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 759     return true;
 760   }
 761   return false;
 762 }
 763 
 764 //////////////////////////////////////////////////////////////////////////////
 765 // create new thread
 766 
 767 static address highest_vm_reserved_address();
 768 
 769 // check if it's safe to start a new thread
 770 static bool _thread_safety_check(Thread* thread) {
 771   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 772     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 773     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 774     //   allocated (MAP_FIXED) from high address space. Every thread stack
 775     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 776     //   it to other values if they rebuild LinuxThreads).
 777     //
 778     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 779     // the memory region has already been mmap'ed. That means if we have too
 780     // many threads and/or very large heap, eventually thread stack will
 781     // collide with heap.
 782     //
 783     // Here we try to prevent heap/stack collision by comparing current
 784     // stack bottom with the highest address that has been mmap'ed by JVM
 785     // plus a safety margin for memory maps created by native code.
 786     //
 787     // This feature can be disabled by setting ThreadSafetyMargin to 0
 788     //
 789     if (ThreadSafetyMargin > 0) {
 790       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 791 
 792       // not safe if our stack extends below the safety margin
 793       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 794     } else {
 795       return true;
 796     }
 797   } else {
 798     // Floating stack LinuxThreads or NPTL:
 799     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 800     //   there's not enough space left, pthread_create() will fail. If we come
 801     //   here, that means enough space has been reserved for stack.
 802     return true;
 803   }
 804 }
 805 
 806 // Thread start routine for all newly created threads
 807 static void *java_start(Thread *thread) {
 808   // Try to randomize the cache line index of hot stack frames.
 809   // This helps when threads of the same stack traces evict each other's
 810   // cache lines. The threads can be either from the same JVM instance, or
 811   // from different JVM instances. The benefit is especially true for
 812   // processors with hyperthreading technology.
 813   static int counter = 0;
 814   int pid = os::current_process_id();
 815   alloca(((pid ^ counter++) & 7) * 128);
 816 
 817   ThreadLocalStorage::set_thread(thread);
 818 
 819   OSThread* osthread = thread->osthread();
 820   Monitor* sync = osthread->startThread_lock();
 821 
 822   // non floating stack LinuxThreads needs extra check, see above
 823   if (!_thread_safety_check(thread)) {
 824     // notify parent thread
 825     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 826     osthread->set_state(ZOMBIE);
 827     sync->notify_all();
 828     return NULL;
 829   }
 830 
 831   // thread_id is kernel thread id (similar to Solaris LWP id)
 832   osthread->set_thread_id(os::Linux::gettid());
 833 
 834   if (UseNUMA) {
 835     int lgrp_id = os::numa_get_group_id();
 836     if (lgrp_id != -1) {
 837       thread->set_lgrp_id(lgrp_id);
 838     }
 839   }
 840   // initialize signal mask for this thread
 841   os::Linux::hotspot_sigmask(thread);
 842 
 843   // initialize floating point control register
 844   os::Linux::init_thread_fpu_state();
 845 
 846   // handshaking with parent thread
 847   {
 848     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 849 
 850     // notify parent thread
 851     osthread->set_state(INITIALIZED);
 852     sync->notify_all();
 853 
 854     // wait until os::start_thread()
 855     while (osthread->get_state() == INITIALIZED) {
 856       sync->wait(Mutex::_no_safepoint_check_flag);
 857     }
 858   }
 859 
 860   // call one more level start routine
 861   thread->run();
 862 
 863   return 0;
 864 }
 865 
 866 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 867   assert(thread->osthread() == NULL, "caller responsible");
 868 
 869   // Allocate the OSThread object
 870   OSThread* osthread = new OSThread(NULL, NULL);
 871   if (osthread == NULL) {
 872     return false;
 873   }
 874 
 875   // set the correct thread state
 876   osthread->set_thread_type(thr_type);
 877 
 878   // Initial state is ALLOCATED but not INITIALIZED
 879   osthread->set_state(ALLOCATED);
 880 
 881   thread->set_osthread(osthread);
 882 
 883   // init thread attributes
 884   pthread_attr_t attr;
 885   pthread_attr_init(&attr);
 886   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 887 
 888   // stack size
 889   if (os::Linux::supports_variable_stack_size()) {
 890     // calculate stack size if it's not specified by caller
 891     if (stack_size == 0) {
 892       stack_size = os::Linux::default_stack_size(thr_type);
 893 
 894       switch (thr_type) {
 895       case os::java_thread:
 896         // Java threads use ThreadStackSize which default value can be
 897         // changed with the flag -Xss
 898         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 899         stack_size = JavaThread::stack_size_at_create();
 900         break;
 901       case os::compiler_thread:
 902         if (CompilerThreadStackSize > 0) {
 903           stack_size = (size_t)(CompilerThreadStackSize * K);
 904           break;
 905         } // else fall through:
 906           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 907       case os::vm_thread:
 908       case os::pgc_thread:
 909       case os::cgc_thread:
 910       case os::watcher_thread:
 911         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 912         break;
 913       }
 914     }
 915 
 916     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 917     pthread_attr_setstacksize(&attr, stack_size);
 918   } else {
 919     // let pthread_create() pick the default value.
 920   }
 921 
 922   // glibc guard page
 923   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 924 
 925   ThreadState state;
 926 
 927   {
 928     // Serialize thread creation if we are running with fixed stack LinuxThreads
 929     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 930     if (lock) {
 931       os::Linux::createThread_lock()->lock_without_safepoint_check();
 932     }
 933 
 934     pthread_t tid;
 935     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 936 
 937     pthread_attr_destroy(&attr);
 938 
 939     if (ret != 0) {
 940       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 941         perror("pthread_create()");
 942       }
 943       // Need to clean up stuff we've allocated so far
 944       thread->set_osthread(NULL);
 945       delete osthread;
 946       if (lock) os::Linux::createThread_lock()->unlock();
 947       return false;
 948     }
 949 
 950     // Store pthread info into the OSThread
 951     osthread->set_pthread_id(tid);
 952 
 953     // Wait until child thread is either initialized or aborted
 954     {
 955       Monitor* sync_with_child = osthread->startThread_lock();
 956       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 957       while ((state = osthread->get_state()) == ALLOCATED) {
 958         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 959       }
 960     }
 961 
 962     if (lock) {
 963       os::Linux::createThread_lock()->unlock();
 964     }
 965   }
 966 
 967   // Aborted due to thread limit being reached
 968   if (state == ZOMBIE) {
 969       thread->set_osthread(NULL);
 970       delete osthread;
 971       return false;
 972   }
 973 
 974   // The thread is returned suspended (in state INITIALIZED),
 975   // and is started higher up in the call chain
 976   assert(state == INITIALIZED, "race condition");
 977   return true;
 978 }
 979 
 980 /////////////////////////////////////////////////////////////////////////////
 981 // attach existing thread
 982 
 983 // bootstrap the main thread
 984 bool os::create_main_thread(JavaThread* thread) {
 985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 986   return create_attached_thread(thread);
 987 }
 988 
 989 bool os::create_attached_thread(JavaThread* thread) {
 990 #ifdef ASSERT
 991     thread->verify_not_published();
 992 #endif
 993 
 994   // Allocate the OSThread object
 995   OSThread* osthread = new OSThread(NULL, NULL);
 996 
 997   if (osthread == NULL) {
 998     return false;
 999   }
1000 
1001   // Store pthread info into the OSThread
1002   osthread->set_thread_id(os::Linux::gettid());
1003   osthread->set_pthread_id(::pthread_self());
1004 
1005   // initialize floating point control register
1006   os::Linux::init_thread_fpu_state();
1007 
1008   // Initial thread state is RUNNABLE
1009   osthread->set_state(RUNNABLE);
1010 
1011   thread->set_osthread(osthread);
1012 
1013   if (UseNUMA) {
1014     int lgrp_id = os::numa_get_group_id();
1015     if (lgrp_id != -1) {
1016       thread->set_lgrp_id(lgrp_id);
1017     }
1018   }
1019 
1020   if (os::Linux::is_initial_thread()) {
1021     // If current thread is initial thread, its stack is mapped on demand,
1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023     // the entire stack region to avoid SEGV in stack banging.
1024     // It is also useful to get around the heap-stack-gap problem on SuSE
1025     // kernel (see 4821821 for details). We first expand stack to the top
1026     // of yellow zone, then enable stack yellow zone (order is significant,
1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028     // is no gap between the last two virtual memory regions.
1029 
1030     JavaThread *jt = (JavaThread *)thread;
1031     address addr = jt->stack_yellow_zone_base();
1032     assert(addr != NULL, "initialization problem?");
1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034 
1035     osthread->set_expanding_stack();
1036     os::Linux::manually_expand_stack(jt, addr);
1037     osthread->clear_expanding_stack();
1038   }
1039 
1040   // initialize signal mask for this thread
1041   // and save the caller's signal mask
1042   os::Linux::hotspot_sigmask(thread);
1043 
1044   return true;
1045 }
1046 
1047 void os::pd_start_thread(Thread* thread) {
1048   OSThread * osthread = thread->osthread();
1049   assert(osthread->get_state() != INITIALIZED, "just checking");
1050   Monitor* sync_with_child = osthread->startThread_lock();
1051   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1052   sync_with_child->notify();
1053 }
1054 
1055 // Free Linux resources related to the OSThread
1056 void os::free_thread(OSThread* osthread) {
1057   assert(osthread != NULL, "osthread not set");
1058 
1059   if (Thread::current()->osthread() == osthread) {
1060     // Restore caller's signal mask
1061     sigset_t sigmask = osthread->caller_sigmask();
1062     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1063    }
1064 
1065   delete osthread;
1066 }
1067 
1068 //////////////////////////////////////////////////////////////////////////////
1069 // thread local storage
1070 
1071 int os::allocate_thread_local_storage() {
1072   pthread_key_t key;
1073   int rslt = pthread_key_create(&key, NULL);
1074   assert(rslt == 0, "cannot allocate thread local storage");
1075   return (int)key;
1076 }
1077 
1078 // Note: This is currently not used by VM, as we don't destroy TLS key
1079 // on VM exit.
1080 void os::free_thread_local_storage(int index) {
1081   int rslt = pthread_key_delete((pthread_key_t)index);
1082   assert(rslt == 0, "invalid index");
1083 }
1084 
1085 void os::thread_local_storage_at_put(int index, void* value) {
1086   int rslt = pthread_setspecific((pthread_key_t)index, value);
1087   assert(rslt == 0, "pthread_setspecific failed");
1088 }
1089 
1090 extern "C" Thread* get_thread() {
1091   return ThreadLocalStorage::thread();
1092 }
1093 
1094 //////////////////////////////////////////////////////////////////////////////
1095 // initial thread
1096 
1097 // Check if current thread is the initial thread, similar to Solaris thr_main.
1098 bool os::Linux::is_initial_thread(void) {
1099   char dummy;
1100   // If called before init complete, thread stack bottom will be null.
1101   // Can be called if fatal error occurs before initialization.
1102   if (initial_thread_stack_bottom() == NULL) return false;
1103   assert(initial_thread_stack_bottom() != NULL &&
1104          initial_thread_stack_size()   != 0,
1105          "os::init did not locate initial thread's stack region");
1106   if ((address)&dummy >= initial_thread_stack_bottom() &&
1107       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1108        return true;
1109   else return false;
1110 }
1111 
1112 // Find the virtual memory area that contains addr
1113 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1114   FILE *fp = fopen("/proc/self/maps", "r");
1115   if (fp) {
1116     address low, high;
1117     while (!feof(fp)) {
1118       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1119         if (low <= addr && addr < high) {
1120            if (vma_low)  *vma_low  = low;
1121            if (vma_high) *vma_high = high;
1122            fclose (fp);
1123            return true;
1124         }
1125       }
1126       for (;;) {
1127         int ch = fgetc(fp);
1128         if (ch == EOF || ch == (int)'\n') break;
1129       }
1130     }
1131     fclose(fp);
1132   }
1133   return false;
1134 }
1135 
1136 // Locate initial thread stack. This special handling of initial thread stack
1137 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1138 // bogus value for initial thread.
1139 void os::Linux::capture_initial_stack(size_t max_size) {
1140   // stack size is the easy part, get it from RLIMIT_STACK
1141   size_t stack_size;
1142   struct rlimit rlim;
1143   getrlimit(RLIMIT_STACK, &rlim);
1144   stack_size = rlim.rlim_cur;
1145 
1146   // 6308388: a bug in ld.so will relocate its own .data section to the
1147   //   lower end of primordial stack; reduce ulimit -s value a little bit
1148   //   so we won't install guard page on ld.so's data section.
1149   stack_size -= 2 * page_size();
1150 
1151   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1152   //   7.1, in both cases we will get 2G in return value.
1153   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1154   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1155   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1156   //   in case other parts in glibc still assumes 2M max stack size.
1157   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1158 #ifndef IA64
1159   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1160 #else
1161   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1162   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1163 #endif
1164 
1165   // Try to figure out where the stack base (top) is. This is harder.
1166   //
1167   // When an application is started, glibc saves the initial stack pointer in
1168   // a global variable "__libc_stack_end", which is then used by system
1169   // libraries. __libc_stack_end should be pretty close to stack top. The
1170   // variable is available since the very early days. However, because it is
1171   // a private interface, it could disappear in the future.
1172   //
1173   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1174   // to __libc_stack_end, it is very close to stack top, but isn't the real
1175   // stack top. Note that /proc may not exist if VM is running as a chroot
1176   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1177   // /proc/<pid>/stat could change in the future (though unlikely).
1178   //
1179   // We try __libc_stack_end first. If that doesn't work, look for
1180   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1181   // as a hint, which should work well in most cases.
1182 
1183   uintptr_t stack_start;
1184 
1185   // try __libc_stack_end first
1186   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1187   if (p && *p) {
1188     stack_start = *p;
1189   } else {
1190     // see if we can get the start_stack field from /proc/self/stat
1191     FILE *fp;
1192     int pid;
1193     char state;
1194     int ppid;
1195     int pgrp;
1196     int session;
1197     int nr;
1198     int tpgrp;
1199     unsigned long flags;
1200     unsigned long minflt;
1201     unsigned long cminflt;
1202     unsigned long majflt;
1203     unsigned long cmajflt;
1204     unsigned long utime;
1205     unsigned long stime;
1206     long cutime;
1207     long cstime;
1208     long prio;
1209     long nice;
1210     long junk;
1211     long it_real;
1212     uintptr_t start;
1213     uintptr_t vsize;
1214     intptr_t rss;
1215     uintptr_t rsslim;
1216     uintptr_t scodes;
1217     uintptr_t ecode;
1218     int i;
1219 
1220     // Figure what the primordial thread stack base is. Code is inspired
1221     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1222     // followed by command name surrounded by parentheses, state, etc.
1223     char stat[2048];
1224     int statlen;
1225 
1226     fp = fopen("/proc/self/stat", "r");
1227     if (fp) {
1228       statlen = fread(stat, 1, 2047, fp);
1229       stat[statlen] = '\0';
1230       fclose(fp);
1231 
1232       // Skip pid and the command string. Note that we could be dealing with
1233       // weird command names, e.g. user could decide to rename java launcher
1234       // to "java 1.4.2 :)", then the stat file would look like
1235       //                1234 (java 1.4.2 :)) R ... ...
1236       // We don't really need to know the command string, just find the last
1237       // occurrence of ")" and then start parsing from there. See bug 4726580.
1238       char * s = strrchr(stat, ')');
1239 
1240       i = 0;
1241       if (s) {
1242         // Skip blank chars
1243         do s++; while (isspace(*s));
1244 
1245 #define _UFM UINTX_FORMAT
1246 #define _DFM INTX_FORMAT
1247 
1248         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1249         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1250         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1251              &state,          /* 3  %c  */
1252              &ppid,           /* 4  %d  */
1253              &pgrp,           /* 5  %d  */
1254              &session,        /* 6  %d  */
1255              &nr,             /* 7  %d  */
1256              &tpgrp,          /* 8  %d  */
1257              &flags,          /* 9  %lu  */
1258              &minflt,         /* 10 %lu  */
1259              &cminflt,        /* 11 %lu  */
1260              &majflt,         /* 12 %lu  */
1261              &cmajflt,        /* 13 %lu  */
1262              &utime,          /* 14 %lu  */
1263              &stime,          /* 15 %lu  */
1264              &cutime,         /* 16 %ld  */
1265              &cstime,         /* 17 %ld  */
1266              &prio,           /* 18 %ld  */
1267              &nice,           /* 19 %ld  */
1268              &junk,           /* 20 %ld  */
1269              &it_real,        /* 21 %ld  */
1270              &start,          /* 22 UINTX_FORMAT */
1271              &vsize,          /* 23 UINTX_FORMAT */
1272              &rss,            /* 24 INTX_FORMAT  */
1273              &rsslim,         /* 25 UINTX_FORMAT */
1274              &scodes,         /* 26 UINTX_FORMAT */
1275              &ecode,          /* 27 UINTX_FORMAT */
1276              &stack_start);   /* 28 UINTX_FORMAT */
1277       }
1278 
1279 #undef _UFM
1280 #undef _DFM
1281 
1282       if (i != 28 - 2) {
1283          assert(false, "Bad conversion from /proc/self/stat");
1284          // product mode - assume we are the initial thread, good luck in the
1285          // embedded case.
