1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 // Shared stub locations
  86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  87 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  88 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  92 
  93 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  97 
  98 #ifdef COMPILER2
  99 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 100 #endif // COMPILER2
 101 
 102 
 103 //----------------------------generate_stubs-----------------------------------
 104 void SharedRuntime::generate_stubs() {
 105   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 106   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 107   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 108   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 109   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 110   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 111 
 112 #ifdef COMPILER2
 113   // Vectors are generated only by C2.
 114   if (is_wide_vector(MaxVectorSize)) {
 115     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 116   }
 117 #endif // COMPILER2
 118   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 119   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 120 
 121   generate_deopt_blob();
 122 
 123 #ifdef COMPILER2
 124   generate_uncommon_trap_blob();
 125 #endif // COMPILER2
 126 }
 127 
 128 #include <math.h>
 129 
 130 // Implementation of SharedRuntime
 131 
 132 #ifndef PRODUCT
 133 // For statistics
 134 int SharedRuntime::_ic_miss_ctr = 0;
 135 int SharedRuntime::_wrong_method_ctr = 0;
 136 int SharedRuntime::_resolve_static_ctr = 0;
 137 int SharedRuntime::_resolve_virtual_ctr = 0;
 138 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 139 int SharedRuntime::_implicit_null_throws = 0;
 140 int SharedRuntime::_implicit_div0_throws = 0;
 141 int SharedRuntime::_throw_null_ctr = 0;
 142 
 143 int SharedRuntime::_nof_normal_calls = 0;
 144 int SharedRuntime::_nof_optimized_calls = 0;
 145 int SharedRuntime::_nof_inlined_calls = 0;
 146 int SharedRuntime::_nof_megamorphic_calls = 0;
 147 int SharedRuntime::_nof_static_calls = 0;
 148 int SharedRuntime::_nof_inlined_static_calls = 0;
 149 int SharedRuntime::_nof_interface_calls = 0;
 150 int SharedRuntime::_nof_optimized_interface_calls = 0;
 151 int SharedRuntime::_nof_inlined_interface_calls = 0;
 152 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 153 int SharedRuntime::_nof_removable_exceptions = 0;
 154 
 155 int SharedRuntime::_new_instance_ctr=0;
 156 int SharedRuntime::_new_array_ctr=0;
 157 int SharedRuntime::_multi1_ctr=0;
 158 int SharedRuntime::_multi2_ctr=0;
 159 int SharedRuntime::_multi3_ctr=0;
 160 int SharedRuntime::_multi4_ctr=0;
 161 int SharedRuntime::_multi5_ctr=0;
 162 int SharedRuntime::_mon_enter_stub_ctr=0;
 163 int SharedRuntime::_mon_exit_stub_ctr=0;
 164 int SharedRuntime::_mon_enter_ctr=0;
 165 int SharedRuntime::_mon_exit_ctr=0;
 166 int SharedRuntime::_partial_subtype_ctr=0;
 167 int SharedRuntime::_jbyte_array_copy_ctr=0;
 168 int SharedRuntime::_jshort_array_copy_ctr=0;
 169 int SharedRuntime::_jint_array_copy_ctr=0;
 170 int SharedRuntime::_jlong_array_copy_ctr=0;
 171 int SharedRuntime::_oop_array_copy_ctr=0;
 172 int SharedRuntime::_checkcast_array_copy_ctr=0;
 173 int SharedRuntime::_unsafe_array_copy_ctr=0;
 174 int SharedRuntime::_generic_array_copy_ctr=0;
 175 int SharedRuntime::_slow_array_copy_ctr=0;
 176 int SharedRuntime::_find_handler_ctr=0;
 177 int SharedRuntime::_rethrow_ctr=0;
 178 
 179 int     SharedRuntime::_ICmiss_index                    = 0;
 180 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 181 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 182 
 183 
 184 void SharedRuntime::trace_ic_miss(address at) {
 185   for (int i = 0; i < _ICmiss_index; i++) {
 186     if (_ICmiss_at[i] == at) {
 187       _ICmiss_count[i]++;
 188       return;
 189     }
 190   }
 191   int index = _ICmiss_index++;
 192   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 193   _ICmiss_at[index] = at;
 194   _ICmiss_count[index] = 1;
 195 }
 196 
 197 void SharedRuntime::print_ic_miss_histogram() {
 198   if (ICMissHistogram) {
 199     tty->print_cr ("IC Miss Histogram:");
 200     int tot_misses = 0;
 201     for (int i = 0; i < _ICmiss_index; i++) {
 202       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 203       tot_misses += _ICmiss_count[i];
 204     }
 205     tty->print_cr ("Total IC misses: %7d", tot_misses);
 206   }
 207 }
 208 #endif // PRODUCT
 209 
 210 #if INCLUDE_ALL_GCS
 211 
 212 // G1 write-barrier pre: executed before a pointer store.
 213 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 214   if (orig == NULL) {
 215     assert(false, "should be optimized out");
 216     return;
 217   }
 218   assert(orig->is_oop(true /* ignore mark word */), "Error");
 219   // store the original value that was in the field reference
 220   thread->satb_mark_queue().enqueue(orig);
 221 JRT_END
 222 
 223 // G1 write-barrier post: executed after a pointer store.
 224 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 225   thread->dirty_card_queue().enqueue(card_addr);
 226 JRT_END
 227 
 228 #endif // INCLUDE_ALL_GCS
 229 
 230 
 231 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 232   return x * y;
 233 JRT_END
 234 
 235 
 236 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 237   if (x == min_jlong && y == CONST64(-1)) {
 238     return x;
 239   } else {
 240     return x / y;
 241   }
 242 JRT_END
 243 
 244 
 245 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 246   if (x == min_jlong && y == CONST64(-1)) {
 247     return 0;
 248   } else {
 249     return x % y;
 250   }
 251 JRT_END
 252 
 253 
 254 const juint  float_sign_mask  = 0x7FFFFFFF;
 255 const juint  float_infinity   = 0x7F800000;
 256 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 257 const julong double_infinity  = CONST64(0x7FF0000000000000);
 258 
 259 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 260 #ifdef _WIN64
 261   // 64-bit Windows on amd64 returns the wrong values for
 262   // infinity operands.
 263   union { jfloat f; juint i; } xbits, ybits;
 264   xbits.f = x;
 265   ybits.f = y;
 266   // x Mod Infinity == x unless x is infinity
 267   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 268        ((ybits.i & float_sign_mask) == float_infinity) ) {
 269     return x;
 270   }
 271 #endif
 272   return ((jfloat)fmod((double)x,(double)y));
 273 JRT_END
 274 
 275 
 276 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 277 #ifdef _WIN64
 278   union { jdouble d; julong l; } xbits, ybits;
 279   xbits.d = x;
 280   ybits.d = y;
 281   // x Mod Infinity == x unless x is infinity
 282   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 283        ((ybits.l & double_sign_mask) == double_infinity) ) {
 284     return x;
 285   }
 286 #endif
 287   return ((jdouble)fmod((double)x,(double)y));
 288 JRT_END
 289 
 290 #ifdef __SOFTFP__
 291 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 292   return x + y;
 293 JRT_END
 294 
 295 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 296   return x - y;
 297 JRT_END
 298 
 299 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 300   return x * y;
 301 JRT_END
 302 
 303 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 304   return x / y;
 305 JRT_END
 306 
 307 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 308   return x + y;
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 312   return x - y;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 316   return x * y;
 317 JRT_END
 318 
 319 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 320   return x / y;
 321 JRT_END
 322 
 323 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 324   return (jfloat)x;
 325 JRT_END
 326 
 327 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 328   return (jdouble)x;
 329 JRT_END
 330 
 331 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 332   return (jdouble)x;
 333 JRT_END
 334 
 335 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 336   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 337 JRT_END
 338 
 339 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 340   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 341 JRT_END
 342 
 343 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 344   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 345 JRT_END
 346 
 347 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 348   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 349 JRT_END
 350 
 351 // Functions to return the opposite of the aeabi functions for nan.
 352 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 353   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 357   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 361   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 365   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 369   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 373   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 374 JRT_END
 375 
 376 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 377   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 378 JRT_END
 379 
 380 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 381   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 382 JRT_END
 383 
 384 // Intrinsics make gcc generate code for these.
 385 float  SharedRuntime::fneg(float f)   {
 386   return -f;
 387 }
 388 
 389 double SharedRuntime::dneg(double f)  {
 390   return -f;
 391 }
 392 
 393 #endif // __SOFTFP__
 394 
 395 #if defined(__SOFTFP__) || defined(E500V2)
 396 // Intrinsics make gcc generate code for these.
 397 double SharedRuntime::dabs(double f)  {
 398   return (f <= (double)0.0) ? (double)0.0 - f : f;
 399 }
 400 
 401 #endif
 402 
 403 #if defined(__SOFTFP__) || defined(PPC)
 404 double SharedRuntime::dsqrt(double f) {
 405   return sqrt(f);
 406 }
 407 #endif
 408 
 409 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 410   if (g_isnan(x))
 411     return 0;
 412   if (x >= (jfloat) max_jint)
 413     return max_jint;
 414   if (x <= (jfloat) min_jint)
 415     return min_jint;
 416   return (jint) x;
 417 JRT_END
 418 
 419 
 420 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 421   if (g_isnan(x))
 422     return 0;
 423   if (x >= (jfloat) max_jlong)
 424     return max_jlong;
 425   if (x <= (jfloat) min_jlong)
 426     return min_jlong;
 427   return (jlong) x;
 428 JRT_END
 429 
 430 
 431 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 432   if (g_isnan(x))
 433     return 0;
 434   if (x >= (jdouble) max_jint)
 435     return max_jint;
 436   if (x <= (jdouble) min_jint)
 437     return min_jint;
 438   return (jint) x;
 439 JRT_END
 440 
 441 
 442 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 443   if (g_isnan(x))
 444     return 0;
 445   if (x >= (jdouble) max_jlong)
 446     return max_jlong;
 447   if (x <= (jdouble) min_jlong)
 448     return min_jlong;
 449   return (jlong) x;
 450 JRT_END
 451 
 452 
 453 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 454   return (jfloat)x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 459   return (jfloat)x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 464   return (jdouble)x;
 465 JRT_END
 466 
 467 // Exception handling across interpreter/compiler boundaries
 468 //
 469 // exception_handler_for_return_address(...) returns the continuation address.
 470 // The continuation address is the entry point of the exception handler of the
 471 // previous frame depending on the return address.
 472 
 473 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 474   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 475 
 476   // Reset method handle flag.
 477   thread->set_is_method_handle_return(false);
 478 
 479   // The fastest case first
 480   CodeBlob* blob = CodeCache::find_blob(return_address);
 481   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 482   if (nm != NULL) {
 483     // Set flag if return address is a method handle call site.
