1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/interfaceSupport.hpp"
  32 #include "runtime/mutexLocker.hpp"
  33 #include "runtime/objectMonitor.hpp"
  34 #include "runtime/objectMonitor.inline.hpp"
  35 #include "runtime/osThread.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/thread.inline.hpp"
  38 #include "services/threadService.hpp"
  39 #include "trace/tracing.hpp"
  40 #include "trace/traceMacros.hpp"
  41 #include "utilities/dtrace.hpp"
  42 #include "utilities/macros.hpp"
  43 #include "utilities/preserveException.hpp"
  44 #ifdef TARGET_OS_FAMILY_linux
  45 # include "os_linux.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_solaris
  48 # include "os_solaris.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_windows
  51 # include "os_windows.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_FAMILY_bsd
  54 # include "os_bsd.inline.hpp"
  55 #endif
  56 
  57 #if defined(__GNUC__) && !defined(IA64)
  58   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  59   #define ATTR __attribute__((noinline))
  60 #else
  61   #define ATTR
  62 #endif
  63 
  64 
  65 #ifdef DTRACE_ENABLED
  66 
  67 // Only bother with this argument setup if dtrace is available
  68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  69 
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                            \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                        (monitor), bytes, len, (millis));                   \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  91 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  92 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  93 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  94 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  95 
  96 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  97   {                                                                        \
  98     if (DTraceMonitorProbes) {                                            \
  99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 100       HOTSPOT_MONITOR_##probe(jtid,                                               \
 101                        (uintptr_t)(monitor), bytes, len);                  \
 102     }                                                                      \
 103   }
 104 
 105 #else //  ndef DTRACE_ENABLED
 106 
 107 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 108 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 109 
 110 #endif // ndef DTRACE_ENABLED
 111 
 112 // Tunables ...
 113 // The knob* variables are effectively final.  Once set they should
 114 // never be modified hence.  Consider using __read_mostly with GCC.
 115 
 116 int ObjectMonitor::Knob_Verbose    = 0 ;
 117 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 118 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 119 static int Knob_HandOff            = 0 ;
 120 static int Knob_ReportSettings     = 0 ;
 121 
 122 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 123 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 124 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 125 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 126 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 127 static int Knob_SpinEarly          = 1 ;
 128 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 129 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 130 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 131 static int Knob_Bonus              = 100 ;     // spin success bonus
 132 static int Knob_BonusB             = 100 ;     // spin success bonus
 133 static int Knob_Penalty            = 200 ;     // spin failure penalty
 134 static int Knob_Poverty            = 1000 ;
 135 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 136 static int Knob_FixedSpin          = 0 ;
 137 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 138 static int Knob_UsePause           = 1 ;
 139 static int Knob_ExitPolicy         = 0 ;
 140 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 141 static int Knob_ResetEvent         = 0 ;
 142 static int BackOffMask             = 0 ;
 143 
 144 static int Knob_FastHSSEC          = 0 ;
 145 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 146 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 147 static volatile int InitDone       = 0 ;
 148 
 149 #define TrySpin TrySpin_VaryDuration
 150 
 151 // -----------------------------------------------------------------------------
 152 // Theory of operations -- Monitors lists, thread residency, etc:
 153 //
 154 // * A thread acquires ownership of a monitor by successfully
 155 //   CAS()ing the _owner field from null to non-null.
 156 //
 157 // * Invariant: A thread appears on at most one monitor list --
 158 //   cxq, EntryList or WaitSet -- at any one time.
 159 //
 160 // * Contending threads "push" themselves onto the cxq with CAS
 161 //   and then spin/park.
 162 //
 163 // * After a contending thread eventually acquires the lock it must
 164 //   dequeue itself from either the EntryList or the cxq.
 165 //
 166 // * The exiting thread identifies and unparks an "heir presumptive"
 167 //   tentative successor thread on the EntryList.  Critically, the
 168 //   exiting thread doesn't unlink the successor thread from the EntryList.
 169 //   After having been unparked, the wakee will recontend for ownership of
 170 //   the monitor.   The successor (wakee) will either acquire the lock or
 171 //   re-park itself.
 172 //
 173 //   Succession is provided for by a policy of competitive handoff.
 174 //   The exiting thread does _not_ grant or pass ownership to the
 175 //   successor thread.  (This is also referred to as "handoff" succession").
 176 //   Instead the exiting thread releases ownership and possibly wakes
 177 //   a successor, so the successor can (re)compete for ownership of the lock.
 178 //   If the EntryList is empty but the cxq is populated the exiting
 179 //   thread will drain the cxq into the EntryList.  It does so by
 180 //   by detaching the cxq (installing null with CAS) and folding
 181 //   the threads from the cxq into the EntryList.  The EntryList is
 182 //   doubly linked, while the cxq is singly linked because of the
 183 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 184 //
 185 // * Concurrency invariants:
 186 //
 187 //   -- only the monitor owner may access or mutate the EntryList.
 188 //      The mutex property of the monitor itself protects the EntryList
 189 //      from concurrent interference.
 190 //   -- Only the monitor owner may detach the cxq.
 191 //
 192 // * The monitor entry list operations avoid locks, but strictly speaking
 193 //   they're not lock-free.  Enter is lock-free, exit is not.
 194 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
 195 //
 196 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 197 //   detaching thread.  This mechanism is immune from the ABA corruption.
 198 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 199 //
 200 // * Taken together, the cxq and the EntryList constitute or form a
 201 //   single logical queue of threads stalled trying to acquire the lock.
 202 //   We use two distinct lists to improve the odds of a constant-time
 203 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 204 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 205 //   A key desideratum is to minimize queue & monitor metadata manipulation
 206 //   that occurs while holding the monitor lock -- that is, we want to
 207 //   minimize monitor lock holds times.  Note that even a small amount of
 208 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 209 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 210 //   locks and monitor metadata.
 211 //
 212 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 213 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 214 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 215 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 216 //
 217 //   The EntryList is ordered by the prevailing queue discipline and
 218 //   can be organized in any convenient fashion, such as a doubly-linked list or
 219 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 220 //   to operate in constant-time.  If we need a priority queue then something akin
 221 //   to Solaris' sleepq would work nicely.  Viz.,
 222 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 223 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 224 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 225 //   EntryList accordingly.
 226 //
 227 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 228 //   somewhat similar to an elevator-scan.
 229 //
 230 // * The monitor synchronization subsystem avoids the use of native
 231 //   synchronization primitives except for the narrow platform-specific
 232 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 233 //   the semantics of park-unpark.  Put another way, this monitor implementation
 234 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 235 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 236 //   underlying OS manages the READY<->RUN transitions.
 237 //
 238 // * Waiting threads reside on the WaitSet list -- wait() puts
 239 //   the caller onto the WaitSet.
 240 //
 241 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 242 //   either the EntryList or cxq.  Subsequent exit() operations will
 243 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 244 //   it's likely the notifyee would simply impale itself on the lock held
 245 //   by the notifier.
 246 //
 247 // * An interesting alternative is to encode cxq as (List,LockByte) where
 248 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 249 //   variable, like _recursions, in the scheme.  The threads or Events that form
 250 //   the list would have to be aligned in 256-byte addresses.  A thread would
 251 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 252 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 253 //   Note that is is *not* word-tearing, but it does presume that full-word
 254 //   CAS operations are coherent with intermix with STB operations.  That's true
 255 //   on most common processors.
 256 //
 257 // * See also http://blogs.sun.com/dave
 258 
 259 
 260 // -----------------------------------------------------------------------------
 261 // Enter support
 262 
 263 bool ObjectMonitor::try_enter(Thread* THREAD) {
 264   if (THREAD != _owner) {
 265     if (THREAD->is_lock_owned ((address)_owner)) {
 266        assert(_recursions == 0, "internal state error");
 267        _owner = THREAD ;
 268        _recursions = 1 ;
 269        OwnerIsThread = 1 ;
 270        return true;
 271     }
 272     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 273       return false;
 274     }
 275     return true;
 276   } else {
 277     _recursions++;
 278     return true;
 279   }
 280 }
 281 
 282 void ATTR ObjectMonitor::enter(TRAPS) {
 283   // The following code is ordered to check the most common cases first
 284   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 285   Thread * const Self = THREAD ;
 286   void * cur ;
 287 
 288   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 289   if (cur == NULL) {
 290      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 291      assert (_recursions == 0   , "invariant") ;
 292      assert (_owner      == Self, "invariant") ;
 293      // CONSIDER: set or assert OwnerIsThread == 1
 294      return ;
 295   }
 296 
 297   if (cur == Self) {
 298      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 299      _recursions ++ ;
 300      return ;
 301   }
 302 
 303   if (Self->is_lock_owned ((address)cur)) {
 304     assert (_recursions == 0, "internal state error");
 305     _recursions = 1 ;
 306     // Commute owner from a thread-specific on-stack BasicLockObject address to
 307     // a full-fledged "Thread *".
 308     _owner = Self ;
 309     OwnerIsThread = 1 ;
 310     return ;
 311   }
 312 
 313   // We've encountered genuine contention.
 314   assert (Self->_Stalled == 0, "invariant") ;
 315   Self->_Stalled = intptr_t(this) ;
 316 
 317   // Try one round of spinning *before* enqueueing Self
 318   // and before going through the awkward and expensive state
 319   // transitions.  The following spin is strictly optional ...
 320   // Note that if we acquire the monitor from an initial spin
 321   // we forgo posting JVMTI events and firing DTRACE probes.
 322   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 323      assert (_owner == Self      , "invariant") ;
 324      assert (_recursions == 0    , "invariant") ;
 325      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 326      Self->_Stalled = 0 ;
 327      return ;
 328   }
 329 
 330   assert (_owner != Self          , "invariant") ;
 331   assert (_succ  != Self          , "invariant") ;
 332   assert (Self->is_Java_thread()  , "invariant") ;
 333   JavaThread * jt = (JavaThread *) Self ;
 334   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 335   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 336   assert (this->object() != NULL  , "invariant") ;
 337   assert (_count >= 0, "invariant") ;
 338 
 339   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 340   // Ensure the object-monitor relationship remains stable while there's contention.
 341   Atomic::inc_ptr(&_count);
 342 
 343   EventJavaMonitorEnter event;
 344 
 345   { // Change java thread status to indicate blocked on monitor enter.
 346     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 347 
 348     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 349     if (JvmtiExport::should_post_monitor_contended_enter()) {
 350       JvmtiExport::post_monitor_contended_enter(jt, this);
 351     }
 352 
 353     OSThreadContendState osts(Self->osthread());
 354     ThreadBlockInVM tbivm(jt);
 355 
 356     Self->set_current_pending_monitor(this);
 357 
 358     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 359     for (;;) {
 360       jt->set_suspend_equivalent();
 361       // cleared by handle_special_suspend_equivalent_condition()
 362       // or java_suspend_self()
 363 
 364       EnterI (THREAD) ;
 365 
 366       if (!ExitSuspendEquivalent(jt)) break ;
 367 
 368       //
 369       // We have acquired the contended monitor, but while we were
 370       // waiting another thread suspended us. We don't want to enter
 371       // the monitor while suspended because that would surprise the
 372       // thread that suspended us.