1286          warning("Can't detect initial thread stack location - bad conversion");
1287          stack_start = (uintptr_t) &rlim;
1288       }
1289     } else {
1290       // For some reason we can't open /proc/self/stat (for example, running on
1291       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1292       // most cases, so don't abort:
1293       warning("Can't detect initial thread stack location - no /proc/self/stat");
1294       stack_start = (uintptr_t) &rlim;
1295     }
1296   }
1297 
1298   // Now we have a pointer (stack_start) very close to the stack top, the
1299   // next thing to do is to figure out the exact location of stack top. We
1300   // can find out the virtual memory area that contains stack_start by
1301   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1302   // and its upper limit is the real stack top. (again, this would fail if
1303   // running inside chroot, because /proc may not exist.)
1304 
1305   uintptr_t stack_top;
1306   address low, high;
1307   if (find_vma((address)stack_start, &low, &high)) {
1308     // success, "high" is the true stack top. (ignore "low", because initial
1309     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1310     stack_top = (uintptr_t)high;
1311   } else {
1312     // failed, likely because /proc/self/maps does not exist
1313     warning("Can't detect initial thread stack location - find_vma failed");
1314     // best effort: stack_start is normally within a few pages below the real
1315     // stack top, use it as stack top, and reduce stack size so we won't put
1316     // guard page outside stack.
1317     stack_top = stack_start;
1318     stack_size -= 16 * page_size();
1319   }
1320 
1321   // stack_top could be partially down the page so align it
1322   stack_top = align_size_up(stack_top, page_size());
1323 
1324   if (max_size && stack_size > max_size) {
1325      _initial_thread_stack_size = max_size;
1326   } else {
1327      _initial_thread_stack_size = stack_size;
1328   }
1329 
1330   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1331   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1332 }
1333 
1334 ////////////////////////////////////////////////////////////////////////////////
1335 // time support
1336 
1337 // Time since start-up in seconds to a fine granularity.
1338 // Used by VMSelfDestructTimer and the MemProfiler.
1339 double os::elapsedTime() {
1340 
1341   return (double)(os::elapsed_counter()) * 0.000001;
1342 }
1343 
1344 jlong os::elapsed_counter() {
1345   timeval time;
1346   int status = gettimeofday(&time, NULL);
1347   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1348 }
1349 
1350 jlong os::elapsed_frequency() {
1351   return (1000 * 1000);
1352 }
1353 
1354 // For now, we say that linux does not support vtime.  I have no idea
1355 // whether it can actually be made to (DLD, 9/13/05).
1356 
1357 bool os::supports_vtime() { return false; }
1358 bool os::enable_vtime()   { return false; }
1359 bool os::vtime_enabled()  { return false; }
1360 double os::elapsedVTime() {
1361   // better than nothing, but not much
1362   return elapsedTime();
1363 }
1364 
1365 jlong os::javaTimeMillis() {
1366   timeval time;
1367   int status = gettimeofday(&time, NULL);
1368   assert(status != -1, "linux error");
1369   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1370 }
1371 
1372 #ifndef CLOCK_MONOTONIC
1373 #define CLOCK_MONOTONIC (1)
1374 #endif
1375 
1376 void os::Linux::clock_init() {
1377   // we do dlopen's in this particular order due to bug in linux
1378   // dynamical loader (see 6348968) leading to crash on exit
1379   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1380   if (handle == NULL) {
1381     handle = dlopen("librt.so", RTLD_LAZY);
1382   }
1383 
1384   if (handle) {
1385     int (*clock_getres_func)(clockid_t, struct timespec*) =
1386            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1387     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1388            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1389     if (clock_getres_func && clock_gettime_func) {
1390       // See if monotonic clock is supported by the kernel. Note that some
1391       // early implementations simply return kernel jiffies (updated every
1392       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1393       // for nano time (though the monotonic property is still nice to have).
1394       // It's fixed in newer kernels, however clock_getres() still returns
1395       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1396       // resolution for now. Hopefully as people move to new kernels, this
1397       // won't be a problem.
1398       struct timespec res;
1399       struct timespec tp;
1400       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1401           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1402         // yes, monotonic clock is supported
1403         _clock_gettime = clock_gettime_func;
1404       } else {
1405         // close librt if there is no monotonic clock
1406         dlclose(handle);
1407       }
1408     }
1409   }
1410 }
1411 
1412 #ifndef SYS_clock_getres
1413 
1414 #if defined(IA32) || defined(AMD64)
1415 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1416 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1417 #else
1418 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1419 #define sys_clock_getres(x,y)  -1
1420 #endif
1421 
1422 #else
1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1424 #endif
1425 
1426 void os::Linux::fast_thread_clock_init() {
1427   if (!UseLinuxPosixThreadCPUClocks) {
1428     return;
1429   }
1430   clockid_t clockid;
1431   struct timespec tp;
1432   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1433       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1434 
1435   // Switch to using fast clocks for thread cpu time if
1436   // the sys_clock_getres() returns 0 error code.
1437   // Note, that some kernels may support the current thread
1438   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1439   // returned by the pthread_getcpuclockid().
1440   // If the fast Posix clocks are supported then the sys_clock_getres()
1441   // must return at least tp.tv_sec == 0 which means a resolution
1442   // better than 1 sec. This is extra check for reliability.
1443 
1444   if(pthread_getcpuclockid_func &&
1445      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1446      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1447 
1448     _supports_fast_thread_cpu_time = true;
1449     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1450   }
1451 }
1452 
1453 jlong os::javaTimeNanos() {
1454   if (Linux::supports_monotonic_clock()) {
1455     struct timespec tp;
1456     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1457     assert(status == 0, "gettime error");
1458     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1459     return result;
1460   } else {
1461     timeval time;
1462     int status = gettimeofday(&time, NULL);
1463     assert(status != -1, "linux error");
1464     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1465     return 1000 * usecs;
1466   }
1467 }
1468 
1469 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1470   if (Linux::supports_monotonic_clock()) {
1471     info_ptr->max_value = ALL_64_BITS;
1472 
1473     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1474     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1475     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1476   } else {
1477     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1478     info_ptr->max_value = ALL_64_BITS;
1479 
1480     // gettimeofday is a real time clock so it skips
1481     info_ptr->may_skip_backward = true;
1482     info_ptr->may_skip_forward = true;
1483   }
1484 
1485   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1486 }
1487 
1488 // Return the real, user, and system times in seconds from an
1489 // arbitrary fixed point in the past.
1490 bool os::getTimesSecs(double* process_real_time,
1491                       double* process_user_time,
1492                       double* process_system_time) {
1493   struct tms ticks;
1494   clock_t real_ticks = times(&ticks);
1495 
1496   if (real_ticks == (clock_t) (-1)) {
1497     return false;
1498   } else {
1499     double ticks_per_second = (double) clock_tics_per_sec;
1500     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1501     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1502     *process_real_time = ((double) real_ticks) / ticks_per_second;
1503 
1504     return true;
1505   }
1506 }
1507 
1508 
1509 char * os::local_time_string(char *buf, size_t buflen) {
1510   struct tm t;
1511   time_t long_time;
1512   time(&long_time);
1513   localtime_r(&long_time, &t);
1514   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1515                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1516                t.tm_hour, t.tm_min, t.tm_sec);
1517   return buf;
1518 }
1519 
1520 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1521   return localtime_r(clock, res);
1522 }
1523 
1524 ////////////////////////////////////////////////////////////////////////////////
1525 // runtime exit support
1526 
1527 // Note: os::shutdown() might be called very early during initialization, or
1528 // called from signal handler. Before adding something to os::shutdown(), make
1529 // sure it is async-safe and can handle partially initialized VM.
1530 void os::shutdown() {
1531 
1532   // allow PerfMemory to attempt cleanup of any persistent resources
1533   perfMemory_exit();
1534 
1535   // needs to remove object in file system
1536   AttachListener::abort();
1537 
1538   // flush buffered output, finish log files
1539   ostream_abort();
1540 
1541   // Check for abort hook
1542   abort_hook_t abort_hook = Arguments::abort_hook();
1543   if (abort_hook != NULL) {
1544     abort_hook();
1545   }
1546 
1547 }
1548 
1549 // Note: os::abort() might be called very early during initialization, or
1550 // called from signal handler. Before adding something to os::abort(), make
1551 // sure it is async-safe and can handle partially initialized VM.
1552 void os::abort(bool dump_core) {
1553   os::shutdown();
1554   if (dump_core) {
1555 #ifndef PRODUCT
1556     fdStream out(defaultStream::output_fd());
1557     out.print_raw("Current thread is ");
1558     char buf[16];
1559     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1560     out.print_raw_cr(buf);
1561     out.print_raw_cr("Dumping core ...");
1562 #endif
1563     ::abort(); // dump core
1564   }
1565 
1566   ::exit(1);
1567 }
1568 
1569 // Die immediately, no exit hook, no abort hook, no cleanup.
1570 void os::die() {
1571   // _exit() on LinuxThreads only kills current thread
1572   ::abort();
1573 }
1574 
1575 // unused on linux for now.
1576 void os::set_error_file(const char *logfile) {}
1577 
1578 
1579 // This method is a copy of JDK's sysGetLastErrorString
1580 // from src/solaris/hpi/src/system_md.c
1581 
1582 size_t os::lasterror(char *buf, size_t len) {
1583 
1584   if (errno == 0)  return 0;
1585 
1586   const char *s = ::strerror(errno);
1587   size_t n = ::strlen(s);
1588   if (n >= len) {
1589     n = len - 1;
1590   }
1591   ::strncpy(buf, s, n);
1592   buf[n] = '\0';
1593   return n;
1594 }
1595 
1596 intx os::current_thread_id() { return (intx)pthread_self(); }
1597 int os::current_process_id() {
1598 
1599   // Under the old linux thread library, linux gives each thread
1600   // its own process id. Because of this each thread will return
1601   // a different pid if this method were to return the result
1602   // of getpid(2). Linux provides no api that returns the pid
1603   // of the launcher thread for the vm. This implementation
1604   // returns a unique pid, the pid of the launcher thread
1605   // that starts the vm 'process'.
1606 
1607   // Under the NPTL, getpid() returns the same pid as the
1608   // launcher thread rather than a unique pid per thread.
1609   // Use gettid() if you want the old pre NPTL behaviour.
1610 
1611   // if you are looking for the result of a call to getpid() that
1612   // returns a unique pid for the calling thread, then look at the
1613   // OSThread::thread_id() method in osThread_linux.hpp file
1614 
1615   return (int)(_initial_pid ? _initial_pid : getpid());
1616 }
1617 
1618 // DLL functions
1619 
1620 const char* os::dll_file_extension() { return ".so"; }
1621 
1622 // This must be hard coded because it's the system's temporary
1623 // directory not the java application's temp directory, ala java.io.tmpdir.
1624 const char* os::get_temp_directory() { return "/tmp"; }
1625 
1626 static bool file_exists(const char* filename) {
1627   struct stat statbuf;
1628   if (filename == NULL || strlen(filename) == 0) {
1629     return false;
1630   }
1631   return os::stat(filename, &statbuf) == 0;
1632 }
1633 
1634 void os::dll_build_name(char* buffer, size_t buflen,
1635                         const char* pname, const char* fname) {
1636   // Copied from libhpi
1637   const size_t pnamelen = pname ? strlen(pname) : 0;
1638 
1639   // Quietly truncate on buffer overflow.  Should be an error.
1640   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1641       *buffer = '\0';
1642       return;
1643   }
1644 
1645   if (pnamelen == 0) {
1646     snprintf(buffer, buflen, "lib%s.so", fname);
1647   } else if (strchr(pname, *os::path_separator()) != NULL) {
1648     int n;
1649     char** pelements = split_path(pname, &n);
1650     for (int i = 0 ; i < n ; i++) {
1651       // Really shouldn't be NULL, but check can't hurt
1652       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1653         continue; // skip the empty path values
1654       }
1655       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1656       if (file_exists(buffer)) {
1657         break;
1658       }
1659     }
1660     // release the storage
1661     for (int i = 0 ; i < n ; i++) {
1662       if (pelements[i] != NULL) {
1663         FREE_C_HEAP_ARRAY(char, pelements[i]);
1664       }
1665     }
1666     if (pelements != NULL) {
1667       FREE_C_HEAP_ARRAY(char*, pelements);
1668     }
1669   } else {
1670     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1671   }
1672 }
1673 
1674 const char* os::get_current_directory(char *buf, int buflen) {
1675   return getcwd(buf, buflen);
1676 }
1677 
1678 // check if addr is inside libjvm[_g].so
1679 bool os::address_is_in_vm(address addr) {
1680   static address libjvm_base_addr;
1681   Dl_info dlinfo;
1682 
1683   if (libjvm_base_addr == NULL) {
1684     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1685     libjvm_base_addr = (address)dlinfo.dli_fbase;
1686     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1687   }
1688 
1689   if (dladdr((void *)addr, &dlinfo)) {
1690     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1691   }
1692 
1693   return false;
1694 }
1695 
1696 bool os::dll_address_to_function_name(address addr, char *buf,
1697                                       int buflen, int *offset) {
1698   Dl_info dlinfo;
1699 
1700   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1701     if (buf != NULL) {
1702       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1703         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1704       }
1705     }
1706     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1707     return true;
1708   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1709     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1710        dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1711        return true;
1712     }
1713   }
1714 
1715   if (buf != NULL) buf[0] = '\0';
1716   if (offset != NULL) *offset = -1;
1717   return false;
1718 }
1719 
1720 struct _address_to_library_name {
1721   address addr;          // input : memory address
1722   size_t  buflen;        //         size of fname
1723   char*   fname;         // output: library name
1724   address base;          //         library base addr
1725 };
1726 
1727 static int address_to_library_name_callback(struct dl_phdr_info *info,
1728                                             size_t size, void *data) {
1729   int i;
1730   bool found = false;
1731   address libbase = NULL;
1732   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1733 
1734   // iterate through all loadable segments
1735   for (i = 0; i < info->dlpi_phnum; i++) {
1736     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1737     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1738       // base address of a library is the lowest address of its loaded
1739       // segments.
1740       if (libbase == NULL || libbase > segbase) {
1741         libbase = segbase;
1742       }
1743       // see if 'addr' is within current segment
1744       if (segbase <= d->addr &&
1745           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1746         found = true;
1747       }
1748     }
1749   }
1750 
1751   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1752   // so dll_address_to_library_name() can fall through to use dladdr() which
1753   // can figure out executable name from argv[0].
1754   if (found && info->dlpi_name && info->dlpi_name[0]) {
1755     d->base = libbase;
1756     if (d->fname) {
1757       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1758     }
1759     return 1;
1760   }
1761   return 0;
1762 }
1763 
1764 bool os::dll_address_to_library_name(address addr, char* buf,
1765                                      int buflen, int* offset) {
1766   Dl_info dlinfo;
1767   struct _address_to_library_name data;
1768 
1769   // There is a bug in old glibc dladdr() implementation that it could resolve
1770   // to wrong library name if the .so file has a base address != NULL. Here
1771   // we iterate through the program headers of all loaded libraries to find
1772   // out which library 'addr' really belongs to. This workaround can be
1773   // removed once the minimum requirement for glibc is moved to 2.3.x.