 484     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 485     // native nmethods don't have exception handlers
 486     assert(!nm->is_native_method(), "no exception handler");
 487     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 488     if (nm->is_deopt_pc(return_address)) {
 489       // If we come here because of a stack overflow, the stack may be
 490       // unguarded. Reguard the stack otherwise if we return to the
 491       // deopt blob and the stack bang causes a stack overflow we
 492       // crash.
 493       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 494       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 495       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 496       return SharedRuntime::deopt_blob()->unpack_with_exception();
 497     } else {
 498       return nm->exception_begin();
 499     }
 500   }
 501 
 502   // Entry code
 503   if (StubRoutines::returns_to_call_stub(return_address)) {
 504     return StubRoutines::catch_exception_entry();
 505   }
 506   // Interpreted code
 507   if (Interpreter::contains(return_address)) {
 508     return Interpreter::rethrow_exception_entry();
 509   }
 510 
 511   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 512   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 513 
 514 #ifndef PRODUCT
 515   { ResourceMark rm;
 516     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 517     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 518     tty->print_cr("b) other problem");
 519   }
 520 #endif // PRODUCT
 521 
 522   ShouldNotReachHere();
 523   return NULL;
 524 }
 525 
 526 
 527 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 528   return raw_exception_handler_for_return_address(thread, return_address);
 529 JRT_END
 530 
 531 
 532 address SharedRuntime::get_poll_stub(address pc) {
 533   address stub;
 534   // Look up the code blob
 535   CodeBlob *cb = CodeCache::find_blob(pc);
 536 
 537   // Should be an nmethod
 538   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 539 
 540   // Look up the relocation information
 541   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 542     "safepoint polling: type must be poll" );
 543 
 544   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 545     "Only polling locations are used for safepoint");
 546 
 547   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 548   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 549   if (at_poll_return) {
 550     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 551            "polling page return stub not created yet");
 552     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 553   } else if (has_wide_vectors) {
 554     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 555            "polling page vectors safepoint stub not created yet");
 556     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 557   } else {
 558     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 559            "polling page safepoint stub not created yet");
 560     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 561   }
 562 #ifndef PRODUCT
 563   if( TraceSafepoint ) {
 564     char buf[256];
 565     jio_snprintf(buf, sizeof(buf),
 566                  "... found polling page %s exception at pc = "
 567                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 568                  at_poll_return ? "return" : "loop",
 569                  (intptr_t)pc, (intptr_t)stub);
 570     tty->print_raw_cr(buf);
 571   }
 572 #endif // PRODUCT
 573   return stub;
 574 }
 575 
 576 
 577 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 578   assert(caller.is_interpreted_frame(), "");
 579   int args_size = ArgumentSizeComputer(sig).size() + 1;
 580   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 581   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 582   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 583   return result;
 584 }
 585 
 586 
 587 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 588   if (JvmtiExport::can_post_on_exceptions()) {
 589     vframeStream vfst(thread, true);
 590     methodHandle method = methodHandle(thread, vfst.method());
 591     address bcp = method()->bcp_from(vfst.bci());
 592     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 593   }
 594   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 595 }
 596 
 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 598   Handle h_exception = Exceptions::new_exception(thread, name, message);
 599   throw_and_post_jvmti_exception(thread, h_exception);
 600 }
 601 
 602 // The interpreter code to call this tracing function is only
 603 // called/generated when TraceRedefineClasses has the right bits
 604 // set. Since obsolete methods are never compiled, we don't have
 605 // to modify the compilers to generate calls to this function.
 606 //
 607 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 608     JavaThread* thread, Method* method))
 609   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 610 
 611   if (method->is_obsolete()) {
 612     // We are calling an obsolete method, but this is not necessarily
 613     // an error. Our method could have been redefined just after we
 614     // fetched the Method* from the constant pool.
 615 
 616     // RC_TRACE macro has an embedded ResourceMark
 617     RC_TRACE_WITH_THREAD(0x00001000, thread,
 618                          ("calling obsolete method '%s'",
 619                           method->name_and_sig_as_C_string()));
 620     if (RC_TRACE_ENABLED(0x00002000)) {
 621       // this option is provided to debug calls to obsolete methods
 622       guarantee(false, "faulting at call to an obsolete method.");
 623     }
 624   }
 625   return 0;
 626 JRT_END
 627 
 628 // ret_pc points into caller; we are returning caller's exception handler
 629 // for given exception
 630 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 631                                                     bool force_unwind, bool top_frame_only) {
 632   assert(nm != NULL, "must exist");
 633   ResourceMark rm;
 634 
 635   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 636   // determine handler bci, if any
 637   EXCEPTION_MARK;
 638 
 639   int handler_bci = -1;
 640   int scope_depth = 0;
 641   if (!force_unwind) {
 642     int bci = sd->bci();
 643     bool recursive_exception = false;
 644     do {
 645       bool skip_scope_increment = false;
 646       // exception handler lookup
 647       KlassHandle ek (THREAD, exception->klass());
 648       methodHandle mh(THREAD, sd->method());
 649       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 650       if (HAS_PENDING_EXCEPTION) {
 651         recursive_exception = true;
 652         // We threw an exception while trying to find the exception handler.
 653         // Transfer the new exception to the exception handle which will
 654         // be set into thread local storage, and do another lookup for an
 655         // exception handler for this exception, this time starting at the
 656         // BCI of the exception handler which caused the exception to be
 657         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 658         // argument to ensure that the correct exception is thrown (4870175).
 659         exception = Handle(THREAD, PENDING_EXCEPTION);
 660         CLEAR_PENDING_EXCEPTION;
 661         if (handler_bci >= 0) {
 662           bci = handler_bci;
 663           handler_bci = -1;
 664           skip_scope_increment = true;
 665         }
 666       }
 667       else {
 668         recursive_exception = false;
 669       }
 670       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 671         sd = sd->sender();
 672         if (sd != NULL) {
 673           bci = sd->bci();
 674         }
 675         ++scope_depth;
 676       }
 677     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 678   }
 679 
 680   // found handling method => lookup exception handler
 681   int catch_pco = ret_pc - nm->code_begin();
 682 
 683   ExceptionHandlerTable table(nm);
 684   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 685   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 686     // Allow abbreviated catch tables.  The idea is to allow a method
 687     // to materialize its exceptions without committing to the exact
 688     // routing of exceptions.  In particular this is needed for adding
 689     // a synthetic handler to unlock monitors when inlining
 690     // synchronized methods since the unlock path isn't represented in
 691     // the bytecodes.
 692     t = table.entry_for(catch_pco, -1, 0);
 693   }
 694 
 695 #ifdef COMPILER1
 696   if (t == NULL && nm->is_compiled_by_c1()) {
 697     assert(nm->unwind_handler_begin() != NULL, "");
 698     return nm->unwind_handler_begin();
 699   }
 700 #endif
 701 
 702   if (t == NULL) {
 703     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 704     tty->print_cr("   Exception:");
 705     exception->print();
 706     tty->cr();
 707     tty->print_cr(" Compiled exception table :");
 708     table.print();
 709     nm->print_code();
 710     guarantee(false, "missing exception handler");
 711     return NULL;
 712   }
 713 
 714   return nm->code_begin() + t->pco();
 715 }
 716 
 717 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 718   // These errors occur only at call sites
 719   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 720 JRT_END
 721 
 722 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 723   // These errors occur only at call sites
 724   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 725 JRT_END
 726 
 727 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 729 JRT_END
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 733 JRT_END
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 736   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 737   // cache sites (when the callee activation is not yet set up) so we are at a call site
 738   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 739 JRT_END
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 742   // We avoid using the normal exception construction in this case because
 743   // it performs an upcall to Java, and we're already out of stack space.
 744   Klass* k = SystemDictionary::StackOverflowError_klass();
 745   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 746   Handle exception (thread, exception_oop);
 747   if (StackTraceInThrowable) {
 748     java_lang_Throwable::fill_in_stack_trace(exception);
 749   }
 750   throw_and_post_jvmti_exception(thread, exception);
 751 JRT_END
 752 
 753 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 754                                                            address pc,
 755                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 756 {
 757   address target_pc = NULL;
 758 
 759   if (Interpreter::contains(pc)) {
 760 #ifdef CC_INTERP
 761     // C++ interpreter doesn't throw implicit exceptions
 762     ShouldNotReachHere();
 763 #else
 764     switch (exception_kind) {
 765       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 766       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 767       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 768       default:                      ShouldNotReachHere();
 769     }
 770 #endif // !CC_INTERP
 771   } else {
 772     switch (exception_kind) {
 773       case STACK_OVERFLOW: {
 774         // Stack overflow only occurs upon frame setup; the callee is
 775         // going to be unwound. Dispatch to a shared runtime stub
 776         // which will cause the StackOverflowError to be fabricated
 777         // and processed.
 778         // For stack overflow in deoptimization blob, cleanup thread.
 779         if (thread->deopt_mark() != NULL) {
 780           Deoptimization::cleanup_deopt_info(thread, NULL);
 781         }
 782         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 783         return StubRoutines::throw_StackOverflowError_entry();
 784       }
 785 
 786       case IMPLICIT_NULL: {
 787         if (VtableStubs::contains(pc)) {
 788           // We haven't yet entered the callee frame. Fabricate an
 789           // exception and begin dispatching it in the caller. Since
 790           // the caller was at a call site, it's safe to destroy all
 791           // caller-saved registers, as these entry points do.
 792           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 793 
 794           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 795           if (vt_stub == NULL) return NULL;
 796 
 797           if (vt_stub->is_abstract_method_error(pc)) {
 798             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 799             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 800             return StubRoutines::throw_AbstractMethodError_entry();
 801           } else {
 802             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 803             return StubRoutines::throw_NullPointerException_at_call_entry();
 804           }
 805         } else {
 806           CodeBlob* cb = CodeCache::find_blob(pc);
 807 
 808           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 809           if (cb == NULL) return NULL;
 810 
 811           // Exception happened in CodeCache. Must be either:
 812           // 1. Inline-cache check in C2I handler blob,
 813           // 2. Inline-cache check in nmethod, or
 814           // 3. Implicit null exception in nmethod
 815 
 816           if (!cb->is_nmethod()) {
 817             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 818             if (!is_in_blob) {
 819               cb->print();
 820               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 821             }
 822             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 823             // There is no handler here, so we will simply unwind.
 824             return StubRoutines::throw_NullPointerException_at_call_entry();
 825           }
 826 
 827           // Otherwise, it's an nmethod.  Consult its exception handlers.
 828           nmethod* nm = (nmethod*)cb;
 829           if (nm->inlinecache_check_contains(pc)) {
 830             // exception happened inside inline-cache check code
 831             // => the nmethod is not yet active (i.e., the frame
 832             // is not set up yet) => use return address pushed by
 833             // caller => don't push another return address
 834             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 835             return StubRoutines::throw_NullPointerException_at_call_entry();
 836           }
 837 
 838           if (nm->method()->is_method_handle_intrinsic()) {
 839             // exception happened inside MH dispatch code, similar to a vtable stub
 840             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 841             return StubRoutines::throw_NullPointerException_at_call_entry();
 842           }
 843 
 844 #ifndef PRODUCT
 845           _implicit_null_throws++;
 846 #endif
 847           target_pc = nm->continuation_for_implicit_exception(pc);
 848           // If there's an unexpected fault, target_pc might be NULL,
 849           // in which case we want to fall through into the normal
 850           // error handling code.