 373       //
 374           _recursions = 0 ;
 375       _succ = NULL ;
 376       exit (false, Self) ;
 377 
 378       jt->java_suspend_self();
 379     }
 380     Self->set_current_pending_monitor(NULL);
 381   }
 382 
 383   Atomic::dec_ptr(&_count);
 384   assert (_count >= 0, "invariant") ;
 385   Self->_Stalled = 0 ;
 386 
 387   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 388   assert (_recursions == 0     , "invariant") ;
 389   assert (_owner == Self       , "invariant") ;
 390   assert (_succ  != Self       , "invariant") ;
 391   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 392 
 393   // The thread -- now the owner -- is back in vm mode.
 394   // Report the glorious news via TI,DTrace and jvmstat.
 395   // The probe effect is non-trivial.  All the reportage occurs
 396   // while we hold the monitor, increasing the length of the critical
 397   // section.  Amdahl's parallel speedup law comes vividly into play.
 398   //
 399   // Another option might be to aggregate the events (thread local or
 400   // per-monitor aggregation) and defer reporting until a more opportune
 401   // time -- such as next time some thread encounters contention but has
 402   // yet to acquire the lock.  While spinning that thread could
 403   // spinning we could increment JVMStat counters, etc.
 404 
 405   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 406   if (JvmtiExport::should_post_monitor_contended_entered()) {
 407     JvmtiExport::post_monitor_contended_entered(jt, this);
 408   }
 409 
 410   if (event.should_commit()) {
 411     event.set_klass(((oop)this->object())->klass());
 412     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
 413     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 414     event.commit();
 415   }
 416 
 417   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 418      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 419   }
 420 }
 421 
 422 
 423 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 424 // Callers must compensate as needed.
 425 
 426 int ObjectMonitor::TryLock (Thread * Self) {
 427    for (;;) {
 428       void * own = _owner ;
 429       if (own != NULL) return 0 ;
 430       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 431          // Either guarantee _recursions == 0 or set _recursions = 0.
 432          assert (_recursions == 0, "invariant") ;
 433          assert (_owner == Self, "invariant") ;
 434          // CONSIDER: set or assert that OwnerIsThread == 1
 435          return 1 ;
 436       }
 437       // The lock had been free momentarily, but we lost the race to the lock.
 438       // Interference -- the CAS failed.
 439       // We can either return -1 or retry.
 440       // Retry doesn't make as much sense because the lock was just acquired.
 441       if (true) return -1 ;
 442    }
 443 }
 444 
 445 void ATTR ObjectMonitor::EnterI (TRAPS) {
 446     Thread * Self = THREAD ;
 447     assert (Self->is_Java_thread(), "invariant") ;
 448     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 449 
 450     // Try the lock - TATAS
 451     if (TryLock (Self) > 0) {
 452         assert (_succ != Self              , "invariant") ;
 453         assert (_owner == Self             , "invariant") ;
 454         assert (_Responsible != Self       , "invariant") ;
 455         return ;
 456     }
 457 
 458     DeferredInitialize () ;
 459 
 460     // We try one round of spinning *before* enqueueing Self.
 461     //
 462     // If the _owner is ready but OFFPROC we could use a YieldTo()
 463     // operation to donate the remainder of this thread's quantum
 464     // to the owner.  This has subtle but beneficial affinity
 465     // effects.
 466 
 467     if (TrySpin (Self) > 0) {
 468         assert (_owner == Self        , "invariant") ;
 469         assert (_succ != Self         , "invariant") ;
 470         assert (_Responsible != Self  , "invariant") ;
 471         return ;
 472     }
 473 
 474     // The Spin failed -- Enqueue and park the thread ...
 475     assert (_succ  != Self            , "invariant") ;
 476     assert (_owner != Self            , "invariant") ;
 477     assert (_Responsible != Self      , "invariant") ;
 478 
 479     // Enqueue "Self" on ObjectMonitor's _cxq.
 480     //
 481     // Node acts as a proxy for Self.
 482     // As an aside, if were to ever rewrite the synchronization code mostly
 483     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 484     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 485     // as well as eliminate a subset of ABA issues.
 486     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 487     //
 488 
 489     ObjectWaiter node(Self) ;
 490     Self->_ParkEvent->reset() ;
 491     node._prev   = (ObjectWaiter *) 0xBAD ;
 492     node.TState  = ObjectWaiter::TS_CXQ ;
 493 
 494     // Push "Self" onto the front of the _cxq.
 495     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 496     // Note that spinning tends to reduce the rate at which threads
 497     // enqueue and dequeue on EntryList|cxq.
 498     ObjectWaiter * nxt ;
 499     for (;;) {
 500         node._next = nxt = _cxq ;
 501         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 502 
 503         // Interference - the CAS failed because _cxq changed.  Just retry.
 504         // As an optional optimization we retry the lock.
 505         if (TryLock (Self) > 0) {
 506             assert (_succ != Self         , "invariant") ;
 507             assert (_owner == Self        , "invariant") ;
 508             assert (_Responsible != Self  , "invariant") ;
 509             return ;
 510         }
 511     }
 512 
 513     // Check for cxq|EntryList edge transition to non-null.  This indicates
 514     // the onset of contention.  While contention persists exiting threads
 515     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 516     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 517     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 518     // arrange for one of the contending thread to use a timed park() operations
 519     // to detect and recover from the race.  (Stranding is form of progress failure
 520     // where the monitor is unlocked but all the contending threads remain parked).
 521     // That is, at least one of the contended threads will periodically poll _owner.
 522     // One of the contending threads will become the designated "Responsible" thread.
 523     // The Responsible thread uses a timed park instead of a normal indefinite park
 524     // operation -- it periodically wakes and checks for and recovers from potential
 525     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 526     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 527     // be responsible for a monitor.
 528     //
 529     // Currently, one of the contended threads takes on the added role of "Responsible".
 530     // A viable alternative would be to use a dedicated "stranding checker" thread
 531     // that periodically iterated over all the threads (or active monitors) and unparked
 532     // successors where there was risk of stranding.  This would help eliminate the
 533     // timer scalability issues we see on some platforms as we'd only have one thread
 534     // -- the checker -- parked on a timer.
 535 
 536     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 537         // Try to assume the role of responsible thread for the monitor.
 538         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 539         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 540     }
 541 
 542     // The lock have been released while this thread was occupied queueing
 543     // itself onto _cxq.  To close the race and avoid "stranding" and
 544     // progress-liveness failure we must resample-retry _owner before parking.
 545     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 546     // In this case the ST-MEMBAR is accomplished with CAS().
 547     //
 548     // TODO: Defer all thread state transitions until park-time.
 549     // Since state transitions are heavy and inefficient we'd like
 550     // to defer the state transitions until absolutely necessary,
 551     // and in doing so avoid some transitions ...
 552 
 553     TEVENT (Inflated enter - Contention) ;
 554     int nWakeups = 0 ;
 555     int RecheckInterval = 1 ;
 556 
 557     for (;;) {
 558 
 559         if (TryLock (Self) > 0) break ;
 560         assert (_owner != Self, "invariant") ;
 561 
 562         if ((SyncFlags & 2) && _Responsible == NULL) {
 563            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 564         }
 565 
 566         // park self
 567         if (_Responsible == Self || (SyncFlags & 1)) {
 568             TEVENT (Inflated enter - park TIMED) ;
 569             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 570             // Increase the RecheckInterval, but clamp the value.
 571             RecheckInterval *= 8 ;
 572             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 573         } else {
 574             TEVENT (Inflated enter - park UNTIMED) ;
 575             Self->_ParkEvent->park() ;
 576         }
 577 
 578         if (TryLock(Self) > 0) break ;
 579 
 580         // The lock is still contested.
 581         // Keep a tally of the # of futile wakeups.
 582         // Note that the counter is not protected by a lock or updated by atomics.
 583         // That is by design - we trade "lossy" counters which are exposed to
 584         // races during updates for a lower probe effect.
 585         TEVENT (Inflated enter - Futile wakeup) ;
 586         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 587            ObjectMonitor::_sync_FutileWakeups->inc() ;
 588         }
 589         ++ nWakeups ;
 590 
 591         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 592         // We can defer clearing _succ until after the spin completes
 593         // TrySpin() must tolerate being called with _succ == Self.
 594         // Try yet another round of adaptive spinning.
 595         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 596 
 597         // We can find that we were unpark()ed and redesignated _succ while
 598         // we were spinning.  That's harmless.  If we iterate and call park(),
 599         // park() will consume the event and return immediately and we'll
 600         // just spin again.  This pattern can repeat, leaving _succ to simply
 601         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 602         // Alternately, we can sample fired() here, and if set, forgo spinning
 603         // in the next iteration.
 604 
 605         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 606            Self->_ParkEvent->reset() ;
 607            OrderAccess::fence() ;
 608         }
 609         if (_succ == Self) _succ = NULL ;
 610 
 611         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 612         OrderAccess::fence() ;
 613     }
 614 
 615     // Egress :
 616     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 617     // Normally we'll find Self on the EntryList .
 618     // From the perspective of the lock owner (this thread), the
 619     // EntryList is stable and cxq is prepend-only.
 620     // The head of cxq is volatile but the interior is stable.
 621     // In addition, Self.TState is stable.
 622 
 623     assert (_owner == Self      , "invariant") ;
 624     assert (object() != NULL    , "invariant") ;
 625     // I'd like to write:
 626     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 627     // but as we're at a safepoint that's not safe.
 628 
 629     UnlinkAfterAcquire (Self, &node) ;
 630     if (_succ == Self) _succ = NULL ;
 631 
 632     assert (_succ != Self, "invariant") ;
 633     if (_Responsible == Self) {
 634         _Responsible = NULL ;
 635         OrderAccess::fence(); // Dekker pivot-point
 636 
 637         // We may leave threads on cxq|EntryList without a designated
 638         // "Responsible" thread.  This is benign.  When this thread subsequently
 639         // exits the monitor it can "see" such preexisting "old" threads --
 640         // threads that arrived on the cxq|EntryList before the fence, above --
 641         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 642         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 643         // non-null and elect a new "Responsible" timer thread.
 644         //
 645         // This thread executes:
 646         //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 647         //    LD cxq|EntryList               (in subsequent exit)
 648         //
 649         // Entering threads in the slow/contended path execute:
 650         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 651         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 652         //
 653         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 654         // exit operation from floating above the ST Responsible=null.
 655     }
 656 
 657     // We've acquired ownership with CAS().
 658     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 659     // But since the CAS() this thread may have also stored into _succ,
 660     // EntryList, cxq or Responsible.  These meta-data updates must be
 661     // visible __before this thread subsequently drops the lock.
 662     // Consider what could occur if we didn't enforce this constraint --
 663     // STs to monitor meta-data and user-data could reorder with (become
 664     // visible after) the ST in exit that drops ownership of the lock.
 665     // Some other thread could then acquire the lock, but observe inconsistent
 666     // or old monitor meta-data and heap data.  That violates the JMM.