1774   data.addr = addr;
1775   data.fname = buf;
1776   data.buflen = buflen;
1777   data.base = NULL;
1778   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1779 
1780   if (rslt) {
1781      // buf already contains library name
1782      if (offset) *offset = addr - data.base;
1783      return true;
1784   } else if (dladdr((void*)addr, &dlinfo)){
1785      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1786      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1787      return true;
1788   } else {
1789      if (buf) buf[0] = '\0';
1790      if (offset) *offset = -1;
1791      return false;
1792   }
1793 }
1794 
1795   // Loads .dll/.so and
1796   // in case of error it checks if .dll/.so was built for the
1797   // same architecture as Hotspot is running on
1798 
1799 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1800 {
1801   void * result= ::dlopen(filename, RTLD_LAZY);
1802   if (result != NULL) {
1803     // Successful loading
1804     return result;
1805   }
1806 
1807   Elf32_Ehdr elf_head;
1808 
1809   // Read system error message into ebuf
1810   // It may or may not be overwritten below
1811   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1812   ebuf[ebuflen-1]='\0';
1813   int diag_msg_max_length=ebuflen-strlen(ebuf);
1814   char* diag_msg_buf=ebuf+strlen(ebuf);
1815 
1816   if (diag_msg_max_length==0) {
1817     // No more space in ebuf for additional diagnostics message
1818     return NULL;
1819   }
1820 
1821 
1822   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1823 
1824   if (file_descriptor < 0) {
1825     // Can't open library, report dlerror() message
1826     return NULL;
1827   }
1828 
1829   bool failed_to_read_elf_head=
1830     (sizeof(elf_head)!=
1831         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1832 
1833   ::close(file_descriptor);
1834   if (failed_to_read_elf_head) {
1835     // file i/o error - report dlerror() msg
1836     return NULL;
1837   }
1838 
1839   typedef struct {
1840     Elf32_Half  code;         // Actual value as defined in elf.h
1841     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1842     char        elf_class;    // 32 or 64 bit
1843     char        endianess;    // MSB or LSB
1844     char*       name;         // String representation
1845   } arch_t;
1846 
1847   #ifndef EM_486
1848   #define EM_486          6               /* Intel 80486 */
1849   #endif
1850 
1851   static const arch_t arch_array[]={
1852     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1853     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1854     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1855     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1856     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1857     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1858     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1859     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1860     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1861     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1862     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1863     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1864     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1865     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1866     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1867     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1868   };
1869 
1870   #if  (defined IA32)
1871     static  Elf32_Half running_arch_code=EM_386;
1872   #elif   (defined AMD64)
1873     static  Elf32_Half running_arch_code=EM_X86_64;
1874   #elif  (defined IA64)
1875     static  Elf32_Half running_arch_code=EM_IA_64;
1876   #elif  (defined __sparc) && (defined _LP64)
1877     static  Elf32_Half running_arch_code=EM_SPARCV9;
1878   #elif  (defined __sparc) && (!defined _LP64)
1879     static  Elf32_Half running_arch_code=EM_SPARC;
1880   #elif  (defined __powerpc64__)
1881     static  Elf32_Half running_arch_code=EM_PPC64;
1882   #elif  (defined __powerpc__)
1883     static  Elf32_Half running_arch_code=EM_PPC;
1884   #elif  (defined ARM)
1885     static  Elf32_Half running_arch_code=EM_ARM;
1886   #elif  (defined S390)
1887     static  Elf32_Half running_arch_code=EM_S390;
1888   #elif  (defined ALPHA)
1889     static  Elf32_Half running_arch_code=EM_ALPHA;
1890   #elif  (defined MIPSEL)
1891     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1892   #elif  (defined PARISC)
1893     static  Elf32_Half running_arch_code=EM_PARISC;
1894   #elif  (defined MIPS)
1895     static  Elf32_Half running_arch_code=EM_MIPS;
1896   #elif  (defined M68K)
1897     static  Elf32_Half running_arch_code=EM_68K;
1898   #else
1899     #error Method os::dll_load requires that one of following is defined:\
1900          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1901   #endif
1902 
1903   // Identify compatability class for VM's architecture and library's architecture
1904   // Obtain string descriptions for architectures
1905 
1906   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1907   int running_arch_index=-1;
1908 
1909   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1910     if (running_arch_code == arch_array[i].code) {
1911       running_arch_index    = i;
1912     }
1913     if (lib_arch.code == arch_array[i].code) {
1914       lib_arch.compat_class = arch_array[i].compat_class;
1915       lib_arch.name         = arch_array[i].name;
1916     }
1917   }
1918 
1919   assert(running_arch_index != -1,
1920     "Didn't find running architecture code (running_arch_code) in arch_array");
1921   if (running_arch_index == -1) {
1922     // Even though running architecture detection failed
1923     // we may still continue with reporting dlerror() message
1924     return NULL;
1925   }
1926 
1927   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1928     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1929     return NULL;
1930   }
1931 
1932 #ifndef S390
1933   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1934     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1935     return NULL;
1936   }
1937 #endif // !S390
1938 
1939   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1940     if ( lib_arch.name!=NULL ) {
1941       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1942         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1943         lib_arch.name, arch_array[running_arch_index].name);
1944     } else {
1945       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1947         lib_arch.code,
1948         arch_array[running_arch_index].name);
1949     }
1950   }
1951 
1952   return NULL;
1953 }
1954 
1955 /*
1956  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1957  * chances are you might want to run the generated bits against glibc-2.0
1958  * libdl.so, so always use locking for any version of glibc.
1959  */
1960 void* os::dll_lookup(void* handle, const char* name) {
1961   pthread_mutex_lock(&dl_mutex);
1962   void* res = dlsym(handle, name);
1963   pthread_mutex_unlock(&dl_mutex);
1964   return res;
1965 }
1966 
1967 
1968 static bool _print_ascii_file(const char* filename, outputStream* st) {
1969   int fd = ::open(filename, O_RDONLY);
1970   if (fd == -1) {
1971      return false;
1972   }
1973 
1974   char buf[32];
1975   int bytes;
1976   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1977     st->print_raw(buf, bytes);
1978   }
1979 
1980   ::close(fd);
1981 
1982   return true;
1983 }
1984 
1985 void os::print_dll_info(outputStream *st) {
1986    st->print_cr("Dynamic libraries:");
1987 
1988    char fname[32];
1989    pid_t pid = os::Linux::gettid();
1990 
1991    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1992 
1993    if (!_print_ascii_file(fname, st)) {
1994      st->print("Can not get library information for pid = %d\n", pid);
1995    }
1996 }
1997 
1998 
1999 void os::print_os_info(outputStream* st) {
2000   st->print("OS:");
2001 
2002   // Try to identify popular distros.
2003   // Most Linux distributions have /etc/XXX-release file, which contains
2004   // the OS version string. Some have more than one /etc/XXX-release file
2005   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2006   // so the order is important.
2007   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2008       !_print_ascii_file("/etc/sun-release", st) &&
2009       !_print_ascii_file("/etc/redhat-release", st) &&
2010       !_print_ascii_file("/etc/SuSE-release", st) &&
2011       !_print_ascii_file("/etc/turbolinux-release", st) &&
2012       !_print_ascii_file("/etc/gentoo-release", st) &&
2013       !_print_ascii_file("/etc/debian_version", st) &&
2014       !_print_ascii_file("/etc/ltib-release", st) &&
2015       !_print_ascii_file("/etc/angstrom-version", st)) {
2016       st->print("Linux");
2017   }
2018   st->cr();
2019 
2020   // kernel
2021   st->print("uname:");
2022   struct utsname name;
2023   uname(&name);
2024   st->print(name.sysname); st->print(" ");
2025   st->print(name.release); st->print(" ");
2026   st->print(name.version); st->print(" ");
2027   st->print(name.machine);
2028   st->cr();
2029 
2030   // Print warning if unsafe chroot environment detected
2031   if (unsafe_chroot_detected) {
2032     st->print("WARNING!! ");
2033     st->print_cr(unstable_chroot_error);
2034   }
2035 
2036   // libc, pthread
2037   st->print("libc:");
2038   st->print(os::Linux::glibc_version()); st->print(" ");
2039   st->print(os::Linux::libpthread_version()); st->print(" ");
2040   if (os::Linux::is_LinuxThreads()) {
2041      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2042   }
2043   st->cr();
2044 
2045   // rlimit
2046   st->print("rlimit:");
2047   struct rlimit rlim;
2048 
2049   st->print(" STACK ");
2050   getrlimit(RLIMIT_STACK, &rlim);
2051   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2052   else st->print("%uk", rlim.rlim_cur >> 10);
2053 
2054   st->print(", CORE ");
2055   getrlimit(RLIMIT_CORE, &rlim);
2056   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2057   else st->print("%uk", rlim.rlim_cur >> 10);
2058 
2059   st->print(", NPROC ");
2060   getrlimit(RLIMIT_NPROC, &rlim);
2061   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2062   else st->print("%d", rlim.rlim_cur);
2063 
2064   st->print(", NOFILE ");
2065   getrlimit(RLIMIT_NOFILE, &rlim);
2066   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2067   else st->print("%d", rlim.rlim_cur);
2068 
2069   st->print(", AS ");
2070   getrlimit(RLIMIT_AS, &rlim);
2071   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2072   else st->print("%uk", rlim.rlim_cur >> 10);
2073   st->cr();
2074 
2075   // load average
2076   st->print("load average:");
2077   double loadavg[3];
2078   os::loadavg(loadavg, 3);
2079   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2080   st->cr();
2081 
2082   // meminfo
2083   st->print("\n/proc/meminfo:\n");
2084   _print_ascii_file("/proc/meminfo", st);
2085   st->cr();
2086 }
2087 
2088 void os::print_memory_info(outputStream* st) {
2089 
2090   st->print("Memory:");
2091   st->print(" %dk page", os::vm_page_size()>>10);
2092 
2093   // values in struct sysinfo are "unsigned long"
2094   struct sysinfo si;
2095   sysinfo(&si);
2096 
2097   st->print(", physical " UINT64_FORMAT "k",
2098             os::physical_memory() >> 10);
2099   st->print("(" UINT64_FORMAT "k free)",
2100             os::available_memory() >> 10);
2101   st->print(", swap " UINT64_FORMAT "k",
2102             ((jlong)si.totalswap * si.mem_unit) >> 10);
2103   st->print("(" UINT64_FORMAT "k free)",
2104             ((jlong)si.freeswap * si.mem_unit) >> 10);
2105   st->cr();
2106 }
2107 
2108 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2109 // but they're the same for all the linux arch that we support
2110 // and they're the same for solaris but there's no common place to put this.
2111 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2112                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2113                           "ILL_COPROC", "ILL_BADSTK" };
2114 
2115 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2116                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2117                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2118 
2119 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2120 
2121 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2122 
2123 void os::print_siginfo(outputStream* st, void* siginfo) {
2124   st->print("siginfo:");
2125 
2126   const int buflen = 100;
2127   char buf[buflen];
2128   siginfo_t *si = (siginfo_t*)siginfo;
2129   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2130   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2131     st->print("si_errno=%s", buf);
2132   } else {
2133     st->print("si_errno=%d", si->si_errno);
2134   }
2135   const int c = si->si_code;
2136   assert(c > 0, "unexpected si_code");
2137   switch (si->si_signo) {
2138   case SIGILL:
2139     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2140     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2141     break;
2142   case SIGFPE:
2143     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2144     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2145     break;
2146   case SIGSEGV:
2147     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2148     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2149     break;
2150   case SIGBUS:
2151     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2152     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2153     break;
2154   default:
2155     st->print(", si_code=%d", si->si_code);
2156     // no si_addr
2157   }
2158 
2159   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2160       UseSharedSpaces) {
2161     FileMapInfo* mapinfo = FileMapInfo::current_info();
2162     if (mapinfo->is_in_shared_space(si->si_addr)) {
2163       st->print("\n\nError accessing class data sharing archive."   \
2164                 " Mapped file inaccessible during execution, "      \
2165                 " possible disk/network problem.");
2166     }
2167   }
2168   st->cr();
2169 }
2170 
2171 
2172 static void print_signal_handler(outputStream* st, int sig,
2173                                  char* buf, size_t buflen);
2174 
2175 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2176   st->print_cr("Signal Handlers:");
2177   print_signal_handler(st, SIGSEGV, buf, buflen);
2178   print_signal_handler(st, SIGBUS , buf, buflen);
2179   print_signal_handler(st, SIGFPE , buf, buflen);
2180   print_signal_handler(st, SIGPIPE, buf, buflen);
2181   print_signal_handler(st, SIGXFSZ, buf, buflen);
2182   print_signal_handler(st, SIGILL , buf, buflen);
2183   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2184   print_signal_handler(st, SR_signum, buf, buflen);
2185   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2186   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2187   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2188   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2189 }
2190 
2191 static char saved_jvm_path[MAXPATHLEN] = {0};
2192 
2193 // Find the full path to the current module, libjvm.so or libjvm_g.so
2194 void os::jvm_path(char *buf, jint buflen) {
2195   // Error checking.
2196   if (buflen < MAXPATHLEN) {
2197     assert(false, "must use a large-enough buffer");
2198     buf[0] = '\0';
2199     return;
2200   }
2201   // Lazy resolve the path to current module.
2202   if (saved_jvm_path[0] != 0) {
2203     strcpy(buf, saved_jvm_path);
2204     return;
2205   }
2206 
2207   char dli_fname[MAXPATHLEN];
2208   bool ret = dll_address_to_library_name(
2209                 CAST_FROM_FN_PTR(address, os::jvm_path),
2210                 dli_fname, sizeof(dli_fname), NULL);
2211   assert(ret != 0, "cannot locate libjvm");
2212   char *rp = realpath(dli_fname, buf);
2213   if (rp == NULL)
2214     return;
2215 
2216   if (Arguments::created_by_gamma_launcher()) {
2217     // Support for the gamma launcher.  Typical value for buf is
2218     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2219     // the right place in the string, then assume we are installed in a JDK and
2220     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2221     // up the path so it looks like libjvm.so is installed there (append a
2222     // fake suffix hotspot/libjvm.so).
2223     const char *p = buf + strlen(buf) - 1;
2224     for (int count = 0; p > buf && count < 5; ++count) {
2225       for (--p; p > buf && *p != '/'; --p)
2226         /* empty */ ;
2227     }
2228 
2229     if (strncmp(p, "/jre/lib/", 9) != 0) {
2230       // Look for JAVA_HOME in the environment.
2231       char* java_home_var = ::getenv("JAVA_HOME");
2232       if (java_home_var != NULL && java_home_var[0] != 0) {
2233         char* jrelib_p;
2234         int len;
2235 
2236         // Check the current module name "libjvm.so" or "libjvm_g.so".
2237         p = strrchr(buf, '/');
2238         assert(strstr(p, "/libjvm") == p, "invalid library name");
2239         p = strstr(p, "_g") ? "_g" : "";
2240 
2241         rp = realpath(java_home_var, buf);
2242         if (rp == NULL)
2243           return;
2244 
2245         // determine if this is a legacy image or modules image
2246         // modules image doesn't have "jre" subdirectory
2247         len = strlen(buf);
2248         jrelib_p = buf + len;
2249         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2250         if (0 != access(buf, F_OK)) {
2251           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2252         }
2253 
2254         if (0 == access(buf, F_OK)) {
2255           // Use current module name "libjvm[_g].so" instead of
2256           // "libjvm"debug_only("_g")".so" since for fastdebug version
2257           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2258           len = strlen(buf);
2259           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2260         } else {
2261           // Go back to path of .so
2262           rp = realpath(dli_fname, buf);
2263           if (rp == NULL)
2264             return;
2265         }
2266       }
2267     }
2268   }
2269 
2270   strcpy(saved_jvm_path, buf);
2271 }
2272 
2273 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2274   // no prefix required, not even "_"
2275 }
2276 
2277 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2278   // no suffix required
2279 }
2280 
2281 ////////////////////////////////////////////////////////////////////////////////
2282 // sun.misc.Signal support
2283 
2284 static volatile jint sigint_count = 0;
2285 
2286 static void
2287 UserHandler(int sig, void *siginfo, void *context) {
2288   // 4511530 - sem_post is serialized and handled by the manager thread. When
2289   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2290   // don't want to flood the manager thread with sem_post requests.
2291   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2292       return;
2293 
2294   // Ctrl-C is pressed during error reporting, likely because the error
2295   // handler fails to abort. Let VM die immediately.
2296   if (sig == SIGINT && is_error_reported()) {
2297      os::die();
2298   }
2299 
2300   os::signal_notify(sig);
2301 }
2302 
2303 void* os::user_handler() {
2304   return CAST_FROM_FN_PTR(void*, UserHandler);
2305 }
2306 
2307 extern "C" {
2308   typedef void (*sa_handler_t)(int);
2309   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2310 }
2311 
2312 void* os::signal(int signal_number, void* handler) {
2313   struct sigaction sigAct, oldSigAct;
2314 
2315   sigfillset(&(sigAct.sa_mask));
2316   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2317   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2318 
2319   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2320     // -1 means registration failed
2321     return (void *)-1;
2322   }
2323 
2324   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2325 }
2326 
2327 void os::signal_raise(int signal_number) {
2328   ::raise(signal_number);
2329 }
2330 
2331 /*
2332  * The following code is moved from os.cpp for making this
2333  * code platform specific, which it is by its very nature.
2334  */
2335 
2336 // Will be modified when max signal is changed to be dynamic
2337 int os::sigexitnum_pd() {
2338   return NSIG;
2339 }
2340 
2341 // a counter for each possible signal value
2342 static volatile jint pending_signals[NSIG+1] = { 0 };
2343 
2344 // Linux(POSIX) specific hand shaking semaphore.
2345 static sem_t sig_sem;
2346 
2347 void os::signal_init_pd() {
2348   // Initialize signal structures
2349   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2350 
2351   // Initialize signal semaphore
2352   ::sem_init(&sig_sem, 0, 0);
2353 }
2354 
2355 void os::signal_notify(int sig) {
2356   Atomic::inc(&pending_signals[sig]);
2357   ::sem_post(&sig_sem);
2358 }
2359 
2360 static int check_pending_signals(bool wait) {
2361   Atomic::store(0, &sigint_count);
2362   for (;;) {
2363     for (int i = 0; i < NSIG + 1; i++) {
2364       jint n = pending_signals[i];
2365       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2366         return i;
2367       }
2368     }
2369     if (!wait) {
2370       return -1;
2371     }
2372     JavaThread *thread = JavaThread::current();
2373     ThreadBlockInVM tbivm(thread);
2374 
2375     bool threadIsSuspended;
2376     do {
2377       thread->set_suspend_equivalent();
2378       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2379       ::sem_wait(&sig_sem);
2380 
2381       // were we externally suspended while we were waiting?
2382       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2383       if (threadIsSuspended) {
2384         //
2385         // The semaphore has been incremented, but while we were waiting
2386         // another thread suspended us. We don't want to continue running
2387         // while suspended because that would surprise the thread that
2388         // suspended us.
2389         //
2390         ::sem_post(&sig_sem);
2391 
2392         thread->java_suspend_self();
2393       }
2394     } while (threadIsSuspended);
2395   }
2396 }
2397 
2398 int os::signal_lookup() {
2399   return check_pending_signals(false);
2400 }
2401 
2402 int os::signal_wait() {
2403   return check_pending_signals(true);
2404 }
2405 
2406 ////////////////////////////////////////////////////////////////////////////////
2407 // Virtual Memory
2408 
2409 int os::vm_page_size() {
2410   // Seems redundant as all get out
2411   assert(os::Linux::page_size() != -1, "must call os::init");
2412   return os::Linux::page_size();
2413 }
2414 
2415 // Solaris allocates memory by pages.