 851         }
 852 
 853         break; // fall through
 854       }
 855 
 856 
 857       case IMPLICIT_DIVIDE_BY_ZERO: {
 858         nmethod* nm = CodeCache::find_nmethod(pc);
 859         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 860 #ifndef PRODUCT
 861         _implicit_div0_throws++;
 862 #endif
 863         target_pc = nm->continuation_for_implicit_exception(pc);
 864         // If there's an unexpected fault, target_pc might be NULL,
 865         // in which case we want to fall through into the normal
 866         // error handling code.
 867         break; // fall through
 868       }
 869 
 870       default: ShouldNotReachHere();
 871     }
 872 
 873     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 874 
 875     // for AbortVMOnException flag
 876     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 877     if (exception_kind == IMPLICIT_NULL) {
 878       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 879     } else {
 880       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 881     }
 882     return target_pc;
 883   }
 884 
 885   ShouldNotReachHere();
 886   return NULL;
 887 }
 888 
 889 
 890 /**
 891  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 892  * installed in the native function entry of all native Java methods before
 893  * they get linked to their actual native methods.
 894  *
 895  * \note
 896  * This method actually never gets called!  The reason is because
 897  * the interpreter's native entries call NativeLookup::lookup() which
 898  * throws the exception when the lookup fails.  The exception is then
 899  * caught and forwarded on the return from NativeLookup::lookup() call
 900  * before the call to the native function.  This might change in the future.
 901  */
 902 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 903 {
 904   // We return a bad value here to make sure that the exception is
 905   // forwarded before we look at the return value.
 906   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 907 }
 908 JNI_END
 909 
 910 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 911   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 912 }
 913 
 914 
 915 #ifndef PRODUCT
 916 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 917   const frame f = thread->last_frame();
 918   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 919 #ifndef PRODUCT
 920   methodHandle mh(THREAD, f.interpreter_frame_method());
 921   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 922 #endif // !PRODUCT
 923   return preserve_this_value;
 924 JRT_END
 925 #endif // !PRODUCT
 926 
 927 
 928 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 929   os::yield_all(attempts);
 930 JRT_END
 931 
 932 
 933 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 934   assert(obj->is_oop(), "must be a valid oop");
 935   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 936   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 937 JRT_END
 938 
 939 
 940 jlong SharedRuntime::get_java_tid(Thread* thread) {
 941   if (thread != NULL) {
 942     if (thread->is_Java_thread()) {
 943       oop obj = ((JavaThread*)thread)->threadObj();
 944       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 945     }
 946   }
 947   return 0;
 948 }
 949 
 950 /**
 951  * This function ought to be a void function, but cannot be because
 952  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 953  * 6254741.  Once that is fixed we can remove the dummy return value.
 954  */
 955 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 956   return dtrace_object_alloc_base(Thread::current(), o);
 957 }
 958 
 959 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 960   assert(DTraceAllocProbes, "wrong call");
 961   Klass* klass = o->klass();
 962   int size = o->size();
 963   Symbol* name = klass->name();
 964   HOTSPOT_OBJECT_ALLOC(
 965                    get_java_tid(thread),
 966                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 967   return 0;
 968 }
 969 
 970 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 971     JavaThread* thread, Method* method))
 972   assert(DTraceMethodProbes, "wrong call");
 973   Symbol* kname = method->klass_name();
 974   Symbol* name = method->name();
 975   Symbol* sig = method->signature();
 976   HOTSPOT_METHOD_ENTRY(
 977       get_java_tid(thread),
 978       (char *) kname->bytes(), kname->utf8_length(),
 979       (char *) name->bytes(), name->utf8_length(),
 980       (char *) sig->bytes(), sig->utf8_length());
 981   return 0;
 982 JRT_END
 983 
 984 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 985     JavaThread* thread, Method* method))
 986   assert(DTraceMethodProbes, "wrong call");
 987   Symbol* kname = method->klass_name();
 988   Symbol* name = method->name();
 989   Symbol* sig = method->signature();
 990   HOTSPOT_METHOD_RETURN(
 991       get_java_tid(thread),
 992       (char *) kname->bytes(), kname->utf8_length(),
 993       (char *) name->bytes(), name->utf8_length(),
 994       (char *) sig->bytes(), sig->utf8_length());
 995   return 0;
 996 JRT_END
 997 
 998 
 999 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1000 // for a call current in progress, i.e., arguments has been pushed on stack
1001 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1002 // vtable updates, etc.  Caller frame must be compiled.
1003 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1004   ResourceMark rm(THREAD);
1005 
1006   // last java frame on stack (which includes native call frames)
1007   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1008 
1009   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1010 }
1011 
1012 
1013 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1014 // for a call current in progress, i.e., arguments has been pushed on stack
1015 // but callee has not been invoked yet.  Caller frame must be compiled.
1016 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1017                                               vframeStream& vfst,
1018                                               Bytecodes::Code& bc,
1019                                               CallInfo& callinfo, TRAPS) {
1020   Handle receiver;
1021   Handle nullHandle;  //create a handy null handle for exception returns
1022 
1023   assert(!vfst.at_end(), "Java frame must exist");
1024 
1025   // Find caller and bci from vframe
1026   methodHandle caller(THREAD, vfst.method());
1027   int          bci   = vfst.bci();
1028 
1029   // Find bytecode
1030   Bytecode_invoke bytecode(caller, bci);
1031   bc = bytecode.invoke_code();
1032   int bytecode_index = bytecode.index();
1033 
1034   // Find receiver for non-static call
1035   if (bc != Bytecodes::_invokestatic &&
1036       bc != Bytecodes::_invokedynamic &&
1037       bc != Bytecodes::_invokehandle) {
1038     // This register map must be update since we need to find the receiver for
1039     // compiled frames. The receiver might be in a register.
1040     RegisterMap reg_map2(thread);
1041     frame stubFrame   = thread->last_frame();
1042     // Caller-frame is a compiled frame
1043     frame callerFrame = stubFrame.sender(&reg_map2);
1044 
1045     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1046     if (callee.is_null()) {
1047       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1048     }
1049     // Retrieve from a compiled argument list
1050     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1051 
1052     if (receiver.is_null()) {
1053       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1054     }
1055   }
1056 
1057   // Resolve method. This is parameterized by bytecode.
1058   constantPoolHandle constants(THREAD, caller->constants());
1059   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1060   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1061 
1062 #ifdef ASSERT
1063   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1064   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1065     assert(receiver.not_null(), "should have thrown exception");
1066     KlassHandle receiver_klass(THREAD, receiver->klass());
1067     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1068                             // klass is already loaded
1069     KlassHandle static_receiver_klass(THREAD, rk);
1070     // Method handle invokes might have been optimized to a direct call
1071     // so don't check for the receiver class.
1072     // FIXME this weakens the assert too much
1073     methodHandle callee = callinfo.selected_method();
1074     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1075            callee->is_method_handle_intrinsic() ||
1076            callee->is_compiled_lambda_form(),
1077            "actual receiver must be subclass of static receiver klass");
1078     if (receiver_klass->oop_is_instance()) {
1079       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1080         tty->print_cr("ERROR: Klass not yet initialized!!");
1081         receiver_klass()->print();
1082       }
1083       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1084     }
1085   }
1086 #endif
1087 
1088   return receiver;
1089 }
1090 
1091 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1092   ResourceMark rm(THREAD);
1093   // We need first to check if any Java activations (compiled, interpreted)
1094   // exist on the stack since last JavaCall.  If not, we need
1095   // to get the target method from the JavaCall wrapper.
1096   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1097   methodHandle callee_method;
1098   if (vfst.at_end()) {
1099     // No Java frames were found on stack since we did the JavaCall.
1100     // Hence the stack can only contain an entry_frame.  We need to
1101     // find the target method from the stub frame.
1102     RegisterMap reg_map(thread, false);
1103     frame fr = thread->last_frame();
1104     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1105     fr = fr.sender(&reg_map);
1106     assert(fr.is_entry_frame(), "must be");
1107     // fr is now pointing to the entry frame.
1108     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1109     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1110   } else {
1111     Bytecodes::Code bc;
1112     CallInfo callinfo;
1113     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1114     callee_method = callinfo.selected_method();
1115   }
1116   assert(callee_method()->is_method(), "must be");
1117   return callee_method;
1118 }
1119 
1120 // Resolves a call.
1121 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1122                                            bool is_virtual,
1123                                            bool is_optimized, TRAPS) {
1124   methodHandle callee_method;
1125   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1126   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1127     int retry_count = 0;
1128     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1129            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1130       // If has a pending exception then there is no need to re-try to
1131       // resolve this method.
1132       // If the method has been redefined, we need to try again.
1133       // Hack: we have no way to update the vtables of arrays, so don't
1134       // require that java.lang.Object has been updated.
1135 
1136       // It is very unlikely that method is redefined more than 100 times
1137       // in the middle of resolve. If it is looping here more than 100 times
1138       // means then there could be a bug here.
1139       guarantee((retry_count++ < 100),
1140                 "Could not resolve to latest version of redefined method");
1141       // method is redefined in the middle of resolve so re-try.
1142       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1143     }
1144   }
1145   return callee_method;
1146 }
1147 
1148 // Resolves a call.  The compilers generate code for calls that go here
1149 // and are patched with the real destination of the call.
1150 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1151                                            bool is_virtual,
1152                                            bool is_optimized, TRAPS) {
1153 
1154   ResourceMark rm(thread);
1155   RegisterMap cbl_map(thread, false);
1156   frame caller_frame = thread->last_frame().sender(&cbl_map);
1157 
1158   CodeBlob* caller_cb = caller_frame.cb();
1159   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1160   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1161 
1162   // make sure caller is not getting deoptimized
1163   // and removed before we are done with it.
1164   // CLEANUP - with lazy deopt shouldn't need this lock
1165   nmethodLocker caller_lock(caller_nm);
1166 
1167   // determine call info & receiver
1168   // note: a) receiver is NULL for static calls
1169   //       b) an exception is thrown if receiver is NULL for non-static calls
1170   CallInfo call_info;
1171   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1172   Handle receiver = find_callee_info(thread, invoke_code,
1173                                      call_info, CHECK_(methodHandle()));
1174   methodHandle callee_method = call_info.selected_method();
1175 
1176   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1177          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1178          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1179          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1180 
1181   // We do not patch the call site if the caller nmethod has been made non-entrant.