 667     // To that end, the 1-0 exit() operation must have at least STST|LDST
 668     // "release" barrier semantics.  Specifically, there must be at least a
 669     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 670     // the lock.   The barrier ensures that changes to monitor meta-data and data
 671     // protected by the lock will be visible before we release the lock, and
 672     // therefore before some other thread (CPU) has a chance to acquire the lock.
 673     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 674     //
 675     // Critically, any prior STs to _succ or EntryList must be visible before
 676     // the ST of null into _owner in the *subsequent* (following) corresponding
 677     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 678     // execute a serializing instruction.
 679 
 680     if (SyncFlags & 8) {
 681        OrderAccess::fence() ;
 682     }
 683     return ;
 684 }
 685 
 686 // ReenterI() is a specialized inline form of the latter half of the
 687 // contended slow-path from EnterI().  We use ReenterI() only for
 688 // monitor reentry in wait().
 689 //
 690 // In the future we should reconcile EnterI() and ReenterI(), adding
 691 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 692 // loop accordingly.
 693 
 694 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 695     assert (Self != NULL                , "invariant") ;
 696     assert (SelfNode != NULL            , "invariant") ;
 697     assert (SelfNode->_thread == Self   , "invariant") ;
 698     assert (_waiters > 0                , "invariant") ;
 699     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 700     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 701     JavaThread * jt = (JavaThread *) Self ;
 702 
 703     int nWakeups = 0 ;
 704     for (;;) {
 705         ObjectWaiter::TStates v = SelfNode->TState ;
 706         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 707         assert    (_owner != Self, "invariant") ;
 708 
 709         if (TryLock (Self) > 0) break ;
 710         if (TrySpin (Self) > 0) break ;
 711 
 712         TEVENT (Wait Reentry - parking) ;
 713 
 714         // State transition wrappers around park() ...
 715         // ReenterI() wisely defers state transitions until
 716         // it's clear we must park the thread.
 717         {
 718            OSThreadContendState osts(Self->osthread());
 719            ThreadBlockInVM tbivm(jt);
 720 
 721            // cleared by handle_special_suspend_equivalent_condition()
 722            // or java_suspend_self()
 723            jt->set_suspend_equivalent();
 724            if (SyncFlags & 1) {
 725               Self->_ParkEvent->park ((jlong)1000) ;
 726            } else {
 727               Self->_ParkEvent->park () ;
 728            }
 729 
 730            // were we externally suspended while we were waiting?
 731            for (;;) {
 732               if (!ExitSuspendEquivalent (jt)) break ;
 733               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 734               jt->java_suspend_self();
 735               jt->set_suspend_equivalent();
 736            }
 737         }
 738 
 739         // Try again, but just so we distinguish between futile wakeups and
 740         // successful wakeups.  The following test isn't algorithmically
 741         // necessary, but it helps us maintain sensible statistics.
 742         if (TryLock(Self) > 0) break ;
 743 
 744         // The lock is still contested.
 745         // Keep a tally of the # of futile wakeups.
 746         // Note that the counter is not protected by a lock or updated by atomics.
 747         // That is by design - we trade "lossy" counters which are exposed to
 748         // races during updates for a lower probe effect.
 749         TEVENT (Wait Reentry - futile wakeup) ;
 750         ++ nWakeups ;
 751 
 752         // Assuming this is not a spurious wakeup we'll normally
 753         // find that _succ == Self.
 754         if (_succ == Self) _succ = NULL ;
 755 
 756         // Invariant: after clearing _succ a contending thread
 757         // *must* retry  _owner before parking.
 758         OrderAccess::fence() ;
 759 
 760         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 761           ObjectMonitor::_sync_FutileWakeups->inc() ;
 762         }
 763     }
 764 
 765     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 766     // Normally we'll find Self on the EntryList.
 767     // Unlinking from the EntryList is constant-time and atomic-free.
 768     // From the perspective of the lock owner (this thread), the
 769     // EntryList is stable and cxq is prepend-only.
 770     // The head of cxq is volatile but the interior is stable.
 771     // In addition, Self.TState is stable.
 772 
 773     assert (_owner == Self, "invariant") ;
 774     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 775     UnlinkAfterAcquire (Self, SelfNode) ;
 776     if (_succ == Self) _succ = NULL ;
 777     assert (_succ != Self, "invariant") ;
 778     SelfNode->TState = ObjectWaiter::TS_RUN ;
 779     OrderAccess::fence() ;      // see comments at the end of EnterI()
 780 }
 781 
 782 // after the thread acquires the lock in ::enter().  Equally, we could defer
 783 // unlinking the thread until ::exit()-time.
 784 
 785 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 786 {
 787     assert (_owner == Self, "invariant") ;
 788     assert (SelfNode->_thread == Self, "invariant") ;
 789 
 790     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 791         // Normal case: remove Self from the DLL EntryList .
 792         // This is a constant-time operation.
 793         ObjectWaiter * nxt = SelfNode->_next ;
 794         ObjectWaiter * prv = SelfNode->_prev ;
 795         if (nxt != NULL) nxt->_prev = prv ;
 796         if (prv != NULL) prv->_next = nxt ;
 797         if (SelfNode == _EntryList ) _EntryList = nxt ;
 798         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 799         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 800         TEVENT (Unlink from EntryList) ;
 801     } else {
 802         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 803         // Inopportune interleaving -- Self is still on the cxq.
 804         // This usually means the enqueue of self raced an exiting thread.
 805         // Normally we'll find Self near the front of the cxq, so
 806         // dequeueing is typically fast.  If needbe we can accelerate
 807         // this with some MCS/CHL-like bidirectional list hints and advisory
 808         // back-links so dequeueing from the interior will normally operate
 809         // in constant-time.
 810         // Dequeue Self from either the head (with CAS) or from the interior
 811         // with a linear-time scan and normal non-atomic memory operations.
 812         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 813         // and then unlink Self from EntryList.  We have to drain eventually,
 814         // so it might as well be now.
 815 
 816         ObjectWaiter * v = _cxq ;
 817         assert (v != NULL, "invariant") ;
 818         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 819             // The CAS above can fail from interference IFF a "RAT" arrived.
 820             // In that case Self must be in the interior and can no longer be
 821             // at the head of cxq.
 822             if (v == SelfNode) {
 823                 assert (_cxq != v, "invariant") ;
 824                 v = _cxq ;          // CAS above failed - start scan at head of list
 825             }
 826             ObjectWaiter * p ;
 827             ObjectWaiter * q = NULL ;
 828             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 829                 q = p ;
 830                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 831             }
 832             assert (v != SelfNode,  "invariant") ;
 833             assert (p == SelfNode,  "Node not found on cxq") ;
 834             assert (p != _cxq,      "invariant") ;
 835             assert (q != NULL,      "invariant") ;
 836             assert (q->_next == p,  "invariant") ;
 837             q->_next = p->_next ;
 838         }
 839         TEVENT (Unlink from cxq) ;
 840     }
 841 
 842     // Diagnostic hygiene ...
 843     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 844     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 845     SelfNode->TState = ObjectWaiter::TS_RUN ;
 846 }
 847 
 848 // -----------------------------------------------------------------------------
 849 // Exit support
 850 //
 851 // exit()
 852 // ~~~~~~
 853 // Note that the collector can't reclaim the objectMonitor or deflate
 854 // the object out from underneath the thread calling ::exit() as the
 855 // thread calling ::exit() never transitions to a stable state.
 856 // This inhibits GC, which in turn inhibits asynchronous (and
 857 // inopportune) reclamation of "this".
 858 //
 859 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 860 // There's one exception to the claim above, however.  EnterI() can call
 861 // exit() to drop a lock if the acquirer has been externally suspended.
 862 // In that case exit() is called with _thread_state as _thread_blocked,
 863 // but the monitor's _count field is > 0, which inhibits reclamation.
 864 //
 865 // 1-0 exit
 866 // ~~~~~~~~
 867 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 868 // the fast-path operators have been optimized so the common ::exit()
 869 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 870 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 871 // greatly improves latency -- MEMBAR and CAS having considerable local
 872 // latency on modern processors -- but at the cost of "stranding".  Absent the
 873 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 874 // ::enter() path, resulting in the entering thread being stranding
 875 // and a progress-liveness failure.   Stranding is extremely rare.
 876 // We use timers (timed park operations) & periodic polling to detect
 877 // and recover from stranding.  Potentially stranded threads periodically
 878 // wake up and poll the lock.  See the usage of the _Responsible variable.
 879 //
 880 // The CAS() in enter provides for safety and exclusion, while the CAS or
 881 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 882 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 883 // We detect and recover from stranding with timers.
 884 //
 885 // If a thread transiently strands it'll park until (a) another
 886 // thread acquires the lock and then drops the lock, at which time the
 887 // exiting thread will notice and unpark the stranded thread, or, (b)
 888 // the timer expires.  If the lock is high traffic then the stranding latency
 889 // will be low due to (a).  If the lock is low traffic then the odds of
 890 // stranding are lower, although the worst-case stranding latency
 891 // is longer.  Critically, we don't want to put excessive load in the
 892 // platform's timer subsystem.  We want to minimize both the timer injection
 893 // rate (timers created/sec) as well as the number of timers active at
 894 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 895 // the integral of the # of active timers at any instant over time).
 896 // Both impinge on OS scalability.  Given that, at most one thread parked on
 897 // a monitor will use a timer.
 898 
 899 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
 900    Thread * Self = THREAD ;
 901    if (THREAD != _owner) {
 902      if (THREAD->is_lock_owned((address) _owner)) {
 903        // Transmute _owner from a BasicLock pointer to a Thread address.
 904        // We don't need to hold _mutex for this transition.
 905        // Non-null to Non-null is safe as long as all readers can
 906        // tolerate either flavor.
 907        assert (_recursions == 0, "invariant") ;
 908        _owner = THREAD ;
 909        _recursions = 0 ;
 910        OwnerIsThread = 1 ;
 911      } else {
 912        // NOTE: we need to handle unbalanced monitor enter/exit
 913        // in native code by throwing an exception.
 914        // TODO: Throw an IllegalMonitorStateException ?
 915        TEVENT (Exit - Throw IMSX) ;
 916        assert(false, "Non-balanced monitor enter/exit!");
 917        if (false) {
 918           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 919        }
 920        return;
 921      }
 922    }
 923 
 924    if (_recursions != 0) {
 925      _recursions--;        // this is simple recursive enter
 926      TEVENT (Inflated exit - recursive) ;
 927      return ;
 928    }
 929 
 930    // Invariant: after setting Responsible=null an thread must execute
 931    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 932    if ((SyncFlags & 4) == 0) {
 933       _Responsible = NULL ;
 934    }
 935 
 936 #if INCLUDE_TRACE
 937    // get the owner's thread id for the MonitorEnter event
 938    // if it is enabled and the thread isn't suspended
 939    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 940      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
 941    }
 942 #endif
 943 
 944    for (;;) {
 945       assert (THREAD == _owner, "invariant") ;
 946 
 947 
 948       if (Knob_ExitPolicy == 0) {
 949          // release semantics: prior loads and stores from within the critical section
 950          // must not float (reorder) past the following store that drops the lock.
 951          // On SPARC that requires MEMBAR #loadstore|#storestore.