2416 int os::vm_allocation_granularity() {
2417   assert(os::Linux::page_size() != -1, "must call os::init");
2418   return os::Linux::page_size();
2419 }
2420 
2421 // Rationale behind this function:
2422 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2423 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2424 //  samples for JITted code. Here we create private executable mapping over the code cache
2425 //  and then we can use standard (well, almost, as mapping can change) way to provide
2426 //  info for the reporting script by storing timestamp and location of symbol
2427 void linux_wrap_code(char* base, size_t size) {
2428   static volatile jint cnt = 0;
2429 
2430   if (!UseOprofile) {
2431     return;
2432   }
2433 
2434   char buf[PATH_MAX+1];
2435   int num = Atomic::add(1, &cnt);
2436 
2437   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2438            os::get_temp_directory(), os::current_process_id(), num);
2439   unlink(buf);
2440 
2441   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2442 
2443   if (fd != -1) {
2444     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2445     if (rv != (off_t)-1) {
2446       if (::write(fd, "", 1) == 1) {
2447         mmap(base, size,
2448              PROT_READ|PROT_WRITE|PROT_EXEC,
2449              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2450       }
2451     }
2452     ::close(fd);
2453     unlink(buf);
2454   }
2455 }
2456 
2457 // NOTE: Linux kernel does not really reserve the pages for us.
2458 //       All it does is to check if there are enough free pages
2459 //       left at the time of mmap(). This could be a potential
2460 //       problem.
2461 bool os::commit_memory(char* addr, size_t size, bool exec) {
2462   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2463   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2464                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2465   return res != (uintptr_t) MAP_FAILED;
2466 }
2467 
2468 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2469                        bool exec) {
2470   return commit_memory(addr, size, exec);
2471 }
2472 
2473 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2474 
2475 void os::free_memory(char *addr, size_t bytes) {
2476   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2477          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2478 }
2479 
2480 void os::numa_make_global(char *addr, size_t bytes) {
2481   Linux::numa_interleave_memory(addr, bytes);
2482 }
2483 
2484 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2485   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2486 }
2487 
2488 bool os::numa_topology_changed()   { return false; }
2489 
2490 size_t os::numa_get_groups_num() {
2491   int max_node = Linux::numa_max_node();
2492   return max_node > 0 ? max_node + 1 : 1;
2493 }
2494 
2495 int os::numa_get_group_id() {
2496   int cpu_id = Linux::sched_getcpu();
2497   if (cpu_id != -1) {
2498     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2499     if (lgrp_id != -1) {
2500       return lgrp_id;
2501     }
2502   }
2503   return 0;
2504 }
2505 
2506 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2507   for (size_t i = 0; i < size; i++) {
2508     ids[i] = i;
2509   }
2510   return size;
2511 }
2512 
2513 bool os::get_page_info(char *start, page_info* info) {
2514   return false;
2515 }
2516 
2517 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2518   return end;
2519 }
2520 
2521 // Something to do with the numa-aware allocator needs these symbols
2522 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2523 extern "C" JNIEXPORT void numa_error(char *where) { }
2524 extern "C" JNIEXPORT int fork1() { return fork(); }
2525 
2526 
2527 // If we are running with libnuma version > 2, then we should
2528 // be trying to use symbols with versions 1.1
2529 // If we are running with earlier version, which did not have symbol versions,
2530 // we should use the base version.
2531 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2532   void *f = dlvsym(handle, name, "libnuma_1.1");
2533   if (f == NULL) {
2534     f = dlsym(handle, name);
2535   }
2536   return f;
2537 }
2538 
2539 bool os::Linux::libnuma_init() {
2540   // sched_getcpu() should be in libc.
2541   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2542                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2543 
2544   if (sched_getcpu() != -1) { // Does it work?
2545     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2546     if (handle != NULL) {
2547       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2548                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2549       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2550                                        libnuma_dlsym(handle, "numa_max_node")));
2551       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2552                                         libnuma_dlsym(handle, "numa_available")));
2553       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2554                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2555       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2556                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2557 
2558 
2559       if (numa_available() != -1) {
2560         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2561         // Create a cpu -> node mapping
2562         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2563         rebuild_cpu_to_node_map();
2564         return true;
2565       }
2566     }
2567   }
2568   return false;
2569 }
2570 
2571 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2572 // The table is later used in get_node_by_cpu().
2573 void os::Linux::rebuild_cpu_to_node_map() {
2574   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2575                               // in libnuma (possible values are starting from 16,
2576                               // and continuing up with every other power of 2, but less
2577                               // than the maximum number of CPUs supported by kernel), and
2578                               // is a subject to change (in libnuma version 2 the requirements
2579                               // are more reasonable) we'll just hardcode the number they use
2580                               // in the library.
2581   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2582 
2583   size_t cpu_num = os::active_processor_count();
2584   size_t cpu_map_size = NCPUS / BitsPerCLong;
2585   size_t cpu_map_valid_size =
2586     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2587 
2588   cpu_to_node()->clear();
2589   cpu_to_node()->at_grow(cpu_num - 1);
2590   size_t node_num = numa_get_groups_num();
2591 
2592   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2593   for (size_t i = 0; i < node_num; i++) {
2594     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2595       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2596         if (cpu_map[j] != 0) {
2597           for (size_t k = 0; k < BitsPerCLong; k++) {
2598             if (cpu_map[j] & (1UL << k)) {
2599               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2600             }
2601           }
2602         }
2603       }
2604     }
2605   }
2606   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2607 }
2608 
2609 int os::Linux::get_node_by_cpu(int cpu_id) {
2610   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2611     return cpu_to_node()->at(cpu_id);
2612   }
2613   return -1;
2614 }
2615 
2616 GrowableArray<int>* os::Linux::_cpu_to_node;
2617 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2618 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2619 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2620 os::Linux::numa_available_func_t os::Linux::_numa_available;
2621 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2622 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2623 unsigned long* os::Linux::_numa_all_nodes;
2624 
2625 bool os::uncommit_memory(char* addr, size_t size) {
2626   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2627                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2628   return res  != (uintptr_t) MAP_FAILED;
2629 }
2630 
2631 // Linux uses a growable mapping for the stack, and if the mapping for
2632 // the stack guard pages is not removed when we detach a thread the
2633 // stack cannot grow beyond the pages where the stack guard was
2634 // mapped.  If at some point later in the process the stack expands to
2635 // that point, the Linux kernel cannot expand the stack any further
2636 // because the guard pages are in the way, and a segfault occurs.
2637 //
2638 // However, it's essential not to split the stack region by unmapping
2639 // a region (leaving a hole) that's already part of the stack mapping,
2640 // so if the stack mapping has already grown beyond the guard pages at
2641 // the time we create them, we have to truncate the stack mapping.
2642 // So, we need to know the extent of the stack mapping when
2643 // create_stack_guard_pages() is called.
2644 
2645 // Find the bounds of the stack mapping.  Return true for success.
2646 //
2647 // We only need this for stacks that are growable: at the time of
2648 // writing thread stacks don't use growable mappings (i.e. those
2649 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2650 // only applies to the main thread.
2651 static bool
2652 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
2653 {
2654   FILE *f = fopen("/proc/self/maps", "r");
2655   if (f == NULL)
2656     return false;
2657 
2658   while (!feof(f)) {
2659     size_t dummy;
2660     char *str = NULL;
2661     ssize_t len = getline(&str, &dummy, f);
2662     if (len == -1) {
2663       fclose(f);
2664       return false;
2665     }
2666 
2667     if (len > 0 && str[len-1] == '\n') {
2668       str[len-1] = 0;
2669       len--;
2670     }
2671 
2672     static const char *stack_str = "[stack]";
2673     if (len > (ssize_t)strlen(stack_str)
2674        && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
2675       if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2676         uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
2677         if (sp >= *bottom && sp <= *top) {
2678           free(str);
2679           fclose(f);
2680           return true;
2681         }
2682       }
2683     }
2684     free(str);
2685   }
2686   fclose(f);
2687   return false;
2688 }
2689 
2690 // If the (growable) stack mapping already extends beyond the point
2691 // where we're going to put our guard pages, truncate the mapping at
2692 // that point by munmap()ping it.  This ensures that when we later
2693 // munmap() the guard pages we don't leave a hole in the stack
2694 // mapping. This only affects the main/initial thread, but guard
2695 // against future OS changes
2696 bool os::create_stack_guard_pages(char* addr, size_t size) {
2697   uintptr_t stack_extent, stack_base;
2698   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2699   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2700       assert(os::Linux::is_initial_thread(),
2701            "growable stack in non-initial thread");
2702     if (stack_extent < (uintptr_t)addr)
2703       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2704   }
2705 
2706   return os::commit_memory(addr, size);
2707 }
2708 
2709 // If this is a growable mapping, remove the guard pages entirely by
2710 // munmap()ping them.  If not, just call uncommit_memory(). This only
2711 // affects the main/initial thread, but guard against future OS changes
2712 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2713   uintptr_t stack_extent, stack_base;
2714   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2715   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2716       assert(os::Linux::is_initial_thread(),
2717            "growable stack in non-initial thread");
2718 
2719     return ::munmap(addr, size) == 0;
2720   }
2721 
2722   return os::uncommit_memory(addr, size);
2723 }
2724 
2725 static address _highest_vm_reserved_address = NULL;
2726 
2727 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2728 // at 'requested_addr'. If there are existing memory mappings at the same
2729 // location, however, they will be overwritten. If 'fixed' is false,
2730 // 'requested_addr' is only treated as a hint, the return value may or
2731 // may not start from the requested address. Unlike Linux mmap(), this
2732 // function returns NULL to indicate failure.
2733 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2734   char * addr;
2735   int flags;
2736 
2737   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2738   if (fixed) {
2739     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2740     flags |= MAP_FIXED;
2741   }
2742 
2743   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2744   // to PROT_EXEC if executable when we commit the page.
2745   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2746                        flags, -1, 0);
2747 
2748   if (addr != MAP_FAILED) {
2749     // anon_mmap() should only get called during VM initialization,
2750     // don't need lock (actually we can skip locking even it can be called
2751     // from multiple threads, because _highest_vm_reserved_address is just a
2752     // hint about the upper limit of non-stack memory regions.)
2753     if ((address)addr + bytes > _highest_vm_reserved_address) {
2754       _highest_vm_reserved_address = (address)addr + bytes;
2755     }
2756   }
2757 
2758   return addr == MAP_FAILED ? NULL : addr;
2759 }
2760 
2761 // Don't update _highest_vm_reserved_address, because there might be memory
2762 // regions above addr + size. If so, releasing a memory region only creates
2763 // a hole in the address space, it doesn't help prevent heap-stack collision.
2764 //
2765 static int anon_munmap(char * addr, size_t size) {
2766   return ::munmap(addr, size) == 0;
2767 }
2768 
2769 char* os::reserve_memory(size_t bytes, char* requested_addr,
2770                          size_t alignment_hint) {
2771   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2772 }
2773 
2774 bool os::release_memory(char* addr, size_t size) {
2775   return anon_munmap(addr, size);
2776 }
2777 
2778 static address highest_vm_reserved_address() {
2779   return _highest_vm_reserved_address;
2780 }
2781 
2782 static bool linux_mprotect(char* addr, size_t size, int prot) {
2783   // Linux wants the mprotect address argument to be page aligned.
2784   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2785 
2786   // According to SUSv3, mprotect() should only be used with mappings
2787   // established by mmap(), and mmap() always maps whole pages. Unaligned
2788   // 'addr' likely indicates problem in the VM (e.g. trying to change
2789   // protection of malloc'ed or statically allocated memory). Check the
2790   // caller if you hit this assert.
2791   assert(addr == bottom, "sanity check");
2792 
2793   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2794   return ::mprotect(bottom, size, prot) == 0;
2795 }
2796 
2797 // Set protections specified
2798 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2799                         bool is_committed) {
2800   unsigned int p = 0;
2801   switch (prot) {
2802   case MEM_PROT_NONE: p = PROT_NONE; break;
2803   case MEM_PROT_READ: p = PROT_READ; break;
2804   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2805   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2806   default:
2807     ShouldNotReachHere();
2808   }
2809   // is_committed is unused.
2810   return linux_mprotect(addr, bytes, p);
2811 }
2812 
2813 bool os::guard_memory(char* addr, size_t size) {
2814   return linux_mprotect(addr, size, PROT_NONE);
2815 }
2816 
2817 bool os::unguard_memory(char* addr, size_t size) {
2818   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2819 }
2820 
2821 /*
2822 * Set the coredump_filter bits to include largepages in core dump (bit 6)
2823 *
2824 * From the coredump_filter documentation:
2825 *
2826 * - (bit 0) anonymous private memory
2827 * - (bit 1) anonymous shared memory
2828 * - (bit 2) file-backed private memory
2829 * - (bit 3) file-backed shared memory
2830 * - (bit 4) ELF header pages in file-backed private memory areas (it is
2831 *           effective only if the bit 2 is cleared)
2832 * - (bit 5) hugetlb private memory
2833 * - (bit 6) hugetlb shared memory
2834 */
2835 static void set_coredump_filter(void) {
2836   FILE *f;
2837   long cdm;
2838 
2839   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2840     return;
2841   }
2842 
2843   if (fscanf(f, "%lx", &cdm) != 1) {
2844     fclose(f);
2845     return;
2846   }
2847 
2848   rewind(f);
2849 
2850   if ((cdm & LARGEPAGES_BIT) == 0) {
2851     cdm |= LARGEPAGES_BIT;
2852     fprintf(f, "%#lx", cdm);
2853   }
2854 
2855   fclose(f);
2856 }
2857 
2858 // Large page support
2859 
2860 static size_t _large_page_size = 0;
2861 
2862 bool os::large_page_init() {
2863   if (!UseLargePages) return false;
2864 
2865   if (LargePageSizeInBytes) {
2866     _large_page_size = LargePageSizeInBytes;
2867   } else {
2868     // large_page_size on Linux is used to round up heap size. x86 uses either
2869     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2870     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2871     // page as large as 256M.
2872     //
2873     // Here we try to figure out page size by parsing /proc/meminfo and looking
2874     // for a line with the following format:
2875     //    Hugepagesize:     2048 kB
2876     //
2877     // If we can't determine the value (e.g. /proc is not mounted, or the text
2878     // format has been changed), we'll use the largest page size supported by
2879     // the processor.
2880 
2881 #ifndef ZERO
2882     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2883                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2884 #endif // ZERO
2885 
2886     FILE *fp = fopen("/proc/meminfo", "r");
2887     if (fp) {
2888       while (!feof(fp)) {
2889         int x = 0;
2890         char buf[16];
2891         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2892           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2893             _large_page_size = x * K;
2894             break;
2895           }
2896         } else {
2897           // skip to next line
2898           for (;;) {
2899             int ch = fgetc(fp);
2900             if (ch == EOF || ch == (int)'\n') break;
2901           }
2902         }
2903       }
2904       fclose(fp);
2905     }
2906   }
2907 
2908   const size_t default_page_size = (size_t)Linux::page_size();
2909   if (_large_page_size > default_page_size) {
2910     _page_sizes[0] = _large_page_size;
2911     _page_sizes[1] = default_page_size;
2912     _page_sizes[2] = 0;
2913   }
2914 
2915   set_coredump_filter();
2916 
2917   // Large page support is available on 2.6 or newer kernel, some vendors
2918   // (e.g. Redhat) have backported it to their 2.4 based distributions.
2919   // We optimistically assume the support is available. If later it turns out
2920   // not true, VM will automatically switch to use regular page size.
2921   return true;
2922 }
2923 
2924 #ifndef SHM_HUGETLB
2925 #define SHM_HUGETLB 04000
2926 #endif
2927 
2928 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2929   // "exec" is passed in but not used.  Creating the shared image for
2930   // the code cache doesn't have an SHM_X executable permission to check.
2931   assert(UseLargePages, "only for large pages");
2932 
2933   key_t key = IPC_PRIVATE;
2934   char *addr;
2935 
2936   bool warn_on_failure = UseLargePages &&
2937                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2938                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2939                         );
2940   char msg[128];
2941 
2942   // Create a large shared memory region to attach to based on size.
2943   // Currently, size is the total size of the heap
2944   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2945   if (shmid == -1) {
2946      // Possible reasons for shmget failure:
2947      // 1. shmmax is too small for Java heap.
2948      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2949      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2950      // 2. not enough large page memory.
2951      //    > check available large pages: cat /proc/meminfo
2952      //    > increase amount of large pages:
2953      //          echo new_value > /proc/sys/vm/nr_hugepages
2954      //      Note 1: different Linux may use different name for this property,
2955      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2956      //      Note 2: it's possible there's enough physical memory available but
2957      //            they are so fragmented after a long run that they can't
2958      //            coalesce into large pages. Try to reserve large pages when
2959      //            the system is still "fresh".
2960      if (warn_on_failure) {
2961        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2962        warning(msg);
2963      }
2964      return NULL;
2965   }
2966 
2967   // attach to the region
2968   addr = (char*)shmat(shmid, req_addr, 0);
2969   int err = errno;
2970 
2971   // Remove shmid. If shmat() is successful, the actual shared memory segment
2972   // will be deleted when it's detached by shmdt() or when the process
2973   // terminates. If shmat() is not successful this will remove the shared
2974   // segment immediately.
2975   shmctl(shmid, IPC_RMID, NULL);
2976 
2977   if ((intptr_t)addr == -1) {
2978      if (warn_on_failure) {
2979        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2980        warning(msg);
2981      }
2982      return NULL;
2983   }
2984 
2985   return addr;
2986 }
2987 
2988 bool os::release_memory_special(char* base, size_t bytes) {
2989   // detaching the SHM segment will also delete it, see reserve_memory_special()
2990   int rslt = shmdt(base);
2991   return rslt == 0;
2992 }
2993 
2994 size_t os::large_page_size() {
2995   return _large_page_size;
2996 }
2997 
2998 // Linux does not support anonymous mmap with large page memory. The only way
2999 // to reserve large page memory without file backing is through SysV shared
3000 // memory API. The entire memory region is committed and pinned upfront.