1182   if (!caller_nm->is_in_use()) {
1183     return callee_method;
1184   }
1185 
1186 #ifndef PRODUCT
1187   // tracing/debugging/statistics
1188   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1189                 (is_virtual) ? (&_resolve_virtual_ctr) :
1190                                (&_resolve_static_ctr);
1191   Atomic::inc(addr);
1192 
1193   if (TraceCallFixup) {
1194     ResourceMark rm(thread);
1195     tty->print("resolving %s%s (%s) call to",
1196       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1197       Bytecodes::name(invoke_code));
1198     callee_method->print_short_name(tty);
1199     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1200   }
1201 #endif
1202 
1203   // JSR 292 key invariant:
1204   // If the resolved method is a MethodHandle invoke target the call
1205   // site must be a MethodHandle call site, because the lambda form might tail-call
1206   // leaving the stack in a state unknown to either caller or callee
1207   // TODO detune for now but we might need it again
1208 //  assert(!callee_method->is_compiled_lambda_form() ||
1209 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1210 
1211   // Compute entry points. This might require generation of C2I converter
1212   // frames, so we cannot be holding any locks here. Furthermore, the
1213   // computation of the entry points is independent of patching the call.  We
1214   // always return the entry-point, but we only patch the stub if the call has
1215   // not been deoptimized.  Return values: For a virtual call this is an
1216   // (cached_oop, destination address) pair. For a static call/optimized
1217   // virtual this is just a destination address.
1218 
1219   StaticCallInfo static_call_info;
1220   CompiledICInfo virtual_call_info;
1221 
1222   // Make sure the callee nmethod does not get deoptimized and removed before
1223   // we are done patching the code.
1224   nmethod* callee_nm = callee_method->code();
1225   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1226     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1227     callee_nm = NULL;
1228   }
1229   nmethodLocker nl_callee(callee_nm);
1230 #ifdef ASSERT
1231   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1232 #endif
1233 
1234   if (is_virtual) {
1235     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1236     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1237     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1238     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1239                      is_optimized, static_bound, virtual_call_info,
1240                      CHECK_(methodHandle()));
1241   } else {
1242     // static call
1243     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1244   }
1245 
1246   // grab lock, check for deoptimization and potentially patch caller
1247   {
1248     MutexLocker ml_patch(CompiledIC_lock);
1249 
1250     // Lock blocks for safepoint during which both nmethods can change state.
1251 
1252     // Now that we are ready to patch if the Method* was redefined then
1253     // don't update call site and let the caller retry.
1254     // Don't update call site if caller nmethod has been made non-entrant
1255     // as it is a waste of time.
1256     // Don't update call site if callee nmethod was unloaded or deoptimized.
1257     // Don't update call site if callee nmethod was replaced by an other nmethod
1258     // which may happen when multiply alive nmethod (tiered compilation)
1259     // will be supported.
1260     if (!callee_method->is_old() && caller_nm->is_in_use() &&
1261         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1262 #ifdef ASSERT
1263       // We must not try to patch to jump to an already unloaded method.
1264       if (dest_entry_point != 0) {
1265         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1266         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1267                "should not call unloaded nmethod");
1268       }
1269 #endif
1270       if (is_virtual) {
1271         nmethod* nm = callee_nm;
1272         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1273         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1274         if (inline_cache->is_clean()) {
1275           inline_cache->set_to_monomorphic(virtual_call_info);
1276         }
1277       } else {
1278         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1279         if (ssc->is_clean()) ssc->set(static_call_info);
1280       }
1281     }
1282 
1283   } // unlock CompiledIC_lock
1284 
1285   return callee_method;
1286 }
1287 
1288 
1289 // Inline caches exist only in compiled code
1290 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1291 #ifdef ASSERT
1292   RegisterMap reg_map(thread, false);
1293   frame stub_frame = thread->last_frame();
1294   assert(stub_frame.is_runtime_frame(), "sanity check");
1295   frame caller_frame = stub_frame.sender(&reg_map);
1296   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1297 #endif /* ASSERT */
1298 
1299   methodHandle callee_method;
1300   JRT_BLOCK
1301     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1302     // Return Method* through TLS
1303     thread->set_vm_result_2(callee_method());
1304   JRT_BLOCK_END
1305   // return compiled code entry point after potential safepoints
1306   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1307   return callee_method->verified_code_entry();
1308 JRT_END
1309 
1310 
1311 // Handle call site that has been made non-entrant
1312 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1313   // 6243940 We might end up in here if the callee is deoptimized
1314   // as we race to call it.  We don't want to take a safepoint if
1315   // the caller was interpreted because the caller frame will look
1316   // interpreted to the stack walkers and arguments are now
1317   // "compiled" so it is much better to make this transition
1318   // invisible to the stack walking code. The i2c path will
1319   // place the callee method in the callee_target. It is stashed
1320   // there because if we try and find the callee by normal means a
1321   // safepoint is possible and have trouble gc'ing the compiled args.
1322   RegisterMap reg_map(thread, false);
1323   frame stub_frame = thread->last_frame();
1324   assert(stub_frame.is_runtime_frame(), "sanity check");
1325   frame caller_frame = stub_frame.sender(&reg_map);
1326 
1327   if (caller_frame.is_interpreted_frame() ||
1328       caller_frame.is_entry_frame()) {
1329     Method* callee = thread->callee_target();
1330     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1331     thread->set_vm_result_2(callee);
1332     thread->set_callee_target(NULL);
1333     return callee->get_c2i_entry();
1334   }
1335 
1336   // Must be compiled to compiled path which is safe to stackwalk
1337   methodHandle callee_method;
1338   JRT_BLOCK
1339     // Force resolving of caller (if we called from compiled frame)
1340     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1341     thread->set_vm_result_2(callee_method());
1342   JRT_BLOCK_END
1343   // return compiled code entry point after potential safepoints
1344   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1345   return callee_method->verified_code_entry();
1346 JRT_END
1347 
1348 // Handle abstract method call
1349 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1350   return StubRoutines::throw_AbstractMethodError_entry();
1351 JRT_END
1352 
1353 
1354 // resolve a static call and patch code
1355 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1356   methodHandle callee_method;
1357   JRT_BLOCK
1358     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1359     thread->set_vm_result_2(callee_method());
1360   JRT_BLOCK_END
1361   // return compiled code entry point after potential safepoints
1362   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1363   return callee_method->verified_code_entry();
1364 JRT_END
1365 
1366 
1367 // resolve virtual call and update inline cache to monomorphic
1368 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1369   methodHandle callee_method;
1370   JRT_BLOCK
1371     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1372     thread->set_vm_result_2(callee_method());
1373   JRT_BLOCK_END
1374   // return compiled code entry point after potential safepoints
1375   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1376   return callee_method->verified_code_entry();
1377 JRT_END
1378 
1379 
1380 // Resolve a virtual call that can be statically bound (e.g., always
1381 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1382 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1383   methodHandle callee_method;
1384   JRT_BLOCK
1385     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1386     thread->set_vm_result_2(callee_method());
1387   JRT_BLOCK_END
1388   // return compiled code entry point after potential safepoints
1389   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1390   return callee_method->verified_code_entry();
1391 JRT_END
1392 
1393 
1394 
1395 
1396 
1397 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1398   ResourceMark rm(thread);
1399   CallInfo call_info;
1400   Bytecodes::Code bc;
1401 
1402   // receiver is NULL for static calls. An exception is thrown for NULL
1403   // receivers for non-static calls
1404   Handle receiver = find_callee_info(thread, bc, call_info,
1405                                      CHECK_(methodHandle()));
1406   // Compiler1 can produce virtual call sites that can actually be statically bound
1407   // If we fell thru to below we would think that the site was going megamorphic
1408   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1409   // we'd try and do a vtable dispatch however methods that can be statically bound
1410   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1411   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1412   // plain ic_miss) and the site will be converted to an optimized virtual call site
1413   // never to miss again. I don't believe C2 will produce code like this but if it
1414   // did this would still be the correct thing to do for it too, hence no ifdef.
1415   //
1416   if (call_info.resolved_method()->can_be_statically_bound()) {
1417     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1418     if (TraceCallFixup) {
1419       RegisterMap reg_map(thread, false);
1420       frame caller_frame = thread->last_frame().sender(&reg_map);
1421       ResourceMark rm(thread);
1422       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1423       callee_method->print_short_name(tty);
1424       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1425       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1426     }
1427     return callee_method;
1428   }
1429 
1430   methodHandle callee_method = call_info.selected_method();
1431 
1432   bool should_be_mono = false;
1433 
1434 #ifndef PRODUCT
1435   Atomic::inc(&_ic_miss_ctr);
1436 
1437   // Statistics & Tracing
1438   if (TraceCallFixup) {
1439     ResourceMark rm(thread);
1440     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1441     callee_method->print_short_name(tty);
1442     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1443   }
1444 
1445   if (ICMissHistogram) {
1446     MutexLocker m(VMStatistic_lock);
1447     RegisterMap reg_map(thread, false);
1448     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1449     // produce statistics under the lock
1450     trace_ic_miss(f.pc());
1451   }
1452 #endif
1453 
1454   // install an event collector so that when a vtable stub is created the
1455   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1456   // event can't be posted when the stub is created as locks are held
1457   // - instead the event will be deferred until the event collector goes
1458   // out of scope.
1459   JvmtiDynamicCodeEventCollector event_collector;
1460 
1461   // Update inline cache to megamorphic. Skip update if caller has been
1462   // made non-entrant or we are called from interpreted.
1463   { MutexLocker ml_patch (CompiledIC_lock);
1464     RegisterMap reg_map(thread, false);
1465     frame caller_frame = thread->last_frame().sender(&reg_map);
1466     CodeBlob* cb = caller_frame.cb();
1467     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1468       // Not a non-entrant nmethod, so find inline_cache
1469       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1470       bool should_be_mono = false;
1471       if (inline_cache->is_optimized()) {
1472         if (TraceCallFixup) {
1473           ResourceMark rm(thread);
1474           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1475           callee_method->print_short_name(tty);
1476           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1477         }
1478         should_be_mono = true;
1479       } else if (inline_cache->is_icholder_call()) {
1480         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1481         if ( ic_oop != NULL) {
1482 
1483           if (receiver()->klass() == ic_oop->holder_klass()) {
1484             // This isn't a real miss. We must have seen that compiled code
1485             // is now available and we want the call site converted to a
1486             // monomorphic compiled call site.
1487             // We can't assert for callee_method->code() != NULL because it
1488             // could have been deoptimized in the meantime
1489             if (TraceCallFixup) {
1490               ResourceMark rm(thread);
1491               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1492               callee_method->print_short_name(tty);
1493               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1494             }
1495             should_be_mono = true;
1496           }
1497         }
1498       }
1499 
1500       if (should_be_mono) {
1501 
1502         // We have a path that was monomorphic but was going interpreted
1503         // and now we have (or had) a compiled entry. We correct the IC
1504         // by using a new icBuffer.