 952          // But of course in TSO #loadstore|#storestore is not required.
 953          // I'd like to write one of the following:
 954          // A.  OrderAccess::release() ; _owner = NULL
 955          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 956          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 957          // store into a _dummy variable.  That store is not needed, but can result
 958          // in massive wasteful coherency traffic on classic SMP systems.
 959          // Instead, I use release_store(), which is implemented as just a simple
 960          // ST on x64, x86 and SPARC.
 961          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
 962          OrderAccess::storeload() ;                         // See if we need to wake a successor
 963          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 964             TEVENT (Inflated exit - simple egress) ;
 965             return ;
 966          }
 967          TEVENT (Inflated exit - complex egress) ;
 968 
 969          // Normally the exiting thread is responsible for ensuring succession,
 970          // but if other successors are ready or other entering threads are spinning
 971          // then this thread can simply store NULL into _owner and exit without
 972          // waking a successor.  The existence of spinners or ready successors
 973          // guarantees proper succession (liveness).  Responsibility passes to the
 974          // ready or running successors.  The exiting thread delegates the duty.
 975          // More precisely, if a successor already exists this thread is absolved
 976          // of the responsibility of waking (unparking) one.
 977          //
 978          // The _succ variable is critical to reducing futile wakeup frequency.
 979          // _succ identifies the "heir presumptive" thread that has been made
 980          // ready (unparked) but that has not yet run.  We need only one such
 981          // successor thread to guarantee progress.
 982          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 983          // section 3.3 "Futile Wakeup Throttling" for details.
 984          //
 985          // Note that spinners in Enter() also set _succ non-null.
 986          // In the current implementation spinners opportunistically set
 987          // _succ so that exiting threads might avoid waking a successor.
 988          // Another less appealing alternative would be for the exiting thread
 989          // to drop the lock and then spin briefly to see if a spinner managed
 990          // to acquire the lock.  If so, the exiting thread could exit
 991          // immediately without waking a successor, otherwise the exiting
 992          // thread would need to dequeue and wake a successor.
 993          // (Note that we'd need to make the post-drop spin short, but no
 994          // shorter than the worst-case round-trip cache-line migration time.
 995          // The dropped lock needs to become visible to the spinner, and then
 996          // the acquisition of the lock by the spinner must become visible to
 997          // the exiting thread).
 998          //
 999 
1000          // It appears that an heir-presumptive (successor) must be made ready.
1001          // Only the current lock owner can manipulate the EntryList or
1002          // drain _cxq, so we need to reacquire the lock.  If we fail
1003          // to reacquire the lock the responsibility for ensuring succession
1004          // falls to the new owner.
1005          //
1006          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1007             return ;
1008          }
1009          TEVENT (Exit - Reacquired) ;
1010       } else {
1011          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1012             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1013             OrderAccess::storeload() ;
1014             // Ratify the previously observed values.
1015             if (_cxq == NULL || _succ != NULL) {
1016                 TEVENT (Inflated exit - simple egress) ;
1017                 return ;
1018             }
1019 
1020             // inopportune interleaving -- the exiting thread (this thread)
1021             // in the fast-exit path raced an entering thread in the slow-enter
1022             // path.
1023             // We have two choices:
1024             // A.  Try to reacquire the lock.
1025             //     If the CAS() fails return immediately, otherwise
1026             //     we either restart/rerun the exit operation, or simply
1027             //     fall-through into the code below which wakes a successor.
1028             // B.  If the elements forming the EntryList|cxq are TSM
1029             //     we could simply unpark() the lead thread and return
1030             //     without having set _succ.
1031             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1032                TEVENT (Inflated exit - reacquired succeeded) ;
1033                return ;
1034             }
1035             TEVENT (Inflated exit - reacquired failed) ;
1036          } else {
1037             TEVENT (Inflated exit - complex egress) ;
1038          }
1039       }
1040 
1041       guarantee (_owner == THREAD, "invariant") ;
1042 
1043       ObjectWaiter * w = NULL ;
1044       int QMode = Knob_QMode ;
1045 
1046       if (QMode == 2 && _cxq != NULL) {
1047           // QMode == 2 : cxq has precedence over EntryList.
1048           // Try to directly wake a successor from the cxq.
1049           // If successful, the successor will need to unlink itself from cxq.
1050           w = _cxq ;
1051           assert (w != NULL, "invariant") ;
1052           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1053           ExitEpilog (Self, w) ;
1054           return ;
1055       }
1056 
1057       if (QMode == 3 && _cxq != NULL) {
1058           // Aggressively drain cxq into EntryList at the first opportunity.
1059           // This policy ensure that recently-run threads live at the head of EntryList.
1060           // Drain _cxq into EntryList - bulk transfer.
1061           // First, detach _cxq.
1062           // The following loop is tantamount to: w = swap (&cxq, NULL)
1063           w = _cxq ;
1064           for (;;) {
1065              assert (w != NULL, "Invariant") ;
1066              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1067              if (u == w) break ;
1068              w = u ;
1069           }
1070           assert (w != NULL              , "invariant") ;
1071 
1072           ObjectWaiter * q = NULL ;
1073           ObjectWaiter * p ;
1074           for (p = w ; p != NULL ; p = p->_next) {
1075               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1076               p->TState = ObjectWaiter::TS_ENTER ;
1077               p->_prev = q ;
1078               q = p ;
1079           }
1080 
1081           // Append the RATs to the EntryList
1082           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1083           ObjectWaiter * Tail ;
1084           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1085           if (Tail == NULL) {
1086               _EntryList = w ;
1087           } else {
1088               Tail->_next = w ;
1089               w->_prev = Tail ;
1090           }
1091 
1092           // Fall thru into code that tries to wake a successor from EntryList
1093       }
1094 
1095       if (QMode == 4 && _cxq != NULL) {
1096           // Aggressively drain cxq into EntryList at the first opportunity.
1097           // This policy ensure that recently-run threads live at the head of EntryList.
1098 
1099           // Drain _cxq into EntryList - bulk transfer.
1100           // First, detach _cxq.
1101           // The following loop is tantamount to: w = swap (&cxq, NULL)
1102           w = _cxq ;
1103           for (;;) {
1104              assert (w != NULL, "Invariant") ;
1105              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1106              if (u == w) break ;
1107              w = u ;
1108           }
1109           assert (w != NULL              , "invariant") ;
1110 
1111           ObjectWaiter * q = NULL ;
1112           ObjectWaiter * p ;
1113           for (p = w ; p != NULL ; p = p->_next) {
1114               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1115               p->TState = ObjectWaiter::TS_ENTER ;
1116               p->_prev = q ;
1117               q = p ;
1118           }
1119 
1120           // Prepend the RATs to the EntryList
1121           if (_EntryList != NULL) {
1122               q->_next = _EntryList ;
1123               _EntryList->_prev = q ;
1124           }
1125           _EntryList = w ;
1126 
1127           // Fall thru into code that tries to wake a successor from EntryList
1128       }
1129 
1130       w = _EntryList  ;
1131       if (w != NULL) {
1132           // I'd like to write: guarantee (w->_thread != Self).
1133           // But in practice an exiting thread may find itself on the EntryList.
1134           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1135           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1136           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1137           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1138           // release the lock "O".  T2 resumes immediately after the ST of null into
1139           // _owner, above.  T2 notices that the EntryList is populated, so it
1140           // reacquires the lock and then finds itself on the EntryList.
1141           // Given all that, we have to tolerate the circumstance where "w" is
1142           // associated with Self.
1143           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1144           ExitEpilog (Self, w) ;
1145           return ;
1146       }
1147 
1148       // If we find that both _cxq and EntryList are null then just
1149       // re-run the exit protocol from the top.
1150       w = _cxq ;
1151       if (w == NULL) continue ;
1152 
1153       // Drain _cxq into EntryList - bulk transfer.
1154       // First, detach _cxq.
1155       // The following loop is tantamount to: w = swap (&cxq, NULL)
1156       for (;;) {
1157           assert (w != NULL, "Invariant") ;
1158           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1159           if (u == w) break ;
1160           w = u ;
1161       }
1162       TEVENT (Inflated exit - drain cxq into EntryList) ;
1163 
1164       assert (w != NULL              , "invariant") ;
1165       assert (_EntryList  == NULL    , "invariant") ;
1166 
1167       // Convert the LIFO SLL anchored by _cxq into a DLL.
1168       // The list reorganization step operates in O(LENGTH(w)) time.
1169       // It's critical that this step operate quickly as
1170       // "Self" still holds the outer-lock, restricting parallelism
1171       // and effectively lengthening the critical section.
1172       // Invariant: s chases t chases u.
1173       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1174       // we have faster access to the tail.
1175 
1176       if (QMode == 1) {
1177          // QMode == 1 : drain cxq to EntryList, reversing order
1178          // We also reverse the order of the list.
1179          ObjectWaiter * s = NULL ;
1180          ObjectWaiter * t = w ;
1181          ObjectWaiter * u = NULL ;
1182          while (t != NULL) {
1183              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1184              t->TState = ObjectWaiter::TS_ENTER ;
1185              u = t->_next ;
1186              t->_prev = u ;
1187              t->_next = s ;
1188              s = t;
1189              t = u ;
1190          }
1191          _EntryList  = s ;
1192          assert (s != NULL, "invariant") ;
1193       } else {
1194          // QMode == 0 or QMode == 2
1195          _EntryList = w ;
1196          ObjectWaiter * q = NULL ;
1197          ObjectWaiter * p ;
1198          for (p = w ; p != NULL ; p = p->_next) {
1199              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1200              p->TState = ObjectWaiter::TS_ENTER ;
1201              p->_prev = q ;
1202              q = p ;
1203          }
1204       }
1205 
1206       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1207       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1208 
1209       // See if we can abdicate to a spinner instead of waking a thread.
1210       // A primary goal of the implementation is to reduce the
1211       // context-switch rate.
1212       if (_succ != NULL) continue;
1213 
1214       w = _EntryList  ;
1215       if (w != NULL) {
1216           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1217           ExitEpilog (Self, w) ;
1218           return ;
1219       }
1220    }
1221 }
1222 
1223 // ExitSuspendEquivalent:
1224 // A faster alternate to handle_special_suspend_equivalent_condition()
1225 //
1226 // handle_special_suspend_equivalent_condition() unconditionally
1227 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1228 // operations have high latency.  Note that in ::enter() we call HSSEC
1229 // while holding the monitor, so we effectively lengthen the critical sections.
1230 //
1231 // There are a number of possible solutions:
1232 //
1233 // A.  To ameliorate the problem we might also defer state transitions
1234 //     to as late as possible -- just prior to parking.
1235 //     Given that, we'd call HSSEC after having returned from park(),
1236 //     but before attempting to acquire the monitor.  This is only a
1237 //     partial solution.  It avoids calling HSSEC while holding the
1238 //     monitor (good), but it still increases successor reacquisition latency --
1239 //     the interval between unparking a successor and the time the successor
1240 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1241 //     If we use this technique we can also avoid EnterI()-exit() loop
1242 //     in ::enter() where we iteratively drop the lock and then attempt
1243 //     to reacquire it after suspending.