3001 // Hopefully this will change in the future...
3002 bool os::can_commit_large_page_memory() {
3003   return false;
3004 }
3005 
3006 bool os::can_execute_large_page_memory() {
3007   return false;
3008 }
3009 
3010 // Reserve memory at an arbitrary address, only if that area is
3011 // available (and not reserved for something else).
3012 
3013 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3014   const int max_tries = 10;
3015   char* base[max_tries];
3016   size_t size[max_tries];
3017   const size_t gap = 0x000000;
3018 
3019   // Assert only that the size is a multiple of the page size, since
3020   // that's all that mmap requires, and since that's all we really know
3021   // about at this low abstraction level.  If we need higher alignment,
3022   // we can either pass an alignment to this method or verify alignment
3023   // in one of the methods further up the call chain.  See bug 5044738.
3024   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3025 
3026   // Repeatedly allocate blocks until the block is allocated at the
3027   // right spot. Give up after max_tries. Note that reserve_memory() will
3028   // automatically update _highest_vm_reserved_address if the call is
3029   // successful. The variable tracks the highest memory address every reserved
3030   // by JVM. It is used to detect heap-stack collision if running with
3031   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3032   // space than needed, it could confuse the collision detecting code. To
3033   // solve the problem, save current _highest_vm_reserved_address and
3034   // calculate the correct value before return.
3035   address old_highest = _highest_vm_reserved_address;
3036 
3037   // Linux mmap allows caller to pass an address as hint; give it a try first,
3038   // if kernel honors the hint then we can return immediately.
3039   char * addr = anon_mmap(requested_addr, bytes, false);
3040   if (addr == requested_addr) {
3041      return requested_addr;
3042   }
3043 
3044   if (addr != NULL) {
3045      // mmap() is successful but it fails to reserve at the requested address
3046      anon_munmap(addr, bytes);
3047   }
3048 
3049   int i;
3050   for (i = 0; i < max_tries; ++i) {
3051     base[i] = reserve_memory(bytes);
3052 
3053     if (base[i] != NULL) {
3054       // Is this the block we wanted?
3055       if (base[i] == requested_addr) {
3056         size[i] = bytes;
3057         break;
3058       }
3059 
3060       // Does this overlap the block we wanted? Give back the overlapped
3061       // parts and try again.
3062 
3063       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3064       if (top_overlap >= 0 && top_overlap < bytes) {
3065         unmap_memory(base[i], top_overlap);
3066         base[i] += top_overlap;
3067         size[i] = bytes - top_overlap;
3068       } else {
3069         size_t bottom_overlap = base[i] + bytes - requested_addr;
3070         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3071           unmap_memory(requested_addr, bottom_overlap);
3072           size[i] = bytes - bottom_overlap;
3073         } else {
3074           size[i] = bytes;
3075         }
3076       }
3077     }
3078   }
3079 
3080   // Give back the unused reserved pieces.
3081 
3082   for (int j = 0; j < i; ++j) {
3083     if (base[j] != NULL) {
3084       unmap_memory(base[j], size[j]);
3085     }
3086   }
3087 
3088   if (i < max_tries) {
3089     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3090     return requested_addr;
3091   } else {
3092     _highest_vm_reserved_address = old_highest;
3093     return NULL;
3094   }
3095 }
3096 
3097 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3098   return ::read(fd, buf, nBytes);
3099 }
3100 
3101 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3102 // Solaris uses poll(), linux uses park().
3103 // Poll() is likely a better choice, assuming that Thread.interrupt()
3104 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3105 // SIGSEGV, see 4355769.
3106 
3107 const int NANOSECS_PER_MILLISECS = 1000000;
3108 
3109 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3110   assert(thread == Thread::current(),  "thread consistency check");
3111 
3112   ParkEvent * const slp = thread->_SleepEvent ;
3113   slp->reset() ;
3114   OrderAccess::fence() ;
3115 
3116   if (interruptible) {
3117     jlong prevtime = javaTimeNanos();
3118 
3119     for (;;) {
3120       if (os::is_interrupted(thread, true)) {
3121         return OS_INTRPT;
3122       }
3123 
3124       jlong newtime = javaTimeNanos();
3125 
3126       if (newtime - prevtime < 0) {
3127         // time moving backwards, should only happen if no monotonic clock
3128         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3129         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3130       } else {
3131         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3132       }
3133 
3134       if(millis <= 0) {
3135         return OS_OK;
3136       }
3137 
3138       prevtime = newtime;
3139 
3140       {
3141         assert(thread->is_Java_thread(), "sanity check");
3142         JavaThread *jt = (JavaThread *) thread;
3143         ThreadBlockInVM tbivm(jt);
3144         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3145 
3146         jt->set_suspend_equivalent();
3147         // cleared by handle_special_suspend_equivalent_condition() or
3148         // java_suspend_self() via check_and_wait_while_suspended()
3149 
3150         slp->park(millis);
3151 
3152         // were we externally suspended while we were waiting?
3153         jt->check_and_wait_while_suspended();
3154       }
3155     }
3156   } else {
3157     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3158     jlong prevtime = javaTimeNanos();
3159 
3160     for (;;) {
3161       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3162       // the 1st iteration ...
3163       jlong newtime = javaTimeNanos();
3164 
3165       if (newtime - prevtime < 0) {
3166         // time moving backwards, should only happen if no monotonic clock
3167         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3168         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3169       } else {
3170         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3171       }
3172 
3173       if(millis <= 0) break ;
3174 
3175       prevtime = newtime;
3176       slp->park(millis);
3177     }
3178     return OS_OK ;
3179   }
3180 }
3181 
3182 int os::naked_sleep() {
3183   // %% make the sleep time an integer flag. for now use 1 millisec.
3184   return os::sleep(Thread::current(), 1, false);
3185 }
3186 
3187 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3188 void os::infinite_sleep() {
3189   while (true) {    // sleep forever ...
3190     ::sleep(100);   // ... 100 seconds at a time
3191   }
3192 }
3193 
3194 // Used to convert frequent JVM_Yield() to nops
3195 bool os::dont_yield() {
3196   return DontYieldALot;
3197 }
3198 
3199 void os::yield() {
3200   sched_yield();
3201 }
3202 
3203 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3204 
3205 void os::yield_all(int attempts) {
3206   // Yields to all threads, including threads with lower priorities
3207   // Threads on Linux are all with same priority. The Solaris style
3208   // os::yield_all() with nanosleep(1ms) is not necessary.
3209   sched_yield();
3210 }
3211 
3212 // Called from the tight loops to possibly influence time-sharing heuristics
3213 void os::loop_breaker(int attempts) {
3214   os::yield_all(attempts);
3215 }
3216 
3217 ////////////////////////////////////////////////////////////////////////////////
3218 // thread priority support
3219 
3220 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3221 // only supports dynamic priority, static priority must be zero. For real-time
3222 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3223 // However, for large multi-threaded applications, SCHED_RR is not only slower
3224 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3225 // of 5 runs - Sep 2005).
3226 //
3227 // The following code actually changes the niceness of kernel-thread/LWP. It
3228 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3229 // not the entire user process, and user level threads are 1:1 mapped to kernel
3230 // threads. It has always been the case, but could change in the future. For
3231 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3232 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3233 
3234 int os::java_to_os_priority[MaxPriority + 1] = {
3235   19,              // 0 Entry should never be used
3236 
3237    4,              // 1 MinPriority
3238    3,              // 2
3239    2,              // 3
3240 
3241    1,              // 4
3242    0,              // 5 NormPriority
3243   -1,              // 6
3244 
3245   -2,              // 7
3246   -3,              // 8
3247   -4,              // 9 NearMaxPriority
3248 
3249   -5               // 10 MaxPriority
3250 };
3251 
3252 static int prio_init() {
3253   if (ThreadPriorityPolicy == 1) {
3254     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3255     // if effective uid is not root. Perhaps, a more elegant way of doing
3256     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3257     if (geteuid() != 0) {
3258       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3259         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3260       }
3261       ThreadPriorityPolicy = 0;
3262     }
3263   }
3264   return 0;
3265 }
3266 
3267 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3268   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3269 
3270   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3271   return (ret == 0) ? OS_OK : OS_ERR;
3272 }
3273 
3274 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3275   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3276     *priority_ptr = java_to_os_priority[NormPriority];
3277     return OS_OK;
3278   }
3279 
3280   errno = 0;
3281   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3282   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3283 }
3284 
3285 // Hint to the underlying OS that a task switch would not be good.
3286 // Void return because it's a hint and can fail.
3287 void os::hint_no_preempt() {}
3288 
3289 ////////////////////////////////////////////////////////////////////////////////
3290 // suspend/resume support
3291 
3292 //  the low-level signal-based suspend/resume support is a remnant from the
3293 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3294 //  within hotspot. Now there is a single use-case for this:
3295 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3296 //      that runs in the watcher thread.
3297 //  The remaining code is greatly simplified from the more general suspension
3298 //  code that used to be used.
3299 //
3300 //  The protocol is quite simple:
3301 //  - suspend:
3302 //      - sends a signal to the target thread
3303 //      - polls the suspend state of the osthread using a yield loop
3304 //      - target thread signal handler (SR_handler) sets suspend state
3305 //        and blocks in sigsuspend until continued
3306 //  - resume:
3307 //      - sets target osthread state to continue
3308 //      - sends signal to end the sigsuspend loop in the SR_handler
3309 //
3310 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3311 //
3312 
3313 static void resume_clear_context(OSThread *osthread) {
3314   osthread->set_ucontext(NULL);
3315   osthread->set_siginfo(NULL);
3316 
3317   // notify the suspend action is completed, we have now resumed
3318   osthread->sr.clear_suspended();
3319 }
3320 
3321 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3322   osthread->set_ucontext(context);
3323   osthread->set_siginfo(siginfo);
3324 }
3325 
3326 //
3327 // Handler function invoked when a thread's execution is suspended or
3328 // resumed. We have to be careful that only async-safe functions are
3329 // called here (Note: most pthread functions are not async safe and
3330 // should be avoided.)
3331 //
3332 // Note: sigwait() is a more natural fit than sigsuspend() from an
3333 // interface point of view, but sigwait() prevents the signal hander
3334 // from being run. libpthread would get very confused by not having
3335 // its signal handlers run and prevents sigwait()'s use with the
3336 // mutex granting granting signal.
3337 //
3338 // Currently only ever called on the VMThread
3339 //
3340 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3341   // Save and restore errno to avoid confusing native code with EINTR
3342   // after sigsuspend.
3343   int old_errno = errno;
3344 
3345   Thread* thread = Thread::current();
3346   OSThread* osthread = thread->osthread();
3347   assert(thread->is_VM_thread(), "Must be VMThread");
3348   // read current suspend action
3349   int action = osthread->sr.suspend_action();
3350   if (action == SR_SUSPEND) {
3351     suspend_save_context(osthread, siginfo, context);
3352 
3353     // Notify the suspend action is about to be completed. do_suspend()
3354     // waits until SR_SUSPENDED is set and then returns. We will wait
3355     // here for a resume signal and that completes the suspend-other
3356     // action. do_suspend/do_resume is always called as a pair from
3357     // the same thread - so there are no races
3358 
3359     // notify the caller
3360     osthread->sr.set_suspended();
3361 
3362     sigset_t suspend_set;  // signals for sigsuspend()
3363 
3364     // get current set of blocked signals and unblock resume signal
3365     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3366     sigdelset(&suspend_set, SR_signum);
3367 
3368     // wait here until we are resumed
3369     do {
3370       sigsuspend(&suspend_set);
3371       // ignore all returns until we get a resume signal
3372     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3373 
3374     resume_clear_context(osthread);
3375 
3376   } else {
3377     assert(action == SR_CONTINUE, "unexpected sr action");
3378     // nothing special to do - just leave the handler
3379   }
3380 
3381   errno = old_errno;
3382 }
3383 
3384 
3385 static int SR_initialize() {
3386   struct sigaction act;
3387   char *s;
3388   /* Get signal number to use for suspend/resume */
3389   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3390     int sig = ::strtol(s, 0, 10);
3391     if (sig > 0 || sig < _NSIG) {
3392         SR_signum = sig;
3393     }
3394   }
3395 
3396   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3397         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3398 
3399   sigemptyset(&SR_sigset);
3400   sigaddset(&SR_sigset, SR_signum);
3401 
3402   /* Set up signal handler for suspend/resume */
3403   act.sa_flags = SA_RESTART|SA_SIGINFO;
3404   act.sa_handler = (void (*)(int)) SR_handler;
3405 
3406   // SR_signum is blocked by default.
3407   // 4528190 - We also need to block pthread restart signal (32 on all
3408   // supported Linux platforms). Note that LinuxThreads need to block
3409   // this signal for all threads to work properly. So we don't have
3410   // to use hard-coded signal number when setting up the mask.
3411   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3412 
3413   if (sigaction(SR_signum, &act, 0) == -1) {
3414     return -1;
3415   }
3416 
3417   // Save signal flag
3418   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3419   return 0;
3420 }
3421 
3422 static int SR_finalize() {
3423   return 0;
3424 }
3425 
3426 
3427 // returns true on success and false on error - really an error is fatal
3428 // but this seems the normal response to library errors
3429 static bool do_suspend(OSThread* osthread) {
3430   // mark as suspended and send signal
3431   osthread->sr.set_suspend_action(SR_SUSPEND);
3432   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3433   assert_status(status == 0, status, "pthread_kill");
3434 
3435   // check status and wait until notified of suspension
3436   if (status == 0) {
3437     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3438       os::yield_all(i);
3439     }
3440     osthread->sr.set_suspend_action(SR_NONE);
3441     return true;
3442   }
3443   else {
3444     osthread->sr.set_suspend_action(SR_NONE);
3445     return false;
3446   }
3447 }
3448 
3449 static void do_resume(OSThread* osthread) {
3450   assert(osthread->sr.is_suspended(), "thread should be suspended");
3451   osthread->sr.set_suspend_action(SR_CONTINUE);
3452 
3453   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3454   assert_status(status == 0, status, "pthread_kill");
3455   // check status and wait unit notified of resumption
3456   if (status == 0) {
3457     for (int i = 0; osthread->sr.is_suspended(); i++) {
3458       os::yield_all(i);
3459     }
3460   }
3461   osthread->sr.set_suspend_action(SR_NONE);
3462 }
3463 
3464 ////////////////////////////////////////////////////////////////////////////////
3465 // interrupt support
3466 
3467 void os::interrupt(Thread* thread) {
3468   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3469     "possibility of dangling Thread pointer");
3470 
3471   OSThread* osthread = thread->osthread();
3472 
3473   if (!osthread->interrupted()) {
3474     osthread->set_interrupted(true);
3475     // More than one thread can get here with the same value of osthread,
3476     // resulting in multiple notifications.  We do, however, want the store
3477     // to interrupted() to be visible to other threads before we execute unpark().
3478     OrderAccess::fence();
3479     ParkEvent * const slp = thread->_SleepEvent ;
3480     if (slp != NULL) slp->unpark() ;
3481   }
3482 
3483   // For JSR166. Unpark even if interrupt status already was set
3484   if (thread->is_Java_thread())
3485     ((JavaThread*)thread)->parker()->unpark();
3486 
3487   ParkEvent * ev = thread->_ParkEvent ;
3488   if (ev != NULL) ev->unpark() ;
3489 
3490 }
3491 
3492 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3493   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3494     "possibility of dangling Thread pointer");
3495 
3496   OSThread* osthread = thread->osthread();
3497 
3498   bool interrupted = osthread->interrupted();
3499 
3500   if (interrupted && clear_interrupted) {
3501     osthread->set_interrupted(false);
3502     // consider thread->_SleepEvent->reset() ... optional optimization
3503   }
3504 
3505   return interrupted;
3506 }
3507 
3508 ///////////////////////////////////////////////////////////////////////////////////
3509 // signal handling (except suspend/resume)
3510 
3511 // This routine may be used by user applications as a "hook" to catch signals.
3512 // The user-defined signal handler must pass unrecognized signals to this
3513 // routine, and if it returns true (non-zero), then the signal handler must
3514 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3515 // routine will never retun false (zero), but instead will execute a VM panic
3516 // routine kill the process.
3517 //
3518 // If this routine returns false, it is OK to call it again.  This allows
3519 // the user-defined signal handler to perform checks either before or after
3520 // the VM performs its own checks.  Naturally, the user code would be making
3521 // a serious error if it tried to handle an exception (such as a null check
3522 // or breakpoint) that the VM was generating for its own correct operation.
3523 //
3524 // This routine may recognize any of the following kinds of signals:
3525 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3526 // It should be consulted by handlers for any of those signals.
3527 //
3528 // The caller of this routine must pass in the three arguments supplied
3529 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3530 // field of the structure passed to sigaction().  This routine assumes that
3531 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3532 //
3533 // Note that the VM will print warnings if it detects conflicting signal
3534 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3535 //
3536 extern "C" JNIEXPORT int
3537 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3538                         void* ucontext, int abort_if_unrecognized);
3539 
3540 void signalHandler(int sig, siginfo_t* info, void* uc) {
3541   assert(info != NULL && uc != NULL, "it must be old kernel");
3542   JVM_handle_linux_signal(sig, info, uc, true);
3543 }
3544 
3545 
3546 // This boolean allows users to forward their own non-matching signals
3547 // to JVM_handle_linux_signal, harmlessly.