1505         CompiledICInfo info;
1506         KlassHandle receiver_klass(THREAD, receiver()->klass());
1507         inline_cache->compute_monomorphic_entry(callee_method,
1508                                                 receiver_klass,
1509                                                 inline_cache->is_optimized(),
1510                                                 false,
1511                                                 info, CHECK_(methodHandle()));
1512         inline_cache->set_to_monomorphic(info);
1513       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1514         // Potential change to megamorphic
1515         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1516         if (!successful) {
1517           inline_cache->set_to_clean();
1518         }
1519       } else {
1520         // Either clean or megamorphic
1521       }
1522     }
1523   } // Release CompiledIC_lock
1524 
1525   return callee_method;
1526 }
1527 
1528 //
1529 // Resets a call-site in compiled code so it will get resolved again.
1530 // This routines handles both virtual call sites, optimized virtual call
1531 // sites, and static call sites. Typically used to change a call sites
1532 // destination from compiled to interpreted.
1533 //
1534 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1535   ResourceMark rm(thread);
1536   RegisterMap reg_map(thread, false);
1537   frame stub_frame = thread->last_frame();
1538   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1539   frame caller = stub_frame.sender(&reg_map);
1540 
1541   // Do nothing if the frame isn't a live compiled frame.
1542   // nmethod could be deoptimized by the time we get here
1543   // so no update to the caller is needed.
1544 
1545   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1546 
1547     address pc = caller.pc();
1548 
1549     // Default call_addr is the location of the "basic" call.
1550     // Determine the address of the call we a reresolving. With
1551     // Inline Caches we will always find a recognizable call.
1552     // With Inline Caches disabled we may or may not find a
1553     // recognizable call. We will always find a call for static
1554     // calls and for optimized virtual calls. For vanilla virtual
1555     // calls it depends on the state of the UseInlineCaches switch.
1556     //
1557     // With Inline Caches disabled we can get here for a virtual call
1558     // for two reasons:
1559     //   1 - calling an abstract method. The vtable for abstract methods
1560     //       will run us thru handle_wrong_method and we will eventually
1561     //       end up in the interpreter to throw the ame.
1562     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1563     //       call and between the time we fetch the entry address and
1564     //       we jump to it the target gets deoptimized. Similar to 1
1565     //       we will wind up in the interprter (thru a c2i with c2).
1566     //
1567     address call_addr = NULL;
1568     {
1569       // Get call instruction under lock because another thread may be
1570       // busy patching it.
1571       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1572       // Location of call instruction
1573       if (NativeCall::is_call_before(pc)) {
1574         NativeCall *ncall = nativeCall_before(pc);
1575         call_addr = ncall->instruction_address();
1576       }
1577     }
1578 
1579     // Check for static or virtual call
1580     bool is_static_call = false;
1581     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1582     // Make sure nmethod doesn't get deoptimized and removed until
1583     // this is done with it.
1584     // CLEANUP - with lazy deopt shouldn't need this lock
1585     nmethodLocker nmlock(caller_nm);
1586 
1587     if (call_addr != NULL) {
1588       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1589       int ret = iter.next(); // Get item
1590       if (ret) {
1591         assert(iter.addr() == call_addr, "must find call");
1592         if (iter.type() == relocInfo::static_call_type) {
1593           is_static_call = true;
1594         } else {
1595           assert(iter.type() == relocInfo::virtual_call_type ||
1596                  iter.type() == relocInfo::opt_virtual_call_type
1597                 , "unexpected relocInfo. type");
1598         }
1599       } else {
1600         assert(!UseInlineCaches, "relocation info. must exist for this address");
1601       }
1602 
1603       // Cleaning the inline cache will force a new resolve. This is more robust
1604       // than directly setting it to the new destination, since resolving of calls
1605       // is always done through the same code path. (experience shows that it
1606       // leads to very hard to track down bugs, if an inline cache gets updated
1607       // to a wrong method). It should not be performance critical, since the
1608       // resolve is only done once.
1609 
1610       MutexLocker ml(CompiledIC_lock);
1611       //
1612       // We do not patch the call site if the nmethod has been made non-entrant
1613       // as it is a waste of time
1614       //
1615       if (caller_nm->is_in_use()) {
1616         if (is_static_call) {
1617           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1618           ssc->set_to_clean();
1619         } else {
1620           // compiled, dispatched call (which used to call an interpreted method)
1621           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1622           inline_cache->set_to_clean();
1623         }
1624       }
1625     }
1626 
1627   }
1628 
1629   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1630 
1631 
1632 #ifndef PRODUCT
1633   Atomic::inc(&_wrong_method_ctr);
1634 
1635   if (TraceCallFixup) {
1636     ResourceMark rm(thread);
1637     tty->print("handle_wrong_method reresolving call to");
1638     callee_method->print_short_name(tty);
1639     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1640   }
1641 #endif
1642 
1643   return callee_method;
1644 }
1645 
1646 #ifdef ASSERT
1647 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1648                                                                 const BasicType* sig_bt,
1649                                                                 const VMRegPair* regs) {
1650   ResourceMark rm;
1651   const int total_args_passed = method->size_of_parameters();
1652   const VMRegPair*    regs_with_member_name = regs;
1653         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1654 
1655   const int member_arg_pos = total_args_passed - 1;
1656   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1657   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1658 
1659   const bool is_outgoing = method->is_method_handle_intrinsic();
1660   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1661 
1662   for (int i = 0; i < member_arg_pos; i++) {
1663     VMReg a =    regs_with_member_name[i].first();
1664     VMReg b = regs_without_member_name[i].first();
1665     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1666   }
1667   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1668 }
1669 #endif
1670 
1671 // ---------------------------------------------------------------------------
1672 // We are calling the interpreter via a c2i. Normally this would mean that
1673 // we were called by a compiled method. However we could have lost a race
1674 // where we went int -> i2c -> c2i and so the caller could in fact be
1675 // interpreted. If the caller is compiled we attempt to patch the caller
1676 // so he no longer calls into the interpreter.
1677 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1678   Method* moop(method);
1679 
1680   address entry_point = moop->from_compiled_entry();
1681 
1682   // It's possible that deoptimization can occur at a call site which hasn't
1683   // been resolved yet, in which case this function will be called from
1684   // an nmethod that has been patched for deopt and we can ignore the
1685   // request for a fixup.
1686   // Also it is possible that we lost a race in that from_compiled_entry
1687   // is now back to the i2c in that case we don't need to patch and if
1688   // we did we'd leap into space because the callsite needs to use
1689   // "to interpreter" stub in order to load up the Method*. Don't
1690   // ask me how I know this...
1691 
1692   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1693   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1694     return;
1695   }
1696 
1697   // The check above makes sure this is a nmethod.
1698   nmethod* nm = cb->as_nmethod_or_null();
1699   assert(nm, "must be");
1700 
1701   // Get the return PC for the passed caller PC.
1702   address return_pc = caller_pc + frame::pc_return_offset;
1703 
1704   // There is a benign race here. We could be attempting to patch to a compiled
1705   // entry point at the same time the callee is being deoptimized. If that is
1706   // the case then entry_point may in fact point to a c2i and we'd patch the
1707   // call site with the same old data. clear_code will set code() to NULL
1708   // at the end of it. If we happen to see that NULL then we can skip trying
1709   // to patch. If we hit the window where the callee has a c2i in the
1710   // from_compiled_entry and the NULL isn't present yet then we lose the race
1711   // and patch the code with the same old data. Asi es la vida.
1712 
1713   if (moop->code() == NULL) return;
1714 
1715   if (nm->is_in_use()) {
1716 
1717     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1718     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1719     if (NativeCall::is_call_before(return_pc)) {
1720       NativeCall *call = nativeCall_before(return_pc);
1721       //
1722       // bug 6281185. We might get here after resolving a call site to a vanilla
1723       // virtual call. Because the resolvee uses the verified entry it may then
1724       // see compiled code and attempt to patch the site by calling us. This would
1725       // then incorrectly convert the call site to optimized and its downhill from
1726       // there. If you're lucky you'll get the assert in the bugid, if not you've
1727       // just made a call site that could be megamorphic into a monomorphic site
1728       // for the rest of its life! Just another racing bug in the life of
1729       // fixup_callers_callsite ...
1730       //
1731       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1732       iter.next();
1733       assert(iter.has_current(), "must have a reloc at java call site");
1734       relocInfo::relocType typ = iter.reloc()->type();
1735       if ( typ != relocInfo::static_call_type &&
1736            typ != relocInfo::opt_virtual_call_type &&
1737            typ != relocInfo::static_stub_type) {
1738         return;
1739       }
1740       address destination = call->destination();
1741       if (destination != entry_point) {
1742         CodeBlob* callee = CodeCache::find_blob(destination);
1743         // callee == cb seems weird. It means calling interpreter thru stub.
1744         if (callee == cb || callee->is_adapter_blob()) {
1745           // static call or optimized virtual
1746           if (TraceCallFixup) {
1747             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1748             moop->print_short_name(tty);
1749             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1750           }
1751           call->set_destination_mt_safe(entry_point);
1752         } else {
1753           if (TraceCallFixup) {
1754             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1755             moop->print_short_name(tty);
1756             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1757           }
1758           // assert is too strong could also be resolve destinations.
1759           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1760         }
1761       } else {
1762           if (TraceCallFixup) {
1763             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1764             moop->print_short_name(tty);
1765             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1766           }
1767       }
1768     }
1769   }
1770 IRT_END
1771 
1772 
1773 // same as JVM_Arraycopy, but called directly from compiled code
1774 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1775                                                 oopDesc* dest, jint dest_pos,
1776                                                 jint length,
1777                                                 JavaThread* thread)) {
1778 #ifndef PRODUCT
1779   _slow_array_copy_ctr++;
1780 #endif
1781   // Check if we have null pointers
1782   if (src == NULL || dest == NULL) {
1783     THROW(vmSymbols::java_lang_NullPointerException());
1784   }
1785   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1786   // even though the copy_array API also performs dynamic checks to ensure
1787   // that src and dest are truly arrays (and are conformable).
1788   // The copy_array mechanism is awkward and could be removed, but
1789   // the compilers don't call this function except as a last resort,
1790   // so it probably doesn't matter.
1791   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1792                                         (arrayOopDesc*)dest, dest_pos,
1793                                         length, thread);
1794 }
1795 JRT_END
1796 
1797 char* SharedRuntime::generate_class_cast_message(
1798     JavaThread* thread, const char* objName) {
1799 
1800   // Get target class name from the checkcast instruction
1801   vframeStream vfst(thread, true);
1802   assert(!vfst.at_end(), "Java frame must exist");
1803   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1804   Klass* targetKlass = vfst.method()->constants()->klass_at(
1805     cc.index(), thread);
1806   return generate_class_cast_message(objName, targetKlass->external_name());
1807 }
1808 
1809 char* SharedRuntime::generate_class_cast_message(
1810     const char* objName, const char* targetKlassName, const char* desc) {
1811   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1812 
1813   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1814   if (NULL == message) {
1815     // Shouldn't happen, but don't cause even more problems if it does
1816     message = const_cast<char*>(objName);
1817   } else {
1818     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1819   }
1820   return message;
1821 }
1822 
1823 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1824   (void) JavaThread::current()->reguard_stack();
1825 JRT_END
1826 
1827 
1828 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1829 #ifndef PRODUCT
1830 int SharedRuntime::_monitor_enter_ctr=0;
1831 #endif
1832 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1833   oop obj(_obj);
1834 #ifndef PRODUCT
1835   _monitor_enter_ctr++;             // monitor enter slow
1836 #endif
1837   if (PrintBiasedLockingStatistics) {
1838     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1839   }
1840   Handle h_obj(THREAD, obj);
1841   if (UseBiasedLocking) {
1842     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1843     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1844   } else {
1845     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1846   }
1847   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1848 JRT_END
1849 
1850 #ifndef PRODUCT
1851 int SharedRuntime::_monitor_exit_ctr=0;
1852 #endif
1853 // Handles the uncommon cases of monitor unlocking in compiled code
1854 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1855    oop obj(_obj);
1856 #ifndef PRODUCT
1857   _monitor_exit_ctr++;              // monitor exit slow
1858 #endif
1859   Thread* THREAD = JavaThread::current();
1860   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1861   // testing was unable to ever fire the assert that guarded it so I have removed it.