1244 //
1245 // B.  In the future we might fold all the suspend bits into a
1246 //     composite per-thread suspend flag and then update it with CAS().
1247 //     Alternately, a Dekker-like mechanism with multiple variables
1248 //     would suffice:
1249 //       ST Self->_suspend_equivalent = false
1250 //       MEMBAR
1251 //       LD Self_>_suspend_flags
1252 //
1253 
1254 
1255 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1256    int Mode = Knob_FastHSSEC ;
1257    if (Mode && !jSelf->is_external_suspend()) {
1258       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1259       jSelf->clear_suspend_equivalent() ;
1260       if (2 == Mode) OrderAccess::storeload() ;
1261       if (!jSelf->is_external_suspend()) return false ;
1262       // We raced a suspension -- fall thru into the slow path
1263       TEVENT (ExitSuspendEquivalent - raced) ;
1264       jSelf->set_suspend_equivalent() ;
1265    }
1266    return jSelf->handle_special_suspend_equivalent_condition() ;
1267 }
1268 
1269 
1270 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1271    assert (_owner == Self, "invariant") ;
1272 
1273    // Exit protocol:
1274    // 1. ST _succ = wakee
1275    // 2. membar #loadstore|#storestore;
1276    // 2. ST _owner = NULL
1277    // 3. unpark(wakee)
1278 
1279    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1280    ParkEvent * Trigger = Wakee->_event ;
1281 
1282    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1283    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1284    // out-of-scope (non-extant).
1285    Wakee  = NULL ;
1286 
1287    // Drop the lock
1288    OrderAccess::release_store_ptr (&_owner, NULL) ;
1289    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1290 
1291    if (SafepointSynchronize::do_call_back()) {
1292       TEVENT (unpark before SAFEPOINT) ;
1293    }
1294 
1295    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1296    Trigger->unpark() ;
1297 
1298    // Maintain stats and report events to JVMTI
1299    if (ObjectMonitor::_sync_Parks != NULL) {
1300       ObjectMonitor::_sync_Parks->inc() ;
1301    }
1302 }
1303 
1304 
1305 // -----------------------------------------------------------------------------
1306 // Class Loader deadlock handling.
1307 //
1308 // complete_exit exits a lock returning recursion count
1309 // complete_exit/reenter operate as a wait without waiting
1310 // complete_exit requires an inflated monitor
1311 // The _owner field is not always the Thread addr even with an
1312 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1313 // thread due to contention.
1314 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1315    Thread * const Self = THREAD;
1316    assert(Self->is_Java_thread(), "Must be Java thread!");
1317    JavaThread *jt = (JavaThread *)THREAD;
1318 
1319    DeferredInitialize();
1320 
1321    if (THREAD != _owner) {
1322     if (THREAD->is_lock_owned ((address)_owner)) {
1323        assert(_recursions == 0, "internal state error");
1324        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1325        _recursions = 0 ;
1326        OwnerIsThread = 1 ;
1327     }
1328    }
1329 
1330    guarantee(Self == _owner, "complete_exit not owner");
1331    intptr_t save = _recursions; // record the old recursion count
1332    _recursions = 0;        // set the recursion level to be 0
1333    exit (true, Self) ;           // exit the monitor
1334    guarantee (_owner != Self, "invariant");
1335    return save;
1336 }
1337 
1338 // reenter() enters a lock and sets recursion count
1339 // complete_exit/reenter operate as a wait without waiting
1340 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1341    Thread * const Self = THREAD;
1342    assert(Self->is_Java_thread(), "Must be Java thread!");
1343    JavaThread *jt = (JavaThread *)THREAD;
1344 
1345    guarantee(_owner != Self, "reenter already owner");
1346    enter (THREAD);       // enter the monitor
1347    guarantee (_recursions == 0, "reenter recursion");
1348    _recursions = recursions;
1349    return;
1350 }
1351 
1352 
1353 // -----------------------------------------------------------------------------
1354 // A macro is used below because there may already be a pending
1355 // exception which should not abort the execution of the routines
1356 // which use this (which is why we don't put this into check_slow and
1357 // call it with a CHECK argument).
1358 
1359 #define CHECK_OWNER()                                                             \
1360   do {                                                                            \
1361     if (THREAD != _owner) {                                                       \
1362       if (THREAD->is_lock_owned((address) _owner)) {                              \
1363         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1364         _recursions = 0;                                                          \
1365         OwnerIsThread = 1 ;                                                       \
1366       } else {                                                                    \
1367         TEVENT (Throw IMSX) ;                                                     \
1368         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1369       }                                                                           \
1370     }                                                                             \
1371   } while (false)
1372 
1373 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1374 // TODO-FIXME: remove check_slow() -- it's likely dead.
1375 
1376 void ObjectMonitor::check_slow(TRAPS) {
1377   TEVENT (check_slow - throw IMSX) ;
1378   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1379   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1380 }
1381 
1382 static int Adjust (volatile int * adr, int dx) {
1383   int v ;
1384   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1385   return v ;
1386 }
1387 
1388 // helper method for posting a monitor wait event
1389 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1390                                                            jlong notifier_tid,
1391                                                            jlong timeout,
1392                                                            bool timedout) {
1393   event->set_klass(((oop)this->object())->klass());
1394   event->set_timeout((TYPE_ULONG)timeout);
1395   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1396   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1397   event->set_timedOut((TYPE_BOOLEAN)timedout);
1398   event->commit();
1399 }
1400 
1401 // -----------------------------------------------------------------------------
1402 // Wait/Notify/NotifyAll
1403 //
1404 // Note: a subset of changes to ObjectMonitor::wait()
1405 // will need to be replicated in complete_exit above
1406 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1407    Thread * const Self = THREAD ;
1408    assert(Self->is_Java_thread(), "Must be Java thread!");
1409    JavaThread *jt = (JavaThread *)THREAD;
1410 
1411    DeferredInitialize () ;
1412 
1413    // Throw IMSX or IEX.
1414    CHECK_OWNER();
1415 
1416    EventJavaMonitorWait event;
1417 
1418    // check for a pending interrupt
1419    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1420      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1421      if (JvmtiExport::should_post_monitor_waited()) {
1422         // Note: 'false' parameter is passed here because the
1423         // wait was not timed out due to thread interrupt.
1424         JvmtiExport::post_monitor_waited(jt, this, false);
1425      }
1426      if (event.should_commit()) {
1427        post_monitor_wait_event(&event, 0, millis, false);
1428      }
1429      TEVENT (Wait - Throw IEX) ;
1430      THROW(vmSymbols::java_lang_InterruptedException());
1431      return ;
1432    }
1433 
1434    TEVENT (Wait) ;
1435 
1436    assert (Self->_Stalled == 0, "invariant") ;
1437    Self->_Stalled = intptr_t(this) ;
1438    jt->set_current_waiting_monitor(this);
1439 
1440    // create a node to be put into the queue
1441    // Critically, after we reset() the event but prior to park(), we must check
1442    // for a pending interrupt.
1443    ObjectWaiter node(Self);
1444    node.TState = ObjectWaiter::TS_WAIT ;
1445    Self->_ParkEvent->reset() ;
1446    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1447 
1448    // Enter the waiting queue, which is a circular doubly linked list in this case
1449    // but it could be a priority queue or any data structure.
1450    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1451    // by the the owner of the monitor *except* in the case where park()
1452    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1453    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1454 
1455    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1456    AddWaiter (&node) ;
1457    Thread::SpinRelease (&_WaitSetLock) ;
1458 
1459    if ((SyncFlags & 4) == 0) {
1460       _Responsible = NULL ;
1461    }
1462    intptr_t save = _recursions; // record the old recursion count
1463    _waiters++;                  // increment the number of waiters
1464    _recursions = 0;             // set the recursion level to be 1
1465    exit (true, Self) ;                    // exit the monitor
1466    guarantee (_owner != Self, "invariant") ;
1467 
1468    // As soon as the ObjectMonitor's ownership is dropped in the exit()
1469    // call above, another thread can enter() the ObjectMonitor, do the
1470    // notify(), and exit() the ObjectMonitor. If the other thread's
1471    // exit() call chooses this thread as the successor and the unpark()
1472    // call happens to occur while this thread is posting a
1473    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
1474    // handler using RawMonitors and consuming the unpark().
1475    //
1476    // To avoid the problem, we re-post the event. This does no harm
1477    // even if the original unpark() was not consumed because we are the
1478    // chosen successor for this monitor.
1479    if (node._notified != 0 && _succ == Self) {
1480       node._event->unpark();
1481    }
1482 
1483    // The thread is on the WaitSet list - now park() it.
1484    // On MP systems it's conceivable that a brief spin before we park
1485    // could be profitable.
1486    //
1487    // TODO-FIXME: change the following logic to a loop of the form
1488    //   while (!timeout && !interrupted && _notified == 0) park()
1489 
1490    int ret = OS_OK ;
1491    int WasNotified = 0 ;
1492    { // State transition wrappers
1493      OSThread* osthread = Self->osthread();
1494      OSThreadWaitState osts(osthread, true);
1495      {
1496        ThreadBlockInVM tbivm(jt);
1497        // Thread is in thread_blocked state and oop access is unsafe.
1498        jt->set_suspend_equivalent();
1499 
1500        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1501            // Intentionally empty
1502        } else
1503        if (node._notified == 0) {
1504          if (millis <= 0) {
1505             Self->_ParkEvent->park () ;
1506          } else {
1507             ret = Self->_ParkEvent->park (millis) ;
1508          }
1509        }
1510 
1511        // were we externally suspended while we were waiting?
1512        if (ExitSuspendEquivalent (jt)) {
1513           // TODO-FIXME: add -- if succ == Self then succ = null.
1514           jt->java_suspend_self();
1515        }
1516 
1517      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1518 
1519 
1520      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1521      // from the WaitSet to the EntryList.
1522      // See if we need to remove Node from the WaitSet.
1523      // We use double-checked locking to avoid grabbing _WaitSetLock
1524      // if the thread is not on the wait queue.
1525      //
1526      // Note that we don't need a fence before the fetch of TState.
1527      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1528      // written by the is thread. (perhaps the fetch might even be satisfied
1529      // by a look-aside into the processor's own store buffer, although given
1530      // the length of the code path between the prior ST and this load that's
1531      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1532      // then we'll acquire the lock and then re-fetch a fresh TState value.
1533      // That is, we fail toward safety.
1534 
1535      if (node.TState == ObjectWaiter::TS_WAIT) {
1536          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1537          if (node.TState == ObjectWaiter::TS_WAIT) {
1538             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1539             assert(node._notified == 0, "invariant");
1540             node.TState = ObjectWaiter::TS_RUN ;
1541          }
1542          Thread::SpinRelease (&_WaitSetLock) ;
1543      }
1544 
1545      // The thread is now either on off-list (TS_RUN),
1546      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1547      // The Node's TState variable is stable from the perspective of this thread.
1548      // No other threads will asynchronously modify TState.
1549      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1550      OrderAccess::loadload() ;
1551      if (_succ == Self) _succ = NULL ;
1552      WasNotified = node._notified ;
1553 
1554      // Reentry phase -- reacquire the monitor.