3548 bool os::Linux::signal_handlers_are_installed = false;
3549 
3550 // For signal-chaining
3551 struct sigaction os::Linux::sigact[MAXSIGNUM];
3552 unsigned int os::Linux::sigs = 0;
3553 bool os::Linux::libjsig_is_loaded = false;
3554 typedef struct sigaction *(*get_signal_t)(int);
3555 get_signal_t os::Linux::get_signal_action = NULL;
3556 
3557 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3558   struct sigaction *actp = NULL;
3559 
3560   if (libjsig_is_loaded) {
3561     // Retrieve the old signal handler from libjsig
3562     actp = (*get_signal_action)(sig);
3563   }
3564   if (actp == NULL) {
3565     // Retrieve the preinstalled signal handler from jvm
3566     actp = get_preinstalled_handler(sig);
3567   }
3568 
3569   return actp;
3570 }
3571 
3572 static bool call_chained_handler(struct sigaction *actp, int sig,
3573                                  siginfo_t *siginfo, void *context) {
3574   // Call the old signal handler
3575   if (actp->sa_handler == SIG_DFL) {
3576     // It's more reasonable to let jvm treat it as an unexpected exception
3577     // instead of taking the default action.
3578     return false;
3579   } else if (actp->sa_handler != SIG_IGN) {
3580     if ((actp->sa_flags & SA_NODEFER) == 0) {
3581       // automaticlly block the signal
3582       sigaddset(&(actp->sa_mask), sig);
3583     }
3584 
3585     sa_handler_t hand;
3586     sa_sigaction_t sa;
3587     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3588     // retrieve the chained handler
3589     if (siginfo_flag_set) {
3590       sa = actp->sa_sigaction;
3591     } else {
3592       hand = actp->sa_handler;
3593     }
3594 
3595     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3596       actp->sa_handler = SIG_DFL;
3597     }
3598 
3599     // try to honor the signal mask
3600     sigset_t oset;
3601     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3602 
3603     // call into the chained handler
3604     if (siginfo_flag_set) {
3605       (*sa)(sig, siginfo, context);
3606     } else {
3607       (*hand)(sig);
3608     }
3609 
3610     // restore the signal mask
3611     pthread_sigmask(SIG_SETMASK, &oset, 0);
3612   }
3613   // Tell jvm's signal handler the signal is taken care of.
3614   return true;
3615 }
3616 
3617 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3618   bool chained = false;
3619   // signal-chaining
3620   if (UseSignalChaining) {
3621     struct sigaction *actp = get_chained_signal_action(sig);
3622     if (actp != NULL) {
3623       chained = call_chained_handler(actp, sig, siginfo, context);
3624     }
3625   }
3626   return chained;
3627 }
3628 
3629 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3630   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3631     return &sigact[sig];
3632   }
3633   return NULL;
3634 }
3635 
3636 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3637   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3638   sigact[sig] = oldAct;
3639   sigs |= (unsigned int)1 << sig;
3640 }
3641 
3642 // for diagnostic
3643 int os::Linux::sigflags[MAXSIGNUM];
3644 
3645 int os::Linux::get_our_sigflags(int sig) {
3646   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3647   return sigflags[sig];
3648 }
3649 
3650 void os::Linux::set_our_sigflags(int sig, int flags) {
3651   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3652   sigflags[sig] = flags;
3653 }
3654 
3655 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3656   // Check for overwrite.
3657   struct sigaction oldAct;
3658   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3659 
3660   void* oldhand = oldAct.sa_sigaction
3661                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3662                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3663   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3664       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3665       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3666     if (AllowUserSignalHandlers || !set_installed) {
3667       // Do not overwrite; user takes responsibility to forward to us.
3668       return;
3669     } else if (UseSignalChaining) {
3670       // save the old handler in jvm
3671       save_preinstalled_handler(sig, oldAct);
3672       // libjsig also interposes the sigaction() call below and saves the
3673       // old sigaction on it own.
3674     } else {
3675       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3676                     "%#lx for signal %d.", (long)oldhand, sig));
3677     }
3678   }
3679 
3680   struct sigaction sigAct;
3681   sigfillset(&(sigAct.sa_mask));
3682   sigAct.sa_handler = SIG_DFL;
3683   if (!set_installed) {
3684     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3685   } else {
3686     sigAct.sa_sigaction = signalHandler;
3687     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3688   }
3689   // Save flags, which are set by ours
3690   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3691   sigflags[sig] = sigAct.sa_flags;
3692 
3693   int ret = sigaction(sig, &sigAct, &oldAct);
3694   assert(ret == 0, "check");
3695 
3696   void* oldhand2  = oldAct.sa_sigaction
3697                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3698                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3699   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3700 }
3701 
3702 // install signal handlers for signals that HotSpot needs to
3703 // handle in order to support Java-level exception handling.
3704 
3705 void os::Linux::install_signal_handlers() {
3706   if (!signal_handlers_are_installed) {
3707     signal_handlers_are_installed = true;
3708 
3709     // signal-chaining
3710     typedef void (*signal_setting_t)();
3711     signal_setting_t begin_signal_setting = NULL;
3712     signal_setting_t end_signal_setting = NULL;
3713     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3714                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3715     if (begin_signal_setting != NULL) {
3716       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3717                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3718       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3719                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3720       libjsig_is_loaded = true;
3721       assert(UseSignalChaining, "should enable signal-chaining");
3722     }
3723     if (libjsig_is_loaded) {
3724       // Tell libjsig jvm is setting signal handlers
3725       (*begin_signal_setting)();
3726     }
3727 
3728     set_signal_handler(SIGSEGV, true);
3729     set_signal_handler(SIGPIPE, true);
3730     set_signal_handler(SIGBUS, true);
3731     set_signal_handler(SIGILL, true);
3732     set_signal_handler(SIGFPE, true);
3733     set_signal_handler(SIGXFSZ, true);
3734 
3735     if (libjsig_is_loaded) {
3736       // Tell libjsig jvm finishes setting signal handlers
3737       (*end_signal_setting)();
3738     }
3739 
3740     // We don't activate signal checker if libjsig is in place, we trust ourselves
3741     // and if UserSignalHandler is installed all bets are off
3742     if (CheckJNICalls) {
3743       if (libjsig_is_loaded) {
3744         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3745         check_signals = false;
3746       }
3747       if (AllowUserSignalHandlers) {
3748         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3749         check_signals = false;
3750       }
3751     }
3752   }
3753 }
3754 
3755 // This is the fastest way to get thread cpu time on Linux.
3756 // Returns cpu time (user+sys) for any thread, not only for current.
3757 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3758 // It might work on 2.6.10+ with a special kernel/glibc patch.
3759 // For reference, please, see IEEE Std 1003.1-2004:
3760 //   http://www.unix.org/single_unix_specification
3761 
3762 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3763   struct timespec tp;
3764   int rc = os::Linux::clock_gettime(clockid, &tp);
3765   assert(rc == 0, "clock_gettime is expected to return 0 code");
3766 
3767   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3768 }
3769 
3770 /////
3771 // glibc on Linux platform uses non-documented flag
3772 // to indicate, that some special sort of signal
3773 // trampoline is used.
3774 // We will never set this flag, and we should
3775 // ignore this flag in our diagnostic
3776 #ifdef SIGNIFICANT_SIGNAL_MASK
3777 #undef SIGNIFICANT_SIGNAL_MASK
3778 #endif
3779 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3780 
3781 static const char* get_signal_handler_name(address handler,
3782                                            char* buf, int buflen) {
3783   int offset;
3784   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3785   if (found) {
3786     // skip directory names
3787     const char *p1, *p2;
3788     p1 = buf;
3789     size_t len = strlen(os::file_separator());
3790     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3791     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3792   } else {
3793     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3794   }
3795   return buf;
3796 }
3797 
3798 static void print_signal_handler(outputStream* st, int sig,
3799                                  char* buf, size_t buflen) {
3800   struct sigaction sa;
3801 
3802   sigaction(sig, NULL, &sa);
3803 
3804   // See comment for SIGNIFICANT_SIGNAL_MASK define
3805   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3806 
3807   st->print("%s: ", os::exception_name(sig, buf, buflen));
3808 
3809   address handler = (sa.sa_flags & SA_SIGINFO)
3810     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3811     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3812 
3813   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3814     st->print("SIG_DFL");
3815   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3816     st->print("SIG_IGN");
3817   } else {
3818     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3819   }
3820 
3821   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3822 
3823   address rh = VMError::get_resetted_sighandler(sig);
3824   // May be, handler was resetted by VMError?
3825   if(rh != NULL) {
3826     handler = rh;
3827     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3828   }
3829 
3830   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3831 
3832   // Check: is it our handler?
3833   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3834      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3835     // It is our signal handler
3836     // check for flags, reset system-used one!
3837     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3838       st->print(
3839                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3840                 os::Linux::get_our_sigflags(sig));
3841     }
3842   }
3843   st->cr();
3844 }
3845 
3846 
3847 #define DO_SIGNAL_CHECK(sig) \
3848   if (!sigismember(&check_signal_done, sig)) \
3849     os::Linux::check_signal_handler(sig)
3850 
3851 // This method is a periodic task to check for misbehaving JNI applications
3852 // under CheckJNI, we can add any periodic checks here
3853 
3854 void os::run_periodic_checks() {
3855 
3856   if (check_signals == false) return;
3857 
3858   // SEGV and BUS if overridden could potentially prevent
3859   // generation of hs*.log in the event of a crash, debugging
3860   // such a case can be very challenging, so we absolutely
3861   // check the following for a good measure:
3862   DO_SIGNAL_CHECK(SIGSEGV);
3863   DO_SIGNAL_CHECK(SIGILL);
3864   DO_SIGNAL_CHECK(SIGFPE);
3865   DO_SIGNAL_CHECK(SIGBUS);
3866   DO_SIGNAL_CHECK(SIGPIPE);
3867   DO_SIGNAL_CHECK(SIGXFSZ);
3868 
3869 
3870   // ReduceSignalUsage allows the user to override these handlers
3871   // see comments at the very top and jvm_solaris.h
3872   if (!ReduceSignalUsage) {
3873     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3874     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3875     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3876     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3877   }
3878 
3879   DO_SIGNAL_CHECK(SR_signum);
3880   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3881 }
3882 
3883 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3884 
3885 static os_sigaction_t os_sigaction = NULL;
3886 
3887 void os::Linux::check_signal_handler(int sig) {
3888   char buf[O_BUFLEN];
3889   address jvmHandler = NULL;
3890 
3891 
3892   struct sigaction act;
3893   if (os_sigaction == NULL) {
3894     // only trust the default sigaction, in case it has been interposed
3895     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3896     if (os_sigaction == NULL) return;
3897   }
3898 
3899   os_sigaction(sig, (struct sigaction*)NULL, &act);
3900 
3901 
3902   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3903 
3904   address thisHandler = (act.sa_flags & SA_SIGINFO)
3905     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3906     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3907 
3908 
3909   switch(sig) {
3910   case SIGSEGV:
3911   case SIGBUS:
3912   case SIGFPE:
3913   case SIGPIPE:
3914   case SIGILL:
3915   case SIGXFSZ:
3916     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3917     break;
3918 
3919   case SHUTDOWN1_SIGNAL:
3920   case SHUTDOWN2_SIGNAL:
3921   case SHUTDOWN3_SIGNAL:
3922   case BREAK_SIGNAL:
3923     jvmHandler = (address)user_handler();
3924     break;
3925 
3926   case INTERRUPT_SIGNAL:
3927     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3928     break;
3929 
3930   default:
3931     if (sig == SR_signum) {
3932       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3933     } else {
3934       return;
3935     }
3936     break;
3937   }
3938 
3939   if (thisHandler != jvmHandler) {
3940     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3941     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3942     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3943     // No need to check this sig any longer
3944     sigaddset(&check_signal_done, sig);
3945   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3946     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3947     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3948     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3949     // No need to check this sig any longer
3950     sigaddset(&check_signal_done, sig);
3951   }
3952 
3953   // Dump all the signal
3954   if (sigismember(&check_signal_done, sig)) {
3955     print_signal_handlers(tty, buf, O_BUFLEN);
3956   }
3957 }
3958 
3959 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3960 
3961 extern bool signal_name(int signo, char* buf, size_t len);
3962 
3963 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3964   if (0 < exception_code && exception_code <= SIGRTMAX) {
3965     // signal
3966     if (!signal_name(exception_code, buf, size)) {
3967       jio_snprintf(buf, size, "SIG%d", exception_code);
3968     }
3969     return buf;
3970   } else {
3971     return NULL;
3972   }
3973 }
3974 
3975 // this is called _before_ the most of global arguments have been parsed
3976 void os::init(void) {
3977   char dummy;   /* used to get a guess on initial stack address */
3978 //  first_hrtime = gethrtime();
3979 
3980   // With LinuxThreads the JavaMain thread pid (primordial thread)
3981   // is different than the pid of the java launcher thread.
3982   // So, on Linux, the launcher thread pid is passed to the VM
3983   // via the sun.java.launcher.pid property.
3984   // Use this property instead of getpid() if it was correctly passed.
3985   // See bug 6351349.
3986   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3987 
3988   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3989 
3990   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3991 
3992   init_random(1234567);
3993 
3994   ThreadCritical::initialize();
3995 
3996   Linux::set_page_size(sysconf(_SC_PAGESIZE));
3997   if (Linux::page_size() == -1) {
3998     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
3999                   strerror(errno)));
4000   }
4001   init_page_sizes((size_t) Linux::page_size());
4002 
4003   Linux::initialize_system_info();
4004 
4005   // main_thread points to the aboriginal thread
4006   Linux::_main_thread = pthread_self();
4007 
4008   Linux::clock_init();
4009   initial_time_count = os::elapsed_counter();
4010   pthread_mutex_init(&dl_mutex, NULL);
4011 }
4012 
4013 // To install functions for atexit system call
4014 extern "C" {
4015   static void perfMemory_exit_helper() {
4016     perfMemory_exit();
4017   }
4018 }
4019 
4020 // this is called _after_ the global arguments have been parsed
4021 jint os::init_2(void)
4022 {
4023   Linux::fast_thread_clock_init();
4024 
4025   // Allocate a single page and mark it as readable for safepoint polling
4026   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4027   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4028 
4029   os::set_polling_page( polling_page );
4030 
4031 #ifndef PRODUCT
4032   if(Verbose && PrintMiscellaneous)
4033     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4034 #endif
4035 
4036   if (!UseMembar) {
4037     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4038     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4039     os::set_memory_serialize_page( mem_serialize_page );
4040 
4041 #ifndef PRODUCT
4042     if(Verbose && PrintMiscellaneous)
4043       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4044 #endif
4045   }
4046 
4047   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
4048 
4049   // initialize suspend/resume support - must do this before signal_sets_init()
4050   if (SR_initialize() != 0) {
4051     perror("SR_initialize failed");
4052     return JNI_ERR;
4053   }
4054 
4055   Linux::signal_sets_init();
4056   Linux::install_signal_handlers();
4057 
4058   // Check minimum allowable stack size for thread creation and to initialize
4059   // the java system classes, including StackOverflowError - depends on page
4060   // size.  Add a page for compiler2 recursion in main thread.
4061   // Add in 2*BytesPerWord times page size to account for VM stack during
4062   // class initialization depending on 32 or 64 bit VM.
4063   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4064             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4065                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4066 
4067   size_t threadStackSizeInBytes = ThreadStackSize * K;
4068   if (threadStackSizeInBytes != 0 &&
4069       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4070         tty->print_cr("\nThe stack size specified is too small, "
4071                       "Specify at least %dk",
4072                       os::Linux::min_stack_allowed/ K);
4073         return JNI_ERR;
4074   }
4075 
4076   // Make the stack size a multiple of the page size so that
4077   // the yellow/red zones can be guarded.
4078   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4079         vm_page_size()));
4080 
4081   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4082 
4083   Linux::libpthread_init();
4084   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4085      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4086           Linux::glibc_version(), Linux::libpthread_version(),
4087           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4088   }
4089 
4090   if (UseNUMA) {
4091     if (!Linux::libnuma_init()) {
4092       UseNUMA = false;
4093     } else {
4094       if ((Linux::numa_max_node() < 1)) {
4095         // There's only one node(they start from 0), disable NUMA.
4096         UseNUMA = false;
4097       }
4098     }
4099     if (!UseNUMA && ForceNUMA) {
4100       UseNUMA = true;
4101     }
4102   }
4103 
4104   if (MaxFDLimit) {
4105     // set the number of file descriptors to max. print out error
4106     // if getrlimit/setrlimit fails but continue regardless.
4107     struct rlimit nbr_files;
4108     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4109     if (status != 0) {
4110       if (PrintMiscellaneous && (Verbose || WizardMode))
4111         perror("os::init_2 getrlimit failed");
4112     } else {
4113       nbr_files.rlim_cur = nbr_files.rlim_max;
4114       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4115       if (status != 0) {
4116         if (PrintMiscellaneous && (Verbose || WizardMode))
4117           perror("os::init_2 setrlimit failed");
4118       }
4119     }
4120   }
4121 
4122   // Initialize lock used to serialize thread creation (see os::create_thread)
4123   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4124 
4125   // at-exit methods are called in the reverse order of their registration.
4126   // atexit functions are called on return from main or as a result of a
4127   // call to exit(3C). There can be only 32 of these functions registered
4128   // and atexit() does not set errno.
4129 
4130   if (PerfAllowAtExitRegistration) {
4131     // only register atexit functions if PerfAllowAtExitRegistration is set.