1862   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1863 #undef MIGHT_HAVE_PENDING
1864 #ifdef MIGHT_HAVE_PENDING
1865   // Save and restore any pending_exception around the exception mark.
1866   // While the slow_exit must not throw an exception, we could come into
1867   // this routine with one set.
1868   oop pending_excep = NULL;
1869   const char* pending_file;
1870   int pending_line;
1871   if (HAS_PENDING_EXCEPTION) {
1872     pending_excep = PENDING_EXCEPTION;
1873     pending_file  = THREAD->exception_file();
1874     pending_line  = THREAD->exception_line();
1875     CLEAR_PENDING_EXCEPTION;
1876   }
1877 #endif /* MIGHT_HAVE_PENDING */
1878 
1879   {
1880     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1881     EXCEPTION_MARK;
1882     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1883   }
1884 
1885 #ifdef MIGHT_HAVE_PENDING
1886   if (pending_excep != NULL) {
1887     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1888   }
1889 #endif /* MIGHT_HAVE_PENDING */
1890 JRT_END
1891 
1892 #ifndef PRODUCT
1893 
1894 void SharedRuntime::print_statistics() {
1895   ttyLocker ttyl;
1896   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1897 
1898   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1899   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1900   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1901 
1902   SharedRuntime::print_ic_miss_histogram();
1903 
1904   if (CountRemovableExceptions) {
1905     if (_nof_removable_exceptions > 0) {
1906       Unimplemented(); // this counter is not yet incremented
1907       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1908     }
1909   }
1910 
1911   // Dump the JRT_ENTRY counters
1912   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1913   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1914   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1915   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1916   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1917   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1918   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1919 
1920   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1921   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1922   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1923   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1924   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1925 
1926   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1927   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1928   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1929   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1930   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1931   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1932   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1933   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1934   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1935   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1936   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1937   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1938   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1939   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1940   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1941   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1942 
1943   AdapterHandlerLibrary::print_statistics();
1944 
1945   if (xtty != NULL)  xtty->tail("statistics");
1946 }
1947 
1948 inline double percent(int x, int y) {
1949   return 100.0 * x / MAX2(y, 1);
1950 }
1951 
1952 class MethodArityHistogram {
1953  public:
1954   enum { MAX_ARITY = 256 };
1955  private:
1956   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1957   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1958   static int _max_arity;                      // max. arity seen
1959   static int _max_size;                       // max. arg size seen
1960 
1961   static void add_method_to_histogram(nmethod* nm) {
1962     Method* m = nm->method();
1963     ArgumentCount args(m->signature());
1964     int arity   = args.size() + (m->is_static() ? 0 : 1);
1965     int argsize = m->size_of_parameters();
1966     arity   = MIN2(arity, MAX_ARITY-1);
1967     argsize = MIN2(argsize, MAX_ARITY-1);
1968     int count = nm->method()->compiled_invocation_count();
1969     _arity_histogram[arity]  += count;
1970     _size_histogram[argsize] += count;
1971     _max_arity = MAX2(_max_arity, arity);
1972     _max_size  = MAX2(_max_size, argsize);
1973   }
1974 
1975   void print_histogram_helper(int n, int* histo, const char* name) {
1976     const int N = MIN2(5, n);
1977     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1978     double sum = 0;
1979     double weighted_sum = 0;
1980     int i;
1981     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1982     double rest = sum;
1983     double percent = sum / 100;
1984     for (i = 0; i <= N; i++) {
1985       rest -= histo[i];
1986       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1987     }
1988     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1989     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1990   }
1991 
1992   void print_histogram() {
1993     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1994     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1995     tty->print_cr("\nSame for parameter size (in words):");
1996     print_histogram_helper(_max_size, _size_histogram, "size");
1997     tty->cr();
1998   }
1999 
2000  public:
2001   MethodArityHistogram() {
2002     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2003     _max_arity = _max_size = 0;
2004     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2005     CodeCache::nmethods_do(add_method_to_histogram);
2006     print_histogram();
2007   }
2008 };
2009 
2010 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2011 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2012 int MethodArityHistogram::_max_arity;
2013 int MethodArityHistogram::_max_size;
2014 
2015 void SharedRuntime::print_call_statistics(int comp_total) {
2016   tty->print_cr("Calls from compiled code:");
2017   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2018   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2019   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2020   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2021   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2022   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2023   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2024   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2025   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2026   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2027   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2028   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2029   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2030   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2031   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2032   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2033   tty->cr();
2034   tty->print_cr("Note 1: counter updates are not MT-safe.");
2035   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2036   tty->print_cr("        %% in nested categories are relative to their category");
2037   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2038   tty->cr();
2039 
2040   MethodArityHistogram h;
2041 }
2042 #endif
2043 
2044 
2045 // A simple wrapper class around the calling convention information
2046 // that allows sharing of adapters for the same calling convention.
2047 class AdapterFingerPrint : public CHeapObj<mtCode> {
2048  private:
2049   enum {
2050     _basic_type_bits = 4,
2051     _basic_type_mask = right_n_bits(_basic_type_bits),
2052     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2053     _compact_int_count = 3
2054   };
2055   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2056   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2057 
2058   union {
2059     int  _compact[_compact_int_count];
2060     int* _fingerprint;
2061   } _value;
2062   int _length; // A negative length indicates the fingerprint is in the compact form,
2063                // Otherwise _value._fingerprint is the array.
2064 
2065   // Remap BasicTypes that are handled equivalently by the adapters.
2066   // These are correct for the current system but someday it might be
2067   // necessary to make this mapping platform dependent.
2068   static int adapter_encoding(BasicType in) {
2069     switch(in) {
2070       case T_BOOLEAN:
2071       case T_BYTE:
2072       case T_SHORT:
2073       case T_CHAR:
2074         // There are all promoted to T_INT in the calling convention
2075         return T_INT;
2076 
2077       case T_OBJECT:
2078       case T_ARRAY:
2079         // In other words, we assume that any register good enough for
2080         // an int or long is good enough for a managed pointer.
2081 #ifdef _LP64
2082         return T_LONG;
2083 #else
2084         return T_INT;
2085 #endif
2086 
2087       case T_INT:
2088       case T_LONG:
2089       case T_FLOAT:
2090       case T_DOUBLE:
2091       case T_VOID:
2092         return in;
2093 
2094       default:
2095         ShouldNotReachHere();
2096         return T_CONFLICT;
2097     }
2098   }
2099 
2100  public:
2101   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2102     // The fingerprint is based on the BasicType signature encoded
2103     // into an array of ints with eight entries per int.
2104     int* ptr;
2105     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2106     if (len <= _compact_int_count) {
2107       assert(_compact_int_count == 3, "else change next line");
2108       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2109       // Storing the signature encoded as signed chars hits about 98%
2110       // of the time.
2111       _length = -len;
2112       ptr = _value._compact;
2113     } else {
2114       _length = len;
2115       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2116       ptr = _value._fingerprint;
2117     }
2118 
2119     // Now pack the BasicTypes with 8 per int
2120     int sig_index = 0;
2121     for (int index = 0; index < len; index++) {
2122       int value = 0;
2123       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2124         int bt = ((sig_index < total_args_passed)
2125                   ? adapter_encoding(sig_bt[sig_index++])
2126                   : 0);
2127         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2128         value = (value << _basic_type_bits) | bt;
2129       }
2130       ptr[index] = value;
2131     }
2132   }
2133 
2134   ~AdapterFingerPrint() {
2135     if (_length > 0) {
2136       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2137     }
2138   }
2139 
2140   int value(int index) {
2141     if (_length < 0) {
2142       return _value._compact[index];
2143     }
2144     return _value._fingerprint[index];
2145   }
2146   int length() {
2147     if (_length < 0) return -_length;
2148     return _length;
2149   }
2150 
2151   bool is_compact() {
2152     return _length <= 0;
2153   }
2154 
2155   unsigned int compute_hash() {
2156     int hash = 0;
2157     for (int i = 0; i < length(); i++) {
2158       int v = value(i);
2159       hash = (hash << 8) ^ v ^ (hash >> 5);
2160     }
2161     return (unsigned int)hash;
2162   }
2163 
2164   const char* as_string() {
2165     stringStream st;
2166     st.print("0x");
2167     for (int i = 0; i < length(); i++) {
2168       st.print("%08x", value(i));
2169     }
2170     return st.as_string();
2171   }
2172 
2173   bool equals(AdapterFingerPrint* other) {
2174     if (other->_length != _length) {
2175       return false;
2176     }
2177     if (_length < 0) {
2178       assert(_compact_int_count == 3, "else change next line");
2179       return _value._compact[0] == other->_value._compact[0] &&
2180              _value._compact[1] == other->_value._compact[1] &&
2181              _value._compact[2] == other->_value._compact[2];
2182     } else {
2183       for (int i = 0; i < _length; i++) {
2184         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2185           return false;
2186         }
2187       }
2188     }
2189     return true;
2190   }
2191 };
2192 
2193 
2194 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2195 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2196   friend class AdapterHandlerTableIterator;
2197 
2198  private:
2199 
2200 #ifndef PRODUCT
2201   static int _lookups; // number of calls to lookup
2202   static int _buckets; // number of buckets checked
2203   static int _equals;  // number of buckets checked with matching hash
2204   static int _hits;    // number of successful lookups
2205   static int _compact; // number of equals calls with compact signature
2206 #endif
2207 
2208   AdapterHandlerEntry* bucket(int i) {
2209     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2210   }
2211 
2212  public:
2213   AdapterHandlerTable()
2214     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2215 
2216   // Create a new entry suitable for insertion in the table
2217   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2218     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2219     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2220     return entry;
2221   }
2222 
2223   // Insert an entry into the table
2224   void add(AdapterHandlerEntry* entry) {
2225     int index = hash_to_index(entry->hash());
2226     add_entry(index, entry);
2227   }
2228 
2229   void free_entry(AdapterHandlerEntry* entry) {
2230     entry->deallocate();
2231     BasicHashtable<mtCode>::free_entry(entry);
2232   }
2233 
2234   // Find a entry with the same fingerprint if it exists
2235   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2236     NOT_PRODUCT(_lookups++);
2237     AdapterFingerPrint fp(total_args_passed, sig_bt);
2238     unsigned int hash = fp.compute_hash();
2239     int index = hash_to_index(hash);
2240     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2241       NOT_PRODUCT(_buckets++);
2242       if (e->hash() == hash) {
2243         NOT_PRODUCT(_equals++);
2244         if (fp.equals(e->fingerprint())) {
2245 #ifndef PRODUCT
2246           if (fp.is_compact()) _compact++;
2247           _hits++;
2248 #endif
2249           return e;
2250         }
2251       }
2252     }
2253     return NULL;
2254   }
2255 
2256 #ifndef PRODUCT
2257   void print_statistics() {
2258     ResourceMark rm;
2259     int longest = 0;
2260     int empty = 0;
2261     int total = 0;
2262     int nonempty = 0;
2263     for (int index = 0; index < table_size(); index++) {
2264       int count = 0;
2265       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2266         count++;
2267       }
2268       if (count != 0) nonempty++;
2269       if (count == 0) empty++;
2270       if (count > longest) longest = count;
2271       total += count;
2272     }
2273     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2274                   empty, longest, total, total / (double)nonempty);
2275     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2276                   _lookups, _buckets, _equals, _hits, _compact);
2277   }
2278 #endif
2279 };
2280 
2281 
2282 #ifndef PRODUCT
2283 
2284 int AdapterHandlerTable::_lookups;
2285 int AdapterHandlerTable::_buckets;
2286 int AdapterHandlerTable::_equals;
2287 int AdapterHandlerTable::_hits;
2288 int AdapterHandlerTable::_compact;
2289 
2290 #endif
2291 
2292 class AdapterHandlerTableIterator : public StackObj {
2293  private:
2294   AdapterHandlerTable* _table;
2295   int _index;
2296   AdapterHandlerEntry* _current;
2297 
2298   void scan() {
2299     while (_index < _table->table_size()) {
2300       AdapterHandlerEntry* a = _table->bucket(_index);
2301       _index++;
2302       if (a != NULL) {
2303         _current = a;
2304         return;
2305       }
2306     }
2307   }
2308 
2309  public:
2310   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2311     scan();
2312   }
2313   bool has_next() {
2314     return _current != NULL;
2315   }
2316   AdapterHandlerEntry* next() {
2317     if (_current != NULL) {
2318       AdapterHandlerEntry* result = _current;
2319       _current = _current->next();
2320       if (_current == NULL) scan();
2321       return result;
2322     } else {
2323       return NULL;
2324     }
2325   }
2326 };
2327 
2328 
2329 // ---------------------------------------------------------------------------
2330 // Implementation of AdapterHandlerLibrary
2331 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2332 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2333 const int AdapterHandlerLibrary_size = 16*K;
2334 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2335 
2336 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2337   // Should be called only when AdapterHandlerLibrary_lock is active.