1555      // re-enter contended monitor after object.wait().
1556      // retain OBJECT_WAIT state until re-enter successfully completes
1557      // Thread state is thread_in_vm and oop access is again safe,
1558      // although the raw address of the object may have changed.
1559      // (Don't cache naked oops over safepoints, of course).
1560 
1561      // post monitor waited event. Note that this is past-tense, we are done waiting.
1562      if (JvmtiExport::should_post_monitor_waited()) {
1563        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1564      }
1565 
1566      if (event.should_commit()) {
1567        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1568      }
1569 
1570      OrderAccess::fence() ;
1571 
1572      assert (Self->_Stalled != 0, "invariant") ;
1573      Self->_Stalled = 0 ;
1574 
1575      assert (_owner != Self, "invariant") ;
1576      ObjectWaiter::TStates v = node.TState ;
1577      if (v == ObjectWaiter::TS_RUN) {
1578          enter (Self) ;
1579      } else {
1580          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1581          ReenterI (Self, &node) ;
1582          node.wait_reenter_end(this);
1583      }
1584 
1585      // Self has reacquired the lock.
1586      // Lifecycle - the node representing Self must not appear on any queues.
1587      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1588      // want residual elements associated with this thread left on any lists.
1589      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1590      assert    (_owner == Self, "invariant") ;
1591      assert    (_succ != Self , "invariant") ;
1592    } // OSThreadWaitState()
1593 
1594    jt->set_current_waiting_monitor(NULL);
1595 
1596    guarantee (_recursions == 0, "invariant") ;
1597    _recursions = save;     // restore the old recursion count
1598    _waiters--;             // decrement the number of waiters
1599 
1600    // Verify a few postconditions
1601    assert (_owner == Self       , "invariant") ;
1602    assert (_succ  != Self       , "invariant") ;
1603    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1604 
1605    if (SyncFlags & 32) {
1606       OrderAccess::fence() ;
1607    }
1608 
1609    // check if the notification happened
1610    if (!WasNotified) {
1611      // no, it could be timeout or Thread.interrupt() or both
1612      // check for interrupt event, otherwise it is timeout
1613      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1614        TEVENT (Wait - throw IEX from epilog) ;
1615        THROW(vmSymbols::java_lang_InterruptedException());
1616      }
1617    }
1618 
1619    // NOTE: Spurious wake up will be consider as timeout.
1620    // Monitor notify has precedence over thread interrupt.
1621 }
1622 
1623 
1624 // Consider:
1625 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1626 // then instead of transferring a thread from the WaitSet to the EntryList
1627 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1628 
1629 void ObjectMonitor::notify(TRAPS) {
1630   CHECK_OWNER();
1631   if (_WaitSet == NULL) {
1632      TEVENT (Empty-Notify) ;
1633      return ;
1634   }
1635   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1636 
1637   int Policy = Knob_MoveNotifyee ;
1638 
1639   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1640   ObjectWaiter * iterator = DequeueWaiter() ;
1641   if (iterator != NULL) {
1642      TEVENT (Notify1 - Transfer) ;
1643      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1644      guarantee (iterator->_notified == 0, "invariant") ;
1645      if (Policy != 4) {
1646         iterator->TState = ObjectWaiter::TS_ENTER ;
1647      }
1648      iterator->_notified = 1 ;
1649      Thread * Self = THREAD;
1650      iterator->_notifier_tid = Self->osthread()->thread_id();
1651 
1652      ObjectWaiter * List = _EntryList ;
1653      if (List != NULL) {
1654         assert (List->_prev == NULL, "invariant") ;
1655         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1656         assert (List != iterator, "invariant") ;
1657      }
1658 
1659      if (Policy == 0) {       // prepend to EntryList
1660          if (List == NULL) {
1661              iterator->_next = iterator->_prev = NULL ;
1662              _EntryList = iterator ;
1663          } else {
1664              List->_prev = iterator ;
1665              iterator->_next = List ;
1666              iterator->_prev = NULL ;
1667              _EntryList = iterator ;
1668         }
1669      } else
1670      if (Policy == 1) {      // append to EntryList
1671          if (List == NULL) {
1672              iterator->_next = iterator->_prev = NULL ;
1673              _EntryList = iterator ;
1674          } else {
1675             // CONSIDER:  finding the tail currently requires a linear-time walk of
1676             // the EntryList.  We can make tail access constant-time by converting to
1677             // a CDLL instead of using our current DLL.
1678             ObjectWaiter * Tail ;
1679             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1680             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1681             Tail->_next = iterator ;
1682             iterator->_prev = Tail ;
1683             iterator->_next = NULL ;
1684         }
1685      } else
1686      if (Policy == 2) {      // prepend to cxq
1687          // prepend to cxq
1688          if (List == NULL) {
1689              iterator->_next = iterator->_prev = NULL ;
1690              _EntryList = iterator ;
1691          } else {
1692             iterator->TState = ObjectWaiter::TS_CXQ ;
1693             for (;;) {
1694                 ObjectWaiter * Front = _cxq ;
1695                 iterator->_next = Front ;
1696                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1697                     break ;
1698                 }
1699             }
1700          }
1701      } else
1702      if (Policy == 3) {      // append to cxq
1703         iterator->TState = ObjectWaiter::TS_CXQ ;
1704         for (;;) {
1705             ObjectWaiter * Tail ;
1706             Tail = _cxq ;
1707             if (Tail == NULL) {
1708                 iterator->_next = NULL ;
1709                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1710                    break ;
1711                 }
1712             } else {
1713                 while (Tail->_next != NULL) Tail = Tail->_next ;
1714                 Tail->_next = iterator ;
1715                 iterator->_prev = Tail ;
1716                 iterator->_next = NULL ;
1717                 break ;
1718             }
1719         }
1720      } else {
1721         ParkEvent * ev = iterator->_event ;
1722         iterator->TState = ObjectWaiter::TS_RUN ;
1723         OrderAccess::fence() ;
1724         ev->unpark() ;
1725      }
1726 
1727      if (Policy < 4) {
1728        iterator->wait_reenter_begin(this);
1729      }
1730 
1731      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1732      // move the add-to-EntryList operation, above, outside the critical section
1733      // protected by _WaitSetLock.  In practice that's not useful.  With the
1734      // exception of  wait() timeouts and interrupts the monitor owner
1735      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1736      // on _WaitSetLock so it's not profitable to reduce the length of the
1737      // critical section.
1738   }
1739 
1740   Thread::SpinRelease (&_WaitSetLock) ;
1741 
1742   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1743      ObjectMonitor::_sync_Notifications->inc() ;
1744   }
1745 }
1746 
1747 
1748 void ObjectMonitor::notifyAll(TRAPS) {
1749   CHECK_OWNER();
1750   ObjectWaiter* iterator;
1751   if (_WaitSet == NULL) {
1752       TEVENT (Empty-NotifyAll) ;
1753       return ;
1754   }
1755   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1756 
1757   int Policy = Knob_MoveNotifyee ;
1758   int Tally = 0 ;
1759   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1760 
1761   for (;;) {
1762      iterator = DequeueWaiter () ;
1763      if (iterator == NULL) break ;
1764      TEVENT (NotifyAll - Transfer1) ;
1765      ++Tally ;
1766 
1767      // Disposition - what might we do with iterator ?
1768      // a.  add it directly to the EntryList - either tail or head.
1769      // b.  push it onto the front of the _cxq.
1770      // For now we use (a).
1771 
1772      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1773      guarantee (iterator->_notified == 0, "invariant") ;
1774      iterator->_notified = 1 ;
1775      Thread * Self = THREAD;
1776      iterator->_notifier_tid = Self->osthread()->thread_id();
1777      if (Policy != 4) {
1778         iterator->TState = ObjectWaiter::TS_ENTER ;
1779      }
1780 
1781      ObjectWaiter * List = _EntryList ;
1782      if (List != NULL) {
1783         assert (List->_prev == NULL, "invariant") ;
1784         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1785         assert (List != iterator, "invariant") ;
1786      }
1787 
1788      if (Policy == 0) {       // prepend to EntryList
1789          if (List == NULL) {
1790              iterator->_next = iterator->_prev = NULL ;
1791              _EntryList = iterator ;
1792          } else {
1793              List->_prev = iterator ;
1794              iterator->_next = List ;
1795              iterator->_prev = NULL ;
1796              _EntryList = iterator ;
1797         }
1798      } else
1799      if (Policy == 1) {      // append to EntryList
1800          if (List == NULL) {
1801              iterator->_next = iterator->_prev = NULL ;
1802              _EntryList = iterator ;
1803          } else {
1804             // CONSIDER:  finding the tail currently requires a linear-time walk of
1805             // the EntryList.  We can make tail access constant-time by converting to
1806             // a CDLL instead of using our current DLL.
1807             ObjectWaiter * Tail ;
1808             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1809             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1810             Tail->_next = iterator ;
1811             iterator->_prev = Tail ;
1812             iterator->_next = NULL ;
1813         }
1814      } else
1815      if (Policy == 2) {      // prepend to cxq
1816          // prepend to cxq
1817          iterator->TState = ObjectWaiter::TS_CXQ ;
1818          for (;;) {
1819              ObjectWaiter * Front = _cxq ;
1820              iterator->_next = Front ;
1821              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1822                  break ;
1823              }
1824          }
1825      } else
1826      if (Policy == 3) {      // append to cxq
1827         iterator->TState = ObjectWaiter::TS_CXQ ;
1828         for (;;) {
1829             ObjectWaiter * Tail ;
1830             Tail = _cxq ;
1831             if (Tail == NULL) {
1832                 iterator->_next = NULL ;
1833                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1834                    break ;
1835                 }
1836             } else {
1837                 while (Tail->_next != NULL) Tail = Tail->_next ;
1838                 Tail->_next = iterator ;
1839                 iterator->_prev = Tail ;
1840                 iterator->_next = NULL ;
1841                 break ;
1842             }
1843         }
1844      } else {
1845         ParkEvent * ev = iterator->_event ;
1846         iterator->TState = ObjectWaiter::TS_RUN ;
1847         OrderAccess::fence() ;
1848         ev->unpark() ;
1849      }
1850 
1851      if (Policy < 4) {
1852        iterator->wait_reenter_begin(this);
1853      }
1854 
1855      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1856      // move the add-to-EntryList operation, above, outside the critical section
1857      // protected by _WaitSetLock.  In practice that's not useful.  With the
1858      // exception of  wait() timeouts and interrupts the monitor owner
1859      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1860      // on _WaitSetLock so it's not profitable to reduce the length of the
1861      // critical section.
1862   }
1863 
1864   Thread::SpinRelease (&_WaitSetLock) ;
1865 
1866   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1867      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1868   }
1869 }
1870 
1871 // -----------------------------------------------------------------------------
1872 // Adaptive Spinning Support
1873 //
1874 // Adaptive spin-then-block - rational spinning
1875 //
1876 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1877 // algorithm.  On high order SMP systems it would be better to start with
1878 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1879 // a contending thread could enqueue itself on the cxq and then spin locally
1880 // on a thread-specific variable such as its ParkEvent._Event flag.