4132     // atexit functions can be delayed until process exit time, which
4133     // can be problematic for embedded VM situations. Embedded VMs should
4134     // call DestroyJavaVM() to assure that VM resources are released.
4135 
4136     // note: perfMemory_exit_helper atexit function may be removed in
4137     // the future if the appropriate cleanup code can be added to the
4138     // VM_Exit VMOperation's doit method.
4139     if (atexit(perfMemory_exit_helper) != 0) {
4140       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4141     }
4142   }
4143 
4144   // initialize thread priority policy
4145   prio_init();
4146 
4147   return JNI_OK;
4148 }
4149 
4150 // this is called at the end of vm_initialization
4151 void os::init_3(void) { }
4152 
4153 // Mark the polling page as unreadable
4154 void os::make_polling_page_unreadable(void) {
4155   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4156     fatal("Could not disable polling page");
4157 };
4158 
4159 // Mark the polling page as readable
4160 void os::make_polling_page_readable(void) {
4161   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4162     fatal("Could not enable polling page");
4163   }
4164 };
4165 
4166 int os::active_processor_count() {
4167   // Linux doesn't yet have a (official) notion of processor sets,
4168   // so just return the number of online processors.
4169   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4170   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4171   return online_cpus;
4172 }
4173 
4174 bool os::distribute_processes(uint length, uint* distribution) {
4175   // Not yet implemented.
4176   return false;
4177 }
4178 
4179 bool os::bind_to_processor(uint processor_id) {
4180   // Not yet implemented.
4181   return false;
4182 }
4183 
4184 ///
4185 
4186 // Suspends the target using the signal mechanism and then grabs the PC before
4187 // resuming the target. Used by the flat-profiler only
4188 ExtendedPC os::get_thread_pc(Thread* thread) {
4189   // Make sure that it is called by the watcher for the VMThread
4190   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4191   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4192 
4193   ExtendedPC epc;
4194 
4195   OSThread* osthread = thread->osthread();
4196   if (do_suspend(osthread)) {
4197     if (osthread->ucontext() != NULL) {
4198       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4199     } else {
4200       // NULL context is unexpected, double-check this is the VMThread
4201       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4202     }
4203     do_resume(osthread);
4204   }
4205   // failure means pthread_kill failed for some reason - arguably this is
4206   // a fatal problem, but such problems are ignored elsewhere
4207 
4208   return epc;
4209 }
4210 
4211 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4212 {
4213    if (is_NPTL()) {
4214       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4215    } else {
4216 #ifndef IA64
4217       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4218       // word back to default 64bit precision if condvar is signaled. Java
4219       // wants 53bit precision.  Save and restore current value.
4220       int fpu = get_fpu_control_word();
4221 #endif // IA64
4222       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4223 #ifndef IA64
4224       set_fpu_control_word(fpu);
4225 #endif // IA64
4226       return status;
4227    }
4228 }
4229 
4230 ////////////////////////////////////////////////////////////////////////////////
4231 // debug support
4232 
4233 static address same_page(address x, address y) {
4234   int page_bits = -os::vm_page_size();
4235   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4236     return x;
4237   else if (x > y)
4238     return (address)(intptr_t(y) | ~page_bits) + 1;
4239   else
4240     return (address)(intptr_t(y) & page_bits);
4241 }
4242 
4243 bool os::find(address addr, outputStream* st) {
4244   Dl_info dlinfo;
4245   memset(&dlinfo, 0, sizeof(dlinfo));
4246   if (dladdr(addr, &dlinfo)) {
4247     st->print(PTR_FORMAT ": ", addr);
4248     if (dlinfo.dli_sname != NULL) {
4249       st->print("%s+%#x", dlinfo.dli_sname,
4250                  addr - (intptr_t)dlinfo.dli_saddr);
4251     } else if (dlinfo.dli_fname) {
4252       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4253     } else {
4254       st->print("<absolute address>");
4255     }
4256     if (dlinfo.dli_fname) {
4257       st->print(" in %s", dlinfo.dli_fname);
4258     }
4259     if (dlinfo.dli_fbase) {
4260       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4261     }
4262     st->cr();
4263 
4264     if (Verbose) {
4265       // decode some bytes around the PC
4266       address begin = same_page(addr-40, addr);
4267       address end   = same_page(addr+40, addr);
4268       address       lowest = (address) dlinfo.dli_sname;
4269       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4270       if (begin < lowest)  begin = lowest;
4271       Dl_info dlinfo2;
4272       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4273           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4274         end = (address) dlinfo2.dli_saddr;
4275       Disassembler::decode(begin, end, st);
4276     }
4277     return true;
4278   }
4279   return false;
4280 }
4281 
4282 ////////////////////////////////////////////////////////////////////////////////
4283 // misc
4284 
4285 // This does not do anything on Linux. This is basically a hook for being
4286 // able to use structured exception handling (thread-local exception filters)
4287 // on, e.g., Win32.
4288 void
4289 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4290                          JavaCallArguments* args, Thread* thread) {
4291   f(value, method, args, thread);
4292 }
4293 
4294 void os::print_statistics() {
4295 }
4296 
4297 int os::message_box(const char* title, const char* message) {
4298   int i;
4299   fdStream err(defaultStream::error_fd());
4300   for (i = 0; i < 78; i++) err.print_raw("=");
4301   err.cr();
4302   err.print_raw_cr(title);
4303   for (i = 0; i < 78; i++) err.print_raw("-");
4304   err.cr();
4305   err.print_raw_cr(message);
4306   for (i = 0; i < 78; i++) err.print_raw("=");
4307   err.cr();
4308 
4309   char buf[16];
4310   // Prevent process from exiting upon "read error" without consuming all CPU
4311   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4312 
4313   return buf[0] == 'y' || buf[0] == 'Y';
4314 }
4315 
4316 int os::stat(const char *path, struct stat *sbuf) {
4317   char pathbuf[MAX_PATH];
4318   if (strlen(path) > MAX_PATH - 1) {
4319     errno = ENAMETOOLONG;
4320     return -1;
4321   }
4322   os::native_path(strcpy(pathbuf, path));
4323   return ::stat(pathbuf, sbuf);
4324 }
4325 
4326 bool os::check_heap(bool force) {
4327   return true;
4328 }
4329 
4330 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4331   return ::vsnprintf(buf, count, format, args);
4332 }
4333 
4334 // Is a (classpath) directory empty?
4335 bool os::dir_is_empty(const char* path) {
4336   DIR *dir = NULL;
4337   struct dirent *ptr;
4338 
4339   dir = opendir(path);
4340   if (dir == NULL) return true;
4341 
4342   /* Scan the directory */
4343   bool result = true;
4344   char buf[sizeof(struct dirent) + MAX_PATH];
4345   while (result && (ptr = ::readdir(dir)) != NULL) {
4346     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4347       result = false;
4348     }
4349   }
4350   closedir(dir);
4351   return result;
4352 }
4353 
4354 // This code originates from JDK's sysOpen and open64_w
4355 // from src/solaris/hpi/src/system_md.c
4356 
4357 #ifndef O_DELETE
4358 #define O_DELETE 0x10000
4359 #endif
4360 
4361 // Open a file. Unlink the file immediately after open returns
4362 // if the specified oflag has the O_DELETE flag set.
4363 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4364 
4365 int os::open(const char *path, int oflag, int mode) {
4366 
4367   if (strlen(path) > MAX_PATH - 1) {
4368     errno = ENAMETOOLONG;
4369     return -1;
4370   }
4371   int fd;
4372   int o_delete = (oflag & O_DELETE);
4373   oflag = oflag & ~O_DELETE;
4374 
4375   fd = ::open64(path, oflag, mode);
4376   if (fd == -1) return -1;
4377 
4378   //If the open succeeded, the file might still be a directory
4379   {
4380     struct stat64 buf64;
4381     int ret = ::fstat64(fd, &buf64);
4382     int st_mode = buf64.st_mode;
4383 
4384     if (ret != -1) {
4385       if ((st_mode & S_IFMT) == S_IFDIR) {
4386         errno = EISDIR;
4387         ::close(fd);
4388         return -1;
4389       }
4390     } else {
4391       ::close(fd);
4392       return -1;
4393     }
4394   }
4395 
4396     /*
4397      * All file descriptors that are opened in the JVM and not
4398      * specifically destined for a subprocess should have the
4399      * close-on-exec flag set.  If we don't set it, then careless 3rd
4400      * party native code might fork and exec without closing all
4401      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4402      * UNIXProcess.c), and this in turn might:
4403      *
4404      * - cause end-of-file to fail to be detected on some file
4405      *   descriptors, resulting in mysterious hangs, or
4406      *
4407      * - might cause an fopen in the subprocess to fail on a system
4408      *   suffering from bug 1085341.
4409      *
4410      * (Yes, the default setting of the close-on-exec flag is a Unix
4411      * design flaw)
4412      *
4413      * See:
4414      * 1085341: 32-bit stdio routines should support file descriptors >255
4415      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4416      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4417      */
4418 #ifdef FD_CLOEXEC
4419     {
4420         int flags = ::fcntl(fd, F_GETFD);
4421         if (flags != -1)
4422             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4423     }
4424 #endif
4425 
4426   if (o_delete != 0) {
4427     ::unlink(path);
4428   }
4429   return fd;
4430 }
4431 
4432 
4433 // create binary file, rewriting existing file if required
4434 int os::create_binary_file(const char* path, bool rewrite_existing) {
4435   int oflags = O_WRONLY | O_CREAT;
4436   if (!rewrite_existing) {
4437     oflags |= O_EXCL;
4438   }
4439   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4440 }
4441 
4442 // return current position of file pointer
4443 jlong os::current_file_offset(int fd) {
4444   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4445 }
4446 
4447 // move file pointer to the specified offset
4448 jlong os::seek_to_file_offset(int fd, jlong offset) {
4449   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4450 }
4451 
4452 // This code originates from JDK's sysAvailable
4453 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4454 
4455 int os::available(int fd, jlong *bytes) {
4456   jlong cur, end;
4457   int mode;
4458   struct stat64 buf64;
4459 
4460   if (::fstat64(fd, &buf64) >= 0) {
4461     mode = buf64.st_mode;
4462     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4463       /*
4464       * XXX: is the following call interruptible? If so, this might
4465       * need to go through the INTERRUPT_IO() wrapper as for other
4466       * blocking, interruptible calls in this file.
4467       */
4468       int n;
4469       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4470         *bytes = n;
4471         return 1;
4472       }
4473     }
4474   }
4475   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4476     return 0;
4477   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4478     return 0;
4479   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4480     return 0;
4481   }
4482   *bytes = end - cur;
4483   return 1;
4484 }
4485 
4486 int os::socket_available(int fd, jint *pbytes) {
4487   // Linux doc says EINTR not returned, unlike Solaris
4488   int ret = ::ioctl(fd, FIONREAD, pbytes);
4489 
4490   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4491   // is expected to return 0 on failure and 1 on success to the jdk.
4492   return (ret < 0) ? 0 : 1;
4493 }
4494 
4495 // Map a block of memory.
4496 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4497                      char *addr, size_t bytes, bool read_only,
4498                      bool allow_exec) {
4499   int prot;
4500   int flags;
4501 
4502   if (read_only) {
4503     prot = PROT_READ;
4504     flags = MAP_SHARED;
4505   } else {
4506     prot = PROT_READ | PROT_WRITE;
4507     flags = MAP_PRIVATE;
4508   }
4509 
4510   if (allow_exec) {
4511     prot |= PROT_EXEC;
4512   }
4513 
4514   if (addr != NULL) {
4515     flags |= MAP_FIXED;
4516   }
4517 
4518   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4519                                      fd, file_offset);
4520   if (mapped_address == MAP_FAILED) {
4521     return NULL;
4522   }
4523   return mapped_address;
4524 }
4525 
4526 
4527 // Remap a block of memory.
4528 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4529                        char *addr, size_t bytes, bool read_only,
4530                        bool allow_exec) {
4531   // same as map_memory() on this OS
4532   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4533                         allow_exec);
4534 }
4535 
4536 
4537 // Unmap a block of memory.
4538 bool os::unmap_memory(char* addr, size_t bytes) {
4539   return munmap(addr, bytes) == 0;
4540 }
4541 
4542 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4543 
4544 static clockid_t thread_cpu_clockid(Thread* thread) {
4545   pthread_t tid = thread->osthread()->pthread_id();
4546   clockid_t clockid;
4547 
4548   // Get thread clockid
4549   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4550   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4551   return clockid;
4552 }
4553 
4554 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4555 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4556 // of a thread.
4557 //
4558 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4559 // the fast estimate available on the platform.
4560 
4561 jlong os::current_thread_cpu_time() {
4562   if (os::Linux::supports_fast_thread_cpu_time()) {
4563     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4564   } else {
4565     // return user + sys since the cost is the same
4566     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4567   }
4568 }
4569 
4570 jlong os::thread_cpu_time(Thread* thread) {
4571   // consistent with what current_thread_cpu_time() returns
4572   if (os::Linux::supports_fast_thread_cpu_time()) {
4573     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4574   } else {
4575     return slow_thread_cpu_time(thread, true /* user + sys */);
4576   }
4577 }
4578 
4579 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4580   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4581     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4582   } else {
4583     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4584   }
4585 }
4586 
4587 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4588   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4589     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4590   } else {
4591     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4592   }
4593 }
4594 
4595 //
4596 //  -1 on error.
4597 //
4598 
4599 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4600   static bool proc_pid_cpu_avail = true;
4601   static bool proc_task_unchecked = true;
4602   static const char *proc_stat_path = "/proc/%d/stat";
4603   pid_t  tid = thread->osthread()->thread_id();
4604   int i;
4605   char *s;
4606   char stat[2048];
4607   int statlen;
4608   char proc_name[64];
4609   int count;
4610   long sys_time, user_time;
4611   char string[64];
4612   char cdummy;
4613   int idummy;
4614   long ldummy;
4615   FILE *fp;
4616 
4617   // We first try accessing /proc/<pid>/cpu since this is faster to
4618   // process.  If this file is not present (linux kernels 2.5 and above)
4619   // then we open /proc/<pid>/stat.
4620   if ( proc_pid_cpu_avail ) {
4621     sprintf(proc_name, "/proc/%d/cpu", tid);
4622     fp =  fopen(proc_name, "r");
4623     if ( fp != NULL ) {
4624       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4625       fclose(fp);
4626       if ( count != 3 ) return -1;
4627 
4628       if (user_sys_cpu_time) {
4629         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4630       } else {
4631         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4632       }
4633     }
4634     else proc_pid_cpu_avail = false;
4635   }
4636 
4637   // The /proc/<tid>/stat aggregates per-process usage on
4638   // new Linux kernels 2.6+ where NPTL is supported.
4639   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4640   // See bug 6328462.
4641   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4642   // and possibly in some other cases, so we check its availability.
4643   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4644     // This is executed only once
4645     proc_task_unchecked = false;
4646     fp = fopen("/proc/self/task", "r");
4647     if (fp != NULL) {
4648       proc_stat_path = "/proc/self/task/%d/stat";
4649       fclose(fp);
4650     }
4651   }
4652 
4653   sprintf(proc_name, proc_stat_path, tid);
4654   fp = fopen(proc_name, "r");
4655   if ( fp == NULL ) return -1;
4656   statlen = fread(stat, 1, 2047, fp);
4657   stat[statlen] = '\0';
4658   fclose(fp);
4659 
4660   // Skip pid and the command string. Note that we could be dealing with
4661   // weird command names, e.g. user could decide to rename java launcher
4662   // to "java 1.4.2 :)", then the stat file would look like
4663   //                1234 (java 1.4.2 :)) R ... ...
4664   // We don't really need to know the command string, just find the last
4665   // occurrence of ")" and then start parsing from there. See bug 4726580.
4666   s = strrchr(stat, ')');
4667   i = 0;
4668   if (s == NULL ) return -1;
4669 
4670   // Skip blank chars
4671   do s++; while (isspace(*s));
4672 
4673   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4674                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4675                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4676                  &user_time, &sys_time);
4677   if ( count != 13 ) return -1;
4678   if (user_sys_cpu_time) {
4679     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4680   } else {
4681     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4682   }
4683 }
4684 
4685 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4686   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4687   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4688   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4689   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4690 }
4691 
4692 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4693   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4694   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4695   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4696   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4697 }
4698 
4699 bool os::is_thread_cpu_time_supported() {
4700   return true;
4701 }
4702 
4703 // System loadavg support.  Returns -1 if load average cannot be obtained.
4704 // Linux doesn't yet have a (official) notion of processor sets,
4705 // so just return the system wide load average.
4706 int os::loadavg(double loadavg[], int nelem) {
4707   return ::getloadavg(loadavg, nelem);
4708 }
4709 
4710 void os::pause() {
4711   char filename[MAX_PATH];
4712   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4713     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4714   } else {
4715     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4716   }
4717 
4718   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4719   if (fd != -1) {
4720     struct stat buf;
4721     ::close(fd);
4722     while (::stat(filename, &buf) == 0) {
4723       (void)::poll(NULL, 0, 100);
4724     }
4725   } else {
4726     jio_fprintf(stderr,
4727       "Could not open pause file '%s', continuing immediately.\n", filename);
4728   }
4729 }
4730 
4731 
4732 // Refer to the comments in os_solaris.cpp park-unpark.
4733 //
4734 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4735 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4736 // For specifics regarding the bug see GLIBC BUGID 261237 :
4737 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4738 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4739 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4740 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4741 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4742 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4743 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4744 // of libpthread avoids the problem, but isn't practical.