2338   if (_buffer == NULL) // Initialize lazily
2339       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2340   return _buffer;
2341 }
2342 
2343 void AdapterHandlerLibrary::initialize() {
2344   if (_adapters != NULL) return;
2345   _adapters = new AdapterHandlerTable();
2346 
2347   // Create a special handler for abstract methods.  Abstract methods
2348   // are never compiled so an i2c entry is somewhat meaningless, but
2349   // throw AbstractMethodError just in case.
2350   // Pass wrong_method_abstract for the c2i transitions to return
2351   // AbstractMethodError for invalid invocations.
2352   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2353   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2354                                                               StubRoutines::throw_AbstractMethodError_entry(),
2355                                                               wrong_method_abstract, wrong_method_abstract);
2356 }
2357 
2358 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2359                                                       address i2c_entry,
2360                                                       address c2i_entry,
2361                                                       address c2i_unverified_entry) {
2362   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2363 }
2364 
2365 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2366   // Use customized signature handler.  Need to lock around updates to
2367   // the AdapterHandlerTable (it is not safe for concurrent readers
2368   // and a single writer: this could be fixed if it becomes a
2369   // problem).
2370 
2371   // Get the address of the ic_miss handlers before we grab the
2372   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2373   // was caused by the initialization of the stubs happening
2374   // while we held the lock and then notifying jvmti while
2375   // holding it. This just forces the initialization to be a little
2376   // earlier.
2377   address ic_miss = SharedRuntime::get_ic_miss_stub();
2378   assert(ic_miss != NULL, "must have handler");
2379 
2380   ResourceMark rm;
2381 
2382   NOT_PRODUCT(int insts_size);
2383   AdapterBlob* new_adapter = NULL;
2384   AdapterHandlerEntry* entry = NULL;
2385   AdapterFingerPrint* fingerprint = NULL;
2386   {
2387     MutexLocker mu(AdapterHandlerLibrary_lock);
2388     // make sure data structure is initialized
2389     initialize();
2390 
2391     if (method->is_abstract()) {
2392       return _abstract_method_handler;
2393     }
2394 
2395     // Fill in the signature array, for the calling-convention call.
2396     int total_args_passed = method->size_of_parameters(); // All args on stack
2397 
2398     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2399     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2400     int i = 0;
2401     if (!method->is_static())  // Pass in receiver first
2402       sig_bt[i++] = T_OBJECT;
2403     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2404       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2405       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2406         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2407     }
2408     assert(i == total_args_passed, "");
2409 
2410     // Lookup method signature's fingerprint
2411     entry = _adapters->lookup(total_args_passed, sig_bt);
2412 
2413 #ifdef ASSERT
2414     AdapterHandlerEntry* shared_entry = NULL;
2415     // Start adapter sharing verification only after the VM is booted.
2416     if (VerifyAdapterSharing && (entry != NULL)) {
2417       shared_entry = entry;
2418       entry = NULL;
2419     }
2420 #endif
2421 
2422     if (entry != NULL) {
2423       return entry;
2424     }
2425 
2426     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2427     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2428 
2429     // Make a C heap allocated version of the fingerprint to store in the adapter
2430     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2431 
2432     // StubRoutines::code2() is initialized after this function can be called. As a result,
2433     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2434     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2435     // stub that ensure that an I2C stub is called from an interpreter frame.
2436     bool contains_all_checks = StubRoutines::code2() != NULL;
2437 
2438     // Create I2C & C2I handlers
2439     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2440     if (buf != NULL) {
2441       CodeBuffer buffer(buf);
2442       short buffer_locs[20];
2443       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2444                                              sizeof(buffer_locs)/sizeof(relocInfo));
2445 
2446       MacroAssembler _masm(&buffer);
2447       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2448                                                      total_args_passed,
2449                                                      comp_args_on_stack,
2450                                                      sig_bt,
2451                                                      regs,
2452                                                      fingerprint);
2453 #ifdef ASSERT
2454       if (VerifyAdapterSharing) {
2455         if (shared_entry != NULL) {
2456           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2457           // Release the one just created and return the original
2458           _adapters->free_entry(entry);
2459           return shared_entry;
2460         } else  {
2461           entry->save_code(buf->code_begin(), buffer.insts_size());
2462         }
2463       }
2464 #endif
2465 
2466       new_adapter = AdapterBlob::create(&buffer);
2467       NOT_PRODUCT(insts_size = buffer.insts_size());
2468     }
2469     if (new_adapter == NULL) {
2470       // CodeCache is full, disable compilation
2471       // Ought to log this but compile log is only per compile thread
2472       // and we're some non descript Java thread.
2473       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2474       CompileBroker::handle_full_code_cache();
2475       return NULL; // Out of CodeCache space
2476     }
2477     entry->relocate(new_adapter->content_begin());
2478 #ifndef PRODUCT
2479     // debugging suppport
2480     if (PrintAdapterHandlers || PrintStubCode) {
2481       ttyLocker ttyl;
2482       entry->print_adapter_on(tty);
2483       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2484                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2485                     method->signature()->as_C_string(), insts_size);
2486       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2487       if (Verbose || PrintStubCode) {
2488         address first_pc = entry->base_address();
2489         if (first_pc != NULL) {
2490           Disassembler::decode(first_pc, first_pc + insts_size);
2491           tty->cr();
2492         }
2493       }
2494     }
2495 #endif
2496     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2497     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2498     if (contains_all_checks || !VerifyAdapterCalls) {
2499       _adapters->add(entry);
2500     }
2501   }
2502   // Outside of the lock
2503   if (new_adapter != NULL) {
2504     char blob_id[256];
2505     jio_snprintf(blob_id,
2506                  sizeof(blob_id),
2507                  "%s(%s)@" PTR_FORMAT,
2508                  new_adapter->name(),
2509                  fingerprint->as_string(),
2510                  new_adapter->content_begin());
2511     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2512 
2513     if (JvmtiExport::should_post_dynamic_code_generated()) {
2514       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2515     }
2516   }
2517   return entry;
2518 }
2519 
2520 address AdapterHandlerEntry::base_address() {
2521   address base = _i2c_entry;
2522   if (base == NULL)  base = _c2i_entry;
2523   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2524   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2525   return base;
2526 }
2527 
2528 void AdapterHandlerEntry::relocate(address new_base) {
2529   address old_base = base_address();
2530   assert(old_base != NULL, "");
2531   ptrdiff_t delta = new_base - old_base;
2532   if (_i2c_entry != NULL)
2533     _i2c_entry += delta;
2534   if (_c2i_entry != NULL)
2535     _c2i_entry += delta;
2536   if (_c2i_unverified_entry != NULL)
2537     _c2i_unverified_entry += delta;
2538   assert(base_address() == new_base, "");
2539 }
2540 
2541 
2542 void AdapterHandlerEntry::deallocate() {
2543   delete _fingerprint;
2544 #ifdef ASSERT
2545   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2546 #endif
2547 }
2548 
2549 
2550 #ifdef ASSERT
2551 // Capture the code before relocation so that it can be compared
2552 // against other versions.  If the code is captured after relocation
2553 // then relative instructions won't be equivalent.
2554 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2555   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2556   _saved_code_length = length;
2557   memcpy(_saved_code, buffer, length);
2558 }
2559 
2560 
2561 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2562   if (length != _saved_code_length) {
2563     return false;
2564   }
2565 
2566   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2567 }
2568 #endif
2569 
2570 
2571 /**
2572  * Create a native wrapper for this native method.  The wrapper converts the
2573  * Java-compiled calling convention to the native convention, handles
2574  * arguments, and transitions to native.  On return from the native we transition
2575  * back to java blocking if a safepoint is in progress.