1881 // That's left as an exercise for the reader.  Note that global spinning is
1882 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1883 // low latency and massive bandwidth.
1884 //
1885 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1886 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1887 // (duration) or we can fix the count at approximately the duration of
1888 // a context switch and vary the frequency.   Of course we could also
1889 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1890 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1891 //
1892 // This implementation varies the duration "D", where D varies with
1893 // the success rate of recent spin attempts. (D is capped at approximately
1894 // length of a round-trip context switch).  The success rate for recent
1895 // spin attempts is a good predictor of the success rate of future spin
1896 // attempts.  The mechanism adapts automatically to varying critical
1897 // section length (lock modality), system load and degree of parallelism.
1898 // D is maintained per-monitor in _SpinDuration and is initialized
1899 // optimistically.  Spin frequency is fixed at 100%.
1900 //
1901 // Note that _SpinDuration is volatile, but we update it without locks
1902 // or atomics.  The code is designed so that _SpinDuration stays within
1903 // a reasonable range even in the presence of races.  The arithmetic
1904 // operations on _SpinDuration are closed over the domain of legal values,
1905 // so at worst a race will install and older but still legal value.
1906 // At the very worst this introduces some apparent non-determinism.
1907 // We might spin when we shouldn't or vice-versa, but since the spin
1908 // count are relatively short, even in the worst case, the effect is harmless.
1909 //
1910 // Care must be taken that a low "D" value does not become an
1911 // an absorbing state.  Transient spinning failures -- when spinning
1912 // is overall profitable -- should not cause the system to converge
1913 // on low "D" values.  We want spinning to be stable and predictable
1914 // and fairly responsive to change and at the same time we don't want
1915 // it to oscillate, become metastable, be "too" non-deterministic,
1916 // or converge on or enter undesirable stable absorbing states.
1917 //
1918 // We implement a feedback-based control system -- using past behavior
1919 // to predict future behavior.  We face two issues: (a) if the
1920 // input signal is random then the spin predictor won't provide optimal
1921 // results, and (b) if the signal frequency is too high then the control
1922 // system, which has some natural response lag, will "chase" the signal.
1923 // (b) can arise from multimodal lock hold times.  Transient preemption
1924 // can also result in apparent bimodal lock hold times.
1925 // Although sub-optimal, neither condition is particularly harmful, as
1926 // in the worst-case we'll spin when we shouldn't or vice-versa.
1927 // The maximum spin duration is rather short so the failure modes aren't bad.
1928 // To be conservative, I've tuned the gain in system to bias toward
1929 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1930 // "rings" or oscillates between spinning and not spinning.  This happens
1931 // when spinning is just on the cusp of profitability, however, so the
1932 // situation is not dire.  The state is benign -- there's no need to add
1933 // hysteresis control to damp the transition rate between spinning and
1934 // not spinning.
1935 //
1936 
1937 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1938 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1939 
1940 // Spinning: Fixed frequency (100%), vary duration
1941 
1942 
1943 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1944 
1945     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1946     int ctr = Knob_FixedSpin ;
1947     if (ctr != 0) {
1948         while (--ctr >= 0) {
1949             if (TryLock (Self) > 0) return 1 ;
1950             SpinPause () ;
1951         }
1952         return 0 ;
1953     }
1954 
1955     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1956       if (TryLock(Self) > 0) {
1957         // Increase _SpinDuration ...
1958         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1959         // Raising _SpurDuration to the poverty line is key.
1960         int x = _SpinDuration ;
1961         if (x < Knob_SpinLimit) {
1962            if (x < Knob_Poverty) x = Knob_Poverty ;
1963            _SpinDuration = x + Knob_BonusB ;
1964         }
1965         return 1 ;
1966       }
1967       SpinPause () ;
1968     }
1969 
1970     // Admission control - verify preconditions for spinning
1971     //
1972     // We always spin a little bit, just to prevent _SpinDuration == 0 from
1973     // becoming an absorbing state.  Put another way, we spin briefly to
1974     // sample, just in case the system load, parallelism, contention, or lock
1975     // modality changed.
1976     //
1977     // Consider the following alternative:
1978     // Periodically set _SpinDuration = _SpinLimit and try a long/full
1979     // spin attempt.  "Periodically" might mean after a tally of
1980     // the # of failed spin attempts (or iterations) reaches some threshold.
1981     // This takes us into the realm of 1-out-of-N spinning, where we
1982     // hold the duration constant but vary the frequency.
1983 
1984     ctr = _SpinDuration  ;
1985     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
1986     if (ctr <= 0) return 0 ;
1987 
1988     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
1989     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1990        TEVENT (Spin abort - notrunnable [TOP]);
1991        return 0 ;
1992     }
1993 
1994     int MaxSpin = Knob_MaxSpinners ;
1995     if (MaxSpin >= 0) {
1996        if (_Spinner > MaxSpin) {
1997           TEVENT (Spin abort -- too many spinners) ;
1998           return 0 ;
1999        }
2000        // Slightly racy, but benign ...
2001        Adjust (&_Spinner, 1) ;
2002     }
2003 
2004     // We're good to spin ... spin ingress.
2005     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2006     // when preparing to LD...CAS _owner, etc and the CAS is likely
2007     // to succeed.
2008     int hits    = 0 ;
2009     int msk     = 0 ;
2010     int caspty  = Knob_CASPenalty ;
2011     int oxpty   = Knob_OXPenalty ;
2012     int sss     = Knob_SpinSetSucc ;
2013     if (sss && _succ == NULL ) _succ = Self ;
2014     Thread * prv = NULL ;
2015 
2016     // There are three ways to exit the following loop:
2017     // 1.  A successful spin where this thread has acquired the lock.
2018     // 2.  Spin failure with prejudice
2019     // 3.  Spin failure without prejudice
2020 
2021     while (--ctr >= 0) {
2022 
2023       // Periodic polling -- Check for pending GC
2024       // Threads may spin while they're unsafe.
2025       // We don't want spinning threads to delay the JVM from reaching
2026       // a stop-the-world safepoint or to steal cycles from GC.
2027       // If we detect a pending safepoint we abort in order that
2028       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2029       // this thread, if safe, doesn't steal cycles from GC.
2030       // This is in keeping with the "no loitering in runtime" rule.
2031       // We periodically check to see if there's a safepoint pending.
2032       if ((ctr & 0xFF) == 0) {
2033          if (SafepointSynchronize::do_call_back()) {
2034             TEVENT (Spin: safepoint) ;
2035             goto Abort ;           // abrupt spin egress
2036          }
2037          if (Knob_UsePause & 1) SpinPause () ;
2038 
2039          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2040          if (hits > 50 && scb != NULL) {
2041             int abend = (*scb)(SpinCallbackArgument, 0) ;
2042          }
2043       }
2044 
2045       if (Knob_UsePause & 2) SpinPause() ;
2046 
2047       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2048       // This is useful on classic SMP systems, but is of less utility on
2049       // N1-style CMT platforms.
2050       //
2051       // Trade-off: lock acquisition latency vs coherency bandwidth.
2052       // Lock hold times are typically short.  A histogram
2053       // of successful spin attempts shows that we usually acquire
2054       // the lock early in the spin.  That suggests we want to
2055       // sample _owner frequently in the early phase of the spin,
2056       // but then back-off and sample less frequently as the spin
2057       // progresses.  The back-off makes a good citizen on SMP big
2058       // SMP systems.  Oversampling _owner can consume excessive
2059       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2060       // can inadvertently interfere with the the ST m->owner=null.
2061       // executed by the lock owner.
2062       if (ctr & msk) continue ;
2063       ++hits ;
2064       if ((hits & 0xF) == 0) {
2065         // The 0xF, above, corresponds to the exponent.
2066         // Consider: (msk+1)|msk
2067         msk = ((msk << 2)|3) & BackOffMask ;
2068       }
2069 
2070       // Probe _owner with TATAS
2071       // If this thread observes the monitor transition or flicker
2072       // from locked to unlocked to locked, then the odds that this
2073       // thread will acquire the lock in this spin attempt go down
2074       // considerably.  The same argument applies if the CAS fails
2075       // or if we observe _owner change from one non-null value to
2076       // another non-null value.   In such cases we might abort
2077       // the spin without prejudice or apply a "penalty" to the
2078       // spin count-down variable "ctr", reducing it by 100, say.
2079 
2080       Thread * ox = (Thread *) _owner ;
2081       if (ox == NULL) {
2082          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2083          if (ox == NULL) {
2084             // The CAS succeeded -- this thread acquired ownership
2085             // Take care of some bookkeeping to exit spin state.
2086             if (sss && _succ == Self) {
2087                _succ = NULL ;
2088             }
2089             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2090 
2091             // Increase _SpinDuration :
2092             // The spin was successful (profitable) so we tend toward
2093             // longer spin attempts in the future.
2094             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2095             // If we acquired the lock early in the spin cycle it
2096             // makes sense to increase _SpinDuration proportionally.
2097             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2098             int x = _SpinDuration ;
2099             if (x < Knob_SpinLimit) {
2100                 if (x < Knob_Poverty) x = Knob_Poverty ;
2101                 _SpinDuration = x + Knob_Bonus ;
2102             }
2103             return 1 ;
2104          }
2105 
2106          // The CAS failed ... we can take any of the following actions:
2107          // * penalize: ctr -= Knob_CASPenalty
2108          // * exit spin with prejudice -- goto Abort;
2109          // * exit spin without prejudice.
2110          // * Since CAS is high-latency, retry again immediately.
2111          prv = ox ;
2112          TEVENT (Spin: cas failed) ;
2113          if (caspty == -2) break ;
2114          if (caspty == -1) goto Abort ;
2115          ctr -= caspty ;
2116          continue ;
2117       }
2118 
2119       // Did lock ownership change hands ?
2120       if (ox != prv && prv != NULL ) {
2121           TEVENT (spin: Owner changed)
2122           if (oxpty == -2) break ;
2123           if (oxpty == -1) goto Abort ;
2124           ctr -= oxpty ;
2125       }
2126       prv = ox ;
2127 
2128       // Abort the spin if the owner is not executing.
2129       // The owner must be executing in order to drop the lock.
2130       // Spinning while the owner is OFFPROC is idiocy.
2131       // Consider: ctr -= RunnablePenalty ;
2132       if (Knob_OState && NotRunnable (Self, ox)) {
2133          TEVENT (Spin abort - notrunnable);
2134          goto Abort ;
2135       }
2136       if (sss && _succ == NULL ) _succ = Self ;
2137    }
2138 
2139    // Spin failed with prejudice -- reduce _SpinDuration.
2140    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2141    // AIMD is globally stable.
2142    TEVENT (Spin failure) ;
2143    {
2144      int x = _SpinDuration ;
2145      if (x > 0) {
2146         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2147         // This is globally sample and tends to damp the response.
2148         x -= Knob_Penalty ;
2149         if (x < 0) x = 0 ;
2150         _SpinDuration = x ;
2151      }
2152    }
2153 
2154  Abort:
2155    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2156    if (sss && _succ == Self) {
2157       _succ = NULL ;
2158       // Invariant: after setting succ=null a contending thread
2159       // must recheck-retry _owner before parking.  This usually happens
2160       // in the normal usage of TrySpin(), but it's safest
2161       // to make TrySpin() as foolproof as possible.