4745 //
4746 // Possible remedies:
4747 //
4748 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4749 //      This is palliative and probabilistic, however.  If the thread is preempted
4750 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4751 //      than the minimum period may have passed, and the abstime may be stale (in the
4752 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4753 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4754 //
4755 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4756 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4757 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4758 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4759 //      thread.
4760 //
4761 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4762 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4763 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4764 //      This also works well.  In fact it avoids kernel-level scalability impediments
4765 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4766 //      timers in a graceful fashion.
4767 //
4768 // 4.   When the abstime value is in the past it appears that control returns
4769 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4770 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4771 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4772 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4773 //      It may be possible to avoid reinitialization by checking the return
4774 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4775 //      condvar we must establish the invariant that cond_signal() is only called
4776 //      within critical sections protected by the adjunct mutex.  This prevents
4777 //      cond_signal() from "seeing" a condvar that's in the midst of being
4778 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4779 //      desirable signal-after-unlock optimization that avoids futile context switching.
4780 //
4781 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4782 //      structure when a condvar is used or initialized.  cond_destroy()  would
4783 //      release the helper structure.  Our reinitialize-after-timedwait fix
4784 //      put excessive stress on malloc/free and locks protecting the c-heap.
4785 //
4786 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4787 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4788 // and only enabling the work-around for vulnerable environments.
4789 
4790 // utility to compute the abstime argument to timedwait:
4791 // millis is the relative timeout time
4792 // abstime will be the absolute timeout time
4793 // TODO: replace compute_abstime() with unpackTime()
4794 
4795 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4796   if (millis < 0)  millis = 0;
4797   struct timeval now;
4798   int status = gettimeofday(&now, NULL);
4799   assert(status == 0, "gettimeofday");
4800   jlong seconds = millis / 1000;
4801   millis %= 1000;
4802   if (seconds > 50000000) { // see man cond_timedwait(3T)
4803     seconds = 50000000;
4804   }
4805   abstime->tv_sec = now.tv_sec  + seconds;
4806   long       usec = now.tv_usec + millis * 1000;
4807   if (usec >= 1000000) {
4808     abstime->tv_sec += 1;
4809     usec -= 1000000;
4810   }
4811   abstime->tv_nsec = usec * 1000;
4812   return abstime;
4813 }
4814 
4815 
4816 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4817 // Conceptually TryPark() should be equivalent to park(0).
4818 
4819 int os::PlatformEvent::TryPark() {
4820   for (;;) {
4821     const int v = _Event ;
4822     guarantee ((v == 0) || (v == 1), "invariant") ;
4823     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4824   }
4825 }
4826 
4827 void os::PlatformEvent::park() {       // AKA "down()"
4828   // Invariant: Only the thread associated with the Event/PlatformEvent
4829   // may call park().
4830   // TODO: assert that _Assoc != NULL or _Assoc == Self
4831   int v ;
4832   for (;;) {
4833       v = _Event ;
4834       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4835   }
4836   guarantee (v >= 0, "invariant") ;
4837   if (v == 0) {
4838      // Do this the hard way by blocking ...
4839      int status = pthread_mutex_lock(_mutex);
4840      assert_status(status == 0, status, "mutex_lock");
4841      guarantee (_nParked == 0, "invariant") ;
4842      ++ _nParked ;
4843      while (_Event < 0) {
4844         status = pthread_cond_wait(_cond, _mutex);
4845         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4846         // Treat this the same as if the wait was interrupted
4847         if (status == ETIME) { status = EINTR; }
4848         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4849      }
4850      -- _nParked ;
4851 
4852     // In theory we could move the ST of 0 into _Event past the unlock(),
4853     // but then we'd need a MEMBAR after the ST.
4854     _Event = 0 ;
4855      status = pthread_mutex_unlock(_mutex);
4856      assert_status(status == 0, status, "mutex_unlock");
4857   }
4858   guarantee (_Event >= 0, "invariant") ;
4859 }
4860 
4861 int os::PlatformEvent::park(jlong millis) {
4862   guarantee (_nParked == 0, "invariant") ;
4863 
4864   int v ;
4865   for (;;) {
4866       v = _Event ;
4867       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4868   }
4869   guarantee (v >= 0, "invariant") ;
4870   if (v != 0) return OS_OK ;
4871 
4872   // We do this the hard way, by blocking the thread.
4873   // Consider enforcing a minimum timeout value.
4874   struct timespec abst;
4875   compute_abstime(&abst, millis);
4876 
4877   int ret = OS_TIMEOUT;
4878   int status = pthread_mutex_lock(_mutex);
4879   assert_status(status == 0, status, "mutex_lock");
4880   guarantee (_nParked == 0, "invariant") ;
4881   ++_nParked ;
4882 
4883   // Object.wait(timo) will return because of
4884   // (a) notification
4885   // (b) timeout
4886   // (c) thread.interrupt
4887   //
4888   // Thread.interrupt and object.notify{All} both call Event::set.
4889   // That is, we treat thread.interrupt as a special case of notification.
4890   // The underlying Solaris implementation, cond_timedwait, admits
4891   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4892   // JVM from making those visible to Java code.  As such, we must
4893   // filter out spurious wakeups.  We assume all ETIME returns are valid.
4894   //
4895   // TODO: properly differentiate simultaneous notify+interrupt.
4896   // In that case, we should propagate the notify to another waiter.
4897 
4898   while (_Event < 0) {
4899     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4900     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4901       pthread_cond_destroy (_cond);
4902       pthread_cond_init (_cond, NULL) ;
4903     }
4904     assert_status(status == 0 || status == EINTR ||
4905                   status == ETIME || status == ETIMEDOUT,
4906                   status, "cond_timedwait");
4907     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4908     if (status == ETIME || status == ETIMEDOUT) break ;
4909     // We consume and ignore EINTR and spurious wakeups.
4910   }
4911   --_nParked ;
4912   if (_Event >= 0) {
4913      ret = OS_OK;
4914   }
4915   _Event = 0 ;
4916   status = pthread_mutex_unlock(_mutex);
4917   assert_status(status == 0, status, "mutex_unlock");
4918   assert (_nParked == 0, "invariant") ;
4919   return ret;
4920 }
4921 
4922 void os::PlatformEvent::unpark() {
4923   int v, AnyWaiters ;
4924   for (;;) {
4925       v = _Event ;
4926       if (v > 0) {
4927          // The LD of _Event could have reordered or be satisfied
4928          // by a read-aside from this processor's write buffer.
4929          // To avoid problems execute a barrier and then
4930          // ratify the value.
4931          OrderAccess::fence() ;
4932          if (_Event == v) return ;
4933          continue ;
4934       }
4935       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4936   }
4937   if (v < 0) {
4938      // Wait for the thread associated with the event to vacate
4939      int status = pthread_mutex_lock(_mutex);
4940      assert_status(status == 0, status, "mutex_lock");
4941      AnyWaiters = _nParked ;
4942      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4943      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4944         AnyWaiters = 0 ;
4945         pthread_cond_signal (_cond);
4946      }
4947      status = pthread_mutex_unlock(_mutex);
4948      assert_status(status == 0, status, "mutex_unlock");
4949      if (AnyWaiters != 0) {
4950         status = pthread_cond_signal(_cond);
4951         assert_status(status == 0, status, "cond_signal");
4952      }
4953   }
4954 
4955   // Note that we signal() _after dropping the lock for "immortal" Events.
4956   // This is safe and avoids a common class of  futile wakeups.  In rare
4957   // circumstances this can cause a thread to return prematurely from
4958   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4959   // simply re-test the condition and re-park itself.
4960 }
4961 
4962 
4963 // JSR166
4964 // -------------------------------------------------------
4965 
4966 /*
4967  * The solaris and linux implementations of park/unpark are fairly
4968  * conservative for now, but can be improved. They currently use a
4969  * mutex/condvar pair, plus a a count.
4970  * Park decrements count if > 0, else does a condvar wait.  Unpark
4971  * sets count to 1 and signals condvar.  Only one thread ever waits
4972  * on the condvar. Contention seen when trying to park implies that someone
4973  * is unparking you, so don't wait. And spurious returns are fine, so there
4974  * is no need to track notifications.
4975  */
4976 
4977 
4978 #define NANOSECS_PER_SEC 1000000000
4979 #define NANOSECS_PER_MILLISEC 1000000
4980 #define MAX_SECS 100000000
4981 /*
4982  * This code is common to linux and solaris and will be moved to a
4983  * common place in dolphin.
4984  *
4985  * The passed in time value is either a relative time in nanoseconds
4986  * or an absolute time in milliseconds. Either way it has to be unpacked
4987  * into suitable seconds and nanoseconds components and stored in the
4988  * given timespec structure.
4989  * Given time is a 64-bit value and the time_t used in the timespec is only
4990  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4991  * overflow if times way in the future are given. Further on Solaris versions
4992  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4993  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4994  * As it will be 28 years before "now + 100000000" will overflow we can
4995  * ignore overflow and just impose a hard-limit on seconds using the value
4996  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4997  * years from "now".
4998  */
4999 
5000 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5001   assert (time > 0, "convertTime");
5002 
5003   struct timeval now;
5004   int status = gettimeofday(&now, NULL);
5005   assert(status == 0, "gettimeofday");
5006 
5007   time_t max_secs = now.tv_sec + MAX_SECS;
5008 
5009   if (isAbsolute) {
5010     jlong secs = time / 1000;
5011     if (secs > max_secs) {
5012       absTime->tv_sec = max_secs;
5013     }
5014     else {
5015       absTime->tv_sec = secs;
5016     }
5017     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5018   }
5019   else {
5020     jlong secs = time / NANOSECS_PER_SEC;
5021     if (secs >= MAX_SECS) {
5022       absTime->tv_sec = max_secs;
5023       absTime->tv_nsec = 0;
5024     }
5025     else {
5026       absTime->tv_sec = now.tv_sec + secs;
5027       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5028       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5029         absTime->tv_nsec -= NANOSECS_PER_SEC;
5030         ++absTime->tv_sec; // note: this must be <= max_secs
5031       }
5032     }
5033   }
5034   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5035   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5036   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5037   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5038 }
5039 
5040 void Parker::park(bool isAbsolute, jlong time) {
5041   // Optional fast-path check:
5042   // Return immediately if a permit is available.
5043   if (_counter > 0) {
5044       _counter = 0 ;
5045       OrderAccess::fence();
5046       return ;
5047   }
5048 
5049   Thread* thread = Thread::current();
5050   assert(thread->is_Java_thread(), "Must be JavaThread");
5051   JavaThread *jt = (JavaThread *)thread;
5052 
5053   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5054   // Check interrupt before trying to wait
5055   if (Thread::is_interrupted(thread, false)) {
5056     return;
5057   }
5058 
5059   // Next, demultiplex/decode time arguments
5060   timespec absTime;
5061   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5062     return;
5063   }
5064   if (time > 0) {
5065     unpackTime(&absTime, isAbsolute, time);
5066   }
5067 
5068 
5069   // Enter safepoint region
5070   // Beware of deadlocks such as 6317397.
5071   // The per-thread Parker:: mutex is a classic leaf-lock.
5072   // In particular a thread must never block on the Threads_lock while
5073   // holding the Parker:: mutex.  If safepoints are pending both the
5074   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5075   ThreadBlockInVM tbivm(jt);
5076 
5077   // Don't wait if cannot get lock since interference arises from
5078   // unblocking.  Also. check interrupt before trying wait
5079   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5080     return;
5081   }
5082 
5083   int status ;
5084   if (_counter > 0)  { // no wait needed
5085     _counter = 0;
5086     status = pthread_mutex_unlock(_mutex);
5087     assert (status == 0, "invariant") ;
5088     OrderAccess::fence();
5089     return;
5090   }
5091 
5092 #ifdef ASSERT
5093   // Don't catch signals while blocked; let the running threads have the signals.
5094   // (This allows a debugger to break into the running thread.)
5095   sigset_t oldsigs;
5096   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5097   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5098 #endif
5099 
5100   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5101   jt->set_suspend_equivalent();
5102   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5103 
5104   if (time == 0) {
5105     status = pthread_cond_wait (_cond, _mutex) ;
5106   } else {
5107     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5108     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5109       pthread_cond_destroy (_cond) ;
5110       pthread_cond_init    (_cond, NULL);
5111     }
5112   }
5113   assert_status(status == 0 || status == EINTR ||
5114                 status == ETIME || status == ETIMEDOUT,
5115                 status, "cond_timedwait");
5116 
5117 #ifdef ASSERT
5118   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5119 #endif
5120 
5121   _counter = 0 ;
5122   status = pthread_mutex_unlock(_mutex) ;
5123   assert_status(status == 0, status, "invariant") ;
5124   // If externally suspended while waiting, re-suspend
5125   if (jt->handle_special_suspend_equivalent_condition()) {
5126     jt->java_suspend_self();
5127   }
5128 
5129   OrderAccess::fence();
5130 }
5131 
5132 void Parker::unpark() {
5133   int s, status ;
5134   status = pthread_mutex_lock(_mutex);
5135   assert (status == 0, "invariant") ;
5136   s = _counter;
5137   _counter = 1;
5138   if (s < 1) {
5139      if (WorkAroundNPTLTimedWaitHang) {
5140         status = pthread_cond_signal (_cond) ;
5141         assert (status == 0, "invariant") ;
5142         status = pthread_mutex_unlock(_mutex);
5143         assert (status == 0, "invariant") ;
5144      } else {
5145         status = pthread_mutex_unlock(_mutex);
5146         assert (status == 0, "invariant") ;
5147         status = pthread_cond_signal (_cond) ;
5148         assert (status == 0, "invariant") ;
5149      }
5150   } else {
5151     pthread_mutex_unlock(_mutex);
5152     assert (status == 0, "invariant") ;
5153   }
5154 }
5155 
5156 
5157 extern char** environ;
5158 
5159 #ifndef __NR_fork
5160 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5161 #endif
5162 
5163 #ifndef __NR_execve
5164 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5165 #endif
5166 
5167 // Run the specified command in a separate process. Return its exit value,
5168 // or -1 on failure (e.g. can't fork a new process).
5169 // Unlike system(), this function can be called from signal handler. It
5170 // doesn't block SIGINT et al.
5171 int os::fork_and_exec(char* cmd) {
5172   const char * argv[4] = {"sh", "-c", cmd, NULL};
5173 
5174   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5175   // pthread_atfork handlers and reset pthread library. All we need is a
5176   // separate process to execve. Make a direct syscall to fork process.
5177   // On IA64 there's no fork syscall, we have to use fork() and hope for
5178   // the best...
5179   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5180               IA64_ONLY(fork();)
5181 
5182   if (pid < 0) {
5183     // fork failed
5184     return -1;
5185 
5186   } else if (pid == 0) {
5187     // child process
5188 
5189     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5190     // first to kill every thread on the thread list. Because this list is
5191     // not reset by fork() (see notes above), execve() will instead kill
5192     // every thread in the parent process. We know this is the only thread
5193     // in the new process, so make a system call directly.
5194     // IA64 should use normal execve() from glibc to match the glibc fork()
5195     // above.
5196     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5197     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5198 
5199     // execve failed
5200     _exit(-1);
5201 
5202   } else  {
5203     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5204     // care about the actual exit code, for now.
5205 
5206     int status;
5207 
5208     // Wait for the child process to exit.  This returns immediately if
5209     // the child has already exited. */
5210     while (waitpid(pid, &status, 0) < 0) {
5211         switch (errno) {
5212         case ECHILD: return 0;
5213         case EINTR: break;
5214         default: return -1;
5215         }
5216     }
5217 
5218     if (WIFEXITED(status)) {
5219        // The child exited normally; get its exit code.
5220        return WEXITSTATUS(status);
5221     } else if (WIFSIGNALED(status)) {
5222        // The child exited because of a signal
5223        // The best value to return is 0x80 + signal number,
5224        // because that is what all Unix shells do, and because
5225        // it allows callers to distinguish between process exit and
5226        // process death by signal.
5227        return 0x80 + WTERMSIG(status);
5228     } else {
5229        // Unknown exit code; pass it through
5230        return status;
5231     }
5232   }
5233 }
5234 
5235 // is_headless_jre()
5236 //
5237 // Test for the existence of libmawt in motif21 or xawt directories
5238 // in order to report if we are running in a headless jre
5239 //
5240 bool os::is_headless_jre() {
5241     struct stat statbuf;
5242     char buf[MAXPATHLEN];
5243     char libmawtpath[MAXPATHLEN];
5244     const char *xawtstr  = "/xawt/libmawt.so";
5245     const char *motifstr = "/motif21/libmawt.so";
5246     char *p;
5247 
5248     // Get path to libjvm.so
5249     os::jvm_path(buf, sizeof(buf));
5250 
5251     // Get rid of libjvm.so
5252     p = strrchr(buf, '/');
5253     if (p == NULL) return false;
5254     else *p = '\0';
5255 
5256     // Get rid of client or server
5257     p = strrchr(buf, '/');
5258     if (p == NULL) return false;
5259     else *p = '\0';
5260 
5261     // check xawt/libmawt.so
5262     strcpy(libmawtpath, buf);
5263     strcat(libmawtpath, xawtstr);
5264     if (::stat(libmawtpath, &statbuf) == 0) return false;
5265 
5266     // check motif21/libmawt.so
5267     strcpy(libmawtpath, buf);
5268     strcat(libmawtpath, motifstr);
5269     if (::stat(libmawtpath, &statbuf) == 0) return false;
5270 
5271     return true;
5272 }
5273