2576  */
2577 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2578   ResourceMark rm;
2579   nmethod* nm = NULL;
2580 
2581   assert(method->is_native(), "must be native");
2582   assert(method->is_method_handle_intrinsic() ||
2583          method->has_native_function(), "must have something valid to call!");
2584 
2585   {
2586     // Perform the work while holding the lock, but perform any printing outside the lock
2587     MutexLocker mu(AdapterHandlerLibrary_lock);
2588     // See if somebody beat us to it
2589     nm = method->code();
2590     if (nm != NULL) {
2591       return;
2592     }
2593 
2594     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2595     assert(compile_id > 0, "Must generate native wrapper");
2596 
2597 
2598     ResourceMark rm;
2599     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2600     if (buf != NULL) {
2601       CodeBuffer buffer(buf);
2602       double locs_buf[20];
2603       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2604       MacroAssembler _masm(&buffer);
2605 
2606       // Fill in the signature array, for the calling-convention call.
2607       const int total_args_passed = method->size_of_parameters();
2608 
2609       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2610       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2611       int i=0;
2612       if( !method->is_static() )  // Pass in receiver first
2613         sig_bt[i++] = T_OBJECT;
2614       SignatureStream ss(method->signature());
2615       for( ; !ss.at_return_type(); ss.next()) {
2616         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2617         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2618           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2619       }
2620       assert(i == total_args_passed, "");
2621       BasicType ret_type = ss.type();
2622 
2623       // Now get the compiled-Java layout as input (or output) arguments.
2624       // NOTE: Stubs for compiled entry points of method handle intrinsics
2625       // are just trampolines so the argument registers must be outgoing ones.
2626       const bool is_outgoing = method->is_method_handle_intrinsic();
2627       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2628 
2629       // Generate the compiled-to-native wrapper code
2630       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2631 
2632       if (nm != NULL) {
2633         method->set_code(method, nm);
2634       }
2635     }
2636   } // Unlock AdapterHandlerLibrary_lock
2637 
2638 
2639   // Install the generated code.
2640   if (nm != NULL) {
2641     if (PrintCompilation) {
2642       ttyLocker ttyl;
2643       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2644     }
2645     nm->post_compiled_method_load_event();
2646   } else {
2647     // CodeCache is full, disable compilation
2648     CompileBroker::handle_full_code_cache();
2649   }
2650 }
2651 
2652 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2653   assert(thread == JavaThread::current(), "must be");
2654   // The code is about to enter a JNI lazy critical native method and
2655   // _needs_gc is true, so if this thread is already in a critical
2656   // section then just return, otherwise this thread should block
2657   // until needs_gc has been cleared.
2658   if (thread->in_critical()) {
2659     return;
2660   }
2661   // Lock and unlock a critical section to give the system a chance to block
2662   GC_locker::lock_critical(thread);
2663   GC_locker::unlock_critical(thread);
2664 JRT_END
2665 
2666 #ifdef HAVE_DTRACE_H
2667 // Create a dtrace nmethod for this method.  The wrapper converts the
2668 // java compiled calling convention to the native convention, makes a dummy call
2669 // (actually nops for the size of the call instruction, which become a trap if
2670 // probe is enabled). The returns to the caller. Since this all looks like a
2671 // leaf no thread transition is needed.
2672 
2673 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2674   ResourceMark rm;
2675   nmethod* nm = NULL;
2676 
2677   if (PrintCompilation) {
2678     ttyLocker ttyl;
2679     tty->print("---   n%s  ");
2680     method->print_short_name(tty);
2681     if (method->is_static()) {
2682       tty->print(" (static)");
2683     }
2684     tty->cr();
2685   }
2686 
2687   {
2688     // perform the work while holding the lock, but perform any printing
2689     // outside the lock
2690     MutexLocker mu(AdapterHandlerLibrary_lock);
2691     // See if somebody beat us to it
2692     nm = method->code();
2693     if (nm) {
2694       return nm;
2695     }
2696 
2697     ResourceMark rm;
2698 
2699     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2700     if (buf != NULL) {
2701       CodeBuffer buffer(buf);
2702       // Need a few relocation entries
2703       double locs_buf[20];
2704       buffer.insts()->initialize_shared_locs(
2705         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2706       MacroAssembler _masm(&buffer);
2707 
2708       // Generate the compiled-to-native wrapper code
2709       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2710     }
2711   }
2712   return nm;
2713 }
2714 
2715 // the dtrace method needs to convert java lang string to utf8 string.
2716 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2717   typeArrayOop jlsValue  = java_lang_String::value(src);
2718   int          jlsOffset = java_lang_String::offset(src);
2719   int          jlsLen    = java_lang_String::length(src);
2720   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2721                                            jlsValue->char_at_addr(jlsOffset);
2722   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2723   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2724 }
2725 #endif // ndef HAVE_DTRACE_H
2726 
2727 // -------------------------------------------------------------------------
2728 // Java-Java calling convention
2729 // (what you use when Java calls Java)
2730 
2731 //------------------------------name_for_receiver----------------------------------
2732 // For a given signature, return the VMReg for parameter 0.
2733 VMReg SharedRuntime::name_for_receiver() {
2734   VMRegPair regs;
2735   BasicType sig_bt = T_OBJECT;
2736   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2737   // Return argument 0 register.  In the LP64 build pointers
2738   // take 2 registers, but the VM wants only the 'main' name.
2739   return regs.first();
2740 }
2741 
2742 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2743   // This method is returning a data structure allocating as a
2744   // ResourceObject, so do not put any ResourceMarks in here.
2745   char *s = sig->as_C_string();
2746   int len = (int)strlen(s);
2747   s++; len--;                   // Skip opening paren
2748   char *t = s+len;
2749   while( *(--t) != ')' ) ;      // Find close paren
2750 
2751   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2752   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2753   int cnt = 0;
2754   if (has_receiver) {
2755     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2756   }
2757 
2758   while( s < t ) {
2759     switch( *s++ ) {            // Switch on signature character
2760     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2761     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2762     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2763     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2764     case 'I': sig_bt[cnt++] = T_INT;     break;
2765     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2766     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2767     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2768     case 'V': sig_bt[cnt++] = T_VOID;    break;
2769     case 'L':                   // Oop
2770       while( *s++ != ';'  ) ;   // Skip signature
2771       sig_bt[cnt++] = T_OBJECT;
2772       break;
2773     case '[': {                 // Array
2774       do {                      // Skip optional size
2775         while( *s >= '0' && *s <= '9' ) s++;
2776       } while( *s++ == '[' );   // Nested arrays?
2777       // Skip element type
2778       if( s[-1] == 'L' )
2779         while( *s++ != ';'  ) ; // Skip signature
2780       sig_bt[cnt++] = T_ARRAY;
2781       break;
2782     }
2783     default : ShouldNotReachHere();
2784     }
2785   }
2786 
2787   if (has_appendix) {
2788     sig_bt[cnt++] = T_OBJECT;
2789   }
2790 
2791   assert( cnt < 256, "grow table size" );
2792 
2793   int comp_args_on_stack;
2794   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2795 
2796   // the calling convention doesn't count out_preserve_stack_slots so
2797   // we must add that in to get "true" stack offsets.
2798 
2799   if (comp_args_on_stack) {
2800     for (int i = 0; i < cnt; i++) {
2801       VMReg reg1 = regs[i].first();
2802       if( reg1->is_stack()) {
2803         // Yuck
2804         reg1 = reg1->bias(out_preserve_stack_slots());
2805       }
2806       VMReg reg2 = regs[i].second();
2807       if( reg2->is_stack()) {
2808         // Yuck
2809         reg2 = reg2->bias(out_preserve_stack_slots());
2810       }
2811       regs[i].set_pair(reg2, reg1);
2812     }
2813   }
2814 
2815   // results
2816   *arg_size = cnt;
2817   return regs;
2818 }
2819 
2820 // OSR Migration Code
2821 //
2822 // This code is used convert interpreter frames into compiled frames.  It is
2823 // called from very start of a compiled OSR nmethod.  A temp array is
2824 // allocated to hold the interesting bits of the interpreter frame.  All
2825 // active locks are inflated to allow them to move.  The displaced headers and
2826 // active interpreter locals are copied into the temp buffer.  Then we return
2827 // back to the compiled code.  The compiled code then pops the current
2828 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2829 // copies the interpreter locals and displaced headers where it wants.
2830 // Finally it calls back to free the temp buffer.
2831 //
2832 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2833 
2834 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2835 
2836   //
2837   // This code is dependent on the memory layout of the interpreter local
2838   // array and the monitors. On all of our platforms the layout is identical
2839   // so this code is shared. If some platform lays the their arrays out
2840   // differently then this code could move to platform specific code or
2841   // the code here could be modified to copy items one at a time using
2842   // frame accessor methods and be platform independent.
2843 
2844   frame fr = thread->last_frame();
2845   assert( fr.is_interpreted_frame(), "" );
2846   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2847 
2848   // Figure out how many monitors are active.
2849   int active_monitor_count = 0;
2850   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2851        kptr < fr.interpreter_frame_monitor_begin();
2852        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2853     if( kptr->obj() != NULL ) active_monitor_count++;
2854   }
2855 
2856   // QQQ we could place number of active monitors in the array so that compiled code
2857   // could double check it.
2858 
2859   Method* moop = fr.interpreter_frame_method();
2860   int max_locals = moop->max_locals();
2861   // Allocate temp buffer, 1 word per local & 2 per active monitor
2862   int buf_size_words = max_locals + active_monitor_count*2;
2863   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2864 
2865   // Copy the locals.  Order is preserved so that loading of longs works.
2866   // Since there's no GC I can copy the oops blindly.
2867   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2868   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2869                        (HeapWord*)&buf[0],
2870                        max_locals);
2871 
2872   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2873   int i = max_locals;
2874   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2875        kptr2 < fr.interpreter_frame_monitor_begin();
2876        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2877     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2878       BasicLock *lock = kptr2->lock();
2879       // Inflate so the displaced header becomes position-independent
2880       if (lock->displaced_header()->is_unlocked())
2881         ObjectSynchronizer::inflate_helper(kptr2->obj());
2882       // Now the displaced header is free to move
2883       buf[i++] = (intptr_t)lock->displaced_header();
2884       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2885     }
2886   }
2887   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2888 
2889   return buf;
2890 JRT_END
2891 
2892 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2893   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2894 JRT_END
2895 
2896 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2897   AdapterHandlerTableIterator iter(_adapters);
2898   while (iter.has_next()) {
2899     AdapterHandlerEntry* a = iter.next();
2900     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2901   }
2902   return false;
2903 }
2904 
2905 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2906   AdapterHandlerTableIterator iter(_adapters);
2907   while (iter.has_next()) {
2908     AdapterHandlerEntry* a = iter.next();
2909     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2910       st->print("Adapter for signature: ");
2911       a->print_adapter_on(tty);
2912       return;
2913     }
2914   }
2915   assert(false, "Should have found handler");
2916 }
2917 
2918 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2919   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2920                (intptr_t) this, fingerprint()->as_string(),
2921                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2922 
2923 }
2924 
2925 #ifndef PRODUCT
2926 
2927 void AdapterHandlerLibrary::print_statistics() {
2928   _adapters->print_statistics();
2929 }
2930 
2931 #endif /* PRODUCT */