2162       OrderAccess::fence() ;
2163       if (TryLock(Self) > 0) return 1 ;
2164    }
2165    return 0 ;
2166 }
2167 
2168 // NotRunnable() -- informed spinning
2169 //
2170 // Don't bother spinning if the owner is not eligible to drop the lock.
2171 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2172 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2173 // The thread must be runnable in order to drop the lock in timely fashion.
2174 // If the _owner is not runnable then spinning will not likely be
2175 // successful (profitable).
2176 //
2177 // Beware -- the thread referenced by _owner could have died
2178 // so a simply fetch from _owner->_thread_state might trap.
2179 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2180 // Because of the lifecycle issues the schedctl and _thread_state values
2181 // observed by NotRunnable() might be garbage.  NotRunnable must
2182 // tolerate this and consider the observed _thread_state value
2183 // as advisory.
2184 //
2185 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2186 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2187 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2188 // with the LSB of _owner.  Another option would be to probablistically probe
2189 // the putative _owner->TypeTag value.
2190 //
2191 // Checking _thread_state isn't perfect.  Even if the thread is
2192 // in_java it might be blocked on a page-fault or have been preempted
2193 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2194 // with schedctl.sc_state gives us a good picture of what the
2195 // thread is doing, however.
2196 //
2197 // TODO: check schedctl.sc_state.
2198 // We'll need to use SafeFetch32() to read from the schedctl block.
2199 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2200 //
2201 // The return value from NotRunnable() is *advisory* -- the
2202 // result is based on sampling and is not necessarily coherent.
2203 // The caller must tolerate false-negative and false-positive errors.
2204 // Spinning, in general, is probabilistic anyway.
2205 
2206 
2207 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2208     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2209     if (!OwnerIsThread) return 0 ;
2210 
2211     if (ox == NULL) return 0 ;
2212 
2213     // Avoid transitive spinning ...
2214     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2215     // Immediately after T1 acquires L it's possible that T2, also
2216     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2217     // This occurs transiently after T1 acquired L but before
2218     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2219     // its spin in this circumstance.
2220     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2221 
2222     if (BlockedOn == 1) return 1 ;
2223     if (BlockedOn != 0) {
2224       return BlockedOn != intptr_t(this) && _owner == ox ;
2225     }
2226 
2227     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2228     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2229     // consider also: jst != _thread_in_Java -- but that's overspecific.
2230     return jst == _thread_blocked || jst == _thread_in_native ;
2231 }
2232 
2233 
2234 // -----------------------------------------------------------------------------
2235 // WaitSet management ...
2236 
2237 ObjectWaiter::ObjectWaiter(Thread* thread) {
2238   _next     = NULL;
2239   _prev     = NULL;
2240   _notified = 0;
2241   TState    = TS_RUN ;
2242   _thread   = thread;
2243   _event    = thread->_ParkEvent ;
2244   _active   = false;
2245   assert (_event != NULL, "invariant") ;
2246 }
2247 
2248 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2249   JavaThread *jt = (JavaThread *)this->_thread;
2250   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2251 }
2252 
2253 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2254   JavaThread *jt = (JavaThread *)this->_thread;
2255   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2256 }
2257 
2258 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2259   assert(node != NULL, "should not dequeue NULL node");
2260   assert(node->_prev == NULL, "node already in list");
2261   assert(node->_next == NULL, "node already in list");
2262   // put node at end of queue (circular doubly linked list)
2263   if (_WaitSet == NULL) {
2264     _WaitSet = node;
2265     node->_prev = node;
2266     node->_next = node;
2267   } else {
2268     ObjectWaiter* head = _WaitSet ;
2269     ObjectWaiter* tail = head->_prev;
2270     assert(tail->_next == head, "invariant check");
2271     tail->_next = node;
2272     head->_prev = node;
2273     node->_next = head;
2274     node->_prev = tail;
2275   }
2276 }
2277 
2278 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2279   // dequeue the very first waiter
2280   ObjectWaiter* waiter = _WaitSet;
2281   if (waiter) {
2282     DequeueSpecificWaiter(waiter);
2283   }
2284   return waiter;
2285 }
2286 
2287 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2288   assert(node != NULL, "should not dequeue NULL node");
2289   assert(node->_prev != NULL, "node already removed from list");
2290   assert(node->_next != NULL, "node already removed from list");
2291   // when the waiter has woken up because of interrupt,
2292   // timeout or other spurious wake-up, dequeue the
2293   // waiter from waiting list
2294   ObjectWaiter* next = node->_next;
2295   if (next == node) {
2296     assert(node->_prev == node, "invariant check");
2297     _WaitSet = NULL;
2298   } else {
2299     ObjectWaiter* prev = node->_prev;
2300     assert(prev->_next == node, "invariant check");
2301     assert(next->_prev == node, "invariant check");
2302     next->_prev = prev;
2303     prev->_next = next;
2304     if (_WaitSet == node) {
2305       _WaitSet = next;
2306     }
2307   }
2308   node->_next = NULL;
2309   node->_prev = NULL;
2310 }
2311 
2312 // -----------------------------------------------------------------------------
2313 // PerfData support
2314 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2315 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2316 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2317 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2318 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2319 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2320 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2321 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2322 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2323 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2324 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2325 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2326 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2327 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2328 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2329 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2330 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2331 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2332 
2333 // One-shot global initialization for the sync subsystem.
2334 // We could also defer initialization and initialize on-demand
2335 // the first time we call inflate().  Initialization would
2336 // be protected - like so many things - by the MonitorCache_lock.
2337 
2338 void ObjectMonitor::Initialize () {
2339   static int InitializationCompleted = 0 ;
2340   assert (InitializationCompleted == 0, "invariant") ;
2341   InitializationCompleted = 1 ;
2342   if (UsePerfData) {
2343       EXCEPTION_MARK ;
2344       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2345       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2346       NEWPERFCOUNTER(_sync_Inflations) ;
2347       NEWPERFCOUNTER(_sync_Deflations) ;
2348       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2349       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2350       NEWPERFCOUNTER(_sync_Parks) ;
2351       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2352       NEWPERFCOUNTER(_sync_Notifications) ;
2353       NEWPERFCOUNTER(_sync_SlowEnter) ;
2354       NEWPERFCOUNTER(_sync_SlowExit) ;
2355       NEWPERFCOUNTER(_sync_SlowNotify) ;
2356       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2357       NEWPERFCOUNTER(_sync_FailedSpins) ;
2358       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2359       NEWPERFCOUNTER(_sync_PrivateA) ;
2360       NEWPERFCOUNTER(_sync_PrivateB) ;
2361       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2362       NEWPERFCOUNTER(_sync_MonScavenged) ;
2363       NEWPERFVARIABLE(_sync_MonExtant) ;
2364       #undef NEWPERFCOUNTER
2365   }
2366 }
2367 
2368 
2369 // Compile-time asserts
2370 // When possible, it's better to catch errors deterministically at
2371 // compile-time than at runtime.  The down-side to using compile-time
2372 // asserts is that error message -- often something about negative array
2373 // indices -- is opaque.
2374 
2375 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2376 
2377 void ObjectMonitor::ctAsserts() {
2378   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2379 }
2380 
2381 
2382 static char * kvGet (char * kvList, const char * Key) {
2383     if (kvList == NULL) return NULL ;
2384     size_t n = strlen (Key) ;
2385     char * Search ;
2386     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2387         if (strncmp (Search, Key, n) == 0) {
2388             if (Search[n] == '=') return Search + n + 1 ;
2389             if (Search[n] == 0)   return (char *) "1" ;
2390         }
2391     }
2392     return NULL ;
2393 }
2394 
2395 static int kvGetInt (char * kvList, const char * Key, int Default) {
2396     char * v = kvGet (kvList, Key) ;
2397     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2398     if (Knob_ReportSettings && v != NULL) {
2399         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2400         ::fflush (stdout) ;
2401     }
2402     return rslt ;
2403 }
2404 
2405 void ObjectMonitor::DeferredInitialize () {
2406   if (InitDone > 0) return ;
2407   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2408       while (InitDone != 1) ;
2409       return ;
2410   }
2411 
2412   // One-shot global initialization ...
2413   // The initialization is idempotent, so we don't need locks.
2414   // In the future consider doing this via os::init_2().
2415   // SyncKnobs consist of <Key>=<Value> pairs in the style
2416   // of environment variables.  Start by converting ':' to NUL.
2417 
2418   if (SyncKnobs == NULL) SyncKnobs = "" ;
2419 
2420   size_t sz = strlen (SyncKnobs) ;
2421   char * knobs = (char *) malloc (sz + 2) ;
2422   if (knobs == NULL) {
2423      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
2424      guarantee (0, "invariant") ;
2425   }
2426   strcpy (knobs, SyncKnobs) ;
2427   knobs[sz+1] = 0 ;
2428   for (char * p = knobs ; *p ; p++) {
2429      if (*p == ':') *p = 0 ;
2430   }
2431 
2432   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2433   SETKNOB(ReportSettings) ;
2434   SETKNOB(Verbose) ;
2435   SETKNOB(FixedSpin) ;
2436   SETKNOB(SpinLimit) ;
2437   SETKNOB(SpinBase) ;
2438   SETKNOB(SpinBackOff);
2439   SETKNOB(CASPenalty) ;
2440   SETKNOB(OXPenalty) ;
2441   SETKNOB(LogSpins) ;
2442   SETKNOB(SpinSetSucc) ;
2443   SETKNOB(SuccEnabled) ;
2444   SETKNOB(SuccRestrict) ;
2445   SETKNOB(Penalty) ;
2446   SETKNOB(Bonus) ;
2447   SETKNOB(BonusB) ;
2448   SETKNOB(Poverty) ;
2449   SETKNOB(SpinAfterFutile) ;
2450   SETKNOB(UsePause) ;
2451   SETKNOB(SpinEarly) ;
2452   SETKNOB(OState) ;
2453   SETKNOB(MaxSpinners) ;
2454   SETKNOB(PreSpin) ;
2455   SETKNOB(ExitPolicy) ;
2456   SETKNOB(QMode);
2457   SETKNOB(ResetEvent) ;
2458   SETKNOB(MoveNotifyee) ;
2459   SETKNOB(FastHSSEC) ;
2460   #undef SETKNOB
2461 
2462   if (os::is_MP()) {
2463      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2464      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2465      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2466   } else {
2467      Knob_SpinLimit = 0 ;
2468      Knob_SpinBase  = 0 ;
2469      Knob_PreSpin   = 0 ;
2470      Knob_FixedSpin = -1 ;
2471   }
2472 
2473   if (Knob_LogSpins == 0) {
2474      ObjectMonitor::_sync_FailedSpins = NULL ;
2475   }
2476 
2477   free (knobs) ;
2478   OrderAccess::fence() ;
2479   InitDone = 1 ;
2480 }
2481 
2482 #ifndef PRODUCT
2483 void ObjectMonitor::verify() {
2484 }
2485 
2486 void ObjectMonitor::print() {
2487 }
2488 #endif